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Transition of an electron from a free to a bound state is critical in determining the qualitative shape of the
spectrum in high-order-harmonic generation (HHG), and in tomographic imaging of orbitals. We calculate and
compare the recombination amplitude, from a continuum state described by a plane wave and an outgoing
scattering eigenstate, to the bound state for the noble gases that are commonly used in HHG. These calculations
are based on the single active electron model and the Hartree-Fock-Slater method, using both the length form and
the acceleration form of the dipole matrix element. We confirm that the recombination amplitude versus emitted
photon energy strongly depends upon the wave function used to describe the free electron. Depending on the
choice of the wave function and the dipole form, the square of the absolute value of the recombination amplitude
can differ by almost two orders of magnitude near the experimentally measured Cooper minima. Moreover, only
the outgoing scattering eigenstates with the length form roughly predict the experimentally observed Cooper
minimum for Ar (∼50 eV) and Kr (∼85 eV). We provide a detailed derivation of the photorecombination cross
sections from photoionization cross sections (PICSs) calculated by the relativistic random phase approximation
(RRPA). For Ar, Kr, and Xe, we compare the total PICSs calculated using our recombination amplitudes with
that obtained from RRPA. We find that PICS calculated using the outgoing scattering eigenstates with the length
form is in better agreement with the RRPA calculations than the acceleration form.

DOI: 10.1103/PhysRevA.88.053405 PACS number(s): 32.80.Wr

I. INTRODUCTION

The three-step model (TSM) is commonly used to describe
the dynamics of an electron in the strong-field regime, which is
responsible for generation of high-order harmonics [1]. In this
semiclassical description, the dynamics of a single electron
is simplified into three distinct steps: ionization, propagation,
and recombination (back to the orbital of origin in the parent
atom or molecule). The amplitude of the harmonic dipole
is determined by a product of the amplitudes of each of
the three steps [2]. In the TSM, it is assumed that while
the first two steps are affected by the strong IR field; the
recombination step, which leads to the generation of high-
order harmonics, is not affected by the strong IR field. It
has been shown that the qualitative shape of the plateau in
the high-order-harmonic generation (HHG) spectrum almost
exclusively depends on the recombination amplitude [3–5].
Additionally, the recombination step serves as a probe that
imprints information about electronic orbital [6], atomic
attosecond dynamics [7,8], and molecular motion [9] onto the
harmonic spectrum. The central role that the recombination
step plays in the aforementioned experiments serves as a
strong motivation for a systematic study of the recombination
amplitude of noble gases commonly used in HHG.

The recombination amplitude describes the transition of the
returning electron back into the atomic orbital from where it
originated. The strength of this transition is given by a dipole
transition matrix element that depends on the wave function
used to describe the returning electron. Since it is not possible

*Corresponding author: siddharb@mit.edu

to calculate the exact many-body eigenstates of the electrons
in the atom, one needs to resort to various approximations
to describe the electronic wave function. A key assumption
made in the TSM is that only a single electron participates
in the HHG process while the ion core remains frozen. In
this picture, the electron from the outermost valence orbital
aligned along the laser polarization tunnel ionizes and upon
return recombines to the same orbital. This is called the single
active electron approximation (SAEA). In this paper, we use
an effective atomic potential (VHFS) to calculate the bound
and continuum eigenstates. The effective atomic potential is
obtained from the Hartree-Fock-Slater (HFS) model which
employs a local density approximation for the exact exchange
interaction [10]. An important consequence of approximating
the exact many-body eigenstate with the eigenstates of VHFS

while using the exact Hamiltonian in the acceleration form
is that the form invariance of the dipole operator is lost, i.e.,
the recombination amplitude depends on whether the dipole
operator is in the length form or in the acceleration form [11].

