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ABSTRACT

In the active and passive microwave remote sensing of earth terrain, scattering
effects due to medium inhomogeneities and surface roughness play a dominant role
in the determination of brightness temperatures and radar backscattering coefficients.
The volume scattering effects are accounted for by modelling earth terrain either as
a random medium or as a homogeneous medium containing discrete scatterers. The
rough surface effects are studied with models of random and periodic rough surfaces.
In order to more realistically model earth terrain, a composite model which accounts
for volume and rough surface scattering is developed.

The volume scattering effects due to medium inhomogeneities are studied by char-
acterizing earth terrain with a layered random medium model. The radiative transfer
theory is used to calculate the backscattering and bistatic scattering coefficients from a
two-layer random medium. Radiative transfer equations are solved numerically using
the Fourier series expansion and the Gaussian quadrature method. In order to explain
the scattering and emission characteristics of earth terrain which exhibit the effects
of layered structure, the results are generalized to the case of multi-layered random
medium. The complexity of the problem is kept at the same level as the two-layer
cases by deriving effective boundary conditions which incorporate all the properties of
the medium below that boundary.

The rough surface effects are studied with the models of random and periodic
rough surfaces. The scattering and emission characteristics of randomly rough surface
is studied by deriving bistatic scattering coefficients for the reflected and the trans-
mitted waves with the Kirchhoff approach and the small perturbation method. The
geometrical optics solution modified to incorporate the shadowing effect is used to
study energy conservation and to derive the upper and lower bounds for the emissivi-
ties. The small perturbation method is modified with the use of a cumulant technique
which is shown to have wider regions of validity. Active remote sensing of plowed
fields is studied with the model of a randomly perturbed quasiperiodic surface and the
Kirchhoff approach. The narrow-band Gaussian random variation around the spatial
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frequency of the sinusoidal variation is used to introduce the quasiperiodicity. It is
shown that there is a large difference between the cases where the incident wave vector
is parallel or perpendicular to the row direction. When the incident wave vector is per-
pendicular to the row direction. the maximum value of the backscattering cross section
does not necessarily occur at normal incidence. The scattering pattern is interpreted
as a convolution of the scattering patterns for the sinusoidal and the random rough
surfaces.

The composite model comprising an inhomogeneous layer over a homogeneous
halfspace with rough boundaries is developed to study the scattering and emission
characteristics of earth terrain. The radiative transfer theory is used. The random
medium and discrete scatterer models are used to incorporate the volume scattering
effects. To model rough top and bottom interfaces, the bistatic scattering coefficients
for a randomly rough surface obtained using a combination of Kirchhoff theory and
geometrical optics approach are used. Rough surface effects are incorporated into the
radiative transfer theory by modifying the boundary conditions. Because the bistatic
scattering coefficients for the rough surface violate energy conservation there is ambi-
guity in the emissivity. However, two alternate formulations are used to calculate the
emissivity. By calculating the bistatic scattering coefficients of the scattering layer with
rough top and bottom interfaces and integrating over the upper hemisphere an upper
limit for the emissivity is obtained by invoking the principle of reciprocity. A lower
limit for the emissivity is obtained by directly calculating thermal microwave emission
and assuming that the same medium is at a uniform temperature. It is shown that
the backscattering cross section for the angles of incidence near nadir is dominated by
the rough surface effects whereas the large angle of incidence behavior is dominated by
the volume scattering effects. The rough surface also causes the angular behavior of
thermal emission to become flatter and displays smaller differences between horizontal
and vertical polarizations due to more coupling of intensities at the boundaries.

Thesis Supervisor: Jin Au Kong
Title: Professor of Electrical Engineering
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CHAPTER 1

Introduction

The remote sensing of the earth and the elements of its environment at microwave

frequencies have been found to contain many practical applications. The primary ad-

vantage inherent in remote sensing at microwave frequencies over optical and infrared

frequencies is in its all-weather, day-and-night operational capabilities. Active and pas-

sive microwave remote sensing with both radar and radiometer have been investigated

in areas of snow and ice covered land or water 'Rouse, 1969; Waite and McDonald,

1969; Johnson and Farmer, 1971; Meier and Edgerton, 1971; Gloersen et al., 1973;

Ketchum and Tooma, 1973; Elachi et al., 1976; Kunzi et al. , 1976; Parashar et al.,

1977; Ulaby et al., 1977; Zwally, 1977; Hofer and Schanda, 1978; Hofer and Good,

1979; Rango et al., 1979', vegetation canopy [Ulaby, 1975; Ulaby et al., 1975; Bush

and Ulaby, 1976. 1978, cloud and rainfall [Grodv, 1976; Tsang et al., 19771 , and

soil moisture studies [Dickey et al., 1974: Schmugge et al., 1974; Ulaby and Batlivala,

1976ab; Njoku and Kong. 1977: Newton and Rouse. 1980; Wang et al., 1980; Jackson

and Schmugge. 1981; Njoku and O'Neill. 1981; Wang et al., 1983]. While extensive

effort has been concentrated in the measurement and collection of voluminous exper-

imental data, theoretical models that are useful in interpreting these data have not

been satisfactorily developed, especially where combinations of absorption. scattering,

layering and rough surface are important factors. Although past theoretical emphasis
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has been largely concentrated on rough surface scattering, recent theoretical models

have been proposed to account for volume scattering effects.

The scattering of electromagnetic waves from a randomly rough surface has been

studied extensively for many years. Two basic analytical approaches have been the

Kirchhoff approach (KA) iBeckmann and Spizzichino. 1963: Kodis, 1966; Stogryn,

1967; Sancer. 1969; Smith. 1967; Sung and Holzer, 1976; Tsang and Kong, 1980a:

and the small perturbation method (SPM) [Rice. 1963: Valenzuela. 1967. 1968,. The

KA approximates the surface fields using the tangent plane approximation. Under the

tangent plane approximation, the fields at any point of the surface are approximated

by the fields that would be present on the tangent plane at that point. Thus, the

tangent plane approximation requires a large radius of curvature relative to the incident

wavelength at every point on the surface. The SPM assumes that the surface variations

are much smaller than the incident wavelength and the slopes of the rough surface are

relatively small. The bistatic scattering coefficients for the reflected and transmitted

waves have been derived using both the KA and SPM.

The Kirchhoff approximated diffraction integral for a dielectric rough surface is

still difficult to evalute analytically and further approximations are usually made. The

integrands which depend on the local surface slopes can be expanded in slope terms

about zero slope, and then can be integrated by parts discarding the edge effect [Leader,

1971; Tsang and Newton, 1982). The integrals can then be evaluated by keeping only a

few terms of the expansion. In the high frequency limit, the geometrical optics solution

can be obtained using the method of stationary phase. The geometrical optics solution

is independent of frequency and states that the scattered intensity is proportional to

the probability of the occurrence of the slopes which will specularly reflect or transmit

the incident wave into the direction of observation :Barrick. 19681.
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The scattering of electromagnetic waves from a slightly rough surface can be

studied using a perturbation method. In the SPM due to Rice [1963), it is assumed

that the surface variations are much smaller than the incident wavelength and the

slopes of the rough surface are relatively small. The Rayleigh hypothesis is used to

express the reflected and transmitted fields into upward and downward going waves.

The field amplitudes are determined from the boundary conditions and the divergence

relations. The extended boundary condition (EBC) method may also be used with the

perturbation method to solve for the scattered fields ?Agarwal. 1977; Nieto-Vesperinas,

1982!. In the EBC method, the surface currents on the rough surface are first calcu-

lated. The scattered fields then can be calculated from the diffraction integral by

making use of the calculated surface fields. Both of the perturbation methods yield

the same expansions for the scattered fields, because the expansions of the amplitudes

of the scattered fields are unique within their circles of convergence [Maradudin, 1983].

The SPM has been used to calculate the scattered fields up to the second-order. The

zeroth-order solutions are just reflected and transmitted fields from a flat surface. The

first-order solution gives the lowest-order incoherent transmitted and reflected inten-

sities. However, the first-order solution does not give the depolarization effect in the

backscattering direction. The second-order solution gives the lowest-order correction

due to the rough surface to the coherent reflection and transmission coefficients. Also,

the depolarization of the backscattering power is illustrated with the second-order

solution.

Scattering of electromagnetic waves from a periodic rough surface is of interest in

the remote sensing of plowed vegetation fields with row structures. The variations of the

radar scattering coefficients and the radiometric brightness temperatures due to change

in the look direction relative to the row direction are observed to be significant ]XWang
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et al., 1980; Ulaby et al.. 1981l. The extended boundary condition (EBC) method

has been used to solve for the scattered fields from periodic surfaces [Waterman. 1975:

Chuang and Kong, 1981, 19821. The method is based on Green's theorem relating the

amplitudes of the incident plane waves to the Fourier components of the fields on the

periodic surface, which in turn gives the amplitudes of the diffracted Floquet waves.

Thus the amplitudes of the diffracted Floquet waves can be solved in terms of the

amplitudes of the incident plane waves directly by a transition matrix. After obtaining

the scattered field amplitudes the emissivity of the periodic surface can be calculated

using the principles of reciprocity and energy conservation. Because of the exact nature

of the theory, the reciprocity relation and the energy conservation have been shown to

hold exactly and the unambiguous emissivity of the periodic rough surface has been

obtained [Kong et al., 1984].

Scattering of electromagnetic waves from a randomly perturbed sinusoidal sur-

face is of interest in the active remote sensing of plowed fields. The variation of the

radar scattering coefficients due to the change in the look direction relative to the

row direction have been well documented [Batlivala and Ulaby, 1976: Ulaby and Bare,

1979; Fenner et al., 19801. In the past, the problem of electromagnetic wave scattering

from periodic or random rough surface has been extensively studied. The problem

of scattering by randomly perturbed periodic surface has been studied by assuming

that the periodic surface causes a tilting effect Ulabv et al., 19821. In this approach

the scattering coefficients of the random rough surfaces obtained using the Kirchhoff

approximation or small perturbation method is averaged over the change in local inci-

dence angle due to the periodic surface. This approach has also been used to solve the

scattering from a composite random rough surface with small and large scale variations

Semenov, 1966; Wu and Fung. 1972].
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In the active and passive microwave remote sensing of earth terrain. the scattering

effects due to medium inhomogeneities and rough interfaces play a dominant role in

the determination of brightness temperatures and radar backscattering coefficients.

The effects of volume scattering have been treated with two theoretical models for

the terrain media: (1) the random medium model where scattering effects can be

accounted for by introducing a randomly fluctuating part in the permittivities. and (2)

the discrete scatterer model where discrete scatterers are imbedded in a homogeneous

background medium.

In the theoretical developments for passive remote sensing the effect of volume

scattering due to medium inhomogeneity was first accounted for by Gurvich et al.

1973. They derived expressions for the brightness temperature of a halfspace random

medium with a laminar structure. assuming uniform temperature distribution. Tsang

and Kong 1975] solved the problem of thermal microwave emission from a halfspace

random medium with a laminar structure and nonuniform temperature distribution

using the radiative transfer theory. England 1974. first examined thermal microwave

emission from a uniform low-loss dielectric medium containing randomly distributed

isotropic scatterers, with a radiative transfer approach. He (1975] then considered

the more general case of a scattering layer over a homogeneous halfspace, using the

radiative transfer theory and a Rayleigh scattering model. Tsang and Kong [1977al

derived a more general result than that of England for both the halfspace and two-layer

case, using a Mie scattering model. With the Born approximation, Tsang and Kong

[1976a] obtained the emissvity of a halfspace random medium with a three-dimensional

variation.

In active remote sensing, Stogryn [1974] first calculated the bistatic scattering

coefficients for a random medium with a spherical correlation function using a pertur-
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bation approach. Leader 1975] studied scattering from Rayleigh scatterers imbedded

in a dielectric slab using the matrix doubling method. Using the Born approximation.

Tsang and Kong 4976a' studied scattering of electromagnetic waves by a halfspace

random medium. They [1978i also developed the radiative transfer theory to calculate

the bistatic scattering coefficients from a halfspace random medium. An iterative ap-

proach is used to obtain results to the second order. in order to exhibit depolarizaton

of backscattered power. Using the first-order renormalization method, Fung and Fung

[19771 obtained the bistatic scattering coefficients from a vegetation-like halfspace ran-

dom medium. Fung [1979 then extended the result to the case of a vegetation-like

layer over a homogeneous halfspace. Zuniga and Kong 119801 studied the scattering

from a slab of random medium using the Born approximation. Then, Zuniga et al.

19801 extended the result to the second order in albedo to show the depolarization

effect in the backscattering direction.

The radiative transfer theory has been useful in the interpretation of remote

sensing data [Kong et al., 1979]. Even though it deals only with the intensities of the

field quantities and neglects their coherent nature, it accounts for the multiple scat-

tering and obeys energy conservation. The modified radiative transfer (MRT) theory

[Tsang and Kong, 1976c; Zuniga and Kong, 1980, 19811 which takes into account the

partial coherent effects due to the boundaries has been derived for the cases when

the interference effects become important [Blinn et al., 1972]. The MRT equations

have been developed for a two-layer random medium with laminar structure by ap-

plying the nonlinear approximation to Dyson's equation and the ladder approximation

to the Bethe-Salpeter equation rTsang and Kong, 1976c). Then, the MRT equations

for electromagnetic wave propogation in a two-layer medium with three-dimensional

permittivity fluctuations are derived Zuniga and Kong, 1980, 1981'. The MRT equa-
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tions are then solved with the first order renormalization approximation to obtain the

backscattering cross sections.

In the microwave remote sensing of earth terrain, the multi-layered models have

shown to be more realistic in the interpretation of the data. In the passive remote

sensing the radiative transfer theory has been used to study thermal microwave emis-

sion from a multi-layered random medium with laminar strucrures {Djermakoye and

Kong, 19791. The propagation matrix formulism is applied to obtain closed-form so-

lutions. For the inhomogeneous slab random medium with non-uniform scattering,

absorption and a temperature profile in the vertical direction, the method of invariant

imbedding has been used [Tsang and Kong, 1977b_. The boundary value problem of

the radiative transfer equations is converted to an initial value problem starting at

zero slab thickness. Thermal microwave emission from a three-layer random medium

with three-dimensional variations has also been studied using the radiative transfer

theory ITsang and Kong, 1-980b}. The quadrature method is used and the results are

found to be useful in the interpretation of snow data exhibiting diurnal change [Hofer

and Shanda, 1978; Stiles and Ulaby, 1980]. In the active remote sensing, the scattering

from multi-layered random medium has been solved using the Born approximation and

the propagation matrix formulism [Zuniga et al., 1979 . The radiative transfer theory

also has been applied to scattering from multi-layer of Rayleigh scatterers where the

iterative approach is used to obtain solutions to first-order [Shin, 1980; Karam and

Fung, 19821.

Most of the previous work on volume scattering all assumed planar boundaries.,

and the effect of rough surface scattering was neglected. However, in order to under-

stand in a more meaningful way the problems of radar backscattering and thermal

microwave emission from natural terrains, a composite model that can account for
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both the volume and surface scattering effects must be studied. Recently. the Rayleigh

scattering model has been used with the radiative transfer equations to study the com-

bined volume and rough surface scattering effects Fung and Chen, 1981a,b; Fung and

Eom, 19811.

In Chapters 2 and 3, the scattering and emission from random rough surface

are studied. The scattering of electromagnetic waves from a randomly rough surface

has been studied extensively for many years. Two basic analytical approaches have

been the Kirchhoff approach (KA) and the small perturbation method (SPM). The

KA approximates the surface fields using the tangent plane approximation. Under the

tangent plane approximation, the fields at any point of the surface are approximated by

the fields that would be present on the tangent plane at that point. The SPM assumes

that the surface variations are much smaller than the incident wavelength and the slopes

of the rough surface are relatively small. The bistatic scattering coefficients derived

under the KA and SPM are reviewed and summarized in Chapters 2 and 3, respectively.

The bistatic scattering coefficients for the transmitted fields are also derived using KA

and SPM in order to study the energy conservation of the various approximations.

The emissivity of the random rough surface are calcualted by integrating the bistatic

scattering coefficients over the upper hemisphere. The geometrical optics solutions are

modified using the shadowing functions. The upper and lower limit of the emissivity

are obtained using the modified geometrical optics solutions.

In Chapter 4, the cumulant technique is used to modify the SPM solutions. The

resulting modified SPM solution are shown to have a wider region of validity than the

conventional SPM results and to agree with the KA results for all values of the variance

of the surface heights in the limit of large correlation lentghs. The bistatic scattering

coefficients for the reflected waves are calculated. The emissivities are also calculated by
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integrating over the upper hemisphere the reflected coherent and incoherent scattering

coefficients.

In Chapter 5. the Kirchhoff approximation is used to study the scattering of elec-

tromagnetic waves from a randomly perturbed quasiperiodic surface. In order to more

realistically model the plowed fields we characterize the rough surface as a composite

surface with a Gaussian random variation, a sinusoidal variation and a narrow-band

Gaussian random variation around the same spatial frequency. Introduction of the

narrow-band random variation causes the surface to be quasi-periodic. The physical

optics integral obtained with the Kirchhoff approximation is evaluated to obtain the

coherent and incoherent bistatic coefficients. In the geometrical optics limit, the sta-

tionary phase method is used to further simplify the results. In this limit it is shown

that the bistatic scattering coefficients are proportional to the probability of the occur-

rence of the slopes which will specularly reflect the incident wave into the observation

direction. The theoretical results are illustrated for the various cases by plotting the

backscattering cross sections as a function of the angle of incidence with the incident

wave vector either parallel or perpendicular to the row direction. The appearances of

peaks are explained in terms of the scattering patterns for sinusoidal surfaces.

In Chapter 6. the problem of thermal microwave emission from a multi-layered

random medium on top of homogeneous halfspace is solved using the radiative transfer

theory. The brightness temperatures are calculated using a numerical approach. The

radiative transfer equations are solved using a quadrature method where the integrals

are replaced by the summation over the discrete quadrature angles. The resulting

system of first-order differential equations are solved by obtaining eigenvalues and

eigenvectors and matching the boundary conditions. The effective boundary conditions

are derived in terms of the effective reflection matrices and the effective source vectors
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to reduce the complexity of the problem t~o that of a two-layer problem. The effective

reflection matrices and the effective source vectors are solved recursively by considering

only one layer at a time. The numerical solutions are illustrated by plotting brightness

temperatures as functions of frequency and observation angle for multi-layered cases.

In Chapter 7, the problem of scattering from a multi-layer random medium is

solved using the radiative transfer theory. Using all four Stokes parameters, the bistatic

scattering coefficients of two-layer random medium are first calculated using a numer-

ical approach which provides a valid solution for both small and large albedos. A

Fourier-series expansion in the azimuthal direction is used to eliminate the azimuthal

d-dependence from the radiative transfer equations. Then, the set of equations without

the O-dependence is solved using the method of Gaussian quadrature. The integrals

in the radiative transfer equations are replaced by a Gaussian quadrature and the re-

sulting system of first-order differential equations is solved by obtaining eigenvalues

and eigenvectors and matching the boundary conditions. The order of system of eigen-

equations is reduced for more efficient computation by making use of the symmetry

properties of the scattering function matrix. Then in Chapter 8, the results are gen-

eralized to the case of scattering from multi-layered random medium. The effective

boundary conditions are derived in terms of the effective reflection matrices to reduce

the complexity of the problem to that of a two-layer problem. The effective reflection

matrices are solved recursively by considering only one layer at a time. The numerical

results are illustrated by plotting backscattering cross sections and the bistatic scat-

tering coefficients as functions of frequency, incident angle, and the scattering angles.

In Chapter 9, the radiative transfer theory is used to solve the problem of ther-

mal microwave emission from a scattering layer overlying a homogeneous halfspace

with rough interfaces at the top and bottom boundaries. Mie scattering phase func-
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tion is used for volume scattering. and the bistatic scattering coefficients of a Gaussian

random surface., obtained using a combination of the Kirchhoff approximation and a

geometrical optics approach. is used for rough surface scattering. The rough surface ef-

fects are incorporated into the radiative transfer equations by modifying the boundary

conditions satisfied by the intensities at the top and bottom interfaces. The radiative

transfer equations are solved numerically, using the Gaussian quadrature method. Be-

cause the bistatic coefficients of the rough surface violate energy conservation there is

ambiguity in the emissivity. However, using two alternate formulations, the upper and

lower limits of the emissivity are calculated. By calculating the bistatic coefficients of

a scattering layer with rough top and bottom interfaces and integrating over the scat-

tering angles in the upper hemisphere we can obtain an upper limit for the emissivity

by invoking the principle of reciprocity. A lower limit for the emissivity is obtained by

directly calculating thermal microwave emission and assuming that the same medium

is at a uniform temperature. The theoretical results are illustrated by plotting the

brightness temperatures as functions of observation angles and polarizations.

In Chapter 10. the problem of scattering from a two-layer random medium with

rough boundaries is solved using the radiative transfer theory. The rough surface effects

are incorporated into the radiative transfer equations by modifying the boundary con-

ditions. The reflected and transmitted bistatic scattering coefficients derived with the

randomly rough surface models are used to derived the boundary conditions satisfied

by the intensities at the top and bottom interfaces. The radiative transfer equations

are solved numerically using the Fourier-series expansion and the Gaussian quadrature

method. The order of system of eigen-equations is reduced for more efficient compu-

tation by making use of the symmetry properties of the scattering function matrix.

The thoeretical results are illustrated by plotting the backscattering cross sections as
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functions of frequency and incident angle.

In Chapter 11. various theoretical models developed in this thesis for microwave

remote sensing of earth terrain are summarized and the recommendations for future

studies are made.
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CHAPTER 2

Scattering and Emission by Random Rough Surfaces -

Kirchhoff Approximation

The scattering of electromagnetic waves from a random rough surface is stud-

ied using the Kirchhoff approximation. The tangent plane approximation is used to

approximate the surface fields. The bistatic scattering coefficients for the reflected

and transmitted waves are derived. The integrands which depend on the local surface

slopes are expanded in slope terms and the integrals are evaluated by keeping only a

few terms of the expansion. In the high frequency limit, the geometrical optics solution

is obtained using the method of stationary phase. The geometrical optics solution is

independent of frequency and states that the scattered intensity is proportional to the

probability of the occurrence of the slopes which will specularly reflect or transmit the

incident wave into the direction of observation. The bistatic scattering coefficients are

modified to incorporate the shadowing effects. The sum of reflected and transmitted

intensities is shown to be always less than the incident intensity and this is used to

derive the upper and lower bounds for the correct emissivity of the rough surface in

the geometrical optics limit.
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2.1 Introduction

The scattering of electromagnetic waves from a randomly rough surface has been

studied extensively for many years. Two basic analytical approaches have been the

Kirchhoff approach (KA) [Beckmann and Spizzichino. 1963: Semenov, 1965; Kodis,

1966; Stogryn, 1967; Barrick, 1968; Fung and Chan. 1969; Sancer, 1969; Lynch and

Wagner. 1970; Leader, 1971; Sung and Holzer. 1976; Sung and Ekerhardt, 1978; Tsang

and Kong, 1980ab; Bass and Fuks, 1979; Ulaby et al.. 1981 and the small perturbation

method (SPM) [Rice. 1963; Valenzuela, 1967, 1968; Agarwal, 1977; Nieto-Vesperina,

1982J. The KA approximates the surface fields using the tangent plane approximation.

Under the tangent plane approximation, the fields at any point of the surface are

approximated by the fields that would be present on the tangent plane at that point.

Thus, the tangent plane approximation requires a large radius of curvature relative

to the incident wavelength at every point on the surface. The SPM assumes that the

surface variations are much smaller than the incident wavelength and the slopes of the

rough surface are relatively small.

In this chapter we derive the bistatic scattering coefficients for the reflected and

transmitted waves using the KA. The Kirchhoff approximated diffraction integral for

a dielectric rough surface is still difficult to evaluate analytically and further approx-

imations are usually made. The integrands which depend on the local surface slopes

can be expanded in slope terms about zero slopes, and then can be integrated by part

discarding the edge effect. The integrals can then be evaluated by keeping only a few

terms of the expansion. In the high frequency limit, the geometrical optics solution can

be obtained using the method of stationary phase. The geometrical optics solution is

independent of frequency and states that the scattered intensity is proportional to the
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probability of the occurrence of the slopes which will specularly reflect or transmit the

incident wave into the direction of observation. The bistatic scattering coefficients are

modified to incorporate the shadowing effects. The sum of reflected and transmitted

intensities is then shown to be always less than the incident intensity. This used to

derive the upper and lower bounds for the correct emissivity of the rough surface in

the geometrical optics limit.
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2.2 Formulation

Consider a plane wave incident upon a random rough surface Fig. 2.1 . The

electric field of the incident wave is given by

j = , E., e'k (1)

where k, denotes the incident wave vector and a, the polarization of the electric field

vector. The rough surface is characterized by a random height distribution z = f(-r)

where f(F) is a Gaussian random variable with zero mean, (f(F)= o. The scattered

and the transmitted fields are given by the diffraction integral. From Huygens' princi-

ple. which expresses the field at an observation point in terms of fields at the boundary

surface, the following expressions are obtained for the scattered fields in region 0 and

the transmitted fields in region 1 [Kong, 1975].

