
Effect of Schedule Compression on Project Effort 
 

Ye Yang, Zhihao Chen, Ricardo Valerdi, Barry Boehm 
Center for Software Engineering, University of Southern California (USC-CSE) 

Los Angeles, CA 90089-0781, USA 
{yangy, zhihaoch, rvalerdi, boehm}@cse.usc.edu 

 
Abstract 

Schedule pressure is often faced by project managers and software developers who want to quickly deploy 
information systems. Typical strategies to compress project time scales might include adding more 
staff/personnel, investing in development tools, improving hardware, or improving development methods. The 
tradeoff between cost, schedule, and performance is one of the most important analyses performed during the 
planning stages of software development projects.  In order to adequately compare the effects of these three 
constraints on the project it is essential to understand their individual influence on the project’s outcome. 

In this paper, we present an investigation into the effect of schedule compression on software project 
development effort and cost and show that people are generally optimistic when estimating the amount of 
schedule compression.  This paper is divided into three sections. First, we follow the Ideal Effort Multiplier 
(IEM) analysis on the SCED cost driver of the COCOMO II model.  Second, compare the real schedule 
compression ratio exhibited by 161 industry projects and the ratio represented by the SCED cost driver.   
Finally, based on the above analysis, a set of newly proposed SCED driver ratings for COCOMO II are 
introduced which show an improvement of 6% in the model estimating accuracy.  
 
Keywords: Schedule compression, COCOMO II SCED Driver, software cost/effort estimation 
 
I. Introduction 
There are many cases in which software developers and project managers want to compress their 
project schedules. Numerous proactive and reactive project management methods for achieving 
schedule compression have been documented. Some examples are, hiring extra staff, investing on 
development tools, improving hardware, and improving development methods. 

Software cost estimation models should be able to provide more reliable estimates of the number 
of staff needed and additional cost/resource needed in order to achieve schedule compression goals. 
Figure 1 shows the impact of schedule compression and stretch-out on development cost modeled in 
COCOMO II 2000 (CII), which is calibrated on 161 industry projects. In CII, a compression of 75% of 
the most efficient schedule is considered Very Low schedule compression level, and it will increase 
the development cost by 43%. 



The estimated schedule 
significantly influences what 
actually happens in a project.  If 
the schedule is under estimated, 
planning inefficiencies are 
introduced to the project.  
Invariably this can lead to delays 
in the project and increase the 
actual schedule.  If the schedule 
is over estimated, Parkinson's Law 
can come into effect.  The law 
claims that work expands to fill 
the time available for its 
completion.  Allowing for extra 
time may also endanger the 
project with unexpected functions 
and unnecessary gold plating, 
potentially leading to increased schedules.  Our work here is to help people improve their 
understanding of the effects of schedule compression and expansion on project effort estimates. 

According to the 2001 CHAOS reports [1], 45% of projects exhibited cost overruns while 63% 
experienced schedule overruns.  Even with the sophisticated development processes of today there 
needs to be better cost and resource control of software projects.  Current software cost estimation 
models such as PRICE-S1, SLIM2, SEER-SEM3, and COCOMO II4 provide the necessary inputs for 
capturing the schedule implications of software development.  Each model employs a slightly 
different philosophy towards schedule estimation.  Understanding these philosophies can help 
software estimators select which approach best meets their development environment. 
 
II. Overview of Schedule Compression Approaches in Cost Estimation Models 
Schedule compression is recognized as a key cost element in many of the software estimation models 
in use today. Current models provide appropriate inputs for meeting particular scheduling needs but 
each treats schedule compression in its own unique way: 

 PRICE-S tool has a built in cost penalty for deviations from the reference schedule 
 SLIM accounts for schedule compression and lengthening in the range of impossible region 

and impractical region 
 SEER-SEM calculates the optimal schedule and considers any schedule that is less than the 

optimal schedule impossible 
 COCOMO II only includes penalties for schedule compression 

                                                            
1 PRICE-S is a product of PRICE Systems, LLC. http://www.pricesystems.com/ 
2 SLIM is a product of QSM, Inc. http://www.qsm.com/ 
3 SEER-SEM is a product of Galorath, Inc. http://www.galorath.com 
4 COCOMO II is a product of the Center for Software Engineering at USC http://sunset.usc.edu 

0.9

1

1.1

1.2

1.3

1.4

1.5

75% 85% 100% 130% 160%

Percent of Most Efficient Schedule

Re
la

tiv
e 

Co
st

Figure 1 Relative Cost of Schedule Compression/ 
Expansion in COCOMO II 



Aside from the different approaches all 
four aforementioned models agree with the 
fact that any acceleration during the design 
phase will increase the cost of software 
development. 

