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ABSTRACT
Variation modeling is used in design to predict and

diagnose potential quality problems. Most variation modeling
assumes the parts are rigidly assembled. However, in some
cases, this assumption is invalid. For example, when hydraulic
tubes are assembled into aircraft structures, the compliance of
the tube facilitates assembly. If the tubes were rigid, they
cannot be assembled, i.e., the variations of the tubes and
structures are too great. Despite the importance of compliance
in assembly, it is typically not explicitly modeled during
design. This paper proposes a new method to directly predict
the assemblability of any tube design with minimal dependence
CAD/FEM modeling and simulation.  The model includes a
variation model for the tubes and aircraft, compliance model
and assembly model. It can be used during design to improve
yields.

1. INTRODUCTION
Tubes are extensively used in sophisticated vehicles such

as aircraft and submarines for hydraulic control systems,
airflow systems, and waste systems. Because of the functional
requirement of transporting substances through a complex
structure, tubes are typically bent into complex shapes.
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Figure 1: Example of assembled tube

Figure 1 shows a typical hydraulic tube in an aircraft. The
tube ends are connected to either a structural part on the
aircraft or another tube.  It must pass through holes in the
structure and bend around obstructions.  In addition, the tube
is typically tied-down at a series of points.  These tie-downs
prevent vibration, ensure the proper location of the tubes, and
provide structural support. In general, there is variation in
connection points, tie-down points and the tube. The assembler
must apply force and moment loads to fit the tube into the
install points.  Because the tube has bends, a large aspect ratio,
and is thin-walled, the tube compliance is typically used to
enable assembly.  However, putting load on the tube can
impact the life-cycle performance of the tubes.  As a result, a
maximum load is specified.  If a tube cannot be installed
without exceeding that load, the tube is rejected. Figure 2
shows that the assembly with geometrical variations in both
tube and structure requires assembly loads.
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Figure 2: Variations in tube assembly and the
assembly loads
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There are a number of ways to increase the install yields of
tubes: variation reduction (reducing the sources of variation in
the tubes and the aircraft), design changes (increasing the
robustness to process variations; increasing the compliance of
the part), and inspection before installation.  In order to
quantify and evaluate their effects on yield, the alternatives
need to be modeled simultaneously to ensure the optimum
approach. For example, manufacturing variation reduction and
inspection are the popular approaches for quality management.
However, in this paper we demonstrate that inexpensive design
change can significantly improve the yield.

The authors are developing a set of tools to help design the
optimal production systems for tube manufacture. This paper
describes the first part of the research: a set of systematic
methods to model the impact of variability and compliance on
install yields.

Several methods can be used for variability and
compliance analysis. Monte Carlo simulation, numerical
methods and FEM are often the de facto modeling approaches
for them. However, the problem of such analysis provides
several interesting challenges. For instance, in a typical
aircraft there are thousands of unique tubes.  In order to
analyze each tube, it would be necessary to individually model
and analyze its geometry.  Using FEM packages plus
simulation would not be feasible given the large number of
parts.

This research presents a direct method to calculate the
probability of rejection, given the manufacturing variability (in
both tube and aircraft) and the compliance of the tube.  We use
matrix operations to derive the tube compliance instead of
FEM software. Furthermore, this method uses the digital
definition of the tube (i.e., the bend plan) as the input. As a
result, no CAD/FEM models are necessary and thus the
modeling and computational efforts are minimized. These
models are programmed in MS Excel, and the CPU time for
geometry and compliance computation is about 20 seconds
with a Pentium II 266 processor with 128M RAM. This
research sets out to answer three questions.

How do the bending process variations affect the tube
geometry? Given the process variations of the bending
machine and other operations, it is necessary to understand
how the final shapes of single tube and a population of tubes
deviate from its nominal geometry.  This is described in
Section 3.3.

How can tube compliance be predicted? FEM is
computationally expensive, thus not feasible for this process.
For simple-geometry components, compliance can be
calculated directly through matrix operations. This method
significantly reduces the modeling and computational efforts,
relative to FEM. This is described in Section 3.4.

