Support Vector Machine Algorithms:
Analysis and Applications

by
Tong Wen

B.S., Nankai University, June 1992

Submitted to the Department of Mathematics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2002

© 2002 Tong Wen. All rights reserved.
The author hereby grants to MIT permission to reproduce and to

distribute publicly paper and electronic copies of this thesis document

Certified by......................

Accepted by

Accepted by e

. 'MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

JUN 08 2000

! LIBRARIES

in whole or in part. ,

Deparfment of Mathematics
May 22, 2002

"Alan Edelman
Associate Professor of Applied Mathematics
Thesis Supervisor

.....................................

Tomasz S. Mrowka,
Chair, Departmental Committee on Graduate Students

'ARCHIVES

Support Vector Machine Algorithms: Analysis and Applications
by
Tong Wen

Submitted to the Department of Mathematics
on May 14, 2002, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

Support Vector Machines (SVMs) have attracted recent attention as a learning technique
to attack classification problems. The goal of my thesis work is to improve computational
algorithms as well as the mathematical understanding of SVMs, so that they can be easily
applied to real problems.

SVMs solve classification problems by learning from training examples. From the geome-
try, it is easy to formulate the finding of SVM classifiers as a linearly constrained Quadratic
Programming (QP) problem. However, in practice its dual problem is actually computed.
An important property of the dual QP problem is that ifs solution is sparse. The training
examples that determine the SVM classifier are known as support vectors (SVs).

Motivated by the geometric derivation of the primal QP problem, we investigate how the
dual problem is related to the geometry of SVs. This investigation leads to a geometric
interpretation of the scaling property of SVMs and an algorithm to further compress the
SVs. A random model for the training examples connects the Hessian matrix of the dual QP
problem to Wishart matrices. After deriving the distributions of the elements of the inverse
Wishart matrix W, !(n,nl), we give a conjecture about the summation of the elements
of W, }(n,nI). It becomes challenging to solve the dual QP problem when the training
set is large. We develop a fast algorithm for solving this problem. Numerical experiments
show that the MATLAB implementation of this projected Conjugate Gradient algorithm
is competitive with benchmark C/C++ codes such as SVM!"* and SvmFu. Furthermore,
we apply SVMs to time series data. In this application, SVMs are used to predict the
movement of the stock market. Our results show that using SVMs has the potential to
outperform the solution based on the most widely used geometric Brownian motion model
of stock prices.

Thesis Supervisor: Alan Edelman
Title: Associate Professor of Applied Mathematics

Acknowledgments

Writing a Ph.D. thesis in mathematics is definitely not a one-man job. I am forever
indebted to all of those who have helped me along the way. It is because of them that the
road seemed like a goal itself. I would like to dedicate my thesis to my grandfather and
Professor Yao T. Li. Without them, I could not have been in such a great place known as
MIT.

My thanks first go to my advisor Professor Alan Edelman for his guidance, insights,
patience and encouragement. From him, I learned how research is supposed to be done. I
found the joy of research by working with him.

I would like to thank Professors Hung Cheng, Gilbert Strang and Gian-Carlo Rota for
showing me the beauty of mathematics. Especially I would like to thank Professor Cheng
for his inspiration and encouragement. His stories and thrilling novels have made the study
of mathematics more enjoyable.

I owe many thanks to my friends. They added other tunes to my life as a MIT graduate
student. The weekly poker games among mathematicians, the outings, the karaoke parties,
the CSSA activities ... were all unforgettable. I want to thank Dan Stefanica, Lizhao
Zhang, David Gorsich and Ryan Rifkin for their valuable discussions and suggestions to my
research. Particularly, thanks go to Dr. David Gorsich of U.S. Army TACOM Automotive
Research Center, who provided generous financial support to this research project.

Finally, I would like to thank my parents for their love and spiritual support when I am
far away from them. I am also truly grateful to my beloved Tonia for sharing good and bad
times with me. ‘

Preface

Support Vector Machines (SVMs) solve classification problems by learning from training
examples. Although the fundamental idea of SVMs was introduced by Vapnik in 1979
[92], this subject started to attract increasing attention in the 90’s. Since then, SVMs
have evolved as a subfield of machine learning. My first knowledge of SVMs came from
the tutorial [18] and the class 9.520 at M.LT. (Professor Poggio, Fall 1999). But today,
people can find a comprehensive introduction to this subject from more places such as
[24]. Details of statistical learning theory can be found in [93] and [95]. Another good
reference is [80] which outlines the development of SVMs from the perspectives of theory,
implementation as well as application. If people want to know more about this field, the web
site www.kernel-machines.org is a good place to go. Instead of focusing on the learning
aspect of SVMs, our research interest is mathematical and computation oriented.

This research project was initiated to develop a MATLAB SVM training code for U.S.
Army TACOM (Tank-Automotive Armaments Command). To compete with the already
existing C/C++ codes , we wanted our implementation to be at least as fast as them, while
preserving all the good features that a high-level language such as MATLAB can provide.
With this goal in mind, we develop our algorithm (in Chapter 4) in terms of linear algebra
operations, which makes it easy for us to leverage off previous work instead of hand-coding
everything. Equivalent emphasis is also given in Chapter 4 to implementation issues such
as how to make the code adaptive to both the computer memory hierarchy and the training
set. The result is a highly portable and efficient MATLAB training code.

When we first looked at SVMs, we were immediately attracted by the underlying geometry
of this subject. Qur investigation of the geometry in Chapter 2 provides an interpretation
of the scaling property of SVMs and an algorithm to further compress the support vectors
(SVs) so as to achieve a sparser solution. A random model for the training examples leads
us to Wishart matrices. Motivated by the separation of n+ 1 general points in R", we look
at the marginal distributions of the inverse Wishart matrix W (n,nl) in Chapter 3. As a
new application of SVMs, in Chapter 5 we predict the movement of the stock market. Our
results show that using SVMs has the potential to outperform thé solution based on the
most widely used geometric Brownian motion model of stock prices.

In our discussion, familiarity with numerical linear algebra and linearly constrained
quadratic programming (QP) problems is assumed. As a matter of notation, we use bold
typeface for vectors and normal typeface for vector and matrix components as well as for

scalars; matrices are indicated by capital letters. In the following, the frequently used

notations are listed.

ZHRNOTXRII I TELRRES

the ith training point

the label of the ith training point

the vector of Lagrange multipliers

the ¢th Lagrange multiplier

the vector giving the normal direction of a hyperplane
the bias term ’

the dimension of a training point

the number of training points

the Hessian matrix ‘

a matrix whose columns are the training points
the matrix that spans the current search space
the orthogonal complement of P

the set of SVs that are correctly separated

the set of SVs that are separated with errors

a decision rule (function)

Contents

Introduction to Support Vector Machines

1.1 Classification e e
1.2 Learning From Examples
1.3 Support Vector Machines
1.4 A Regularization Formulation of Support Vector Machines
1.5 Applications. e e e e e e

The Geometry of the Support Vectors

2.1 Reduction to a Linear System,
2.2 A Trigonometric Interpretationof
2.3 The Simplex Decomposition Relation at Optimality
2.4 Compressingthe SVs. Lo oo
2.5 Making the Non-separable Case Separable
2.6 Future Work e

The Inverse Wishart Matrix W, (n, nI)

3.1 Observations from the Separation of n + 1 General Points in R™
3.2 The Marginal Distribution of W, *(n,nI)
3.3 Future Work

Solving the SVM Dual QP Problem Efficiently
4.1 A Projected Conjugate Gradient Algorithm
4.1.1 Constructing a Subproblem
4.1.2 Solving the Subproblem by the Conjugate Gradient Method
4.1.3 The Optimality Conditions
4.1.4 The Algorithm
4.2 Speed Considerations

4.2.1 Being Adaptive to the Computer Memory Hierarchy
4.2.2 Setting k and ! Adaptively

11
11
14
16
20
21

23
23
27
31
34
37
39

41
41
42
46

10

4.3 Numerical Experiments

4.4 Distributing Large Training Problems

4.5 Conclusion and Future work e e e e e e e e e e e e e

Using SVMs to Predict the Stock Market

5.1 Setting the Stage e e e e
5.2 The Geometric Brownian Motion Solution
53 The SVM Solution
5.4 Conclusion and Future Work

List of Kernel Functions
List of Estimated Optimal Settings for SVM"9" and SvimFu

Our MATLAB Codes
Cl FMSvmm B

C.3 boundMEX.c e e e e
CA4d colOfAm e e e

63
63
65
68
70

73

75

Chapter 1

Introduction to Support Vector
Machines

The goal of this introduction is to set the ground for our later discussion. For more
exhaustive treatments of Support Vector Machines (SVMs), we refer readers to [18] [24]
[80] [95]. SVMs solve classification problems by learning from training examples. Hence, in
this introduction, we first give a brief review of the classification and learning-from-example
problems.

1.1 Classification

The main theme of classification problems is to determine a decision rule that assigns
class labels to the objects of interest. A (deterministic) decision rule is a function A : X C
R" — Y C R, where « € X is a n-vector that describes an object and Y is the set of class
labels (one label for each class). When Y contains two (a finite number of) labels, we have
a binary (multi-class) classification problem. If y € Y takes real values, the classification
problem is referred to as regression. Our discussion will focus on the binary classification
because it is the simplest and also the most fundamental case. From now on, Y is set to be

{£1}.

For non-trivial classification problems, it is often i»mpossiblel to find a 100% accurate
decision rule, due to the fact that either the underlying mechanism generating the input-
output pair (z,y) can not be represented by a function or we simply do not have enough
information to determine the right y(z) if such a function exists. Usually it is satisfactory to
have a solution h*(z) that minimizes a certain measure of error. In the following paragraph,
a binary example is given to show how such a h* (z) can be derived using the Bayesian
approach when z,y are random variables and the probability distribution P(z,y) is known.

11

12 CHAPTER 1. INTRODUCTION TO SUPPORT VECTOR MACHINES

Assume that with the same probability, z € R® can be generated by either the proba-
bilistic model P(z | y = 1) or P(x | y = —1), where %1 are the labels for these two models,
and by assumption Prjy =1 =Pr[y = -1] = % ‘Given an observation of z, the goal of this
problem is to detect which model actually generated this observation, that is, to determine
the value of y. This classification problem is interesting because y is not deterministic for .
each observation. The Bayesian decision rule A*(z) is obtained by minimizing the Bayesian
risk, i.e., the expected number of the errors made by h(z):

R[K] = El(ly - h(a))]

= B, (5,2 | 0y

_ / 5, (L= op(a)de.

Here, p(z) is the density function. It is easy to show that

N =

p(z)de = Z[dP(z |y =1) + dP(z | y = —1)].

Since p(z) > 0, the Bayesian risk R is minimized if Ey[l"’;ggEll |] is minimized for each
particular value of . It follows that h*(z) can be determined on a point by point basis.
For each value of x, if h(z) = 1(—1), then E'y[J%Ell |] = Pr[y = —1(1) | z]. By Bayes’
Rule, ‘

plzly=1)Prly=1]

p(z) ’
_ ply=1)
plz|ly=1)+px|y=-1)

Prly=1|z]=

and

Prly=-1]

_plxe|y=-1)Prly=—1]
z) = @)
_ plz|y=-1)
pely=D+px|ly=-1)

Therefore, to minimize R[h], or equivalently to minimize Ey[]%Ell | z], the optimal deci-
sion rule is

h*(x) = argmax p(z | y = §). (1.1.1)
ge{x1}

The above Bayesian decision rule is also called the mazimum likelihood (ML) decision rule.

1.1. CLASSIFICATION 13

m =(1,1), m+=(3,3), o=1

—1F

-2 -1 0 1 2 3 4 5

Figure 1.1: A two-dimensional binary Bayesian detection problem, where the means of the
two normal distributions are m_ = (1,1) and m, = (3,3), and the covariance matrices are
I. The circles and squares represent respectively the instances of the negative and positive
classes. The solid line is the separating boundary.

14 CHAPTER 1. INTRODUCTION TO SUPPORT VECTOR MACHINES

Geometrically, each decision rule determines a boundary in R which separates the whole
space into two sets of regions, each one corresponding to a class labeled by £1. For in-
stance, if we further assume that the two probabilistic models are normal distributions, say
P(z |y =1) = N(z;m4,0°I) and P(z | y = —1) = N(z;m_,0?I), where I is the identity
matrix , then the separating boundary is the hyperplane that perpendicularly bisects the
line m_my as indicated in Figure 1.1. In the region above this separating hyperplane,
h*(xz) = 1, while in the region below, h*(z) = —1. An oriented hyperplane in R” such as
the one in Figure 1.1 can be represented by the following equation:

wle +b=0, (1.1.2)

where w € R" defines the orientation of this hyperplane and b € R is the displacement
term. It is easy to see that the ML decision rule (1.1.1) has another form:

hvw(z) = sgn(w’z + b). | (1.1.3)

People have been interested in using hyperplanes to separate classes. As we will see, SVMs
use two parallel hyperplanes to do this job, and the SVM decision rule also have the above
form: ‘ ,

hsvm(z) = sgn(wTx + b). (1.1.4)

If the separating boundary can be representéd by the equation
fse(z) =0, (1.1.5)

then the corresponding decision rule (binary) has a general form

h(z) = sgn(fsp(x))- (1.1.6)

1.2 Learning From Examples

In practice, there are many cases where the probability distribution P(z,y) is not known,
instead examples of the input-output relation (x,y) are available. Denote the set of these
examples by S = {(&1,41),-- -, (Tm,Ym)}. The procedure of obtaining a decision rule h(zx)
based on S is referred to as learning from ezamples, and S is called the training set. Since
P(x,y) is unknown, a decision rule can not be derived by minimizing the expected error
such as R[h] = E[(|y — h(z)|)]. Although the training error Rs[h] on S is easy to compute,
it is not a good idea to minimize it. Here,

m

Rslh] = %Egm ~ h(zi)l.

i=1

1.2. LEARNING FROM EXAMPLES 15

The reason is that by choosing the separating boundary flexible enough, we can alway
reduce Rg[h] to zero, but this separating boundary may give totally uncorrelated prediction
on unseen . That is, fsg(x) or h(x) may overfit the training set. Therefore, we need to
control the flexibility of the candidate functions from which fsg(-) is chosen. The other
extreme case is to use an inflexible function as the separating boundary. A decision rule
giving a large Rg[h] can not predict well either. The main theme of learning from examples
is to determine the trade-off between the training accuracy and the predicting accuracy, or
equivalently, the trade-off between the training accuracy and the flexibility of the candidate
functions.

Statistical learning theory [93] [94] [95] provides a principle to solve this problem by
looking at bounds (confidence intervals) on the risk R[h]. These bounds depend on both
the training error and the flexibility of the candidate functions. In this theory, the famous
concept for measuring the flexibility of a function class is VC dimension [103], which is
defined as “the largest number ! of points that can be separated in all possible ways using
functions of the given class”. For the set of oriented hyperplanes in R", its VC dimension
is n + 1. The reason is that given n+ 1 point in R” with one of them set to be the origin, if
the position vectors of the other n points (except the origin) are linearly independent, then
it is guaranteed that these n + 1 points can be separated in all the possible (2"*!) ways
by at least one oriented hyperplane. Therefore, the VC dimension is n + 1. As we will see
later, this hyperplane is determined by a linear system.

As an example, a VC bound based on VC dimension is given as the following. If I < m is
the VC dimension of the class of candidate functions, then for all the functions f(-) in this
class, with a probability of at least 1 — 7, the following bound holds

RIM] < Rs[h] + \/ H(log 7 tnl) —logg (1.2.1)

where h(z) = sgn(f()) and m is the size of the training set. To be useful, # must be small
enough to make this bound tight. It implies that to obtain an accurate decision rule the size
of the training set must be much larger than the VC dimension of the candidate functions.
If there are two classes of candidate decision rules giving the same training error, then
obviously the one with smaller ! is preferred because the corresponding bound is smaller.
Statistical learning theory suggests to obtain a suboptimal decision rule by minimizing risk

bounds such as the above one. People use this principle to choose training parameters for
SVMs.

16 CHAPTER 1. INTRODUCTION TO SUPPORT VECTOR MACHINES

d=2/llwll

Figure 1.2: A pair of parallel hyperplanes separating examples from two classes labeled by
+1, where point z; along with its label y; represents one training example (z;,y;). w gives
the normal direction of these two hyperplanes, which points‘ to the positive (gray) points.
The positive and the negative (dark) points are linearly separable.

1.3 Support Vector Machines

SVMs solve classification problems by learning from the training examples

o)., (@)}
Geometrically, a decision rule corresponds to a separating boundary in R”. For example, we
have seen that in the Bayesian detection problem, the boundary is an oriented hyperplane.
Instead of one, SVMs use two parallel‘hypérpla}nes as the separating boundary, and these
two hyperplanes are computed explicitly. To illustrate how to “learn” the SVM separating
boundary from the training set S, the case where S is linearly separable is discussed first.
Then the result is generalized for the non-separable case. ’

For a linearly separable training set as indicated in Figure 1.2, the mazimal-margin SVM
separating boundary is the pair of parallel hyperp'lanes that with the maximum gap separate
the two sets of training points {®; | ¥; = 1} and {®; | y; = —1}. Any pair of parallel

1.3. SUPPORT VECTOR MACHINES 17

hyperplanes in R" can be represented by the following equation:
wle +b=+1, (1.3.1)

where w € R", b € R, and the gap between these two hyperplanes is ﬁ The orientation of
the SVM separating hyperplanes is defined to point to the positive training points {z; | y; =
1}. To be able to separate the positive and negative training points, these two hyperplanes
must satisfy the following inequalities:

wlec; +b>1 ify; =1
'wTa:,-+b_<_ -1 ify; =—1

or equivalently,
yi(wl'z; +b) > 1,

where 1 = 1,...,m. It follows that the two maximal-margin SVM separating hyperplanes
can be computed by solving the following linearly constrained quadratic programming prob-
lem:
1
minimize —||w]|3 (1.3.2)
w,b 2
subject to
AT . -
yi(w z; +0) >1, fori=1,...,m. (1.3.3)

Since the training set is separable, the above problem has a unique solution. Hence, the
maximal-margin SVM decision rule is

hsvm(z) = sgn(wTz + b).

Note that given two (separable) sets in R™, the maximum gap that two parallel separating
hyperplanes can achieve defines the distance between these two sets.

Given a training set, it may not be separable by hyperplanes. To apply the maximal-
margin SVM, where linear separability is assumed, a map ¢(-) is used to map the non-
separable training points to a higher dimensional space K" (n' > n), such that in R" the
two sets {¢(x;) | y; = 1} and {¢(=;) | yi = —1} can be separated by hyperplanes. In R"
the pair of optimal separating hyperplanes are computed in the same way as in Problem
(1.3.2), with the only difference that x; is replaced by ¢(z;). Note that a linear separating
boundary in R* corresponds to a nonlinear separating boundary in R". The idea of using a
map ¢(-) is the same as we mentioned before: if linear functions are not enough to separate
the training set, more flexible functions are used. However, using a class of more flexible
functions increases the risk of overfitting. Considering that a separating boundary with
training errors on S may give an overall more accurate decision rule than those without

errors, in practice people do not always want to fully separate the training set.