E,() = dS' wpG(,o(F') [h x H(F')] V x G(, ') .[ x (2a)

E )= J dS' {2P.Gl(if') -jx ' - V x G ( If') i x E(f') (2h)

where S' denotes the rough surface on which the surface integration is to be carried

out, h and fa are the unit vectors normal to the rough surafce and pointing into the

reflected and transmitted regions, respectively 'Fig. 2'. The dyadic Green's function

for homogenous space of the region 0 and 1, G(-, F') and 0 1 (-, F'), are

G (F, F') = I -, - _, (.3a)
k:' 47r- r - r |
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and

k j 47r|F - T'
(3F)

where k =wj-7- and ki = 0Li. If the observation point is in the far field region,

then the dyadic Green's functions simplify to

(f, (7
47rr

G ,' (I - k, kt) -- e -
47rr

(4)

(5)

where k, and k, denotes the scattered and transmitted direction in region 0 and region

1. repectively.

Substituting (4) and (5) into the diffraction integral (2), we obtain, in the re-

flected direction k, and transmitted direction kt,

ikeikr -

47rr
kj-k4. (6a)

ikieikjr - 7 _

4krr
dS' {ICf x[ x E(x') -t -iK *?1u x H(F')] } e- -

where r7 and ri, are the wave impedances in the regions 0 and 1, respectively.

(6b)

r(']}e- "d S' ( .x [h x i(' i+ ;[ x
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2.3 Tangent Plane Approximation

In the Kirchhoff approach. an approximate expression for the surface fields is

obtained under the tangent plane approximation. Under the tangent plane approxi-

mation, the fields at any point of the surface are approximated by the fields that would

be present on the tangent plane at that point. Thus. the tangent plane approximation

requires a large radius of curvature relative to the incident wavelength at every point

on the surface iBeckman and Spizzichino, 19631.

First we form an orthonormal system (fi 4,, Ic) at the point F'. with

Ici x (

1ci x h!

p i = ix (8)

where, i(') = -f(F'), is the normal to the surface at the point T' pointing into the region

o. The unit vectors 4, and f, are the local perpendicular and parallel polarization vectors

at the point F' In applng the tangent plane approximation, we solve the boundary value

problem for the TE and TM polarization of an wave incident onto an infinite planar

interface taking the tangent plane to be the interface. We decompose the incident field

into locally perpendicular and parallel polarization fields.

The perpendicular component of the incident field is

(so - th)lEca re fe i

so that the local reflected field is

(P . 4)4,E_ ReIT'
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where Rj, is the local Fresnel reflection coefficient

k cos \4 - k 2 sin2 HI
Rj, =(9a)

k cosI + k - k 2sin 1 ,

with , as the local angle of incident at the point r'. The magnetic fields associated

with the above are

k, x (a - Fi)qiEce
?7

and

I x ( j -qj)qE-RTe
'7

where kr is the local reflected direction and is related to the incident direction by

kr - Ic, - 2h(fi -k,)

Hence the tangential electric field of this perpendicular component is

h x = (h x q )(E- 4 )(1 R- ,)E,,e

and the associated magnetic field is

h x H -(i -fi x [(ci x 4) + Rl,(Ic, x 4) E ,ek r
'7

= -(1 - Rh)(h - Ii) 4iE FeT'
?7

where we have made use of the relations i -4, = 0 and ft - kr = -ii ,. The calculations

can be repeated for local parallel polarized component with local reflection coefficient

for vertical polarization.

e Ikcos 61i - E k - k 2 sin 2

R77= (9b)

kcos ~ + k - ksi2 Sn
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Summing up the local parallel and perpendicular polarized components. we ob-

tain

A x E(T') = E, qs )(A x 4j)(I -- R,,) ( i) ( )(A -Ii)4i(1

x E-
n x I(F) = " -(i -42)6 -

Ic,)4j(1 - R.,) + (j,

R i) e' T'

fi)(h x q,)(1 + RI) e k

The local angle of incident can be calculated from the formula

Cos 6 1 = -h - I'

The normal vector at the point F' is given by

n(r')= M+s
Q1+ a 2+ '82

where a and 0 are the local slopes in the x and y directions.

8 f (x', y')
ax'

_ f(x' y')
ay'

Substituting (10) into (6). we obtain, after some algebraic manipulations,

( EikrE(J-kIc)
4irr E

ikfe E. k-

41rr E,( dF'j N((1,4)) - k

(10a)

(1ob)

(11)

(12)

(13a)

(13b)

(14a)
f4dF'i F ( , -W -)'

Ict- 
A

(14b)



34

where

F(a, B) =(i + -2)/2 {-(2 44i - )Q( 1 - R,,) f, (s )(h x 4j)(1 + R,)

f, ( i - q,)(I - Rc) (15a)

N(a, 9) =(1 - 2+ /2) 1/2 (j -k d)(f, - Ici)i(i - RI) - ?(, j4(h x (i + Ri)

(i - q4,)(k x (h x q )(1 -r RJ) - (Ei -f ki)( . Ii)(Ict x 4j)(1 - R,) (15b)

The orthonormal systems for the incident. reflected and transmitted fields are given

respectively by ( j, 2, ki), (t,, &,, I) and (,, k, ,Ic) with

= sin O cos 6i + sin O9 sin 4O - i cos O,

hi = - sin 0, + 9 cos Oi

=-z cos O cos44 - tcos O, sin Oi - sin 6,

= sin 6, cos p, + sin 6, sin -, + cos ,

h, = -i sin p. * Q cos <p,

V. = i cos 6, cos Y, - cos 0, sin d, - z sin 9,

Ic = 1 sin Ot cos - + P sin f sin $f - i cos Of

ht= -i sinll + cos (pt

01 = -zcos61 cos 6 - cos sin - sin 6t

(16a)

(166)

(16c)

(1 7a)

(17b)

(17c)

(18a)

(18b)

(18c)

- ( i - 4,) (I.., -:(h x 4j))(I + R) + ( ,
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We note that except for the phase factors., the expressions in the integrands of the

diffraction integral. (14). are not explicit functions of r'. They are explicit functions of

the slopes a and 3, which are functions of -'. The tangent plane approximated diffraction

integrals, as expressed in (14). do not take into account the effects of shadowing and

multiple scattering.

At. this point the question of shadowing comes in naturally. When the direction

of incidence is not normal to the z - V plane, some points on the rough surface will not

be illuminated directly [Fig. 2.21. For some points Ipoint 1, Fig. 2.2] the local angle of

incidence 6,i is not defined since

cos6, -A kI < 0 (19)

All the points on the rough surface with such local slopes will not be illuminated

directly. Some other points [point 2, Fig. 2] are not directly illuminated, even though

the local angle of incidence is well defined, because of the height of rough surface at

that point relative to the heights of the surrounding points. However, even without

the complication due to shadowing the diffraction integrals for the scattered fields are

difficult to evaluate analytically. This is because the local reflection coefficients R, and

R, are functions of the surface slopes. One solution would be to evaluate the integrals

numerically for a given realization of the random rough surface. Then, the shadowing

effect can be incorporated directly during the numerical integration. In the limiting

case of a perfectly conducting random rough surface, the local reflection coefficients

R,, and R, are 1 and -1, respectively, and do not depend on the local surface slopes.

Then, by neglecting the shadowing effect so that at all the points of the rough surface,

h x E = 0 and At H = 2t x H2 (even at the points with slopes such that they cannot be

directly illuminated), the diffraction integrals can be cast into a well-defined integral.
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For the dielectric random rough surface. various approximations have been ap-

plied to the Kirchhoff approximated diffraction integrals. The integrands which depend

on the local surface slopes can be expanded in slope terms about zero slopes, and, then

integrated by parts discarding the edge effect Leader, 1971,. Usually only a few terms

of the expansion are kept. In the high frequency limit the geometrical optics solution

can be obtained from (14) with the stationary phase method. The geometrical optics

solution is independent of frequency and states that the scattered intensity is propor-

tional to the probability of the occurrence of the slopes which will specularly reflect or

transmit the incident wave into the direction of observation [Barrick, 1968.

In the calculation of the reflected fields, the expression for the diffraction integral.

(14a). contains the total field (incident and reflected) on the surface. The scattered

field in region o evaluated from (14a) are the same whether one uses the total field

or the reflected field on the surface of rough interface. However, when the integrand

F(ar3) is approximated the results using total or reflected surface fields may not give

the same result [Holzer and Sung, 19781. For the case when shadowing is present,

using the total field or the reflected field on the illuminated region, while assuming no

incident wave for the shadowed region, corresponds to different approximations and the

results obtained for the scattered fields are different. The geometrical optics solution

is independent of whether total or reflected field is used since the integrand F(U,) is

evaluated at the stationary phase points a, and 0-.
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2.4 Coherent and Incoherent Scattering Coefficients

The scattered intensities from a random rough surface can in general be decom-

posed into coherent and incoherent components. Coherent components only contribute

in the specular reflected or transmitted directions while incoherent components con-

tribute in all directions. In the limiting case of flat surface the scattered intensity

consists of only the specularly reflected and transmitted coherent intensities. In the

other limiting case of a very rough surface, the coherent components almost vanish

and intensities are incoherently scattered. In this section we solve for the coherent

and incoherent scattered intensities by further approximating the integrands in the

Kirchhoff approximated diffraction integrals.

One commonly used approximation is to expand the integrands F(a, f) and N(a,)

in slope terms about the zero slopes and to keep only the lowest few terms [Leader,

19711. Expanding P and N we obtain

fla, #)=F(0, 0) + a + 0+---(2)a (20a)

aN,
N(ca, 3) N(0.0) + c 6 - (20

where F(0,0) is F(a,B) evaluated at a = = 0, etc. For angle of incidence near normal

and for surfaces with small mean square surface slope., the Fresnel reflection coefficients

only vary slightly with the change of local angle of incidence. Thus, we shall keep only

the first terms in (20) in our subsquent calculations. Thus, from (14), we have

ikeikr
47rr



= ileikl E,(
r

J - ktik) -N(O.0) J,

where the integrals I and I, are given by

I= ef4 -'d' (22a)

itf ef, ir dF' (22b)

The scattered fields are now separated into a mean field and a fluctuating part of the

field

EwE,) = ( + £(F) (23a)

(23b)Et(F) = Etm,(-) + t(r)

(%(F)) = (t(F)) = 0

with

and

(25a)

(25b)

(E,(F)) = E,()

(E 1 (F)) = , ()

The total scattered intensity is then a sum of coherent and incoherent intensities

(26a)= E 1,
2 + 1() 2

(|E (F) ) = Et, 2 1 |,7 2,%

(24)

38

(21b)

(26h)
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In view of (21) and (22). we have

|E ,() = k2 lE - (, ;2 0) (,) I)r67 !r -

X" -( kF E (j, * N(O, 0)) (h, N(0, 0))1 i(I,)12

16 r-r2 [

(IIt(F) 2) = p( N(O, 0)) + (h, - N(O, 0))] D

where

h= (.2) - () D

Dz,~ = (I-b 12) - |I)2

(27a)

(27b)

(28a)

(28b)

(29a)

(29b)

At this point, we need to further specify the height distribution f(F). The rough

surface is assumed to be a Gaussian process. The probability for f(F) is independent

of the position -_ on the rough surface and has gaussian distribution

PU1 (F f !2,72
)= e-

v2ira
(30)

where a is the standard deviation of the surface height. For two points on the surface,

ri1 and r12, the joint probability density [Davenport and Root, 1958] is

1 fl - 2Cfif 2 + f2
P (T-r1), f2(r12)) = 2 - exp (31)

2ira 2v'1 - C2 2(1-C)
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where C is the correlation coefficient between the two points and is a function of F-1

and F 2. For a statistically homogeneous isotropic surface, it is only a function of

= ( X - _)+ (y - y)2.

(32)

C(O) = 1

C(oo) = 0

1C(p) < 1

It can now easily be shown that

(33a)

(33b)

(33c)

1iL'f (FrL = iv ~ 21" ) df p(f) e"' = exp - orvi

where i) denotes the ensemble average. Similarly,

f : df1 df2 p(f1, f2)e"'(f12

exp L-Cy ( - C(p))

The expressions for I(J)12, D, I(It)12 ar

moments of the height distribution.

The integral I is given by

D1, can now be derived in terms of the statistical

(36)

(34)

(35)

(f~ ~ ~~( ( f ) =C a(P)

I f fi e'k / -L- (F ')
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where

k,- , =+k

The ensemble average of I is given by

w An

In view of (34), we obtain, after carrying out the dF', integration.

(38)

(39)(I) = 4LL, exp [ k, 2C2] sinc (k,,,L,) sinc(kaL)

where sinc x = sin x/x, 2L, and 2L,, are the lengths of rough surface in the x and y

directions, respectively so that

A, = 4L,L,

Therefore,

(I/2 = 16LYLI exp -kcr 2 ] sinc2 (k,1 ,L,) sinc(kI,,,LY)

(40)

(41)

By allowing L,. and L, to approach infinity in the above expression, we obtain

4r 2A, exp [-k, 2] &(kl) 6(ka?)

where is the Dirac delta function and we made use of the following identity:

lim L " sinc2 (k,,L , ) sinc~ (ki,1L,) = (k,) 6(k,,),
L .L,- oc 7r2

(42)

(43)
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The integral for (IF is given by

IV; dr J dF' H. (-K: '';-(4

Using (35) and making the usual change of variables of the difference and half the sum

of coordinates. we obtain

K II L 
x L ,

(II 2 ',= dx f2
dy (2L, - x|) (2L,, - y!) exp(ikrx + ik 1,y) exp -k-r (I - C((p)) (45)

The correlation function C(p) is assumed to have a gaussian form rBarrick. 19701

C(p) = e (46)

where i is the correlation length for the random variable f(fr) in the transverse plane.

The expression for the standard deviation of the integral I can now be evaluated in

closed form. We first note that (I) 2 can be also be expressed as

-iL
d L J

-. f 2L
dy (2L, x|)(2L, - y!) exp(ik,,r -- ik,,,y) exp(-u 2 k 2) (47)

Combining (45) and (47) and in view of (46), we note that the contribution of the

integral of () - I)'2 come from Ixi and iyv of the same order of I and the integrand is

pratically zero for p = (X2 -+- y 2)1/2 larger then a few l's. Assuming the illuminated rough

surface contains many correlation lengths L.,, L, >> 1, we obtain

D= (I) - I)12

SA,, f dx dy {exp [-c 2 kje (1 - C(p)): - exp -cr 2 k3J } exp [ikax + ik,7 y) (48)

(44)
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Converting the integral in (48) to cylindrical coordinates and carrying out the

integral in d4 gives a Bessel function in the integrand. We further make a power series

expansion

exp (-CT2 k",(] - C(p)))

and make use of the integral identity

Jc
12 k1,1

-exp 4m''
2m 4

Using (49)-(50) in (48). we obtain fGradshteyn and Ryzhik, 1965]

=Dc (II - ()

(k ., 2)' 1 2= rA,, E m exp
na m!?rn -

(k2:, + k2 )l2
exp[- k;

4m i (51)

In a similar manner. the expressions for 1(j,) 2 and DI, may be derived. They are

(I)1 2 = 47r2 A, exp eLktdJ 6 (kt,i,)6(k,,,,)

and

D1, = 7rA, (kL z 12)t 2exp

1 m!m

where

kt,, = ki - k, = ktj,, + kt,I±J + k,,1 (54)

The bistatic scattering coefficients for the reflected intensities are defined as

(a, 6 = v, h)

exp (-cak,) = exp (-o 2 k) (49)

(50)

(52)

(53)

"I'l""I'll""I'll'll""I'll'I - 1-1- 1 ..... .............................. . ... .. - , 1. - ;1 I I I I . -

(C72 2 rit

1 7 expM.

r 1 4 rr2 (Sr)1
'Y141(kki =At cos 0, (S,,), (55)

_ k (,.1kyl exp 1 -o~ , ]4m It
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where subscript a represents the polarization of the incident wave, subscript b the

polarization of the scattered wave, S- the Poynting power density of the incident wave,

S, the Poynting power density of the scattered wave. A,, the area of the rough surface

projected to the x - y plane. and 6, the incident angle. From (21), we calculate the

vertically and horizontally polarized coherent and incoherent scattered intensities for

the cases of vertically and horizontally polarized incident fields according to (27). Let

TI(0, 0) = F(0, 0) (56)

F(0,0) can be calculated by setting a = 0 in (12) and (15a). Next we take the dot

product with £,, and .

h, F, 1 (0, 0) = (1 - R,,_) cos 6i - (1 + R,,) cos 0.1 cos(4, - Oi) (57a)

1. ,,(0,0) = [(1 -R) cos6, cosO6, - (1 + R,,,)] sin(4, - 0i) (57b)

I -F, (0,0) = (1 1- R,,) cos Bcos6,, sin(q, - &) (57c)

v, -F, (0, 0) = -(i + R,,,)cos6. + (1- R,,) cos q] cos(V, - 4i) (57d)

The R,,, and R,1a, of the above equations are respectively the Fresnel reflection coefficients

of a smooth surface for vertically and horizontally polarized incident waves, and are

equal to the expressions in (9a) and (9b) with as replaced by .

In view of (27), the bistatic scattering coeffcients -y,, can be decomposed into a

coherent part -r and an incoherent part , .

( ) =, ( , ) L, ) (58)
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where

(k,, kr ) = ko

(k, k) 4 7 A,Co.,

Fj,(0.0) ~ 2

F,(0,. 0) ~D

The coherent scattered wave only exists in the specular direction. Thus, using (42)

and (57), and since

k )k )= ,- I@ - ,)/(k2 sin cos6)

we find that

-Yt(k.,,k) =
ill~ , exp(-4k2a cos26)(6, - Oio, - 0)

0

By the same token, we define the bistatic scattering coefficients for the transmit-

ted intensities to be,

yL(17t - 47rr2 (_5t),,I ,,(l(kt, ki) = A CO (S1)L (61)

where S, is the Poynting power density of the transmitted wave. Following exactly the

same procedure we obtain

(62)

where

-y (kt,kg) =
k2 r

47rA __ Cos- a14irA cos 6 r7

k2 r

4rAc cos, ?7r1

(63a)

(63b)Nj,(0, 0) D11

(59a)

(59b)

if a= b

if a b
(60)

"Iam ah ........... w vM ~ a M Wa lhtn M eskaaka uwtw ~ adfdh alhN ulam o ama # o m oamiso itoo mn o ti salmlrn io lmnnn aommo-m nin mnaionlamn ne m m a s s a

It 1,(Ict , Ii) = I . c! i) +t a (c, kIc)

- Nl(0, 0)7 ~(1)1'
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with

(64)N,(0, 0) N(0. 0)

and

J, N1, (0. 0) = (1 - R ,H) cos ,- ( - ,) cos ] cos(q, -

, N, (0, 0) =os O(s -,

h1 -N,,(0, 0) = (1 + R,, ,) + (1 -

*, -N,(0,0) =

- (1 +R;, )] sin (q1 - eu)

cos 6i cos O sin((, - )

R,,,) cos -+ (1 - R,,,) cos 6iI cos(d 17(1+

Again, the coherent component only exists in the specular transmission direction, and

we find

r/I cos 61 i 1+ R 2
(k, ki) = 4r " exp [-(ki cos 01, - k cos 2 ) 2 o2 j6(0j - 4S( -(of

?7 cos 6, sin 6 1 (66a)

t ?r7 cos 01i' 11 + Rj, !
(kt, k,) = 4 7"' exp --(ki

r/1 cos 6i sin 6 1i L
cos 6, - k cos &) 2 a 2 ;( - O (01 - )

where 61i is related to 0i by the Snell's law

k, sin 6 i = k sin O1 (67)

We note that the coherent component is only nonzero in the specular direction. Also

as ko increases, the coherent component diminishes exponentially.

(65a)

(65b)

(65c)

(65d)

and

(66b)

for a #- f (66)

- 1)
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2.5 Geometrical Optics Solution

Under the geometric optics limit as k oc. the asymptotic solution to the Kirch-

hoff approximated diffraction integrals can be derived using the method of stationary

phase. The coherent component of the scattered fields will vanish in this limit and

only incoherent component will remain. The bistatic scattering coefficients for the

reflected and transmitted fields are derived and shown to be proportional to the prob-

ability of the occurrence of the slopes which will specularly reflected or transmit the

incident wave into the observation direction. The bistatic scattering coefficients satisfy

reciprocity but violates energy conservation. This is due to the neglect of the effects

of multiple scattering and shadowing. The scattering coefficients are modified to in-

corporate the shadowing effects. The sum of reflected and transmitted intensities are

then shown to be always less than the incident intensity since only the single scattering

solution is used. However, this will be made use of in the next section to derive the

upper and lower bounds for the correct emissivity of a rough surface in the geometrical

optics limit.
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Stationary Phase Method

The diffraction integrals are evaluated using the method of stationary phase. The

reflected fields are first calculated. From (14), the exponential phase factor is

IV k, j ' ka,j '- kIy' - k,, f(' y') (68)

To determine the stationary phase point, we set

= 0 k + ktz a tax I

so that at the stationary phase point

kai

Similarily by differentiating the phase term w with respect to y' we get

(69)

(70)

(71)

Thus, the slopes a and 0 assume values of a, and S, at the stationary phase point.

The slopes a, and 0, are such that the incident and scattered wave direction form a

specular reflection. This can be seen from the fact that from (12) we have

k(a ,-) =  ( (72)
ky
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Replacing the surface slopes a and i by a_ and . we obtain. from (14).

- E_( -Ik/.)
4rr

The scattered intensity is

2, k E
167r 2 r2 (I - k.k,) . F(a ,. e) (74)

where

(II*) = ( (75)
A.

The above integral can be solved by the method of asymptotics. For large k, contribu-

tions of the integral come from regions where (x', y') is close to (x, y). Expanding f(X', y')

about (x, y),

f(X', y') = f(X. y) + a(X' - x) + 0 (y' - y)

1 3'+"- 7 f
(x - x) (y' -y)

71 =1 71 =! x a0

rt +?f t i 4)1

and replacing the integration variables by

u = k(x - x')

v = k(y - y')

(I ) = { A dudv exp Lu(q,+ aq+ + Oq ) + 0( 1

47r2A

= k 2 " ( 6 ( q , - +- a q ) ( q ?+ q )

(76)

(77a)

(77b)

we obtain

(78)

d-' esN (73)
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where

q = -
K

4 7i II' f = ," da dB (q.,uq=)(q, )qjp(a, 3) (80)k-e k

where p(ca, a) is the probability density function for the slopes at the surface. Thus,

rn II~ 47r2 A,, k k,
ki I ) , "2 p(- (81)

For the gaussian random rough surface

1
P(a, =27ro2 1C"(O) exp 2c 2 C"(0) 

(82)

where e is the standard deviation of the height of rough surface and C "(0) is the double

derivative of the correlation function at p = 0. Thus, criC"(O)I is the mean square surface

slope F2 and for the gaussian correlation function with correlation length I

s2 = a2 1C"i() = 2 ( )
1-2 

(83)

Hence

(79)

Therefore,

/' = "~T~ ) exp
'o kl2|C'(O) I-

k .+ k' ]
2k2 2 |C"(O)I J

Another way to evaluate (I*) is to perform the ensemble average first, and then to

approximate the integral. From (45) and (75)

2La 2L
(II") = dx dy (2L, - x ) (2L, - y 1) e'T U exp -kla 1-Cp)

f-2L -2L,I

(84)

- ;- - ..................

(85)
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Since k. a- > 1, most of the contribution comes from around the origin. Thus expanding

the integrand about the origin we have 1 - C(p) [< pc"(0) 2 and substituting into (84).

the integral can be evaluated readily by making use of the integral identity

dp p J, (k,, p)exp(-ap") = exp (86)
S2o 4 a

The final result for UP ' is the same as (84).

For an incident field with polarization b,, the scattered intensity for polarization

a. is given by

k2|E,12
167r 2r 2  , )

where

F,(ce,# ) = fla , P") _(88)

and using (15a), we find that

kc 4
'a - ,.(a-, 0") fl,4 (89)

k2|k, X km ik

with

P= (, -k (hi k..)R, - (h, k )(R, I-kR (90b)

fl;h = (h. kI)(t , k,)R,, - (D, kc)(h , Ic.R, (90C)

hI, = (, ki k)(, Rk.)R (h hk )(h k,) R, (90d)



52

and R, and R,, are evaluated at

kni= kj.i± Z(91)
k(|1!ki + k,k, / k,.
Ik --I -f k 7k2

Then, the bistatic scattering coefficients for the reflected intensities are. in view of (55)

and (84)

IcA1 k[ k a~.ii
- '0,(k., k, ) = ex 21(-' y , (9exp2)

cos o , L X k i 2(r"10'(0), 2 k,~2 |C ''

We note that, from (90), the geometrical optics solution does not depend on whether

the total or scattered field is used in the diffraction integral because F(a, 0) is evaluated

at the stationary phase point jHolzer and Sung, 1978J.

In the backscattering direction k, = -kI. The backscattering cross sections are

defined to be

Call(ki) = cos 6, ',-ki, k) (93)

From (92). we obtain

___________ [ tani2 6~
C7111(01) = ,727(i) =exp - aP 6 (94)Cos4 Oj2,2# C"1(0) 2a2 |C'',(0 )

r ,(6') = aT,(Oi) = C(5

where R is the reflection coefficient at normal incidence. We note from (95) that there

is no depolarization in the backscattering direction.

The bistatic scattering coefficients for the transmitted waves can be derived in

a similar manner. The stationary phase method is used to evaluate the diffraction

integral for the transmitted fields. The stationary phase points are given by

S= kij 
(96a)

kj&-

"94:w . .....................



kt(961)

where a- and ti. are the values that the slopes a and B assume at the stationary phase

point. We note that at the stationary phase point

n = , (97)

5/kfi,./k~ -e +-r,,k i 1

and it can be shown

ki - (ki -h)h, = kt - (kt - f)h (98)

which is a statement of Snell's law that the tangential components of the wave vectors ki

and i, must be equal. Thus, the slopes a, and R, are such that incident and transmitted

wave directions form a specular transmission.