Another important assumption made in the TSM is that after
ionization the electron moves only under the influence of the
laser field without any interaction with the Coulomb potential
of the ion core. The rationale behind this assumption, often
referred to as the strong-field approximation (SFA), is that in
strong-field processes such as HHG, the ionized electron can
travel hundreds of Bohr radii away from the atom. Therefore,
its trajectory, for the most part, is that of a free electron in
an external electric field which can be described by Volkov
states (plane waves with time-dependent momentum) [12].
The basic assumptions of SFA are (a) neglect the laser field
for the calculation of bound states, and (b) neglect the core
Coulomb potential for the calculation of the continuum states

053405-11050-2947/2013/88(5)/053405(7) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.053405
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[13]. A recently measured HHG spectrum of Ar is shown to
have a deep minimum (related to the Cooper minimum of
its photoelectron spectrum) that is independent of the laser
intensity or wavelength [14,15]. This Cooper minimum of the
HHG spectrum can be theoretically reproduced if the ionized
electron is defined by outgoing scattering eigenstates [16]
rather than plane waves while keeping the bound states as
eigenstates of field-free Coulomb potential [14]. This indicates
that while the first assumption of SFA appears to be valid, the
second assumption is not accurate. Hence we are motivated to
use the outgoing scattering eigenstates rather than the plane
waves in the calculation of the recombination amplitudes of
all noble gases used in HHG.

Since photorecombination and photoionization cross sec-
tions have the same dipole transition matrix element, the
recombination amplitude can be compared with the exten-
sively studied photoionization cross section (PICS). The
mathematical relation between the recombination amplitude
and the PICS will be discussed in detail in Sec. II. The central
potential model with a single active electron has also been used
to calculate the PICSs in the extreme ultraviolet regime (0 −
100 eV) [17] and x-ray regime [18] which are in qualitative
agreement with experimental results. However, this simple
model does not take into account interchannel coupling needed
to explain the PICS of the 3p shell in Ar and the 4d shell in
Xe [19]. Techniques such as R-matrix theory [20] and random
phase approximation with exchange (RPAE) [21] incorporate
interchannel coupling as a perturbation, while the relativistic
random phase approximation (RRPA) [22,23], in addition, also
includes the relativistic effects. PICSs calculated using the
RRPA match very well with the experimental measurements
[24]. As we will see in Sec. II, it is possible to calculate the pho-
torecombination cross section (PRCS) from PICS. In principal,
by comparing the PRCS obtained from RRPA with the PRCS
obtained from our recombination-amplitude calculation, one
can discuss the limitations of the central potential model with
a single active electron. However, due to lack of mJ resolved
PICS data from RRPA, we compare the differential photoion-
ization cross section from our theory with that from RRPA.

In this paper, we extensively investigate the recombination
amplitudes of the commonly used noble gases in HHG. We
show that the recombination amplitude versus emitted photon
energy critically depends upon the choice of the wave function
used to describe the returning electron as well as the form of the
dipole operator. In some cases, the square of the absolute value
of the recombination amplitude can differ by two orders of
magnitude because the Cooper minima are located at different
energies. This is critical when predicting the efficiency of the
HHG process and in attosecond pulse generation at certain
photon energies. In order to show the limitation of the central
potential model, we compare the PICSs calculated using our
recombination amplitudes with PICS obtained from the RRPA.
This paper is structured as follows: in Sec. II we derive the
recombination amplitude and show how to calculate PRCS
from PICS. In Sec. III the results are discussed and compared
with the PICS data calculated using RRPA [25].

II. THEORY

The recombination amplitude or the dipole matrix element
of transition from the momentum-normalized free state |�k〉

to the bound state |�g〉 can be written in the length and the
acceleration forms:

alen(k) = 〈�g|z|�k〉, (1a)

aacn(k) = 〈�g| − ∂zV |�k〉. (1b)

When used in the TSM, Eq. (1a) gives the dipole moment
[1] and Eq. (1b) gives the dipole acceleration [26]. The
recombination amplitude in the length and the acceleration
form are related by

〈�g| − ∂Vz|�k〉 = ω2
gk〈�g|z|�k〉, (2)

where

ωgk = k2

2
+ Ip (3)

is the energy of the photon emitted after recombination, k is
the momentum of the ejected electron, and Ip is the ionization
potential. Although we use an approximate Hartree-Fock-
Slater potential VHFS to calculate the electronic eigenstates,
for the calculation of the recombination amplitude in the
acceleration form, the exact multielectron potential V is used
(See Eq. (9) of [27]). Since the electron-electron interaction
term cancels out, we get

〈�g| − ∂Vz|�k〉 = −ZN 〈�g| z

r3
|�k〉 (4)

where ZN is the atomic number. Validity of Eq. (2) is
predicated upon the usage of exact many-electron wave
function for bound and free states.