How is assembly yield computed?  Once the variability
and compliance of the part are modeled, the next step is to link
them with the acceptance criteria in assembly. Expected

assembly yield can be calculated analytically or estimated
statistically through simulation. This information can be used
as feedback for tube design, process capability, and production
planning. This is described in Section 3.5.

2. RELATED WORK
Research in the area of variation modeling and yield

prediction falls into several categories. One group of
researchers focuses on manufacturing processes. Kazmer et al.
(1996) use predictive model to analyze part variation and
robustness in the injection molding process. Frey (1997)
proposes the Process Capability Matrix method to propagate
variations of multiple quality characteristics and predict the
yield in multiple operations manufacturing. Suri and Otto
(1999) present the Integrated System Model method that
predicts variations in manufacturing system, and provides a
feed-forward control scheme for the stretch forming process.
These methods focus on modeling the effects of operational
settings and variations in manufacturing processes on the
variations of part features. A similar approach is used in this
paper to model the variation in tube bending process.

Another group of researchers focuses on variation and
tolerance analysis in assembly. Previous works include
geometric representation and variation stack-up. Guilford and
Turner (1993) summarize the geometric representation
techniques into three categories: parameter space, solid offset,
and feasibility space. Many researchers (e.g., Daniel et al.
1986, Turner 1990, Takahashi 1991) use Monte Carlo
simulation or numerical methods to propagate variation in
assembly. Simulation-based commercial software is also
available (e.g. VSA-3D). Turner and Gangoiti (1991) present a
comprehensive survey on these commercial packages. Bjorke
(1978) uses a statistical approach for one-dimensional
variation stack-up in tolerance analysis. Based on the work by
Veitschegger and Wu (1986), Whitney et al. (1994) extend the
statistical approach to the 3-D case by incorporating the
homogeneous transform matrix (HTM) for geometric
representation. Their method predicts the spatial distribution
of position and orientation of parts during assembly, and
calculates the yield analytically. In this paper we modify this
method and apply it to the tube bending model. Most of the
preceding research has the assumption of rigid parts, and does
not consider part deformation during process and assembly.

Only a few works exist for the variation modeling of
compliant part assembly. Liu and Hu (1997) point out that the
combination of Monte Carlo simulation with FEM is very
computationally intensive. They derive the variation
propagation equation for sheet metal assembly with reduced
FEM requirement and use Monte Carlo simulation to attain the
variation distribution. Hu (1997) also proposes "stream of
variation" theory for variation propagation and diagnosis for
compliant sheet metals in the auto body assembly process.
Their approach still replies on FEM modeling, which is not
feasible for high-variety parts.
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Another group of researchers focuses on the design
optimization of pipe/tube routing. Szykman and Cagan  (1996)
summarize them and propose a synthesis method based on the
simulated annealing algorithm. However, their method only
considers direct costs, such as material cost and bending cost.
Variation and quality related costs are not addressed.

In summary, there is a lack of efficient variation-modeling
approach for compliant parts from the manufacturing process
to assembly. Our research strategy will incorporate current
techniques in variation modeling for 3-D rigid parts and solid
mechanics with minimum computational requirement.

3. MODELING METHODS
In this section we present the tube modeling methods.  We

first describe the methods used by industry, in which tubes are
described in terms of bend plans sent to the tube bender.
Secondly, we describe how this plan can be used to describe the
3-D geometry of the tube. Then based on the 3-D geometry
model, we present the mathematical models for geometrical
variation and characteristic compliance of tubes. Lastly, we
introduce methods that incorporate these models to predict the
tube assembly yield.

3.1. Bending model
Tubes are built through a cold forming process. This

process is a single-machine-multi-operation tube bending
process that transforms straight raw tubes into desired three-
dimensional shapes.

Raw tube Bending Inspection AssemblyFinishing

Figure 3: Typical tube bending production and
assembly processes

A tube is uniquely described by the specifications of raw
tube and the bend plan. The specifications include material,
diameter, wall thickness and length. The bend plan is
composed of a series of triplets.  Each triplet describes the
length between bends (shoot), the angle of rotation (rotate) and
the angle of bend (bend).  In addition, the bend radius is set by
the forming die and is the same for all bends. Figure 4 shows
these values and the global coordinate system1 that will be used
throughout the paper.

