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Abstract

Cycle time reduction is an important aspect of
integrated product and process development (IPPD).
This paper outlines some of the challenges that impede
efforts to reduce cycle time for complex system
development projects.  Several facets of these challenges
can be summarized using the general concept of design
iterations.  After reviewing this concept, the paper
provides an overview of a process modeling approach
utilizing dependency structure matrices (DSMs—also
known as design structure matrices).  DSMs allow a
simple, visual representation of processes and highlight
potential iterations.  The paper concludes with a
discussion of the ways DSM-based methods help
manage some of the cycle time reduction challenges.

1 Introduction

Tremendous pressure on today’s companies to
achieve and sustain competitive advantage has led to
heightened efforts to reduce product development cycle
time and cost while providing superior products.
Indeed, improved management of the product
development process contributes to sustainable
competitive advantage for companies [1-3].  Many have
recognized that the key to process improvement lies in
better process understanding.  Towards this objective, a
complex design process can be viewed as a set of
simplier activities with discernible interrelationships.
Choices as to the decomposition and integration of
these activities have ramifications for the
competitiveness of the process [4].  The realization that
many product development processes and activities are
procedural and repeatable has given rise to modeling

efforts that seek to describe current processes and
prescribe appropriate policy adjustments.

This paper highlights the capabilities of dependency
structure matrix (DSM)1-based methods to manage
projects for reduced schedule risk and shorter cycle time.
Following a presentation of some cycle time reduction
challenges, I provide overviews of the concept of design
iterations and of DSM-based, process modeling
techniques.  In closing, I discuss how DSM methods
meet the cycle time reduction challenges covered earlier.
This paper’s main contribution is to lay out several
cycle time reduction challenges and show the ways
DSM methods help meet them.

2 Cycle Time Reduction Challenges

Several characteristics of most complex system
development projects make cycle time reduction
especially challenging.  These characteristics and
challenges include:
•  Inefficient distribution of personnel and

resources—including facilities, tools, and especially
information—results in parts of the project
spending “down” time waiting for resources when
they could be working.  While this is inevitable
given limited resources, appropriate planning can
insure that at least critical path activities are not
delayed due to resource constraints.  Lack of and
failure to use appropriate planning techniques
complicates cycle time reduction strategies.

•  Unstable product requirements cause indecisiveness
and foster redesign.  If requirements remain
uncertain too late in the project, extra rework

                                                
1 Or, design structure matrix
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becomes inevitable and cycle time reduction
becomes more difficult.  Making some decisions as
late as possible (a tenet of set-based design) is
sometimes the right thing to do, but certain
decisions need to be made early to properly set the
scope and direction of a project.

•  The existence of long and varied activity
“pipelines” means shorter duration activities finish
and wait for longer duration activities to produce
needed results.  When these results finally become
available, the activities that finished early often
have to go back and change their work based on the
new information.  Meanwhile, if the activities that
finished early had proceeded to more detailed design
work (perhaps because the work culture demands
they “look busy”) before the later results became
available, much of this work could end up
squandered.

•  Lack of activity coordination results in wasted
time, doing the wrong work, and inappropriate
communication.  If activities are not well integrated
to the point of knowing what information each
needs, when, and in what format, they will have
trouble reducing the cycle time of their overall
process.

•  Highly interdependent or coupled activities increase
the chances of iteration or rework.  This effect is
discussed in more detail in the sections that follow.

•  Overly ambitious initial schedules make further
cycle time reductions even more difficult.  If an
original plan turns out to be high risk from a
schedule standpoint, reducing that schedule any
further will cause even greater risk.  In other words,
one cannot reduce cycle time simply by shortening
the planned schedule; one must insure a
commensurate reduction in schedule risk.

•  Many seemingly feasible cycle time reduction
solutions have adverse side effects which reduce
anticipated effectiveness.  Thus, successful cycle
time reduction requires a systems perspective,
taking into account the feedbacks that will tend to
diminish overall process efficacy.

Some have approached the cycle time reduction
problem by simply taking once serial activities and
executing them in parallel.  However, doing so without
paying attention to the interdependencies that may exist
between such activities can actually waste resources
without providing much cycle time advantage.
Activities that depend on other activities for information
will often have to redo some portion of their work if
those inputs change or arrive late.  Hence,
indiscriminately placing once serial activities in parallel
can lead to additional rework or iteration.  A more

effective approach requires a systems view of the
process and the capability to analyze the complex
relationships between activities.  The DSM
methodology meets these requirements.

Together, the challenges above account for a large
portion of the uncertainty or variance that leads to
overruns in project schedules.  Increasing complexity
and scope of the system under development exacerbates
these hazards.  These challenges exist because they are
difficult to plan for and manage on a real-time basis.
The goal of this paper is to show how the concept of
design iterations and the DSM modeling methodology
help address some of these problems.