We begin the calculation of the recombination amplitude by
expanding the plane wave in the spherical coordinate system
as an infinite sum of free spherical waves. For simplicity, it is
assumed that the ionized electron moves along the z direction.
This allows us to limit the expansion to spherical waves with
ml = 0. Then the momentum-normalized plane wave and the
ground state, projected on the r space, become

〈
r
∣∣�pl

k

〉 =
∞∑
l=0

al

u
pl

kl (r)

r
Yl0(�r ), al = il

2k

√
2l + 1

π
, (5a)

〈r|�g〉 = ug(r)

r
Yl0(�r ). (5b)

The radial part u
pl

kl (r) is proportional to the momentum-
normalized spherical Bessel function of the first kind:

u
pl

kl =
√

2

π
kr jl(kr). (6)

Yl0(�r ) is the spherical harmonic with zero magnetic
quantum number. The radial part of the ground-state orbital
is calculated by solving the Hartree-Fock-Slater eigenvalue
problem using a generalized pseudospectral method [28,29]
on a nonuniform grid. Recombination amplitudes for the plane
waves are calculated by inserting Eqs. (5a) and (5b) in Eq. (1a)
for the length form and Eq. (1b) for the acceleration form.
The calculation is simplified because the summation over all
angular momenta is reduced to the terms that satisfy the dipole
selection rule �l = ±1. Then, the recombination amplitude of
a plane wave into the outermost orbital of He (|l = 0,ml = 0〉)
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in the length and acceleration form are

a
pl

len(k) = a1c1〈ug|r
∣∣upl

k1

〉
, (7a)

apl
acn(k) = −a1c1ZN 〈ug| 1

r2

∣∣upl

k1

〉
. (7b)

For other noble gases where the outermost orbital is |l =
1,ml = 0〉, the recombination amplitude of the plane wave in
the length and the acceleration form are

a
pl

len(k) = a0c0〈ug|r
∣∣upl

k0

〉 + a2c2〈ug|r
∣∣upl

k2

〉
, (7c)

apl
acn(k) = −a0c0ZN 〈ug| 1

r2

∣∣upl

k0

〉 − a2c2ZN 〈ug| 1

r2

∣∣upl

k2

〉
. (7d)

Here, al is the coefficient of expansion in Eq. (5a), cl =
〈Ym=0

lg
| cos θ |Ym=0

l 〉 is the angular part of the integral, and
ug(r) is the radial part of the ground-state orbital. Using

cos θ =
√

4π
3 Y10, we can express cl in terms of Wigner 3j

symbol [30]:∫
Yl1m1 (θ,φ)Yl2m2 (θ,φ)Yl3m3

(θ,φ) sin θ dθdφ

=
√

(2l1 + 1)(2l2 + 1)(2l2 + 1)

4π

×
(

l1 l2 l3

0 0 0

) (
l1 l2 l3

m1 m2 m3

)
. (8)

For a spherically symmetric potential, the outgoing scatter-
ing eigenstate can be obtained by replacing the radial part of
the free spherical wave u

pl

kl (r) in Eq. (7) by the radial part of
the corresponding partial wave ei(δl+σl )usc

kl (r) [31]. The radial
part of the continuum states is solved by the fourth-order
Runge-Kutta method on a uniform grid [17,32] using the
Hartree-Fock-Slater potential determined for the ground state.
Similar to the case of the plane wave, the recombination
amplitudes in the length and the acceleration form of the
outgoing scattering eigenstate for He [Eqs. (9a) and (9b)] and
other noble gases [Eqs. (9c) and (9d)] are

asc
len(k) = a1c1e

i(δ1+σ1)〈ug|r
∣∣usc

k1

〉
, (9a)

asc
acn(k) = −a1c1ZNei(δ1+σ1)〈ug| 1

r2

∣∣usc
k1

〉
, (9b)

asc
len(k) = a0c0e

i(δ0+σ0)〈ug|r
∣∣usc

k0

〉 + a2c2e
i(δ2+σ2)〈ug|r

∣∣usc
k2

〉
,

(9c)

asc
acn(k) = −a0c0ZNei(δ0+σ0)〈ug| 1

r2

∣∣usc
k0

〉

− a2c2ZNei(δ2+σ2)〈ug| 1

r2

∣∣usc
k2

〉
. (9d)

