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Abstract

This thesis consists of two parts. In the first part we study the affine quantum group of type A,
giving a geometric description of its natural inner product, and studying the theory of cells attached
to the canonical basis.

In the second part we study a realization of the group algebra of the Weyl group in a convolution
algebra of constructible functions on the Steinberg variety, and examine how this may be used to
see Springer representations.
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Chapter 1

Inner Products

In [L92], motivated by the results of [BLM], Lusztig defined a variant of the quantized enveloping
algebra known as the modified quantum group. This algebra can be given a canonical basis B
which generalizes the canonical basis B of the minus part of the ordinary quantum group. Just as
for B, (c.f. [GL], [K91]) it is possible to characterize this basis, up to sign, in terms of an involution
and an inner product.

In [BLM] the quantized enveloping algebra of gl,, was constructed geometrically. Subsequently
Lusztig [L99], and independently Ginzburg and Vasserot [GV], observed that this construction
could be extended to the case of quantum affine gl,,. In this chapter we show that the inner product
on the modified quantum group U of affine sl,, may be obtained via this method, and establish a
positivity property for this case which is conjectured to hold in general.

1.1 Background

We begin by recalling the setup of [L99]. Fix a positive integer n. Let D be a positive integer, € an
indeterminate, k a finite field with g elements and v a square root of g. Given V a free k[e, e71]-
module of rank D, a lattice in V is a free k[e|-submodule of V, of rank D. Let F" denote the set of
n-step periodic lattices in V, that is, 7™ consists of sequences of lattices L = (L;)icz where L;,_, C L,
and L;_, = eL; for alli € Z. The group G of automorphisms of V acts on F™" in the natural way.
We shall be interested in functions supported on 7™ and its square which are invariant with respect
to the action of G (where G acts diagonally on F™ x F™). Thus we first describe the orbits of G on
these spaces. Let &, be the finite set of all a = (a;);cz such that

e a, €EN;

® a; =a;y, forall: € Z;

o foralli€ Z,a; +a;41+ -+ ai4n_1 =D.

The G orbits on 7™ are indexed by their graded dimension in the following sense: For L € F",
let |L]| € &p,, be given by [L|; = dim(L;/L;_,). Fora € Gp , set F, = {L € F": |L| = a}; the Fa
are precisely the G-orbits on F”. The G orbits on 7™ x F™ are indexed, slightly more elaborately,
by the set of matrices Gp ,, », where A = (@i )i jez, i IN S p p p if

® a;; € N;

® i = Qiyn,j+n foralli,j € Z;

o foranyi € Z,aix + Giy1,« + - + Qitn_1. = D;

e foranyj € Z,a.; + a. ;41 + -+ Qujyn_1 = D.
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Here

Qi = zai,j; Qx5 = Zai,j'
JEZ i€Z
For A € Gp n,n set
r(A) = (aix)iez € 6pn ¢(A) = (a4 5)jez € D
For A € 6p,n,n the corresponding G-orbit O 4 consists of pairs (L, L’) such that

— di L,‘ﬂL;-
Wi =\ TNy +@inl_) )

soL € Fr(4) and L' € Fo(4).

Let 2 p,, be the space of integer-valued G-invariant functions on 7" x F" supported on a finite
number of orbits. If e 4 denotes the characteristic function of an orbit O 4, the set {e4: A € Gp nn}
is a basis of 2p.,. The space 2p;,, has a natural convolution product which gives it the structure of
an associative algebra. With respect to the basis of characteristic functions the structure constants
are given as follows. For A,B,C € Gpnn, letva,pc be the coefficient of ec in the product esep.
Then v4 5 c is zero unless ¢(4) = r(B), 7(A) = r(C) and ¢(B) = ¢(C). Now suppose these
conditions are satisfied and fix (L, L") € O¢. Then v4 p ¢ is the number of points in the set

{LI € fc(A)): (L,L’) € Oy, (L',L") € OB}.

Clearly this is independent of the choice of (L, L"), and moreover it can be shown that these
structure constants are polynomial in ¢, allowing us to construct an algebra 2p over Q(v) (we will,
by deliberate misuse, treat v as both an indeterminate and a square root of ¢, depending on the
context). This algebra is sometimes known as the affine g-Schur algebra. It is more convenient to
use a rescaled version of the basis {e4} of 2p, with elements [A] = v~%4e 4 where

dA = E aijQk-
1>k,j<l,1<i<n

Note that if we define ¥([A]) = [A?] then it is easy to check that ¥ is an algebra anti-automorphism,
which we will sometimes call the transpose anti-automorphism.
Next we introduce quantum groups. In order to do this we recall the notion of a root datum.

Definition. A Cartan datum is a pair (I,-) consisting of a finite set I and a Z-valued symmetric
bilinear pairing on the free Abelian group Z|I], such that

e i-i€{2,4,6,..}
e 24 €{0,-1,-2,...},fori # j.

A root datum of type (I,-) is a pair Y, X of finitely-generated free Abelian groups and a perfect
pairing (,): ¥ x X — Z, together with imbeddings I C X, (i—idand I CY, (@~ i) such that
(i,5) = 25

Given a root datum, we may define an associated quantum group U. Since it is the only case
we need, we will assume that our datum is symmetric and simply laced so that i - i = 2 for each
i€l andi-j € {0,—-1}ifi # j. In this case, U is generated as an algebra over Q(v) by symbols
E;, F;,K,, i € I, p € Y, subject to the following relations.

e Kog=1, K;nKuz = Ky +p, for Ui, 42 € Y;

o K,EK;'=vWE, K,FK;'=v W Fforallie,pey;
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L4 EiEj =EjEi, F‘,FJ =FjFi,fori,j€Iwithi-j=0;
o E?E; + (v+v Y)E,E;E; + E;E} =0fori,j € I withi-j=-1;
o F?F; + (v+v Y F,F;F;, + F;F? =0fori,j € I withi-j = —1.

The other object we need is the modified quantum group U. Let Modx denote the category of
left U-modules V with a weight decomposition, that is

V=®V,\,

AEX

where
Ww={veV:K,v= v<“”\)v,Vu €Y}

The forgetful functor to the category of vector spaces has an endomorphism ring R. Thus an ele-
ment of a of R associates to each V € Ob(Modx) an endomorphism ay, such that for any mor-
phism f: V — W,aw o f = foayv. Thus any element of U clearly determines an element of R. For
each A € X, let 1) € R be the projection to the A weight space. Then R is isomorphic to the direct

product [],c x U1y, and we set
U = @ U].)‘.

AeX

To see the connection between our convolution algebra and quantum groups, we will need the
following notation. For a € &p ,, letia € Gp , n be the diagonal matrix with (ia); ; = ; ja;. Let
E% € & n 5 be the matrix with (E®/); = 1if k =i + sn,l = j + sn, some s € Z, and 0 otherwise.
Let G™ be the set of all b = (b;);¢z such that b; = b;;,, for all i € Z. Let ™™ denote the set of all
matrices A = (a; ;), i,j € Z,with entries in Z such that

® a;; >0foralli # j;

® Qi = Qitn,j+n, foralli,j € Z;

e Foranyi € Z the set {j € Z: a; ; # 0} is finite;

e Forany j € Z the set {i € Z: a; ; # 0} is finite.
Thus we have &p , , C ™" forall D. Fori € Z/nZleti € 6™ be given by iy = 1if kK = i mod n,
iy, = —1ifk =i+ 1 mod n, and iy = 0 otherwise. We write aU; a’ if a = a’ + i. For such a, a’ set

a€a € 6™ tobei,— E¥i+ EVtl and 4 fa € 6™ tobe ia — ETLH 4 B Noteifa,a’ € Gp
then ,ea,a' fa € Gp nn. Fori € Z/nZset

E;y(D) = Z[aea’]v Fy(D) = Z[a’fa],

where the sum is taken over alla,a’ in &p ,, such thataU; a’. For a € G™ set

Ka(D)= Y v*Piy]

beGp

where, for any a,b € 6", a-b =Y " a;b; € Z.If welet X =Y = 6", and I = Z/nZ, with the
embedding of I C X = Y and pairing as given above, we obtain a symmetric simply-laced root
datum. We call the quantum group associated to it U(E[n). It can be shown [L99] that the elements
Ei(D), F;(D), Ka(D), generate a subalgebra Up which is a quotient of the quantum group U( gl ),
via map the notation suggests. Note that this gives the algebra 2 the structure of a U(gi [,)-module.
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1.2 Inner product on Up

Definition. We define a bilinear form
(7)D: 2[D;q x gD;q — Ql
by
(f, Hp =Y vZME-TIVE (L, 1) f(L, L),

L,L’

for f and f in 2p 4, where L runs over F" and L' runs over a set of representatives for the G-orbits
on F".

Let O 4 be a G-orbit on 7™ x F", and let
XL ={L'e F": (L,L') € 04}.
It is easy to check that
2dg —2dg = zn:a?,* - Zn:af,j. (1.2.1)
i=1 j=1

Thus if A, A’ are in &p » » we find that

—_ 1
(ea,ea)p = 64,4 g% ~0a #| X |,

where L' is any lattice in F,(4). Note that this makes it clear that the bilinear form is symmetric,
which is not immediate from the initial definition. If {r§ p.,} are the structure constants of 2p,q
with respect to the basis {[A]: A € &p n »}, then we have

([AL [AN)p = 84 4w datyt) (122)
We therefore obtain an inner product on 2p taking values in Q(v) by defining
(AL [AD)D = 64,4v* ™ n4e a5, € Zlv,v7] (1.2.3)
We now give some basic properties of this inner product:
Proposition 1.2.1. Let A € Gp n, and let f, f € Ap. Then we have

([A1f, f)p = w4~ da (£, [A"] )

Proof. Clearly it suffices to establish this equation in the algebra 2 p,,. Since the characteristic func-
tions of G-orbits form a basis of 2p,,, we may assume that f = ep and f = ec, moreover we may

assume that
r(4) =r(C), c(4) =r(B), ¢(B)=c(C). (1.2.4)

as both sides are zero otherwise. It follows immediately that
[A]-ep = v %e, - ep, pda—dar [At] cec =viaT2ate 40 e,
Hence if (L, L') € Oc¢ is fixed,

([A] - eB,ec)p = g% %' #| X5 | - v A #{L": (L, L") € Oa,(L",L') € Op}

1.25
=v*#{L,L": (L, L") € O4,(L",L') € Op,(L,L') € Oc¢}, ( )
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where o = 2dc — 2d¢e — d . Similarly, if (L, L') € @, is fixed

v¥a=dat (ep [AY] - ec)p = g*® %5t #| XL | ¥ 2ac (1L (L, L) € Op, (L, L") € Og}

1.2.6)
= v7#{L,L": (L",L) € 0%, (L", L) € Op, (L, L' € Oc)},

whereﬂ =2dp — 2dg: +d4 ~ 2d 4: .
A Al

L——1" L<—1"
K lB X lB
L' L'

As the diagram clearly shows, the last line of equation (1.2.5) is the same as the last line of
equation (1.2.6) if a = g, that is, if

2dc — 2dg: — da = 2dp — 2dpe +dy — 2d 4 (1.2.7)
But this follows directly from equation (1.2.1) and equation (1.2.4). a
We have the following easy consequence:
Corollary 1.2.2. Leti € Z,and let f, f € Up and c € &™. Then we have
L (Bi(£), )b = (f,vK:Fi(P)p
2. (Fi(f), f)p = (f oK Ei(f))p
3. (Ke(£), f)p = (f, Ke(f))p

Proof. We may assume that f = e4 and f = ep. The third equation can then be checked immedi-
ately from the formulas above. The second equation follows from the other two, so it only remains
to prove the first. We may assume that r(4) = r(B) —iand ¢(A4) = ¢(B), as both sides are zero
otherwise. Set a = r(A),b = r(B) (see section 1.1).

Then from the definitions we have

Ei(ea) = [bea] - €a, vKiFi(ep) = v ,f)] - ep.

Since pea = aff, and d,e, — d,f, = 1 +1 - a the result now follows immediately from the previous
proposition. |

Remark. There is a unique algebra anti-automorphism p: U (E[n) - U (Eln) such that
p(Ei) =vKiF;, p(F;) =vK_E; p(K;) = K;

With this we may state the result of the previous corollary in the form

W, Po = (1) Do, ueU (), fieup.

Lemma1.23. 1. For A€ Gpnn, ([A],[A])p €1+ v1ZvY
2. For A, A' € 6pnnand A # A', ([A],[A)p = 0

Proof. The second part of the statement is obvious. For the first, note that X};: is an irreducible
variety of dimension d 4:, (see [L99, 4.3]). Since we have

(A, [ADp = 6a,aq~ % #|X%),

the Lang-Weil estimates [LW] then show that ( [4],[A])p € 1 +v~'Z[v™Y], as required. O
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Remark. The results of this section are almost identical to the results of [L99, section 7]; however,
as our inner product is not quite the same as that of [L99, 7.1], the proofs seem somewhat simpler.