3 The Concept of Design Iterations

Many of the challenges noted above are captured in
the concept of iterations in the design process.  Here I
provide an overview of this concept.  Realizing the role
of iteration as a schedule risk driver and as a barrier to
cycle time reduction motivates the need for tractable
methods that account for iteration and help managers
focus resources appropriately.

Design iteration implies rework or refinement,
returning to previously worked activities to account for
changes.  This rework can stem from new information
and/or failure to meet design objectives [5].  New
information for an activity comes from:

1) Upstream activities causing an activity’s inputs
to change (often the result of an iteration causing
a second pass through some part of the process,
or a change in externally supplied requirements
and/or assumptions),

2) Concurrent, coupled activities, causing an
activity’s inputs to change, often as shared
assumptions change, and

3) Downstream activities causing an activity’s
inputs to change, as errors and incompatibilities
are discovered.  [6]

Work done later (downstream) in the
process—particularly verification and validation
activities—often reveals aspects of seemingly completed
(upstream) activities that must be reworked [7-10].
Rework can also be generated by changes in the
information provided to and received from concurrent,
interdependent (coupled) activities.  For example, team
A needs to know what values team B has set for
parameters x and y; team B needs to know what values
team C is using for parameters w and z; but team C
needs to know the result of team A’s activities to
determine w and z.  These design issues are sometimes
called “chicken and egg” problems, and the groups that
work to solve them are called coupled teams.  The
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phenomenon of engineers trading technical information
and thereby creating rework for each other has been
observed in several cases by Clark and Fujimoto [1].
Also, when downstream or coupled activities create
rework for upstream activities, the resulting changes
may cause second order rework for interim activities
(those between the upstream and downstream activities
directly involved in the iteration).  Hence, input changes
to activities can generate new information and force
iteration in the process.

Iteration also results from not meeting the desired
design objectives.  Iteration has been defined as “the
repetition of activities to improve an evolving design”
[11].  Failure to converge to design specifications can
require reworking upstream activities tied to the area(s)
of shortfall.  Note that such insufficiency in the design
is more likely when requirements and objectives are
unstable or otherwise prone to modification.  Such
instability results from changing emphasis on known
objectives and/or the addition of new objectives.

Several studies have documented iteration effects as
key drivers of overall development cycle time [2, 3, 12-
18].  In particular, Osborne found that iteration
accounted for between 13% and 70% of total
development time for semiconductor development
activities at Intel.  He also found iteration to be the
chief cause of cycle time variability at the firm.

The iteration perspective helps capture and quantify
drivers of cost, schedule, and performance (design
quality) variability in design programs.  Tightly
coupled, highly iterative product development processes
can expect greater difficulty converging to an acceptable
design under a given schedule and budget.  To move
towards consistent success, product development
projects should strive to insure that, to a greater extent,
their design iterations are strategically planned rather
than the result of seemingly random chance.

In light of this objective, it is useful to divide
iteration in the product development process into two
categories:

1) Intentional iterations, purposely performed
in a coupled design process to converge to a
desirable solution (i.e., improve design quality to
a desired level), and

2) Unintentional iterations, resulting from
new information arriving late in the process
(caused by out of sequence activities, fluid
requirements or design goals, mistakes, etc.).2

                                                
2 Similarly, Clausing [19] proposes the categories
“creative iteration” and “disciplined iteration” as
intentional and “dysfunctional iteration” as unintentional.

The first step towards reducing product development
cycle time and variation lies in minimizing
unintentional iterations.  This consists of insuring that
the right information is available at the right place at
the right time; activities are properly sequenced, given
relevant constraints; resources are available to the
activities when needed; requirements are firm as quickly
as possible; and mistakes are minimized.

The next step towards accelerating the design cycle
involves two basic options for managing intentional
iterations:

1) Faster iterations, and
2) Fewer iterations. [20]
Faster iterations can be achieved by, e.g., CAD

systems that accelerate individual activities, simulation
and analysis tools that reduce dependence on time-
consuming prototype/test cycles, improved intragroup
coordination for teams assigned to individual activities,
concurrent engineering or IPPD, integration of
engineering analysis tools used for disparate activities,
and removal of extraneous activities from the process
[20].  A study by Eisenhardt and Tabrizi [18] and a
model by Gebala and Eppinger [13] find that additional
(because they are faster) iterations are significantly
correlated with faster product development.  Fewer
iterations may be possible by, e.g., improved activity
sequencing, improved interteam (interactivity)
coordination, co-location of those executing highly
interdependent activities, and improved assumptions
(learning) about other activities.  However, fewer
iterations can mean less design quality, or at least a
greater risk that the design will not converge to the
desired targets.  Faster iterations reduce this risk, since
more iterations improve the chance that the design will
converge to acceptable multiattribute performance levels
(all else being equal).  In both cases, however, the
quality, gain, or productivity of each iteration is
important [21].  Fewer iterations might make sense if
each one is of sufficient productivity to ensure
acceptable output.  Faster iterations will only be
advantageous if each activity can be accelerated while
continuing to produce satisfactory outputs.