The transmitted field is obtained from (14) by replacing a and 0 by a, and /3.

E )- ikeik E,(I - kcit) N(a,, ) dr' e' (99)
E .41rr1f4

The transmitted intensity is

k E2
(IE,2) =(1 -ktkt) . N(a.., 0-) /II,/ 1

167r 2r-

where

(ItI;/= j df iJ dr' e ikIL *(Fi -F'L eiktz (f FL -fL' ) (101)

Again the above integral is solved by the method of asymptotics to yield

2 7r A, kr + kT
Iexp - 2k2  (1

k ,72C"z ) 2kje C(0)11

5 93
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The bistatic scattering coefficients for the transmitted intensities are. in view (61)

-1 -20 k|,1|2( -Ic) y 7 1
<,}(k . k,) = -- , -11  C II(0)

Cos Iej', x Ickj 40 ( '0)
exp

k i, k2  ]
2kg- crCI'(0)

= (ht Ic( - )(1 - R,,) + (&, kji( It) h

wi ( ) )(1 -+ R,,) + (h1

R,)

cj)( j . I) (+ R )7

W47 =(,' kI)(vy * kt)(1 + R,) - (t .ckj)(h* k-I)- (+ R,)I

771
Wit (O, ki) (Oj kt) (1 + Rh) + (h, ki) (hi kt) - (1 ")

(104a)

(104b)

(104c)

(104d)

The reflection coefficients R, and R, are to be taken at the stationary phase point so

that

k(h - kI) - kj(h - kt) (105a)
k( , -ki) - kI(t kt)

kV = , -hIki ) -- k(, k, Ii)
kls(f k -ic)+ k(f k It )

(105b)

with

(103)

......... ....... ......................



Specular Surface Limit

In the limit ("(0) 0, which means that the variance of the slope goes to zero.

a specular surface is obtained. In such a limit

Ski,- - kj2111 k.,, k&4,lim exp - 2  = 1 - (106)
In ermo2fr C "0) 2k variable kk

In terms of angular variable 6,4

Cos ( - 6 )( - #h)

sin&,
(107)

which implies that it

scattering coefficients

kaj: ka z

is nonvanishing

for the reflected

only at 6,

intensities

= 0, and q, = q. Then, the bistatic

simplify to

(kIc, I ) = R2 1
2 (6, - j) (q, - Oj)

sin O0

, (Ik,, kIc) = sin I Rj,- 6(6, - 0 i)( , -6)

i 0Itl k, i 'y, (k,, k,)

(108a)

(108b)

(108c)

where R,, and R,-. are the Fresnel reflection coefficients of a flat surface. In a similar

manner. the bistatic scattering coefficients for the transmitted intensities simplify to

(II)= sin 0 ( - iR)) ( - Oi)*(# - -0i)

( = 4ir (i - tR,') o - &1n)§(P, - #4)
sin 0

(109a)

(109b)
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(kt I ki) = ,(kI. k) 0 (109c)

where

=ki I sn9 (110)
k,

Therefore. all the scattered intensities are scattered into the specular reflection and

transmission directions of a flat surface.

The bistatic scattering coefficients obtained in this section are single scattering

solutions which neglect the multiple scattering and shadowing effects. In this present

form, they satisfy the principle of reciprocity but violate the energy conservation. In

the next section we will investigate the reciprocity and energy conservation relations.

Then the bistatic coefficients are modified to incorporate the shadowing effects and

later used to study the emissivity of a rough surface in the geometrical optics limit.



Reciprocity and Conservation of Energy

We note that a reciprocity relation exists for the bistatic transmission and reflec-

tion coefficients obtained in (92) and (103). Consider two media I and 2 with indices of

refraction nit and n2 and with wave numbers k, and k,. The two media are separated by

a rough surface. Then the bistatic transmission coefficient M1(k^ ,. k1) signifies a wave

incident from angle (0,4) with polarization b onto angle (l2, < 2) in medium 2 with

polarization a. This is obtained from (103) by substituting (6,d) = (61,d), (6,4t)

(0 2 , 4 2), k, = k2 , and k = k,. Similarly -y(kj k2) is for an incident, wave from medium 2

and can be obtained by substituting in (103) (6, $i) = (62 , 42 ). (O2.4) = (61,41). k1 = I and

k = k2 . The following reciprocity relation is seen to hold for the bistatic transmission

coefficients.

ni cos6 1 (k,.I) = ni cos6 2 f(ci,k) (111)

For the bistatic reflection coefficients, we similarly obtain the following reciprocity

relations

cos 6, ,(ki Ik,.) =( , ki) (112)

and

Cos '. (ke, km) = cos (kf,, kc) (113)

where _ (k, 4) and '(k, jc) are the bistatic reflection coefficients in media 1 and 2

between an incident wave with polarization b and a sacttered wave with polarization a.

In the definition for the bistatic scattering coefficients we note that S.Ac cos 6j is

the power intercepted by the surface area normal to the direction of the incident wave.

The total power reflected back is r2 S, integrated over the upper hemisphere. Similarly,



58

the total transmitted power is r"S, integrated over the lower hemisphere. We define

the reflectivity

- L /I2 2
ri,(K )=d si ., d e (I., k,

and the transmissivity

ti,(O)= E d 1, sin t f do, -'1,(k. ki) (114b)

where the summation a is over both the vertical and horizontal polarizations.

Making use of (90)-(92), we find the reflectivities for the vertical and horizontal

polarizations to be

r,,(6i) = d, sin 6, d

x xI1 k
4Acos Oi Iki x k.. 2k1

1
2C" exp2ir2C" 1(0)!

I7' 2 27r[
= d6. sin 0.. f dO, 11(O) exp

f 21rc2 IC"(

4cos 6 ik x k , 2 k

2k: a 2iC"(0)J

where we made use of the fact that

x I ( I) 2  ( I) 2  (= k, : )2  (p, - kI)2 (116)

Similarly, making use of (104)-(106), the transmissivities for the vertical and horizontal

polarizations are found to be

i /2 21
t(6i) = d@ sin 6t d f 27ro2,2C!,,(O) exP

2xa2|"(0)I

k%. +k k 1
2k 1

2 |C"(0) I

kJ jkt j( - k ( k(
x (h) .h -k4  k 2(1 - 1R 2) + (p, - kt)2(1 - R i2)

cos Oil ki x k, 120kl

(1 14a)

I) R I (115a)

(V 2 ) 1R, + (h -k) R 2] (115b)

(117a)

k2 + k2

2k2 (72 CI(O)|

[( i - I -) i + (2 +
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,d t sin 9 f exp k
. f 2 ru 2'C"(0) 2k- (C"0)

k~jka|2(ft -Ii)(h .Ikt)X ( I[p . k,)2(1 - 1 (h k )2(1 - R, 2)1
cosi|ki x kIc1 k4

(117b)

where we made use of

(118)

11 + Ri, = 2)- R)

1 + R, 2
= (1 - |R )nT=

k,
k,=

with

(ii k2)

(h . ki)

nt (,h -kt)

(119a)

(119b)

(120)

Conservation of energy relations should also exist for the reflectivity and trans-

missivity functions. However, as pointed out before, because shadowing and multiple

scattering effects are ignored, conservation of energy is only approximately satisfied

Lynch and Wagner. 1970. To investigate the violation of the conservation of energy,

we define

A , )= 1 - r,(A) - ti,(6,)

A,, ( ,) =61 - r,( ) - t,,(,)

(121a)

(1216)

In Fig. 2.3, Al(61) and A,(Oi) are plotted as a function of incident angle. We see that

energy loss becomes severe as incident angle increases. However, as incident angle is

further increased, the trend reverses and the sum of reflected and transmitted energy

c XIc| = (k n k, 2 _+ (pt -. 1) =k'c (il ,k) et )2
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becomes greater than unity. Near the normal angle of incidence there is little shadowing

and most of the rough surface is illuminated. Therefore, since we only have the single

scattering solution there is loss of energy. At higher angle of incidence, the multiple

scattering solutions are still left out. However, the shadowing effect dominates and

the single scattering solution is blowing up as incident angle is increased. In the next

section we modify the bistatic scattering coefficients to include the effect of shadowing

and show that in doing so the sum of reflected and transmitted energy is always less

than unity.
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Shadowing Effect

The bistatic scattering coefficients are now modified to account for the shadowing

effect. The modified scattering coefficients satisfy reciprocity but still do not conserve

energy since multiple scattering effects are neglected. The sum of reflected and trans-

mitted energy is shown to be always less than unity. The modified bistatic scattering

coefficients will be used in the next section to derive the upper and lower bound for

the correct emissivity of the rough surface.

The bistatic reflection coefficients are first considered. The diffraction integral

for the reflected field, (14), is modified with the addition of an illumination function

L(k 2,k, '), as follows:

4 1i e r Ef(- k . 4 f d J a ) L k , . I e k ' ( 1 2 2 )

where L (ki, k, f') = 1 if a ray having a direction k, is not intersected by the surface and

illuminates the point f' and if the line drawn from the point T' in the direction k., does

not strike the surface, and L (fi, k,,j') = 0 otherwise [Sancer, 19691. The above integral

is evaluated by the method of stationary phase. The scattered intensity is, from (74),

k6 2!E (-.ck..)-(ao, B ) ( (123)

where (II+) is now modified to include shadowing

(II) = (j d f 4.L dr', e'' L (Ic -Ic, _) L (fcy, 6, ')eif 1)) (124)



62

The above integral is solved by the method of asymptotics as in (76)-(82). We also

note that as k - oc.

lin L (k-,,k L (k, k..-' L (k,. L
k k

(125)

Hence we obtain the following expression analogous to (81).

lim iI
A - _

A,Ar 2

,, dL p(a, 0, L) L2(ki, k,, ) (126)

where p(a, L) is the joint probability density function for a, e and L. Since the process

is homogeneous the result above is independent of T. Representing in terms of the

conditional probability density

p(a,0, L) = p(a, 0) p(L 1 a, 0)

where

with PL(kIC, I3 a,/) the probability that a point will be illuminated by rays having the

directions k, and -c, given the value of the slope at the point. Thus, using (82)

JP> A,4r 2  I
k2- 27ro 2 |C"(O)

exp
k2 ,+ k2,)1

2k (2C 0)11
PL k , k,

The bistatic reflection coefficients are modified to

(k, ) Ic-- - - )

(127)

p(L i u,,3) = P,(kIc, a,0) 6 (L - 1)- [1 - PL (kc, c, (128)

(129)

(130)
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There have been many works on incorporating the shadowing effect into the bistatic

scattering coefficients Beckman, 1965: Wagner. 1967: Smith. 1967a, b: Sancer. 1969-.

We use the shadowing function derived by Smith and Sancer to modify the bistatic

scattering coefficients.

(131)

where

I -+ A

I +A (p 4A01

= - 7r, 0, 62

otherwise

and

A= coto

(132)

(133)

A(M) =erfc (134)
2 ' r y\/2

S2 is the mean square surface slope

2= C"(o)' (135)

and erfc is the complementary error function. The bistatic transmission coefficients

can be modified in a similar fashion. Thus

y (/c, fci) = it1., (ft, kic) S (0 ,, 6 j) (136)

where

1
S -(A, () = 11 + A (pt)+-. Ap)

(137)

Pt , Ic,- (.,a\ k, k

S (kc, ci) =
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The modified reflectivity and transmissivity functions r',"(01 ) and t'"(6,) are ob-

tained from (114) by substituting in the modified bistatic scattering coefficients into

the equation. The energy conservation is again studied by plotting 1,. and A,. In Fig.

2.4. we can see that the sum of reflected and transmitted energy are always less than

unity.
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Emissivities

The emissivity of a rough surface can be calculated from the bistatic reflection

coefficients. It is defined to be [Peake, 1959.

eL(a 2 , 7) = - - ]_ dy sin 6. d4'. (,, e.; K. &) (138)
47r 

0

The coherent and incoherent bistatic reflection coefficients derived from the Kirchhoff

approximated diffraction integrals in (59) are used to calculate the emissivity of the

rough surface. In terms of the coherent and incoherent reflectivity functions, the

emissivity is given by

= - r (6) - r,.(61 ) (139)

where, for a = c or i

r ( 4 = 7/ d6, sin 0, 2 do, -y (,, 0; 6, d ) (140)
I~p.h"

In the above equation the dependence on the azimuthal angle of incidence q, is dropped

since the rough surface is isotropic and the results are independent of $,. After sub-

stituting in the explicit expressions for the bistatic scattering coefficients and carrying

out the angular integration, we obtain

r,. (6K) = 2, exp [-4kcr2 cos 6, (141)

k212  ". f2 e , (k-(cos0. cos9,)) 2 "
r0 8) COS d6, sin 6,exp [-o'kJ mm-

x (1 R!()I ( R ,) )CO R,cos6 ( )

1 + R,) cos + (, - COS ) s6! ((142)
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where a = v. h and

k 2 l2(sin 2  
j sin 2 6)

4m

k 2 sin ,sin (144)

2m

and 1, and 1, are the zeroth and first-order modified Bessel functions. We note that if

the reflected field is used instead of the total field in the diffraction integral, then, for

a = t or h

k 212 7r k2 c (kc-(cos 0, -+- cos O ))2"' e Y_r.,,(6j) = !R,,,! os0 dO, sin 0, exp i -~kj !8 cos6 Ja, Lo ~im~rm

Cos Cos 6 ,2 " , (cos -+cos 6) 2  I M) - I1(x,,) (145)

The difference between the incoherent reflectivities obtained using the total or

the reflected field in the diffraction integral is due to the approximation made on the

integrand P(a, ). If the next order term in the expansion of P(, ,3) in slope terms about

the zero slopes are kept in (20b) while neglecting the shadowing effect, then the results

obtained using the total and the reflected field can be shown to be the same. Note that

in neglecting the shadowing effect, we are applying the tangent plane approximation

even to the points on the rough surface that cannot be directly illuminated. The above

model has some success in matching brightness temperature measurements from soils

with rough surfaces Tsang and Newton, 1982; Schmugge, 1983 . The model with

coherent reflectivity alone is discussed in Choudhury et al. 1979i.

The emissivity may also be calculated in terms of the bistatic transmission coef-

ficients from medium 1 to medium 0, in view of (113)

e1 (O,, #i) = dO sin 61 7r d j (6j, 0j; 61, ) nl COS (146)
47 I: , ncoS (4

b= 77,h
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The emissivities calculated using (138) and (146) are only the same if the bistatic

scattering coefficients satisfy the principles of reciprocity and energy conservation.

Thus we are obtaining the approximated solution for the emissivity using (138). since

the scattering coefficients that we made use of satisfy the reciprocity relation and

energy conservation only approximately at best.

The emissivitv of a random rough surface in the high frequency limit can be

calculated using the bistatic scattering coefficients derived in the geometrical optics

limit. The modified scattering coefficients, given by (130) and (136). which incor-

porate the shadowing effect are used. As stated before, a well defined emissivity of a

medium depends on (1) the satisfaction of reciprocity relations, and (2) the satisfaction

of conservation of energy by bistatic scattering coefficients. The modified scattering

coefficients satisfy the reciprocity but violate the energy conservation since only the

single scattering solution is used. Thus there is ambiguity and the results obtained

using (138) and (146) are not the same. However, the sum of reflected and transmitted

intensity is shown to be always less than unity and this fact can be made use of to

derive the upper and lower limits of the correct emissivity.

The emissivity calculated using (138) represents the upper limit of the correct

solution since the bistatic reflection coefficients are obtained using only the single

scattering solution. If the higher-order scattering effects are included, the net reflected

intensity will be higher and the emissivity will always be lower. Thus. in view of (141)

and (145), the upper bound solution for the emissivity is given by

e?"(Oi) = 1 - ry"(6j) (147)

where m denotes modified reflectivity with incorporation of shadowing effects according

to (130). The emissivity calculated using (146) represents the lower limit of the correct
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solution. If the higher-order scattering effects at the rough boundary are included.

the bistatic transmission coefficients will always increase. Consequently, more thermal

emission from the medium i will be transmitted. and the emissivity will always increase.

Using the reciprocity relations satisfied by the bistatic transmission coefficients. (111).

the lower bound solution for the emissivity is given by in view of (141),

-") t"(i (148)

Therefore. the two solutions given by (147) and (148) represent the upper and lower

limits of the correct solution, and the ambiguity is due to the violation of energy

conservation.
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CHAPTER 3

Scattering and Emission by Random Rough Surfaces -

Small Perturbation Method

The scattering of electromagnetic waves from a slightly rough surface is studied

using a perturbation method. The extended boundary condition method is used with

the perturbation method to solve for the scattered and transmitted fields to the second

order. The zeroth-order solutions are just the reflected and transmitted fields of a

flat surface. The first-order solutions give the lowest-order incoherent reflected and

transmitted intensities. The second-order solution gives the lowest-order correction

to the coherent reflection and transmission coefficients and the depolarization in the

backscattered power.
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3.1 Introduction

The scattering of electromagnetic waves from a slightly rough surface can be

studied using a perturbation method. In the small perturbation method (SPM) due to

Rice 19637. it is assumed that the surface variations are much smaller than the incident

wavelength and the slopes of the rough surface are relatively small. The SPM makes

use of Rayleigh hypothesis to express the reflected and transmitted fields into upward

and downward going waves, respectively. The field amplitudes are then determined

from the boundary conditions and the divergence relations. The extended boundary

condition (EBC) method may also be used with the perturbation method to solve for

the scattered fields Agarwal, 1977; Nieto-Vesperina, 19821. In the EBC method, the

surface currents on the rough surface are first calculated. The scattered fields then

can be calculated from the diffraction integral by making use of the calculated surface

fields. Both perturbation methods yield the same expansions for the scattered fields,

because the expansions of the amplitudes of the scattered fields are unique within their

circles of convergence [Maradudin, 19831.

In this chapter we derive the bistatic scattering coefficients for the reflected and

transmitted waves using the SPM. The EBC method is used to formulate the prob-

lem. Even though the Rayleigh method is simpler in the sense that the scattered

fields amplitudes are obtained directly. the EBC method is conceptually consistent

with the previous chapter on scattering from random rough surface with the Kirchhoff

approach. The SPM is used to calculate the scattered fields up to the second-order.

The zeroth-order solutions are just the reflected and transmitted fields of a flat surface.

The first-order solutions give the lowest-order incoherent transmitted and reflected in-

tensities. However, the first-order solution does not give the depolarization effect in the
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backscattering direction. The second-order solution gives the lowest-order correction

to the coherent reflection and transmission coefficients and the depolarization in the

backscattering power.
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3.2 Formulation

Consider a plane wave in free space with electric field E, = j E- exp(ik, -F) incident

upon a slightly rough surface of a medium with permittivity E. The rough surface

is characterized by a random height distribution z = f(T ) where f(j;) is a random

variable with zero mean. f(T )' = 0. Let frr, and f,,l be the minimum and maximum

values of the surface profile f(F1 ). From Huygens' principle, the total field Pi(F) in free

space and the transmitted field Pi(F) in the dielectric medium satisfy

E,(r) j dS' {WG(-r. r') h x H(F')! - V x G(F, F') - x E(F')j}

E(F) z > f(P) (la)

0z < f(F) (1b)

dS' {wpi w ( F') . x H1 (F')] V x G i f') -!, x EI(F')]}

0 z > f (FL) (2a)

{PI(F) Z < f(1) (2b)

where S' denotes the rough surface in which the surface integration is to be carried out,

h and t, are the unit vectors normal to the rough surface and pointing into the free

space and the dielectric medium, respectively, and U(F,F') and F1(FF') are respectively

the dyadic Green's functions for free space and homogeneous dielectric of region 1. We

make use of the integral representation of dyadic Green's function [Appendix Al.

Since tangential fields are continuous, we can define surface field unknowns

dS'r7 h x R(r-') = dr', -a(F' )= dS' ? r71 h x R (') (3a)
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dS'il x E(F') = d-r'; b(-') =dS' h x EI(-r') (3b)

Evaluating (1b) for z <fI?? and (2a) for z f,,,, we obtain

871 - k

x E--k)E( k )+ (--kj)N(-k ) (F',

+ -N - es - ( k ) (- (')(4a)

k e ] ek k dr'k e1-iek -r eik f(r

x { [ i(k iz)i(kiz) + hi(k1 )k1 (kiz)] -(f/)

+ [- 1 (k1 2) 1 (k1 z) + )1(klz)kj(k1) }( (4b)

where f,,, and f are the minimum and maximum values of the surface profile f(-'L).

The above equations are the extended boundary conditions, which can be used to solve

for the surface fields along with the following equations which are results of (3a) and

(3b)

) (f'.) =0 (5a)

(K') b( ') =0 (5b)

The unit normal vector to the rough surface t(-') is given by

-5af( ' )/,x' - Of(r',)/1'+ (
1+ (8 f/8x') 2 + (8f/8y')2
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Thus. (5) can be rewritten as

a( ' ) a) (7a)

8)b' ry

with a- and h- as the z components of d and t respectively.

Once the surface fields are obtained, then the scattered field in free space and

the transmitted field in medium 1 can be derived from the diffraction integrals. Thus,

evaluating (1a) and (2b) for z > fr. and z < f,,, respectively, we obtain

- 1 fdk1L eik~ r -L e ikzz k fd-F1 e i- e-ik~f (-',
- 87r2 ] kz j

(k{z) (k(k,)k+ -(kz) h(k] -(-) +I (-(k,) (k ) ( () (1 (8a)

- ± ((kiIhiJijI b-fI) (8b)

Therefore, the objective is to solve for the surface fields using (4) and (7), and then to

solve for the scattered fields using (8).

The surface fields are calculated by making a perturbation expansion. We let

=(F' ) (9a)
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where d"' andT"' are respectively the m-th order solution of - and b. We also have

I _ rikif(~')V"(lob)

The above expansions can be substituted into (4) to obtain the set of equations for the

different order solutions with f regarded as a small parameter. Also, from (7) and (9)

b(()' T 0'a(') = f' ) = M (12)

b t"'L(('I) = m -b (r') (12b)
\9 aX ay V

Thus, we are assuming

af af
kJ (F'J) k (F' ), X' 19? < (13)

Substituting (9)-(10) into (4) and (7) and equating the same order terms we can cal-

culate the surface fields to zeroth-order, first-order. etc. Then, from (8). the scattered

fields can be obtained to different order. In the following sections we solve for the

surface fields, and then the scattered field up to the second-order. The zeroth-order

solution is just the reflected and transmitted fields of a flat surface. The first-order so-

lution gives the lowest-order incoherent scattered intensities. However, the first-order

solution does not give the depolarization effect in the backscattering direction. The

second-order solution gives the lowest-order correction to the coherent reflection and

transmission coefficients. Also, depolarization of the backscattered power is manifested.
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3.3 Zeroth-Order Solution

The zeroth-order solution can be obtained by keeping only the lowest-order terms

in the expansion of (7) and (8). We first define the orthonormal system (f,, ,. 2 ). which

are given by

I- - = L( I-

k k,
kp = k+V7

(14a)

(14b)

(14c)', = 

where k2 k + kg,
In 712

and let

d(T'.) = 4ia,,(F') + Pia,(F') + siaz(F')

') = 4b,(F')+ L(') + MFb:(I')

To solve for the-zeroth order solution, we note that

E1 (F) = j, E, -

I EI
e= 4 7r2JZE, dF' ik F -ik F'

Using (16) in (4a), we note that the di', integration in (4a) must produce a Dirac delta

function of the form 6(k, - kL). Hence

8i e k { [8(-kzj) (-kzj) + h(-kz2 )k(-k -)] ('
2k--

+ [- (-k'j) (-kzj) + j(-kzi)k(-k23) - F'. (17a)

(15a)

(15b)

(16)dk-L e iT- F_ -ik
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Hence from (4b), we have

[l1(kj2j) I(kj3) - ki(kjzijhi(kjm)l -a k('2

-f(k )(' ) = 0 (17b)

Using (11) and (15) in (17) and noting that the dot products off, and 4, with j and A

can be calculated from (14), (A4) and (A5), we have from (17a)

ei, e' {(kzi) a!"o(F') + b "(K') + F (-klF) (a,"'f(K' ) - b!")(f') (18a)

Using (17b), we have

k a ((F') - k I '(') = 0 (18b)

qqkklz
k 1, (i') + b "(1) = 0 (18c)

Since (18a) contains two scalar equations, (18) provides four equations for the four

unknowns a, a"'q, , and bi"'. Solving them and substituting back into at ">(') and

(P') gives

Z(') = d(K1 )e k (19a)

(W'K) = h( )eL (19t)

where

( )= (((-k ) -E) (1 - R;,) (20a)

-q) k( )=(k(--kz) . si)(1 - R, ,) (20b)

b (i) = -(N(-kes) P- (1 - Ry,) (20c)
1 =k

6),, (kJA) (j(-Ic-j) - )(] ± l, (20d)
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and R,, and R,, are the Fresnel reflection coefficients for the TE and TM waves

(21a)

(21h)

R -, = k, - klzm,
k-i + k1:,

R,, = e i - e lkai

The unit vectors a(-ki) and k(-k 2 ) are related to the previously used unit vectors ki

and i as

(22a)

(22b)

Therefore, from (8), the reflected and transmitted fields are given by

= {R;,((-k) -ji)) (kzi)+ R,;,(h(-k , Et))h(kat) E e _ (23a)

&i)hI(-ki1 ) E,

(23b)

which are just the reflected and transmitted fields from a flat surface.

j(- k:-i) = - Ni

P(()) = k
t -(I -- R,;,,)(k(-kzi)

ki
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3.4 First-Order Solution

The first-order solution for the surface fields can be obtained by substituting

(9)-(10) into (4), (7). (12) and equating first-order terms. From (12a) and (19a)

a"(F', ) = (2 +x y a yl e
\ox' /y'

To simplify (24), we introduce the Fourier transforms

(24)

F(k.)j= (2 )2 drJ' (25)f (r', ) e -ik

A '(k) = 1
(27r) 2 (26a)

(26b)Bm (k= Idi's b(fI)e2 7r)
(27r)2 J

and multiply equation (24) by exp[-iik - Fr']/(27r)2 and integrate over dK' . We obtain,

by expressing af(V' )/ax' and af(-',)/ay' in terms of F(k1 ),

A (1)(k )= I ( k k ) aq (ki_) +
kki + kyk,

kin,
-k,, 2) a,"(kii) iF( I - k1i) (27a)

Similarly from (12b)

B"'(k ) { k,k ik 7IkI k,ki+ kYk~,, - k,,l b (k i)}iF(K - k ii)

Next we match both sides of equation (4a) to first order. We note that

d ie k - Fl
Jfirst order

J dr-'Le ikf(f' )r "L()e + '

(27)2 Iik=F( - _Li)a (k ) + 2(8

(27b)

f d's a ") (-r') e - ik , F'

(28)
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Hence the first order equation from (4a) is

0 =fdk e'k Fe -ikk

x (-kz ) (-kj + N(-kj )(-kj ) - [;" k_) + ik F'"I(kLj)F(k - kii)

+) -k ) (-k)(-kJ] [) ''(k ) + ikeb'(E 1i)F(kE - k1 1 ) (29a)

and from (4b). in a similiar fashion, we obtain

0 = Cdz ek,

x [ 1 (k1 ) 1 (k1 z) + h1 (k)h 1 (k )] - '(I 1 ) - ikied"'(k 7 )F(ka - 1 )

+ [-N1(kiz)aj(kiz) + Ej(ki=)kj(kj ) ( kz (1)~ (29b)

Equations (29a) and (29b) are vector equations so that there are four scalar

equations contained in them. Hence (27) and (29) are six scalar equations for the six

unknowns Al"(/), A',')(-k), A '"(k1 ), B"(k1 ), Bl,,(k 1 ), B"k ( 1 ). After much algebraic

manipulation, we obtain

A_ (k) = t)k - (kLi) (30a)

B7(K =iFk. -ki)Bf(., (30b)

where the explicit expansions for A. , ' and b,(" are given in Appendix B.