18 CHAPTER 1. INTRODUCTION TO SUPPORT VECTOR MACHINES

The “soft-margin” SVMs are used for non-separable training sets. To accommodate
the separation errors on S, nonnegative slack variables (errors) ¢; are introduced in the
separability condition (1.3.3):

y,-('wT:z:i +b) >1-—g¢.

Since) ", €; gives the total training error on §, it is added to the objective function
in Problem (1.3.2) to be minimized along with the square norm of w. The generalized
quadratic programming problem becomes

o1, '
minifnize §||'w||2 +c Ei €i (1.3.4)
subject to (for i =1,...,m)

yi('wTa:i +b)>1—¢;and g > 0. (1.3.5)

If the training set turns out to be separable, then all the slack variables (errors) are zeros, so
the above problem becomes Problem (1.3.2). Note that the larger gap (the smaller |w||2)
the SVM separating hyperplanes have, the better predicting accuracy it tends to give on
unseen data; but at the same tlme, the goa.l to separate the training set correctly tends to
reduce the gap. The coefficient ¢ controls the trade-off between the size of the gap and how
well S is separated, that i is, the trade-off between the predicting ability of a SVM decision
rule and the training error on S. Recall that the goal of learning is the overall accuracy on
X

In practice, the dual problem of (1.3.4) is computed, because it has simpler constraints
and it uses ¢(-) implicitly. The dual problem is derived from the corresponding primal
problem using Lagrange multipliers. Details can be found in [18] [24]. The dual problem of
(1.3.2) has the form:

ma.xci!mize o1 - %aTHa (1.3.6)
subject to
ya=0, (1.3.7)
a0, (1.3.8)
where a = [a1,...,am]T, ¥y = [y1;, .« ., ym]*- Surpfisingly, it turns out that the dual problem

of (1.3.4) is only a little bit more complicated:

1
maximize of1— iaTHa (1.3.9)
[1

1.3. SUPPORT VECTOR MACHINES : 19

subject to
yTa =0, (1.3.10)
0<ac<ec, (1.3.11)
where ¢ = [c,...,c|7. The Hessian matrix H;; = yi(é(z:)T ¢(x;))y; is a m x m symmetric

positive semi-definite matrix, where ¢(-) is the map. Note that the coefficient ¢ in the primal
problem (1.3.4) becomes the upper bound in the box constraint (1.3.11). It controls the
flexibility of the two parallel separating hyperplanes. In practice, a number of choices of ¢
are tried and the one with the best performance is chosen.

Since only inner products are involved in the dual problems, a positive definite kernel
function k(-,-) [2] [68] is used to replace ¢(-), where k(z;,z;) = ¢(zi)T ¢(z;) and H;; =
yik(x;,z;)y;. The kernel function k(:,-) is preferred due to the curse of dimensionality.
Note that the eigen-functions of a positive definite kernel span a space of functions from
which fsg(-) is chosen. The analogy in the discrete world is that the eigenvectors of a
symmetric positive definite matrix span its column space. If two positive definite kernel
functions k1(-,-) and k2(-,-) all make the training set separable or give the same Rg, then
the one with smaller VC dimension (of the function space it defines) is preferred. A list of
positive definite kernel functions frequently used by SVMs is available in the appendix. For
details of how kernel functions are used in SVMs, we refer readers to [18] [24] [82] [80].

Each dual variable (Lagrange multiplier) o; corresponds to one example (z;,v;) in the
primal problem. To simplify our notation, we use x; in place of ¢(x;) in our remaining
discussion. From the optimality conditions (the Kuhn-Tucker conditions [44]), it can be
shown that at optimality, the primal variables w, b and the dual variable o are connected
by the following equations:

m
w=>) yoz;, : : (1.3.12)
=1 . :
and if yi('szc,- +b) =1 then
b=y —wlz; =y (1 — e Ha). C(1.3.13)

Here, e; is the ith column of the identity matrix I;xm. From (1.3.12), it is easy to show
that the SVM decision has the following form:

hSVM(w) = sgn(i y;aik(mi, 12) + b). | (1.3.14)

i=1

20 CHAPTER 1. INTRODUCTION TO SUPPORT VECTOR MACHINES

Also at optimality, the value of a partitions the set {z1,...,z,,} into three parts S, S,
and S3, and vice versa:

0<aj<ec +—z; €8, S1= {.'z:,| y,-(w.Ta:,- +b)=1 (g = 0)};
a=c > x; €Sy, Sy = {zi| yi(wTz; +b) =1 —¢; and ¢; > 0};

a; =0 +— x; €853, S3= {:z:,| yi('wTa:,- +b) >1 (g = 0)}

51U Sy contain the support vectors (SVs). We can see that at optimality, the equality
yi(wT'z; + b) = 1 — ¢; holds only when z; is a SV. Geometrically, S; contains the training
points that are in the SVM separating hyperplanes, whereas S and Sy contain respectively
the training points separated correctly and with errors by the SVM hyperplanes. An im-
portant property of SVMs is that a is generally sparse [28]. The intuition explaining the
sparseness is that in K", to determine a hyperplane with n + 1 unknowns, we only need
n+1 equations (SVs), but usually we have m > n training examples. This sparsity property
enables us to develop a fast algorithm for solving the dual problem (1.3.9) in Chapter 4.

1.4 A Regularization Formulation of Support Vector Ma-
chines

~ From the Moore-Aronszajn theorem [105], we know that every positive definite kernel

function k(:,-) on R* x R” determines a unique Reproducing Kernel Hilbert Space (RKHS)

‘Hj, of real valued functions on R™ and vice versa. Denote k(z,z2) by k. (z). For fixed
s,t € R", k(-,-) has the following “reproducing” property:

where < :,- > is the inner product in Hi. It can also be shown that all the finite linear
combinations of kz,. are in Hy, where 2z; € R". For Any f € Hy, we have

To show that the SVM decision rule dan be derived uéing the same methodology to derive
the ML decision rule, a risk functional is defined for SVMs:

m

& | 1
Hsvmlf] = — 21&(1 — uif (@) (1 = wif () + 2 I FIE. (14.1)
1=
Here, u(-) is the Heaviside function, | - ||x is the norm in #j induced by the above inner

product, and o-||f||2 is the regularization term or stabilizer. The minimizer of Hsvm[f]

1.5. APPLICATIONS | 91

over the RKHS #H; has the following form:
m
@) = Bik(zi,) +b.
i=1

It can be shown that minimizing Hgvm([f] over H is equivalent to solving Problem (1.3.4),
where equation f*(z) = %1 defines the SVM separating hyperplanes and the decision rule
is

hsvm(z) = sgn(f*(x)).

Note that with this formulation, SVMs can be connected to other learning mechanisms
such as regularization networks (RNs). Measuring the training error differently, the risk
functional for RNs is

1 & 1
Hrnlfl= — > (4 — f(@:)* + 5o I/ 1IE- (1.4.2)
m c
Its minimizer over H;, has the same form: f*(z) = Y"1%, a;k(x;,z) + b. For more detailed
discussion on this topic, please refer to [27] [29] [83] [85].

1.5 Applications

In addition to the well known case of recognizing handwritten digits, today, more appli-
cations can be found in the literature. For examples, SVMs have been used to categorize
text [33], to detect human faces in a picture [60], to identify speakers [71] , and to process
genomic and biostatistical data [14] [45]. SVMs have also been used to solve regression
problems such as predicting times series [54] [55]. As you will see, we use SVMs to predict
the movement of the stock market.

SVM'9h¢ [35], SymFu [66] and SVM Torch [19] are three major implementations of SVMs.
They are written in either C or C++. In Chapter 4, our MATLAB training code is compared
against SVM""* and SymFu.

22

CHAPTER 1. INTRODUCTION TO SUPPORT VECTOR MACHINES

Chapter 2

The Geometry of the Support

Vectors

The unknowns «; of the dual SVM quadratic programming (QP) problem (1.3.9) are
Lagrange multipliers of the constraints in the primal QP problem (1.3.4). Motivated by
the geometric derivation of the primal QP problem, in this chapter, we investigate how the
non-trivial ¢; (0 < @; < c¢) are related to the geometry of the SVs. The results of this
investigation lead to a geometric interpretation of the scaling property of SVMs and a way
to further compress the SVs so as to get a sparser solution. During the following discussion,
it is assumed that the SVs are known. We will discuss how to solve the dual QP problem
efficiently in Chapter 4. Again, for simplicity, we use x; in place of ¢(x;), where (z;,y;)
are the training examples with #; € R" and y; € R. An important fact we should keep in
mind is that we generally do not know the map ¢(-), which is implicitly determined by the
kernel function k(-,-). As you will see, linear algebra is the tool for this investigation.

2.1 Reduction to a Linear System

From (1.3.12) and (1.3.13), we know that discarding non-SVs does not change the solution
to the SVM QP problems. In other words, w and b or @ are determined only by the
SVs. In this section, we show in details how the SVM separating hyperplanes are uniquely
determined by the SVs through linear systems. There are totally four cases, which are
summarized in Table 2.1. This property is used frequently in our later discussion.

Assuming that S; U Ss is known, then for z; € S; U Sz we have that (1 3. 5) becomes the
equality (becomes active)

mei +b= gi(1 — &),

23

24 _ CHAPTER 2. THE GEOMETRY OF THE SUPPORT VECTORS

The primal QP problem

X is in full rank X is rank deficient
XTw=1v RT% =v (X =QR)
The dual QP problem
So is empty S is not empty

Hyu y ar | _| m
yi 0 b -yle

Table 2.1: The four linear systems derived from the primal and dual QP problems.

where g; = 0 if ¢; € S1. Let 7 be the rank of the matrix whose columns are SVs. Since there
are n+1 unknowns in w and b, it is easy to see that they can be determined by a linear system
if » = n and |S; U S3| > n+ 1. The linear system contains any n + 1 equations listed above
with the corresponding SVs satisfying the condition that (®iy — ®inyy)se ooy (@i — @iyy)
are linearly independent. Define X = [(z;, — @i, ,,),- .., (®i, — ©i,,,)]. It follows that w is
determined by the linear system

XTw =, (2.1.1)

where the jth element of v is v; = [yi; (1 — €;;) — Yip 4y (1 — €ipy)]-

However, when 7t < n, it is not that trivial to show that w can be uniquely determined by
a linear system. Suppose there are 7 + 1 SVs satisfying the above independence condition.
For this case, we still have a linear system like (2.1.1), but matrix X is thin instead of
square. Let X = QnxaRaxa be the compact QR decomposition [30] of X and w = QT w.
It follows that o A ' -

Xw=v
RT(QTw) =
Rliv=v
@ =R To.

If P is the orthogonal complement of @, then w = Qv + P, where @ = R~ 7v and is
unknown so far. Since ||w||3 = ||@]||3 + ||®]||3, to minimize |w]||, @ must be zero (remember
that the first term of the primal objective function is 1||w||3). Therefore, for this case w is

still uniquely determined by a linear system:

RTw=v, (2.1.2)

2.1. REDUCTION TO A LINEAR SYSTEM 25

where w = Q. In other words, the pair of parallel hyperplanes determined by @ and b is in
a space of lower dimension 7. It is easy to see that the above result is also true when 71 < n
and |S; U Sa| = 7. Thus, if ¢(-) and €; are known, then the knowledge of which training
points are the SVs uniquely determines the primal unknowns w and b through a linear
system. For example, if a linear kernel is used (¢(z) = x) and the training set is separable
(e; = 0), then knowing S; enables us to solve w and b by inversing the corresponding linear
system.

In practice, ¢(-) and g; are usually not known. Therefore, to determine the pair of SVM
separating hyperplanes, we need to compute the dual QP problem. Since the Hessian matrix
H is generally semi-definite, the solution to the dual problem is not guaranteed to be unique.
This explains why the SVs may not be compact. We define the SVs to be compact if the
SVs in S; satisfy the independence condition, that is, (z1 — zs,)),- - -, (T|s,-1 — T|s;|) are
linearly independent, where S; = {z1,..., 2| Sll}' In this section, it is assumed that the SVs
are compact. As we will see, this assumption enables us to solve the dual problem through
a linear system. Later in this chapter, we will discuss how to compress a given set of SVs
8o as to make it compact.

Let us consider the dual QP problem based on the training set containing the SVs only.
If the training set is separable, that is, |Sz| = 0, then the dual problem is

maximize a’1 - %aTHa (2.1.3)

subject to
yTa =0. . (2.1.4)

The constraint c > 0is removed because we know that it xhust be sati.sﬁed.by. the solution.
Let A be the Lagrange multiplier of the equality constraint above. The Lagrangian is

1
L(a,)) = 5T Ha - "1+ A(y").
Setting g—g = (0 and g—i" = 0 gives the following equations:

Ha-1+Xy=0 (2.1.5)
yTa =0. (2.1.6)

If we substitute w with w = Zm,- s, Yieiz; in the primal constraint

yi('wT:r,i + b) =1,

26 CHAPTER 2. THE GEOMETRY OF THE SUPPORT VECTORS
we get an equation similar to (2.1.5):
Ha—-1+by=0.

This implies that A = b at optimality. Therefore, & and b are determined by the linear
system . ;
H 1 :
L N I : (2.1.7)
y' 0 b 0

o
Let a = !] such that a; and ay corresponds to the SVs in S; and S5 respectively.
(2] :

If S5 is not empty, then as = ¢. The dual problem becomes

1 H, H
maximize [af,chl—g[a%‘,cT][2] [a]
1

Hy; Hi c
subject to
yion = -yje,
which is equivalent to
- T 1 7
maximize o 11— §a1 Hiioq (2.1.8)
. 1

subject to

yloy = —yjc, (2.1.9)

where r1 = 1 — Hjpc. Using the Lagrange Multiplier method again, we obtain the following

Hn y; ap [T
mon)[2]-] o] -

Combining the above results, we have the folloWing lemma:

linear system:

LEMMA 2.1.1 If ¢(-) and €; are known or the set of SVs is compact, then the knowledge of
who are the SVs reduces the SVM QP problems to linear systems as indicated in Table 2.1.

2.2. A TRIGONOMETRIC INTERPRETATION OF « 27

2.2 A Trigonometric Interpretation of a

Motivated by the words

If the minimum problem has a geometric meaning, or it has a physical applica-
tion, then so does the (dual) mazimum problem.

from Gilbert Strang [90, page 100], we are interested in knowing how the dual problem
is related to the geometry. In this section, we give a trigonometric interpretation of the
Lagrange multipliers associated with the SVs in S, that is, those «; satisfying 0 < a; < c.
In Theorem 2.2.1, we show that these o; depend on three angles and the area of a triangle.
Again, it is assumed that the SVs are compact. Let S; = {x1,...,z;}. Without loss
of generality, we assume that x; is the origin, i.e., ®; = 0. Since the SVs are compact,
Tj,...,x;—1 are linearly independent.

At optimality, we know that the following two equations hold:

w = Z Y; 0 ; + ¢ Z Y;jx;j

T; €51 T ;€S2
and
Z yia; + ¢ Z y; = 0.
T; €S T; €S2
Let X = [yiz1,...,y1—1@i-1], B = [ea,...,y—1)T and v = w — €2 a;es, Yi%j- The above
two equations become
XB=w (2.2.1)

and

-1
ap = —yz(z yia; + ¢ Z Ys)- (2.2.2)
=1

;€S
If I — 1 = n, then we have a square linear system; otherwise, X is a thin matrix. For the
second case, we still can reduce it to a square linear system by projecting it onto the column
space of X. Therefore, it is enough to only consider the first case.

Given a nonsingular square linear system X8 = v, Cramer’s rule says that

det X;
Bi = Jet X’ (2.2.3)

where X; = [y]_:z:l, S Yim1Tim 1, Uy Yit 18415 - - - ,yn:l:n]. Define vol X; = |det X,;l. At opti-
mality, since @; > 0 for ¢ = 1,...,n, we have

_vol X;
fi= vol X

: | (2.2.4)

28 CHAPTER 2. THE GEOMETRY OF THE SUPPORT VECTORS
To further relate a; to the geometry of the SVs, we need the following lemma:

LEMMA 2.2.1 Let X() = [&y,...,2;] and X = [@j41,-..,%n] be a partition of a general
square matriz X = [@1,...,2,) with j > n — 3. Denote the compact QR decompositions of
XW and X@ by XV = QPRI and X® = ng(n_J)Rgn_J)x("_J) respectively. After
defining vol X(V) gnd vol X2 by

vol X)) = | det R, |

and - »
vol X = | det Ry,

we have the following decomposition of vol X :
vol X = vol X(Mvol X® [] sin6;, (2.2.5)
=1 ‘
where 0; (0 < 0; < 7) are the principal angles between the column spaces of X @ gnd X,

Proof. Let Pln X(n=) and Py *J be the orthogonal complements of ; and Q3. We have

rv | B QTQ2Ry
(91,5 X_[0 PIQ:R,

It follows that

det X = +det([Q1, P,]TX) = % det R; det Ry det PT Q.

T . ‘) ‘
Define W = ©1Q: . It is easy to show that the columns of W are orthonormal. By the

P{Q, ,
CS decomposition theorem (thin version) {30, page 77], we know that there exist orthogonal

matrices U; € R, Uy € R(=9%("=5) and V; € RO-DX("79) such that

. T ,
Ui 0| | QTQ: Cc 99
7~ |Vi=) (2.2.6)
0] [AQ] |S] |)
where _ .
C = diag(cos by, ...,cos6p_;),
S = dia,g(sinél, ...,8infh_j),
and

0<60:<02L::-<0, ;<

T

2.2. A TRIGONOMETRIC INTERPRETATION OF a 29

Note that 6; are the principal angles [30, page 603] between the column spaces of X(1) and
X@) . Thus, we have

n—j
det P Qa2 = £det UpP{ Q2V; = +det S = + [[siné;.

i=1

It follows that

n—j
det X = +det R; det Ry H sin6;.
i=1
Therefore,
n—j
vol X = vol X(Wyol X@ H sin 6;.
=1
]

For each f3;, let us permute the columns of X; and X such that

Xi=[y1®1, - -, Yim1%i-1, Yit1Tit 15 - - -, YnT, V]
and
X =[Y1%1, -« Yic1Tin 1, Yid 1Ti 4 15 -+ + » YnTi, YiEi-
Since X; and X are permuted in the same way, it is still true that

_detX; vol X;

fi= Gt X ~ vl X
Let Xi(l) = [y1%1,. .., Yi1Ti—1, Yi41Tit1, - - - » YnTy). Using the lemma above, we get
B = vol Xi(l)vol v sin §; _ vol v sin 6;
' vol Xi(l)vol Y5 T; Sin 1; vol z; sint; (2.2.7)
_ llvll2 sin6;
il singp;’

where 0; is the principle angle between the column space of Xi(l) and v, and 1); is the
principle angle between the column space of X}l) and y;x;.