The PRICE-S tool, developed by PRICE 
Systems, has a built in cost penalty for any 
deviations from the reference schedule.  As 
shown in Figure 2 accelerations of this 
schedule will result in more people being 
thrown at the problem; increasing 
communication problems adding errors, and 
causing inefficiencies within the team.  
Schedule extensions will allow the people on 
the team to over-engineer the product, adding 
features and enhancements that are not 
necessary and often adding integration and test 
time to the cycle [2].  Several important 
things should be noted from the plot in 
Figure 2.  First, there is a ten percent 
margin of error in the application of 
effects on labor hours, hence the flat line 
hovering between 90 percent and 110 
percent.  Within this range, staffing 
profiles can change without cost penalties.  
Second, acceleration in schedule has a 
much greater cost penalty than an 
extension in the schedule as indicated by 
the slope of the line. 

SLIM, developed by Larry Putnam, 
treats schedule compression and expansion in 
terms of an impossible region and impractical 
region [3].  Theoretically the estimated 
schedule will fall in the practical tradeoff region 
[4].  Within the practical tradeoff region, if the 
schedule is compressed, the effort will increase 
exponentially; if the schedule is lengthened, 
further gains in reduced Effort trail off while 
“fast cycle time” is lost as shown in Figure 3.  

SEER-SEM, developed by Galorath Inc., 
takes effort as entropy of size which can vary 
based on user selected options.  It takes 
schedule in a similar manner and less sensitive 
to size [5]. Its staffing profile shows the 

Figure 2. PRICE-S Schedule [2] 

Figure 3. SLIM Schedule Effects [3]

Figure 4. SEER-SEM Schedule Effects [5] 



estimated effort spread over the estimated schedule. The model calculates the minimum development 
time based on an optimal schedule and assumes that the schedule that is less than optimal is 
impossible as illustrated in Figure 4. 
 
III. Schedule Compression (SCED) in COCOMO 

The COCOMO team at the University of Southern California continued to develop COCOMO 81 
into COCOMO II during the mid 1990s to reflect the rapid changes in software development 
technologies and processes. The first version of COCOMO II was released in late 1995 [6], which 
described its initial definition and rationale.  The current version of the COCOMO II model was 
calibrated on a 161 industry project database and released in 2000.  

The COCOMO II Post-Architecture equation is shown in Equation 1.  COCOMO II measures 
effort in calendar months where one month is equal to 152 hours (including development and 
management hours).  The core intuition behind COCOMO-based estimation is that as systems grow 
in size, the effort required to create them grows somewhat exponentially.  The scale factors in the 
model such as PREC (Precendentedness), FLEX (Development Flexibility), RESL (Architecture and 
Risk Resolution), TEAM (Team Cohesion) and PMAT (Process Maturity) are believed to represent 
the diseconomies of scale experienced in software development [7].  SCED is the effort multipliers 
used to estimate the additional effort resulting from schedule compress or expansion from the 
estimated nominal project schedule.  This multiplier is one of 17 parameters that have a 
multiplicative effect on the effort estimation. 

)()(
17

1

01.1(
5

1 ∏
=

∗+
∗∑∗= =

j
j

SFB EMKSLOCAPM i i

                   (1) 
Where 
A     =  baseline Multiplicative Constant 
B     =  baseline Exponential Constant 
Size = Size of the software project measured in terms of KSLOC (thousands of Source 
Lines of Code) or Function Points and programming language.  
SF    =  Scale Factors including PREC, FLEX, RESL, TEAM, and PMAT 
EM   =  Effort Multipliers including SCED 

 
 
3.1. SCED in COCOMO 81 

When the first version of the COCOMO model was developed, COCOMO 81, the effort 
multiplier Required Development Schedule (SCED) was used as a measure of the schedule constraint 
imposed on the project team developing software [8].  The life cycle phase used for the software 
development effort was divided into four phases: Requirements, Design, Code, and Integration & Test. 
The magnitude and phase distribution of the schedule constraint effects defined in COCOMO 81 are 
shown in Table 1. 