1.3 Inner product on U

Notice that if a € G™ then the sum a;, + - - - + @y +n—1 is independent of iy € Z;denote itby V. Let
Y = {a € 8": V, = 0}. Let X be the quotient of &™ by the subgroup generated by by, the element
with all entries equal to 1. Clearly the pairing on & given in section 1 induces a non-singular
pairingY x X — Z.

Let I = Z/nZ, and define maps I — X, I — Y sending i to i € & (see the end of section 1.1),
taking the appropriate coset in X . This is the root datum of sl,.. Let U be the quantized enveloping
algebra associated to this datum, and let U be the modified algebra corresponding to U. We wish
to obtain an inner product on U using those on Up.

We begin with some technical lemmas. Given A € ™" leta;>s = Zj>s aij, and a; g, i <s,
etc. similarly. B

Lemma1.3.1. a) Let A € Gpnnanda’ =r(A). Ifthereisana € &p , such thataU; a’ (ie. ifaj,, > 0)
then we have

— y—2(ai,s+1) ) )
[aea/][A] — Z P02~ Bi+1,>s (]‘;}T) [A + Evs — Ez+l,s]’ (131)

$€EZ,ai41,52>1

where A = (a; ;).
b)Let A' € Gp nnanda =r(A"). Ifthereisan a’' € &p , such that aU; a’ (i.e. if a; > 0) then we
have

, , _ p—2(aipq,+1) ) _
[wfa][A]) = ) vtrns Tt (1’;—;—) [A' — B 4 B+, (132)
S€Z,ai,,>1 -v
where A' = (a} ;).
Proof. This follows by rescaling the statement of Proposition 3.5 in [L99]. O
Let R be the subring of Q(v)[u] generated by {v7: j € Z},and

t
H(u‘2(“"')u2 -1)/(w % -1); a€Z,t>1.

=1

For A € G™" let , A be the matrix with (,A); ; = a;,; +pd; ;. We have the following partial analogue
of [BLM, 4.2].

Lemma 1.3.2. Let Ay, A, ..., Ay be matrices of the form aea or ofar, for a,a’ € G", and A any element
of &™™. Then there exist matrices Z1, Za, . .., Zm € &™" and py € Z such that

pAlp Az - pAAl = > Gi(v,v™P)pZi], Gi€R (13.3)
i=1
forall p > po.
Proof. Use induction on k. When k = 1 the result follows from the previous lemma, once we note
that both a; >s — @it1,5s and @i41,<s — Gi,<s aTE unchanged when A is replaced with A + pI. O

For A € X let 1, be the idempotent in U defined in [L92, 23.1.1]. There is a surjective homomor-
phism .
¢ D: U->U D
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which, for A € X, sends E;1, — E;(D)[ia] and F;1) — F;(D)[ia] if there is an a in &p ,, such that
a = A mod Zb,, otherwise both E;1,, F;1, are sent to zero.

Let f be the algebra attached to the root datum described above (see [L92, chapter 3]). Pick a
monomial basis of f, {¢i: i € J} say. Then the triangular decomposition for U [L92, 23.2.1] shows
that B = {({"(j‘l,\: 1,7 € ;A € X} is a basis of U, where +: f - U*t, and —: f — U~ are the
standard maps given in [L92, 3.1.1]. Define a bilinear pairing (,)p on U via ¢p as follows:

(z,y)p = (¢p(z), ¢p(¥))D
Proposition 1.3.3. Letk € {0,1,...,n — 1}, thenifz,y € U

(IE, y>k+pn
converges in Q((v=1)), as p — oo, to an element of Q(v).
Proof. We may assume that z, y are elements of 8. Then we need to show that
(C:Cj_llr\!cz?:cj.zl“)k"'l’n ilai27jlaj2 € J,A,[J/E.X

converges as p — oo. Let ¢: f — f is the Q(v)-algebra anti-automorphism fixing the generators
0;,1 < i < n. Using Proposition 1.2.2, it is easy to see that this inner product differs from

<1)\a L(le)+"(Ci1)_C1:-'2-Cj_21u)k+pn (134)

by a power of v which is independent of p. But then the definition of the inner product and the
previous proposition show that (1.3.4) may be written as G (v, v~?) for some G € R. The result then
follows immediately from the definition of R. O

Definition. We define ) )
(,): UxU—> Qv),

a symmetric bilinear form on U given by

n—1

(Ivy) = ;p&%(z’y>k+l’n-

Remark. Note that the proof of the last proposition actually allows us to conclude that

(¢D(C?.Cj-1z\)a[pA])k+pn

converges to an element of ((v), as p — oo, for any A € ™. We will need this in the next section.

1.4 Comparison of inner products

There is a natural definition of an inner product on U in the algebraic setting.
Theorem 1.4.1. There exists a unique Q(v) bilinear pairing (,): U x U — Q(v) such that
1. (In,zly,,1,,91,,) =0 Vz,y € Uunless \; = p1, Ay = 1o,
2. {uz,y) = {z, p(u)y) Vz,y € U u € U;and
3. {(z7 1\, 1)) = (z,y), Vz,yef, A e X.
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Here (z,y) is the standard inner product on £, (see [L93, 1.2.5]). The resulting inner product is automatically
symmetric.

Proof. See [L93, 26.1.2]. O
Theorem 1.4.2. The inner products (,) of section 1.3 and (, ) of Theorem 1.4.1 coincide.

The remainder of this section is devoted to the proof of this theorem. The first property listed
in Theorem 1.4.1 clearly holds for (,), as the representatives for elements of X in Gp , are distinct
when they exist. The second follows from Proposition 1.2.2; thus it only remains to verify the third.
Fix A € X.

The algebra f is naturally graded: f = @,y fo- For v € Z[I], withv = 37, vii let tr(v) =
Y icr vi- If z is homogeneous we set |z| = v, where z € f,. Thus for the third property we may
assume that z,y € f are homogeneous, i.e. z,y € f, for some v, and proceed by induction on
N = tr(v). If N = 0 then we are reduced to the equation

(1,\, 1/\) =1,

which is trivial. Now suppose that N > 0 and the result is known for z,y € f, when tr(v) < N.
If z,y are in f,, tr(v) = N, then we may assume that they are monomials, and y = 6;z for some
z € f,_;. Then we have

(z71n,y71a) = (271, Fz7 1))
= ('UK_iEi:B_lA,Z_].)‘).

Using standard commutation formulas (see [L93, 3.1.6]) this becomes

(vK_izTElx, 27 1)) + 1—:11)—_2 ((ir(z)_ - vK_ir,-(z)‘K_i)l,\,z_l,\)
and tidying this up we get
1—v—2

o —iA
(ir(z)"1x,271x) + (U"le_"’\_l (z‘Ei - vav_—lTi(z)_) 1,\,2‘1,\)

The properties of (,) on f show that 1= (ir(z), z) = (=, 6;2), thus we are done by induction if

we can show that .
_ p~iA _
(12 Ei—v_v_l'l','(:t) ) 1,

annihilates U™ 1,. To see this we need an explicit result about multiplication in 2 p.

Lemma 1.4.3. Let A € G™™ be such that ars = 0 forr < sunlesst = s — L and r = i mod n, when
arr+1 € {0,1}; then the following hold for p sufficiently large.

1. For j # i we have
FilpAl = gx(v)[p 2]
k=1

where gi(v) € Z[v,v™!] are independent of {a, ,: r < s}, and Zy € &™" have (Z)r,s = a,s for
r<s.

FlpAl =) gk (v)[pZ]
k=1

1 — p~2(ei+1i+1+1+p)

1—-v—2

+ ,Ul—i-r(A)( )[p(A + Ei+1,i+1 _ Ei,i+1)]
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where gi(v) € Zlv,v™Y) are independent of {a,s: r < s}, and Zy € ™™ have (Zy)r.s = ar s for
T < s, and the final term occurs only if a; ;41 = 1.

Proof. Both of these formulas are consequences of the following, which is valid for any A (see
Lemma 1.3.1).

1— —2(aj41,k+P8j4+1,6+1) . .
Fj[pA] — Z PO+ Sk T85,<k ( v T )[pA + EJ+1J= _ EJJC]_
k: (pA)j k21

Let 3°7 , A; = k mod n, where k € {0,1,...,n — 1}, and suppose that D = k + pn for some p

Let A}, = span{[A4]: a,s = 0,Vr < s}, and note that Lemma 1.4.3 shows that ¢p(z~1,) € 2, for
any z € f. In fact, it is also clear that

(z7Eily) = Zak [ka]+ng (v)[pHk]

where (By)i,i+1 = 1 and (Hk)ii+1 = 0, and ax, gk are independent of A and p. Moreover from the
formula in the proof of the Lemma 1.4.3 it is easy to see that

mi

¢p(x~1x) = > a(v)[p By + EFVH - BRI,
k=1

We are now ready to set up the key step in the proof of Theorem 1.4.2: Let 7p: %p — 7, be the
orthogonal projection. Define sp: f — 2, by setting

z - mp(pp(zT™ E;ly))
and define rp: f — A7, by setting

,U—i-)\ _
T — m¢D(T1’(fL’) 1)‘)

Proposition 1.4.4. Let z € f.

m

sp(z) —rp(z) = v 2P (Z ck(v)[ka])

k=1
for some Z; € &™™, independent of p.

Proof. We may assume that z is a monomial, and proceed by induction on tr(|z|). It is easy to check

that sp(1) = rp(1) = 0, so we may assume that z € f,, tr(v) > 0, and that z = §;z where z € f,
Now as above we have

bo(Eiln) = Y a0 Bil + 3 on(0)pHil

(Bi)iiv1 = 1, (Hg)iyig1 = 0,
k=1 k=1

and so0 sp(z) = Y122 gr(v)[pHi]. Let E = E*+1i+1 — Eiitl € g™, Using the lemma we see that
since

ép(z~ E;1)\) = Fj¢p (27 Eil,),
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we have

1 — v 2((Br)it1,i+1+p+1)

SD(.’L‘) — 61‘,_1' Zak(v),ul——i.r(ﬂk) ( T )[p(Bk + E)]
k

+ F]‘SD(Z).

(1.4.1)

Now r(By) =A+i—|z|, hencel —i-7(Bx) =i-(|z| = A) — 1,50

1 _ir(By) (1 — U—Z((Bk)-‘+1,-‘+1+P+1)) (vi-(lzl—/\)
v = —

— 2=2P,,—2((Bk)i+1,i+1+1)
102 )(1 v~ Py ).

v—ov!

The definition of r; shows that

Vi (lzl=2) _
= 9 (m) ¢p(z"1x) + Fjrp(z)

vi'(lzl_ )
=61’,j( ’ ) Zak(v)[p(Bk +E)]+FjTD(:E),
k

v—ov-!

s0 we see that

sp(z) —rp(z) = Fj(sp(2) — rp(2))
AN ILIC) (%)”_2((&)"“"““)[1»(& +B)]
k

and so using induction and the lemma again, we are done. O

Corollary 1.4.5. Let z € £, then
_ p~iA _
u= (.'II E,' - m’f‘i(m) ) 1)\
is orthogonal to U~ 1,.

Proof. Lety € f be a monomial. Then we have
(’LL, Yy 1/\) = pll)ngo(ua y_]-A)k+pna
and by definition

(Uay_l)\>k+pn = (5k+pn($) - "'k+pn($)v¢k+pn(y_1¢\))k+pn- (1-4'2)

By the previous proposition,
Sktpn () = Thipn(z) = 077 (Z c;j(v) [PZj]) ) Zj € 8™7,
j=1

and by the remark at the end of section 2, we know that ([;Z;], ¢x+pn(y~11))r+pn converges in
Q((v~1)) as p = 0o. Thus the right-hand side of Equation 1.4.2 tends to zero as required. O

This completes the proof of Theorem 1.4.2.
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1.5 Geometric Interpretation

Recall from [L99, section 4] that 2p possesses a canonical basis B consisting of elements {A},
A € 6p,n,n- To define these elements we must assume k is algebraically closed (either the algebraic
closure of F,, in which case we must use sheaves in the étale topology, or C in which case we use
the analytic topology). Fix A € Gp n, and L € F,(4). The space Fp can be given the structure of
an ind-scheme such that the set X; (see section 1.2) lies naturally in a projective algebraic variety.
Thus it makes sense to consider its closure X%. Let A be the simple perverse sheaf on X% whose
restriction to X% is C[d4]. Let H*(A) to be the s-th cohomology sheaf of A. For 4; € &p ., such
that X% C X} we write A; < A, and set

a4 =Y dim(Hy “(A)v° € A,

SEZ

where H;~ %41 (A) is the stalk of #*~%41 (A) ata pointy € X% (since A is constructible with respect
to the stratification of X given by {X% : A; < A}, this is independent of the choice of y). We have

{A}= ) T4, al4l

A ;A1<A

Note that the following is an immediate consequence of the definitions and Lemma 1.2.3.