                                                       
1 The global coordinate system is attached to the bender.
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Figure 4: Global coordinate system XYZ and the
three motions in a bend cycle

Shooting is a translation along the X-axis by an amount l,
rotation is a negative rotation around the X-axis by an amount
β, and bending is a negative rotation around the Y-axis by an
amount α. Each bend cycle is a three-step coordinate
transformation comprising one translation and two rotations of
the bent part of the tube. Figure 5 shows the complete process
and the three variables in a single bend cycle.
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Figure 5: Tube bending process and process
variables

3.2. Tube Geometry model
From the bend plan it is possible to generate the geometry

of the tube in 3-D space. This is done using the Homogeneous
Transformation Matrix (HTM) to transform the location and
orientation of the bends as the bend plan is executed.

To simplify the modeling, we break the model into two
parts.  In the first model, the linear centerline model, we
represent the tube as if the bending radius was zero (i.e., all
sections are straight).  We predict for each bend the theoretical
breakpoint: the location of the bend if the bending radius is
zero.  The linear centerline model enables us to simplify the
variation propagation model.   The second model, the
curvilinear centerline model, includes the bending radius.  The
curvilinear model is used to more accurately predict the
compliance.  In both cases, we only model the centerline of the
tube; we assume that the tube diameter is zero and we are
bending only the centerline. In addition, we assume that the
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variation introduced by the tube diameter is insignificant and
can be ignored. Figure 6 shows both representations.

Linear-curvilinear centerline model
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Figure 6: Representation of tube geometry

The overall shape of a tube can be described by the 3-D
positions of all breakpoints plus the two end points in the
global coordinate system, as shown in Figure 7. There are n
bends and point u is an arbitrary point on the tube centerline.
We will use this representation throughout our model
derivation.
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Figure 7: Representation of tube geometry in global
coordinate system

We locate these points by setting point n+1 as the origin
(the left end of the tube) and calculating the HTM for each
bend cycle. When the ith bend is created, point u undergoes the
following coordinate transformation.
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The effect of multiple bends can be combined into one
HTM through a series of matrix multiplications. The following
HTM is the total transformation matrix from the ith to the
(n+1)th bend cycle:
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Later in the paper we will use parts of the total
transformation matrix to calculate variation propagation.
These parts are the 3x3 rotational matrix Ri and the 3x1
translational vector, Pi. 2

The linear-curvilinear centerline model can be derived
from the linear centerline model by plugging in the curvilinear
sections and calculating the tangent points. Figure 8 illustrates
the procedure.
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Figure 8: Conversion of linear-curvilinear centerline
model

3.3. Variation Propagation
Now that we have described the 3-D shape in global

coordinate system, the HTM Ti can be used to calculate the
impact of process variation on the resultant geometry.  Each
shoot, bend, and rotation introduces variation into the
geometry.  For example, the effect of gravity makes the tubes
sag making the rotation less accurate; springback and material
variation introduces variation into the bends; errors in
indexing, slip and other machine problem introduce errors in
the shoot. These errors are contained in a vector, V.

By using linear approximation, we will derive the relation
between the process errors, V, and the geometrical errors, U, in
the following form:

VSU ∗= Eq (3)

Vector U is the complete set of geometrical errors in six
degrees of freedom at all points of interest on the tube. Vector
V is the complete set of process errors in shooting, bending,
and rotating. S is the process sensitivity matrix. The following
section derives S from the HTM matrices. For simplification,
we will demonstrate the derivation at one point on the tube, u,
as shown in Figure 7.

The geometrical error at an arbitrary point u contains two
parts, translational error dP=(dx, dy, dz)T and rotational error
δ=(δx, δy, δz)T.  The bending machine introduces a set of
errors affecting point u during the m bend cycles3 that make

                                                       
2 Note that n

n T1+

 is the HTM from the last breakpoint to the origin of

XYZ with translation of ln+1 only ( 011 == ++ nn βα ).
3 If u locates between the (j-1)th and jth breakpoints, m equals (n-j+1), i.e.,

(n-j) bends plus the last straight section.
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the bends between point u and the end of tube that we choose
as the origin. These errors are denoted as dl=(dl1, dl2,…,dlm)T,
dα =(dα1, dα2,…,dαm)T and dβ=(dβ1, dβ2,…, dβm)T. The
geometrical and process errors can be linked through the
following linear equations (Veitschegger 1986; Whitney 1994):
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Where W1 through W5 are 3xm sensitivity matrices.4 The
derivation of W1 through W5 is explained below.