Table 1. COCOMO 81 SCED Rating Scale 

 



The nominal rating is always represented with a multiplier of 1.00 because it has neither a cost 
savings nor cost penalty on the project.  Ratings above and below nominal correspond to a cost 
penalty due to the effects of schedule compression or expansion mentioned earlier. 
 
3.2. SCED in COCOMO II.2000 

In the COCOMO II model, the philosophy of the SCED driver underwent two significant changes.  
For one, the cost impact of schedule compression was almost doubled.  The penalty for compressing 
the project schedule by 15% was increased from 8% to 14%.  Similarly, the penalty for compressing 
the project schedule by 25% was increased from 23% to 43%.  The message was clear: schedule 
compression has been observed to have a much greater impact than initially suspected.  The second 
change in the SCED driver ratings was the reduction of the schedule expansion multipliers to 1.0.  It 
was believed that, while schedule expansion would increase the amount of development effort, 
representation of this phenomenon could be captured in other drivers such as increased SLOC or 
Function Points.  These changes are reflected in Table 2. 

Table 2. COCOMO II SCED Rating Scale 

 

Moreover, consider that schedule expansion usually leads to a reduction in team size.  This can 
balance the need to carry project administrative functions over a longer period of time and thus not 
have a significant effect on overall cost. 
 
3.3. Discussion 

COCOMO II is calibrated to end-of-project actual size, actual effort in person-months, and 
ratings for the 17 cost drivers and 5 scale factors. Unlike the actual size and effort that can be 
accurately tracked by projects, ratings for the cost drivers and scale factors reflect the particular data 
reporter’s subjective judgments. Such subjective judgments unavoidably carry the common bias of the 
counting conventions in a particular organization. As one of the 17 cost drivers in COCOMO II model, 
SCED is often rated inaccurately due to such common bias. For example, organizations where people 
are accustomed to compressed schedules 
and take them for granted will 
inaccurately report SCED ratings. 

However, actual schedule 
compression can be computed for the 
projects in the COCOMO repository and 
compared to the reported SCED ratings 
shown in Figure 5.  In the following 
sections, two experimental studies are 
described that provide insights about the 
real effects of SCED driver, and show 
the differences between the actual 
SCED versus reported SCED ratings. Figure 5. SCED on COCOMO II Database 

SCED Distribution

12 19

113

15
2

13
25

133

19
2

0

20

40

60

80

100

120

140

VL L N H VH

SCED Rating

# 
of

 P
ro

je
ct

s

CII 2000
CII 2003



VI. Two kinds of SCED Experiments 
In order to arrive at a rating scale that could better capture the effects of schedule compression 

and expansion two datasets were analyzed: the COCOMO II 2000 dataset which consists of 161 
projects and the COCOMO II 2004 dataset which consists of 192 projects.  The “CII 2003” data 
shown in Figure 5 corresponds to the COCOMO II 2004 dataset since the data was collected in 2003 
and analyzed in 2004.  Almost half of the 192 projects currently in the COCOMO II 2004 database 
are from COCOMO II 2000 dataset.  These two data sets were treated separately in two different 
experiments.  The first involved a calculation of SCED quality and the second a derivation of the 
ideal effort multiplier.  The result of these experiments helped determine a new SCED rating scale 
that improves the model accuracy by as much as 6%. 
 
Experiment I: SCED Rating Quality 

This experiment was performed on COCOMO II 2000 database and COCOMO II 2004 to 
determine the rating of SCED quality.  Since it is recognized that the SCED rating in every data point 
comes from a subjective judgment, we try to logically derive a more accurate SCED rating by 
analyzing the data.  To calculate the Derived SCED, we computed the estimated effort without Rated 
SCED using Equation 2 and use that effort to calculate the estimated schedule TDEV_est in Equation 3 
then we calculate the schedule compression ratios using Equation 4 to determine the Derived SCED.  
We can obtain a quality of the SCED rating for each project by comparing the Derived SCED and the 
Rated SCED.  The steps being performed in this experiment are show in the figure 6.  