In the asymptotic limit, the radial part of the partial wave
and the free spherical wave become

usc
kl (r) →

r→∞

√
2

π
sin

(
kr − lπ

2
− η ln 2kr + σl + δl

)
, (10)

u
pl

kl (r) →
r→∞

√
2

π
sin

(
kr − lπ

2

)
. (11)

In the asymptotic limit, the radial part of the partial wave
[Eq. (10)] and the radial part of the free spherical wave

[Eq. (11)] differ by a phase shift which is composed of three
terms: the r-dependent phase term is due to the long-range
nature of the Coulomb potential, σl is the Coulomb phase shift,
and δl is the phase shift against the regular coulomb wave (due
to the short-range part of the HFS potential VHFS) [33]. The two
terms in Eqs. (9c) and (9d) correspond to s and d partial waves
that satisfy the dipole transition rule for the bound p orbital.
Interplay between the two terms determines the minima in the
recombination amplitude, an example of which is the location
of the commonly observed Cooper minimum in Ar [14,15,34].
Once we have the recombination amplitude, the PRCS for
recombining into the orbital |l = 1,ml = 0〉 (|l = 0,ml = 0〉
for He) can be calculated by [30]

dσR
len

d�kd�n

= 4π2ω3

c3k

∣∣asc
len(k)

∣∣2
, (12a)

dσR
acn

d�kd�n

= 4π2ω

c3k

∣∣asc
acn(k)

∣∣2
. (12b)

Here, c is the speed of light, k is the momentum of the returning
electron, and ω is the angular frequency of the released photon.
�n and �k are solid angles in the direction of polarization of
emitted photon and electron momentum, respectively. We want
to compare our PRCS with that available in the literature. Since
PICSs have been extensively studied, both experimentally and
theoretically, we will first review the method of converting
PICS into PRCS.

The reverse of the recombination step described in Sec. II
is the process where a photon with polarization along a solid
angle �n ionizes an electron in the polarization direction from
the outermost orbital (|n,l = 0,ml = 0〉 for He, |n,l = 1,ml =
0〉 for other noble gases). Due to this symmetry, the cross
sections of the two processes are related by the principle of
detailed balancing [31]:

d2σR

ω2d�nd�k

= d2σ I

k2c2d�kd�n

, (13)

where ω is the photon frequency, k is the electron momentum,
σR is the photorecombination cross section, and σ I is the
photoionization cross sections. In order to apply the above
relation to calculate the PRCS from the total PICS we need (a)
the partial PICS which is the contribution of the polarization-
aligned outermost orbital, and (b) the differential PICS which
is the photoionization cross section of emitting an electron in
a given solid angle. The differential PICS can be calculated
using [4]

dσ I
lml

d�k

= σ I
lml

4π
{1 + βlml

(ε)P2[cos(θk)]}, (14)

where σ I
lml

is the partial PICS of |lml〉 orbital, βlml
is the

energy-dependent asymmetry parameter, and P2 (cos θk) is
the second-order Legendre polynomial. The polar angle θk is
the angle between the laser polarization and the direction of the
ejected electron. Due to the dipole approximation Eq. (14) is
independent of the azimuthal angle ϕ. Since we are interested
in ionization along the laser polarization, θk is set to zero.
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FIG. 1. (Color online) Square of absolute values of the recom-
bination amplitude of argon and krypton for plane wave (PW) and
scattering eigenstate (SC) in length form (LF) and acceleration form
(AF): blue dashed (PW-LF), red dashed (PW-AF), blue solid (SC-LF),
and red solid (SC-AF). In order to compare the length and the
acceleration form, the former has been multiplied by square of the
pre-factor in Eq. (2).