4 Introduction to DSM-Based Process
Modeling Methodology

This section provides an extremely brief overview
of the origins of DSMs and the keys to DSM
methodology.  DSMs can trace their development to
several sets of roots.  Perhaps the primary source of
DSM concepts grows from efforts to solve systems of
equations in the late 1950s and 1960s.
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Figure 1:  Activity Networks and DSM Equivalents

These efforts expanded into areas such as matrix
mathematics [e.g., 22].  However, DSM concepts are
also related to network precedence diagrams [e.g., 23,
24] and network relationship diagrams [e.g., 25].
Systems engineers familiar with interface-to-interface
(N-to-N or N2) diagrams [26] will also recognize their
similarity to DSMs.

Formal definition and application of these concepts
to design process issues came in 1981, when Steward
described the “design structure matrix” [27, 28].  In
1989, Rogers at NASA built software to aid in
analyzing such matrices [29].  Actual use in industry
settings began about 1990, as several professors and
students at the Massachusetts Institute of Technology
(MIT) built research around the design structure matrix
and expanded its applications,3 as summarized in [39].
In the last few years, this work has expanded beyond
MIT to industry and other universities,4 and the
resulting need for a more general name has led to the
term dependency structure matrix, which retains the
initialism “DSM” left over from Steward’s work.

The DSM is a square matrix with one row and
column per activity.  The activities are listed in roughly
chronological order, with upstream or early activities
listed in the upper rows.  Diagonal elements are
placeholders in a simple DSM, and off-diagonal
elements indicate activity interfaces.  Figure 1 shows
the network flowchart and DSM representations of basic
activity relationships.5  Because of the temporal
ordering of the activities, subdiagonal matrix elements
show feedforward information (such as the flow from

                                                
3 [5, 12, 16, 17, 20, 30-38]
4 [e.g., 40, 41]
5 Diagrams adapted from [31, 42].

activity A to activity B in the serial case).
Superdiagonal elements indicate feedback, the potential
for iteration and rework in the process.  Thus, if
activities in rows (and corresponding columns) i and j of
the DSM have no direct interfaces, entries ij  and ji  in
the matrix will be zero or empty.  If, on the other hand,
both entries ij  and ji  are filled, this indicates two-way
interdependency or coupling between the activities.
Usually this points to some kind of “chicken and egg”
problem, of which many exist in complex system
design.  Traditional PERT/CPM methods and Gantt
charts do not adequately represent these types of
relationships and their effects.

The following is a simple example, showing a
DSM for a familiar process, putting on socks and shoes
(Figure 2).6  Information and precedence relationships
flow in a counter-clockwise direction in the matrix, so
the marks below the diagonal imply, for instance, that
“get socks” must precede “put on socks,” and “get
shoes” must precede “put on shoes” and “inspect shoes.”
The mark above the diagonal in the DSM indicates that,
once shoes have been inspected, they may be found
wanting (e.g., too scuffed up or the wrong color for the
clothes), requiring an iteration, “get (new) shoes.”

Now, the goal in DSM analysis is to resequence
the activities so as to minimize iterations and their
scope.  Since the activities “get shoes” and “inspect
shoes” are coupled, however, there is no way to reorder
the rows (and columns) of the DSM to get all the marks
below the diagonal.  Failing this, we change our goal to

                                                
6 This five activity DSM example is adapted from a
presentation by Stephen Denker, “A New Way to Think
About Problems,” Presentation to Project Management
Institute (PMI), Boston Chapter, 6/19/97.
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getting any superdiagonal marks as close to the diagonal
as possible, minimizing the scope of the iteration.  In
Figure 2, once we “get shoes,” we go ahead and “put on
socks” and “put on shoes” before we “inspect shoes.”
If, instead, we moved the inspection step upstream, as
in Figure 3, we minimize the impact of a need to “get
(new) shoes.”  (Essentially, this act of moving
activities upstream demonstrates concurrent engineering:
we shorten the feedback loop in the process in hopes
that we will decrease the variance in total process lead
time.)  While in this example we could not eliminate
the iteration entirely, often it is possible to reduce the
number of potential iterations substantially by
resequencing rows and columns.