The first-order scattered fields can now be obtained from (8). To first-order, we

obtain

d I eik ke

x { (kj)(kz) + h(kjN(k.)J - [A''(k_1 ) - ikzF(k -(

+ [-h(k,)j(k;) + (k )h(k) - [((k_ 1 ) - ikzF(k 1 - kLi)W(u)(k. 14)] (31a)
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2 j

x { 1F(-k ) 1(-kz) + h1 (-k )h(-k1 2 )] (k k.) ikkF(I( - )

S-/o (-kaj~1(- ke) + 21(-k 1 4)k (-ki) B (k1 ) + zk1 F(k4 -+s )k } (31b)

In view of (30) and the fact that

2(27r)2 )

we have

Thus, the first-order solution does not modify the coherent reflection and transmission

coefficients and we have to calculate the second-order solution to see the correction

terms due to rough surface.

The lowest-order incoherent scattering coefficients can be derived from (31), by

considering the vertically and horizontally polarized incident field and calculating the

vertically and horizontally polarized scattered fields. We first calculate the scattered

fields in the free space. For an incident field with polarization a, the scattered intensity

with polarization . is given by

J;E dkj/~ ~

= dQ, k2 cos 6, f,W(| -ik i j) (33)

where W (I - k ) is the Fourier transform of the correlation function and

E (k2 - k2 ) 2k=, (krkri + k k (34a)
(k: k1 )(k:2 + k1=) \ k,,, )? /



2kk k:,
(kk:, + k 2kuj(kz, k

2kk1I, k ,
(k.- - kj.)(kk, - k-k-

f|,,, =E,,(k - k2 )

f =E_ (k - k2)

In deriving (33), we made use of

(F(I')F(k_)) = 6(T' - j W (IT 1)

For a Gaussian correlation function we have

W ( - =
47-

exp -(kd,+

where

(37)

and a is the standard derviation of the surface height and I is the correlation length

for f(r,) in the transverse plane.

The bistatic scattering coefficients -yt1(k,c k) are defined as the ratio of scattered

power of polarization b, per unit solid angle in direction k., and the intercepted power

of polarization a, in direction ki averaged over 41r radians. Therefore. in view of (33),

47ir
k2 cos 0, f,',W (ikK - k:1|)

(38)
cos t; E"

Substituting (34) and (36) into the above equation and rearranging terms, we obtain

r 4k 4( 2 1 CO20,cos 2 0S o,2
Cos ( k fi,, exp - (39)

86

' E,,(k2 - k 2 )

k,,k,,, ,

'k k - krk,
k?,k ,, -k .ki

kak

k .k -!+ k-kj)(k--jkzj t-k'kli) ''-
k

- -ki. k1 ,k-
k~kr,, klk-

( 34h )

(34c)

(34d)

(35)

4 (36)
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where

k 2 (sin 2 6, + sin2 6, - 2 sin H, sin Oj cos(1, - dO)) (40)

and

(k - k2)
cos-($ - )(41a)

(k: + I k I)(k z: k II

(k? - k2).2k 1  .
full i ~p 2 (41b)(kk. + k 2 k1z)(k-, - k1s1)

(k:. - k2 )kk, 2
fil, =sin~( -$ (41c)

(k + k i )(Okki, +4- kc2ko

(k - k") 2 2Sl1 sl)f,7 = kk 's)k k k k2 ki ,si kjk1:k1 cos($, - $,)l (41d)

In the backscattering direction k., = -ks. The backscattering cross section per unit area

are

ahh(Oi) = 4k 4
,
212 cos 4 6, R,u | 2 exp {-k 2 12 sin 2 ,-, (42a)

2a O , |k - k2 )(k2k 2 sin2 
0 + k2 k1 k1 z) 2

67M = 4k-a 2)4 cos4  
2 exp 1-k2 l-sin2 0,7 (42b)

(kikz, + k2 k1 ,) 2

L7,h(9,i) = ojh(0i) = 0 (42c)

Therefore, there is no depolarization in the backscattering direction.

The bistatic scattering coefficients for the transmitted fields in the medium 1 can

be obtained from (31b). Following the same procedure we obtain

- 4k k2a21cos29,cos26; r7 [ 1
YL(kt, ki) - W-I, exp -k-1, - (43)

Cosi rI 4

where

k,= kisin9,+ kasin 2 Oi - 2kIk sin 6t sin Oj cos($t - 4)4(44)



88

and

(kW k ) ,COS (ot - (45a)
(kz - k1)(k , - k1Ij)

(k" - k -)kk-W- ,=-- i -( q - ,) (45t)
(k k + k2 k1 )(k, kp )

(k - k2 )kk1 i
W ( -)= skk , -II) (45c)(k k'r-(k ) k kakkk

(k2 - kk k k
k k+ ~k)( ki+k~m)kj k sin 6t sin j + kzk,7, cos(#t1 -#1 ; 4d

The first-order solution gives the lowest order incoherent scattered intensities.

The bistatic reflection and transmission coefficients can be easily shown to satisfy the

principle of reciprocity. However, in the first-order solution, there is no depolarization

effect in the backscattering direction and the coherent reflection and transmission co-

efficients are not modified. Therefore, to calculate corrections to coherent reflection

and transmission coefficients, we need to calculate the second-order solution.
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3.5 Second-Order Solution

The second-order solution for the surface fields and the scattered fields can be

obtained from (4), (7) and (8) by collecting and equating the second-order terms.

We will first, consider the case of a horizontally polarized incident wave, j = a(-ki).

The second-order scattered field in (k) and k(k.) polarizations., which corresponds to

horizontally and vertically polarized scattered fields, respectively, can be calculated to

be

E, (F) = dk1 e eikzz dk F(k' - kj4F(kj - )

tk- -+ k1 kz + k1

1 k -k 2  (k,k,i + kk \
2 k- + k1 i - k1 k k bc1 , )} (46a)

E, 21 = dk eik e d 1F(k - Iw F(k - K)

k|,k - k'k,

kk,,11 qk
+ -k,',k, A"')(k1)

(k - k2 )kki: (kki + k, ky \ -

k k + kaks \ k,,k,,p B k)

(k2 -

I 1+ R- ,

q I kc
k,k,.i + kY kvi

k,,k,,o )

(kj - k)kki:
kkc . k k1

(46b)

(47)

kk2
kzk 1 + k-

k, ki - k ki 2

k,,k,,p

kzk 1 +k, (kjk.i+kIk4i\2
+ k k,, I bjk)

where

k1zkI:2 ) (k k k k )' (k A) I

kYk, kk
- 3(')

kpkpi q k , k , , + k , k l '

X k2 - k2 , ~k
k~k k k2k1 ,,z

(kyvki - k,kvi\ -
\ k,,k,, p{ (kg

(48a),



p1 k,,k," k:,k., I ky
AW~) {kk, (k,,<~k ) -

(k~k, kIk )

k.- k2__kk~k )(kk 1
k.,k,,. - A1k l( k 1ti k 1L'ii

S(k - k2 ) _ (k- k:)
(kz + ki4) (kk. + k2kl )k

)(kjkq, - kilk.1, ) (k
k,,, i j )

kylk., - k.,k.1 b0i )
k,,k1'

Thus, by taking ensemble average of (48), we obtain the lowest order correction to the

coherent reflection coefficients. By making use of

(F (lk - kL)F(k- - -=(kL - ki) W ( k - ) (49)

we obtain

(E ) eE , ' eik" (kz, - k1 :z) dk '1 i',( ') W ('- /c |

1E (2)= 0

(50)

(51)

There is no depolarization of the coherent waves on the specular direction since we

have an isotropic rough surface. In view of (20a), the modified reflection coefficient for

the horizontal polarization is,

(k2 - k2 ) kzk 1 z

(k + k1 ) k, + kek 1

k,,dk,,exp

+ k1 I ()

1I(k + k '2)12
4', I

k- k2  k2

k+ k1: k2 k k,:
I±(x))}(2(52)

x

where

1 k,

kk2

\k k1 +k

90

kIk1  k2

k

(48b)

(48c)

(48d)

(k2 - k2 ) 0Rol =R1,, + kz (k:,j I z) 1

x { [

k'l kri k, kb,1(x

(53)

i|,j(?)j = I- kiz
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and I, and I, are the zeroth and first order modified Bessel functions.

The modified reflection coefficient for the vertical polarization can also be ob-

tained by considering a vertically polarized incident field and calculating for the scat-

tered fields. Following the same procedure we obtain

(k 2- k 2) 1CS1= R, - k k k 2k a 12 k,,dk,,exp -( k 1l
(k 2kz, + k 4'

kkkiL k2- k2 k 2
k [ I (x) k2I(x)1 - ;1 ](X)

Ik;;+k kk k + ki ki

k2- 2k2. k2 I1x k2 - k0 k ka I
k-2~ k2

4- 1L 1j k 1,~kl J -It X)] - 1,-k In k 1 " L(X)} (54)
k- + kiz k 2+ ku z k- + k k2 + kkj k "() {4

The modified coherent transmission coefficients for the horizontal and vertical

polarization can be calculated similarly to give

(k2 k k2) (x }X0, + Rj,, + ke . ,,I (T k,, dk,, exp - ( k2+ k2 )12
.'(k:1 + kjj)- 4

[( k2 1(X)
x (kz - kj-) I,,(x) - , - - -(kzj - klzi)I,,(x) (55a)

k2 +kzkj x 2

and

k(?k2k) 1C
(k+ R+ k-, ka12 k,,dk,,exp -(k + k21£l

(k k, + k2 k1 i) ' 4

x (k k - k kj)I,(x) (k - k2 ) 'Itk,7 (x)Lk k- + k 2k1 z)

k -k k2 k k l;k:i ()
- k2 kkL()+ (k - k) '(k I (x) x )
k +k± (k k k1c: k2 k1 ) (jx

k,(k 2k , - kk )I1(x) (55b)k kk +k 2k1nk,/? .

The depolarization scattered intensity in the backscattering direction can be

obtained by considering a horizontally polarized incident field and calculating the ver-

tically polarized scattered intensity or vice versa. From reciprocity the two solutions
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7,, and ca. can be shown to be the same. The second-order scattered field for a hor-

izontally polarized incident field is given by (48b). Keeping only the terms that do

not vanish in the backscattering direction and calculating the scattered intensity in

the backscattering direction. the depolarized backscattering cross section per unit area

can be calculated to be

8 -, 2k(k? - k-)-k

c r ; H i) = a , i, ( 6 ) = 8 ir k c o Q -6 i ikk i + k k e ) k y k i )a,,~t~) Oh(k2 2O (kk, -+ k2 k1ji)(k~j - k 1,:,,

f -, ik - k,,ik',)(kzik. + kik')1c2I (kkI~k4 - k ~ (56a)
f | k 2(k 2k!, +- k k',

After carrying out the do'-integration the above equation simplifies to

1(k2 - 2)2k~z 2 1
Ch 0)= Ch (0i) 0 !kCos 4oCY 2 (A kki exp [-!k 2P

2 (kik:ii + k2k i)(kzi + klzi) 2 1) J

x dk,', 2 exp 1k, 212] (56b)
l k2k'- + kk k2 2I Z

Therefore, by obtaining the second-order solution we can show the depolarization effect

in the backscattered direction.



Appendix A: Integral Representation of Dyadic Green's Function

The integral representation of the free space dyadic Green's function is given by

Sdk [ (k )8(k,) -,i(k- )hku e -

S dk- 8( k. )( kz) -( ks)( k::)

G(ri')~ =-- k

(k-) =Ix |k x i|= 1(.k,
kp

(-kz) = j(kz)

k k
(-k) = - K = ~ (ik, k) - Yk,+

k, k-k,, k-,
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where

z > z'

2 < z'

(A1)

k k + k + k

K k,i+ kj - k-s

- k,)

(A2)

(A3)

(A)

(A5)

(AG)

(A)
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Appendix B: Explicit Expressions for Aql(k). A'I )j?(k 1 ). and B (k

(k - k 2 )
A (1) (kL)= (kfk +kkk,, -

kk2 k.

k-ki. +, k

- kk' (krk+k k k

kk k,)

,(k- ) =- (k k + - k ku k,,k

kk 1
k-k + k2

kk k

kk + k2

(krkyi - kil,,k ) uiii) -k
\ k~kp I.(x)

k

,, - k/k

k,.k,,,

k,k,i 2 kkl

kzkI+k] (k
k \0 1

Skxkjn - k,,ky (kokyl -- kylk,)0 !k

k- kl + kT k,k,j +I k.,y b (0)
Sk k,,kj'j 1

(B1)

kr k + - k1  k ,jk y - kv k b -01'/ k
k k,,kP

,k,i + ktkn (kk,j - k,kyb

klk,, i k,,k,,i ) 1 - (B2)

~- k
a(")~~ kk , + k

k -k2 ) (ki - k2 )
(k + k) (kfk + k2 k1

(k - k 2 ) k kri + kky, 1 k',k.,\ kIi k] 0())(k

( k k k2kz) kk" kk

k k k (,k kI,,, kykr ki a," (f I)

(k - k2 ) k2k,k,, + k /ki
(kik; + k2k k, \ k,,ka )

kki - k,k J
\ k,,kin. q k

(k2 - k2 ) k k,, - k,k" ")1(k k: kak, ) '' k,,k,,4 ', -

(B3)

k - k2)
(kz + kz) (B4)

k,,kil (k,k.,i + k1ky -)
k \ k,,klp Ib (k

k.,k,j k- k a , ( ) k.,Ik;ri - k.j.ktL-. - L I bIO)
k kPkIPI ) 10 (k-I-i)

k ~~ k(kak
k,,k,,

k)' k,, k )2

1, -Ls)= -k a() (k'(k-
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CHAPTER 4

Scattering and Emission by Random Rough Surfaces -

Modified Small Perturbation Method

The scattering of electromagnetic waves from a randomly rough dielectric surface

is studied using a modified small perturbation method. The extended boundary condi-

tion method is used to solve for the scattered and transmitted fields. The small pertur-

bation method (SPM) is modified with the use of cumulant technique. The coherent

reflectivities and the bistatic scattering coefficients are derived using the modified SPM

and are shown to have wider regions of validity than the conventional SPM result. The

emissivity of the rough surface is then calculated by integrating the bistatic scattering

coefficients over the upper hemisphere.
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4.1 Introduction

Over the years. extensive theoretical and experimental investigations have been

performed on scattering and emission of random rough surfaces and applied to sea,

planetary and soil surfaces. Most of the work utilized either the Kirchhoff approach

Beckmann and Spizzichino, 1963; Semenov. 1965; Kodis, 1966; Stogryn, 1967; Bar-

rick, 1968; Fung and Chan, 1969; Sancer. 1969: Lynch and Wagner, 1970; Leader,

1971; Sung and Holzer, 1976; Sung and Ekerhardt. 1978; Tsang and Kong, 1980a,b;

Bass and Fuks. 1979: Ulaby et al., 1981, or the small perturbation method [Rice, 1963;

Valenzuela, 1967, 1968; Agarwal, 1977; Nieto-Vesperina., 1982. The small perturbation

method is used to study the rough surface with the height small compared with a

wavelength and the slope much smaller than unity. The Kirchhoff approach has been

used to study rough surfaces with large radius of curvatures. In recent years, there

has been considerable interest in the development of more general theories which can

bridge these two limiting methods. The full wave approach [Bahar, 1978; Bahar and

Barrick, 1983] has been used for composite surfaces which cannot be decomposed into

small-scale perturbations and large-scale surfaces. It has also been used to study de-

polarization effects. The diagrammatic approach Zipfel and DeSanto, 1972; DeSanto,

1974; DeSanto, 1983] makes use of the Feynman diagram and has been used to obtain

the coherent intensity beyond the Kirchhoff approximation and compared with some

experimental data.

In this chapter we study the problem of scattering and emission from a randomly

rough dielectric surface using the modified SPM. The extended boundary condition

method is used to solve for the scattered and transmitted fields. The small perturbation

method is modified with the use of cumulant technique to derive the coherent reflection
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coefficients and the bistatic scattering coefficients. The results are shown to have wider

regions of validity than the conventional SPM results. The emissivity is obtained by

integrating the bistatic scattering coefficients over the upper hemisphere. The results

are illustrated by comparing with the emissivities obtained with the KA for the various

cases.
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4.2 Formulation

Consider a plane wave in free space with electric field P, = sjexp(%ki -T) incident

upon a randomly rough surface with permittivity . The rough surface is characterized

by a height distribution z = f(-_) where f( _) is a random variable with zero mean,

0. Let f,,,i, and f,,.T be the minimum and maximum values of the surface

profile f(i1 ). From Huygen's principle. the total field P(F) in free space, and the

transmitted field P(T) in the dielectric medium satisfy

-( J dS' {Z.wyi G(F, F') - [i x H(F') 1 V x G(F, f') . 1f x E(F')]}

E(T) z > f (1) (1a)

1 z < f (r,) (1b)

dS' {i w i ( G1(f, r') - [f, x H1 (-') - x G1 ( , F') - [f 4 x E±(F')]}

0O Z > f ( F L) ( 2 a )

{ I P ( ) Z < f ( F2 ) (2b)

where S' denotes the rough surface over which the surface integration is to be carried

out. h and fj are the unit vectors normal to the rough surface and pointing into the free

space and the dielectric medium. respectively. and =(F,r') and Ui(r,-r') are respectively

the dyadic Green's functions for free space and the homogeneous dielectric of region 1.

Evaluating (1b) for z < f,,,j and (2a) for z > j,,., we obtain the extended bound-

ary conditions which can be solved for the surface fields [Chapter 3, Sec 3.21. Once the

surface fields are obtained, then the scattered field in free space and the transmitted
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field in medium 1 can be derived from the diffraction integrals. Thus. evaluating (la)

and (2b) for z > and z < f respectively. we obtain

x( ~~jId' si-i)8( k2 +jK $1 -i)Nk 12) - (F'

dkr Jr ke

>' { ~(I~(.. ~h~z~hkz1 (~' )-~[-(ki(k) j (k )(k~) b() (3a)

PtM 87,2 f d-k k k1-j z JdF' k -

+ k-[E(-kie)E1(-kj=)+ -I k(-kjz)N1(-ki )1 -d(w') (

where

dF', -(F') = dS'r? h x H(F') = dS' 7 r 1 ii x Hr1-') (4a)

dF'. b(F') = dS'fz x E(i') = dS'h x E1(F') (4b)

In Chapter 2 we used the Kirchhoff approximation to solve for the scattered fields from

the above diffraction integrals by making use of tangent plane approximation for the

surface fields. In Chapter 3 we used the small perturbation method to calculate the

surface fields and the scattered fields by making a perturbation expansion. In this

chapter we will modify the SPM with the cumulant average technique and solve for

the scattered fields.

We will consider the case of horizontally polarized scattered field due to the

horizontally polarized incident wave in detail to illustrate the modified SPM. The SPM

and KA results are derived in Chapters 2 and 3. The coherent reflected field with the
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lowest order correction due to the rough surface, obtained with the SPM 'Chapter 3.

Sec. 3.5] is given by

where R1, is the Fresnel

where 1 is the correlation

simplifies to

reflection

length for

(k: - kj:i) dk' B'( '_)W ()k' - i (5)

coefficient for the TE wave. In the limit I - oc,

f(_) in the transverse plane, the above expression

2E,) = R2i[ - 2k ' F ik-, e ik z (6)

The coherent reflected wave under the Kirchhoff Approximation is derived in Chapter

2 to be

(k' Ek e-L(E,,- e - z e -L, r 6 ikz, (7)

In the limit k:ic < 1, the above expression reduces to

Ei,,, 1 - 2k 2c 2 '.i. t eL (8)

which checks with the SPM result in the 1 - cc limit. In the next section we will modify

the SPM with the cumulant technique such that in the limit I -. cc the KA result given

by (7) is obtained and in the limit k.ru < 1, the SPM result given by (5) is obtained.
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4.3 Modified Small Perturbation Method

The horizontally polarized scattered field for the incident wave with horizon-

tal polarization has been derived in Chapter 3 using SPM by making a perturbation

expansion. The expressions for the second-order solution is given by

Eh(F) - r (9)

El =- J df k -e fkziF(k - k1 j) (k - kz) kk,, k-,k, /" _Ll)

dAL ekKL e ik, J dk' F(_ - k,) F(k_ - k', )

ky,k -kk,ki

k,,k,,n

k' - k2 k,k,,+- k k
W~, ) - k k I/?'1,,

q - k- + k1 kkp,, )}

1 k-kk n - k k k k
2 kzI + kj kkz-k~ ) , kk

F(k1 )
47r-

k - k2 k
k +k 2

(ki - k2 ) (k- k2 )
+ ± 2 - k "

( k, + k z) ( k k - k 2k ) "

b:,")(Ics ) = R,

In the modified SPM we first assume that the scattered field can be expressed in

the following form:

1

87
2 dk 1a eiki-FL eik. 2 (k1 _ - k )(1 + Rh,) JdF' e -i(k k-L

f k- + k- if

Sk, k + kkyi (khF kj,ky - kilkxi e(k,+k? h ,ti) -

I k ,,k,I k,,kl1
(16)

El',)= I

(10)

k { k k.+ k1

where

(11)

k kri + kIk?

ktk,, - krk
k ,k, r } 1 )

(12)

(13)

(14)

(15)

b0 (k-i) I

f ', f (T,' ) 6 - ikLF

k ,knli - k ', k.,i bl) ( k )
k,.k,,_L4

Bl(,' (I1 -k kii
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where h,.(-' ) and h,(' ) are the unknown functions to be determined by making a

perturbation expansion. We let

h,.(~1 )~ ~
m.

OCI '(h
h,7

Substituting the above expansion into (16) and further expanding the equation for the

scattered field, we can solve for hi""' and h.7' by comparing with the SPM result. The

first-order result is given by

H (kL) = -iF(k_ - k 1 ) HM (jc) = 0 (18)

where

(19)

Thus, we have

= -if(') = 0 (20)

The second-order results are given by

H,1.2 (kj - kLi) =-(k- ±i kzj) fd ! H,(')(T,

+ fdk'I F(k - k'l)F(k'

-k)H,(')(T' - k~)

k,) {(ki

H(2) - k) = dk', F(k-

- k1 ) -+ 2 (k's)

B tf(k *)W, (kL

I (21a)

(21b)

The coherent reflected field is obtained by taking the ensemble average of (16).