CII Data

TDEV_est=C*(PM_est)(D+Σ)

Estimated 
Schedules

CR=TDEV_actual/TDEV_est
Schedule 

Compression 
Ratios (CR)

PM_est=A*(SIZE)(B+Σ)*Π(EM) Estimated 
Efforts

Check SCED definition

1

2

34

“Derived” SCED

SCED rating 

quality analysis
5 SCED Rating

Quality Matrix

Rated SCED

 

Figure 6. SCED Rating Quality Study Steps 

Step 1: Compute estimated effort with assuming schedule is nominal 
5

1

16( 0.01*( ))

1

_ ( ) *( _ _ )
i

i

B SF

j
j

Estimated effort A KSLOC EM But SCED=

+

=

∑
= ∗ ∏     (2) 

( 0.2 ( ))_ ( ) D E B
estTDEV est C PM + ∗ −= ∗                                    (3) 

/actual estCR TDEV TDEV=                                             (4) 

where  
• A, B are model constants, calibrated for each different version of COCOMO 

model.  
• C is schedule coefficient that can be calibrated 



• D is scaling base-exponent for schedule that can be calibrated 
• E is the scaling exponent for the effort equation  

• iSF  are five scale factors including PMAT, PREC, TEAM, FLEX, and RESL; 

• _ _ jEM But SCED are effort multipliers except SCED, including RELY, 

DATA, CPLX, RUSE, DOCU, TIME, STOR, PVOL, ACAP, PCAP, PCON, 
APEX, PLEX, LTEX, TOOL, and SITE.  

• A nominal Schedule is under no pressure, which means no schedule 
compression or expansion; initially set to 1.0. 

 
Step 2: Compute estimated schedule TDEV_est  

Nominal Schedule. Based on COCOMO II post-architecture model’s effort and schedule 
estimation, a nominal schedule can be estimated based on the cost driver ratings and estimated effort 
(in person-months) according equations 3 and 4. 
 
Step 3: Compute Actual Schedule Compression/Stretch-out Ratio (SCR) 

Actual Schedule. Every data point comes with an actual schedule. For example, in COCOMO II, 
it is named TDEV (time to development). 

Actual Schedule Compression/Stretch-out Ratio (SCR). The SCR can be easily derived through 
the following equation: 

/SCR Actual Schedule Derived SCED=                      (5) 

For example, if a project’s TDEV is 6 month, and the estimated nominal schedule is about 12 month, 
then we consider the actual schedule compression as 50% (= 6 / 12). 

Step 4: Obtain “derived” SCED rating 

Table 3. SCED Rating table 

 
 

Using equation 4, we compute the actual schedule compressions/stretch-outs ratios, look up in the 
SCED driver definition shown in Table 3 and check for the closest matched SCED ratings.  Then a 
new set of SCED ratings is produced that more accurately reflect the project’s schedule compression.  



Step 5: Compare “derived” and “rated” SCED to analyze SCED Rating Quality 

Table 4. SCED Rating Quality Analysis in COCOMO II 2000 database 

161 Projects

SCED Derived from the experiment

SCR [0, 0.77) [0.77, 0.82) [0.82, 0.90) [0.90, 0.95) [0.95, 1.10) [1.10, 1.22) [1.22, 1.37) [1.37, 1.52) [1.52, + )

VL VL-L L L-N N N-H H H-VH VH

VL 7 1 2 1

SCED VL-L 2 1 3

Reported L 5 3 2 1 4 1 1

In L-N 3 1 4 1 1

Data N 19 2 11 11 14 12 17 4 9

N-H 1 1

H 2 1 4 2 2 3

H-VH

VH 1 1  

 
Table 5. SCED Rating Quality Analysis in COCOMO II 2004 database 

119 Projects

SCED Derived from the experiment

SCR [0, 0.77) [0.77, 0.82) [0.82, 0.90) [0.90, 0.95) [0.95, 1.10) [1.10, 1.22) [1.22, 1.37) [1.37, 1.52) [1.52, + )

VL VL-L L L-N N N-H H H-VH VH

VL 2 2 1

SCED VL-L 1 3 1

Reported L 3 2 1 1 1 1 2

In L-N 3 2 3 1

Data N 7 4 12 7 14 10 12 2 9

N-H 1 1

H 1 2 3 2

H-VH

VH 1 1  

 
The comparison of derived SCED and rated SCED is shown in Table 4 and 5 for the two data 

sets.  We use the term of SCED Rating Quality to measure how close the subjective ratings are to the 
new ratings.  From Table 4, it is evident that only 26 projects out of 161 rated SCED the same as the 
derived ones.  From Table 5, only 22 out 119 projects are rated the same level.  SCED was reported 
as nominal in 99 projects in Table 4 and 77 projects in Table 5.  When people had no idea about the 
estimated schedule, they probably reported it as nominal.  It also shows that the estimated schedule 
by people’s intuition is very likely wrong, and most of them are too optimistic as the number of Very 
Low derived SCED are much bigger than that of rated SCED from two tables.  Later we show that 
higher values of SCED improve the model accuracy. 