Lemma 1.5.1. Let A, A’ € Gp pn n, then,
{A}{A')p € da,a +v™ 207
a

The algebra 21p may be viewed as a convolution algebra of (equivariant) complexes on F".
We wish to give an interpretation of the inner product of section 1.2 in this context. Suppose that
A,B € Gp,nn- We want to describe ({A}, {B}). We may assume that 7(4) = r(B) = a and
c¢(A) = ¢(B) = b. Let L' € Fy,. Let A* and B* denote the simple perverse sheaves on X%, and X%,
respectively. Then define

({AL{B)P =) dim(Hi(Fa, A* @ BY))v'. (L5.1)

i€Z

(,)P extends to an inner product on the whole of 2p (viewed as an algebra of equivariant
complexes on 7™). We want to show that it is the same as the inner product (,)p of section 1.2, at
least on the subalgebra U p. We start by showing that (, ) satisfies the properties of Proposition 1.2.2.

Lemma 1.5.2. Let A, B,C € Sp p,,, and suppose that X% is a closed orbit. Then
({AHB},{CH? = via~da({B}, {A'H{C}HP.
Proof. We need to recall the definition of the convolution product. Let
Z =04 C Fax Fo,

where r(A) = a, ¢c(A) = b. We have maps p;: Z — F, and ps: Z — Fy, the first and second
projections respectively. They are clearly surjective, and the dimension of a fibre of p; is d4, and
the dimension of a fibre of p, is d4:.

Then
(A*B)" = (p1)p3(BY)[da:),  (A'*C)" = (p2)ipi(CY)[da).
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Now
(A *B)! @ C" = (p1):p3(B)[da:] ® C*
= (p1)1(p3(B*) ® p1(C*)[dat),

B ® (A’ +C)' = B" ® (p2):pi(C")[d4]
= (p2):(p3(B*) ® pi (C*)[da]),

where the second equality in each case uses the “projection formula”. It is thus clear that the
compactly supported cohomologies will be the same up to shifts, with the difference in shift being
da — da as required. O

(1.5.2)

(1.5.3)

Lemma 1.5.3. Let A,B € &p nn, and c € &™. Then
1. (Ei{A},{B})P = ({4}, vK:Fi{B})".
2. (F{A},{B})P = ({A},vK_;E;{B})?
3. (Kc{A},{B})P = ({4}, K{B})P

Proof. This follows from the previous lemma exactly as in the proof of corollary 1.2.2, since the

varieties XL are closed. a

The algebra Up is spanned by elements of the form 1T ... Ty [ia] where T is either E; or F;
for some i. Thus the previous lemma shows we need only check that

(T]Tz - TN[ia], [ia])D = (T1T2 e TN[ia], [ia])D
But this will follow if we can show that
({A},[ia])” = ({A}, lia]) D

forall A € Gpnn, as {{A}: A € Gpnn}is abasis of Ap. But as the simple perverse sheaf
corresponding to {ia} = [ia] is just the skyscraper sheaf at the point L', this last equality follow
from directly from the definitions. We have therefore shown the following result.

Proposition 1.5.4. On the algebra U p the inner products (,)P and (,)p coincide. O

Remark. It can be shown that the algebra 2p is generated by the elements {A} for which X% is
closed, and so the above argument adapts to show that the inner products in fact agree on the
whole of 2 p. Henceforth we will use the notation (, ) p when referring to the inner product on 2p
in either of its incarnations.

1.6 Applications

We now give some applications of our results. Theorem 1.4.2 allows us to give an alternative proof
of an injectivity result due to Lusztig [L99a]. In that paper he defines “transfer maps”

Yp: Ap = Ap_q,
which are characterized , at least on Up, by the following,
e Yp(Ei(D)) = Ei(D —n);
* Yp(Fi(D)) = Fi(D —n);
* Yp(Ka(D)) = v*>Ka(D —n).
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LetU = limp2p where the limit is taken over the projective system given by the maps ¥ p, for
D > 0. Since the maps ¢p are compatible with this system, that is, ¥ p+nédp+n = ¢p, there is a
unique map ¢: U — U, which factors the maps ¢ through the canonical map U — 2p. Then we
have the following result.

Proposition 1.6.1. The homomorphism ¢ is injective.

Proof. Let ube in the kernel of ¢. Then for every D we have #p(u) = 0, and hence by Theorem 1.4.2
we see that u is in the radical of the inner product on U. Since this inner product is nondegenerate
it follows that u = 0. O

The modified quantum group U is equipped with a canonical basis B which generalizes the
canonical basis of U~. We can use the compatibility of the inner products to show akind of “asymp-
totic” compatibility of the canonical bases of U and 2 p.

Proposition 1.6.2. Let b € B. Then there exists A such that b € U1 A- Set k to be the residue of 31 | \;
mod n. Then there is a p; > 0 such that for all p > py we have Gr4pn(b) € Bp.

Proof. The canonical basis of U is characterized (up to sign) by the properties of being invariant
under the bar involution, lying in the integral form U 4, and having self inner product 1 modulo
v~'Z[[v™"]] (for a precise statement see [L93, Theorem 26.3.1]). Each of these ingredients has a
counterpart for %p, and using Lemma 1.5.1 it is easy to see that B, is also characterized in this
way. Since the inner product U is obtained as a limit from the inner products on 2 p, it follows that

for large p we have
(b, 0)k4pn = 1 mod v ' Z[v7Y].

The bar involutions on U and 2 p are compatible, as can be easily checked on generators, and the
maps ¢p are compatible with the integral forms. Therefore at least for large p we have ¢p (b) is, up
to sign, an element of B, the canonical basis of 2Ap. The issue of sign can be resolved by using
induction, and the fact that for an element of U*1, the compatibility can be obtained directly from
geometry (see [L99a, section 3]), so that in fact ¢p(b) is an element of B . O

We can also combine Theorem 1.4.2 and Proposition 1.5.4 to prove a positivity result for the
inner product of two elements of B,

Theorem 1.6.3. Let by, b, € B.
(b1, b2) € N[[v™']] N Q(v).

Proof. We may assume that thereisa A € X such thatb, 1, = bi,and b215 = bs. Letk € {0,1,...,n—
1} be such that 3°7_, A; = k mod n. Then

(bl y b2) = pli)rgo(¢k+pn (b1)7 ¢k+pn (b2))k+pn

By Proposition 1.6.2 we know that for all large enough p, ¢p(b1), ¢p(b2) are in B p, hence it is clear
from Equation (1.5.1) that

(Pktpn (1), Pktpn (b2))k+pn € Nv,v71].

However, it follows also from Lemma 1.5.1 that the left-hand side is in fact in N[v~!] (this can also
be seen directly, using the definition of intersection cohomology sheaves). Hence (b;, b, ) is the limit
of elements of N[v~!], and the statement follows. O

Remark. The result of Proposition 1.6.2 is actually true without restriction on D, as was shown
by Schiffmann and Vasserot [ScV]. We included this asymptotic version to keep the chapter self-
contained, and because it can be used to give an alternative proof of the full result (see Theorem
2.4.1).
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1.7 Affine gl,

The results of this chapter are so far restricted to the modified algebra of quantum affine sl,,. We
now show how to extend the constructions to the case of quantum affine gi,,. First we define an
extension of the algebras 2p. Let
Ap = @ Apam,
mezZ

where the a,s are orthogonal idempotents. Thus 2Ap consists of Z copies of the algebra 2p. This
algebra receives a homomorphism ¢p from the modified quantum group of gl,, defined as follows:
for A € 6™, we have E;1, — E;(D)[ialap and F;1y — F;(D)[ia]a, if there is an a in S p , such that
A+ pbg = a, otherwise both E;1), F;1, are sent to zero. It is easy to check that this is a well defined
homomorphism using the results of [L99].

The algebras 2p also have an U(gl,,) module structure (in fact a bi-module structure). The
action of E; and F; is just as for U, so we only need to define the action of K, for a € &™. This is
given by

Ka(zam) = v P (K, (D)z)amnm.
The transfer maps of [L99a] can be extended to this situation also. We set ¢p: Ap — 2Ap_,, where
J}D(zam) = ¥p(z)am—1. Itis then easy to check that, in contrast to the case of the algebras 2 p with
maps ¢ p, the maps ¢p are U(gl,)-module maps, and are compatible with the maps ¢p. Finally we
extend the inner product on 2p to 2Ap by making each of the copies of %p orthogonal, that is

(,)D: QlD X QlD - Q(’U)

is given by (zay,yae)p = 8p,q(x,y) D, for z,y € Ap (we use the same notation for the inner product
on 2 p as for that on Ap)- o

Using exactly the same techniques as above, we recover the inner product on U(gl,,), and there-
fore we get an analogue of the injectivity result of section 1.6.

Proposition 1.7.1. Let 2L denote the projective limit of the algebras (Ap,¥p). Then the natural map 3 from
Ul(gl,,) to 2, is an injection. 0O

Remark. All the results of this chapter have analogues for the nonaffine case, which can be proved
in exactly the same way. The module V' is replaced by a D-dimensional vector space over k, and
the space F™ of n-step periodic lattices should be replaced by the space of n-step flags in that vector
space. In this case it is the algebra corresponding to Up is actually equal to the algebra analogous
to A p, hence the results are in sometimes easier in this case.
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Chapter 2

Cells in affine algebras

Given any algebra with a specified basis it is possible to define a notion of cells— left, right and
two-sided. Of course, if one picks the basis of the algebra arbitrarily, it is unlikely that these objects
will contain any interesting information about the algebra in question. However, if the algebra has
a natural choice of basis, the situation can be quite different. Examples of this arise in a number of
places: The Kazhdan-Lusztig basis of a Hecke algebra gives rise to a notion of cells which in the
case of finite Weyl groups is essential in the classification of the characters of finite groups of Lie
type. On the other hand, although the plus part of the quantum group possesses a canonical basis,
the theory of cells there is trivial. If we extend the canonical basis to one for the modified quantum
group U however, the theory of cells is once again interesting.

In the case of quantum groups of finite type, work of Lusztig [L95] completely describes the
cells. In contrast, when one considers the case of affine quantum groups, though the theory is
conjecturally richer, there is almost nothing known about it. In this chapter we show that the
geometric construction of U gives us complete information about the cell structure of quantum
affine sl,,. Just as in the case of affine Weyl groups, the cells seem closely related to the finite
dimensional representation theory of the algebra. We will first investigate the structure of cells in
2p and then show how this can be used to obtain the cell structure of U.

We begin by recalling the definition of cells. Suppose R is a ring, and 4 an associative algebra
over R, with an R-basis B. We say that a left ideal is based if it is the span of a subset of the basis
B. We define a preorder on the elements of B as follows. Let z <, y for z,y € B if z lies in every
based left ideal which contains y. The equivalence classes of this preorder are precisely the left cells
of A. If we replace “left ideal” with “right ideal” or “two-sided ideal” we get the corresponding
notion of right cells or two-sided cells.

2.1 Schur-Weyl Duality

We first need to give another description of the algebra 2p, as a commutator algebra. Recall that if
we specialize v = /g, then 2p becomes an algebra of functions on 7™ x F", where F™ is the space
of n-step periodic lattices, see section 1.1. Consider now the space of complete periodic lattices B2,
that is, sequences of lattices L = (L;) in our free module V such that L; C Lit1, Li_p = €L;, and
dimk(Li/Li_l) = 1foralli € Z.

Let # p be the affine Hecke algebra of GLp, thus #Hp is an algebra over Z[v,v~!] generated by
symbols T;, X;, Xj‘l, wherei € {1,2,...,D ~1},and j € {1,2,...,D}, subject to the relations

(T; = v)(T: +v) =0, TiTinTi = Tia Ty, fori = 1,2,...,D - 1;
T.T; = T;T; if |i — §| > 2;

X X7'=X'X;=1, X,X; = X,X,, foralli,j;

T X T =X fori=1,2,...,D - 1; T:X; = X;T; forj #i,i+ 1.
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This is the “Bernstein presentation”. Let W be the affine Weyl group of type GLp (when we wish
to specify D, we will use the notation Ap_1), thatis, W is the semidirect product of the symmetric
group Sp with ZP. It is an extension by Z of a Coxeter group, thus the usual yoga can be used
to extend the Kazhdan-Lusztig theory. Let the set of simple reflections of the Coxeter group be
S ={s;:i=0,1,...,D}. The “Iwahori” presentation of #p yields a basis {T,: w € W}. Lusztig
observed that W has a natural incarnation as a permutation group on the integers. Indeed W is
isomorphic to the set of all permutations o of the integers such that o(i + D) = (i) + D. See
for example [Xi] for more details. Thus an element of W obviously corresponds to an infinite
permutation matrix, which we denote A,, when we wish to make the distinction between the group
element and the matrix.

Let $p,, be the space of functions on B x BP which are invariant under the diagonal action of
G = Aut(V), and which are supported on finitely many G orbits. Just as for 2p, this is an algebra
under convolution. Letbg = (..., 1,1,...) € &P (see 1.1). The orbits of G on BP x BP are indexed
by matrices A = (a; ;) where the matrix A must have r(A) = ¢(A) = by, and a; ; = ai1p j+D, for
alli,j € Z. Thus these are precisely the permutation matrices {A,: w € W} discussed above. We
use a basis {[Ay]: w € W} of Hp,q which corresponding to the indicator functions of the G-orbits,
scaled by v=!(*) (where I(w) is the dimension of the corresponding affine Schubert variety).