We have

(Eh,(F)) = RI,,, 2
k z I. eik1 , eik 

(22

(17)

I
I
U

U
U
U

I
U
U
I
=

H( Y")(k-) = dr-'s h !")(F') e - I

k')F(k's -- _kj)

(2 22
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If we make the regular perturbation expansion of the above expression and take the

ensemble average, then we obtain the same result as the SPM. Thus. we make use of

cumulant average technique Shen and Maradudin. 1980: Kubo. 1962, in performing

the ensemble average in (16). The cumulant average is defined such that

2k~, exp [~/ K-(23)

where > stands for cumulant average. For a random variable x, there is an exact

relationship between the cumulant average (x"),. and the moments (xlr') for m < n [Kubo,

19621. The first two relations are given by

(x), = (x) (24a)

(x 2)_ = (x 2) _ (XI 2  (24b)

The left-hand-side of (23) is normally evaluated by making the power series expansion:

(e2  
'' ) 1+ (2k h,( 2' h (')2) (25)

Similarly. we expand

(e 2  
- = (2k.7 h,(r' 2 (, ) (26)

Note that by substituting (25) and (26) into (23) and by further expanding the right-

hand-side of (23), the relation between the cumulant average and moments of the

random variable can be obtained by equating the same order terms.
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We evaluate (26) using the perturbation expansion for h,.(U). We have, by keep-

ing the terms to the second order,

(e-1 2k i (') (2k-_ b ') (2 k' h (iF' ))2\,
2i 1 )1

= k i (h!2 (_' ) 7+ 2 k:; ( (' (27)

where we made use of the fact (h,."(F') o. Thus, the coherent reflected field for the

horizontal polarization is given by

E,, Rj,,0 e i F, eik., zexp (k- - k1 i) dk' B,')(V')W(k' -k (28)

We note that the above result agree with the SPM result and the KA result, given by

(5) and (7), in the respective limits of k=-cT < 1 and I - oc.
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4.4 Bistatic Scattering Coefficients

The bistatic scattering coefficients can be derived by calculating the incoherent

scattered intensities. From (16) we have, by making use of cumulant average technique.

4c k -4 kr4V - k2
ko 2 k' +k-: (:+k )k u)

where

( krk:,i - kik,,i
\k,,k,,i

x exp 2 ReMI(i, ii ) d' e J {exp [(k + k ' )

1 2) - .4- (k -+ k~ )
M ,i(k,, k = (k - k 2 +~M (k- 2 - J2k:j- , Lj

- 1}
(29)

(30)

with

2k, J dki {kiz -
(I2- k 2)

k' k'
W 0Ik -kJ|1)

(31)

For the correlation function C(f') with the gaussian dependence, the integrals in (29)

and (31) can be carried out. We have

2 k2 - k0|
, ,) = k0 k s ?-2(# - 0i)

Cos k k (k - k21)2 (k + k1j)(k2 i + kii) s
(32)

x exp [-2 Re[Mk,(, 2 )

Mj,,(k.L,. k ,) = kio212 k,', dk,', exp (k2 -

x Ik k ] L,(x)

+ ) I exp 4mM!m 4mM

121k lj

(k - k ) '2
k k' + k2 k' ' xJ

ks,, = k + k,- 2k,,k,,, cos(6 - (i)4

where

(33)

(k -- k ? )k -2 k ,Ik xl k '.k ,, z 2 1k k' +4- k 2 k' k',k,,

(34)
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k,k,,i 1" (35)

and 1, and 1, are the zeroth and first order modified Bessel functions.

The vertically polarized scattered field for the horizontally polarized incident field

is obtained in a similar manner. We assume that the scattered fields can be expressed

in the following form:

E.,(7) =i - Fis ek k2 k k k k 1 u)d' -1U

E, ~ r [dk_?L e -z kk 1 - 2 - (1 +R'j "') dr'-i (

8J2 k-kZ kik k~kj

X { (k z ?) --- )F' (k, k, -+ k~ y ( (k, -k., -, ( )

x e + kj

Then the bistatic scattering coefficient can be derived by following exactly the same

procedure. We have

- 47r 4 kkiz(k2- k2 ) 12 k,,k,i - kki
^Y1(k ~ks = k 2k 2 |

cos (k- + kzi) 2  (k k + k2k1z)(kz, + kii) k,,kI, )
x exp[-2 1Re M' (Ek, ki )]] d-' e exp [ (k + kC(r'r)] - 1

(37)

where

-' -(kk (k: kI - r24 (kz + -j
MI(_L, kj j) = -(k- - k2+)a2 +I~ (k +j kk 2 k2 a()(8

The bistatic scattering coefficients for the vertically polarized incident wave can

also be derived following exactly the same procedure as outlined in the previous section.

For the vertically and horizontally polarized scattered fields we assume the following
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form:

1 
287,

- -2 k2 - k-*
d e ez 2(1- R, ) dF'L- -

k + k k k k2k1,

x k,,ki" e k k u 
k2

((k-i ~ I

- k k k k - krk, \
k1;i kj'kI

)
(K - 1 }

' - - 2 kk 1 -' k2 - kE,,( = 2 f dk-Le 2 _ I R")" ' f87r k: + k- ki k: - kj-

- 1) -
k,k + kkY

(39)

e- ~-ks, '

( e(i~kjK N(F ') _ 1 (40)

where R,, is the Fresnel reflection coefficient for the vertical polarization. Then, the

bistatic scattering coefficients are calculated to be

4 k k ( k 4 (
c Oi ' '(kz+kzj)2 kk

kf(k- - k2 )
+k 2kj)(k kj i- k2kn |

k 2  _ _
x k,,ki, exp [-M,'(kik_)1 - -klzk 1ui exp [-M 1 (kLk.L)

x fd-'* e '! - T
4r-

exp I(k + k, )2 C(F' )] - I}

k,,k,, /

(41)

47r 4 k

cosO -' (k -I- IC)2
kk 1i:(kf - k 2 )

(k + k )(kj k, + kakiz)

1k
x exp ReM i(k ,' ei -L,- {exp [(k + kr ) 2C(T'j)

M I AI~ kk-) k4k2 (k..+-_i

Li) = (k - k?4a + (k k ()
2 - 2k:_ (

-L k I (k (~

kYk( - k,kyi

k,,k,,

where

- 1

(42)

(43a)

(43b)

k~rk,, -- k.,k1

k,,kj'j

kyk~r kkl )



-- - !(2 k4 2  1 k__ (k__+k- -)' 2 -kk- - k ~ ;)

M"(k-i.k- = ~4 f dkk' {
k, - '

M7- k 2k- J;: f

ki - ka
k2k' + kak'1 "

d { k
k

(k k')
k' +k

k k :

k, +-, kk'n

k- k,,k,,,
k k, k k.k'

(k- - k2 ) k'ks, + k',k
-k 2 ?

k k/ + k2 k'. " kl,k,,

The coherent reflected field for vertical polarization is given by

(E,,) = e _L: ri e 1 (1 + R, ) k
2kzi k k + k2k,

x -k exp - M(ki k ;) c k exp M;nic(ionwe)av

For Gaussian corrleation function.. we have

k2 - k2 k2k k'
k 2 k,I (x) + -; "' I1()k k k 2k' k/,2 + kEk'n k,,1

k'dk'e- ki I
(k7 - k2 )

k; -t k ',:

ka k'k,,
kiz, k'2+ kik'(

(ki - k2 )
k+ k + k,' (x)

- iI()) (46b)

with
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(43c)

k'k , k'k I
k( k4k

(44a)

kik,,k ,/
k ,k,,

2} -/c~j) (44b)

(45)

(46a)

M ,(k-Li, k i) := 2k-7

M;,'s ( k s, k -L ) = k iaa 21 k,',dk',e-Y
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4.5 Emissivities

By using energy conservation and reciprocity arguments. the emissivity can be

expressed in the following form Peake. 1959 :

e -) - r'.(6) - r ( ) = v (47)

where r' is the coherent reflectivity and r,, is the incoherent reflectivity. The reflectiv-

ities are given by

r ( £ (48)

r2(& ) = - dd dO sin6 0 / ;(6, O; , 0) (49)
47

where R, is the coherent reflection coefficient.

The coherent reflection coefficients of the rough surface derived with the modified

SPM is given by

RI = R,, expiM 7 (k-Lik k-)1 (50a)

1 k2 -k 2  -
R, = (1 + R?4 -k exp[M! (k iksi) +--k exp-M;;(k ,k 1 )]- (50b)

2ki kk k2k kI

The emissivities can be obtained by making use of the expressions for the bistatic

scattering coefficients derived in the previous section. For the correlation function

with Gaussian dependence we obtain, after carrying out the do-integration,

1 [/ 6kk2 k - k 2

CosSl -s (k + kj)2  (k. + k1-)(k-j + k 1iz)

--(k~z + k i )0, " I (7,1)
x exp -2 Re[Mt1.(k , kw)] ( ~ e)"-]L,( e)J

l = I

S i 2 2 2 kkz(k? - k2 )
+ f d~sin 0k k--cos 0a (k~ + k 2 (k k + k 2k1 z)(kzi - k 1iz)

x exp [-2 Re[M'(k,, k)] (k + )" (51a)
m. m Xrn
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2 i" k2 - k'-1 f1T(0j) dO sin 60 k 2 k2 12 2 i-k
rCo(s) . (k + k:i)2  (kfk. +k1k )(k k- k2 kz;,)

D 1 ( k - )
x e -- fk k,,k J2 ex p -2 R e! M;;, I( xn

kkp-kjj -exp 2 ReCM;,' (k. k) [I1(yrfl) -J(~

2R e kik,,k,,k2k ,k> exp -M,'.i( kj) exp M',, (k k J} Ii(x,,)}

1 "kkji(k - k:)
S d6 sin 0 k1 k21 -k"
cOs, (k +k ) 2  (k; k,)(k k , + k2 k

x exp -2 Re[MI,( , . (k )]--m- e Jic - -Y" .) (51b)
m! m X,

where

12 1 2
Y1n = ( 2 -k2  2 = k,,k ,2 (52)

Am P 2m

The emissivities calculated using the modified SPM is illustrated and compared

with the result obtained using the KA !Chap. 2, Eqs. (141) and (145)] for the various

cases. In Fig. 4.1 we illustrate the effect of standard deviation of the surface height

a. As a is increased there is an increase in the emissivities except at large observation

angles for vertical polarization. Also. the difference between vertical and horizontal

polarizations becomes smaller. In Fig. 4.2 the KA result for the same set of parameters

are illustrated. The KA result is not valid for large angles of observation. For angles

near nadir there is increase in the emissivities which is larger than the modified SPM

results. In Figs. 4.3 and 4.4 the effect of increasing the correlation length I is illustrated.

There is a decrease in the emissivities near nadir as I is increased. We note that as

I - oc the emissivity of the rough surface approaches that of the flat surface since the

sum of coherent and incoherent reflected intensities is equal to the reflected intensity

of the flat surface. In Figs. 4.5 and 4.6 we increase a and 1 by the same ratio, which

"''N'
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is equivalent to increasing the frequency for the same parameters. We note that while

there is a slight increase in the emissivity near nadir angles for KA, there is a decrease

for MSPM. We note that the coherent reflectivities obtained using the KA does not

depend on the corrleation length I while the modified SPM results is a function of both

a and 1.
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EMISSIVITY
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Figure 4.1 Emissivities as a function of observation angle - Modified Small

Perturbation Method.
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Emissivities as a function of observation angle - Kirchhoff Approximation.Figure 4.2
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Figure 4.3 Emissivities as a function of observation angle - Modified Small

Perturbation Method.
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EMISSIVITY
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Figure 4.4 Emissivities as a function of observation angle - Kirchhoff Approximation.



EMISSIVITY

-N

---

Freq. 1.4 GHz

flat surface

- -- a = 3 cm, z 15 cm

ka = 0.88, kz = 4.4

- = 1 cm, z = 5 cm

ka = 0.29, kz = 1.47

I I I I I I - I

10 20 30 40 50 60 70 80 e

Emissivities as a function of observation angle - Modified Small

Perturbation Method.

116

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

I 0

Figure 4.5

I



117

EMISSIVITY
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CHAPTER 5

Scattering of Electromagnetic Waves from a Randomly

Perturbed Quasiperiodic Surface

Scattering of electromagnetic waves from a randomly perturbed quasiperiodic

surface is studied for active remote sensing of plowed fields. Kirchhoff approximation

is used. Narrow-band Gaussian random variation around the spatial frequency of

the sinusoidal variation is used to introduce the quasiperiodicity. The physical optics

integral is evaluated to obtain closed-form solutions for coherent and incoherent bistatic

scattering coefficients. In the geometrical optics limit, it is shown that the bistatic

scattering coefficients are proportional to the probability of the occurrence of the slopes

which will specularly reflect the incident wave into the observation direction. The

theoretical results are illustrated for the various cases by plotting backscattering cross

sections as a function of the angle of incidence. It is shown that there is a large

difference between cases where the incident wave vector is parallel or perpendicular to

the row direction. When the incident wave vector is perpendicular to the row direction.,

the maximum value of the backscattering cross section does not necessarily occur at

normal incidence. The scattering coefficients can be interpreted as a convolution of

the scattering patterns for the sinusoidal and the random rough surfaces. For the

backscattering cross sections we observe occurrence of peaks whose relative magnitudes

and locations are explained in terms of the scattering patterns for sinusoidal surfaces.
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5.1 Introduction

Scattering of electromagnetic waves from a randomly perturbed sinusoidal surface

is of interest in the active remote sensing of plowed fields. The variations of the

radar scattering coefficients due to the change in the look direction relative to the

row direction have been well documented [Batlivala and Ulaby, 1976; Ulaby and Bare,

1979; Fenner et al., 1980'. In the past, the problem of electromagnetic wave scattering

from periodic [Waterman, 1975; Jordan and Lang, 1979; Chuang and Kong, 1982j

or random [Rice, 1951; Beckmann and Spizzichino, 1963; Stogryn, 1967: Valenzuela,

1967; Sancer, 1969; Leader, 1971; Tsang and Kong, 1980a] rough surfaces has been

extensively studied. The problem of scattering by randomly perturbed surface has

been studied by assuming that the periodic surface causes a tilting effect [Ulaby et

al., 1982. In this approach the scattering coefficients of the random rough surfaces

obtained using the Kirchhoff approximation or small perturbation method is averaged

over the change in local incidence angle due to the periodic surface. This approach

has also been used to solve the scattering from a composite random rough surface with

small and large variations [Semenov, 1966; Wu and Fung, 1972,.

In this chapter we use the Kirchhoff approximation to study the scattering of

electromagnetic waves from a randomly perturbed quasiperiodic surface. In order

to more realistically model the plowed fields we characterize the rough surface as a

composite surface with a Gaussian random variation, a sinusoidal variation and a

narrow-band Gaussian random variation around the same spatial frequency. In the

plowed fields there are some random variations on the period and amplitude of the

sinusoidal variation as we move from one row to the next. This variation can be

modelled by introducing the narrow-band Gaussian random process on top of the basic
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sinusoidal variation, which will cause the surface to be quasiperiodic. The physical

optics integral obtained with the Kirchhoff approximation is evaluated to obtain the

coherent and incoherent bistatic scattering coefficients. In the geometrical optics limit,

the stationary phase method is used to further simplify the results. In this limit it can

be shown that the bistatic scattering coefficients are proportional to the probability

of the occurrence of the slopes which will specularly reflect the incident wave into

the observation direction. The theoretical results are illustrated for the various cases

by plotting the backscattering cross sections as a function of the angle of incidence

with the incident wave vector either parallel or perpendicular to the row direction.

The appearances of peaks will be explained in terms of the scattering patterns for

sinusoidal surfaces.
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5.2 Formulation

Consider a plane wave incident on a randomly perturbed quasiperiodic surface

'Fig. 5.1]. The electric field of the incident wave is given by

E(T) =E, expik T)()

where ki denotes the incident wave vector and , the polarization of the incident electric

field vector. The rough surface is characterized by a height distribution Z = f(x, y),

which is given by

f (x,, y) + A(x) cos x±+(x) +Bcos X+O (2)

where f(x, y) is a Gaussian random variable with zero mean

( (x,y)) = 0 (3)

A(x) cos[(27r/P)x + O(x) is described by a narrow-band Gaussian random process [Dav-

enport and Root, 1958; Appendix Ai centered around the spatial frequency of 27r/P

where the variations of the envelope A(x) and the phase O(x) are slow compared to

those of cos(27r/P)x, and B and 4 are assumed to be constants. Using the vector Kirch-

hoff approach, the scattered electric field P,(-) can be expressed in the following form

iStogryn, 1967; Sancer, 1969; Leader, 1971; Tsang and Kong, 1980a]:

SikexP(ikr) E,(I - I, F(Q,,4) exp(ika -')d's (4)
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where A, is the area of the rough surface projected onto the x - y plane, k, is the unit

vector in the observation direction, and

ka = ki - k. (5)

F(a, 1) (1 + a2 #2)I {(1 - R,)k(f k)(, - 4i)41 - ( ,

(6)

+( i 4i)[I, x (i x 4 '(I- R1,) +t (V, )(u c1)(I. x )( -

In (6), a and # are the local slopes in the x and y directions,

(9f(x', y')
ax,

af (', y')
ay'

i is the local normal to the rough surface,

1= + 2  
/o)/

(1 + j2 + #2) 1/2

(7a)

(7b)

(8)

pi and 4, are respectively, the unit vectors in the directions of the local parallel and

perpendicular polarizations of the incident wave,

- k' x h
i h (9a)

pi =qi x k, (9b)

R,, and Ri, are the Fresnel reflection coefficients for TM and TE waves with local

incidence angle:

(10a)
-(h ci) - in2 - 1 + ( kI)2]1/2

-(ii -Ii) + in2 - 1 + (i - Ici) 2]1/2

- I ............... ... .1- 11-1111", ....... ....... Aw.W "I'l""I'll""I'll'll"",',,""I'll'I 11- ", . I

fi)(h x, 4i) (I + R,)

R1, =



(h Ic) - - I + ( )
2 11/2

- Ic) + -(1 - (h. I) 2
1/2

with
1 = k I, k

k g = w-\Ip.

k = w</p

and the orthonormal system for the incident and scattered fields are given by

Ic, = sin 6, cos 4 + 9 sin 6, sin 0, - cos 6, (12a)

I= -sin <pi + V cos ,

= - cos 6 cos 41 - 9 cos 61 sin $ - sin O,

= sin 6, cos 0, + sin 6, sin 0, + . cos 6,

(12b)

(12c)

(13a)

(13b)

(13c)

' = - z sin 4, + 9 cos 4,

, = x cos 6, cos 0,, + 9 cos 6, Sill 4 , - sin 6.

The Kirchhoff approximated diffraction integral in its present form is still difficult

to evaluate and further approximation is necessary. One commonly used approximation

is to expand F(a, x) in the power series of slope terms about the zero slope and to keep

only the first few terms leader, 1971; Tsang and Newton, 19821. However, in this

chapter we shall expand T(a, B) about the slopes at the stationary phase point a, and

S k(14a)

123

(lob)
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(14b)

where

k,;, =k(sin Oj cos - sin & cos ,)

k,,, = k(sin 6, sin i - sin sin T,)

(15a)

( 15b)

(15c)kz = -k(cos 6, + cos 6 )

Therefore, we expand F(a, /) as follows:

3Fa
+ +~act a, /

(/3 - /3') + (16)

Keeping only the first term in the above equation, we obtain from (4),

Sik exp(ikr)E(l - .)F(a,,/3JI (17)

where the integral I is given by

I = exp(ik-' ' (18)

Then the scattered fields E,() is separated into a mean field ( and a fluctuating

part of the field I'(F)

(19)E,(F) = E,() + C(F)

with

IIV) = 0

F(cc, F) =(a,,, pO)

(20)
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and

E,)) E,() (21)

so that the total scattered intensity is a sum of coherent and incoherent scattered

intensities.

p 2 ,,if 2 ~) 2(22)

From (17) and (18). we have

_____ ~a 1 >+-h, F(IJ2 (23)

and

(It(F) ~[ ) 6,2 |. - F12o -o ~+h ~ #) D (24)

where

D,= (I2) - (J)2 (25)

The explicit expressions for (1)2 and D, for the randomly perturbed quasiperiodic

surface are derived and expressed in terms of the statistical moments of the height

distribution Appendix B". The advantage of expanding P(a,#) around the stationary

phase point (a , r) is that the bistatic scattering coefficients derived from (24) and

(25) satisfy the principle of recprocity and at high frequency limit the geometrical

optics solutions can be obtained from (25) without making any modifications [Stogryn,

1967]. Also, since F(aj) is evaluated at the stationary phase point the same solution

is obtained using total or reflected field on the surface [Holzer and Sung, 1978j.
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5.3 Coherent and Incoherent Scattering Coefficients

The bistatic scattering coefficients are defined as Peake. 1959;

41rr 2I,1y,,,(k,, ki) =(a , v, h)
A, cos (i )(

where 1,, and Ii,, are, respectively, the intensity of the scattered wave in polarization

a and the intensity of the incident wave in polarization b. From (23) and (24) we first

calculate the vertically and horizontally polarized coherent and incoherent scattered

intensities for the cases of vertically and horizontally polarized incident fields. For an

incident field with polarization bi, the scattered intensities with polarization a., is given

by [Stogryn. 19 67 1

E 1 2= k2 E 2  -a (2
l 16r 2 r -

Sk2IE 2 
-k2 (FI- = " a|, D ,( ,p ) ID (28)

16ir 2r2

where

Fj,, (,) =flao, 0) _,(9

and

a. F ,,( ,# ) fI,,, (30)
k2 k x k k2

with

,2
= (. j~ kR1, + (i) pk1)( ,) R (31a)

f..,, = (h Iki)(, k,)R,, - ( k- kj (h, - k)R,3)) (31 b)
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fit = 4 i) )R,, -- (h. ki)( , k ,)R, (31c)

and R, and R,,, which are given by (10). are evaluated at

?k,/ka ka,, k, + (32
k /k :! -a k k 2 - 1) 2 (32)

In view of (27) and (28), the bistatic scattering coefficients can be decomposed into a

coherent part ;, and an incoherent part ,.. Substituting in the expressions for (I) 

and DI, (BIO) and (B18), into (27) and (28), we have

1 ,(kk,,Ii)= ,, ( k )+I k,(k,, ki) (33)

where

,,(k,, ki) = f,, exp k (a2 + 0,) J,,(k4 -B) k ka, + n 6(k4 y) (34)
cos Oi Iki x k ,k2,= 0

(k,, ki ) I ̂  I, 1 (Dj +'r Dj:) (35)
cos0, k 2 Ik, x k, ko.

In (34), J,, is the nth-order Bessel function and 6 is the Dirac delta function. It can easily

be shown that the bistatic scattering coefficients satisfy the principle of reciprocity,

cos6i1a,(k,,ki) = cos ,y k,,,k(i,Ik,) (36)

When the incident wave vector is not perpendicular to the row direction of the

periodic surface (ki 5 0), the coherent scattering coefficient. (34), gives rise to scattered
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intensities along the directions of Floquet modes. forming a cone. This conical diffrac-

tion is a characteristic of scattering from a periodic surface ;Chuang and Kong, 1982K.

A part of incoherent scattering coefficient will also give rise to conical diffraction. The

second term on the right-hand side of (35) has a(k ) dependence and this will give rise

to scattered intensities only in the direction k,,, = k,,, forming a cone shape. However,

unlike the coherent term, which only scatters into a set of discrete directions, this term

will scatter intensities in all k, directions.

In the backscattering direction o, = t, and $p, = + 7r. The backscattering cross

sections per unit area are defined to be

U,,(ci) = cos 6y ,,,(- 1 Ik) (37)

From (33)-(35), we obtain

oV (Ii) = ahh(ci)= o((&i)+ al(Ici) +aIc ) (38)

UeI , = ,,,(kI) = 0 (39)

where

4ik 2 T 2  + 2 2p
exp -4k + ) J (2k- B) .2 j + n. 6 (2k,,j) (40)

ai(ci = 2 J,,(2ka.jB) exPk a ra(A ia )'l

x =ex - k3C +IY I +'

2 12 r/00± \ 1 Tr (MI C,\tt
x exp k + 117+m' 1)~ - (4k-

P 4) km _) ,, 2i!

x exp P Y (41)
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with

q = +

2k 2 ;R 2-
oar i n t (2k,, c Jat n(2tk iB) eaxp b4kti(h k eCos 4

x(- -7 , (4k x p -~ i- p+? n (42)2"'n \m ' m!P j m)

and R is the Fresnel reflection coefficient at normnal incidence. We note that there is no

depolarization in the backscattering direction, and because of the 6(2k,,s) dependence.

cr"(lk) terms contribute only when the incident wave vector is perpendicular to the row

direction of the periodic surface.
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5.4 Geometrical Optics Solution

Under the geometrical optics limit as k - oc. further simplifications can be made

for the expressions of (1)1 and Dr. Since kj a.kajr, :I1. the coherent component of

the scattered fields are negligible and only the incoherent scattering coefficients will

remain. Under the stationary phase approximation the bistatic scattering coefficients

simplify to

4f~d 2__ 7r- 2 sin') ___

rn,,,(k,, k1) d? exp -- (43)
Cos -, c, x k, k, 2 2

where e and s2 are, respectively, the mean square surface slopes in the x and y directions

3 2 = C22 JC"(0)I+ -i- u (27r/P)2 t_ JC"'(0)|, (44a)

23 = e2c"(o) (44b)

In the above equations, C" and C" are the second derivatives of the correlation functions

and for Gaussian correlation functions assumed

C"(0);= 2/1' (45a)

C''(0) =2/ (45h)

The probability of finding slopes (a, p) at point -_ on the surface can be calculated

to be

J1 exp + 2 7r sin ( x -+ )]2  ()
P~~a(F-),J 31) =)x -(6
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Averaging the above expression over one period we obtain the averaged PDF for a. 3

1 r 1a a 7r, sill (0r+ )
P(a. 3) = - d r exp 4- 4

which is proportional to the geometrical optics solution. Therefore, the geometrical

optics result states that the scattered intensity is proportional to the probability of the

occurrence of the slopes which will specularly reflect the incident wave into the direction

of the scattered wave IBarrick, 1968". We also note that in the geometrical optics limit

there is no difference between the above solution and the solution obtained using the

incoherent model Ulaby et al., 1982) except for the factors due to quasiperiodicity.
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5.5 Results and Discussion

The backscattering cross sections per unit area rT(k,) are calculated and illus-

trated for various cases. The conically diffracted coherent and incoherent components,

T (ci) and a,(k). which only contribute when the incident wave is perpendicular to the

row direction of the periodic surface, are not included in the calculations. In order to

correctly incorporate the contributions from these components, the characteristics of

the antenna used to make the measurements must be taken into account.