Define &; (the dual vector of Xi(l)) such that XT#, = ei,‘where e; is the ith column of
the identity matrix I,,x,. If 6; is redefined as the angle between &; and v, and v; as the
angle between Z; and y;z;, then the formula (2.2.7) becomes

_ |lvll2 cosé;

B =
Y |||z cos

(2.2.8)

30 CHAPTER 2. THE GEOMETRY OF THE SUPPORT VECTORS

where 0 < 6;,1; < 5. It is not hard to verify the above formula. Multiplying both sides of
Equation (2.2.1) with & gives us:
' Xp =alv
Bi = :ch
= || &l|2|v]l2 cos 6;.
From the definition of &;, we know that
' 1
II@- 9= ——————
| = sl
where cos; > 0. Therefore, it is true that 3; = ﬁ—%%{%‘- Note that cos8; > 0 because
Bi > 0.

Let us define h = ——gv If the training set is separable, then v = w, and ||h||2 is the size
I 8

of the margin between the two SVM separating hyperplanes. From the fact that v = "‘Tzn‘gh,
) 2

it follows that :

2 ||h|| cos6;

Bi =
[[Rl[% [a:| cos ¢
\ T s, (2.2.9)
slRllllzi]| cos i’
Let ; be the angle between h and ; so that |
1 .
Area(Az;oh) = §||h||||a:z|| sin ;. (2.2.10)
Thus, we have a formula for 5; (i = 1,...,n) in terms of three angles and the area of a
triangle: _ o
1 sin ; cos 0; (2.2.11)

AT KrealBwioh) costh
We conclude the above discussion by the following theorem (square version).

THEOREM 2.2.1 Suppose that a1, ...,an+1 are the Lagrange multipliers associated with the

SVsin 81 = {@1,...,Tnp1}, wherex; ER™. Letv =w—c}, g, ¥i(Tj—Tns1), h = ﬁg'v
and &; = @; — ©py1. Define ; such that &1, .., yn@n) @i = €;. Fori=1,...,n, we
have ‘ B L

1 sin ; cos 8;

- Area(A&;oh) cosv;
where 0; is the angle between T; and h, v; the angle between &; and y;&;, and p; the angle
between &; and h. Note that sin (p.i,(ios Oi,co's i >0 and

Qn+t1 = —Yny1 Zyzaz +c 2 Y;i)-

T;ES2

2.3. THE SIMPLEX DECOMPOSITION RELATION AT OPTIMALITY 31

If X is a thin matrix, then we have the following equation to solve:

QTX)B = QTv, (2.2.12)

where @ defines an orthogonal basis for the column space of X. Since (2.2.12) is still a
square linear system, this theorem also holds when X is thin. Although there exists a
simpler proof of this theorem, the above version is more insightful, which connects all these
interesting linear algebra concepts together.

The above theorem clearly explains the scaling property of SVMs. When the geometry
is inflated (deflated) by a factor ¢, the term Ei%‘%fai does not change, while the term
m decreases (increases) by a factor t2. Hence, §; also decreases (increases) by a
factor ¢? correspondingly. Note that to make the SVM decision rule hgyy(z) invariant to
the inflation (deflation) of the geometry, the coefficient ¢ must also be decreased (increased)
by a factor 2. This property is important when the dual problem is computed, where the
training points x; are usually scaled to prevent ¢; from being too small or too large. For
example, if an interior point method is used, then very small «; is not preferred from the

numerics point of view.

COROLLARY 2.2.1 When the geometry is inflated (deflated) by a factor t, in order to make
the SVM decision rule invariant to the inflation (deflation), all the Lagrange multipliers
must be decreased (increased) by a factor t2.

2.3 The Simplex Decomposition Relation at Optimality

When the training set are separable, S» is empty. Suppose that there are still n+1 SVs in
S1. From the fact that the primal objective function is equal to the dual objective function

at optimality, it follows that
n+1

lwl =" a. ‘ (2.3.1)
=1

Without loss of generality, let us assume that £, =0 and y,,41 = —1. When y,, 1 = —1

, the constraint 3" y;0; = 0 is equivalent to apy1 = Doy=1 % Zyj;_l o;. Plugging it
into Equation (2.3.1) gives us : : S

n+1
"w“2_zaz—2zaz—22 az
e (232)

~Inlis

32 CHAPTER 2. THE GEOMETRY OF THE SUPPORT VECTORS

(a) (b) &

v x3=0
E-line K Opt line
E-line Opt line
+ +
X, h X

Figﬁre 2.1: Two SVM separation problems in R2. The horizontal lines labeled by “E-line”
are the pair of parallel separating lines determined by the equalities y;(w”x; + b) = 1 for
t = 1,2,3. For both cases, the solid lines labeled by “opt line” are the optimal separator.
Squares and circles are used to indicate the positive and negative points respectively.

By further substituting a; with
o — 2 vol X;
v ||h||% vol X’

where v has been replaced by ﬁ;h, we derive the following volume decomposition relation
2
vol X = > vol X;.
yi=1
Note that the value of y,; does not mater. If y,1 = 1, then
vol X =3 vol X;.
Cyi=—1

Hence, the general volume decomposition relation is =

vol X =" > wvol X;. (2.3.3)

Yi=—Yn+1

At optimality, the volume decomposition relation must hold. It can be shown that the
opposite direction is also true. When the volume decomposition holds, h must lie in the
cone generated by y1&1,...,YnTy. It follows that a; > 0 for i = 1,...,n. Therefore, the
solution must be optimal. ‘

2.3. THE SIMPLEX DECOMPOSITION RELATION AT OPTIMALITY 33

Figure 2.2: The simplex decompositions for the acute and obtuse triangle cases shown in
Figure 2.1. " '

If £,,11 is the only negative (positive) point, then (2.3.3) can be replaced by the following
simplex decomposition relation:

simplex X = Z simplex X;. (2.3.4)
Yi=Yn+1

In Figure 2.1, there are two examples of the SVM separation problem. We use E-lines here
to indicate the pair of parallel separating lines determined by the equalities y;(w”z; +b) = 1
fori = -1,2,3. The letter E represents “equality”. Using the simplex decomposition relation,
we can see that the pair of E-lines for the acute triangle case are optimal, while they are
not optimal for the obtuse triangle case. The simplex decompositions for these two cases
are illustrated in Figure 2.2. For the acute triangle case, a; can be either expressed in terms

34 : CHAPTER 2. THE GEOMETRY OF THE SUPPORT VECTORS

of areas:

N

a3 = ——

IAl3 -

(15112

or in terms of angles:
_ sinZzyiz3h cos ZL3z9T
' Area(Amiz3h) * sinZzizaz,
2 N cos Zz153h cos LT3z

"~ h2 sin Z11x3T9
_ 2 _ cosZzizshsin Zzozsh
T R? sin Zzyz37y

sin Zzoz3h €08 £T3T1 T

2 = - — X — .
Area(A:ngz3h)) SIIlZ:L‘l.’l:;;:L'z

_ 2 _ cos Lzozzh cos LT3TiTo
T R2 sin £z1z3z9

_ 2 _ sinZz3ziz3hcos Lzozsh
TR sin Zz 3z

2
03 =01 +ag = h—z- |
Figure 2.3 shows an example of a three-dimensional simplex decomposition. Note that the
simplex decomposition relation is equivalent to-that h is in the cone generated by y;x; for

t1=1,...,n.

2.4 Compressing the SVs

In the previous discussion, it is assumed that the SVs are compact. We have seen that
this assumption enables us to reduce the dual QP problem to a linear system. However, S
is not guaranteed to be compact due to the rank deficiency of the Hessian matrix H. In this
section, we discuss how to compress S; to make it compact. The difficulty is that generally
¢(*) is not known. Hence, we need find an algorithm that only involves the inner products
k(zi,x;), where x;,z; € §) U Ss. Again, we use z; in place of ¢(z;) for the simplicity of

notation.

2.4. COMPRESSING THE SVS 35

Figure 2.3: A three-dimensional simplex decomposition.

Let $; = {z1,...,zi}, X = [z1,...,x] and 4 = rank(XT X). If &4 < [—1, then S; is not
compact. To further compress S;, we need to find a subset §; = {ziy,-- ., @i, } of S1 such
that y;; (zi; — ©i,,,) (j = 1,...,7) are linearly independent, and w — €} jcs, YiTj can be
expressed as a linear combination of y;, x;; with nonnegative coefficients 8;. That is,

l
v=w-—cC E Y;x; = E Yyjoig
JES2 j=1
fi+1

= Bjvi;i;,
i=1

where 8; > 0. Geometrically, we want to know whether v is in the cone generated by y; T
(7 =1,...,2+1). Since the equality

A+l

> By, =0
=1

must hold at optimality, 8 = {B1,-..,Bay1} is determined by the following two linear
equations:

v= Zﬂjyia‘ (wia‘ - “"iﬁ+1)
. j=1

and

7
Ba+1 = “Yiapa Z IBJyZJ

j=1

36 CHAPTER 2. THE GEOMETRY OF THE SUPPORT VECTORS

v

Y2(*2=*s5)

Y3 (X3— X5)

Figure 2.4: A two-dimensional example of how to determine 8. Assume that v and yi(x;—
xs) for i = 1,...,4 are of unit length, and that 5 has been chosen at the first step. This
algorithm picks up yi(z1 — @5) and ya(x2 — 5) as the positive SVs for the new SVM
separation problem, where v is the only negative point. Hence, §; = {1, 22, z5).

If8>0,then S, USyisa compact set of SVs and 3 gives the new values of the Lagrange
multipliers corresponding to Sy Unfortunately, we can not invert the above linear system
to see if (; are all nonnegative. To find an algorithm only involving inner products, we need
to look at the dual problem.

The property of SVMs says that if the points in Sy — 1 are redundant, then the QP
problem (2.1.8) based on $; US; has nonnegative solution. Since the QP problem (2.1.8) is
equivalent to the linear system (2.1.10), inverting this linear system gives us 8. Note that
if |S5| = 0 we need to solve (2.1.7). Although it is easy to verify whether 8 > 0 for a given
81, the problem is how to find such a 3. We can always find a desirable $; by trying all
the possible combinations. But this approach is not practical. Let us consider the worst
case where C(l,7 + 1)' linear systems of size (7 + 2) X (# + 2) have to be solved. Although
71 and [are geherally small comparing with the size of the training set, C(l,7 + 1) can be
very large. When C(l,7 + 1) is large, this a,pproach is impractical.

To determine S, our idea is that we first normalize v and yi(z; —.:c,-ﬁ q)fori=1,...,1
except i1, so that they have the same length. Here, x;, , can be any point in S1. Since
every vector has the same length now, the angles between them give a measure of how these

2.5. MAKING THE NON-SEPARABLE CASE SEPARABLE 37

vectors are close to each other. From the geometry, v and these [— 1 points y;(x; — ; ar1)
must be linearly separable. Motivated by the fact that the size of the gap between the
two SVM separating hyperplanes defines the distance between the positive and negative
training points if they are separable. We then use a maximal-margin SVM to pick up #
points y;; (a:ij — &,) that are close to v. The simplex decomposition relation guarantees
that v is in the cone generated by these 7 selected points.

In details, this method consists of three steps. We first choose z;, 41 arbitrarily. Then we
use the algorithm introduced in the following paragraph to pick up 7 points x;,,... » Ty
such that v is in the cone generated by y;, (z;; — @;,,,) for j = 1,...,7. Finally, let
S = {®iys..., @i, }. We compute B by inverting the linear system (2.1.10) or (2.1.7)
based on 1 U S2. If B3 41 > 0, then S; U S, is a compact set of SVs; otherwise, we restart
this procedure with a new &;, . You can see that at most we need to try I times.

Suppose that @;,,, = ;. To determine 5‘1, let us normalize v and (z;—x), ..., (¢;_1—x;)
so that they are on the unit sphere. If we construct a new training set by marking v
(normalized) as the only negative point and y:(z1 —), . .., y—1 (21—, — ;) (normalized) as
the positive points, then from the geometry we know that this training set must be linearly
separable. By the simplex decomposition relation, it is guaranteed that v must lie in the
cone generated by the positive SVs of this new SVM separation problem. Therefore, these
positive SVs are the ones we are looking for. As indicated by Figure 2.4, this algorithm
generally pick up % normalized y;(x; — @;) near the normalized v . The resulting 7 + 1
points gives us S;. Since [is generally small, it is cheap to the solve the corresponding QP
problem, which only involves inner products.

The worst case for our approach is to solve I SVM separation problems (based on a
training set of size [) and I (7 +2) x (7 + 2) linear systems. Given that [is generally small,
it is not expensive to compute these problems. Therefore, computationally our approach is
practical. Although it is not hard to see that this algorithm works for the two and three

dimensional cases, we still owe readers a general proof for all the dimensions.

2.5 Making the Non-separable Case Separable

If the training set can not be separated by the pair of hyperplanes determined by (w, b),
then S5 is not empty. To make the points in S5 separable, we can project them onto
the corresponding hyperplanes, that is, the positive points onto the positive one and the
negative points onto the negative one. In this section, we show that the current hyperplanes

38 CHAPTER 2. THE GEOMETRY OF THE SUPPORT VECTORS

determined by (w, b) still optimally separate the new training points S; U Sy, where S is
the projected version of Ss.

Let &; + Az; be the projected version of z; € S2. From the equations
yi(wT:l:@ + b) =1-—c¢;
and
yilw? (z; + Ax;) + b =1,

we know that Az; = ”Jf”" w = y;0;w. Let &; be the Lagrange multipliers associated with
2

the points in S; U S3. To preserve w, &; need to satisfy the following equation:

l m l m
w= Z Q;Y;T; + ¢ Z YT = Zdiyiwi + Z a;y;(z; + Ax;), (2.5.1)
i=1 j=l+1 =1 j=l+1
where m = |$ U5'2|. Denote [y1&, ..., Y%, Yi41Z1+1, - - - » Ym@m] by X. The above equation
becomes
B 7 B ~ n
(231 a1
a
x| M| =x+0[0,...,0,60w,....00mw]) | * |, (2.5.2)
c al+1
| ¢ | | Gm |
equivalently
[o1 | [a1] [(03] W
X| “l=x+x| % |0,...,0,601....60]) | ™ (2.5.3)
c c a1
| ¢] | e] | Gm |
If X is a square nonsingular matrix, then we have
[a1 | [(6%]] [511 |
: a
Ml =g+] 0,...,0,681.,0m) | " (2.5.4)
c c al+1
| €] | € J L Om .

2.6. FUTURE WORK 39

The good thing about this equation is that the unknowns of Q41,...,0my are independent
of the unknowns &y, ...,d;:
c c Q41
= (I -+ [6l+1, eey Jm]) . (255)
c c Qpm

It follows that fori =1 +1,...,m

- C
&= =m0
1+ CZizH-l 61

and for¢=1,...,1

~ Qy
ST € itig1 6’

where §; = ”—ihg It is easy to verify that the above solution still satisfies Equation (2.5.1)
when X is an arbitrary matrix. Since &; > 0, the pair of hyperplanes determined by (w, b) is
still optimal for the new training set. We conclude this discussion by the following theorem:

THEOREM 2.5.1 Let S1US; (|S2| > 0) be the SVs and (w,b) the solution to the primal SVM
QP problem. If Sy = {@141,..., @} is replaced by Sy = {141+ Az, 2 + Az},
where vie

1“1

Az; = mw,

then the new training points S;US, are separable by the original SVM separating hyperplanes
and this pair of hyperplanes are still optimal, that is, they separate SyUSy with the mazimum
gap.

2.6 Future Work

The results derived in this chapter are useful for us to understand SVMs better and to
compute them efficiently. It is also interesting to know if these results could be used to
develop bonds on the performance of SVMs.

40

CHAPTER 2. THE GEOMETRY OF THE SUPPORT VECTORS

Chapter 3

The Inverse Wishart Matrix
W t(n,nI)

When @1, ..., x, are independent Gaussian random vectors, the Hessian matrix H (H;; =
vzl ¢;y;) is the Wishart matrix Wp,(n) in statistics [53, page 82]. In this chapter, we show
how the separation of n + 1 random points in R” leads us to the marginal distributions of
the inverse Wishart matrix W, 1(n, nl,xn)- ‘

3.1 Observations from the Separation of n + 1 General Points
in R"

Given n + 1 points 1, ..., T, 41 at general positions in R”, a fact is that no mater how
we label them, the positive and negative points can always be separated by the two parallel
hyperplanes determined by the following equations:

yi(wle; +b) =1 i=1,...,n+1.

Remember that these two hyperplanes are the E-hyperplanes in Chapter 2. Since there are
n + 1 non-degenerated linear equations for » + 1 unknowns, the E-hyperplanes must exist.
From this fact, it follows that the VC dimension of the set of oriented hyperplanes in R" is
n+ 1.

Again, let X = [(z1—2n+1),- .-, (®1—Tn+1)], which is nonsingular due to the assumption

that ¢i,...,z,41 are at general positions. Suppose these n + 1 points are the SVs. From
Chapter 2, we know that the corresponding Lagrange multipliers are

a(l:n)= diag(y)H—l[i] ' (3.1.1)

41

42 CHAPTER 3. THE INVERSE WISHART MATRIX Wﬁl (N,NI)

and

n
i1 = vici, . (3.1.2)
: i=1 o e : ‘

where @, is labeled by y,+1 = —1. The hypot’hesis that these n + 1 points are the SVs is
true, or equivalently that the E-hyperplanes are optimal is true, if and only if @ > 0. From
(3.1.1), it is obvious that the signs of a; depend on the elements of H~1.

If z1,...,zn41 are random vectors, say the elements of x; have the same Gaussian distri-
bution N (0, %) and they are independent, then in statistics, H~! is known as the inverse
Wishart matrix W, !(n,nI). Here, nl is the covariance matrix. In the following discussion,
we use a short-hand notation W=! for this inverse Wishart matrix. Since permuting the
columns of X does not affect the distribution of W1, we conclude that the Lagrange mul-
tipliers associated with the positive points must have identical distributions and so do the
Lagrange multipliers associated with the negative points. Without loss of generality, let us
assume that the first [points are labeled positive, where | < n. To learn the distributions of
oy, it is enough to consider only two Lagrange mﬁltipliers o1 and ap41, which are denoted
by ot and o~ respectively. ‘

Figure 3.1 plots the histograms of o™ and o~ with different I. From the histograms
at I = 1, we can see that the diagonal elements of W~ are always positive and the off-
diagonal elements have a symmetric distribution. As ! increases, more off-diagonal elements
are added in, so the histograms of o™ and o~ tend to spread out, i.e., o™ and o~ tend
to have larger variance. The histogram of o™ also becomes more symmetric as [increases.
This observation is consistent with the Monte Carlo approximations to Pr(e; > 0) for
i=1,...,n as shown in Figure 3.2, where Pr(a™ > 0) monotonically decreases as [increases
and Pr(a™ > 0) = 0.5 for every . The right plot in Figure 3.2 indicates that Pr(a™ > 0)
and Pr(a™ > 0) do not depend on n. These observations motivate us to examine how the
elements of W™ are distributed.