Proposition 2.1.1. The map Hy— 5 = $Hp,q which sends Ty, — [Ay] is an algebra isomorphism. O

Now if Tp 4 is the space of functions spanned by the indicator functions of G-orbits on 7" x BP
then convolution makes T p into a left module for 2p 4, and a right module for $p ¢, and moreover
this is the specialization of a 2Ap — Hp bimodule Tp. Moreover, it is clear that the affine q-Schur
algebra 2 p is the commutator algebra of the right % p module Tp, the description we were seeking.

We can describe Tp algebraically as follows: To each element a € &p,, we can associate
a parabolic subgroup of the symmetric group Sa — it is the subgroup preserving the subsets
{1,2,...,a1},{a1+1,...,a1+a+2},...,{D~an+1,...,D}of {1,2,...,D}. Set Ta = 3_ . v'*'Ts,
(here we are viewing S, as a subgroup of W in the obvious way). Then as a module for the Hecke
algebra, Tp is isomorphic to

@ TaHp

a€Gp,n

Similarly we see that we can describe an element [A] of 2 p uniquely by a triple consisting of an
element w4 € W together with a pair a,b € &p,,. Indeed a, b are just r(A) and c(A) respectively,
and w is the element of maximal length in the (finite) double coset of S.\W/Si, determined by the
matrix A. This also allows us to describe the structure constants for 2p with respect to the basis
{[A]: A € 6p,} in terms of those for Hp with respect to the basis {T,: w € W}. In fact simple al-
gebraic considerations (or an analogous discussion of the geometry involved) shows that the same
holds for the structure constant with respect to the bases coming from intersection cohomology.

More precisely, suppose that we denote the various structure constants for #p and p as fol-
lows: Let A,B € Gpn, letv,w € W, and let {Cy: w € W} be the Kazhdan-Lusztig basis of the
Hecke algebra.

o [A)[B] = ¥c 14 8(C);

o {AH{B} =2, v{s{CY;

o T,Tw =3, fiuwCi

o C,Cy =) ,hi,C:

Then we have the following relationships between them.

Lemma 2.1.2. Let A,B,C € &p,, and let wa, wp,wc € W be the corresponding element of the Weyl
group. Suppose that ¢(A) = r(B) = c. Let w, be the longest element of Sc and let

pe = ,U—l('wc) z ,U2l(:t)
TESc
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be the shifted Poincaré polynomial of Sc. We have

C _ pwc
anA,B_ w4, wg "

C we .
PcVa B = th,wB )

Proof. Using the algebraic description of Tp, the first statement can be proved algebraically, by in-
terpreting the basis elements [A], [B], [C] as sums of elements in double cosets of the Hecke algebra.
Similarly one can show the second statement entirely algebraically, but it is perhaps more enlight-
ening to use the interpretation of the multiplication in terms of perverse sheaves (see [L99] for a
discussion of this). The affine Schubert variety for w4 fibres over the varieties X§ with fibre given
by a partial flag variety corresponding to c(A), and the polynomial p. arises from the cohomology
of this fibre. O

This will be crucial in describing the cell structure of the affine q-Schur algebra.

2.2 Distinguished elements in 2 p

Our first step in understanding the theory of cells in U is to understand the corresponding theory
for the affine g-Schur algebra. This is essentially an exercise in transferring the information known
about the Hecke algebra #p to our case. The key ingredient in our approach is to use Lusztig’s
notion of distinguished elements.

We begin by defining a somewhat mysterious integer-valued function a,, which together with
certain variants, play a crucial role in our study of cells.

For {C} € Bp we set nﬂ p to be the largest power of v occurring in the structure constant uf{, B
and fora € &p ., set|a]? =Y | a?.

i=1""1

Definition. For {A} € Bp, such that {A} = {A}{ia], consider the set of positive integers
{ns,c+bl* — [al*: {B},{C} € Bp; {C} € [ib]Ap[ial} -

If it has a largest element d we set al, = d, otherwise we set a, = oo.

At first sight it would seem that we elided by saying that a/, is “integer-valued” above, however
the following lemma shows this is not the case.

Lemma 2.2.1. The function o', is finite for every {A} € Bp.

Proof. To show this we wish to use the fact that we can interpret the structure constants in terms of
those for the affine Hecke algebra, and then use the result of Lusztig [L85], which shows that the
corresponding function on the Kazhdan—Lusztig basis is finite. Indeed, using Lemma 2.1.2 we see
that for {A},{B},{C} € Bp we have v§ B = p_h)h‘; y where z,y,z € W are the corresponding

element of the affine Weyl group of type Ap_;. Now by Theorem 7.2 in [L85] we have v o) Ry
Z[v~'] for any z,y,z € W, where wy is the longest element in Sp, the finite Weyl group. The result
follows. U

Remark. Note that we have shown that a, is not only finite, but in fact bounded. This appears,
at least to the author, to be quite a deep result, as he has no real understanding of why the proof
in [L95] works. It is possible the recent work of Bezrukavnikov on the anti-spherical module will
make this more transparent.

We also set 7§ g to be the coefficient of v*o(?)=IbI*+1al" in ,§ | (which in general may be zero).

Definition. Let a € Gp . For {A} € [ia]2Ap[ia] set A(A) to be the integer d > 0 such that

([al, {A)p = aagv™® + agpv™ 41 + ..,
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where ay # 0. Set na = aq.

Lemma 2.2.2. Leta € &p,,. Forany {A} € Bp with [ix){A}[ia] = {A} we have a’,(A4) < A(A).

Proof. This follows an idea of Springer in the Hecke algebra case. Suppose that {B}, {C} are in
®Bp, and consider the product {B}{C}. We may write this as a sum }_ gy, vg o{E}. Chose
{B} € [ia]%p[ib], and {C} € [ib]Ap|[ia] so that

’ - 2 2
v =pcve WP

where 74 - # 0 and the remaining terms are of lower degree. We have the inner product
({BYCLUaDp = D vEc{E}[ia))p. (22.1)
{E}€eBp

All the terms here have nonnegative integer coefficients when written as power series (using
the positivity of the inner product). The properties of the inner product (, ) p show that this is also
equal to

oRF=PR{CY, (B
Now since the canonical basis is almost orthogonal with respect to the inner product, we see that

all the terms on the left-hand side of Equation 2.2.1 lie in v/2"~IP’Nj[v=1]]. In particular, taking
{E} = {A} we get that

vB.o({A} [a])p = navh oueo @ IPIHal -8l 4 g olal =N,
and hence the result. O

Motivated by this, we define the set of distinguished elements of B p as follows.

Definition. Let Dp be the set of elements {A} in Bp such that thereis aa € Gp , with {4} €
(ia)2p[ia] and a}r(A) = A(A).

The distinguished elements Dp are defined by analogy with the Hecke algebra case due to
Lusztig [L87]. We note the some consequences of the above proof.

Corollary 2.2.3. We have the following properties:

1. If{A} € Dp and {B},{C} € Bp are such that v - # 0 then {C} = {B*}.

2. For each {B} € Bp, there is a unique {A} € Dp withv§ p. #0

3. If{A} € Dp then {A} = {A'}.
Proof. For the first, note that in the above proof, the almost orthogonality of Bp with respect to
the inner product implies that it is necessary and sufficient to have {C} = {B*}. That the product

contains just one element of Dp is also immediate. For the last statement, pick {B}, {C} such that
'yﬁp # 0. By the first statement, we see that {C} = {B*}. Since the product { B}{B'} is preserved

by the transpose anti-automorphism ¥, we see that 73? g # 0, and so by the second statement,
{4} = {4"}. a

Recall that to each element of Bp we have attached an element of the affine Weyl group. We
will show that in this way, the distinguished elements of B p actually correspond to distinguished
elements of W.

Lemma 2.2.4. Let {A} € Dp, then the Weyl group element w 4 is distinguished and conversely.
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Proof. Leta € &p,, be such that [i,]{A} = {A}. By definition we see that
({4}, lia])p = ILi,

the stalk of the intersection cohomology sheaf on XL at the point corresponding to [ia). But this
is equal to v!(¥)p, ,, ., where p; ., is the affine Kazhdan-Lusztig polynomial attached to 1, wg,
and w, is the longest element of the parabolic subgroup attached to a (the intersection cohomology
sheaves are related by a smooth pullback with fibre dimension {(wa). Thus we see that if A(wg) is
the lowest power of v~! occurring in p1,u5,

ap(E) < a'(wg) — l(wa) < A(wg) - l(wa) = ap(E).

Here the function a' on the Kazhdan-Lusztig basis is the one defined in [L87] (there denoted simply
a). For z € W, we set a’(z) to be the highest power of v appearing in a structure constant k7 , as
z,y vary over W. The first inequality follows directly from the definitions of a', a’,, and the second
from analog of Lemma 2.2.2 for #p. It follows immediately that wg is distinguished. To establish
the converse, it is necessary to note that if one picks any element z of the left cell containing the
distinguished element, then by [L87] the structure constant h;"fl,I has a’(wg) as its highest power
of v, and so a, (E) = d'(wg) — l(wa). O

We now show that all the notions of cells for 2p can be deduced from those for the Hecke
algebra. More precisely we have the following result.

Proposition 2.2.5. Let {A},{B} € Bp.
1. {A} ~p {B}ifand only if wa ~p wp and c¢(A) = ¢(B);
2. {A} ~gr {B} ifand only if wa ~gr wp and r(A) = r(B);
3. {A} ~Lr {B}ifand only if wa ~Lg wB;
4. ap({A}) = a'(wa) -1 (wc(A));

5. Each left cell contains precisely one distinguished element.

Proof. For the first claim, note that since the notion of cell in 2p is defined essentially by using a
subset of the Kazhdan-Lusztig basis consisting of those elements which are of maximal length in
certain double cosets, it is clear that if {A} ~; {B} then w4 ~1 wg. Moreover, certainly we have
c(A) = c(B). For the converse, we need to use the distinguished elements. Suppose that w4 ~;, wg
and c¢(A) = ¢(B). Then if d is the unique distinguished element in the left cell I containing w4, wp
(which exists by [L87]), d determines a distinguished element of B p, { E'} say, where ¢(E) = ¢(A).
For z,y,z € W let v, denote the coefficient of v®'(*) in hZ . Then by [L87, Theorem 1.8] we

— b oy d
know thatvy; , = Vg.z-1 = Ya-1 s and so as Vot wa # 0 we see that

hd_,,

th d wp
w4 Al w

21 -1 —~
w 25 Twghwe Twyl,d

are all nonzero, and hence the same is true of

E A E B
VAt A-VaAe E,VBt B VBt E-

It follows that {A} ~; {E} and {B} ~r {E}, and hence {A} ~1 {B}.

The second claim either follows in the same way, or by taking inverses in W, which corresponds
to applying the transpose map ¥ in 2 p.

For the third, the forward implication is again clear. If wa ~1g wg, then it follows that the left
cell containing w4 and the right cell containing wp intersect (since this is true of any left and right
cell in the same two-sided cell of an affine Hecke algebra). As any element in this intersection will
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give rise to an element {C} of the g-Schur algebra with 7(C) = r(B) and ¢(C) = ¢(A4), we obtain
the result using the first two parts of the proposition. The fourth claim follows from Corollary 2.2.3
(see the end of the proof of Lemma 2.2.4 . Since each left cell of the Hecke algebra contains a unique
distinguished element, the fifth claim follows from the Lemma 2.2.4 and the first claim. d

2.3 Cellsin2p

We saw at the end of the last section that the theory of cells of the affine q-Schur algebra is deter-
mined by that for the type A affine Hecke algebra. This allows us to describe explicitly the number
of two-sided cells in the affine g-Schur algebra, and also the number of left cells (and hence right
cells) in a given two-sided cell. To do this we recall the combinatorial definitions which describe
the bijection between cells for the Hecke algebra and partitions.

Definition. Suppose w € W the affine Weyl group of type Ap_;. Then we may view w as a
permutation of Z. A sequence (i1, 12, ...,%,) is called a d-chain if i; < i, < ... < i, and (i;)w >
(i2)w > ... > (ir)w, and the {i;,j = 1,...,r} are all incongruent modulo D.

Let Pp be the set of partitions of D. We define amap o: W — Pp as follows. Forw € W, let d;
be the maximal size of a set of j d-chains, the union of whose elements are all incongruent modulo
D. Then it is know that A = (d;,d; — d1,d3s — da,...,dp—_1 — dp) is a partition of D. Set o(w) = A.

The following result is due to Lusztig, based on the work of Shi, see [L85a], [Sh].
Theorem 2.3.1. The fibres of o are precisely the two-sided cells of W. a

We may use this to give a description of the two-sided cells in the affine q-Schur algebra as
follows:

Definition. Let A € Sp ,. An anti-diagonal path in A is an infinite strip of entries (a;, ;. : k € Z)
such that (ix, jx) is either equal to (ix—1 — 1, jk—1) Or (4k—1,jk—1 + 1) with the latter being the case
for all but finitely many k. Thus visually if you draw the matrix with rows increasing from top
to bottom, and columns from left to right, (as we will do) then path starts and ends with infinite
vertical strips, and takes finitely many right or vertical turns.