The results of randomly perturbed sinusoidal surface cases, c, 0, are first illus-

trated in Figs. 5.2-5.9. In Fig. 5.2, the backscattering cross sections per unit area a(ke)

are plotted as a function of incidence angle for different frequencies. As the frequency

is increased, the solution approaches the geometrical optics result as expected. The

difference between the cases where the incident wave vector is parallel, 4, = 900, or

perpendicular, pi = 0". to the row direction is seen to be large. For the 4O = 00 case the

maximum value of u(k,) is shown to be not at normal incidence. In Fig. 5.3 the effect

of change in the amplitude of sinusoidal variation B is illustrated for 5.0 GHz. As B

is decreased the results of $, = oc and $i 90 cases approach each other and when

B= 0 we reproduce the random rough surface result which is independent of azimutal

incident angle $p.

In Fig. 5.4 the effect of the correlation length 1 at 1.4 GHz is illustrated. As 1

is increased, the a(kc) falls off faster as a function of O, for $i = 90c and there is an

appearance of peaks for 4, = oc. The change in c(k,) as 4, is varied is shown in Fig. 5.5.

The appearance of the peaks for 4i = 0o can be explained as follows.

The result for a randomly perturbed sinusoidal surface is related to the convo-

lution of the results for the sinusoidal surface with those of the random rough surface.



1d?0

For a sinusoidal surface, we have contribution in the backscattering direction only when

it coincides with one of the Floquet modes direction.

2k8 (48)
P

As I is increased the scattering pattern from a random rough surface is sharply peaked

around the specular direction. Therefore. by making I sufficiently large, we obtain the

result which is sharply peaked at the mode directions given by (48). This is illustrated

in Fig. 5.6(a). The locations and amplitudes of the Floquet modes are plotted in Fig.

5.6(a). Notice that for the cases of I = 100cm. we see from Fig. 5.6(a) that the peaks

are visibly illustrated. When I is smaller the scattering pattern of the random rough

surface becomes broader and we do not reproduce all the peaks. However, the peaks

around the two dominant modes, n = 1 and n = 4, are still reproduced for 1 = 50cm.

When i is further decreased none of the peaks are reproduced and we have a fairly flat

behavior.

In Fig. 5.7(a), the effect of change in B at 1.4 GHz is illustrated. Note that as

B is decreased, there seems to be a shifting of the peaks. Since the period P is not

changed, the locations of the modes do not change. However, as we can see from Fig.

5.7(b), the amplitude of each mode is changed as B is changed. The location of the

mode with the maximum amplitude is shifted as B is varied and the results in Fig.

5.7(a) reflect this effect. When B = 0 only the amplitude of the n = 0 mode is nonzero

and the random rough surface result is reproduced.

The effect of change in the period P is illustrated in Fig. 5.8. The locations of

the modes will change as P changes while the amplitude of each mode will not change

since B is the same. As can be seen from Fig. 5.8. when P is increased the modes are

spaced closer together and when P is decreased the modes become further apart.

...........
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The effect of change in a is shown in Fig. 5.9(a). Initially, as a is increased the

backscattering cross section a(k2 ) is increased. Then as c is further increased there is

a decrease near normal incidence and a disappearance of one of the peaks. This is

due to the change in the scattering characteristics of the random rough surface in the

absence of sinusoidal variation. In Fig. 5.9(b) the backscattering cross section for the

random rough surface is plotted. Note that for a = 5cm there is a decrease near normal

incidence and a broadening of the scattering pattern which explains the trends in Fig.

5.9(a).

In Fig. 5.10(a) and 5.10(b) we illustrate the results for randomly perturbed

quasiperiodic surfaces, B = 0 and a, , 0. In Fig. 5.10(a) the backscattering cross

sections are plotted for different correlation lengths 1. Again, as I is increased there

is an appearance of peaks. But unlike the sinusoidal case, the values of the peaks are

monotonically decreasing with increasing angle of incidence. It is interesting to look

at the solution in the limit I, -+ o0 since we obtain a much simpler analytical solution.

From (B14) we obtain, for B = 0,

KIT. j dx dye r -1j2Lr - j~>2L, - y exp -k:a + kla 2C(iJ)
- L", -2L.,

x exp 1-kl. 2 + k 2aC.(z) (49)

In the limit I, -+ oc. we obtain

II' =J dx dy exp - I,,(kd~af) exp n 1 ,- n 1
x [2L, - xjf2L, - y jexp [-k2..-+ kia 2 C(F)r (50)

where I, is the n-th order modified Bessel function. This is similar to the randomly

perturbed sinusoidal surface result. In this case the amplitudes of the modes are given

I I 1 1. " - . .. I I .. .............."I"I'll",
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by the modified Bessel functions whereas before they were given in terms of the Bessel

functions. The amplitudes of the modes are plotted in Fig. 5.10(b) and we can see

that. they are monotonically decreasing as r is increased. which explains the results in

Fig. 5.10(a). Also note that as r, is decreased only the first few modes have larger

amplitudes and as n is increased they decay much faster. When a, = 0, only the n 0

mode remains and we reproduce the random rough surface results.

The above result in the limit a, - oc, (50). can also be related to the randomly

perturbed sinusoidal surface case. When o, = 0, we obtain

2L, p2Lu

(IN = 2 L dx] - dy ~ J,2(k&,B) exp i ka + r -j
-L, -2L,

x [2L, - ixL2L, - yexp -k'a 2  kr 2C(K) (51)

For a narrow-band Gaussian random process, A(x) cos!(27r/P)x + tP(x)), the PDF for A(x)

and $(x) is given by

A )exp for A > 0, 0 < V < 27r
PA (52)

o otherwise

Therefore, if we treat the amplitude B and the phase v of sinusoidal variation as random

variables with PDF given by (52), and take the average of (51) with respect to B and

4. we obtain the randomly perturbed quasiperiodic surface result, given by (50), by

making use of

J dB J,(k,: B) B exp (=2 exp(-k 2a )I (-k a ) (53)

In Figs. 5.11 and 5.12 we illustrate the combined effect of the previous cases.

In Fig. 5.11 the backscattering cross sections are plotted for different I for the case

........ .....
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B = 10cm and a. 5cm. The d, = 0o results are seen to be much more flatter as a

function of incident angle than the corresponding cases in Fig. 5.10(a). The effect of

varying c, is illustrated in Fig. 5.12. Therefore. by varying a, and B we can obtain

different combinations of the previous two cases when -, = 0 or B =0.



Appendix A: Narrow-Band Gaussian Random Process

The narrow-band Gaussian random process can be expressed as "Davenport and

Root. 1958!

A7r7
A(x) cos x

27r- s 27r
=A, x) coS -X - sIII x

where ,(x) and .g(x) are independent Gaussian random variables with zero means

(~((xX =(4x) 0

and

(&(x)&(x2)) = (,(x1)d(x2)) = OrC,(ix1 - X21)

(A1)

(A2)

(A3)

(A4)(C.(x1) (x2) = 0

where U, is the standard deviations of :,.(x) and :(x) and C,(Ix1 - x,,) is the normalized

correlation function. The covariance of narrow-band Gaussian random processes at x,

and x2 is given by

S[7r(A A(x 1) COS I x1 4
2 ±

A (_2) COS P2 + @(JX2) ) j2C r( & X I _ cos COS 27r
= a; ,(ix - x |) cs , (1 I - X2) (A..5)

The probability density function in terms of A and 4i is given by

.A )exp ( - A ) fo r A > 0, 0 < 0 2 r

0 otherwise
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(A6)
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Appendix B: Calculations of :(J " and D,

The integral I is given by

1 = exp(ic,,- F)d-'

The ensemble average of I is given by

(I) = j dx'dy'exp(ikzx' + ikd,1 y')(exp Iikz-f(x', y')j)

with

(exp [ikaf(x', y')] = exp - k: (C2 + F ) exp ika B Cos 2r,+~k~~cr -- ~1 ep k7 ZBOSIPJ

(T -
V.-

'-7 2 = ( 2 2

Therefore,

I) = 4L:,L 7,exp 1 k( 2 + 2) a,, sinc ka Lr sinc 1k1 YLM1

where

(B7)
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(B1)

(B2)

where

0)]
(B3)

(B4)

(B5)

(B6)

a,, = -)J,,(- ka2zB) exp tn )
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J,, is the nth-order Bessel function, 2L, and 2L,. are the lengths of the rough surface in

the x and y directions, respectively, so that

(B8)A, = 4LL,

Assuming that the area illuminated contains many periods (L.,L,, > P). we have

(I 16 L L exp r-k -u a,,1 2 sinc

By allowing L, and LY, to approach infinity in the above equation, we obtain

2 = 41r2A,,exp [-kd (O2 + Or,)] !a |,k_ +

where 6 is the Dirac delta function.

The integral for (IP) is given by

(IF) = IA d jA,

With the change of variables we have

- i

dx' f dy'
|r| J-2-I-+ri J-2L,

x exp [-ku 2 + k 2a 2C(F)] exp -k ± o + k 2r cos xeL di I-d x z j P

where

a,(x) = J, [2ka:B sin (x

[(k,,: +4n (B9)

n~i 6 (ky) (B10)

dF'. exp [ik i - f' ] (exp (iZkI f (x, y) - f (x', (B11)

OC

dx f

C, (x)]

(B12)

4 -

L, sinC2 k,,L,'I

a,,(~expz -n 27r
anx ex P'
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Expanding a,,(x) and carrying out the dx' and dy' integrations, we obtain

2L 2Le 01- r -
JII,= dxj dy p ( B, exp k,, - r L-2 y

1 I f27
S expn 2 (2L, - x) -exp - (2L -2x7)j}

r1 2z k[L02r'J

exp [-k2 .2 k 5 : C'(i ) exp -k k- k 2 cos (xCX) (B13)L LP

where

(1)" J,, -, (kj B) J,, p(k,1 B)

It is clear from the above equation that the n = 0 term is proportional to L, while the

n a o term is proportional to P. The argument of the Bessel function k,1,B will dictate

the number of terms that needs to be summed up. However, if L, >> P (we eventually

take the limit L, - o later on), then the n = 0 term will make dominant contributions

and other terms will be negligible. Therefore, keeping only the n o term, we obtain

2L, "L 0
(II.) = dx dyfb exp i k+ P 2,-x2y-t|

-[L2 -- 2L, LC

x exp [-k,,u 2 + ku 2 C(:: ) exp -k, C + ku cos X C. (x) (B14)

where

bl = J1(k&:B) (B 15)

We assume the correlation functions C(-r) and C'(x) to have a Gaussian form

C(F= exp [-(X2 + y2 )/12] (B16)

C,(x) = exp x/lt] (B17)
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where / is the correlation length for the random variable ( ) in the transverse plane

and l, is the correlation length for the random variables s.(x) and :(x) in the x direction.

The expressions for the standard deviation of the integral I can now be evaluated

in a closed form. Assuming L.,,L,, >, 1,X, P. we obtain from (BlO). (B14), (B16). and

(B17),

DI = II - ( k" (DI, -t- D 2 ) (B18)

with

b, exp [-k2(C' + C)

(m' (kla )
211 n m/! q

(k a 2 )"' 12
- exp

M! M

4m

q 12 m'
q= 10;1m

and

2 =,

x exp {

b
00 71

,1 E
ti = 71i=f I

[ k,1, ~-

- exp k-(

m - 2n) 2 ]1 (B20)

where we made use of

Jim L sinc2 (ki,L,,) = 6 (kcc )
L, -co 7

(B21)

We note that when I >> G, P, the expressions for DI,. (B19), can be simplified to

D I, nb,-exp {-k',(o,2 +C)] 1: d - e (k&, +
27 )2

+ k4]

(B22)

Dp, = -- 0
4 E

where

- m' - 2n)
P -

(B19)

-- .- , - "." . L ", "- -'1 -1 1, 'LKgd&-

4mq
,O, tit

+ y,27 + k2 --
P dYI4m
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After some manipulations, the above expression further simplifies to

1 f k2 0 o (k ) 2 7 2D 1  -~ I- dr --- exp k (c2 - ;) -2
P j 4 m M. m

exp { k, [k , + k,1 27r sin X - k11 4m (B23)

The above result is consistent with the result obtained using the incoherent model

[Ulaby et al., 1982 where the physical optics solutions is averaged over the local slopes.

This is due to the fact that when the period P is much larger than the correlation length

1 then within the correlation length the periodic component will appear to be planar

with the local slope.
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CHAPTER 6

Radiative Transfer Theory for Passive Remote Sensing

of Multi-Layered Random Medium

Microwave thermal emission from the multi-layered random medium is studied

using the radiative transfer theory. The brightness temperature is obtained by solving

the radiative transfer equations numerically using the quadrature method. The effec-

tive boundary conditions are derived which reduce the complexity of the problem to

that of a two-layer case. The theoretical results are illustrated for the various cases by

plotting brightness temperatures as functions of frequency and observation angle.
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6.1 Introduction

In the microwave remote sensing of earth terrain. the multi-layered random

medium or discrete scatterer models have been applied to account for the volume scat-

tering effects. The multi-layered models have shown to be more realistic in interpreting

the remote sensing data fNjoku and Kong, 1977: Tsang et al.. 1975., 1977. Tsang and

Kong. 1979 . In the active remote sensing, the scattering from a multi-layered random

medium has been solved using the Born approximation and the propagation matrix

formulism [Zuniga et al., 1979 . The radiative transfer theory also has been applied

to scattering from a multi-layer of Rayleigh scatterers with rough boundaries where

the iterative approach is used to obtain solutions to first-order Shin, 1980; Karam

and Fung, 1982'. In the passive remote sensing the radiative transfer theory has been

used to study thermal microwave emission from a multi-layered random medium with

laminar structures 'Djermakoye and Kong, 1979,. The propagation matrix formulism

Kong. 1975 is applied to obtain closed form solutions. For the inhomogeneous slab

random medium with nonuniform scattering, absorption and temperature profiles in

the vertical direction, the method of invariant imbedding has been used [Tsang and

Kong, 1977b. The boundary value problem of the radiative transfer equations is con-

verted to an initial value problem starting at zero slab thickness. Thermal microwave

emission from a three-layer random medium with three-dimensional variations has

also been studied using the radiative transfer theory (Tsang and Kong, 1980b. The

quadrature method Tsang and Kong, 1976b, 1977a is used and the results are found

to be useful in the interpretation of snow data exhibiting diurnal changes [Hofer and

Schanda, 1978; Stiles and Ulaby, 1980.

In this chapter we solve the problem of thermal microwave emssion from a multi-



161

layered random medium on top of homogeneous halfspace using the radiative transfer

theory. The brightness temperatures are calculated using a numerical approach. The

quadrature method where the integrals in the radiative transfer equations are replaced

bx the summation over the discrete quadrature angles is used. The resulting system

of first-order differential equations is solved by obtaining eigenvalues and eigenvectors

and matching the boundary conditions. The effective boundary conditions are derived

in terms of the effective reflection matrices and the effective source vectors to reduce

the complexity of the problem to that of a two-layer problem. The effective reflec-

tion matrices and the effective source vectors can be solved recursively by considering

only one layer at a time. The numerical results are illustrated by plotting brightness

temperatures as functions of frequency and observation angle.
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6.2 Formulation

Consider N-layered random medium on top of a homogeneous halfspace with per-

mittivity and physical temperature T1.- Fig. 6.1. The I-th layer is characterized

by the permittivity -4- ± , where (p stands for the randomly fluctuating part whose

amplitude is very small and whose ensemble average is zero, and the temperature T.

The radiative transfer equations which govern the propagation of intensities inside the

i-th random layer are, for 0 < 61 < 7r,

cos O , z) =-KLII(Oj, z) -- K 1(91) , z) + KCT +f d' sin 6 P(0 1,0') . 71{',z) (1)

where

I1i(0, z) = E ( z) (2)
hta (0 1, Z)

I, is the vertically polarized intensity, Ia is the horizontally polarized intensity, K,,,

denotes the absorption loss. K,(6 1) denotes the scattering loss, C' = KEc/EA 2 with K

denoting the Boltzmann constant, and 0, t) is the scattering function matrix which

relates scattered intensities into the direction , to the incident intensities in the di-

rection 01, The random permittivity fluctuation is characterized by the variance of the

fluctuation 61 and the correlation function with lateral correlation length ,, and vertical

correlation length is. The correlation function is assumed to have gaussian dependence

laterally and exponential dependence vertically. The scattering function matrix and

the scattering coefficient have been derived by applying Born approximation with the

far-field solution and are well known [Appendixi.

The boundary conditions are, for 0 < 6, < r/-2, at z = d, where I = 1. 2. N

61.- z = -d) = R(1j_ Ie(6s-) z = (-,± z = -d I,) - II(r - 01. z -d 1) (3)
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101-z = -d,) =Rb.l(61) -11(7 - 6, z - d,) -T. 1(61±1) ( z -d,) (4)

and at z = 0

1( - = 0) = R (1 1ni 0) - T (o,,) - a ( ), ()

where we have broken up intensities into upward going intensities 11(01, z) and downward

going intensities 1(7 - oi z). In the above equations T1,1 ,(A,) represents the coupling

from region I to region / 1 and Wik, 11 (61) represents the coupling from upward going

intensities into downward going intensities at the boundary of region I and region I+ 1,

Chapter 7, Appendix B]. The sky radiation L,,,(6-) is taken to be

Z ,, () = C TT [ 1 - e S- " (6)

where T, denotes the air temperature, K,,,, denotes the absorption coefficient of the

air. t is the thickness of the atmosphere, and C, = K/A 2 .

Once the radiative transfer equations are solved subject to the boundary condi-

tions (3) and (4). the brightness temperature as measured by a radiometer is obtained

from

- 1=- 1- 7
Tp(6,.) = 0) - -R, 1 (6,,) (7

where

Tr(6 ) = (8)
T1_11(o
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6.3 Quadrature Method

The radiative transfer equations for the i-th random layer will be solved numer-

ically using the quadrature method. First. the particular solution is given by

0 1,Z) = C1T (9)

The homogeneous solutions are obtained by applying the quadrature method where

the integrals in the radiative transfer equations are replaced by the summation over the

discrete quadrature angles. The resulting system of first-order differential equations

with constant coefficients are solved by obtaining eigenvalues and eigenvectors and

matching the boundary conditions. In obtaining eigenvalues and eigenvectors the order

of system of equations can be reduced by factor of two by making use of the symmetry

properties of the scattering function matrix and noting that the eigenvalues occur in

pairs such that if : is an eigenvalue so is -C.

Breaking up the intensities into upward and downward propagating intensities,

denoted by superscripts + and - respectively, we apply the quadrature method over the

nj quadrature angles. In the absence of the source term, the following set of equations

are obtained by making use of the symmetry properties of the scattering function

matrix:

- d(i=-+ = a) -
i -- -A -I +- I + B1 -%I (10a)dz

dz IZ, =K - I - B, + + N-Z++ T, - 1-~ (lob)



where 1 and I, are 2ni x 1

-7 -

F1 and R1 are 2ni x 2nI matr

P,(gjj, g I)

- Puj,(gin, Jil)

P2l.(GLI, A)

P1 1(pA, -gAI)

P1 I (Alit, -gA) -

P 2 I;(gA, -gA) ...

.Pd1 (g 1n, -ae) -2

and K,,, ni and 8i are the 2~

matrices

-~ I(j, z) -
hi,i(p1 1 . z)

Jlia(p i , z).

ices

... P 11,(Pi
P 1 (pi

P2 l (gi

*P 2 (ji,-

I

, pi1)

17 A

, pi) I
1,1i1)

pgi?,)

Ain)
pill)

P2 1 (pi,, -in)

x 2n, diagonal

P1 2 (P11, Yl)

P 12 (gi, , P )

P 22 (Pg1, IIp)

P 22 f (gin, gL )

P 12 (gA, -PI)

P12 :(gin, -g)

P 2 2 (PIl, -gA)

P 22 ; (Ai, -gA)

matrices

K,:= diag[K,, -, '1vi,,,,-1. 7 
1 , - ( j , K ,

A, diag[p1 , , in, All!. , Pin

(14)

(15)

(16)a, = diag[an, , a,,, ail, . a,,

In the above equation ±gi, and a1, are discrete quadrature angles and the corresponding

weighting functions and they obey the relations a, = aj, and g,, = -pi. The extinction

coefficients K,, can be calculated as follows:

K = K,1 + Z(F, ai, -+ BI, a I)
3=l

z = 1,. - - , 2ni (17)
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- Jia(- i, z) -

lh!H(-pl, z)

. ,i ( -pjib z)..

(11)

PI 2 (At n, p in)

P 22 (PI , gin)

P 22 (Pin, AIn).

P 1 (Mlj, -gin) -

Pp2,GLn -I,)

P22 ,(Ag1 , -Pin)

(12)

(13)

n11
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The quadrature angles in the different layers are related by the Snell's law. Since

f: are not the same the number of quadrature angles will vary from one layer to the

next. In order to have j, scan the whole range of angles in the region 1, we first apply

the Gaussian quadrature method to the layer 1' where t is the largest. Then, uY are

the zeroes of the Legendre polynomial P,,(p) and at are the corresponding Christoffel

weighting functions. We have n, = where r denotes the largest quadrature points.

Once the quadrature angles in region 1' are fixed, the quadrature angles in the other

regions I are related to the angles in region 1' by the Snell's law.

o sil-[ ,/ /c sin 0ps (18)

Since c < ce,, we have, in general, n, < nu.

For the layers where e # ,, the trapezoidal rule of integration is used. We have

= aif(p 1) = air.f(Al') f- (19)

where

1
all = 1 - -(Gil 1 + m2) (20a)

2

1
a,, = - - IO+1j) = 2. , +- 1 (20b)

2

1
at,, = 1(p1, - p(At ;) (20c)

2

When cl =, the Gaussian-Legendre quadrature method is used for layer 1.

The number of eigen-equations in the quadrature method can be reduced by the

factor of two by defining

1 ± = + 7- (21a)

1,4 = 77 - 7iZ (2(2 1 b)



Then, from (10), we obtain

Ri-d -~ Zi
dz

- I = A -Z

where W1 and =A are the 4ni x 4n, matrices

W1= -K,:1 + (F1 - BI)

A, = -K, + (F, + B) a=,

The homogeneous solution can be obtained in the form

I,1 = La e ""

Substituting the above equations

equations.

into (22a) and (22b), we now have 2n, eigenvalue

(25)

(26)= A~ - 7a,

where 7, is an n x ni identity matrix. Thus, if a, is an eigenvalue, so is -a,.

Once the eigenvalues a, and the corresponding eigenvectors I,,, are obtained, we

let E (J,.,. -,,a.) be the 2ni x 2n, eigenmatrix. Then the total solution for the

upward and downward propagating intensities are given by

It =(C Tl + (El -+ Q D-(z + d- 1 ) - 21 (E, -- Q,) -(z + di) -(2a

I =C1 T, I (El - Q 1) -D 1(z +- d,_ -1 ,i (El + Qj) - UT,(Z + dj) .p

(27a)

(27-1 )
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(22a)

(22b)

(23a)

(23b)

(24a)

(24b)
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where

Q~W~ii V' 28 )

Q1 = ia g I E (29)

D =(z) = diag71eL (30)

U,(z) diag [ - (31)

7 is the 2n, x 1 matrix
'T

T
tI=] (32)

.T,

and Y, and p, are the 2n, x I matrices which represent 4n, unknowns to be determined

by the boundary conditions.

The boundary conditions, which are to be used to determine the constants YJ and

74, can be obtained by discretizing the boundary conditions for the radiative transfer

equations given by (3)-(5). They are, at z = -dj, l = 1.2, , N

11+1(z = -d) = R1+ 1 - -.,+(z = -d) + 1T1+, - (z = -d) (33)

7-+(z= -d,) =R,,+) 1, (z = -d)+ -;-±11 1(z = -d) (34)

and at z = o

I (z = 0) = R 11 - (z = 0) - - I, (35)

where =R + 1) is the 2n, x 2ni matrix which is obtained by evaluating the coupling matrix

RII±1 )(01 ) at nj discrete angles, and TI(1J) is the 2n, x 2nj 1 matrix which is obtained by

evaluating the coupling matrix =T,() at the quadrature angles.
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6.4 Effective Boundary Conditions

The problem of determining the unknown constants -i and -, by matching the

boundary conditions at N - 1 boundaries can be simplfied greatly by using the effective

boundary conditions. The idea is to come up with the effective boundary condition at

! = -dj in terms of the properties of the region I and the effective boundary condition

at z = -di. Thus, only a two-layer problem needs to be solved at a time. The effective

boundary conditions can be derived in terms of the effective reflection matrices and

the effective source vectors which can be solved recursively. Therefore, the size of the

matrices need not be increased compared to the two-layer case and the complexity of

the problem is not increased. In this way the brightness temperature can be computed

very efficiently.