III. RESULTS AND DISCUSSION

In Fig. 1, the squares of the absolute values of the
recombination amplitude—calculated using plane waves and
outgoing scattering eigenstates and dipole moment in both the
length form and the acceleration form—have been plotted for
Ar and Kr. In order to compare the length and acceleration
forms, the former has been multiplied by a prefactor as shown
in Eq. (2). Calculations using the plane waves and the outgoing
scattering eigenstates differ by almost two orders of magnitude
around the experimentally measured Cooper minima (∼50 eV
for Ar and ∼85 eV for Kr) because the location of the minima
predicted by the plane wave is way off from the experimentally
measured values. The results are also dependent on the form
of the dipole operator: For outgoing scattering eigenstates, the
minima for the length and the acceleration forms are located
at 44 and 86 eV, respectively, for Argon, and 68 and 235 eV,
respectively, for krypton. The plane wave fails to reproduce
the experimentally observed minima irrespective of the form
of the dipole operator. This suggests that using a plane wave
to describe the returning electron is a poor approximation
which has also been demonstrated in the calculation of HHG
spectrum from molecules using quantum rescattering theory
[30]. Hence, for the rest of the paper, we will only focus on
outgoing scattering eigenstates.

For outgoing scattering eigenstates, we have compared the
squares of the absolute values of the recombination amplitude
of various noble gases. In Figs. 2 and 3 these comparisons
are shown for the length form and for the acceleration form,
respectively. The plots of different gases vary significantly as
a function of the emitted photon energy. This information is
crucial in determining the choice of gas for HHG in a particular
energy range. The effect of the choice of the dipole form on
the recombination amplitude of a given gas can be observed by
comparing the plots in Figs. 2 and 3. For He and Ne, the results
are quantitatively similar. As we move to heavier gases, the
effect of the choice of the dipole form on the recombination
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FIG. 2. (Color online) Square of the absolute value of the
recombination amplitude for outgoing scattering eigenstates in the
length form.

amplitude becomes evident due to form-dependent minima.
Therefore, we need to determine which form of the dipole
moment is more suitable in the modeling of HHG.

In modeling of HHG using the TSM, the acceleration form
is often preferred because in the calculation of macroscopic
propagation of HHG, the dipole acceleration is proportional
to the polarization term in Maxwell’s equation. Usage of
the length form would require taking a double time deriva-
tive which can become numerically cumbersome in three-
dimensional modeling of the HHG process. Two reasons have
been put forth in favor of the acceleration form. First, it has
been shown that the high-harmonic spectrum of hydrogen
obtained from TSM is in better agreement with the exact
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FIG. 3. (Color online) Square of the absolute value of the
recombination amplitude for outgoing scattering eigenstate in the
acceleration form.
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time-dependent Schrödinger equation when the recombination
amplitude in the acceleration form is used [26]. Second,
experimentally observed scaling of HHG intensity with the
atomic number of the noble gas has been explained using
acceleration form in its exact form as shown in Eq. (4)
[27]. Due to the presence of atomic number ZN in Eq. (4),
heavier atoms will have a higher recombination amplitude and
therefore a stronger HHG radiation.

In both of the aforementioned studies (Refs. [26,27]),
preference for the acceleration form stems from the fact
that the returning electron is described by a plane wave
rather than an outgoing scattering eigenstate. For hydrogen,
when an outgoing scattering eigenstate is used to describe
the returning electron, the recombination amplitude is form
invariant. Similarly, PICS calculated using outgoing scattering
eigenstate (of the effective central potential) and length form
increases for heavier gases [17]. Since PRCS is proportional
to PICS [Eq. (13)], the former should also increase for
heavier gases which explains the increase in HHG yield with
atomic number. Hence, it is unclear if the acceleration form
is inherently better than the length form. As discussed in
the Introduction, the lack of form invariance is due to the
limitations of the SAE model based on a central potential.
Since this approximation is extensively used to model HHG,
it is important to know which of the two dipole forms can
better reproduce the experimental results and in which energy
regimes. In order to do so we will compare the total PICS
obtained from our HFS model with the total PICS obtained
using RRPA.