Let d; be the maximal size of the sum of entries in the union of j anti-diagonal paths. Then we
define a map p: 6p,, — P} where P} is the set of partitions of D with at most n parts, by setting
p(A) = (d1,ds — di,...,dn — dn_1). As above, it follows from general results on posets that p(A) is
indeed a partition. The fact that it can have at most n parts is obvious. We will sometimes view p
as a map from Bp in the obvious way.

Proposition 2.3.2. The fibres of the map p: Bp — P are the two-sided cells of Ap.

Proof. This is a simple combination of the statements of Proposition 2.2 and Theorem 2.3.1. O

Example. Suppose that n = 2 and D = 5. Consider the element {A} of 85 corresponding to

o0 0 O -

0 [1]
0 [1]
0] 1

N N =T = SO
O O = -

where the top left entry shown is in the (1,1) entry of A. Then {A} lies in the two-sided cell
corresponding to the partition (4,1). The boxed entries give part of an anti-diagonal path which
has entry sum 4. Note that it is not unique.
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Given a partition A € P}, we denote the two-sided cell p~!(}) by c). We will often use the same
notion for a partition in Pp and a two-sided cell of Hp.

Somewhat more elaborate is a description of the number of left cells in a two-sided cell of the
affine q-Schur algebra. Notice that Proposition 2.2 shows that each left cell of the affine Hecke
algebra gives rise to a number of left cells of the affine g-Schur algebra, with the number depending
on the set of simple reflections of the symmetric group Sp which decrease the length of any element
of the left cell when multiplied on the right.

Definition. For w € W let R(w) = {s € S: l(ws) < l(w)} and L(w) = {s € S: l(sw) < l(w)}.

It is known that the functions R, £ are constant on right and left cells respectively. Thus for I'
a left cell, we may write R(I") for the set R(w), where w is any element of I. The left cells of Hp
have been described by Shi ([Sh], chapter 14) as the fibres of a map to a set of tableaux, such that
the shape of the tableau associated to a left cell is given by the partition of the two-sided cell it lies
in, and the entries must increase down the columns.

In order to describe this map in more detail we need some to make some definitions. We use
the description of W as a group of permutations of the integers, and in particular the associated
infinite matrices. Let A = (a; ;)i jez be such a matrix. A block is a set of consecutive rows of A. For
ablock of mrows i +1,i+2,...,i+m, let the nonzero entries be {a;y1,j,,i+2,j5, - - - Gitm,j,. }- We
say the block is a descending chain if j1 > jo > ... > jn. Ablock is a maximal descending chain (MDC)
if it cannot be imbedded in a larger such block.

Say that an element of w € W has full MDC form at i, if there exist consecutive MDC blocks
(Ar, Aj—1,...,A;) of Ay, of size my, fort = 1,...,1, with Zl:=1 m; = D, and ¢ + 1 the first row of
A (soi+ ZLI m; + 1 is the first row of 4;_). Suppose a full MDC form has blocks which are
of (weakly) increasing size (so A; has at most as many rows as A;_1). Let j;* be the column of the
nonzero entry in the u-th row of A;. Then we say the form is normal if j —n < jp < j*, < ... < j¥,
for each u (where we ignore terms in this sequence which do not exist).

Recall that the two-sided cells of Hp are indexed by partitions of D. For such a partition A =
(A1 > A2 > ... > A > 0) we let N, be the set of elements of the two-sided cell ¢, corresponding to

A which have normal MDC form (A, A;_1,...,A;) at i for some i € Z, where ); is the number of
rows in A;.
Theorem 2.3.3. [Sh] Let w € cy. Then thereisay € Ny withy ~p w. O

Let C» be the set of Young diagrams of shape X with entries {1,2,...,D} which decrease down
columns. In [Sh, chapter 14] Shi defines a map T from the left cells in ¢ to Cy. Let I be a left cell in
cx- Choose y € Ny NT and then set the entries of column u of T'(T) to be the residues modulo D of
the numbers {j': 1 <t < pu,} where p is the partition dual to A. Shi shows this is independent of
the choice of y, and that it gives a bijection.

Example. Consider the matrix 4, in Ay given as follows

00100
01000
0 0 0 01
00010
10 0 00

where the first column shown is column 1. Then it is easy check that w € N(3 ») and the associated
tableau is given below.

5[4]1]

It follows directly from this construction (though this is not explicitly described in [Sh]) that
the set of simple reflections in R(T) is determined by this tableau. Indeed since R(T') is given by
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R(w) for any w € ', we may use an element of N, as above. Then it is easy to see that the simple
reflection s; is in R(T') precisely when i appears to the right of ¢ + 1 in the tableau (where one reads
modulo D for sp).

We now consider the left cells of 2p. Each such cell correspond to a left cell ' of Hp and an
element a of &p ,, such that the simple reflections J of S, are a subset of R(I')\{so}. Of course in
general such a subset may not exist.

Definition. For A € Pp, let C} be the the set of tableaux of shape A with entries from {1,2,...,n}
strictly decreasing down columns. Thus CY is empty if A has more than n parts.

If we fix a two-sided cell ¢\, where A € Pp, using the description of R(I') in terms of the
tableau T'(T'), it is easy to see that the left cells in c, are indexed by the elements of C}. Indeed to
each tableau T € C} there is a well-defined element h(T') of C) given as follows. Order the boxes
of T by listing those labelled 1 first, then 2, and so on, always reading from right to left. Then
construct h(T) € Cy by labelling each box with its position in the order just described. This gives
the left cell of W. The element a is determined by letting a; be the number of boxes of T labelled 3,
fori € {1,2,...,n}. The following example makes the correspondence clear.

Example. Let D = 5 and n = 3. Suppose that we consider the tableau

Ir-aww
p—

in C?2,2,1)' Then the tableau corresponding to it in C(2 5 1) is

|l\')vP~Cﬂ
—

and the sequence a is (2,2, 1) (repeated periodically).
This allows us to count the number of left cells in a two-sided cell of 2 p.

Proposition 2.3.4. Let ¢ be a two-sided cell of Ap. If X is the partition of D associated to c, and A(i): =
Ai — Aiy1, then the number of left cells in c is

n—1 n A1)
()

Finally we wish to construct the asymptotic algebra associated to a two-sided cell. We will need
a variant of the function a',.
Definition. Let {4} € Bp. If there is an integer d > 0 such that v=9v§ 5 € Z[v~] for all {B}, {C} €
B then let a(A) be the smallest such. Otherwise set a(A4) = oo.

Note that the proof of Lemma 2.2.1 shows that ap is always finite. More interestingly we have
the following result.

O

Lemma 2.3.5. The functions a’, and ap agree. Moreover the function ap is constant on c[ia] for any
two-sided cell c and any a € &Sp .

Proof. Both of these follow from facts about the Hecke algebra: If 4 , denotes the coefficient of
v?' () in hZ , then it follows from the results above that for {4}, {B},{C} € Bp we have 1§ 5 =

z,y’
VS wy- Moreover, by the results of [L87] (see Lemma 2.2) we know that Yoy = 7;;1_1 = 'yf_: z and
hence 7§ 5 = fygfc, =5 4+ Itis now easy to see that a, = ap. Since a' is constant on two-sided
cells of the Hecke algebra, the second statement is clear. O
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We now rescale the canonical basis of %p. Set (4) = v=22{4){A}. Let 2. denote the span of the
elements in ¢ a two-sided cell of B p. This becomes an algebra by identifying it with a subquotient
of 2p in the obvious way. The structure constants of 2. with respect to the new basis lie in ZvY.
Indeed the product (A)(B) = ¥, v 2?4 5(C), since ap(A) = ap(C), and the coefficients
v=20 ()G p all lie in Z[v™']. Thus if L. is the Z[v™!] span of the {(4): {A} € c}, Lc has the
structure of a Z[v~!] algebra. The quotient J. = Lc/v™'L. is then a Z algebra, where if ¢ is the
image of (A), the multiplication in J is given by

tatp = Z’)’g,stc-
c

Let D. = Dp N c. It follows from the above that the set {tg: {E} € D} gives a decomposition of
the identity into orthogonal idempotents.

By using the results of [Xi] or [BO] we can also give an explicit description of this asymptotic
algebra. For A € Pp and i € {1,2,...,n}, let A()) = A — Ay, (where Ap+1 = 0). Let Gy be
the reductive group []}_; GLx(;)(C) and let Ry be the K-group of its representations, so that the
irreducible representations G » form a Z-basis of Ry. Let Ty be the set of triples (E, Ez, k) where
{E1},{E2} € Dy,and k € G». Let J» be the free Abelian group on T). Define a ring structure on
Jx by

(Er, Bz, 6)(E{ B}, ') = Y ¢ 8, (Br, B3, 67)

where the sum is over 5 € G and cf"n, is the multiplicity of " in the Gy-module x ® '. Thus Jx
is a matrix ring of rank N over the representation ring Ry, where NV is the number of left cells in ¢y,
given in Proposition 2.3.4.

Proposition 2.3.6. 1. There is a ring isomorphism Jc, — Jx which restricts toa bijection between the
canonical basis of J., and T.

2. For any {E} € D.,, the subset of cx corresponding to {(E1,E2,k) € Tx: E; = E} under the
bijection is a left cell.

3. For any {E} € De,, the subset of cx corresponding to {(E1, Ez2,k) € Tx: Ey = E} under the
bijection is a right cell.
O

This shows that all the simple modules of the C-algebra C® J., are N-dimensional and that the
set of isomorphism classes of such modules is in bijection with the semisimple conjugacy classes of
G».

The asymptotic algebra also receives a homomorphism from the original algebra, once we ten-
sor with Q(v). Define a map ®., : Ap = Q(v) ® Je, as follows:

e, ((A)= Y, vists

{E}eD., {B}€cx

One shows it is a homomorphism as in [L95, Proposition 1.9], where the property of the struc-
ture constants which is needed follows from the Hecke algebra case. This allows one to pull back
representations of J, to representations of 2p. It would be interesting to understand which rep-
resentations of A p arise in this way.

24 CellsinU

Let U be the modified quantum group of affine sl,,, and let B be its canonical basis (see section 1.3,
or [L93]). We know show how we can lift information about the cell structure of the affine q-Schur
algebra to the modified quantum group. The following theorem relating the canonical bases B and
B p was conjectured by Lusztig, and proved in [ScV]
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Theorem 2.4.1. For all b € B we have ¢p(b) € {0} UBp. Moreover the kernel of ¢p is spanned by the
elements b € B such that ¢p(b) = 0.

Proof. Proposition 1.6.2 gives an asymptotic version of this result, however we will need its full
strength here. One can give a new proof of the theorem, using the asymptotic version as a first
step. What is left to show is that the “transfer maps” between the algebras 2p preserve the basis
of Up. This can be shown using a sheaf-theoretic description of the transfer map: One should in-
terpret the coproduct as a “hyperbolic localization” to the fixed points of a suitable C* action, and
the “sign representation” of 2, as taking vanishing cycles with respect to a suitably generic func-
tion (this is essentially in the paper of Kashiwara-Tanisaki [KT]). Then purity arguments show that
the coproduct takes semisimple complexes to semisimple complexes, and moreover equivariance
shows that the complexes thus obtained split as appropriate tensor products. To check compati-
bility of bases one should use the fact that stalk Euler characteristics are preserved by localization,
and the fact that the complexes in Up have “nilpotent” singular support in a suitable sense. The
details have yet to be fully worked out. O

It follows that the image U is a union of two-sided cells of U. Moreover the injectivity result
of section 1.6 shows that any two-sided cell will eventually lie in some Up. Given A € Gp , we say
that A is aperiodic if, for any integer k # 0 there is an integer p with a, 4+ = 0. Thus only the main
diagonal of A can consist entirely of nonzero entries. In [L99], Lusztig showed that Up is spanned
by a subset Bp of B consisting of those {A} for which A is aperiodic.

Now if ¢ p were surjective this would be a straightforward consequence of the previous section.
Indeed in the finite type case, this is true, and the results of [L95] in the case of s[, can be recovered
in this way, as was essentially done by Du in [Du] (note however that [L95] is much more general,
classifying the cell structure for any finite type quantum group).

In the affine case it is no longer true that we have a surjective homomorphism from the quantum
group. Thus we need to be more careful in lifting information from 2p to U. We begin with the
analogue of the ap function.

Let c',;:',,, be the structure constants of U with respect to B. For a two-sided cell ¢ in U let U,
be the subspace of U spanned by the elements of c. We endow U, with an algebra structure by
identifying it with a subquotient of U, so that for b, b’ € ¢ the product is given by

1"
= E Cg’b'b”'

b €B.

Definition. Let b € B. If there is an integer n > 0 such that v‘"cﬁ y € Z[v~!] for all ¥',b" € c then
let a(b) be the smallest such. Otherwise set a(b) =

The following observation simple observation tells us about the left cells in U.