Consider i-th random layer for I = 1,2, N. First, we assume that the effective

boundary conditions at z = -dl can be expressed as follows:

1 (Z= -dl) = Rl,0+, I, (z = -d,) + Tl- 1)1 , 1,1 (36)

eg gfwhere the effective reflection matrix R(. and the effective source vector !,- contain

all the information regarding i'-th layer where 1' < 1. Our goal is to come up with an

effective boundary condition at z = -d which relates the downward propagating inten-

sity to the upward propagating intensity in region I - 1. Thus. the effective reflection

eff
matrix and the effective source vector at z= -di , -( _), and Tff, should be expressed

in terms of the properties of the i-th layer and the effective reflection matrix and source

vector at z = -di. The boundary conditions at z = -di, is given by

7, (z = -d_ = - ,- 7 (z = -d )- 1) - , I,-(z = -d,) (37)
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and

I 1 (z -dI_)= Ii - (z= -di_ 1) + T (- 1),7(z -d 1 ) (38)

Substituting in the solutions for the upward and downward propagating intensities,

given by (27). into the boundary conditions (36) and (37), we obtain

(El +- Q RI (-, - (EI

- = (39)

=ef =
- Rljl+j -(E --

= - L71

- di- 1)) -1 + (El
- - ef -

- Qj - Rill+,) -( El

-I =+ -T(+1+

The above equations can be solved for the constants Yj and ,. We let

Mi: M2]

] = 1  0
N,= =

IT]
'= =eff

.- +l -+- R1

[(E + Q)

(40)

(41)

(42)

(43)

(44)

-- Ri(1-1) - (El+Q ) - i+ - di-1)) - -yi

Ql ) -Dl -(di + QJI ) -P I

- eff1

QJ) D, (-(d,

I- R _(- T 
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where

(El - Q - n (F - Q

=:eff
R(-1jM 2 , = (M + 1 l) - ( , )

22 = (F1 -Q1) - ( - )

Then, (39) and (40) can be written into a compact form as

. fI = -NI -7A1 g1 -1(z = -di 1 ) + 01 -T (11)1
C, C

The boundary condition (38) can now be used to derive the effective boundary

condition at z= -d,. We have, from (27).

1+(z = -d 1) = Cl + (El + Qj - z -r (El - Qj -DI(-(d, - d,-1)) (47)

We let

5,= [Z1 L 2 ] (48)

where

I, = (El + Q) (49a)

(49h)

(45a)

(45b)

(45c)

(45d)

(46)eff
1+ 1

(Et - Q, D, (- (dj

(d, - d,_ - ))

L, = (El -- Q) -D, (- (d, - d ))
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Then, making use of (46), we obtain

(- - T - - - - = -ef
ItL (z = -di,) = CIT - L M, N -T( I -,(z = -d_ 1) - (1O. - T, , N, - T1 I

(10)

Substituting the above equation into (38) we obtain the following effective boundary

conditions at Z = -d,-,

ef -- = -eff
I-Az = -dl-,) = R(IIig 11-1(z = -dl_ ,) +1 TIg I; (51)

where

- eff - - -

Rajjg=Rj-jt+TjgU LI.M -N -=Tanj

-eff - : 1 =1 = -effI, =C ITI+-CiLi- M, - i-TI+-LI -M -N, T(1+1 - Ilu

and

(52)

(53)

The above effective boundary condition at z = -d,- 1 is defined in terms of the properties

of the I-th layer and the effective boundary condition at z = -di. Therefore, the effective

reflection matrix and the effective source vector can be calculated recursively, and we

only need to consider a two-layer problem at a time. Note that at z= -dN, we have

=eff
RN (N --1 =RNfN-.i (54)

and

1eff = 1 I= CN +ITN+
(55)

We start the calculation at the N-th layer where RN(N+1) and ! i are known and

obtain the effective boundary condition at Z= -dA_1. Once the effective boundary at
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z -d.N_ is obtained we start over and calculate the effective boundary conditions at

eff eff-dN2. This is repeated until we have calculated =, and17 .Then, the brightness

temperaiure is obtained from

I =eff- 1 -eff
T =T (56)
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6.5 Results and Discussion

In this section we illustrate the numerical results of the brightness temperatures

for layered random medium. In our calculations r = 16 is used. In Figures 6.2-6.6 we

show the result of data matching of the brightness temperature measurements from a

snow field iShiue et al., 19782. Experiments have been conducted by NASA Goddard

Space Flight Center in cooperation with the National Bureau of Standards in the

Rocky Mountains of Colorado during the winter season of 1977-1978. A set of four

microwave radiometers at frequencies 5. 10.7. 18, and 37 GHz were used to measure

the brightness temperature of a snowpack. In Fig. 6.2, the brightness temperatures

are plotted as a function of frequency for viewing angle of 33c, and matched with a

two-layer model. Ground truth measurements of depth gives d = 66cm. The angular

dependence of the brightness temperatures at four different frequencies are matched

with the same theoretical parameters in Figs. 6.3, 6.4, 6.5 and 6.6.

In Fig. 6.7, the brightness temperatures is plotted as a function of frequency for

a three-layer random medium and compared with the two-layer case. In a three-layer

case we introduced a thin lossy layer at the top to model the melting of snowpack

in the afternoon due to sun-light illumination. This model can be used to explain

the diurnal change in the snowfield [Hofer and Schanda, 1978; Stiles and Ulaby, 1980]

where brightness temperature decreases as a function of frequency in the morning and

increases in the afternoon.
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Appendix: Scattering Function Matrix. Scattering Coefficient, and Absorption Co-

efficient for the Random Medium

The scattering function matrix have been derived for the random medium whose

fluctuating permittivity is characterized by the correlation function

< e r'< (")>= ei' ('-7)(A 1)

where 61 is the variance of the fluctuation and the function b1(F' - F") is the normalized

correlation function. For the correlation function we assume gaussian dependence

laterally and exponential dependence vertically

(x' x) 2  (y' - y") 2  _Iz' Z ])
1,(0' - rF") =xp-(A2)

The spectral density for the above correlation function is given by

472[1 + k' 212 1 (cos - cos 01)2

x exp [ [sin2 ' + sin 2 61 - 2 sin 6' sin S cos(' - k1)] (A2)

The scattering function matrix is given by Tsang and Kong, 1976b

-- 2 PI P21

where

Pl. = q( j, 0')e--" sin 0 sin2 9' In( xi) + 2 sin 6 1 sin O'cos 6tcos 01 I1( x, )

+ O cos 2cos 2 q(I(zI) + I(X )) (4)
21 I



P 12(x))

P21 q,(O,,')e" 61, 1 9 ( ( 2V1))

with

61 k',1,=
4 1 + k'2 121 (cos i, - cos 06)-

1
y,=4k2121 (Sill2 61 -,- sin 2 

0')

x, = 2kj 'l sin 01 sin 0,

and I, is the m-th order modified Bessel function.

The scattering coefficient K, 1(01) is given by

K[K(K) = ]
0 K ,,

where

K1, (O') = dl J sil

The absorption coefficient K,,, is given by

K, = 2k"

where k' is the imaginary part of the wave number in region 1.
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(A5)

(A6)

(A7)

(A8)

(A9)

(A10)

(A 11)

(A 12)

(A 13)

(A 14)
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7r
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CHAPTER 7

Radiative Transfer Theory for Active Remote Sensing

of Two-Layer Random Medium

The radiative transfer theory with a two-layer random medium model is used to

study the effect of volume scattering for active remote sensing of low-loss and scatter-

ing dominant areas. Bistatic scattering coefficents are obtained by solving the radia-

tive transfer equations numerically using the Fourier-series expansion in the azimuthal

direction and the Gaussian quadrature method. Depolarization effect in the backscat-

tering direction is exhibited. Theoretical results are compared and illustrated for the

various cases.
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7.1 Introduction

In microwave remote sensing of earth terrain, the effects of volume scattering have

been treated with random medium and discrete scatterer models for terrain media.

The discrete scatterer model with the radiative transfer theory has been used to study

passive and active microwave remote sensing. In passive remote sensing, Rayleigh and

Mie scattering functions have been used to study the thermal microwave emission from

layered medium with planar and rough interfaces [England, 1975; Chang et al., 1976;

Tsang and Kong, 1977a, 1979; Kong et al., 1979; Fung and Chen, 1981a; Shin and

Kong, 1982]. In active remote sensing, the Rayleigh scattering model has been used

extensively [Shin and Kong, 1981; Fung and Eom, 1981; Fung and Chen, 1981b; Karam

and Fung, 19821. The random medium model with the radiative transfer theory has

been used to study passive remote sensing from layered earth terrain [Gurvich et al.,

1973; Tsang and Kong, 1975, 1976b, 1980b; Djermakoye and Kong, 1979; Chuang

and Kong, 1980]. In active remote sensing, wave approaches with iterative solutions

have been used widely with the random medium model to calculate the scattering

coefficients [Tsang and Kong, 1976a; Zuniga and Kong, 1980; Zuniga et al., 1979,1980].

The depolarization effect in the backscattering direction has been shown to be the

second-order effect [Zuniga et al., 1980]. The radiative transfer theory with the random

medium model has been applied to active remote sensing by Tsang and Kong [1978]

where the iterative approach is applied to second order in albedo to calculate the

bistatic scattering coefficients from a halfspace random medium.

In this chapter we solve the problem of scattering from a layer of random medium

on top of a homogeneous halfspace using the radiative transfer theory. Using all four

Stokes parameters the bistatic scattering coefficents are calculated using a numeri-
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cal approach which provides a valid solution for both small and large albedos. A

Fourier-series expansion in the azimuthal direction is used to eliminate the azimuthal

4 dependence from the radiative transfer equations. Then the set of equations without

the 0 dependence is solved using the method of Gaussian quadrature. The integrals

in the radiative transfer equations are replaced by a Gaussian quadrature and the re-

sulting system of first-order differential equations is solved by obtaining eigenvalues

and eigenvectors and matching the boundary conditions. The order of system of eigen-

equations is reduced for more efficient computation by making use of the symmetry

properties of the scattering function matrix. The numerical results are illustrated by

plotting backscattering cross sections and the bistatic scattering coefficients as func-

tions of frequency, incident angle, and the scattering angles.
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7.2 Formulation

Consider a layer of random medium characterized by the permittivity E1 + Ef,

where Ef stands for the randomly fluctuating part whose amplitude is very small and

whose ensemble average is zero, on top of a homogeneous medium with permittivity E2

[Fig. 7.1]. The radiative transfer equations which govern the propagation of intensities

inside the scattering medium are, for 0 < 6 < 7r,

Cos 0 dz (0, 0, z) = -K&1(6, 0, z) - K,(0). 1(0, 0, Z) + dO'sin 0' do'P(O, 0; 0'0') - (0', 0', z) (1)

where

SIh(6, #,z) I
7(6, 0, z) = ( ' Z) (2)

V(, 4,z)

I,, is the vertically polarized specific intensity, Ih is the horizontally polarized specific

intensity, and U and V represent the correlation between two polarizations [Tsang and

Kong, 1978; Shin and Kong, 1981], P(9,4; 6', 4') is a 4 x 4 scattering function matrix,

which relates scattered intensities into the direction (0, 4) from the incident intensities in

the direction (6', 4'), K, is the loss per unit length due to absorption, and K,(6) is the loss

per unit length due to scattering. The random permittivity fluctuation is characterized

by the variance of the fluctuation s and the correlation function with lateral correlation

length 1,, and vertical correlation length 1Z. The scattering function matrix and the

scattering coefficient have been derived by applying Born approximation with the far-

field solution and the explicit expressions for the correlation function with gaussian

dependence laterally and exponential dependence vertically are given in Appendix A

[Tsang and Kong, 1978].
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Consider an incident wave with specific intensity L (ir - 6,, 44) impinging from

region 0, which is assumed to be free space, upon the scattering layer. The incident

beam in region 0 assumes the form

,4(r - 6#, 04,) = If)i 6(cos 6. - cos 6)) 6(,. - 0,4,) (3)

where the use of Dirac delta function is made.

The boundary conditions for the four Stokes parameters at a planar dielectric

interface have been derived [Tsang and Kong, 1975] from the continuity of tangential

electric and magnetic fields. The results are, for 0 < 6 < ir/2, at z = 0,

1(7r - 6, 4, z 0) = T1() Ioi(7r - 6,,, 0,,) + Rio(6) 1(0, 4, z = 0) (4)

and, at z = -d,

1(0, 4, z = -d) = R 1 2 (6) -1(r - 6, 4, z = -d) (5)

where we have broken up intensities in the scattering layer into upward going intensities

1(6, 4, z) and downward going intensities 7(7 - 6, 4, z). In the above equations, To1(6,,)

represents the coupling from region 0 to region 1, i10(6) represents the coupling from

upward going intensities into downward going intensities at the boundary of region 1

and region 0, and 12 (0) represents similar coupling at the boundary of region 1 and

region 2 [Appendix B].

Once the radiative transfer equations are solved subject to the boundary condi-

tions (4) and (5), the intensity in the direction (0,,,, $,) in region 0 is

0(60.0, (,) = T1 0(6.,) - (6,, 0,, z = 0) + R0 1 (6,,) I,(7r - 6,, ,,) (6)
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where Tl(o) represents the coupling from region 1 to region 0. The bistatic scattering

coefficients 0y. ,; (6 ,, ,6, 0,,j) are defined as the ratio of the scattered power of polariza-

tion p per unit solid angle in the direction ( ) and the intercepted incident power

of polarization a in the direction (6,,, averaged over 47r radians IPeake, 1959].

-I(4,,O 40m; 64, 4).) = 41 (7)
Cos Ia

where a, 8 = v or h with v denoting vertical polarization and h denoting horizontal po-

larization. In the backscattering direction 6, = 0,j and 7r, = ir-4. The backscattering

cross sections per unit area are defined to be

c-Ed(,i) = cos ", yjq (0'i, 7 + 4 4; , 4i1 ) (8)(8)
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7.3 Fourier Series Expansion

The radiative transfer equations can be solved using an iterative approach which

gives closed form solutions [Tsang and Kong, 1978; Shin and Kong, 19811 when the

effect of scattering is small (small albedo). The radiative transfer equations and the

boundary conditions are cast into the integral equation form, then an iterative process

is applied to solve the integral equation to both the first and second order in albedo.

The depolarization of the backscattered intensities has been shown to be the second-

order effect. However, for the general cases when the effect of scattering is not small,

we must resort to the numerical approach to solve the radiative transfer equations.

We first use a Fourier-series expansion in the azimuthal direction to eliminate the

4-dependence from the radiative transfer equations. We let

00

Z(6,q4,z) =Z) Cos m( - 0j) + (0, z) sin m(4 - 0j) (8)

00

P(6, 4; 6'') = (1+ 6M)?r (0, 6') cosm(4 - 4') + P (6, 6') sin m( -4') (9)

where superscript m indicates the order of harmonic in the azimuthal direction, super-

scripts c and s indicate the cosine and sine dependence, and Neumann number 6, 0

for m ? 0 and 6, = 1. Also note that the zeroth-order sine dependence terms are zero.

I""(6, z) = 0 (10a)

P(6, ') = 0 (10b)

Substituting (8) and (9) into the radiative transfer equations, the 0'-integration can

be carried out. Then, by collecting terms with the same sine or cosine dependence, we
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obtain a set of equations without the $ dependence. For m 0,1, 2,

d -rI V f(1 -TI

Cos~y 0 (9,z) & 1K~ (0, z) - K, (0) I0 (9z)

(11)

+ j d9'sin 9' P (0, 0') T" (9' z) - P (9,09') I (9',z)

cos I - "(0,z) = -KL (9,z) - K,6) I (, z)
dz

(12)

-+- dO'sin 9' ( 7 " ' -0 "" (0' z) +P (0,9') -T L(9', z)

The closed form expressions for the Fourier-series expanded scattering func-

tion matrices P""(0,9') and P"(0,0') are obtained [Appendix C]. We note that for

azimuthally isotropic media the scattering function matrix can be expanded as

P'e Pj"' 0 0

MC P-'C P2".' 0 0
P (0, 0') 0 0 p"3 C p3'1 (13a)

0 0 P4" P4'"

.0 0 P M.4 P yrt

0 0 P"' Pj 1
P (0, ') = (13b)

P;'it 4 p~ 0 0

P41 -. P4"2t 0 0

Thus, the coupled equations (11) and (12) can be changed into two decoupled equations

by defining
~I""(9, z) -

JJI"l(9, z)

I ("' (, Z) = (14a)
U"'I(6, z)

-VI"'(9, z) -
Iv " (9, z)

(I, Z) z) (14b)
UT (6, z)

.v "''((0, Z).
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where superscripts e and o stands for even or odd dependence in the first two Stokes

parameters. Decoupled equations are given by, for m = 0, 1,2,

d 7r - lt

cos 6- I (6, z) = -K, 1 "" (6, z) - K. () ) (6,+z) + d'sin 6' (6, 6') I'(0', z) (15a)

Cos 0 d""(0, z) = -&"(0, Z) - K,(0) (0, Z) + fd' sin OT (0,') "(O, z) (15b)

where
w r'P i' P ie - P in. -P i 1

= p1(1 12 p
1  

p141(1a

=77 V 'pe P'2 -P'1 3 -P

P (6,') = (16a)

.'j P'; P's P3"

-P1j P" P'3 4ii

o P 1  P P3 P' JP.171 P Pm'.. PYL'4'

In order to derive the boundary conditions for the Fourier-series expanded inten-

sities, we first expand the incident intensity L,.((r - 6o,, 4,4) into the Fourier series:

Io(,7 - 9,., p,,) = ZI,, 6(cos 9,, - cos 9,,,) 5(4,, -$o)

I 1

(6-o )cos m(, - ) (17)

,n ~ ~ i f'64 )

Substituting the above equation along with the Fourier-series expanded intensities into

the boundary conditions in (4) and (5) and collecting terms with the same azimuthal

dependence, the boundary conditions for each harmonic can be obtained. The results

are, for c = e or o, and 0 < 0 < r/2, at z = 0

(7 - 6, z = 0) = T1()-,,' ( - 6,,) + R I(6)o( - 7 (, z = ) (8(18)
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and at z= -d

(19)

where

Ki (7r - 6k,) = '," 1 o(cos6, - cos6 ,)
f"(6,,, + 1)7r

with
-I,,i -

l','0
0

() . - 0 -

-vi

(20)

(21a)

(21b)

We define mf.,, to be the number of harmonics that has to be kept in the expan-

sion of the scattering function matrix such that

P (0, ~ P (0,9') ~0 for m > mlf, (

Then, for m > m,,LX the radiative transfer equations simplify to

cos 0 - '"(, z) = -- K.,() '" (6, z) (23a)

dz(2b
co 6 th -'(ltZ) = -Kee- Ke(i) ca ""(i,z) (23b)

and the solutions to these equations can be obtained analytically, without resorting to

the numerical approach.

(22)

"'(0, z = -d) = R 1(0) - T "(7r - O, z = -d)
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7.4 Gaussian Quadrature Method

The set of decoupled radiative transfer equations without the azimuthal depen-

dence for each harmonic can be solved numerically using the Gaussian quadrature

method. The integrals in the radiative transfer equations are replaced by a Gaussian

quadrature, an appropriately weighted sum over 2n intervals between 2n zeroes of the

even-order Legendre polynomial P2 L(6). The resulting system of 8n first-order differ-

ential equations are solved by obtaining eigenvalues and eigenvectors and matching

the boundary conditions. In obtaining the eigenvalues and eigenvectors, the order of

system of equations can be reduced by factor two to 4n equations by making use of the

symmetry properties of the scattering function matrix and noting that the eigenvalues

occur in pairs such that if is an eigenvalue, so is -g. We first break up the radiative

transfer equations into two set of equations by defining, for a = e, 3 = o or a = o, , =

and m = o, 1, 2,. .-

I1(9,z) E [ (6,z)
I12(6, z) J

12 (0,z) 1 rI21(6, z)
I22(0, Z)J

[P1 11
P1 121

P1211

P 1 2 2

P21 ji

P21:!

P 2 11

P 22in

P1 
1

i12]

Pl 12!:]

P 1 2 2 ]

PI22 J

E ;,"x (6, z)J

EIUmI(6, z)1

V' I ', Z)

PT" P0

P P51

Pi" P1

p47 flj" k Pr'"
PB" Pl a

(24a)

(24b)

P 1 (0, 6')

P 12(6,6)

(25a)

(25b)

P 2 2 (6,6)

(25c)

(25d)

=
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We then have

dzCos 0 dz Z)

COS 0 7z 2(0, Z)

= -K,,(6) + d6'sin '

= K 2 (6) + d6' sin '

[ 11(6,0') - 71(6',z) + P1 2 (6,6') -12 (6',z)

[p21(6, 6') 1(6', z) + P 22 (6, 6') 12(6', Z)]

(26a)

(26b)

where

K41(6) = K + K,

K, 2 (6) = K,, + K. 2

with

K,

0

_ K,+Ki

Km,2=

0

KhI
]0

2 K

The scattering function matrix can be shown to satisfy the following properties

Q, = 1 or 2,

P4 1. 1(6, 6') = P4a4 (ir - 6, r - 6')

- 6,6') = Pa1 (6, 7r- 6')

P ,/1(, 0') = , - j(7r - 6, 7r - 6')

n~g - 6, 6') = -P ,(6, Ir - 6')

(27a)

(27b)

(28a)

(28b)

For

and for c #,4

(29a)

(29b)

(30a)

(30b)

K,,1=



196

Further breaking up the intensities into upward and downward propagating in-

tensities, denoted by superscripts + and - respectively, and applying the Gaussian

quadrature method, we obtain the following set of equations by making use of the

symmetry properties of the scattering function matrix:

d =' -+ =
-- = -K -.1 + F11dz

- d-- = -- =

- - -- = -K 2 I12 +B2

dz
S=-Kj2 - I, + 21

d -
- -I Z -K,,2 - 12 - B21dz2

- - --

-+ - -- - -+ = --
I, + Fil -I, - B - 2 -- F1,2 -I,

SI, + B 2 1 Ii + F 2 2 -2' + B 2 2 -2

- -F2 1 I I + B2 2 -2 + F 2 2 I")

where, for a,/ = 1,2, I+ and I,- are 2n

jcr, (pii, z)

+ ( 1 2 ( I T , z )

. I,,, (An, Z)

x 1 matrices

1 IE.k,(-pLSIZ)

7- I.,(- oZ)
" I.,(-piZ)

. ~~ J (pZ).

and =,1 and B,,fp are 2n x 2n

F = P"011 (ni, MI)

P " I : I( p A I Y )

LPopq~i )

matrices

* - * P ill (pi1, pS,)

- - - P 1 ., ( ii , t)

Pa f 1  (Ai,t 1p n)

.. P tp o p , )

P'102(pi, -pI)

Pa 1 /122 (Ys, 1)ILn)

Pof[42p (i, An) -

Pa fl12 (pAI, - A 7)

Pa fl 2pr, -pA I)

Pa /4 2(Ap, -pA)

Pa e(Aps, -Pa)

(31a)

(31b)

(32a)

(31b)

(33)

(34)

(35)

P"' (I, pI)

P"p (Ai -A d

Pa ( ,-p )

P"'0 pi1-2)PINe (A, -A ) -

Po. (6U -Ai -

PIA /11(Ap71, -Api) P4112 2(A,, -pA)J
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and 5 and = are the 2n x 2n diagonal matrices

(36)

(37)= diagja, ,a,aj, -,a,,i

In the above equation ±j are the zeroes of the Legendre polynomial P2 n(,) and a, are

the corresponding Christoffel weighting functions and we made use of the relations

ai = a-i and A, = -Y _i

The system of 8n first-order differential equations, (31) and (32), can be cast into

more compact form by defining 4n x 1 matrices !,, and 7,

L2 I = _ ]
(38)

0

such that upward propagating intensity I+ is given by

(39)

and where, for 1 = 1,2, 7, = 7++ 17 and L, 7+ - 7-. Then, from (31) and (32), we

obtain

- I7L = W - I, (40a)
dz

- 1, = -I7, (40b)
dz

where W and -A are the 4n x 4n matrices

0 ( -- B 1 1 )
W =+ _

0 Kc (F21 - B01)

(F 12 + B 12 )]

(F 22 + B 22 )]

(41a)

Y+= 1 [Y[ 1i"+_,
T+ 2 1,
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(42b)
(F 12 - B 12 ) _

(F 22 - B 2 2 ).

and the = and a are 4n 'x 4n diagonal matrices

(41a)

(42b)

P = diagIY ,* , ,, . , ,, , ,,p , ,p ]

a diagial, ,a ,,,a,, ,a ,,a , ,a,,,a, , a,

The homogeneous solution can be obtained in the form

(43a)

(43b)

TL = Tene"Z

az=Z~e"

Substituting the above equations into (40a) and (40b), we now have 4n eigenvalue

equations.

W A - -a21)( = 0

= ap - -- A

(44)

(45)

where = is an identity matrix. Thus, if a is an eigenvalue, so is -a. Once the eigenvalues

a, and the corresponding eigenvectors 14 are obtained, we let =E = (I,,, I -, 7 ) be

the 4n x 4n eigenmatrix. Then the total solution for the upward propagating intensity

is given by

(46)

where

(47)

(E = ( Q+) -D(z) i+(E - Q) - U7(z + d) -y

A = - __ ++_ B_1

0 K,. (Fol + B21
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(48)

(49)

(50)

and - and Y are the 4n x 1 matrices which represent 8n unknowns to be determined by

the boundary conditions.