3.2 The Marginal Distribution of W !(n,nlI)

Although the joint density function of W~! is known [53, page 113], we have not at this
time chosen to verify the above observations by using this density function. To shed light on
the distributions of «;, we examine the distributions of the elements of W~! with a linear
algebra approach.

A e ettt

3.2. THE MARGINAL DISTRIBUTION OF W_,GI(N , NI) 43
=1 |=2 |=5 =9

60 . " 60 v . 60 " 60 r

50 50 50 50

40 40 40

30 30 J0

20 20 . 20

10 1 10 } ; 10

1] 1] i 0

-100 0O 100 200 -100 O 100 200-100 O 100 200100 O 100 200
at at at at

60 60 &0 60

50+ 50 50 50+t

40+ 40 40 40+t

30t 30 30 30

20 20 20¢ 20

10 1 10 1 10 1 101

0 0 '“'L“""""- ‘D 0

-100 0O 100 200 100 O 100 200 -100 O 100 200 -100 O 100 200

a~ a~ a~ ‘a

Figure 3.1: Histograms of at and o~ with different I. The size of each experiment is 8000
and n = 12. '

44 CHAPTER 3. THE INVERSE WISHART MATRIX WrY(N,NTI)

n=12 ’ n=12 vs n=18
1 1=1 11 zl=1
© 0.9 © 09
A Al
=1 =3
1=2
5 5 |1
i 3 '

e 0.8 2 0.8
£ £
3 3
g g
Py 0.7 P 0.7
L L
e ot
b S
o o
2 =)
L] -
E 0.6 E 0.6}
(] [
= K=
et et

0.5 0.5

o] 5 10 15 o] 5 10 15 20
i i
Figure 3.2: Each curve plots the ratio of the occurrence of a; > 0 fori =1,...,n at [during

8000 experiments . In the right plot, two cases with n = 12 and n = 18 are plotted against
each other indicating that Pr(c; > 0) is independent of n.

3.2. THE MARGINAL DISTRIBUTION OF Wy 1(N , NT) 45

Let 71—1W = TTT be the Cholesky factorization of %W, where T is an upper-triangular
matrix with positive diagonal elements. It is known that the elements ¢;; (1 <i < j < n)
of T are all independent, and that ¢% (i = 1,...,n) are X2_, , random variables and ¢;;
are N(0,1) random variables (1 < i < j < n) (Theorem 3.2.14 [53, page 99]). Here, X,f_i_H
represents the chi-square distribution with n — 7 + 1 degrees of freedom [36]. Again by
symmetry, the diagonal elements of W' must have identical distributions and so do the
off-diagonal elements. Therefore, examining one diagonal and one off-diagonal element is

enough to derive the marginal distributions for all the elements of W ~1. From the following

equation
W= 1pipeT,
n
we have
1
-1
— , 3.2.1
nn n X t%n ()
and
—tn—
-1 n—1n
= . 3.2.2
n(n—1) n X t12'm X tp—1n—1 ()

It follows that the following theorem is true:

THEOREM 3.2.1 Let X be a n xn matriz whose elements are independent random variables
with the standard normal distribution N(0,1). Define W = XTX. The diagonal elements
of W~ have the same distribution as

1
nxr

(3.2.3)

and the off-diagonal elements have the same distribution as

T3 _ T4
nXTLX Ty V2xnxry

(3.2.4)

Here, 1,72 and r3 are independent random variables with the distributions X2, X2 and
N(0,1) respectively, while r4y = ‘/_2—\/;%3 has the t-distribution with 2 degrees of freedom (t3)

[36].

This theorem should explain the observations in Figures 3.1 and 3.2. Let us check several
simple cases as examples. At I = 1, it is obvious that Pr(a* > 0) = Pr(r; > 0) = 1, and
since the p.d.f. of a t-distribution random variable is symmetric, Pr(a™ > 0) = Pr(ry >
0) =0.5. At =2,

Pr(a* > 0) = Pr(1 - % > 0) = Pr(ry < V2).

46 CHAPTER 3. THE INVERSE WISHART MATRIX Wﬁl (N,NI)

We know that the p.d.f of a ¢, random variable is

N

where —oo0 < 7 < 00 [36, page 600]. Integrating it from —oo to v/2 gives us

Pr(at >0) = ‘/Ti + % ~0.8536 < 1,

which matches the plot in Figure 3.2. In the above theorem, n only appears in the scaling

terms. Therefore, n does not affect Pr(a™ > 0) and Pr(e~ > 0). As we have seen, this
theorem is consistent with our observations.

We end this chapter with the following conjecture:

CONJECTURE 3.2.1 Let @y,...,Tpp1 be n + 1 independent random vectors in R*, where
the elements of x; are i.i.d. Gaussian random variables with the distribution N (0, %)
For the E-hyperplanes separating the positive points {z1,...,2} and the negative points
{Ti11,. . @n1} (I < n), Pr(e™ > 0) decreases monotonically as the number of positive
points | increases and it does not depend on n, where ot = ay and o~ = opy1. At the same
time, 1 > Pr(a® > 0) > Pr(a™ >0) =0.5. =

From W1 point of view, the above conjecture can be restated as

CONJECTURE 3.2.2 For the inverse Wishart matriz W1 (W,;1(n,nI)), let us define
l
-1
t=Do W
i=1
and
l
- _ -1
= Z.W(Hl)r
Pr(a™ > 0) decreases monotonically as | increases and it does not depend on n. At the

same time, 1 > Pr(a* > 0) > Pr(a~ > 0) =0.5.

3.3 Future Work

In this chapter, we investigate the probabilities for each a; to be nonnegative. Our final
goal is to compute Pr(a > 0), which is much more challenging and therefore interesting.
We leave it as our future work.

Chapter 4

Solving the SVM Dual QP
Problem Efficiently

The more examples SVMs learn from, the better performance they tend to have. However,
when the training set S = {(21,¥1),.--,(Zm,ym)} is large, it becomes expensive to store
and access the m x m Hessian matrix H Hence, it is hard for the standard QP solvers that
take H explicitly as an input to solve the ‘Llual QP problem. For instance, when m = 10, 000,
it needs almost 1 gigabyte to store H. Many modern computers may not even have that
much memory. Another concern is that 'évhen m > n, H is rank deficient, which may bring
numerical difficulties for certain solvers vf/here the positive definiteness of H is assumed. In
this section, we describe a fast, memory ieﬂ'icient and stable algorithm for solving the SVM
dual QP problem. Numerical experimen%s show that the MATLAB implementation of this
algorithm is competitive with benchmark C/C++ codes such as SVM"9" and SvmFu.

4.1 A Projected Conjugate Gradient Algorithm

An important property of the dual QP problem is that its solution is sparse. Ignoring
the training examples (z;,y;) with «o; = 0 does not change the solution. For example, in
Figure 4.1, solving the right-hand-side sejbaration problem based on the SVs is equivalent to
solving the left-hand-side one, but it is r}nuch cheaper. Knowing which training points are
the SVs in advance enables us to solve :11 much smaller problem. One of the main themes
of this chapter is to exploit the sparsity property so as to solve the dual QP problem fast
and with less memory usage. Recall thaﬁ the dual problem is

\ : ‘
ma.x(ilmize Fla)=a®1- %aTHa ,

47

48 CHAPTER 4. SOLVING THE SVM DUAL QP PROBLEM EFFICIENTLY

o

3

O
® ° . .
1 ’ | |
o
@ 6
4 . g m«a«--s@-‘m..,.'w.mw..x,,.._'
5

Figure 4.1: An example of a two-dimensional SVM separation problem. The optimal solu-
tion is the pair of lines that separate the positive (gray) and negative (dark) points with
the largest gap. The SVs {z,z3, %3} and the optimal solution are indicated in the right-
hand-side figure. The two dotted lines are the SVM solution to separate points &3, ¢4 and
5.

subject to

II
[=

ya
0<a

.I/\

To illustrate a better way to compute the optimal separating hyperplanes, as an example,
let us solve the SVM separation problem indicated in Figure 4.1 in the following way.
Initially, set o = 0 and we randomly choose a small set, say G = {x3, x4, Z5} as our guess
of the SVs. Then we solve the 3 x 3 separation problem based on the working set G, and
we use its solution (indicated by the doted lines) to test the x; that are not in G. For any
x; € G separated correctly by the current solution, it is still considered to be a non-SV;
otherwise, we add it to G. For this problem, {z;, 3, zs} are added to G. Finally, solving the
updated 6 x 6 separation problem gives us the optimal solution with the SVs {1, 2, z3}.
Since solving these two smaller subproblems is cheaper than solving the original separation
problem as a whole, this idea works. By controlling how many points to add to the working
set G at each time, we can control the size of each subproblem. For instance, we can add
only one point to G to formulate the second subproblem In summary, the procedure is

1. Initially, set @ = 0 and a guess G of the SVs is chosen.

2. The subproblem based on the working set G is constructed and solved.

4.1. A PROJECTED CONJUGATE GRADIENT ALGORITHM 49

3. If the solution from Step 2 separates all the points in G correctly, stop; otherwise, a
certain number of points in G with the largest separation errors are added to G, and
at the same time, the points in G that are not SVs for the current solution can be
dropped to G, then go to step 2.

When « is sparse, solving the sequence of smaller subproblems determined by the above
procedure is much cheaper than solving the dual QP problem directly.

As indicated by Figure 4.1, this strategy can be easily appreciated from the primal prob-
lem point of view. Our goal is to show how to use this strategy to solve the dual QP problem
efficiently, where the training examples may not be separable. In this section, issues such
as how to construct, update, and solve the subproblems are addressed. As you will see,
our algorithm can be easily implemented in a high-level programming language such as
MATLAB. Issues related to the performance improvement will be discussed separately.

Other methods can be found in [34] [40] [61]. Some ideas used here are from the Con-
strained Conjugate Gradient Algorithm described in [40], while [34] and [61] describe re-
spectively the ideas underlying SVM"9"* and SvmFu. To our knowledge, SVM!9ht ig the
most widely used training code.

4.1.1 Constructing a Subproblem

First, let us consider in general how to project a linearly constrained QP problem onto an
affine space. Suppose a new constraint is added to the dual QP problem requiring that the
solution must lie in a subspace, say the column space of a matrix P € R"*P, where p < n.
Under this restriction, o can be expressed as a = Pé&, where & € RP. More generally, o
can be written as a = oy + P&, where oy is the initial feasible value of a. For this case,
is restricted in the affine space determined by ¢y and P. By substituting a with ag + Pé&
in the dual QP problem, we have

maximize F(&) = &TPTry —'%&TPTHP& (4.1.1)

subject to
yT P& =0, ' (4.1.2)
0<ap+Pa<e, S (41.3)

where 7 is the gradient of F(a) at ag. Note that deo = 0 because «y is feasible. So
far, P is still a general matrix. It will be specified later either directly or indirectly by its
orthogonal complement (), where PTQ =0.

50 CHAPTER 4. SOLVING THE SVM DUAL QP PROBLEM EFFICIENTLY

Consider ag as an intermediate solution of the dual QP problem and Pé& as an update.
To compute an update, we choose P = E,, wheré the columns of E, are all the e; satisfying
0 < el ag < ¢ (non-active constraints). If el ag = 0 or el g = c (active constraints), then
respectively e; or —e; becomes one column of). Note that P and @ are simply the matrix
representations of the indices of the points in G and G. We extend the definition of G to
incorporate the points x;, where e;frao =c. That is, if &; € G then ay(i) can be either 0
or ¢. Define H = PTH P, ¥y = PTry, ag = PT oy, and so on so forth. With the above
choice of P, é& is determined by Problem (4.1.1), which is the projected dual QP problem

onto the affine space determined by cp and Ej;:

A 1 N
maximize F(&) = aTg — 5fnTHa; (4.1.4)
[} .
subject to
la=0, (4.1.5)
0<dp+éac<e. (4.1.6)

Note that 0 and c are of size p. Since Pé& is orthogonal to the column space of @, it does
not affect any active constraints at ao.' In other words, the update determined by the above
QP problem only improves the part of ag whose values are strictly between 0 and ¢. When
p is small, it is cheap to solve the above problem.

To deal with the equality constraint (4.1.5), Problem (4.1.4) is projected onto the hyper-
plane determined by this constraint. We choose @ = g and P =1 — Q;LT for this projection.
It is easy to see that the column spaces of P and @ are orthogonal complements to each
other, and .I — P is the orthogonal projector onto the column space of). The resulting
subproblem has a simpler form: ‘

. 1 A
maximize F(&)= &l PTig — 5,.3:’-”13’-"15{1?(3: (4.1.7)
A .
subject to

0<dp+Pac<c, (4.1.8)

where P =1 — 9?—. Remember that in Problem (4.1.4) P = E, and Epé gives the update.

4.1.2 Solving the Subpro"blem‘ by the.C.onjugate Gradient Method

If the box constraint (4.1.8) turns out to be loose, i.e., not active, then the above problem

is equivalent to a linear system
PTAP& = PT#y,

4.1. A PROJECTED CONJUGATE GRADIENT ALGORITHM 51

or equivalently
PHP& = Pi (P is symmetric). (4.1.9)

Since PHP must be symmetric positive definite under the above assumption, this linear
system could be solved numerically by the Conjugate Gradient (CG) method [30] [91]:

a® =0, v = pp;, p@ =40
T

)‘ _ 7(l_1) 7(1_1)

p(z—1)T PHPp(-1)
a®) = al-1 4 \pt-1

T

. ~ O 40

A=1)Ty0-1)
p® =4O 4 ypt-1),

From the fact P? = P, it follows that the above CG iterations can be simplified as

a©® =0, 4O = Py, p© = 4O
7(1_1)Tﬂ7(l_1)
— p-1T fpa-1)
aW = a1 4 \plt-1
T
o A0
A=) Ty (-1)

Note that H is a p x p matrix. Since P = I — Qy;, the multiplication of P with a vector
is cheap. It only involves two Level-1 (vector-vector) operations. The most expensive
operation in each iteration is the Level-2 (matrix-vector) operation H pU=1). When p is
small, it is cheap to implement the above operations and the storage requirement (one
matrix and four vectors) is also small.

However, to solve Problem (4.1.7) with the above algorithm, the box constraint (4.1.8)
has to be considered. If 0 < (dip); + (P&); < ¢ becomes active during the Conjugate
Gradient iterations, then its global index representation e;; is added to @, and at the same
time, some other active constraints can be relaxed by moving their index representations
from @ to P, if doing so improves the objective function. After P and Q is updated,
the subproblem (4.1.7) is reformulated correspondingly and solved again. In the following

52 CHAPTER 4. SOLVING THE SVM DUAL QP PROBLEM EFFICIEN TLY

section, the stopping criteria and the criteria for which active constraints should be relaxed
are given. An important fact worth to point out is that H is not guaranteed to be in full
rank. Therefore, we need to control the steps of the CG iterations before the solution blows

up.

4.1.3 The Optimality Conditions

Note that Problem (4.1.7) is the compact version of Problem (4.1.1) with
Q = [te;,, +eiy,: ., te;,,y]
= [Etb y]

and .
P=1-QQ"Q)q",
where E, is the orthogonal complement of Ey, and the column space of P is the orthogonal

complement of the column space of Q. In other words the previous two prOJectlons are
1ncorporated in the current definition of P. Let us deﬁne

d= Pr

and .
B = —[I1x4,01(QTQ) ' Q" r,

wherer =1- Ha a.nd P is a n x n matrix. The optimality conditions 1] [8] tell that o is
optlmal iff

d=0and 8 >0. (4.1.10)
Note that d is the projected gradient onto the search space spanned by P. If d = 0 , then
we have reached a stationary point. The condition“ﬂ > 0 implies that relaxing the active
constraints represented by) does not improve the objective function nearby. It follows
that if (4.1.10) is true then a is a local optimum, thus a global optimum due to the convex
property of a linearly constra,inedv QP problem. -

Smce (QTQ)~ 1 -has a 51mple closed form:

lI_I_Eyy Eq —Eg"y]
. H)

TP p
—ey.Eg

1
2 P
it is easy to compute d and B. For instance,

ET ET ET _ 2T
B=EIr+ o9l "y)pqr Y T), (4.1.11)

where E, is an indexing operator. Each time when active constraints are to be relaxed, we

start with the one that has the most negative §;.

A s 8 A e

4.1. A PROJECTED CONJUGATE GRADIENT ALGORITHM 53

4.1.4 The Algorithm

As a summary of the previous discussion, the algorithm is outlined briefly as the following:

a = (;
initialize Ep;
whiled #0or 8 <0
at most k steps of the CG iterations for Problem (4.1.7);
update a and 7:
a=a+ Eya;
r=r - HE,&;
compute f3;
relax at most [active constraints with the most negative [;;
update Ep;
compute the columns of H corresponding to the relaxed constraints;
update H;

end

During each iteration of this algorithm, only p columns of H (HE,) are used. Thus, there
is no need to precompute H so that a lot of flops (floating point operations) and memory
can be saved. In our implementation of this algorithm, two matrices X = [®1,..., 2] and
HE} are stored in memory. Since n and p are generally much smaller than m, most modern
computers can meet the memory requirement for problems of size m = 0(10,000). Later
in this chapter, we will give an alternative algorithm which consumes less memory by using
part of HE,, but taking more steps to converge.

Note that the 7th column of H is computed only when a; = 0 or o; = cis relaxed. It turns
out that computing the columns of H is the most expensive operation in this algorithm.
When [is large, it can be considered as a Level-3 (matrix-matrix multiplication) operation.
Although Level-1 and Level-2 operations are cheaper in terms of flops, Level-3 operations
can be implemented more efficiently by exploiting the computer memory hierarchy. More
discussions will be given on the implementation of these opera.tibns in the next section.