Consider a point u located between point j-1 and j (j<i), as
shown in Figure 9. The process errors dli, dαi and
dβi contribute to the translational and rotational errors at the
point of interest u through the following relationship.
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In the equation above,
u

i P  is the 3x1 translational vector

from ith breakpoint to point u in the global coordinate system
when ith bend cycle is to be executed. It can be obtained
through the following equation:
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In Eq (7), 
u

j T  equals  
1−j

j T  with lu replacing lj. The

product vector of 
u

i
i PR * is the translational vector from the ith

breakpoint to u in the global coordinate system when the last
bend cycle is finished. The last term of Eq (6) is the Abbe error
caused by the rotational errors at the ith breakpoint.

                                                       
4 The rotational error vector is determined only by rotational errors in

bending process, while the positional error vector is determined by both
translational and rotational errors.
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Figure 9: Arbitrary point u on the tube

Since we assume the errors to be small, the total
geometrical errors can be obtained by summing up the errors
introduced by individual bend cycles. Therefore,
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By summarizing Eq (5), (6), (8) and (9), we can express
Eq (4) through the following equations:
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where 1
jR  represents the first column (3x1 vector) and

2
jR  is the second column of 

jR .

To derive the complete variation propagation equation as
Eq (3), the procedures are repeated to obtain the variation
propagation equations for all points of interest and organize
them into matrix form.

3.4. Compliance
The load required to overcome the tube and aircraft

variation is determined by the compliance of the tube. By
predicting the required loads and comparing them to
maximum allowance, the yield rates during assembly can be
determined.

Compliance is represented by the stiffness matrix. This
section derives the characteristic stiffness matrix, K, which
linearly maps the generalized displacements (geometrical
errors), X, to generalized forces (assembly loads), F, required
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to assemble the part into the tiedown points. The stiffness
matrix is symmetric and independent of the assembly process
according to Betti’s reciprocal theorem.

XKF ∗= Eq (10)

Where 5 ( )T
h21 F,,F,FF L=  and ( )TX h21 X,,X,X L= . X

is the set of geometrical errors including U (geometrical errors
in tube) and U’ (geometrical errors in structure) at all points of
interest.

U'UX +=  Eq (11)

Three approaches can be applied to model the stiffness
matrix (Chang 1996): For parts with simple geometry such as
beams, blocks, and rings, it can be obtained by solving the set
of differential equations of equilibrium. For parts that can be
dissected and approximated by elements with simple geometry,
it can be calculated directly through matrix operations on the
stiffness matrices of its components. For parts with complex
geometry, it must be modeled by FEM. Since a tube can be
modeled as a series of linear and curvilinear thin-wall
cylinders, the second approach is adopted.

The modeling procedure starts with dissecting the tube
into linear and curvilinear sections. These sections are further
divided at the points of interest. Their stiffness matrices can be
obtained directly from the formulae handbook for structural
elements (straight and circular thin-wall beams). In this paper
the formulae are obtained from Pilkey’s (1994) handbook. The
next step is applying matrix operations to condense the section
stiffness matrices and compose them into global stiffness
matrix. An example in Figure 10 illustrates the process.

Ka
Kb

Kc

Kd

Ke Kf

Hardpoint 1

Hardpoint 2
Hardpoint 3

Kabc

Kdef

K

Dissection CompositionCondensation

Ka
Kb

Kc

Kd

Ke Kf

Hardpoint 1

Hardpoint 2
Hardpoint 3

Ka
Kb

Kc

Kd

Ke Kf

Hardpoint 1

Hardpoint 2
Hardpoint 3

Kabc

Kdef

Kabc

Kdef

KK

Dissection CompositionCondensation

Figure 10: Procedure to compose global stiffness
matrix

In the example above, we want to derive the stiffness
matrix that links the generalized forces and generalized
displacements on the three hardpoints. We first find the section
stiffness matrices Ka through Kc, which are three 12x12
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matrices comprising six plus six degrees of freedom on both
ends (2 nodes) of each section. They can be obtained directly
from formula tables (Pilkey 1994) for straight and circular
beam. Next we derive the stiffness matrix Kabc, which is a
12x12 matrix comprising six plus six degrees of freedom on
hardpoint 1 and 2. It can be obtained by condensing Ka