Lemma 2.4.2. Let T be a left cell of Ap, and let {E} € Dp be the unique distinguished element in T. Then
if Bp NT # 0 we must have {E} € Bp. Moreover Bp N T is a single left cell of Up

Proof. Pick {A} € Bp NT. Then we know that
{A'HAY = v A{E}+...,

where V%, At A # 0 since 7% At a7 0 (the unique distinguished element for which vE, 4t 4 Must clearly be
the one in the left cell containing {A}). This implies that {E} € Bp. By arguing as in the proof of
the first claim in Proposition 2.2) we see that the intersection Bp N I is a single left cell. |

This has some important corollaries which we now record.
Corollary 2.4.3. We have the following properties of a functions.

1. The functions ap, a'y, coincide with the analogous functions defined in terms of U p instead of Ap.
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2. Forb € Bif ¢p(b) # 0 then a(b) = ap(¢p(b)). In particular, a(b) is finite.

Proof. The claims are easy consequences of the above lemma, using distinguished elements. 0O

We now know each left cell in Up contains a unique distinguished element. We wish to show
that the same is true of the left cells in U. Since any left cell will occur as a left cell of Up for
sufficiently large D, it suffices to show that the distinguished element we obtain is independent of
D. Since the distinguished element is characterized as the idempotent element in the asymptotic
algebra, which is determined by the two-sided cell, it is independent of the algebra Up we choose.
Moreover, since by Theorem 1.4.2 the inner product on U is obtained as a limit from those on 2p
we may give an intrinsic characterization of the set D. of distinguished elements in a two-sided
cell c. Recall from [L95, 3.7] that U possesses an anti-automorphism f : U — U, which is such that
ép(zt) = ¥(#p(z)), forany z € U.

Proposition 2.4.4. Let b € c and X\ € X be such that b € Uly. Then v*(®)(1y,b) € Z[v™"] with nonzero
constant term for b € D and v*(®)(1),b) € v~ Z[v~"] otherwise. Moreover b = b*. O

It remains to investigate the structure of the two-sided cells of Up. This again lifts directly from
Ap, as the following simple observations show.

The transfer map 9p: Up — Up_, is such that Yp({A}) = {4 — I} if the entries of A — I
are nonnegative and ¥p({A}) = 0 otherwise (I = (;;) is the identity matrix). Using this along
with our combinatorial description of two-sided cells in 2p, we obtain the following statement.
Let A = (A1 > A2 > ... > Ay > 0) bein P}, and let k, denote the intersection Bp N ¢y. Then k, is
a union of two-sided cells of Up and moreover it follows from the above discussion that k) maps
to 0 under ¥p unless A, > 0, when it maps to ky in Up_, where X' = (A\; — 1, 2 —1,..., A, — 1)
(i.e.)' is obtained by removing the first column of the Young diagram for \).

However, the following observation which follows easily from Proposition 2.3.2 now shows
that we are almost done.

Lemma 2.4.5. Let A be an element of &p . Then p(A) has strictly less than n parts, precisely when A has
no completely nonzero diagonal (i.e. for each k € Z there is some p € Z with ap pir = 0). In particular, if
X € PP has fewer than n parts ¢ consists entirely of aperiodic elements. 0O

Thus for such X we see that k) = c,, and it consists of a single two-sided cell of Up, or U.

Recall the group X of the root datum of U from section 1.3. For convenience, here we will
view it as a quotient of Z" (by taking the entries a1, a, ..., a,). We define X+ to be the”dominant
weights” in X. Let Iy = {i € Z/nZ:i # 0 mod n}. The set Xt consists of those up € X with
u(@): = (i,u) > 0fori € Iy.

Proposition 2.4.6. The two-sided cells of U are naturally parameterized by X .

Proof. First note that each partition A with at most n parts determines an element p in X+ by taking
the coset of (A1, Az, ..., An) in X, and the previous paragraph shows that this gives a natural bijec-
tion between X+ and the two-sided cells of U. Indeed each y in X* has a unique representative A
in Z™ with final entry 0. The cell corresponding to y is cy, thought of as a cell of U. (It is actually a
cell of U, Up, and 2p!) O

Note that this classification has an interesting consequence: The number of left cells in a two-
sided cell ¢y of 2p depends only on the element of X it determines, as can be seen from the
formula in Proposition 2.3.4. Thus since each left cell of 2p intersects Up in at most one left cell,
and the two algebras have the same number of left cells, this intersection is always nonempty.

We may also give an explicit formula for the value of the a function, using the fact that we know
the value of the corresponding function on the Hecke algebra. Indeed if w € Ap_; lies in the cell
cy thena(w) = (D — Y A?)/2.

35



Lemma 2.4.7. Let u € X and let A € Z™ be its representative with 0 in the final entry. Then b € B lies
in the cell c,, corresponding to u, and bl, = b, for some v € X. Pick the unique representative v of v in Z™
such that 3 A, = S0, vi. Then we have we have a(b) = 31, (A — v). a

We have also already constructed the asymptotic algebra A, for each 4 € X*. This is just the
ring J., constructed in the previous section, where A is the representative of u described above and
cy is the two-sided cell of some A p corresponding to .

LetG,: =[['GL () (C), and let R, be its representation ring. Combining the above with
Proposition 2.3.6 we find that the asymptotlc ring A, is isomorphic to a matrix ring over R, of

size [1"=! (7)*®”. Thus we may pull back modules of this matrix ring to obtain modules for U.
These would appear to be closely related to the “extremal weight modules” of Kashiwara [K02],
which are in turn related to the universal standard modules defined by Nakjima in his geometric
classification of simple modules for quantum affine algebras. Indeed Kashiwara has a number of
conjectures about the structure of these modules wh1ch he suggests should be closely related to the
conjectures of Lusztig that we establish here for 5[ (see the remark below). (Some of Kashiwara’s
conjectures have recently been proved in the simply-laced case by Nakajima [N].)

Remark. The results of this section establish (in the case of ;[n) all the conjectures in [L95, section
5]. It should be noted that paragraph 5.4 of this section contains a misprint. Given A € X+ the
numbers (i), for ¢ € Ip, should be given by the formula A(i) = (i, }).
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Chapter 3

Weyl groups and constructible
functions

One of the fundamental results in geometric representation theory is Springer’s construction ([S76],
[S78]) of representations of the Weyl group W in the homology of certain subvarieties of the associ-
ated flag variety. This result, first obtained using positive characteristic methods, was investigated
by many people, and a vast array of interpretations was subsequently obtained. One of these, due
to Kazhdan and Lusztig [KL80b], gave a construction of the group algebra Z[W}] in the homology
of the Steinberg variety Z. Combined with their work on Hecke algebras, this made it clear that
the group algebra Z[W] comes equipped with two natural, but distinct, bases. The first of these,
the Kazhdan-Lusztig basis ([KL79], [KL80a]), comes from the intersection cohomology sheaves of
Schubert varieties, and the second from the fundamental classes of the irreducible components of
Z. A connection between the two was made by Kashiwara and Tanisaki [KT] using the character-
istic cycle construction (though they worked in the context of D-modules).

More recently, Lusztig [L97] gave a new elementary construction of the group algebra of the
Weyl group as a convolution algebra of constructible functions on Z, motivated by the convolution
in K-theory described in [KT], and his own construction of the enveloping algebra of the negative
part of a semisimple Lie algebra [L91]. He also produced a “semicanonical” basis of the group alge-
bra in this way and conjectured that it coincides with the second of the two natural bases mentioned
above. This chapter consists of an attempt to understand the connection between this construction
and those mentioned above — in particular to give an explicit description of the “semicanonical”
basis functions which allows one to verify Lusztig’s conjecture, and also to construct from them
representations of the Weyl group in constructible functions on Springer fibres.

3.1 Background

Let G be a reductive algebraic group over C with Lie algebra g, let B be the flag variety of Borel
subalgebras in g, and let W be the Weyl group of G. It is well known that the cotangent bundle of
the flag variety can be described explicitly as

T*B = {(e,b) € N x B: e € b},

where A is the nilpotent cone in g. This description makes it clear that we have mapsT: T*B - B
and p: T*B — N, which are the restrictions of the two projections from A’ x B. Since a regular
nilpotent element is contained in a unique Borel subalgebra, and the regular nilpotents constitute
the dense open orbit of the adjoint action of G on N, the map p is birational. Moreover, as the
cotangent bundle 7B is smooth, and p is clearly proper, we have obtained a resolution of singu-
larities, known as the Springer resolution. The fibre of 1 over a point e € T*B (the Springer fibre)
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is
B.={beB:ecb},
hence it may also be described as the zero-set of the corresponding “nilpotent” vector field on B. It
is these varieties on whose cohomology Springer constructed representations of the Weyl group. 1
wish to describe a new way to obtain representations of W from the varieties Be..
We need one more variety, which is closely related to T*B — the Steinberg variety Z. This is
simply the product of T*B with itself over N, that is,

Z=T*BxyT'B={(e,b,b)) e N xBxB:ecbnb'}.

There is another description of Z coming from the Bruhat decomposition. The group G acts diago-
nally on B x B with |W| orbits which we denote Y,,, w € W. If we imbed Z in T*B x T*B by the
map

(6, ba b,) — (6, b7 —€, b’)a

then the image is precisely the union of the conormal bundles to the G-orbits Yi,:

z= ] 1v,(B xB).
weW

Hence we see that Z is a variety of pure dimension 2d, where d = dimcB, with |W| components.
Let Z,, be the conormal bundle of Y,,, so the closure of Z,, is a component of Z.

Lusztig [L97] constructs an algebra of functions on Z which is isomorphic to the group algebra
Z[W). In order to describe his construction, we first introduce some general notions. For a variety
X, let F(X) denote the algebra of constructible functions on X, that is, the algebra generated over
Z by the characteristic functions of closed subvarieties. These functions come with a natural notion
of pull-back and push-forward (see for example [M]). If 7: ¥ — X is a morphism, pull-back is

defined by
() = f(n(y)),

for f € F(X).
Push-forward is defined as “integration along the fibres” using the Euler characteristic,

n(N@) = [

™

)f =Y ax(x"'(z) N f(a))

a€Z

where the second equality is by definition, and f € F(Y). Note that in the definition of push-
forward, to ensure the appropriate functoriality, we should take Euler characteristics with compact
supports, but in the complex case, this is the same as taking ordinary Euler characteristics (see [Su]).

Using these operations, the algebra F(Z) becomes a convolution algebra as follows: for f,g €
F(Z) set

(Fr9)eo8) = [ flebbiglebu,b).
b1€B.

Alternatively, we may write this as a composition of pullbacks and pushforwards in analogy with
the construction of the Hecke algebra in [S82]. Observe that (F(Z), *) has a unit givenby 1 = 1z,.

Let < denote the usual Bruhat order on W, [ the length function. Then S = {s € W: I(s) = 1}
is the set of simple reflections in W. For s € S set f; = 1z , the characteristic function of the
corresponding component of Z. Let W be the algebra of functions generated under convolution by
the f,, for s € S. We have the following result.

Theorem 3.1.1. [L97] The algebra W is isomorphic to the group algebra of the Weyl group via the map
¢: L[W] — W defined by ¢(s) =1 — f;, s € S.
Moreover, VV has a distinguished basis { f,: w € W'} which is characterized by the following properties:

1. fwisequaltolon Z,;
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2. for any w' withw' € w, fu, is 0on Zy;

3. for any w' withw' < w, f,, is 0 on a dense open subset of Z,,.

Proof. We briefly sketch the argument for the convenience of the reader. One first checks that the
functions f; obey the relation implied by the fact that s is an involution. Then in order to show the
algebra they generate is a quotient of Z[W] it only remains to check the braid relations. This is a
rank two calculation, which can be carried out by hand, and is the bulk of the work in [L97]— one
needs an explicit description of the Springer fibres in each rank two group. Thus the algebra W is a
quotient of Z[W]. To show that ¢ is actually an isomorphism, one notes that restricting functions to
the zero-section, i.e. the component of Z corresponding to the longest element of W, is an algebra
homomorphism. The composite of ¢ with this map can be seen to be an isomorphism, as an easy
consequence of the Bruhat decomposition.

The construction of the basis {f,: w € W} is inductive, with f, given by the above formula.
One shows thatif w = s;s3. .. s, is areduced expression of w then the product f;, fs, . . . fs, is equal
to1lon Z, and supported on the union of the Z, for v < w in the Bruhat order. Hence if £, is known
for all v < w we may subtract appropriate multiples of them from f;, f;, - . . f;. to obtain f,,. O

Remark. The morphism ¢ we have described differs from the one given in [L97] by the sign char-
acter. We do this so that the representations we obtain from Springer fibres match with the usual
conventions.

We will sometimes refer to the basis {f,,: w € W} or its preimage in Z[W] as the semicanonical
basis of W or W respectively. In [L97], Lusztig makes a number of conjectures about the functions
{fu:w € W}. Recall that Z[W] has a natural basis {b,,: w € W}, defined by Kashiwara and
Tanisaki in terms of characteristic cycles [KT], or equivalently, in terms of the top homology of Z
as in [KL80b].

Conjecture 3.1.2. [L97, 4.17] Under the isomorphism ¢, the bases {by,: w € W} and {fy,: w € W}
correspond, that is, ¢(by) = fu.