The setting of parameters k and I affects the performance. We will discuss more on
how to choose k and I in the next section. In our implementation, k and ! are determined
adaptively based on each training set. To initialize G, we can randomly pick a small number
of points from the training set. Alternatively we can construct a pair of hyperplanes as the

54 CHAPTER 4. SOLVING THE SVM DUAL QP PROBLEM EFFICIENTLY

initial solution using the ML separating hyperplane introduced in Chapter 1. Points in or
near the two initial hyperplanes are chosen for G. The ML separating hyperplane is easy
to compute. Let m; and m_ be the means of the positive and negative points. The ML
hyperplane is the one perpendicular to the line a_m+ and passing through its midpoint.
In our implementation, the two hyperplanes are chosen to be the ones parallel to the ML
separating hyperplane and passing through the points = ";3"’““ and 3™=tM+ regpectively.

4
Our observation is that when the training set is easy to separate, the second method is

better; otherwise, we should use the first method to initialize G.

Note that the residual or the gradient eZT,'r = 1 — y;wTx; tells how well the current
solution separates ;. When (4.1.10) is true, the optimality is achieved. In summary, this
algorithm successfully exploits the sparsity property of SVMs. When the final solution is
sparse, it solves the dual QP problem with much less flops and memory consumption. For
details of our MATLAB implementation, please refer to the downloadable codes [106].

4.2 Speed Considerations

We have seen that the sparsity property of SVMs enables us to avoid unnecessary memory
consumption and flops. To achieve better performance, in this section, we discuss how to
make the implementation of this algorithm adaptive to both the computer memory hierarchy
and the training set.

4.2.1 Being Adaptive to the Computer Memory Hierarchy

When large data sets are involved in computations, the number of flops is no longer an
accurate indicator of the running time. The cost of accessing data must also be taken into
account. In Figure 4.2, a model of a.:modern computer memory hierarchy is given. Loading
data from main memory to cache and writing data from cache back to main memory are
expensive operations. To reduce the cost of accessing data, computations should be arranged
so that more data can be found in cache at the first time when needed. For instance, on
computers with the memory hierarchy described in Figure 4.2, Level-3 operations can be
implemented more efficiently than Level-2 and Level-1 operations. In general, fast codes are
developed by explicitly using the information of each configuration of the memory hierarchy
model. '

To achieve a portable performance, we want our implementation to be adaptive to each
machine’s memory hierarchy. Since we have described our projected Conjugate Gradient
algorithm in terms of basic linear algebra (BLA) operations, it is easy for us to leverage

4.2. SPEED CONSIDERATIONS 55

5T |
5 ! Main - D1-sk/
g f— | «———» | Distributed
5 ! memory memory
I
level clock cycles
register 1
L1 cache 2-3
L2 cache 6—12
near main memory 6 — 100
far main memory 100 — 250
distributed main memory 0(100)
message-passing 0(1000) — O(10000)

Figure 4.2: A model of the modern computer memory hierarchy. The statistics in the table

above are cited from [25].

off previous work. To be adaptive, we use ATLAS BLAS [108] [109] [110] to compute BLA
operations. ATLAS BLAS is a software package for computing BLA operations, which is
automatically tuned for different machines. MATLAB uses ATLAS BLAS starting from
its version 6. Thus, by using MATLAB, the implementation of this algorithm is free from
the low-level issues such as how to implement matrix-matrix multiplications efficiently on

a specific machine. Hence, its performance is portable.

4.2.2 Setting k and I Adaptively

As mentioned in the previous section, the running time of this algorithm depends on the
setting of £ and [. In this section, we discuss how to set these two parameters adaptively

for each training problem.

The convergence rate of our algorithm is related to the location of the spectrum of H and
the value of c. The good news about H is that its leading eigenvalues lie well separated.
The number of these leading eigenvalues is a good indicator of the size of ;. While the
value of c affects the size of Sy. The smaller c is, the larger S,. For the extreme case where
the training set is separable and c is set very large (such that the constraints a; < ¢ never
become active), the spectrum of H is an important factor determining the running time.
Based on this observation, we set k and ! adaptively by using the information of the spectrum
of H. From the convergence property of the CG method, we know that the residual of a

56 CHAPTER 4. SOLVING THE SVM DUAL QP PROBLEM EFFICIENTLY

symmetric positive definite linear system with j well-separated leading eigenvalues tends to
be reduced quickly for the first j iterations by the CG method. According to this property,
we estimate the number of the leading eigenvalues by fc, the number of iterations for the
CG method to reduce the residual norm to a scale of 0.01.

k is used to control the steps of the CG iterations, because there is no need to compute
Problem (4.1.7) exactly when it is not the final subproblem. The other reason to not solve
Problem (4.1.7) exactly is due to the rank deficiency of H. The CG method converges slowly
or may not even converge for ill-conditioned matrices. For example, if z; € R? then H has
two nonzero eigenvalues in general. It makes sense to solve the subproblems with only two
steps of the CG iterations before the solution blows up. To deal with the rank deficiency,
people usually add a small positive value to the diagonals of H. In our algorithm, k is set
to be k obtained from the initial subproblem.

When [active constraints are relaxed, [z;,,...,;]7 X is computed to generate the cor-
responding columns of H (H is not precomputed). Considering that [z;,,...,2;]TX is
a Level-3 operation when [is large, we tend to relax all the constraints with negative §;
(because Level-3 operations can be implement efficiently). However, with this strategy we
increase the probability that some relaxed constraints become active again, which slows
down the convergénce. Our observation is that when the number of the SVs is bsmall it
is better off to set 1 small. Since the number of the leading eigenvalues of H prov1des
information about the number of the SVs, in our algorithm [is also set to be k.

4.3 Numerical Experiments

Our goal is to minimize overhead so that the high performance and the nice features
provided by a high-level language such as MATLAB can be achieved simultaneously. For
example, to further improve the performance of our MATLAB implementation, we replace
a frequently used slow MATLAB function with a much faster C function. The MATLAB
implementation of this algorithm is named “FMSvm”, where “FM” stands for “Fast MAT-
LAB”. In this sectlon FMSvm [106] is compared with two bench ma,rk C and C++ codes,
SVM!9h (35] and SvmFu [66] respectlvely

The training functions of FMSvm, SVM!"* and SvmFu are compared based on two
training sets, one is sparse and the other one is dense. The sparse training set Digit17
contains 13007 samples of hand-written digits 1 and 7, while the dense training set Face is-
a face detection training set containing 31022 examples. Digitl7 is easy to separate and it
is balanced (6742 positive examples vs. 6265 negative examples). On the opposite, Face is

4.3. NUMERICAL EXPERIMENTS 57

Training sets: Digit17-6000 and Digit17
1) | 10.1) | p2(0.1) | p2(0.001) | r10(10) [r10(1) | r3(1) [r3(0.1)
Training sets: Face—6000 Face-13901 and Face
1(4) | 10) | 101) | p2(a) [p2(0.001) [r10(10) [r3(10) | r3(1

Table 4.1: Choices of kernels and c. Here‘, “1” stands for the linear kernel, “p2” stands for
the polynomial kernel with degree 2 and “rz” stands for the radial basis function kernel
with 0 = z. The number in the parenthesis is the value of ¢. The definitions of these kernel
functions are listed in the appendix. ' o

not balanced (2901 positive examples vs. 28121 negative examples) and harder to separate.
The training points in Digit17 and Face are of dimensions 784 and 361 respectively. The
two training set are downloadable at [106].

Both the SVM"9" and SvmFu training functions have parameters whose setting affects
their running time’. Bad choices can make the convergence very slow. Unfortunately the
optimal setting of these parameters are not known a priori. If they are not set, the default
setting is taken. The FMSvm training function also has two parameters k and I, but users
are not required to set them. Instead it tries to estimate the optimal setting by itself based
on each particular training problem. In this section we compare FMSvm with SVM!9ht and
SvmFu using both default and estimated optimal settings.

From Digit17 and Face, we create five training sets: Digit17-6000, Digit17, Face-6000,
Face-13902 and Face, with sizes 6000, 13007, 6000, 13902 and 31022 respectively. The two
smallest training sets are used to obtain an estimate of the optimal settings for SVMlight
and SvmFu. The estimated optimal setting for each training function is the setting among
ten trials which gives the best performance. Then FMSvm is compared against SVM9ht
and SvmFu with the estimated optimal settings on larger training sets Digit17, Face-13902
and Face. Table 4.1 lists the kernels and the values of c used for each training set.

In Figure 4.3, we can see that for the easy-to-separate training set Digit17-6000, there is
no big difference in performance between the FMSvm training function and the other two
with default settings. But for Face-6000 ’s case 1(4), FMSvm does much better than both
SVM!"* and SvmFu. The timing results of FMSvm against SVM!9h¢ and Svau plotted

1The convergence time is measured by cpu seconds. ‘For SVM'i9ht and SvmFu, the time spent in loadmg
the input data file is excluded. For instance, SvmFu needs around 24 cpu seconds to load the training set
Face, while SVM'"9** needs around 115 cpu seconds. All the timing results in this paper are obta.med on the
sever newton.mit.edu, which is a linux machine with 2 1.2 GHZ Athlon MP processors and 2 GB memory.

58 CHAPTER 4. SOLVING THE SVM DUAL QP PROBLEM EFFICIENTLY

in the right column of Figure 4.3 are for the case where the estimated optimal settings
are used for all of them. We can see that in average, FMSvm might even converge faster
than its two counterparts. The estimated optimal settings obtained here for SVM“ght and
SvmFu are used for later comparlsons in Figure 4.4. These estimated optlma.l settings are
listed in the appendix. - :

Since the optimal parameter settings for all the three training functions are not known a
priori, bad settings.can cause very slow convergence. FMSvm tries to avoid this situation by
being adaptive to each training set. Shown in Figure 4.4 are the timing results of FMSvm
against SVMY9" and SvmFu, where the estimated optimal settings are used for SVM!9ht
and SvmFu. We can see that FMSvm matches the estimated best performance of SVM!9ht
and SvmFu on the two training sets.

If we measure the difference between a setting A and the estimated optimal setting O by
the ratio of relative slowdown: '

time(A) — time(O)
T time(0)
then in Figure 4.3, for each training function we get 16 such ratios that measure the dif-
ference between the setting used in the left column and the estimated optimal setting used
in the right column. The mean and standard deviation of these ratios are respectively
(0.16,0.14), (0.24,0.43) and (0.76,0.60) for FMSvm, SVM"9"* and SvmFu. We can see that
the settmg used by FMSvm is closer to its estimated optlmal settlng

In summary, FMSvm’s idea of being adaptive to each training set works, which helps
preventing the slow convergence caused by bad parameter settings. Based on training sets
Digit17 and Face, we can see that FMSvm matches the performance of SVM¥“9h* and SvmFu.

4.4 Distributing Large T&'aining Problems

The basic memory requifement for Quf algorithm is to store the training example matrix
X and the computed part of the Hessian matrix HE,. Instead of ETH Ep, HE} is stored
because we need to update the re81dua.1 r= 1o — HE), é. To control memory consumptlon
we can update part of the residual so that only the corresponding rows of H E, are needed.
From the primal problem point of view, this i is equivalent to testing part of the training
points in G using the current solution. This approach can be easily extended to distribute
large training problems. The idea is to use the master to compute all the subproblems,
where only E’T HE, is needed, and let slaves to update the residual in parallel. Updating
the residual is expensive because the corresponding part of H has to be computed.

4.4. DISTRIBUTING LARGE TRAINING PROBLEMS 59

Using Default Settings Using Estimated Optimal Settings
Diglt17-6000 Digit17-6000
=T | ' ' 80 =TSV | '
45 -f SYMIBRE | .;,_g.f‘.f . symiont
O Y e - 25 O SvmFu
P — R e —— -
EGB 'g S
8 8.l
325 ... 315
| B] >
§® 70 D AF S
1

Face-6000 700, Face-6000
' T % FWS 8 ' ¥ FMSvm
............. T SVM"'VH“M F‘ « svmlsnt
¢ SvmFu BOO G SvmFu
\]

- * I -, Y Aeleibely " 2 n . Ly ' i h L |
@) I 10) p2%1)p2(0.001)r10(10) 3(10) r3(1) f4) 1) K1) p2(0.)p2(0.001)r10(10) r3(10) ra(1)
rnel (c) kernel (c)

Figure 4.3: Timing results on the two training subsets of size 6000. Plots in the left column
are the timing results of FMSvm against SVMY" and SvmFu with default parameter
settings. For problems of size larger than 2000, the default setting for SvmFu is “(h, c) =
(2000,0) and the default setting for SVM'" is “(q, n, m)” = (10,10,40). Note that in
SVM!ight and SvmFu, h,c and q,n,m have different meanings than ours. However, for
training set Face-6000 we use (20,'10, 40) as SVM"9"’s default setting, following the hint to
choose n < g to prevent zig-zagging, where (20, 10,40) is the estimated optimal setting for
Digit17-6000. Plots in the right column are the timing results of FMSvm against SVM'ght
and SvinFu, where the estimated thimal settings are used for all of them. With default
settings, for the easy-to-separate trainihg set Digit17-6000, there is no big difference in
performance between the FMSvm training function and the other two; but for Face-6000 ’s
case 1(4), FMSvm does much better than both SVMY9"* and SyvmFu.

60 CHAPTER 4. SOLVING THE SVM DUAL QP PROBLEM EFFICIENTLY

Comparison of FMSvm with SVM'9" and SvmFu with the estimated
optimal parameter settings

[
Digit17-6000 Face-6000

CPU seconds
CPU seconds

B() a0 B) W) paonp2000n 0G0 10w
Co kernel (c)

Face-13901

1200 - ;
% FMSvm
8 « Sym'ent
FOOO -+ evves oo s ¢ SvmFu

CPU seconds
CPU seconds

ﬁt) |(‘1) 1(0.1) pz(b.i)pz(o:om)noim) rﬂ(l‘lo) ra(1)
o kernel (¢} - . .

Face-31022

CPU seconds

fo m om nggglz(g;mmoho) Re0) r3()

Figure 4.4: FMSvm VS. SVM'% and SymFu. Plots in the left column are the timing results
-of FMSvm against SVM'toht aﬁd SvmFu on‘_training sets Digit17-6000 and Digit17, while those in
the right column are the timing results of FMSvm against SVM' and SvmFu on training sets
Face-6000, Face-13901 and Face. The estimated optimal parameter settings are used for the training
functions of SVM'* and SvmFu. ‘For those parameters that seem to depend on the size of the
training set, their values are adjusted proportionally as the size increases. All the settings are listed
in the appendix. We can see that FMSvm (without using the estimated optimal parameter settings)

matches the estimated best performance of SVM'“? and SvmFu.

4.5. CONCLUSION AND FUTURE WORK 61

To make our MATLAB code support distributed computations, we use an extended MAT-
LAB environment called MATLAB*P [39], where an almost transparent interface to dis-
tributed matrices and the operations on them is provided. MATLAB*P consists of two
parts, a MATLAB front end and a server living in a supercomputer. On the server, dis-
tributed matrices and the operations on them are stored and executed. Unlike MATLAB’s
transparent support to sparse matrices, small modification is required to make ordinary
MATLAB codes to support MATLAB*P’s distributed matrices. But once MATLAB*P
knows that X is a distributed matrix, all the operations involving X are automatically
executed by the server. Since our algorithm is described in terms of basic linear algebra
operations, we expect that it should be easy to extend FMSvm to support MATLAB*P’s
distributed matrices in addition to MATLAB’s dense and sparse data formats.

4.5 Conclusion and Future work

In summary, our MATLAB training function has the following features:
e casy to use;
o efficient;
e highly portable;

e can be easily extended to support distributed matrices with MATLAB*P, in addition
to dense and sparse matrices.

We still have potential to improve the performance of our implementation by making the
spectrum of the submatrices of H well-behaved. Preconditioning is the method. We will
add this feature in the next version of FMSvm.

The FMSvm training function was originally written with the assumption that the train-
ing example matrix X was dense. It works fine with MATLAB sparse matrices, but we
want to make sure that it is also optimized for the sparse input. Currently, we are extend-
ing FMSvm to support MATLAB*P distributed matrices in order to solve larger problems.
We plan to release the next version of FMSvm in the summer of 2002. In our future
work, we want to make our algorithm more adaptive and we want to better understand its
convergence behavior. |

62 CHAPTER 4. SOLVING THE SVM DUAL QP PROBLEM EFFICIENTLY

Chapter 5

Using SVMs to Predict the Stock
Market

The two examples in Chapter 4 involve classifying images. In this chapter, we apply
SVMs to time series data. Here, SVMs are used to predict the movement of the Dow
“Jones Index. The solution using SVMs is compared against the one based on the geometric
Brownian motion model of stock price behavior, which is the foundation of the Nobel Prize
winning Black-Sholes formula for pricing stock options [6] [51]. Our results show that using
SVMs has the potential to predict the movement better than using this model.

5.1 Setting the Stage

In the geometric Brownian motion model, it is assumed that stock prices follow a stochas-
tic process known as geometric Brownian motion. It follows that in this model stock prices
have the Markov property, that is, only the current price of a stock is relevant for predict-
ing its future price. This property is consistent with the weak form of the market-efficiency
hypothesis [69] [70], which states that the present price of a stock reflects all the informa-
tion contained in its past prices. Therefore, there is no need to interpret the history of
stock prices in order to achieve more predicting power. Since there is very little evidence
against this hypothesis, we can believe it is true. However, it does not imply that other
publicly available information such as trading volumes and interest rates will not help ei-
ther. By contrast, SVMs predict the future by learning from“éxperience, where the known
information (experience) is incorporated in the training set. The theme of this chapter is
to investigate how well SVMs can learn from time seriés data such as stock prices. Our
results indicate that using SV‘MS has the poténtial to outpefform the solution based on the
geometric Brownian motion model. This investigation is also interesting for people who
want to test the semi—strdng form of market efficiency, which states that the present price

63

64 CHAPTER 5. USING SVMS TO PREDICT THE STOCK MARKET

The Dow Jones index (02-Dec-1985 to 28-Dec-2001)
1 2000 T T T Ll 1 T 1 T T T T [T 1 T

10000
8000 -
6000

4000

Dow Jones Index

2000

1 1 1 1 1 1 1 - 1 1 1 " 1 1 | 1 1 1 -
85 686 87 88 89 90 91 92 93 94 95 96 97 98 99 00 O1 02
Year

The Dow Jones Index Plotted in the Logarithmic Scale

10_ T L 1 1 1 T T T T LIg T T T T T T

Dow Jones Index
°
MUY

3 1 1 1 1 1 1 1 1 1 1 1 ! 1 L 1 1

10
85 86 87 8 89 9 91 92 93 94 95 96 97 98 99 00 O1 02
. Year

Figure 5.1: The Dow Jones Index from December 2, 1985 to December 28, 2001. Note that
the top plot is in regular scale, while the bottom plot is in the logarithmic scale.

of a stock reflects all the publicly available information. If this hypothesis is true, then we

should not be able to make above-average returns using SVMs.