The current rationale in COCOMO II is that stretch-outs do not add or decrease effort shown 
Figure 1.  But our experiments show the current rationale in COCOMO II is not exactly right as 
schedule stretch-outs do bring additional effort. If schedule stretch-outs do bring additional effort, 
what are the values for different levels of schedule stretch-outs? To find the answer and to validate our 
conclusion, we conduct another experiment. 



Experiment II: Ideal Effort Multiplier (IEM) Analysis on SCED 
Methods exist to normalize out contaminating effects of individual cost driver attributes in order 

to get a clear picture of the contribution of that driver (in our case, the SCED) on development 
productivity [9].  We slightly modified the original definition as our working definition: 

For the given project P, compute the estimated development effort using the COCOMO 
estimation procedure, with one exception: do not include the effort multiplier for the cost 
driver attribute (CDA) being analyzed.  Call this estimate PM(P,CDA). Then the ideal effort 
multiplier, IEM(P, CDA), for this project/cost-driver combination is defined as the multiplier 
which, if used in COCOMO, would make the estimated development effort for the project 
equal to its actual development effort PM(P, actual). That is 

( , ) ( , ) / ( , )IEM P SCED PM P actual PM P SCED=                  (5) 

Where 
• IEM(P, SCED): the ideal effort multiplier for project P 
• PM(P, actual): project P’s actual development effort 
• PM(P, SCED): CII estimate excluding the SCED driver 
• PM: Person-Months 

 
Steps for IEM-SCED analysis 
The following steps were performed to complete the IEM-SCED analysis on the COCOMO II 
database. 

1) Compute the PM(P, CDA), using the following formula  
5

1

16( 0.01*( ))

1

( , ) ( ) *( _ _ )
i

i

B SF

j
j

PM P CDA A KSLOC EM But SCED=

+

=

∑
= ∗ ∏        (6) 

where  
• A, B are model constants, calibrated for each different version of COCOMO 

model.  

• iSF  are five scale factors including PMAT, PREC, TEAM, FLEX, and RESL; 

• _ _ jEM But SCED are effort multipliers except SCED, including RELY, 

DATA, CPLX, RUSE, DOCU, TIME, STOR, PVOL, ACAP, PCAP, PCON, 
APEX, PLEX, LTEX, TOOL, and SITE. 

 
2) Compute the IEM(P,CDA) using equation 5 
3) Group IEM(P, CDA) by the same SCED rating (i.e. VL, L, N, H, VH) 
These groupings are shown in Figures 6 and 7. 
4) Compute the median value for each group as IEM-SCED value for that rating. 
This step involves the computation of the median value of IEM-SCED for each rating level.  These 
are summarized in Table 6 and grouped by COCOMO II 2000 and 2004 databases. 
 



Figure 6. IEM-SCED Group Distributions for CII2000 
 

Figure 7. IEM-SCED Group Distributions for CII2004 

I EM- SCED on COCOMO I I  2000

0

0. 5

1

1. 5

2

2. 5

3

0 1 2 3 4 5 6
Rat i ng

Va
lu

e

I EM- SCED on COCOMO I I  2004

0

0. 5

1

1. 5

2

2. 5

3

0 1 2 3 4 5 6
Rat i ng

Va
lu

e



Given that extreme values (outliers) exist in our databases. Those outliers could give great impact 
to the mean values. To avoid that, the median value is used since it is not as sensitive to outliers. 

 
SCED Rating VL L N H VH

IEM-SCED in CII 2000 1.94 1.2 1.04 1.16 0.88
IEM-SCED in CII 2004 1.62 1.17 0.98 1.04 0.78  

Table 6. IEM-SCED Analysis Results of CII 2000 and 2004 databases 

 
Comparison of IEM results and COCOMO II 2000  

To compare the SCED cost driver’s effects in different databases, the IEM-SCED values from 
Table 6 and the SCED values in COCOMO 81 and COCOMO II 2000 are plotted in Figure 7. 