We define the support of a function f € F(Z) as the set supp(F) = {z € Z: f(z) # 0} (here we
follow Lusztig [L97], it is perhaps more standard to take the closure of this set).

Conjecture 3.1.3. [1.97, 4.18] Let w € W. The support of the function f,, is contained in Z.,,.

3.2 Springer representations.

We now show how one can use Lusztig’s construction of the algebra W to obtain Springer repre-
sentations, given the conjectures stated above. We first need to recall the notion of geometric cells,
due to Spaltenstein and Steinberg [St]. There is an obvious map p: Z =T*B xy T*B — N given
by (e, b,b’) — e. The following result is essentially contained in [St] and [Sp].

Theorem 3.2.1. Let O be a nilpotent orbit. The inverse image p~'(O) is pure dimensional, and its dimen-
sion is equal to the dimension of Z. Thus the closure p=1(O) is a union of components of Z.

Proof. The key point is to show that if n is the nilpotent radical of a fixed Borel subalgebra, then all
components of O N n have dimension 1/2 - dim(O). In fact, using the Killing form, O can be given
anatural symplectic form with respect to which O N n is Lagrangian. O

Since the components of Z are indexed by elements of W, this allows us to make the following
definition:

Definition. Given a nilpotent orbit O, we attach to it the subset of the Weyl group

Co={weW: Z, Cp-1(0)}.

39



The sets Co are called geometric cells (or sometimes S-cells). They partition W.

Remark. This notion of cell is distinct from that given by the Kazhdan-Lusztig basis— the two-
sided cells for a finite Weyl group are indexed by the special nilpotent orbits, which in general
are a proper subset of the set of nilpotent orbits (in type A, all nilpotent orbits are special). Note
however that if we equip the group algebra Z[W], with the basis {b,,: w € W} given in terms of the
characteristic cycle map, we can define a different notion of cells. It is conjectured that the geometric
cells are precisely the two-sided cells with respect to this basis. It is also worth remarking that even
in type A, the Kazhdan-Lusztig basis does not coincide with the basis {b,,: w € W} defined above
(see the paper of Kashiwara and Saito [KSa]).

Let e € O be a nilpotent. The definition of convolution given in the previous section clearly
extends to make F(B. x B.) a bimodule for W, and hence by Theorem 3.1.1, a bimodule for Z[W].
However F(B. x B.) is, for our purposes, hugely infinite dimensional. The subtlety in this approach
to Springer representations is to find inside this bimodule the appropriate finite-dimensional sub-
module. We do this as follows. For each w € Co let g = ful,-1(c), the restriction of the f,, to
p~!(e), which is just B, x Be. Let M, be the Z-submodule of F (B, x B,) spanned by {g.,: w € Co}.

Lemma 3.2.2. Conjecture 3.1.3 implies that M, is a bimodule for Z[W].

Proof. In fact we need strictly less than the Conjecture. What is crucial is that the image of the
support of f,, for w € Co under the map p lies in the closure 0. To see that this implies the lemma,
note that it is clear from the definition of convolution thatif / C A is an open subset of the nilpotent
cone, then the set of functions {f € W: f|,-1y) = 0} forms an ideal in W. Hence by considering
the complement of O\O, we see that the condition on image of the supports of the f,, yields the
result. O

Moreover Conjecture 3.1.2 implies that the bimodules one obtains are precisely the endomor-
phism modules of the Springer representations in the top homology of B, as a consequence of the
results of Kashiwara-Tanisaki [KT]. One may also obtain (left) representations of W in F(B,) by
fixing the Borel in the second factor. It is entertaining to compute the functions in M. directly in the
rank two cases. In the approaches to Springer representations using homology, one gets an action
of the component group of the centralizer Zg(e) which commutes with the action of W'. This allows
one to split representations up into their irreducible components. It would be nice to understand
this action in the context of constructible functions also.

Thus we must verify Lusztig’s conjectures. Let us briefly describe our approach (the terms
used will be defined in the following sections). We attempt to “microlocalize” the construction of
the Weyl group in the K-group of G-equivariant constructible sheaves on B x B. Recall that the
Hecke algebra H associated to W can be realized as a convolution algebra of perverse sheaves on
B x B by a convolution construction similar to the one we defined above for functions (smooth pull-
backs and proper push-forwards preserve perverse sheaves up to shift). If we pass to the K-group
(or equivalently take stalk Euler characteristics), we obtain the group algebra Z[W], realized as a
convolution algebra # (see for example [S82], or in the context of D-modules [KT]). If we accept
Conjecture 3.1.2, then the Index theorem of Kashiwara [KSc, 9.5] shows that the functions in W
give the stalk Euler characteristic of the corresponding perverse sheaf when they are restricted to
the zero-section of T*(B x B). Our idea is that, in general, the functions in the algebra W give the
“microlocal stalk Euler characteristics” of the perverse sheaves in #{. What follows is a construction
which makes this precise.

3.3 Specialization and microlocalization

For a smooth variety X, let D(X) denote the bounded derived category of sheaves on X (in the ana-
lytic topology). Let D.(X) denote the full subcategory of complexes with constructible cohomology
sheaves. Let P(X) denote the category of perverse sheaves, the heart of the perverse ¢-structure on
D.(X). For more details see [BBD] or [KSc]. Following a grand tradition of notational abuse, we
will usually say “sheaf” when referring to an object of D(X), D.(X) or P(X).
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A fundamental construction in intersection theory is the deformation to the normal cone. Sup-
pose we have a smooth variety M, and a smooth subvariety N C M. Let Tny M denote the normal
bundle to NV in M. If d is the dimension of M, there exists a d + 1 dimensional smooth variety
My which possesses maps p and ¢ to M and C respectively. The fibres of ¢ over C are isomorphic
to M over nonzero complex numbers, and to Tx M over 0. More precisely we have commutative
diagrams:

TNM ——> Ny <—— M x C

and,

TNM—8—>MN<_]MX(CX

t l l t lt
{0} C Cx

where all the horizontal maps are inclusions. Later we will need the following construction:
Given a cycle Z in M, we set the normal cone of Z to NV to be the intersection (counting multiplici-
ties) of t~1(0) with 0-1(Z).

There are a number of ways to construct the variety My, with perhaps the nicest given by
blowing up M x C along N x {0}. The exceptional divisor can be shown to be the union of two
pieces, one isomorphic to Ty M, the other to PTxy M. We set My to be the open subset of the blow-
up given by the complement of PTx M. The maps p and ¢ are then obtained from the restriction of
the natural map of the blow-up to M x C. For a nice discussion of this construction and its uses in
intersection theory see the survey of Fulton [F].

Note that we T M sits in My as a hypersurface defined by the equation t. In particular, we
may apply the functors of nearby and vanishing cycles on My to produce sheaves on T M. This
is the key point in describing specialization of sheaves.

We now recall the definition of nearby and vanishing cycles. We use the conventions of [KSc).
Suppose that X is a smooth variety and f: X — C a holomorphic function. Set Y = f~1(0), and
leti: Y — X denote the inclusion. Let C* be the universal cover of C, and p: C* — C the covering
map (e.g. we may take C* = C, and p(z) = exp(2mv/—12)). Then consider the diagram:

X — ¢

Py
Y X ——C,

where the square is Cartesian, that is X* = X x¢ CX.

Definition. For F' € D(X) we define ¢¢(F) = i* Rp.p*(F).

¥y is called the functor of nearby cycles. It depends only on the F|x\y. Note that since (5*, Rj.)
are adjoints, we have a natural morphism of sheaves i*(F) — v(F). The vanishing cycles of F,
¢¢(F) is the shifted cone of this morphism, that is, we have a distinguished triangle in D (X)

i(F) = ¢ (F) = ¢ (F)[1] — .

Goresky and MacPherson have given more concrete geometric description of these functors
using a stratified contraction to the special fibre, see [GM].

Having constructed the functor of nearby cycles and the deformation to the normal cone, we
may define the functor of specialization.

Definition. Let N be a smooth subvariety of M, and let F € D.(M). Define vy: D (M) —
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D.(TyM)b
S vn(F) = ¥ (p7 1 (F))

where the maps are as in the diagram at the start of the section. The functor of microlocalization,
pn is obtained from that of specialization by applying the Fourier transform, which maps conic
sheaves on a vector bundle to conic sheaves on the dual bundle, thus py: D.(M) — D (T} M).
For a discussion of the Fourier transform we refer the reader to [KSc, chapter 3].

The following theorem shows that these operations behave well with respect to perversity.

Theorem 3.3.1. Let M be a smooth variety.
o If f is a holomorphic function on M, then the functors v ¢[—1] and ¢ are t-exact.

o Let N be a smooth subvariety of codimension d in a smooth variety M. Then the functors vy and uy|[d)
are t-exact.

Proof. See for example Corollary 10.3.13 and Proposition 10.3.19 of [KSc]. O

We will denote py[codim(Y')] by fiy, thus fiy preserves perverse sheaves. We will need to un-
derstand how microlocalization behaves with respect to push-forward and pull-back. Let f: Y —
X be a morphism of complex manifolds, and let N be a closed submanifold of codimension & in Y
with (V) C M, a closed submanifold of X of codimension I. Consider the diagrams

T*Y TY Xx T*X TI>T*X
and
TRY <5 N xu T X —— Ty X
Recall that f is said to be clean with respect to M if f~!(M) is a submanifold of Y, and the map
pr: N xp Ty X = TRY is surjective.

Theorem 3.3.2. Let G € D.(Y). Then there exists a canonical morphism

Rwppipun(G) — pm(RfG).

This map is an isomorphism if f~*(M) = N, f is clean with respect to M, and proper on the support of
G.

Proof. See Theorem 4.3.4 of [KSc]. O
Theorem 3.3.3. Let F' € D.(X). There is a canonical morphism

pn(f'F) — Rppawiypm (F).

This map is an isomorphism if f and f|n are smooth.
Proof. See Theorem 4.3.5. of [KSc]. O

We now describe the characteristic cycle construction. We first introduce the slightly cruder
notion of singular support. Intuitively, this is supposed to record the directions in which the coho-
mology sheaves of F' € D.(X) propagate.

Definition. Let F' € D.(X). Define SS(F) C T*X by the condition that for p € T*X, we have
p ¢ SS(F) if there is an open neighbourhood U of p such that for any z € X and any holomorphic
function f defined near z with f(z) = 0 and df (z) € U, we have ¢¢(F); = 0.

Recall that 7*X carries a natural holomorphic symplectic structure. It is known that for F' €
D (X) the singular support SS(F') is a Lagrangian subvariety of T*X. More precisely, let S be a
stratification of X, (say a Whitney stratification). Let As be the conormal variety of the stratification,
As = | lges T$X. This is a closed conic Lagrangian subvariety of T*X, with components As =
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T3(X). If F is constructible with respect to S, then SS(F) is Lagrangian and lies in As and hence
is a union of some components of As.

For a constructible sheaf, it is possible to refine the SS(F’) to obtain a Lagrangian cycle. Essen-
tially the issue is to attach a multiplicity to each component of the singular support. Let As be the
set of nondegenerate covectors in Ag, that is,

1.\5 = As\ U Ag, NAs,.
S51#52

Similarly set As = As N As. For a holomorphic function f on X let A 7 denote the graph of df
in T*X. It is a Lagrangian submanifold. For any F constructible with respect to S we construct a
Lagrangian cycle as follows. Let As be a component of As. Then for ¢ € Ag pick a holomorphic
function f with f(z) = 0 and df (z) = £, where ¢ € T; X, and such that A intersects Ag transver-
sally at €. Let ms = (—1)4™(X)x(¢(F)).. Then it can be shown that this integer is independent of
all the choices involved, and we set

CC(F) =) msAs.
SeSs

Note that mg is clearly zero for any component of As which is not contained in SS(F). The
support of ¢;(F) is contained in the projection to X of the intersection A; N SS(F), hence we see
that locally ¢;(F) is concentrated at z. If F is perverse, then since the vanishing cycle functor
preserves perversity, this forces ¢ (F’) to be concentrated in degree 0, and hence the coefficients mg
are nonzero whenever ¢4 (F) is nonzero, thus SS(F') is precisely the support of the cycle CC(F).

Our construction of the characteristic cycle follows [KSc]. In the language of D-modules one
naturally obtains the characteristic cycle of a holonomic module as a positive Lagrangian cycle via
a good filtration. This ammounts to a different normalization of the characteristic cycle. Thus for
us CC(Cx) = [Tx X], whereas in say [KT] they normalize so that CC(Cx ) = (~1)4m(X)[T% X].