In the following discussion, the Dow is used as an abbreviation for the Dow Jones Index.
We want to predict on Thursday, after the market is closed, whether the closing index of the
Dow on Friday will be higher than its opening index on the previous Monday. We choose
this model problem because it is easy to solve and to conipare the two solutions, one based
on the geometric Brownian motion model and the other one using SVMs. However, the
simplicity of this model problembdo'es not affect the generality of the points we try to make.
In Figure 5.1, the closing indexes of the Dow from December 2, 1985 to December 28, 2001
are plotted. To reveal the volatility better, these indexes are also plotted in the logarithmic
scale. The record of the Dow can be downloaded from the Yahoo Finance website.

5.2. THE GEOMETRIC BROWNIAN MOTION SOLUTION 65

5.2 The Geometric Brownian Motion Solution

Let S be the stock price at time ¢. The geometric Brownian motion model consists of the
following equation

dS = pSdt + 0Sdz, (5.2.1)
which can also be written as s
< = pdt + odz. (5.2.2)

Here, p is the expected continuously compounded return per unit of time and o is the
volatility of the stock price per unit of time; the Wiener process dz [38, page 220] [113] has
a drift rate of zero and a variance rate of 1. By Itd’s lemma [38, page 229], it can be shown

that
2

dlnS = (p — %)dt + odz. (5.2.3)
It follows that if St is the stock price at a future time T" and Sy is the stock price at time 0,
then In %f)l has the normal distribution with mean (u — "72)T and standard deviation o/T

ST 02 2
lnS—0 ~ N((u— 7)T,a T).

The discrete-time version of (5.2.2) is

% = pAt + oeV At. - (5.24)

The variable AS is the change of S in a small interval of time At and e is a standard normal
random variable. Note that % is the return over A¢. Here, pAt is the expected value of
this return and oev/At is the noise part. Equation (5.2.4) indicates that % is a normal

random variable with mean puAt and standard deviation ov At:
AS

? ~ N(ﬂAt, 0'2At).

For our problem, we need to know the daily return of the Dow on Friday. Since At is

small (one day), we use the discrete-time model (5.2.4) to determine this return. Let Sty
and Sy be the closing prices on Thursday and Friday. The daily return on Friday is

SFr — STh

R=
STh

From (5.2.4), we know that .
‘ R = p + oe, (5.2.5)
where 1 is the expected daily return and o is the daily volatility. It follows that

Srr = (14 R)Sth = (1 + p + 0€)Stn.

66 CHAPTER 5. USING SVMS TO PREDICT THE STOCK MARKET

Finally, we want to know whether or not Sgy is higher than Sy, where Sy, is the opening
price on Monday, that is,

>
S¥r < SMo-

This can be expressed equivalently as

> Smo/Stn—1—
¢ 2 Suo/Sm E_e (5.2.6)
< o

The decision rule hgpm(-) is defined as follows: the output is 1 if it predicts a higher price

on Friday; the output is —1 otherwise. Since € has a symmetric density function, i.e., the
bell-shaped normal density function,

Pr(e > ¢) >Pr(e<) if£ <0
Pr(e > ¢) < Pr(e< &) if ¢ > 0.
Therefore, the decision rule is
haam(§) = sgn(-§). (5.2.7)
This is the same decision rule for predicting the outcome of tossing a biased coin. Knowing
which way the coin is biased is enough for us to make the right decision.

Although the bias term —¢ depends on two parameters p and o, its sign only depends on
p. It follows that the decision rule hgpm(¢) is independent of o. This is good news because
estimating o is not easy, due to the fact that o ché.nges over time. Usﬁa.lly, the implied
volatility model, the stochastic volatility model [37] or the GARCH model [7] is used to
estimate o. For details, we refer readers to [38]. Our situation is exactly the opposite of the
case when people use the Black-Sholes formula to price stock options, where ¢ is critically
important and p turns out to be irrelevant in general.

We use historical daily returns to estimate p. Since we also assume that p is time
dependent, we do not average all the historical data. Instead, we only use the past daily
returns back to a certain date from the latest Thursday. Let the window length be [weeks.
In Figure 5.2, the estimated daily returns with different [for each trading Friday during the
period from December 7, 1990 to December 28, 2001 are plotted (Trading weeks in which
Monday is a holiday are not considered). We apply the decision rule (5.2.7) to Fridays
during the above period. At [= 300, we get the best performance: 96 errors out of 511
trials. In other words, the accuracy of hggm on this test set is 81.21%. From Table 5.1,
we can see that when we further increase I, the performance stays the same. The reason
is that compared with the term Syo/STn — 1 (the return for the first four days) in (5.2.6),
4 (the return on Friday) is insignificant. When [is increased, the estimation of x4 becomes
smoother and converging to a constant as indicated in Figure 5.2. Therefore, after [is larger
than a certain value, it no longer affects the decision rule.

5.2. THE GEOMETRIC BROWNIAN MOTION SOLUTION

Estimated Daily Returns on Fridays (07-Dec—1990 to 28—-Dec-2001)
0-4 T T T L T T T T 1 T 1
e |25
— 1=100
— 1=300
0.3 A

o
N
T

Estimated Daily Return(%)
o

_0.2 | 1 1 1

920 o1 92 93 94

95

96
Time

97

98

67

Figure 5.2: Estimated daily returns on Fridays between December 7, 1990 to December 28,

2001. The estimation becomes smoother as ! increases, where [/ is the window length.

The window length ! (weeks)

25

50

100

200

300

400

500

Errors (out of 511 trials)

101

100

97

98

96

96

96

Table 5.1: The number of Fridays on which the decision rule hgp(+) gives wrong prediction.
Different settings of I are tried. It turns out that the best performance we can get is 96
errors out of 511 trials. The time period of the test data is from December 7, 1990 to

December 28, 2001. The trading weeks where Monday is a holiday are not included. When

! > 500, the performance will be the same.

68 CHAPTER 5. USING SVMS TO PREDICT THE STOCK MARKET

5.3 The SVM Solution
Unlike hgpm(+), the SVM decision rule
hsvu(z) = sgn(wTe +b) - ' (5.3.1)

depends on the known (past) information, which is incorporated in w and b. As a predicting
function, hgym(-) relates what has happened in the past to the future movement of the Dow.

To apply SVMs, the first step is to construct the training set. As our first try, we use the
record of the Dow from Monday to Thursday to build the training vectors (points) for each
week. If the closing index on Friday is higher than the opening index on Monday in that
week, we set the corresponding y-label to be 1; otherwise, we set it to be —1. There are five
entries for each trading day in the Dow record: the opening index, the daily high index,
the da.ily low index, the closing index and the volume. Therefore, our training vectors are
of dimension 20. In the following example of a training vector, the first five elements are
from the Monday record, while the last five elements are from the Thursday record:

x = [341.3 343.6 339.4 340.9 23300 ... 340.4 343.0 339.2 341.1 30000]%.

When entries from different categories are assembled in the t‘raining\' vectors, we need to
make sure that they are of the same scale 1f they are to be Welghted equally Note that
in the above exa.mple, for 1nstance, the openmg index on Monday 341.3 and the tradlng
volume on Monday 23300 are not of the same scale. In our tramlng vectors, the real indexes
and volumes are replaced by their relative values with respect to the Monday opening index
and the Monday volume respectively. As an example, the scaled version s of the above
example is listed in the following:

= [1 1.0067 0.9944 0.9988 1 ... 0.9974 1.0050 0.9938 0.9994 1.2876]”.

We use the record from July 5, 1954 to November 30,1990 to construct the tralnmg set and
the record from December 7, 1990 to December 28, 2001 to construct the test set. There
are totally 1704 training vectors, and the test set contains 511 vectors In general learning
from more examples tends to glve better predlctmg performance We use the record of the
Dow starting from July 5, 1954 simply because before that date the record of the federal
funds rate, which is used to build our next tralmng set, is not available.

Following the principle of structural, risk minimization [18] [24] [93], different kernels and
choices of ¢ are use& to train SVMs, and their performance on the test set are compared.
The linear kernel, the polynomial (poly) kernel and the radial base functlon (rbf) kernel are
the three kernels we have tried: |

5.3. THE SVM SOLUTION 69

poly(4)

c 020508 |1]|12|14] 1.6
Errors | 106 | 99 | 96 [96 | 96 | 98 | 97
rbf(1)

c 20 | 40 | 60 | 80 | 100 | 120 | 140
Errors | 109 | 101 | 101 {98 | 96 | 96 | 99

Table 5.2: The performance of poly(4) and rbf(1) on the test set.

linear: k(s,t) = sTt;
poly(d): k(s,t) = (st + 1)%
bf(c): ks, t) = e~ lle—tll3/(20%)

where s and t are vectors. The settings of the parameters of these kernels are listed in the
following table:

linear | poly(3) | poly(4) | poly(5) |rbf(0.2)
rbf(0.4) | rbf(0.6) | rbf(0.8) rbf(1)

The best performance achieved is 96 errors out of 511 trials, which matches the record of
haeMm(+). Some of these results are listed in Table 5.2. We can see that at the beginning
the predicting accuracy gets better as ¢ increases; however, when the overfitting effect takes

over, increasing ¢ makes the performance even worse.

Although the above result is not better than the result of hgpm(-), we can at least see
that SVMs can learn well from time series data, which can come from different categories.
Our intuition is that if there is other information related to the movement of the Dow, then
adding it to the training set might improve the performance. Considering that interest rates
are important economic indicators, we add the daily federal funds rates ! to the training set.
We choose this rate simply because it is a daily rate. Again, we use the relative values with
respect to the Monday rate in the training vectors, instead of real rates. If 71, 72, r3 and 4
are the federal funds rates for Monday through Thursday, then the four relative values are
1,72, 2 and :—‘1‘ respectively. With these four values added, our new training vectors are of
dimension 24. With this training set, the best performance we have achieved so far is 89
errors on the same test set using the poly(3) kernel. The result is listed in Table 5.3.

! The federal funds rate is the cost of borrowing immediately available funds, primarily for one day. The
effective rate is a weighted average of the reported rates at which different amounts of the day’s trading
through New York brokers occurs. This rate is provided by the Federal Reserve website. .

70 ~ CHAPTER 5. USING SVMS TO PREDICT THE STOCK MARKET

poly(2)

c 1 | 10 | 20 | 30 | 40 | 100 | 200 | 500
Errors | 111 | 105 | 106 | 103 | 107 | 105 | 104 | 102
poly(3)

c 005| 1 | 15|25 |10 | 20 | 30 | 35
Errors | 103 | 102 | 96 | 96 | 94 | 93 | 89 | 89

Table 5.3: The performance of poly(2) and poly(3) using the new training set.

It seems that training SVMs with the new training set is harder than using the old one.
Our observation is that the training time increases dramatically when c becomes larger.
When ¢ = 30, it takes around 2.6 hours (on the same machine used in the last chapter, i.e.,
newton.mit.edu) to train the SVM with the poly(3) kernel, comparing with the scale of
seconds when using the old training set. In Table 5.3, we stop at ¢ = 40 for poly(3) because
the training time is longer than 12 hours. A prediction this slow would be useless for us.
This highlights the reason why a fast training code is important. The distribution of the
errors of hgpm(-) and hsvum(-) (using‘poly(3) and ¢ = 30) on the test set are plotted in
Figure 5.3.

5.4 Conclusion and Future Work

The above results have shown that SVMs can learn well from time series data. The
better performance achieved by SVMs indicates that using SVMs has the potential to out-
perform the solution based on the most widely used geometric Brownian motion model for
applications such as the above problem De51gnmg a trammg set needs domain knowledge
We want to improve our trammg set to achieve better predlctlng accuracy We are also
interested in building trading strategies using SVMs to see if we can earn above-average

returns.

5.4. CONCLUSION AND FUTURE WORK 71

h vs. h

GBM SVM
15 T T T T T T T T T
® Ngaw
o & Nsvm
o o ¢
10 & ¢) .
4
S & [L
- 3 *
o
3 A] f
E o ¢
4
5F] $.
091 92 93 94 95 96 97 98 " 99 00 01
Year :

Figure 5.3: The comparison of the two solutions hgpm(-) and hgym(-). The SVM decision
rule is trained with poly(3) and ¢ = 30.

72

CHAPTER 5. USING SVMS TO PREDICT THE STOCK MARKET

Appendix A

List of Kernel Functions

The three kernels used in Chapter 4:

1. The linear kernel:
k(z,y) ==y,

where z,y € R".

2. The polynomial kernel with degree d:
k(z,y) = ("y +1)7,
where x,y € R and d is a positive integer.
3. The radial basis function kernel:
k(z,y) = e llz-vl3/20")

where z,y € R” and 0 € R

Other positive definite kernels:

e The sigmoid kernel:
k(x,y) = tanh(azTy — b),

where ¢,y € R” and a,b € R

e The “erbf” kernel:
k(a:, y) = e_”m_‘y“2/(2”2),

where ¢,y € R* and 0 € R.

73

74

APPENDIX A. LIST OF KERNEL FUNCTIONS

Appendix B

List of Estimated Optimal Settings
for SVM!9M and SvmFu

e Table B.1: The Estimated Optimal Settings for Training Sets Digit17-6000 and Digit17.

e Table B.2: The Estimated Optimal Settings for Training Sets Face-6000, Face-13901

and Face.

75

76 APPENDIX B. LIST OF ESTIMATED OPTIMAL SETTINGS FOR SVMLIGHT AND SVMFU

Kernels Digit17-6000 Digit17
(c) SVM'9ht3 5 | SymFu3.0 | SVM“"t3.5 | SvmFu3.0
1(1) (20,10,40) | (2000,100) | (20,10,80) | (2000,200)
1(0.1) (20, 10, 40) (2000, 0) (20,10, 80) (2000,0)
p2(0.1) (20,10, 40) (6000,\0) (20,10,80) | (13007,0)
p2(0.001) | (20,10,40) (6000, 0) (20,10,80) | (13007,0)
r10(10) (20,10, 40) (6000, 0) (20,10,80) | (13007,0)
rl0(1) (20, 10, 40) (6000, 0) (20,10,80) | (13007,0)
r3(1) (20,10, 40) (6000, 0) (20,10,80) | (13007,0)
r3(0.1) (20,10, 40) (6000, 0) (20,10,80) | (13007,0)
Table B.1: The Estimated Optimal Settings for Training Sets Digit17-6000 and Digit17.
Kernels Face-6000 Face-13901 Face
(c) SVM'9ht3 5 | SymFu3.0 | SVM'9"3.5 | SymFu3.0 | SVM'9*3.5 | SymFu3.0
1(4) (60,20,40) | (6000,0) | (60,20,80) | (13901,0) | (60,20,200) | (31022,0)
1(1) (60,20,40) | (6000,0) | (60,20,80) | (13901,0) | (60,20,200) | (31022,0)
1(0.1) (40,10,40) | (2000,40) | (40,10,80) | (2000,80) | (40,10,200) | (2000,200)
p2(1) (40,10,40) | (6000,0) | (40,10,80) | (13901,0) | (40,10,200) | (31022,0)
p2(0.001) | (60,20,40) | (6000,0) | (60,20,80) | (13901,0) | (60,20,200) | (31022,0)
r10(10) (20,10,40) | (6000,0) | (20,10,80) | (13901,0) | (20,10,200) | (31022,0)
r3(10) (20,10,40) | (6000,0) | (20,10,80) | (13901,0) | (20,10,200) | (31022,0)
r3(1) (20,10,40) | (6000,0) | (20,10,80) | (13901,0) | (20,10,200) | (31022,0)

Table B.2: The Estimated Optimal Settings for Training Sets Face-6000, Face-13901 and

Face.

Appendix C

Our MATLAB Codes

1. FMSvm.m: the training function which chooses the initial guess of G randomly.

2. FMSvml.m: the training function which chooses the initial guess of G by the ML
hyperplane. Since it is the same as FMSvm.m except the initialization of G. We only
list the code for this part here.

3. boundMEX.c: the C subroutine of the training function.

4. colOfA.m: the subroutine of the training function that computes the columns of H.

C.1 FMSvm.m

% FMSvm solves SVM QP problems without chunking:

% min f(x)=1/2#%x’*A*x-1’x
% s.t. Y’x=0 and 0<= x <=C.
% Usage:

% [x,bias,steps,SPsizes,CGsteps,testR]=FMSvm(ker,pl,p2,C,accuracy)
% or (if you want to play with parameters: firstdrops,maxdrops and maxsteps)
% [x,bias,steps,SPsizes,CGsteps,testR]=FMSvm(ker,pl,p2,C,accuracy,

% firstdrops,maxdrops,maxsteps)
% Input parameters:

% X(global) -~ training points stored in the format: Dimension

% by numberDfPoints.

YA Y(global) - the sign vector (a column vector where Y(i)=-/+ 1).
% ker,pl,p2 - kernel parameters.

A C - An integer giving the upperbound of the unknown x

% Values for ker: ’linear’ -

% 'poly’ - pl is degree of polynomial

% 'rbf’ - pl is width of rbfs (sigma)

% ’sigmoid’ - pl is scale, p2 is offset

7

78 APPENDIX C. OUR MATLAB CODES

A ’spline’ - not available
h 'bspline’ - pl is degree of bspline not available
% ’fourier’ - pl is degree not available
% 'erfb’ - pl is width of rbfs (sigma)

% Dutputs:

A x - solution.

% b - bias.

% steps - steps of the outer loop (number of the subproblems solved).
A CGsteps - steps of the Conjugate Gradient iteration for each

% subproblems.

5 SPsizes - sizes of each subproblems.

% testR - An interface to an user-defined output.