0.9

1.1

1.3

1.5

1.7

1.9

2.1

VL L N H VH

SCED Rating

S
C

E
D

 V
al

ue

COCOMO81 CII 2000
IEM-SCED in CII 2000 IEM-SCED in CII 2004

 

Figure 7. SCED Comparison 

The diamond-dashed line shows the SCED driver values used in COCOMO 81.  Its V-shape implies that 
either schedule compression or expansion will cause increase on project development effort.  The solid-triangle 
line shows current SCED driver values in COCOMO II 2000, where the VL rating for SCED is increased from 
1.23 to 1.43 as discussed earlier.  However, for ratings above Nominal, the line remains flat indicating that 
schedule expansion does not add or decrease effort.  One underlying explanation might be that the savings due 
to small team size are generally balanced by the need to carry project administrative functions over a longer 
period of time.  The remaining lines show the SCED ratings derived from the IEM-SCED analysis 
using the COCOMO II 2000 and COCOMO II 2004 datasets.  In both cases, the lines have steeper 
slopes from Very Low to Low and Low to Nominal rating levels, meaning that the effect of schedule 
compression on increasing development cost is enhanced.  Another observation is that the levels 
above Nominal demonstrate a relatively different shape than accustomed to.  The projects with a 

COCOMO 81 

CII 2000 

IEM-SCED CII 2004 

IEM-SCED CII 2000 



High IEM-SCED value exhibited some cost penalty while the projects with a Very High IEM-SCED 
value exhibited cost savings.  Further investigation is needed to determine real-life reasons why this 
could happen on software development projects. 

  
Model accuracy with IEM results 

Efforts to calibrate COCOMO II with the 2004 data set following the Bayesian Calibration 
approach are still ongoing [10].  In the meantime, we have applied the derived IEM-SCED values back 
to the well-calibrated CII 2000 database and have seen an improvement in the model’s accuracy.  
The increased accuracy is shown in Table 7. 
 

Table 7. Accuracy Analysis Results of COCOMO II 2000 

Database Pred(20) Pred(25) Pred(30)
CII 2000 W/O IEM 58% 65% 72%

With IEM 61% 71% 76%  

The table shows that by applying the IEM-SCED values into the CII model, all three accuracy 
levels - Pred(20), Pred(25), and Prec(30) - increase by 3%, 6%, and 4%. 
 
V. Conclusions 

Software development has changed dramatically in the last decade as a result of new applications 
that have enabled faster development.  Managing the development schedule remains a key aspect of 
reliable and timely development.  The current cost models available, including COCOMO II, provide 
ways to quantify the impact of schedule compression or expansion.  All of these models agree with 
the idea that acceleration of schedules will increase cost.  But the problem is that reported SCED 
ratings often differ greatly from what actually happened on the project.  We have shown the current 
ratings for the COCOMO II SCED driver do not adequately reflect the impact of schedule fluctuation.  
As such we have developed new ratings that better reflect the cost impact of schedule changes.  The 
new ratings resulted in improvements in CII 2000 model accuracies, i.e. by 3% for Pred(20), 6% for 
Pred(25), and 4% for Pred(30). While this may seem insignificant, these improvements are powerful 
considering that COCOMO II has 22 parameters.  Additionally, the SCED Rating Quality metric 
illustrates a significant difference between the reported schedule and the actual schedule; confirming 
that subjective assessments of schedule are often incorrect. 

A number of opportunities exist for future work in the area of schedule estimation using 
COCOMO II.  For one, the dynamic range of the rating scale could be expanded to cover projects 
which are compressed by more than 25 percent or expanded by more than 60 percent.  Secondly, a 
new method of collecting schedule information needs to be developed to improve the reliability of the 
SCED driver.  Currently there is a significant difference between the reported schedule and the actual 
schedule – introducing measurement error in the model.  In order to overcome this, project schedule 
could be determined by the start and end date and compared to the original baseline schedule. Thirdly, 
the effect of local calibration should be accommodated through some new methods or metrics when it 
comes for a general model like COCOMO to do a “full” calibration. This is because differences in 
local calibrated model parameters might cause bias when trying to understand and study on one single 
driver.  These metrics can be used to derive the actual schedule compression, if any, and improve the 
reliability of schedule estimation. 