3.4 Microlocal construction of W

The group algebra of the Weyl group can be realized as the K-group of a certain category of per-
verse sheaves on B x B, equipped with a convolution product. Let # be the category of semisimple
complexes (that is, complexes which are direct sums of simple perverse sheaves with shifts) on
B x B which are constructible with respect to the G-orbit stratification. Thus this category has sim-
ple objects {£,,: w € W} where L,, is the intersection cohomology complex attached to the orbit
Y, (see section 3.1), and hence the K-group has a basis given by the classes [£,,]. The convolution
product is given by a triple diagram in the normal way: Let d = dim(B). The threefold product
of B with itself admits three maps to B x B, denoted p;; where i and j are distinct elements of
{1,2,3}. For A, B € H we set A * B to be the complex (p13):(p},(A)[d] ® p3,(B)[d])[~d]. Since all
the morphisms p;; are smooth and proper, standard facts show that A B lies in #. Thus # gives
a “categorical” realization of the Hecke algebra associated to W, and the corresponding K-group
is therefore isomorphic to Z[W]. For details of this construction see, for example, [S82]. We make
explicit our isomorphism of the K-group with Z[W]as follows. Given A € H set

e(A) =) (Z(—l)i“‘(w)dimeU(A)) w,

wew i

where #,(A) is the stalk cohomology of A at any point of Y,,. Then e is an algebra isomorphism
sending, for example, [£,] to s—1. (Note that our map corresponds to setting v = —1in the algebraic
context. This is slightly different to the normal specialization, which sets v = 1 (although ¢ = v?
still specializes to 1).

Kashiwara and Tanisaki [KT] related # to the construction of Z[W]in the top homology of Z
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[KL80b] by showing that the characteristic cycle map is actually an algebra isomorphism between
the two realizations of Z[W]. Indeed as all the sheaves in # are constructible with respect to the
orbit stratification, it follows from the above that for A € #, CC(A) is a union of some components
of Z. They defined the basis {b,,: w € W} by setting b,, to be the preimage of the component Z-

We wish to obtain the algebra W of functions on Z via some sort of microlocalization of the
sheaves in . Let 7: T*(B x B) = B x B denote the bundle map. We define a map w from perverse
sheaves on B x B to Z-valued functions on 7*(B x B) as follows:

@(P)(€) = x(kx(e)(P))e>

where P is a perverse sheaf on B x B, and ¢ € T*(B x B). It follows that w(P) is constructible when
restricted to the cotangent space of any point, and moreover the equivariance of the sheaves in #{
ensures that the image of H consists of constructible functions.

The following is the key assertion in this approach.

Conjecture 3.4.1. The map w gives an algebra isomorphism from K (}) to W, where K (#) is the Grothedieck
group of H.

We now show that the conjecture is implied by the equality of the stalk Euler characteristics
of two different microlocalizations. Given a point £ € T*(B x B) and a simple reflection s, if
m(€) = (b1, b2) then let X,(€) = {(b, b2): (b,51) € Y5}

Lemma 3.4.2. Suppose that for each perverse sheaf A in M, and § € Tx . (B x B) we have

x(pre) (A))e = x(Bx,(6)(A))e, (34.1)

Then the above conjecture holds.

Proof. To show that w is an algebra homomorphism it is enough to compare the actions of a simple
reflection s € S, since these generate the group algebra. Thus we begin by describing the action
of convolving with [£,] for s a simple reflection. Note that since Y, is smooth (it is P! bundle
over B), the characteristic cycle of £, is —[A,]. Using functoriality of microlocalization, an easy
SL, calculation shows that @(L,) = — fs. Hence the conjecture predicts that convolving with £,
corresponds to multiplication by f,. Let Z, be the variety {(b1,b2,bs) € B x B x B: (b1,b2) € Ys}.
Then let p: Z, — B x B denote the map (b1, b2,b3) — (b1,b3) and g: Z, - B x B denote the map
(b1, ba, b3) > (ba, b3). It is easy to see that

Ls* A =pq*(A)1).

By the above discussion, we wish to compare the values of w(Ly * A)(€) and f, * w(A)(§) for
¢ € ZC T*(BxB). Now letz = n(£), thus z = (by, by) for some pair of Borel subalgebras by, b; € B.
The projective line X,(¢) in the statement of the lemma is just the set p(g~1(z)). Thus X, (&) consists
of all (b, b;) with (b,b;) € Y;. Now observe that both of the maps p and g are smooth and proper
(each makes Z, into a P'-bundle over B x B. Thus we may straightforwardly apply the theorems
in the previous section to calculate p (g (A).

pz (prg” (A))[1] = Rowpypptip(a) (7 (A)[1])
= Ry, pjfip(a) (4 (A))[-1] (342)
= Ry pyRpq, @y (uy (A))[-1].
Now since Verdier duality acts trivially on stalk Euler characteristics in the complex setting (see for
example [KSc, Exercise IX.12] and [Su]), we see that ! and * are interchangeable once we take Euler

characteristics. It is then easy to check that if we assume the equality in the statement of the lemma,
we have w(L, * A)(£) = —fs * w(A)(€) as required. O
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3.5 Lagrangian cycles and intersection multiplicities.

For the moment, we will assume that equation (3.4.1) holds, and so = is assumed to be a homomor-
phism. We now show that this implies Theorem 3.1.1, both of Lusztig’s conjectures and hence our
construction of the Springer representations. The crucial tool in establishing these claims is the in-
dex theorem of Byrlinski, Dubson and Kashiwara [BDK], and its variants as described in [G86]. Let
us briefly recall their statements. The point is essentially that the Euler characteristic information
of a constructible sheaf is encoded in the characteristic cycle, and it may be recovered via suitable
intersection multiplicities.

The first problem here is that Lagrangian cycles are not compact, hence if we are to use some
kind of local intersection multiplicity to describe stalk Euler characteristics, we must be careful
what we mean. We follow the approach of Kashiwara [K85] as expanded by Ginzburg — though
the reader should be warned that the discussion of local intersection multiplicities in section 11
of [G86] contains an error [GO1] which we fix here. All objects in this section are at least real
(sub)analytic

Suppose that X is a complex manifold, and T*X is its cotangent bundle. For a Lagrangian
cycle A C T* X we first define, for z € X the local intersection multiplicity I([X],A). Let f be a
real-analytic function on X. If V' is a complex vector space, the operation of taking real parts gives
an isomorphism from Homg(V,C) to Homg(V, R), hence we may naturally identify the cotangent
bundles T*(X®) and T*X, where X® is the underlying real manifold. Thus we may view the
differential of f as a Lagrangian cycle in T*X. As in section 3.3 we will denote this cycle by Ay.
Equip X with an analytic Riemannian metric, and let p, : X — R denote the squared distance from
z. Then the following observation follows immediately from the curve selection lemma (see [K85]
for details).

Lemma 3.5.1. Let A be a conic Lagrangian cycle in T* X . Then the (set-theoretic) intersection of A with
A,, isisolated at . a

Standard perturb-and-count methods now allow us to define the intersection multiplicity at =
of A,, N A for any conic Lagrangian A.

Definition. Given A a conic Lagrangian cycle, we set

Iz([X]vA) = AP: A

We are now able to state the first of the Index theorems that we need. (Indeed all the others
follow from it, once we know how to manipulate characteristic cycles). A readable account of a
version of this theorem (in fact a slight generalization of it) is given in [GrM].

Theorem 3.5.2 ([BDK],[D84]). Let X be a complex manifold, and F € D.(X). For any x € X we have
Xz (F) = I;([X],CC(F)).
O

The reader should note that we use this result on varieties of dimension 2dim¢(B) and hence
the sign will always be positive. Next we wish to show how to extend the definition of intersection
multiplicities to arbitrary conic Lagrangian cycles, A1, A,. First assume that A; = Ty X for some
closed submanifold ¥ C X. Then we may use the deformation to the normal cone of T} X as
described in section 3.3.

Because Ty X is Lagrangian, the symplectic form allows us to identify Try xT*X ~ T*(T3 X) =
T*A1. Moreover if we replace A; with the normal cone Cy, (A2) (see section 3.3) then it is known
that this cycle is again conic Lagrangian in T*A; [KSc, Theorem 8.3.17]. Thus for £ € A; we define

I (A1, Ag) = Ig (A1, Ca, (Ag)).
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Finally (we include this for completeness only— we never need this case in what follows) for
A, A; arbitrary, we define the intersection multiplicity by reduction to the diagonal. Let A denote
the diagonal in X x X. We set

Ig(Al,Az) = IE(TA(X X X),A] X Az)

Finally, we can describe the Euler characteristics of the microlocalization of a sheaf along a
closed submanifold in terms of the characteristic cycle of the sheaf. To do this we need the follow-
ing theorem, which follows from [Sa, 4.4] and the fact that the Fourier transform preserves charac-
teristic cycles (once suitable identifications are made, see [KSc, Exercise IX.7]). The corresponding
statement for D-modules is given in [G86, section 7].

Theorem 3.5.3. Let Y be a closed submanifold of X, and F € D.(X). Then using the identification
TryxT*X ~ T*(Ty X) we have

CC(uy (F)) = Cry x(CC(F)).

O
Combining this with Theorem 3.5.2 we obtain the following consequence.
Corollary 3.5.4. Let Y be a closed submanifold of X, let F € D (X), and let £ € Ty X. We have
xg(fy (F)) = I((Ty X], CC(F)).
In particular, we obtain the formula,
@(A)(€) = I([T7 B x B], CC(A)),
for AeH. O

It is this corollary that immediately implies both of Lusztig’s conjectures, and gives an explicit,
though not really computable, formula for the semicanonical basis functions.

Theorem 3.5.5. Assume that © is @ homomorphism. Then Lusztig’s conjectures follow and moreover we

have _
fuw(&) = Ie([Tr ¢y (B x B)], [Zu])-
a

We now wish to address equation (3.4.1), which have so far been assuming. The above dis-
cussion shows that it is equivalent to a statement about intersection multiplicities. Indeed in this
language we must show that

I(IT3 ) (B x B)), [Zu)) = Ie([Tx, () (B x B), [Zw)), (3.5.1)

foreachw € W.

We outline an approach to establishing this equation, which depends on the equality of our
previous description of local intersection multiplicities, with an alternative one given by Dubson
[D89]. The advantage of his approach is that it does not need to deform to the normal cone, and
hence it is easier to compute with. The idea is essentially an elaboration of Lemma 3.5.1. Let
A1, A; be Lagrangian cycles in T*X as above (though in fact here we do not need them to be
conic, only subanalytic) and let £ be a point in their intersection. Pick an analytic Riemannian
metric on 7*X, and consider the resulting function d; measuring the distance from {. Then if
fi: T*X — T*X denotes the Hamiltonian flow induced by d,, Dubson shows that for sufficiently
small closed balls B.(¢) about ¢ (defined using our fixed Riemannian metric), there is an open
interval (0, c(¢)) such that for all ¢ € (0, c(e)) we have 8B,(£) N f:(A1) N A2 = @ and hence at least
in B, (£) these cycles intersect properly, and we may define the degree of intersection in the normal
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way. Let mult¢(A;, Az) be this degree, where the multiplicity is independent of all choices made
(this is essentially the main result of [D89]).

It is easy to check that for any point z € X C T*X, and for a conic Lagrangian A, we have
I;([X],A) = mult; ([X], A), and so Theorem 3.5.2 remains true if we replace our original definition
of local multiplicity with Dubson’s one. However what we need is that the two multiplicities
always agree.

Conjecture 3.5.6. For any conic Lagrangian cycles A,,A2 we have

multg (A1,A2) = IE(AI ,A2).

We now show how this assumption establishes equation 3.5.1.

Lemma 3.5.7. For £ € Z,, we have
multe [Ty (B x B)], [Zu)) = multe ([Tx, ) (B x B)], [Zu])-
Hence Conjecture 3.5.6 implies Conjecture 3.4.1.

Proof. The crucial point of the lemma is that the lines X,(£) sit nicely in the orbit stratification of
B x B. More precisely, it follows from the Bruhat decomposition that all but one point of X,(¢)
lies in Yy, for some u € W. The case where X,(£) NY,, = n(¢) is easy and can be one separately.
Otherwise we have X,(£) C Y., and so we know, by Whitney’s condition (a) (see [KSc, Exercise
VIIL.12]), that .

Zulx,¢) € Tx,(e)» (35.2)

except perhaps at the point X,(£)\Y,. If 7(£) is not this point, since everything is local, we can
easily see that the two Lagrangian cycles Ty, (B x B) and Ty (B x B) can be moved into each
other in a fashion which preserves the intersection multiplicity. If x(£) is this point, then we must
be slightly more careful. The point is to “rotate” the cycle Tx,(¢)(B x B) into T (B x B) in such
a way that one never creates extra intersection. This can be done straightforwardly in coordinates
using (3.5.2). O

Hence we see that the equality of our two definitions of intersection multiplicity would imme-
diately imply equation (3.5.1), and hence the conjectures of Lusztig.

Remark. There are a number of situations in which an algebra has been constructed from a variety
via convolution in both Borel-Moore homology and constructible functions. The idea of this chap-
ter is to show that in the case when the underlying variety is the conormal space to a stratification,
the two constructions can be derived from a single construction on the base manifold by some sort
of microlocalization. However, there are cases when these two constructions can be carried out
(for example on Nakajima’s quiver varieties [N94], [N98], [L]) where there is no base manifold—
the underlying variety is a Lagrangian subvariety of a symplectic manifold which is no longer a
cotangent bundle. It would be interesting to give a purely symplectic way of comparing the two
constructions which would apply in these cases, and would give an expression for the correspond-
ing semicanonical functions.
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