% Author: Tong Wen, MIT, June 2001

function [x,bias,steps,SPsizes,CGsteps,testR]=FMSvm(ker,p1,p2,C,accuracy,
firstdrops,maxdrops,maxsteps)

if ~(nargin == 8 | nargin==5) % check correct number of arguments
help FMSvm
return

end

Ymmmm—m———m e Initialization -

global X Y

if isempty(x),fprintf(’x is undefined!\n’);help FMSvm;return;end
if isempty(Y),fprintf('Y is undefined!\n’) ;help FMSvm;return;end

global y num0fCalls norm0fX
y=Y;numeCalls=0;norm0fx=[];n=1ength(Y);

[Dim, j1=size(X);

if n~=j,fprintf(’please check the format of X or Y! \n’);return;end
[i,jl=size(Y); - ‘
if n~=i,fprintf(’Y must be a column vector! \n’);return;end
testR={};steps=0;CGsteps=[];SPsizes=[];e=ones(n,1); ‘

% Initialize firstdrops and maxsteps
if nargin==5
switch lower (ker)
case ’linear’
firstdrops=floor(n*0.01); maxstepsUB=Dim;
case ’'poly’
firstdrops=floor(n*0.02);maxstepsUB=n;
case ’rbf’
if pi>=i,
firstdrops=floor(n*0.02);maxstepsUB=n;
elseif p1>0.3

C.1. FMSVM.M

firstdrops=floor(n*0.025) ;maxstepsUB=n;
else
firstdrops= floor(n*0.03) ;maxstepsUB=n;
end
otherwise
firstdrops=20;
end
firstdrops=max (min(firstdrops,80),20);
maxsteps=min(firstdrops+1,maxstepsUB);
%20<=firstdrops<=80, here 20 and 80 are determined based on experience.
end

accuracy0O=sqrt (eps) ;

x=zeros(n,1);), make initial guess to be zero

r=e;

g=n; Ia(l:n,1)=[1:n]’; Ia(l:n,2)=1;% Initialize Ia and q. q is the size of Ia
Ey=y; % Ia keeps the indices of active constraints
ng=0;Ina=[1;A=[]; % Initialize Ina and nq. nq is the size of Ina

Ehaty=[]; % Ina keeps the indices of non-active constraints

postI=Ia(Y==1,1);temp=floor(firstdrops/2);
ml=min(length(postI),temp) ;

negl=Ia(Y==-1,1);temp=firstdrops-mi;

m2=min(length(negl),temp) ;

Ina=[postI(1:m1);negI(i:m2)];nq=m1+m2;
Ia(Ina,1)=0;Ia=Ia(Ia(:,1)>0,:);q=length(Ia(:,1));

4if q+ng”=n,fprintf(’error in first-drop! \n’);return;end
Ey=y(Ia(:,1));Ehaty=y(Ina); % Ia(:,1) and Ina are complementary here.
A(1:nqg,:)=colOfA(ker,pl,p2,Ina);

A== Outer loop

stop=0;accuracy1=0.01;
drops=1;
if accuracy>accuracyl,accuracy=accuracyl;end
while “stop
steps=steps+l;
InerLoopSteps=0;
if drops>0
if q”=n % compute the projection of r
Ehatr=r(Ina);
d=Ehatr-1/nq*Ehaty’ *Ehatr*Ehaty;
else :
d=[1;
end

end

79

80 APPENDIX C. OUR MATLAB CODES

norm0fd=norm(d) ; templ=norm0fd"2;

p=d;Ehatx=x(Ina);

Ehatx0=Ehatx; Ina0=Ina;nq0=nq;

addedI={[]:

AA=A(1:nq,Ina);

if normOfd<accuracyl
accuracy2=accuracy;maxstepsl=maxsteps;

else
accuracy2=accuracy1;maxéteps1=min(max(nq,maxsteps),maxstepsUB)

end

SPsizes(steps)=nq;

fm——m e Inner loop
% Conjugate Gradient Iteration
while norm0Ofd>accuracy2 & InerLoopSteps<maxstepsi
TIaChanged=0;
EhatAp=p’*AA; EhatAp is a row vector here!
alpha=temp1/ (EhatAp*p) ;
result=boundMEX (Ehatx,p,C) ;
=result (1) ;1I=result(2);1S=result(3);L=result(4);LI=result(5); LS=result(6);
if alpha<l
alpha=1;
realIlndex=Ina(1I);
q=q+1;Ia(q,1)=reallndex;Ia(q,2)=1S;
Ey(q,1)=y(reallndex)*1S;
TaChanged=1;index=1I;
elseif alpha>L
alpha=L;
realIndex=Ina(LI);
q=q+1;Ia(q,1)=rea11ndex;Ia(q,2)=LS;
Ey(q,1)=y(reallndex)*LS;
IaChanged=1;index=LI;
end
Ehatx=Ehatx+alpha*p;
PAp=EhatAp’-Ehaty*(EhatAp*Ehaty)/ng;
d=d-alpha*PAp; ’
if IaChanged
x(Ina)=Ehatx; % update x
% update Ina
addedI={addedI index];
Ina(index)=Ina(nq) ;%A (index,:)=A(nq,:);
AA(index,:)=AA(nq,:);AA(:,index)=AA(:,nq);
Ehaty(index)=Ehaty(nq) ;d(index)=d(nq);
ng=nqg-1;
Ehaty=Ehaty(1:nq);AA=AA(1:nqg,1:nq);
Ina=Ina(l:nq);d=d(1:nq);

C.1. FMSVM.M

% restart CG iteration
if gq==n
a=[1;
else
d=d-1/nq*Ehaty’*d*Ehaty;
end
norm0fd=norm(d) ; templ=norm0fd-2;
p=d;Ehatx=x(Ina);
else
temp2=d’*d;
beta=temp2/templ; templ=temp2;
p=d+beta*p;
norm0fd=sqrt (templ) ;
end
InerLoopSteps=InerLoopSteps+1;
end
CGsteps (steps)=InerLoopSteps;
if steps==
% Adaptively set maxdrops and maxsteps
if nargin==
switch lower (ker)
case ’linear’
mindrops=1;
case ’poly’
mindrops=3;
case ’rbf’
mindrops=5;
otherwise
mindrops=5;
end
maxdrops=max (nq,mindrops) jmaxsteps=min(maxdrops+1,maxstepsUB) ;
testR{1}="maxdrops’ ; testR{2}=maxdrops;
end
end
% update x
x(Ina)=Ehatx;
changeOfx=x(Ina0)-Ehatx0;
% update residue
if nqO0==size(4,1)
r=r-(changeOfx’*4)’;
else
AA=A(1:nq0,:);
r=r-(changeQfx’*AA)’;
end
m=length(addedl);
% update A

82 APPENDIX C. OUR MATLAB CODES

if m>0
for i=1:m
A(addedI(i),:)=A(nqQ,:);
nq0=nq0-1;
end
end
% compute lambda
if q"=0 '
Er=r(Ia(1:q,1)).*Ia(l:q,2);
lambda=(Ey’*Er-y’*r)/nq;
Lambda=-lambda*Ey-Er;
else
Lambda=[];
end

% drop maxdrop active constraints

ADsteps=[Dsteps length(find(Lambda<-norm0fd))];

nlI=find (Lambda<-accuracy0);

drops=length(nlI); ,

if drops

nq0=nq;
if drops>maxdrops,drops=maxdrops;end
[sortedLambda,sortednlI]=sort (Lambda(nlI));
dropIndex0fIa=nlI(sortednlI(1:drops));
'Inﬁ¥[ina; Iék&fdendexﬁfIa;i)]:nq=nq+drops;
Ehaty=Y(Ina);
Ia(dropIndex0£fIa,1)=0;
temp=(Ia(:,1)>0);
Ia=Ia(temp,:);Ey=Ey(temp);
q=q-drops; :
A(nq0+1:nq, :)=col0fA(ker,pl,p2,Ina(nq0+1:nq)); -

elseif normOfd<accuracy
stop=1;

end

end

% compute bias

[mv,mil=max (x(Ina));

if mv>accuracy0 & mv<C-accuracyO
bias=Y(Ina(mi))*(1-A(mi,:)*x);

else
bias=0;fprintf(’no valid bias is computed!\n’);

end

clear global y num0OfCalls normOfX
return

C.2. FMSVM1.M 83

C.2 FMSvml.m

%
%
h
%
h

FMSvm1l

Usage:

solves SVM QP problems without chunking:
min f(x)=1/2%x’*A*x-1'x

s.t. Y'x=0 and 0<= x <=C.

[x,bias,steps,SPsizes,CGsteps,testR]=FMSvm(ker,pl,p2,C,accuracy)

or (if you want to play with parameters: firstdrops,maxdrops and maxsteps)

[x,bias,steps,SPsizes,CGsteps, testR]=FMSvml (ker,pl,p2,C,accuracy,

firstdrops,maxdrops,maxsteps)

Input parameters:

X(global) - training points stored in the format: Dimension by numberOfPoints.
Y(global) - the sign vector (a column vector where Y(i)=-/+ 1).

ker,pl,p2 - kernel parameters.

C - An integer giving the upperbound of the unknown x

Values for ker: ’linear’ -

'poly’ - pl is degree of polynomial

'rbf’ - pl is width of rbfs (sigma)

’sigmoid’ - pl is scale, p2 is offset

’spline’ - not available
’bspline’ - pl is degree of bspline not available
’fourier’ - pl is degree not available
’erfb’ - pl is width of rbfs (sigma)

Outputs:

Note:

x - solution.

b - bias.

steps - steps of the outer loop (number of the subproblems solved).
CGsteps - steps of the Conjugate Gradient iteration for each subproblems.
SPsizes - sizes of each subproblems.

testR - An interface to an user-defined output.

Different from FMSvm, FMSvml use the Bayesian hyperplane to

initialize thefirst subproblem.

Author: Tong Wen, MIT, June 2001

function [x,bias,steps,SPsizes,CGsteps,testRJ=FMSvm1(ker,p1,p2,C,accuracy,

-

firstdrops,maxdrops,maxsteps)

the same as FMSvm.m

postI=Ia(Y==1,1);negIl=Ia(Y==-1,1);
if (length(postI)==0 | length(negI)==0)

fprintf(’The training set only contains examples from one class!\n’);

return;

84 APPENDIX C. OUR MATLAB CODES

end

smPost=mean (X (:,postI),2);smNeg=mean(X(:,negl),2);
wO=smPost-smNeg; gap=norm(w0) ; wO=w0/gap;
sm=(smPost+smNeg)/2; bO=w0’*sm;

£0=w0’*X-b0; [£0,£0I]=sort (£0);
fOpostI=find (£0>0) ; temp=floor (firstdrops/2);
mi=min(length(fOpostI),temp);
m2=min(firstdrops-ml,n-length(fOpostI));

Ina=[£0I((fOpostI(1)-m2): (fO0postI(1)-1))’;£0I(£0postI(1:m1))’];nq=mi+m2;
Ia(Ina,1)=0;Ia=Ia(Ia(:,1)>0,:);9=length(Ia(:,1));"
Ey=y(Ia(:,1));Ehaty=y(Ina); % Ia(:,1) and Ina are complementary here.
A(1:nq, :)=col0fA(ker,pl,p2,Ina);

A Outer loop
. % The same as FMSvm.m

return;

C.3 boundMEX.c

#include <math.h>
#include "mex.h"

void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray*prhs[])

double *result;

double *x,*d,*C;

unsigned int m,i;

double templ,temp2,temp3;

double 1=-1000000;

double u=1000000;

double 1lIndex,ulndex, uSign,1Sign;

/* Check for proper number of arguments */
if (nrhs !'= 3) {
mexErrMsgTxt ("Three input arguments required.");
} else if (nlhs > 1) {
mexErrMsgTxt ("Too many output arguments.");
}

/* get the length of the input vector */

C.4. COLOFA.M

m = mxGetM(prhs[0]);

/* Create a matrix for the return argument */
plhs[0] = mxCreateDoubleMatrix(6,1,mxREAL);

/* Assign pointers to the various parameters */
result = mxGetPr(plhs[0]);

x = mxGetPr (prhs([0]);
d = mxGetPr(prhs[1]);
C = mxGetPr(prhs[2]);

/* Do the actual computations herex/
for (i=0;i<m;i++){
if (d[il>0{
templ=-x[i]/d[i]; temp2=C[0]/d[i] ; temp3=temp2+templ;
if (tempi>l) {l=templ;lIndex=i+1;1Sign=1;}
if (temp3<u) {u=temp3;ulndex=i+1;uSign=-1;}
}
else if (d[i]1<0){
templ=-x[i]/d[i];temp2=C[0]/d[i];temp3=temp2+tempil;
if (temp3>1) {l=temp3;lIndex=i+1;1Sign=-1;}
if (tempi<u) {u=templ;ulndex=i+1;uSign=1;}
}
}
result[0]=1;result[1]=1Index;result[2]=1Sign;
result[3]=u;result[4]=ulndex;result[5]=uSign;

return;

C.4 colOfA.m

% Compute columns of the SVM Hessian matrix

h

% Usage: x = colOfA(ker,pl,p2,colIndex)

% Called by myKCGSVM classifier

%* X is stored in the format: Dimension by numberOfPoints.
h

% Parameters: ker - kernel type

h

% Values for ker: ’linear’ -

% 'poly’ - pl is degree of polynomial
A 'rbf’ - pl is width of rbfs (sigma)
% ’sigmoid’ - pl is scale, p2 is offset

% ’spline’ - not available

85

86 APPENDIX C. OUR MATLAB CODES

% ’bspline’ - pl is degree of bspline
) ’fourier’ - pl is degree
% ‘erfb’ - pl is width of rbfs (sigma)

%
h .
% Auther: Tong Wen, May 2001 (M.I.T.)

function x=colOfA(ker,pl,p2,colIndex)
% X is stored in the format: Dimension by numberOfPoints.
global X y numOfCalls normOfX
% num0fCalls must be initialized as zero
if (nargin "= 4) % check correct number of arguments
help colOfA
return

end
[m,n]=size(X);
x=X(:,colIndex) >*X;

switch lower (ker)

case ’linear’
x=(y(collndex)*y’).*x;

case ’poly’
x=(x+1).7p1;
x=(y(collndex)*y’) .*x;

case ’sigmoid’
x = tanh(pl*x/m + p2);
x=(y(colIndex) *y’) .*x;

case ’rbf’
if num0fCalls==

for i=1:n, normOfX(i)=X(:,i)’*X(:,i);end

end
k=length(collndex);
s=ones (k,1) *norm0fX;
S=norm0fX(colIndex)’*ones(1,n);
x = exp(-(s-2*x+S)/(2%p1-2));
x=(y(colIndex)*y’) .*x;

case ’erbf’
if num0fCalls==

for i=1:n, norm0£fX(i)=X(:,i)’*X(:,i);end

end
k=length(colIndex);
s=ones (k, 1) *norm0fX;
S=norm0fX (colIndex) ’*ones(i,n);

x = exp(-sqrt(s-2*x+S5)/(2*p1~2));

not available

not available

C.4. COLOFA.M

x=(y(colIndex)*y’) .*x;
otherwise

x=(y(colIndex)*y’) .*x;
end
num0fCalls=numDfCalls+1;

return;

87

88

APPENDIX C. OUR MATLAB CODES

Bibliography

[1] Mordecai Ariel. Nonlinear Programming: Analysis and Methods. Prentice-Hall, N.J.,
1976.

[2] N. Aronszajn. Theory of Reproducing Kernels. Transactions of the Mathematical Soci-
ety, 68:337-404, 1950.

[3] K. P. Bennett. A Support Vector Machine Approach to Decision Trees. Proceedings of
IJCNN’98, 2396-2401, Anchorage, Alaska, 1997.

[4] K. P. Bennett, D. H. Wu and L. Auslender. On Support Vector Decision Trees for
Database Marketing. R.P.I. Math Report NO. 98-100, Rensselaer Polytechnic Institute,
Troy, NY, 1998.

[5] D. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 1995.

[6] F. Black, M. Scholes. The Pricing of Options and Corporate Liabilities. Journal of
Political Economy, 81 (May-June 1973), 637-59.

[7] T. Bollerslev. Generalized Autoregressive Conditional Heteroscedasticity. Journal of
Econometrics, 31 (1986), 307-27.

[8] John C. G. Boot. Quadratic Programming. Rand McNally & Company, Chicago, 1964.

[9] B. E. Boser, I. M. Guyon and V. Vapnik. A Training Algorithm for Optimal Margin
Classifiers. Proceedings of the 5th Annual ACM Workshop on Computational Learning
Theory, 144-152, Pittsburgh, PA, 1992. ACM Press.

[10] L. Bottou, C. Cortes, J. Denker, H. Drucher, I. Guyon, L. Jackel, Y. LeGun, U. Miiller,
E. Sackinger, P. Simard and V. Vapnik. Comparison of Classifier Methods: a Case Study
in Handwritten Digit Recognition. Proceedings of the 12th International Conference on

Pattern Recognition and Neural Networks, Jerusalem, 77-87. IEEE Computer Society
Press, 1994.

89

90 BIBLIOGRAPHY

[11] P. S. Bradley, O. L. Mangasarian. Feature Selection via Concave Minimization and Sup-
port Vector Machines. Technical Report Mathematical Programming Technical Report
98-03, University of Wisconsin-Madison, 1998.

[12] P.S. Bradley, O. L. Mangasarian. Massive Data Discrimination via Support Vector Ma-
chines. Technical Report Mathematical Programming Technical Report 98-05, University
of Wisconsin-Madison, 1998.

[13] E. J. Bredenstainer, K. P. Bennett. Multicategory Classification by Support Vector
Machines. Computational Optimization and Applications, 1998.

[14] M. Brown, W. Grundy, D. Lin, N. Cristianini, C. Sugnet, T. Furey, M. Ares Jr., and
D. Haussler. Knowledge-based Analysis of Microarray Gene Expression Data By Using
Support Vector Machines. Proceedings of the National Academy of Science, 97(1):262-267.

[15] A. Buhot, M. Gordon. Robut Learning and Generalization with Support Vector Ma-
chines. Jounal of Physics A, 34, no. 21, 4377-4388, 2001.

[16] Christopher J.C. Burges. Simplified Support Vector Decision Rules. Proceedings, 13th
Intl. Conf. on Machine Learning, 71-77, San Mateo, CA, 1996. Morgan Kaufmann.

[17] C.Burges, B. Scholkopf. Improving the Accuracy and Speed of Support Vector Learning
Machines. Advances in Neural Information P'rocessing Systems 9, edited by M. Mozer,
M. Jordan, M. Kearns and T. Petsche, MIT Press, Cambridge, MA, 1997. '

[18] Christopher J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recog-
nition. Knowledge Discovery and Data Mining, 2(2), 1998.

[19] Ronan Collobert. SVM Torch II http://www.idiap.ch/learning/SVMTorch.html.

[20] Ronan Collobert and Samy Bengio. SVMTorch: Support Vector Machines for Large-
Scale Regression Problems. Journal of Machine Learning Research 1, no. 2, 143-160,
2001. '

[21] C. Cortes, V. Vapnik. Support Vector Networks. Machine Learning, 20:273-297, 1995.

[22] A. Crampton, J. Mason, D. Turner. Approximating Semi-Structured Data with Differ-
ent Errors Using Support Vector Machine Regression. Mathematical methods for curves
and surfaces (Oslo, 2000), 63—-72. Innovations in Applied Mathematics, Vanderbilt Univ.
Press, Nashville, TN, 2001.

[23] N. Cristianini, J. Shawe-Taylor and P. Sybacek. Bayesian Classifiers are Large Margin
Hyperplanes in a Hilbert Space. Machine Learning: Proceedings of the 15th International
Conference, San Francisco, CA, 1998. Morgan Kaufmann. '

BIBLIOGRAPHY 91

[24] Nello Cristianini, John Shawe-Taylor. An Introduction to Support Vector Machines and
Other Kernel-based Learning Methods. Cambridge University Press, 2000.