 



VI. References 
 
[1] CHAOS 2001, http://standishgroup.com/sample_research/PDFpages/extreme_chaos.pdf 
 
[2] Your Guide to PRICE-S: Estimating Cost and Schedule of Software Development and Support, PRICE 
Systems, LLC, Mt. Laurel, NJ, 1998. 
 
[3] Lawrence H. Putnam, Software Cost Estimating and Life-Cycle Control: Getting the Software Numbers, 
New York: The Institute of Electrical and Electronics Engineers, Inc., 1980. 
 
[4] Lawrence H. Putnam, MEASURES FOR EXCELLENCE Reliable Software on Time, within Budget, 
Englewood Cliffs: Yourdon Press., 1992. 
 
[5] SEER-SEM, http://www.galorath.com 
 
[6] Boehm, B., B. Clark, E. Horowitz, C. Westland, R. Madachy, R. Selby. “Cost Models for Future 
Software Life Cycle Processes: COCOMO 2.0”, Annals of Software Engineering Special Volume on 
Software Process and Product Measurement, J.D. Arthur and S.M. Henry, Eds., J.C. Baltzer AG, 
Science Publishers, Amsterdam, The Netherlands, Vol. 1, pp. 45 - 60, 1995 
 
[7] Devnani-Chulani, S. “Bayesian Analysis of Software Cost and Quality Models", unpublished Ph.D. 
Dissertation, University of Southern California, May 1999. 
 
[8] Boehm, B. W., Software Engineering Economics. Prentice-Hall, 1981. 
 
[9] Boehm, B., Abts, C., Brown, A., Chulani, S., Clark, B., Horowitz, E., Madachy, R., Reifer, D., and Steece, 
B., Software Cost Estimation with COCOMO II, Prentice Hall, 2000. 
 
[10] Sunita Chulani, Barry W. Boehm, Bert Steece: Bayesian Analysis of Empirical Software Engineering Cost 
Models. IEEE Trans. Software Eng. 25(4): 573-583, 1999. 
 
 
Biographies: 
 
Ye Yang 

Ye is a Research Assistant at the Center for Software Engineering and a PhD student of Computer Science 
Dept. at the University of Southern California. Her research interests include software cost estimation modeling 
for COTS-based systems and Product Line Investment based on COCOMO II model, and process modeling and 
risk management for COTS-based application development. She received her major bachelor degree in 
Computer Science and minor bachelor degree in Economics from Peking University, China in 1998, and her 
Master degree in Software Engineering from Chinese Academy of Sciences in 2001. 

 
 
 



Zhihao Chen 
Zhihao is a PhD student at USC doing research in Software Engineering under Professor Barry W. Boehm. 

His research is focused on empirically based Software Engineering – empirical methods and model integration, 
which support the generation of an empirically based software development process covering high level lifecycle 
models to low level techniques, provide validated guidelines/knowledge for selecting techniques and models and 
serves, and help people better understand such issues as what variables affect cost, reliability, and schedule, and 
integrating existing data and models from the participants and all collaborators. He also focuses on software 
project management and cost estimation. Previously, he got his bachelor and master of computer science from 
South China University of Technology. He previously worked for HP and EMC. 
 
Ricardo Valerdi 

Ricardo is a Research Assistant at the Center for Software Engineering and a PhD student at the University of 
Southern California in the Industrial and Systems Engineering department.  His research is focused on the cost 
modeling of systems engineering work.  While completing a Masters degree in Systems Architecting & 
Engineering at USC he collaborated in the creation of COSYSMO (Constructive Systems Engineering Model).  
He earned his bachelor’s degree in Electrical Engineering from the University of San Diego.  Ricardo is 
currently a Member of the Technical Staff at the Aerospace Corporation in the Economic & Market Analysis 
Center.  Previously, Ricardo worked as a Systems Engineer at Motorola and at General Instrument Corporation.  

 
Barry Boehm 

Barry is the TRW professor of software engineering and director of the Center for Software Engineering at 
the University of Southern California. He was previously in technical and management positions at General 
Dynamics, Rand Corp., TRW, and the Defense Advanced Research Projects Agency, where he managed the 
acquisition of more than $1 billion worth of advanced information technology systems.  He originated the spiral 
model, the Constructive Cost Model, and the stakeholder win-win approach to software management and 
requirements negotiation. 
 