through Kc. Similarly, Kdef is a 12x12 matrix comprising six
plus six degrees of freedom on hardpoint 2 and 3, and can be
obtained by condensing Kd through Kf. The condensation
process is illustrated below.
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Figure 11: Illustration of stiffness matrix
condensation

As shown in Figure 11, the second node of Ka is to be
merged with the first node of Kb, and the degrees of freedom
on the node are to be eliminated (generalized force on the
merging node is zero). Let 
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a 12x12 matrix. By repeating this procedure, Kab and Kc can
be condensed into Kabc.

The final step is to derive the global stiffness matrix K,
which is an 18x18 matrix that has six degrees of freedom on
the three hardpoints and can be obtained from Kabc and Kdef.
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3.5. Yield Prediction
The tube is rejected in assembly if assembly loads exceed

the maximum allowance. Therefore, to predict the assembly
yield, we need to know the statistical distribution of the
assembly loads. Having the preceding models, we can project
the process errors into tube errors and then the assembly loads
at each install point. Combining Eq (3), Eq (10) and Eq (11)
we have

U'KVSKF ∗+∗∗=  Eq (12)

)()()( U'KVSKF EEE ∗+∗∗=  Eq (13)

TT VarVarVar KU'KSKVSKF ∗∗+∗∗∗∗= )()()()()(  Eq (14)

Where E(F) and Var(F) are the expected value vector and
covariance matrix of F respectively. F is assumed to have a
joint normal distribution and the probability density function
of F can be expressed as

( ) ))(
2
1

exp(
)(2

1
)( 1

6 FFF
F

F ∗∗−= −Var
Var

pdf T
h

π
 Eq (15)

The assembly is acceptable only if the assembly loads are
inside the allowance, such that

MAXMAX FFF ≤≤−  Eq (16)

The yield of tube assembly Y is the probability that F falls
inside the allowance. This is calculated through integrating the
probability density function of F:

h
zyx dMdFdFpdfP LL 11)()( ∫∫∫=≤≤−= FFFFY

MAXFMAXMAX
 Eq (17)

The covariation of F will make the integral in Eq (17)
difficult as the dimension of F increases. An alternate method
is using Monte Carlo simulation by generating many sets of
random process errors, projecting them into assembly loads
and checking if they exceed tolerance.

4. CASE STUDY
We demonstrate the methodology with the following

example. As shown in Figure 12, a tube is designed to connect
point 1 and 3 in the structure, and two geometry designs (I and
II) are to be evaluated. Both designs have an intermediate
tiedown (point 2).

1

2

3
15”

20”

15”

10”

90º

90º

90º

Design I

X

Z

Y

1

2

3
15”

11.18”

15”90º

90º

11.18”

Design II

X

Z

Y

Specs & material properties:

φ1/2” Titanium Tube

Wall thickness: 1/32’

Elastic module E=1.60E+07psi

Shear module G=5.95E+06 psi

Poison ratio=0.34

Figure 12: Two designs of tube in case study

The bend plans, statistics on process errors and assembly
criteria are listed below.

4.1. Bending process parameters
The bend plan for design I comprises three cycles, and the

bend plan for design II has two cycles. Their parameters are
listed in Table 1.