[25] Craig C. Douglas, Gundolf Haase, Jonathan Hu, Markus Kowarschik, Ulrich Riide and
Christian Weiss. Portable Memory Hierarchy Techniques For PDE Solvers: Part I. SIAM
NEWS, Volume 33, Number 5, June 2000. -

[26] H. Drucker, C. Burges, L. Kaufman, A. smola and V. Vapnik. Support Vector Re-
gression Machines. Advances in Neural Information Processing Systems 9, edited by M.
Mozer, M. Jordan, M. Kearns and T. Petsche, MIT Press, Cambridge, MA, 1997.

[27] Theodoros Evgeniou, Massimiliano Pontil, Tomaso Poggio. A Unified Framework for
Regularization Networks and Support Vector Machines, CBCL Paper, No. 171, MIT,
1999.

[28] F. Girosi. An Equivalence Between Sparse Approximation and Support Vector Ma-
chines. Neural Computation, 10(6):1455-1480, 1998.

[29] F. Girosi, M. Jones and T. Poggio. Regularization Theory and Neural Networks Ar-
chitectures. Neural Computation, 7(2):219-269, 1995.

[30] Gene H. Golub, Charles F. Van Loan. Matriz Computation. The Johns Hopklns Uni-
versity Press, Baltimore and London, 1996.

[31] Y. Guo, P. Bartlett, J. Shawe-Taylor, R. Williamson. Covering Numbers for Support
Vector Machines. IEEE Transactions on Information Theory, 48, no. 1, 230-250, 2002.

[32] I. Guyon, B. Boser and V. Vapnik. Automatic Capacity Tuning of Very Large VC-
Dimension Classifiers. Advances in Neural Information P'r'ocess'ing'Systems, 5:147-155,
edited by S. Hanson, J. Cowan and C. Giles. Morgan Kaufmann, San Mateo, CA, 1993.

[33] Thorsten Joachims. Text Categorization with Support Vector Machines. European Con-
ference on Machine Learning, 1998.

[34] Thorsten Joachims. Making'Large-Sca,le Support Vector Machine Learning Practical.
Advances in Kernel Methods: Support Vector Learning, edited by Bernhard Schélkopf,
Christopher J.C. Burges and Alexander J. Smola, The MIT Press, Cambridge, 1998.

[35] Thorsten Joachims. SV Mlisht 3.5, http://svmlight. joachims.org.

[36] Robert V. Hogg, Elliot A. Tanis. Proba,bzlzty and Statistical Inference. Prentice-Hall,
Inc, New Jersey, 1997.

92 BIBLIOGRAPHY

[37] J.C. Hull, A. White. The Pricing of Options on Assets with Stochastic Volatility.
Journal of Finance, 42 (1987), 281-300.

[38] John C. Hull. Options, Futures, and Other Derivatives. Prentice-Hall, Inc, New Jersey,
1999.

[39] Parry Husbands. Interactive Supercomputing. Ph.D. Thesis, MIT, 1999.

[40] Linda Kaufman. Solving the Quadratic Programming Problem Arising in Support Vec-
tor Classification. Advances in Kernel Methods: Support Vector Learning, edited by Bern-
hard Schélkopf, Christopher J.C. Burges and Alexander J. Smola, The MIT Press, Cam-
bridge, 1998. '

[41] M. Kirby, L. Sirovich. Application of the Karhunen-Loéve Procedure for the Charac-
terization of Human Faces. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 12(1):103-108, 1990.

[42] U. Krebel. The Impact of the Learning-Set Size in Handwritten Digit Recognition.
Artificial Neural Networks — ICANN’91, edited by T. Kohonen, 1685-1689, Amsterdam,
1991. North-Holland.

[43] U. Krebel. Polynomial Classifiers and Support Vector Machines. Artificial Neural Net-
works — ICANN’97, edited by W. Gerstner, 397-402, Berlin, 1997. Springer Lecture Notes
in Computer Science, Vol. 1327.

[44] H. W. Kuhn, A. W. Tucker. Nonlinear Programming. Proceedings of the Second
Berkekey Symposium on Mathematical Statistics and Probability, edited by J. Neyman,
481-92, 1951.

[45] Y. Lee, L. Mangasarian, and W. Wolberg. Breast Cancer Survial and Chemotherapy:
A Support Vector Machine Analysis. Discrete Mathematical Problems with Medical Ap-
plications (New Brunswik, NJ, 1999), 1-10. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, American Mathematical Society, Providence, RI, 2000.

[46] Y. Lee, L. Mangasarian. SSVM: A Smooth Support Vector Machine for Classification.
Computational Optimization and Applications, 20, no. 1, 5-22, 2001.

[47] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard and L.
Jackel. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Compu- ‘
tation, 1:541-551, 1989.

BIBLIOGRAPHY 93

[48] Y. LeCun, L. Jackel, L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon, U. Miiller,
E. Sackinger, P. Simard and V. Vapnik. Comparison of Learning Algorithms for Hand-
written Digit Recognition. Proceedings ICANN’95 — International Conference on Arti-
ficial Neural Networks, edited by F. Fogelman-Soulié and P. Gallinari. Volume II, 53-60,
Nanterre, France, 1995.

[49] L. Mangasarian, D. Musicant. Data Discrimination via Nonlinear Generalized Support
Vector Machines. Complementarity: Applications, Algorithms and Ezxtensions (Madison,
WI, 1999), 233-251. Applied Optimization, 50, Kluwer Acad. Publ., Dordrecht, 2001.

[50] L. Mangasarian, D. Musicant. Lagrangian Support Vector Machines. Journal of Ma-
chine Learning Research 1, no. 3, 161-177, 2001.

[61] R.C. Merton. Theory of Rational Option Pricing. Bell Journal of Economics and Man-
agement Science, 4 (Spring 1973), 141-183.

[52] R.C. Merton. Continuous-Time Finance. Blackwell Publishers Inc, Malden, MA, 1990.

[53] Robb J. Muirhead. Aspects of Multivariate Sta,tzstzcal Theory John Wiley & Sons, Inc,
1982.

[54] S. Mukherjee, E. Osuna, F. Girosi. Nonlinear Prediction of Chaotic Time Series Using
a Support Vector Machine. Neural Networks for Signal Processing VII — Proceeding of
the 1997 IEEE Workshop, edited by J. Principe, L. Gile, N. Morgan and E. Wilson,
511-520, New York, 1997. IEEE.

[55] K, Miiller, A. Smola, G. Ratch, B. Scholkopf, J. Kohlmorgen and V. Vapnik. Predict-
ing Time Series with Support Vector Machines. Artificial Neural Networks — ICANN’97,
edited by W. Gerstner, 397-402, Berlin, 1997. Springer Lecture Notes in Computer Sci-
ence, Vol. 1327.

[66] R. Neal. Bayesian Learning in Neural Networks. Springer Verlag, 1996.

[57] N. J. Nilsson. Learning machines: Fouhdations of Trainable Pattern Classz'fying Sys-
tems. McGraw-Hill, 1965.

[58] E. Osuna, R. Freund and F. Girosi. An Improved Training Algorithm for Support
Vector Machines. Neural Networks for Signal Processing VII — Proceeding of the 1997

IEEE Workshop, edited by J. Principe, L. Gile, N. Morgan and E. Wilson, 511-520, New
York, 1997. IEEE.

[59] E. Osuna, R. Freund and F. Girosi. Support Vector Machines: T.ralmng and Applica-
tions. AT Memo 1602, M.I.T., 1997. '

94 ' ' BIBLIOGRAPHY

[60] E.Osuna, R. Freund and F. Girosi. Training Support Vector Machines: An Application
to Face Detection. Proceedings, Computer Vision and Pattern Recognition’97, 130-136,
1997.

[61] John C. Platt. Fast Training of Support Vector Machines Using Sequential Minimal
Optimization. Advances in Kernel Methods: Support Vector Learning, edited by Bernhard
Scholkopf, Christopher J.C. Burges and Alexander J. Smola, The MIT Press, Cambridge,
1998.

[62] T. Poggio and F. Girosi. Networks for Approximation and Learning. Proceedmgs of the
IEEE, 78(9), 1990.

[63] T. Poggio and F. Girosi. Regularization Algorithms for Learning That Are Equivalent
to Multilayer Networks. Science, 247:978-982, 1990.

[64] M. Pontil and A Verr1 Propertles of Support Vector Machines. Neural Computation,
10:955-974, 1997.

[65] M. Pontil, S. Mukherjee, F. Girosi. On the Noise Model of Support Vector Machines
Regression. Algorithmic learning theory (Sydney, 2000), 316-324. Lecture Notes in Com-
puter Science, 1968, Springer, Berlin, 2000. '

[66] Ryan Rifkin. SumFu 3.0. http://fpn.mit.edu/SvmFu/.

[67] R. Rifkin, M. Pontil, A, Verri. A Note on Support Vector Machine Degeneracy. Al-
gorithmic Learning Theory (Tokyo, 1999), 252-263. Lecture Notes in Computer Science,
1720, Springer, Berlin, 1999.

[68] S. Saitoh. Theory of Reproducing Kernels and its Applications. Longman Scientific &
Technical, Harlow, England, 1998. ' -

[69] P.A. Samuelson. Proof That Propéﬂy AntiCipated Prices Fluctuate Ra.ndbmly. Indus-
trial Management Review, 6 (Spring), 41-9.

[70] P.A. Samuelson. Proof That Properly Discounted Present Values of Assets Vibrate
Randomly. Bell Journal of Economics and Management Science, 4 (Autumn), 369-74.

[71] M. Schmidt and H. Gish. Speaker Identification via Support Vector Classifiers. Pro-
ceedings of ICASSP’96, 105-108, Atlanta, GA, 1996.

[72] B. Scholkopf, V. Vapnik. Extracting Support Data for a Given Task. Proceedings, First
International Conference on Knowledge Discovery and Data Mining. AAAI Press, Menlo
Park, CA, 1995. '

BIBLIOGRAPHY 95

[73] B. Scholkopf. Support Vector Learning. R. Oldenbourg Verlag, Munich, 1997.

[74] B. Scholkopf, A. Smola and R. Williamson. Support Vector Regression with Automatic
Accuracy Control. Proceedings of the 8th International Conference on Artificial Neural
Networks, edited by L. Niklasson, M. Bodén and T. Ziemke. Perspectives in Neural
Computing, Berlin, 1998.

[75] B. Scholkopf, C. Burges and V. Vapnik. Incorporating Invariances in Support Vector
Learning Machines. Artificial Neural Networks — ICANN’96, edited by C. von der Mals-
burg, W. won Seelen, J. C; Vorbriiggen and B. Sendhoff, 47-52, Berlin, 1996. Springer
Lecture Notes in Computer Science, Vol. 1112.

[76] B. Scholkopf, P. Knirsch, A. Smola and C. Burges. Fast Approximation of Support Vec-
tor Kernel Expansions, and an Interpretation of Clustering as Approximation in Feature
Spaces. 20th DAGM Symposium Mustererkennung, Lecture Notes in Computer Science.
Springer, Berlin, 1998.

[77] B. Scholkopf, P. Simard, A. Smola and V. Vapnik. Prior Knowledge in Support Vector
Kernels. Advances in Neural Information Processing Systems 10, edited by M. Jordan,
M. Kearns and S. Solla, MIT Press, Cambridge, MA, 1998.

[78] B. Scholkopf, A. Smola and K. Miiler. Nonlinear Component Analysis as a Kernel
Eigenvalue Problem. Neural Computation, 10:1299-1319, 1998.

[79] B. Schoélkopf, A. Smola, K. Miiler, C. Burges and V. Vapnik. Support Vector Meth-
ods in Learning and Feature Extraction. Proceedings of the Ninth Australian Conference
on Neural Networks, edited by T. Downs, M. Frean and M. Gallagher, University of
Queensland, Brisbane, Australia, 1998.

[80] Edited by Bernhard Scholkopf, Christopher J .C. Burges and Alexander J. Smola. Ad-
vances in Kernel Methods: Support Vector Learning. The MIT Press, Cambridge, 1998.

[81] B. Scholkopf, K. Sung, K. C. Burges, F. Girosi, P. Niyogi, T. Poggio and V. Vapnik.
Comparing Support Vector Machines with Gaussian Kernels to Radial Basis Function
Classifiers. IEEE Transactions on Signal Processing, 45:2758-2765, 1997.

[82] Bernhard Schélkopf, Sebastian Mika, Chris J.C. Bergurges Input Space Vs. Feature
Space in Kernel-based Methods IEEE Transactzons on Neural Network's 1999.

[83] A. Smola, B. Scholkopf From Regula,rlzatlon Operators to Support Vector Kernels.
Advances in Neural Information Processmg Systems 10, edited by M. Jordan M. Kearns
and S. Solla, MIT Press, Cambridge, MA, 1998.

96 BIBLIOGRAPHY

[84] A. Smola, B. Schélkopf. On a Kernel Based Method for Pattern Recognition, Regres-
sion, Approximation and Operator Inversion. Algorithmica, 1998.

[85] A. Smola, B. Schélkopf and K. Miiler. The Connection Between Regularization Oper-
ators and Support Vector Kernels. Neural Networks, 11:637-49, 1998.

[86] A. Smola, B. Scholkopf and K. Miiler. Convex Cost Functions for Support Vector Re-
gression. Proceedings of the 8th International Conference on Artificial Neural Networks,
edited by L. Niklasson, M. Bodén and T. Ziemke. Perspectfves in Neural Computing,
Berlin, 1998.

[87] A. Smola, B. Scholkopf and K. Miiler. General Cost Functions for Support Vector
Regression. Proceedings of the Ninth Australian Conference on Neural Networks, edited
by T. Downs, M. Frean and M. Gallagher, University of Queensland, Brisbane, Australia,
1998. :

[88] Ingo Steinwart. On the Influence of the Kernel on the Consistency of Support Vector
Machines. Journal of Machine Learning Research 2, no. 1, 67-93, 2002.

[89] M. Stitson, A. Gammerman, V. Vapnik, V. Vovk, C. Watkins and J. Weston. Support
Vector Regression with ANOVA Decomposition Kernels. Technical Report CSD-TR-97-
22, Royal Holloway, University of London, 1997.

[90] Gilbert Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press,
Wellesley, MA, 1986.

[91] Lloyd N. Trefethen, David Bau, III. Numerical Linear Algebra. SIAM, Philadelphia,
1997. : o »

[92] Vladimir N. Vapnik. Estimation of Dependences Based on Empirical Data (in Russian).
Nauka, Moscow, 1979. (English translation: Spring Verlag, New York, 1982).

[93] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, New
York, 1995. o R ‘

[94] Vladimir N. Vapnik. Structure of Statistical Learning Theory. Computational and Prob-
abilistic Reasoning, Chapter 1, edited by A. Gammerman. Wiley, Chichester, 1996.

[95] Vladimir N. Vapnik. Statistical Learning Theory. John Wiley & Sons, Inc, 1998.

[96] V. Vapnik, A. Chervonenkis. A Note on One Class of Perceptrons. Automation and
Remote Control, 25, 1964.

BIBLIOGRAPHY - | 97

[97] V. Vapnik, A. Chervonenkis. Uniform Convergence of Frequencies of Occurrence of
Events to Their Probabilities. Dokl. Akad. Nauk SSSR, 181:915-918, 1968.

[98] V. Vapnik, A. Chervonenkis. On the Uniform Convergence of Relative Frequencies of
Events to Their Probabilities. Theory of Probability and its Applications, 16(2):264-280,
1971.

[99] V. Vapnik, A. Chervonenkis. Theory of Pattern Recognition (in Russian). Nauka,
Moscow, 1974. (German Translation: W. Wapnik, A. Tscherwonenkis, Theorze der Ze-
ichenerkennung. Akademie-Verlag, Berlin, 1979.)

(100] V. Vapnik, A. Chervonenkis. Necessary and Sufficient Conditions for the Uniform

Convergence of Means to Their Expectatlons Theory of Proba.bzlzty and its Applications,
26(3):532-553, 1981.

[101] V. Vapnik, S. Golowich and A. Smola. Support Vector Method for Function Approx-
imation, Regression Estimation, and Signal Processing. Advances in Neural Information
Processing Systems 9, edited by M. Mozer, M. Jordan and T. Petsche, 281-287. MIT
Press, Cambridge, MA, 1997.

[102] V. Vapnik, A. Lerner. Pattern Recognition Using Generalized Portralt Method. Au-
tomation and Remote Control, 24, 1963.

[103] V. Vapnik, E. Levin and Y. Le Cun. Measuring the VC-dimension of a Learning
Machine. Neural Computation, 6(5):851-876, 1994.

[104] G. Wahba. Multivariate Function and Operator Estimation, Based on Smoothing
Splines and Reproducing Kernels. Nonlinear Modeling and Forecasting, SFI Studies in
the Sciences of Complezity, Proc. Vol XI, edited by M. Casdagh S. Eubank, 95-112.
Addison-Wesley, 1992.

[105] G. Wahba. Support Vector Machines, Reproducing Kernel Hilbert Spaces, and Ran-
domized GACV. Advances in Kernel Methods: Support Vector Learning, edited by Bern-
hard Schélkopf, Christopher J.C. Burges and Alexander J. Smola, The MIT Press, Cam-
bridge, 1998. '

[106] Tong Wen. FMSum 1.0. http://math.mit .edu/~tonywen/FMSvm/.

[107] J. Weston and C. Watkins. Multi-Class Support Vector Machines. Technical Report

CSD-TR-98-04, Department of Computer Science, Royal Holloway, University of London,
UK, 1998.

98 R BIBLIOGRAPHY

[108] R. Whaley and J. Dongarra. Automatically Tuned Linear Algebra Software (ATLAS).
SC ’89 Proceedings (Electronic Publication). IEEE Publication.

[109] R. Clint Whaley, Antoine Petitet, and Jack Dongarra. Automated Empirical Opti-
mizations of Software and the ATLAS Project. Parallel Computing, Volume 27, Numbers
1-2, pp 3-25, 2001.

[110] R.Clint Whaley, Antoine Petitet, Jack J. Dongarra. Automated Empirical Optimiza-
tion of Software and the ATLAS Project. http://math-atlas.sourceforge.net/.

[111] R. C. Williamson, A. J. Smola and B. Scholkopf. Generalization Performance of Reg-
ularization Networks and Sﬁpport ‘Vector Machines via Entropy numbers of compact
operators. Technical Report CSD-TR-98-04, Department of Computer Scienée, Royal
Holloway, University of Ldndon, UK, 1998.

[112] R. C. Williamson, A. J. Smola and B. Schélkopf. Entropy Numbers, Operators and
Support Vector Kernels. Computational Learning Theory (Nordkirchen, 1999), 285-299.
Lecture Notes in Computer Science, 1572, Springer, Berlin, 1999.

[113] Alan S. Willsky, Gregory W. Wornell, Jeffrey H. Shapiro. Stochastic Processes, De-
tection and Estimation. 6.432 Course Notes, MIT, Fall 1998.