Experimentally, the total PICS of noble gases has been
extensively studied [35,36]. The differential and the partial
PICS has also been measured for 2s and 2p orbitals of Ne [37],
and 3s and 3p orbitals of Ar [38]. Theoretical calculation of the
partial PICS and the asymmetry parameter has been done using
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FIG. 4. (Color online) Argon’s differential photoionization cross
sections (PICSs) calculated using outgoing scattering eigenstates with
dipole moment in the length form (blue) and the acceleration form
(red), and RRPA (black). PICS obtained from the length form is in
better agreement with the RRPA calculation (1 a.u.2 = 28 Mb).

0 50 100 150
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

photon energy (eV)

D
iff

er
en

tia
l P

IC
S

 (
at

om
ic

 u
ni

ts
)

Photoionization Cross section of Krypton

RRPA
Length Form
Accn Form

FIG. 5. (Color online) Krypton’s differential photoionization
cross sections (PICSs) calculated using outgoing scattering eigen-
states with dipole moment in the length form (blue) and the
accelaration form (red), and RRPA (black). PICS obtained from the
length form is in good agreement with RRPA calculation in 30–80 eV
range. In the same range, the acceleration form is off by about four
orders of magnitude (1 a.u.2 = 28 Mb).

nonrelativistic random phase approximation (RPA) and RRPA
[25]. While RPA is quite successful in the calculation of total
PICS, it fails to accurately calculate the partial cross section
and the asymmetry parameter where the relativistic effects are
important [23]. RRPA, on the other hand, includes correlation
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FIG. 6. (Color online) Xenon’s differential photoionization cross
sections (PICSs) calculated using outgoing scattering eigenstates with
dipole moment in the length form (blue) and the accelaration form
(red), and RRPA (black). PICS obtained from the dipole form is
in good agreement with RRPA calculation. In the same range, the
acceleration form is off by about four orders of magnitude (1 a.u.2 =
28 Mb).
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BHARDWAJ, SON, HONG, LAI, KÄRTNER, AND SANTRA PHYSICAL REVIEW A 88, 053405 (2013)

effects and relativistic spin-orbit coupling and reproduces
the experimentally measured asymmetry parameters [39].
Moreover, it also exhibits form invariance [25]. Therefore,
we compare the total photoionization cross section from our
theory with that obtained from RRPA [25].

In Ref. [25], partial PICSs (σ I
J ) of Ar, Kr, and Xe have been

calculated, where J is the total angular momentum and it is a
constant of motion in the presence of spin-orbit coupling. Par-
tial PICSs calculated using SAEA (σ I

l,ml
) are in the |l,ml〉 basis

where l is the orbital angular momentum and ml its component
along the momentum direction. For our purposes, we need to
compare the differential PICS (along the θk = 0 direction)
in σ I

l,ml
basis [∂θk=0(2σ I

l=1,ml=−1 + 2σ I
l=1,ml=0 + 2σ I

l=1,ml=1)]
with the differential PICS in σ I

J basis [∂θk=0(σ I

J= 3
2
+ σ I

J= 1
2
)].

The differential PICSs calculated from our model have
been compared to the differential PICSs obtained from
RRPA in Figs. 4–6 for Ar, Kr, and Xe, respectively. PICS
calculated using the length form and the RRPA results agree
fairly well for Ar and Kr. In the case of Xe, the RRPA
predicts the experimentally observed “giant resonance” [4].
Our model, based on SAE and dipole moment in the length
and acceleration forms, cannot capture this effect because it
does not take into account the interchannel coupling where the
conventional TSM breaks down. This tells us that the TSM
with a single active electron, which has served so well in
predicting the qualitative shape of the HHG spectrum, cannot

be used in high-harmonic spectroscopy when multielectron
effects become important.

IV. CONCLUSION

We have calculated the recombination amplitude, in the
length and acceleration forms of the dipole operator, for both
plane waves and outgoing scattering eigenstates of atomic
HFS potential. We have shown that plane wave approximation
fails to predict the Cooper minimum of Ar and Kr. However,
these features can be reproduced when the outgoing scattering
eigenstates with the dipole moment in the length form are
used. We have also shown that the dipole moment in the length
form is better than the acceleration form in the calculation of
recombination amplitude for certain energies depending upon
the noble gas. The comparison with the PICS obtained from
existing RRPA calculations reveals that the SAE model has its
limitations and more sophisticated theoretical tools are needed
to explain the HHG spectrum over all energy ranges.
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