Table 1: Bend plan for Design I and II

Design I Design II

Bend cycle l β α l β α

1 15” 0 o 90 o 15” 0 o 90 o

2 10” -90 o 90 o 22.36” 180 o 90 o

3 20” -90 o 90 o

The statistics on the process errors are listed in Table 2.
Note that the process is centered without biases.
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Table 2: Statistics on process errors

Process Errors l β α

Mean 0 0 0

Standard
Deviation

0.005” 0.1 o 0.1 o

4.2. Structural Variation and Assembly Criterion
There are three install points: two at the tips and one in

the middle of the vertical section. The distributions of
geometric variations U’ on install points are unknown.
However, their means are estimated to be zero and their
standard deviations are estimated to be 0.1” for translational
errors and 0.1o for angular errors on both install points. The
acceptance criterion for tube assembly is based on the assembly
load, which requires that force in X, Y, Z directions at each
install point cannot exceed 4 lbs. The minimum yield
acceptable is 50%. If the yield is below that percentage, the
tube must be redesigned.

4.3. Yield Prediction
The derivation of sensitivity matrices and stiffness

matrices for Design I and II is shown in the Appendix. Using
Monte Carlo simulation for both designs, we can predict the
yields in tube assembly under different levels of the structure
variation U’ by counting the percentage of assembly loads that
exceeds the 4 lbs allowance. The results are plotted in Figure
13. For Design I, the maximum yield is 99% when no structure
variations exist, i.e., the only effect is the tube variations. The
yield declines as the structure variations increase, and reaches
76% at the estimated structure variation U’. The yield hits the
minimum acceptable yield of 50% at 1.7U’, which is the
maximum level of structure variations the tube can absorb. For
Design II, the maximum yield is 97% without structure
variations. The yield declines rapidly as the structure
variations increase, falling below 50% at 0.3U’. At the
estimated structure variation U’, the yield is only 5%.

The results shows that Design I is more robust in that it is
less sensitive to the uncertainty of variations and has higher
yield in any scenario. This is because Design II is stiffer than
Design I even though its tube variation is smaller due to fewer
bends. Similar iterations can be repeated to optimize the tube
design, as well as to test the effectiveness of different yield
improvement options. Such options include
material/specification change, variation reduction in bending
process, variation reduction in mating structure, and load
allowance relaxation.

 

0% 

50% 

100% 

0 1 2 3 4 5 

x U' 

Yield 

Design I 
Design II 

Figure 13: Assembly yields of the two designs under
different levels of structure variations

5. CONCLUSION
This paper demonstrates an analytical approach to predict

the geometrical variation and compliance of tubes, and the
assembly yield. This approach significantly reduces the
dependency on simulation and computational efforts. A case
study demonstrates how this methodology can assist design
optimization and explore alternatives in yield improvement.

Several issues need to be addressed in ongoing research.
First, an optimization algorithm needs to be applied to tube
design, so that process sensitivity can be minimized and
compliance can be maximized. Second, in-process inspection
needs to be incorporated into the model. The allocation of
dimensional tolerances for inspection needs to be optimized, so
that its conformance to the acceptance criteria in assembly is
maximized. Finally, for the optimum yield improvement
scheme, the overall optimization framework incorporating
costs and performance measures at system level needs to be
developed.
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APPENDIX

Variation propagation in case study
Design I: Let the process errors in the three bend cycles be

dl=(dl1  dl2  dl3)T, dα =(dα1  dα2   dα3)T and dβ=(dβ1, dβ2,
dβ3)T. Assuming install point 3 is fixed, let the geometrical
errors at install point 1 be dP2=(dx1, dy1, dz1)T and δ1=(δx1,
δy1, δz1)T.  Similarly, let the geometrical errors at install point
2 be dP2=(dx2, dy2, dz2)T and δ2=(δx2, δy2, δz2)T. Note that all
angles are in radians. Through the procedures in Section 0 we
derive the individual variation propagation equations as
follows:
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Combining them together, we can obtain the overall
variation propagation equation:
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Design II: Design II has only two bends. Through a
similar process, we have
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Characteristic stiffness matrices:
The characteristic stiffness matrix that relates the

generalized forces and displacements at the three install points
is derived:

Design I:

K=

8.12E+01 6.32E+00 1.96E+01 -1.82E+00 4.20E+01 -2.04E+01 -8.12E+01 -6.32E+00 -1.96E+01 -1.10E+02 -1.31E+02 5.13E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00
6.32E+00 3.30E+01 4.61E+00 4.53E+01 3.42E+01 -3.33E+02 -6.32E+00 -3.30E+01 -4.61E+00 5.45E+01 -4.09E+00 -1.95E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
1.96E+01 4.61E+00 4.13E+01 -1.59E+01 3.82E+02 -3.57E+01 -1.96E+01 -4.61E+00 -4.13E+01 -2.55E+02 3.61E+01 1.18E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00