GET SOCKS

GET SHOES nnnn

PUT ON SOCKS nnnn

PUT ON SHOES nnnn nnnn

INSPECT SHOES nnnn

Figure 2:  DSM for the Process of
Putting on Socks and Shoes

GET SOCKS
GET SHOES nnnn

INSPECT SHOES nnnn

PUT ON SOCKS nnnn

PUT ON SHOES nnnn nnnn

Figure 3:  Resequenced DSM Shows
Improved Process

The DSM also indicates which activities can be
accomplished in parallel without causing additional
iteration.  For example, in Figure 3, “get socks” and
“get shoes” can be done simultaneously, as can “inspect
shoes” and “put on socks” (if we have enough
resources!).  Sometimes planners choose activities to
work in parallel without first considering their
information dependencies, which can result in additional
iteration and thus, more, not less, cycle time.

The DSM introduction in this section is very
simple.  While time and space do not permit a full
discussion and assimilation of all applicable theory and
practice, the following points will help guide further
inquiry and more sophisticated use of DSM models:

•  Off diagonal elements do not have to binary (i.e.,
present or not):  they can be numbers from 0 to 1,
from 0 to 9, etc.  These numbers can convey any of
a number of bits of information regarding the
interfaces, such as probability of iteration, percent
rework, amount of data flow, type of data flow,
sensitivity to change in input to downstream
activity, etc.  For instance, in the example above,
if the probability of having to redo the “get shoes”
step after the results of the “inspect shoes” step are
in is estimated to be 0.4, this number could replace
the superdiagonal square.

•  Activities need not be limited to “finish-to-start”
type relationships; i.e., activities can be partially
overlapped in certain cases, although these
decisions should be based on the nature of
information production and use by the upstream and
downstream activities, respectively [43].  For
example, “put on socks” and “put on shoes” could
be overlapped, perhaps by putting on one sock,
then one shoe, then the other sock, then the other
shoe.

•  Activity durations may be placed in the diagonal
elements of the DSM, and this along with the
knowledge of serial, parallel, and coupled activities
can lead to rough critical path calculations.

•  Activities capable of execution in parallel from an
information flow perspective may yet be held up by
resource constraints.  A more complete analysis
must account for these constraints.  For example,
the DSM above indicates that “get socks” and “get
shoes” can occur in parallel.  But if we only have
one person available for both activities, we may
not in fact be able to do both at once.

5 DSM Capabilities and Advantages
for Cycle Time Reduction

The DSM has numerous advantages, but perhaps
the two greatest ones are:
•  Concise representation of complex processes,

providing a systems view, and
•  Clear rendering of potential iteration in such

processes.

 Other advantages and capabilities include:
•  A description of a process that can be analyzed and

modified to provide a prescription for a process
with reduced schedule risk and cycle time.

•  A means to more accurately manage schedule and
anticipate schedule risk.

•  A systems view of project activities and their
relationships which drive cycle time.
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•  A model demonstrating appropriately concurrent
activities.

•  A means to quickly examine potential activity and
decision sequence changes ("what if" capabilities)
for their effect on schedule.

•  A view from which to deploy resources to reduce
unintentional iterations.

 
From the description and examples above, we can

see how the method’s capabilities help meet the
challenges noted earlier:
•  Inefficient distribution of personnel and resources,

including facilities and tools and especially
information, results in parts of the project spending
“down” time waiting for resources when they could
be working.  The DSM shows which activities
depend on others for important resources and when
these resources will be needed, helping managers
insure that the right resources are available at the
right place and at the right time.

•  Unstable requirements make decisiveness difficult
and foster redesign.  The DSM can be used to trace
the effects of changing information.  More
sophisticated DSM analysis can even help quantify
the effects of such changes on project cost and
schedule.  This kind of information is valuable to
those deciding if, when, and how much to change
requirements.

•  Long and varied activity “pipelines” mean shorter
duration activities finish and wait for longer
duration activities to produce needed results.  By
examining the durations of activities in a DSM,
one can quickly isolate these situations and account
for them in project plans.

•  Lack of activity coordination results in wasted
time, doing the wrong work, and inappropriate
communication.  Using a DSM allows activities to
see their place in an overall process, enabling them
to see what other activities need their results and
when.

•  Highly interdependent or coupled activities increase
the chances of iteration or rework.  The DSM
highlights these situations, enabling planners to
more appropriately account for them.

•  Overly ambitious initial schedules make further
cycle time reductions even more difficult.  By
showing the amount of iteration in a process, the
DSM provides a quick check of schedule feasibility
and risk.  This brings additional, important
information to cycle time reduction efforts.

•  Many seemingly feasible cycle time reduction
solutions have adverse side effects which reduce
anticipated effectiveness.  The systems view
provided by the DSM decreases the chances that

process reengineering efforts will miss their mark
in reducing cycle time.

In conclusion, the DSM method—which has
existed in the literature for 17 years but is only now
becoming widely recognized—is shown to provide
utility to project managers who seek to reduce schedule
risk and cycle time.
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