-1.82E+00 4.53E+01 -1.59E+01 5.98E+02 -1.59E+02 -4.66E+02 1.82E+00 -4.53E+01 1.59E+01 -3.06E+02 -2.52E+01 -9.07E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
4.20E+01 3.42E+01 3.82E+02 -1.59E+02 4.34E+03 -3.22E+02 -4.20E+01 -3.42E+01 -3.82E+02 -2.38E+03 7.20E+01 2.07E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00

-2.04E+01 -3.33E+02 -3.57E+01 -4.66E+02 -3.22E+02 3.92E+03 2.04E+01 3.33E+02 3.57E+01 -6.14E+02 -2.43E+01 -7.41E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
-8.12E+01 -6.32E+00 -1.96E+01 1.82E+00 -4.20E+01 2.04E+01 3.03E+02 3.95E+01 1.96E+01 1.10E+02 1.31E+02 7.54E+02 -2.22E+02 -3.32E+01 7.70E-07 2.86E-11
-6.32E+00 -3.30E+01 -4.61E+00 -4.53E+01 -3.42E+01 3.33E+02 3.95E+01 9.05E+01 4.61E+00 -5.45E+01 4.09E+00 6.10E+01 -3.32E+01 -5.75E+01 4.28E-07 -6.07E-07
-1.96E+01 -4.61E+00 -4.13E+01 1.59E+01 -3.82E+02 3.57E+01 1.96E+01 4.61E+00 8.04E+01 7.89E+00 5.93E+01 -1.18E+02 7.70E-07 4.28E-07 -3.90E+01 -2.62E+01
-1.10E+02 5.45E+01 -2.55E+02 -3.06E+02 -2.38E+03 -6.14E+02 1.10E+02 -5.45E+01 7.89E+00 4.56E+03 -8.54E+02 -8.12E+02 -3.73E-13 5.74E-06 2.47E+02 -5.25E+02
-1.31E+02 -4.09E+00 3.61E+01 -2.52E+01 7.20E+01 -2.43E+01 1.31E+02 4.09E+00 5.93E+01 -8.54E+02 1.85E+03 -8.45E+02 -2.94E-05 -3.18E-06 -9.54E+01 -5.75E+01
5.13E+02 -1.95E+01 1.18E+02 -9.07E+01 2.07E+02 -7.41E+01 7.54E+02 6.10E+01 -1.18E+02 -8.12E+02 -8.45E+02 1.24E+04 -1.27E+03 -4.15E+01 3.18E-06 1.34E-06
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 -2.22E+02 -3.32E+01 7.70E-07 -1.29E-11 -2.94E-05 -1.27E+03 2.22E+02 3.32E+01 -7.70E-07 -2.86E-11
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 -3.32E+01 -5.75E+01 4.28E-07 5.74E-06 -3.18E-06 -4.15E+01 3.32E+01 5.75E+01 -4.28E-07 6.07E-07
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.70E-07 4.28E-07 -3.90E+01 2.47E+02 -9.54E+01 3.18E-06 -7.70E-07 -4.28E-07 3.90E+01 2.62E+01
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.53E-11 -6.07E-07 -2.62E+01 -5.25E+02 -5.75E+01 1.34E-06 -2.53E-11 6.07E-07 2.62E+01 7.08E+02
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 -2.60E-06 -2.92E-06 3.73E+02 -2.36E+03 1.78E+02 -6.82E-06 2.60E-06 2.92E-06 -3.73E+02 -2.57E+02
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 -1.12E+02 -4.99E+02 2.92E-06 5.47E-05 -6.82E-06 -1.16E+02 1.12E+02 4.99E+02 -2.92E-06 5.95E-06

Design II:

1.50E+02 2.68E+01 1.34E+01 -4.64E-06 4.59E+01 -9.19E+01 -1.50E+02 -2.68E+01 -1.34E+01 -1.15E-05 -4.34E+02 8.68E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2.68E+01 5.28E+01 9.02E+00 1.46E+01 6.46E+01 -4.66E+02 -2.68E+01 -5.28E+01 -9.02E+00 1.13E+02 -5.46E+01 2.88E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
1.34E+01 9.02E+00 3.93E+01 -2.92E+01 3.70E+02 -6.46E+01 -1.34E+01 -9.02E+00 -3.93E+01 -2.25E+02 5.31E+01 5.46E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
-2.11E-05 1.46E+01 -2.92E+01 6.95E+02 -2.88E+02 -1.44E+02 2.11E-05 -1.46E+01 2.92E+01 -4.27E+02 -6.22E+01 -3.11E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
4.59E+01 6.46E+01 3.70E+02 -2.88E+02 4.23E+03 -5.42E+02 -4.59E+01 -6.46E+01 -3.70E+02 -2.18E+03 3.30E+01 1.04E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00

-9.19E+01 -4.66E+02 -6.46E+01 -1.44E+02 -5.42E+02 5.05E+03 9.19E+01 4.66E+02 6.46E+01 -1.09E+03 1.04E+02 -1.23E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00
-1.50E+02 -2.68E+01 -1.34E+01 4.64E-06 -4.59E+01 9.19E+01 3.00E+02 5.37E+01 2.68E+01 1.50E-06 -3.82E-04 5.67E-04 -1.50E+02 -2.68E+01 -1.34E+01 7.28E-05
-2.68E+01 -5.28E+01 -9.02E+00 -1.46E+01 -6.46E+01 4.66E+02 5.37E+01 1.06E+02 1.80E+01 6.22E-07 1.42E-04 -3.12E-04 -2.68E+01 -5.28E+01 -9.02E+00 1.46E+01
-1.34E+01 -9.02E+00 -3.93E+01 2.92E+01 -3.70E+02 6.46E+01 2.68E+01 1.80E+01 7.86E+01 -3.48E-05 1.55E-04 -1.32E-05 -1.34E+01 -9.02E+00 -3.93E+01 -2.92E+01
-2.72E-05 1.13E+02 -2.25E+02 -4.27E+02 -2.18E+03 -1.09E+03 5.06E-06 -4.49E-05 4.40E-05 4.98E+03 -1.05E+03 -5.26E+02 2.21E-05 -1.13E+02 2.25E+02 -4.27E+02
-4.34E+02 -5.46E+01 5.31E+01 -6.22E+01 3.30E+01 1.04E+02 -3.78E-04 7.68E-05 2.28E-04 -1.05E+03 4.38E+03 -5.25E+03 4.34E+02 5.46E+01 -5.31E+01 -6.22E+01
8.68E+02 2.88E+01 5.46E+01 -3.11E+01 1.04E+02 -1.23E+02 5.57E-04 -3.16E-04 1.13E-05 -5.26E+02 -5.25E+03 1.23E+04 -8.68E+02 -2.88E+01 -5.46E+01 -3.11E+01
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 -1.50E+02 -2.68E+01 -1.34E+01 9.98E-06 4.34E+02 -8.68E+02 1.50E+02 2.68E+01 1.34E+01 -7.28E-05
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 -2.68E+01 -5.28E+01 -9.02E+00 -1.13E+02 5.46E+01 -2.88E+01 2.68E+01 5.28E+01 9.02E+00 -1.46E+01
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 -1.34E+01 -9.02E+00 -3.93E+01 2.25E+02 -5.31E+01 -5.46E+01 1.34E+01 9.02E+00 3.93E+01 2.92E+01
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8.20E-05 1.46E+01 -2.92E+01 -4.27E+02 -6.22E+01 -3.11E+01 -8.20E-05 -1.46E+01 2.92E+01 6.95E+02
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.59E+01 6.46E+01 3.70E+02 -2.18E+03 3.30E+01 1.04E+02 -4.59E+01 -6.46E+01 -3.70E+02 -2.88E+02
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 -9.19E+01 -4.66E+02 -6.46E+01 -1.09E+03 1.04E+02 -1.23E+02 9.19E+01 4.66E+02 6.46E+01 -1.44E+02
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