In a similar manner, the downward propagating intensity -~ can calculated. We

obtain,

where

I = (E + Q). D(z) + (E - Q) -U(z - d)

E =ji -W -Q -

Q -ftA -E-§

(51)

(52a)

(52b)

and

0 (FI, B 1)

-(F2 1 - B 21)
112]_H_>

(F12 + B 1 2 ) _
a

-(F 2 B,,)

-(F12 -B12)

(F 2 -B B) a

In the random medium model, the eigenvalue equations can be simplified further since

there is no coupling between the first three Stokes parameters. I,,, Ij,, and U, and the last

Stokes parameter V in the scattering function matrix. However, the Stokes parameters

U and V are coupled together in the boundary conditions and, in general, we have to

keep all four Stokes parameters.

(53a)

(53b)

5=diagla,2 s

D (z) = diag; c"" e .

A = -
.0
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The boundary conditions. which are to be used to determine the constants X and

i of the upward and downward propagating intensities given by (46) and (51), are, at

-d.

+ (z=-d)=R1 2 I (Z=-d) (54)

and at z= 0

I (z = 0) = Rj( -7(z = 0) - Til 1 -2, (55)

where R 12 and W, are the 4n x 4n matrices which are obtained by evaluating the 4 x 4

coupling matrices R 2 (9) and im(6) at n discrete quadrature angles, and =,, is the 4nx4nf

matrix which is obtained by evaluating the coupling matrix Tci at the quadrature

angles. The n1 is the number of quadrature angles in region 0 and the quadrature

angles are related by the Snell's law. Since e' ;> F, we have nf < n. Thus, for the

quadrature angles in region 1 which are greater than the critical angle between regions

1 and 0, 0, where i > ni.. there is no incident intensity. In the above equation (55),

the incident intensity 7- is obtained by discretizing the incident intensity given by

(20), which is given in terms of the delta function. One way to bypass the problem

of discretizing the delta function is to change the source term at the boundary into

the source term in the volume by calculating the zeroth-order solution explicitly and

using the radiative transfer equations for the higher order terms with the zeroth-order

solution acting as the volume source Fung and Chen, 1981b). In this section we

discretize the delta function in a consistent manner and keep the source term at the

boundary. This approach gives the same solution as the other approach and also the

formulation does not have to be changed when the boundary conditions are changed

to incorporate the rough surface scattering|Fung and Chen, 1981b1.
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Consider an integral given by

(56)

Using the Gaussian quadrature method the integral I is approximated as

H~ a(f(6.6/)g, (57)

If we now let g(0') = i(cos 0, - cos Oj) where K, is one of the quadrature angles in region

0, then the integral I can be evaluated exactly to give

I= f(0, 6)'
El CosI

(58)

where 6, is the corresponding incident angle in region 1 which is related to 0,, by Snell's

law, and we made use of Tsang and Kong. 1978'

(59)dO'sin O'd o' = dO', sin,, " " Co dCOS ,'
I' Cos 6

Therefore. comparing (58) with (57), we obtain the discrete form for the delta function:

-1 EcosO,
a. ' 

6 j s i -
_, E' cos&

where

oR 7= I1o

(60)

(61)
if ,= 

otherwise

The incident intensities for even and odd terms in each harmonics, given by (20), can

now be cast into the quadrature form by making use of the above relations.

de'sin O'f (6. W') g(6')
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Substituting in the expressions for the upward and downward propagating inten-

sities into the boundary conditions (54) and (55). we obtain the following 8n equations

for 8n unknowns X and -:

E- )- R (E ] E - QE ) - R, (E - Q) D(-d) i (62a)

(E + ) - R - (E + ) (-d) (E - )- -- ) y 0 (62b)

The above equations can be solved for the constants I and p for each cases when the

incident intensity is at one of the quadrature angles. Note that in the halfspace random

medium case when d - oc, D - o and the equations for - and Y become decoupled and

the matrix equation does not become singular [Fung and Chen, 1981b]. This is due to

the form of the solution assumed in (46) and (51).

Once the constants Y and p are determined, the scattered intensities from region

I to region 0, represented by the first term on the right-hand-side of (6), can be

determined. We have

I,= To -I(z= 0)

=T,)- (E+Q)-Y+(E-Q) D(-d) p(63)

Thus, the complete solution can be obtained by solving the radiative transfer equa-

tions using the Gaussian quadrature method for each harmonic as outlined above and

reintroducing the azimuthal dependence. The total scattered intensities in region 0 is

given by

)= Ro + T~j I- R: -expr-p - K,d] T' l - 6(0 - 0")
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in [7" (z = 0) - [I - Rjo - R exp -p T.d o , -7, cos "-(. -o )

T1t I' " (z = ) Sil M(4 - $"j) (64)

where we have summed up the zeroth-order solution and 7"" (z = o) and 7"" (z = o) are

the upward propagating mth cosine and sine harmonics evaluated at z = 0. Once the

scattered intensities in region 0 are obtained, the bistatic scattering coefficients and

the backscattering cross sections can be obtained from (7) and (8). We note that if we

are only interested in calculating the scattering intensities for vertically or horizontally

polarized intensities only, then we only need to calculate the even series. This is because

the odd series, represented by (14b). are zero due to the fact the incident intensity for

the odd series as given by (21b) is zero.
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7.5 Results and Discussion

The backscattering cross sections and the bistatic scattering coefficients are cal-

culated and illustrated for the various cases. In our calculations n = 16 is used. The

backscattering cross sections are illustrated as functions of frequency and incident an-

gle. The bistatic scattering coefficients are plotted as functions of scattering angles 6,

and $,.

In Fig. 7.2 the horizontally polarized and depolarized backscattering cross sec-

tions are plotted as a function of frequency for a 48cm thick random medium. Backscat-

tering cross sections increase as frequency is increased. This is due to the fact that

as frequency increases the albedo IK,/(K. + K,)] increases and the scattering becomes

dominant over the absorption. Also, the difference between the like-like polarized re-

turn and the depolarized return decreases. In Fig. 7.3 the backscattering cross sections

are plotted as a function of incident angle at 10 GHz.

In Fig. 7.4, the bistatic scattering coefficients - and , are plotted as a function

of scattering angle 0.. The positive 0, corresponds to the forward scattering case where

4, = 0 whereas negative 0, corresponds to the backward scattering case with 4, = 1800.

We note that there is symmetry about the 0. = 0 axis which is the typical of Rayleigh

scatterers. For correlation lengths small compared to the wavelength, the scattering

pattern of the random medium is that of the Rayleigh scatterers [Tsang and Kong,

1976b]. The number of harmonics needed in this case was three which is the same as

the case involving Rayleigh scatterers Shin and Kong, 19811. In Fig. 7.5 we show the

bistatic scattering coefficients for larger correlation length 1,,. Unlike the previous case

there is no symmetry. The number of harmonics needed in the computation is also

larger than the previous case.
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In Figs. 7.6-7.9, the bistatic scattering coefficients are plotted as a function of

azimuthal scattering angle $, for Oi = ', = 33c. We only plot from , = 00 to 4, = 1800

because the bistatc scattering coefficients are symmetrical. In Fig. 7.6, the bistatic

scattering coefficients ,s, and ,, are plotted for the case of small correlation length 1,,.

There is a symmetry in the bistatic scattering coefficients about e, = 901. In Fig. 7.7,

Y, and s, are compared. We note there is no symmetry for the bistatic scattering

coefficient , In Figs. 7.8 and 7.9, the bistatic scattering coefficients are plotted for

the case of large correlation length 1,,. We note that the scattering coefficients are more

peaked toward the forward scattering direction and that there is no symmetry about

the $, = 900 axis.
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Appendix A: Scattering Function Matrix, Scattering Coefficient, and Absorption

Coefficient for the Random Medium

The scattering function matrix have been derived for the random medium whose

fluctuating permittivity is characterized by the correlation function

Eg (' TE (")) = 66' b(r' -" (A1)

where 6 is the variance of the fluctuation and the function b(r'

correlation function. The scattering function matrix is given

19781
P11 P12

= k'46 P21 P22
P(O',0; ',4')= <(0,0; ', ) 0

2 P31 P32

.0 0

where <D(, 4; ', $') is the spectral density of the fluctuation

transform of the correlation function and

P13

P23

P33

0

which

- i") is the normalized

by [Tsang and Kong,

0

0
(A2)

0

p44.

is given by the Fourier

= sin2 6 sin 2 6' + 2 sin 6 sin 6' COScoso6'cos(4 - 0') -- cos2 6 cos 2 6' cos 2(0 - ')

P12 = COS 6 Sil2( - 0')

P13 = cos6sin 6sino'sin(o - 0') + cos 2 6cos 6' sin( - ')cos( -

P21 = cos 2 6'sin 2( -'

P22 = cos 2 (0 - 0')

P23 = - cos 0' sin(0 - ') cos(0 - 0')

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)
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(A9)P31 = -2 sin 6 sin 'cos6'sin( - ') - 2 cosOcos2 6' cos(# - 4') sin(# - 0')

P32 = 2 cosi6 sin(( 6') cos(o - d1')

3 = sin 6 sin 9' cos(( - C') + cos 6 cos 'cos(N -? ') - sin (0 -

(A10)

(A11)

(A12)p44 = sin 0 sin 6' cos(> - 0') - cos & cos 0'

For the correlation function we assume gaussian dependence laterally and exponential

dependence vertically

(e ' - x") 2 + (Y' -iy")2
b(-' - T") = exp 1

Iz'-z
(A13)

Then the spectral density is given by

1z2

47r2[1 + k1212(cos 6' - cos 0)2] exp - " ,sin2 0' + sin 2 6 - 2 sin 6' sin 6
4 ' cos(0' - 014)

(A 14)

The scattering coefficient K,(6) is given by

K,

K,() = 0
0

0

0 0

KI, 0

0 K +Kk
2

0 0

0

0

0

2K J

<b(6, #; P', ') 1 2 (6, 4; 6', ') + p22(O, ; 6', ')]

and the di integration is carried over a 47r solid angle. The absorption coefficient K,, is

given by

(A18)K, = 2k"'

where k"' is the imaginary part of the wave number in region 1.

where

(A15)

K (6') = j d r 2

K,(6') = f d 7 &T2

(A 16)

(A17)

<4(, 0; 6' 1'0) =
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Appendix B: Coupling Matrices for Stokes Parameters at Planar Dielectric Interface

The coupling matrices in the boundary conditions take the form 1Tsang and

Kong, 1978; Shin and Kong, 19811. for o, 5 = 0.1 2.,

0

-I
t' q

0erfl(O")

0

0

.0

and

0

0

. 0

0

A( 0
0 g' ,

0 hit(O2)

0 -

0

-hit.0 ()

gad(6 0) .

(B1)

(B2)

0 0 0 -

0 0

0 W(V(4(0Ek) -Z J.0(oi)

0 Z"14(6.) Wq(6) .

t (6)= 1 -ru (6)

tayG)= 1 -ra (G)

(B3)

(B4)

(B-)

(B6)

gi(6,,) = (cos 6/j cos 0)Re(YnX,)

hit1(0) = (cos 6/ cos 60)Jm(Y"k4XI )

for 6, less than the critical angle, otherwise

gal(,,) = h,11(6,) = 0

and

X~11,(6~,) = 1 -~- Rk,~(6~k)

I -

where

(B7)

(B8)

(B9)
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where R.,(6k) and Sk,,(k.) are the TE and TM Fresnel reflection coefficients, and

(B10)

(B11)

(B12)

(B13)2'.k(46,, ) =
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Appendix C: Fourier Series Expansion of the Scattering Function Matrix

The scattering function matrix given in Appendix A can be expanded into the

cosine and sine series as follows:

iTh(6. q) O' b') -

00

riP =(6, 4 1)x-
(6, s') cos m(- - P (6, 0') sin m(4 - 4')

P (0,6') = q(O, ')

P (0, ') = q(6, O')

P11

P21

0

.0

S0

0

P31
- Mp'41"

P1 2

2 2

0

0

0

0

Fri
P33

P 4 3

0

0

P34

P4 4

Pli~ P 14

0 P23 P1'4

P2'M 0 0

7'1. 0 0

(C4)
1k4 121-

q (6. 0') = k 1 ' ~
4 1 + k' 2 l(cos 0 - COS 1)2

"=- si sin 2 6' 7 1(x ) sin 6 sin 6' cos 6 cos 6'(J,,,i(x) +

+ cos 2 0cos 6' 1( (x)+ 1, 2(X)
-4

P" = e cos2 I2 n(x )
12 e c 2 [I'll()

P'V" = e~ Cos 2ol 1,t x)

+ 1 ,,,+2(X))4 1

- -(1 711-2( X) + I,+2(X ))2 ]

1 (I-2(X) + ,+2(x))

p = e -2 Ii(x) + (IM,2(x) + Irr+2(X))]

where

(Cl)

with

(C2)

(C3)

(C5)

(c6)

(C7)

(C8)



p3 = - sin s1 i S IR n 1(IX) + W,.e(x)) cos& cos 0'(I,,,-2(x) + 1,,,+2(X))

= e cos6cos 6',, (x) + sin 0 sin 61, 2 ( + , )

' = " 0

6 sin 6'(1,", 1(x) - 1, (x)) + cos & cos 6'(I ( ) -

1
'2" = -C-" 0 '(I 1,-2(x) - 2W)

4 -

= cos 6' sin 6sin O'(1," 1 (x) - I,,1(x)) + -cos6 cos '(I, 2 (x) -

1
I = e o In _.2 - 0( )2

p1"= P2 = P4" P2 0

21 1

and J,, is the m-th order modified Bessel function.
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(C9)

(C10)

(C11)

(@12)

(C13)

(014)

(C15)

(C16)

(C17)

(C18)

7111 , -Y I

Pi t COS - Sill
2 1

i, - 2( W) I

fill+ 2(G)) I
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CHAPTER 8

Radiative Transfer Theory for Active Remote Sensing

of Multi-Layered Random Medium

The scattering from multi-layered random medium is studied using the radiative

transfer theory. Bistatic scattering coefficients are obtained by numerically solving the

radiative transfer equations using Fourier-series expansion in the azimuthal direction

and the Guassian quadrature method. The effective boundary conditions are derived

which reduce the complexity of the problem to that of a two-layer case. Theoretical

results are compared and illustrated for the various cases.
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8.1 Introduction

In the microwave remote sensing of earth terrain. multi-layered random medium

or discrete scatterer models have been applied to account for the volume scattering

effects. The multi-layered models have shown to be more realistic in interpreting the

remote sensing data [Tsang et al., 1975, 1977: Njoku and Kong. 1977; Tsang and

Kong, 1979J. In the passive remote sensing the radiative transfer theory has been used

to study thermal microwave emission from a multi-layered random medium with lam-

inar structures jDjermakoye and Kong, 19791. The propagation matrix formulism is

applied to obtain closed form solutions. For the inhomogeneous slab random medium

with nonuniform scattering, absorption and temperature profiles in the vertical direc-

tion, the method of invariant imbedding has been used [Tsang and Kong, 1977b]. The

boundary value problem of the radiative transfer equations is converted to an initial

value problem starting at zero slab thickness. In the active remote sensing, the scatter-

ing from multi-layered random medium has been solved using the Born approximation

and the propagation matrix formulism !Zuniga et al., 1979. The radiative transfer

theory also has been applied to scattering from multi-layer of Rayleigh scatterers with

rough boundaries where the iterative approach is used to obtain solutions to first-order

:Shin. 1980; Karam and Fung, 1982].

In this chapter we solve the problem of scattering from a multi-layered random

medium on top of homogeneous halfspace using the radiative transfer theory. The

bistatic scattering coefficients are calculated using a numerical approach. A Fourier-

series expansion in the azimuthal direction is used to eliminate the azimuthal 0 de-

pendence from the radiative transfer equations. Then, the set of equations without

the o-dependence is solved using the Gaussian quadrature method where the integrals



223

in the radiative transfer equations are replaced by the Gaussian quadrature and the

resulting system of first-order differential equations is solve by obtaining eigenvalues

arid eigenvectors and matching the boundary conditions. The effective boundary con-

ditions are derived in terms of the effective reflection matrices to reduce the complexity

of the problem to that of a two-layer problem. The effective reflection matrices can

be solved recursively by considering only one layer at a time. The numerical results

are illustrated by plotting backscattering cross sections as a function of frequency for

multi-layered cases.
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8.2 Formulation

Consider a N-layered random medium on top of a homogeneous halfspace with

permittivity Fig. 8.1. The i-th layer is characterized by the permittivity 'Li

where vi stands for the randomly fluctuating part whose amplitude is very small and

whose ensemble average is zero, and the mean permittivity has small imaginary part,

-= - ;' where '< e1. We further assume that the real part of the mean permittivities

of the random layers are the same. e= e' for I = 2,3, , N. The radiative transfer

equations which govern the propagation of intensities inside the i-th random medium

are, for 0 6 < n,

cos 6 ( , z) = -K,a 1 (6. k, z) - K.(6) 1,(6, 4, z) + dO'sin 6' dp'Pj (6, 4; 6', -') J;(6', 0',z)

(1)

where

[Iv(6, $, z) 1

Z) Ifi (9, ,Z)-;6 , j) = ,Q ~ z (2)

I, is the vertically polarized specific intensity, I,,, is the horizontally polarized specific

intensity. and U, and V, represent the correlation between two polarizations [Tsang and

Kong. 1978; Shin and Kong, 1981j, P,(6,4;6',4') is a 4 x 4 scattering function matrix,

which relates scattered intensities into the direction (6, 4) to the incident intensities

in the direction (6'.), KI is the loss per unit length due to absorption, and K46)

is the loss per unit length due to scattering. The random permittivity fluctuation is

characterized by the variance of the fluctuation cj and the correlation function with

lateral correlation length Ip and vertical correlation length i.. The correlation function
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is assumed to have gaussian dependence laterally and exponential dependence verti-

cally. The scattering function matrix and the scattering coefficient have been derived

by applying Born approximation with the far-field solution and are well known :Tsang

and Kong, 1978.

Consider an incident, wave with specific intensity , (7 - e, d ) impinging from

region 0, which is assumed to be free space. upon the layered random medium. The

incident beam in region 0 assumes the form

(7 r (COS COS )(3)

where the use of Dirac delta function is made.

The boundary conditions for the specific intensities are [Tsang and Kong, 1978]

for 0 < 0 < r/2, at z d, where I = 1,2, ,N - 1

11+1(7 - 6, 4z -di) =I(7r - 6.4, z = -di) (4)

I,(6, q,z -di) = I1 +1(6, 5,.z -d,) (5)

at z -dN

- ,N) R =v ( +1) (6) IN( -
6 ,Q.2 = -d ) (6)

and, at Z = o

Ir,- 6,c/Oz =0) =T(, I,1 (i 06,,) +i Rlo 1 , 0, z =: 0) (7)

where we have broken up intensities in the scattering layer into upward going intensities

I,(9,$,z) and downward going intensities 1,(r. - 6.4.z). In the above equations =T1 (6.)
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represents the coupling from region 0 to region 1. R,(,) represents the coupling from

upward going intensities into downward going intensities at the boundary of region 1

and region 0. and =R () represents similar coupling at the boundary of region N

and region N + 1 fChapter 7, Appendix B.

Once the radiative transfer equations are solved subject to the boundary condi-

tions (4) and (5). the scattered intensity in the direction ( ) in region 0 is

7 ., )= Tit) (0.1) -1 1(6,, 4,, z = 0) R, N 1 (6,) - L7.(-r -o,4 )(8)

where T,(q) represents the coupling from region 1 to region 0. The bistatic scattering

coefficients ,,, ,. _, .e1) are defined as the ratio of the scattered power of polariza-

tion 8 per unit solid angle in the direction (6,, 6,) and the intercepted incident power

of polarization a in the direction (, .) averaged over 4r radians [Tsang and Kong,

1978; Peake, 19591.

4rCos6 ,6, ,

c os , 6, ,(

where oo = v or h with v denoting vertical polarization and h denoting horizontal po-

larization. In the backscattering direction 6,, = 6 and # = -~- ,. The backscattering

cross sections per unit area are defined to be

(10)U-o ( .)=Cos ( . ; ,,4 )
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8.3 Numerical Solution

The radiative transfer equations can be solved using a numerical approach. First.,

the azimuthal dependence from the radiative transfer equations are eliminated using

the Fourier series expansion. Then, the resulting set of equations without the az-

imuthal dependence is solved numerically using the Gaussian quadrature method. The

integrals in the radiative transfer theory are replaced by Gaussian quadratures and the

resulting system of first-order differential equation with constant coefficients are solved

by obtaining eigenvalues and eigenvectors and matching the boundary conditions.

The numerical solution for the specific intensities inside the i-th layer is given by

[Chapter 7J, for each harmonic and for even or odd series,

7 = (E + Q) -D(z + di_ 1) -Y+ (El - Q) U (z + di)

I (E Q) -D1 (z + di- 1 ) -Y-+ (E - Qj) - Uj(z + d1) -y

(11a)

(11b)

where 17 and 7 represent the upward and

and m, are the unknown constants.

The boundary conditions, which are to

m, of the upward and downward propagating

by discretizing the boundary conditions for

(4)-(7). They are, at z= -d, I= 1,2, ,N - I

downward propagating intensities and Y,

be used to determine the constants Yj and

intensities given by (11), can be obtained

the radiative transfer equations given by

7(z = -d) = 1Ii(z = -dI)

= -di) = 7 (z = -d)

(12)

(13)
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at z - -dv

I%(z -dN N(N+I) -V(= -d, (14)

and at z= 0

11( 0) = Rj' I, (Z = 0) + T01 1, (15))

Once the constants Yj and , are determined. the scattered intensities in region 0

from the random medium, represented by the first term on the right-hand-side of (8),

can be determined. We have

I, = T I(z = 0)

= Ti (E 1 + Q1)*~ - + (E 1 - Q1) D1 (-di) gi] (16)

The complete solution is obtained by solving the radiative transfer equations using

the Gaussian quadrature method for each harmonic and reintroducing the azimuthal

dependence. The total scattered intensities in region 0 is given by

Ill, {Rui- fill SI)) *RN(N+1H expj-=h -K~dj Tnj] } i 60,)

T {in 11~i (= 0)- I-Ri(n RN(N+1) exp -~ K, d j ~ T os(

_+

+Tiu -I7 (z = 0)sin m(d6, - 'p() (17)

where

K,d =K,(d, - d, 1) (18)
7=1

and 7*' (z = 0) and 11" (z = 0) are the upward propagating mth cosine and sine har-

monics evaluated at z = 0. In (17) the zeroth-order solution has been summed up. Once

the scattered intensities in region 0 are obtained, the bistatic scattering coefficients and

the backscattering cross sections can be obtained from (9) and (10).
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8.4 Effective Boundary Conditions

The problem of determining the unknown constants j, and u, by matching the

boundary conditions at N - boundaries can be simplfied greatly by using the effective

boundary conditions. The idea is to come up with the effective boundary condition at

z = -d in terms of the properties of the region i and the effective boundary condition

at z = -di. Thus. only a two-layer problem needs to be solved at a time. The effective

boundary conditions can be derived in terms of the effective reflection matrices which

can be solved recursively. Therefore, the sizes of the matrices need not be increased

compared to the two-layer case and the complexity of the problem is not increased. In

this way the scattered intensity can be computed very efficiently.

Consider i-th random layer for I = 2,3, -- N. First, we assume that the effective

boundary conditions at z = -d can be expressed as follows:

_ =eff
I+(z = -d) = R1(1+,1 I, (z = -d) (19)

where the effective reflection matrix contains all the information regarding i'-th layer

where ' < 1. Our goal is to come up with an effective boundary condition at z = -di

which relates the downward propagating intensity to the upward propagating intensity

eff
in region I - 1. Thus. the effective reflection matrix at z = -d_ 11 , R o , should be

expressed in terms of the properties of the i-th layer and the effective reflection matrix

at z = -di. The boundary conditions at z = -dj- 1 are given by

an (z = -dd1) = I _ (z = -di-1) (20)

and

-(z = - 1) = I (z = - -d_1 ) ( )(21)
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Substituting in the solutions for the upward and downward propagating intensities,

given by (i1), into the boundary conditions (19) and (20), we obtain

(22)

=eff
+Q) - R 1 4 (E'

- ef)
- Q j - Rjjj., - =0 (23)) (E ' - Q ')]

The above equations can be solved for the constants -X and Y1. We let

M I = [;;]

N, =
0

where

M (E1 + Qj)

(24)

(25)

(26)

(27a)

(27b)

(27c)

(27d)

Al (E -- Q%) D (-(d, - d_

A = ( -E =QJ D1(-(d, - d,,-,))

eff , =,
Al" = (El -Qj )- Rjjje - (El - Qj)

Then, (22) and (23) can be written in compact form as

Ml c, = NI 1_1(2= -- _) (28)

( , + ) (E - Q ) D(- (d, - d ) (1(1 - i )

eCf = I
Qj) - RI(I _1 ( El

Q') D(-(d, -di_1))Yj-+ (EI
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Therefore, the constants -X and 2 are given in terms of 11 1 (= -dc-j.

-= 1  -= -I (
F,=M I N , 11-_ (2 = - dl-_-,) (29)

The boundary condition (21) can now be used to relate 17- to 1 _. Substituting (11)

into (21). we have

ia (z = -d1 - 1) = (El + Q1) -Yj + (Ei - Qj) -D(- (d, - d _1 )) (30)

We let

(31)L1 = la L5

where

(32a)

(32b)LO, = (El - Q1) -.D(-(d,

Then. subsituting (29) into (30) we obtain the following effective boundary condition

at z -d,:

-eff
IIA Z = -di) = R(_- II (z -d ) (33)

where

=eff -
Rg~i = L1 .-M1 N1 (4

The above effective reflection matrix at z = -d,-, is defined in terms of the properties

of the I-th layer and the effective reflection matrix at z = -d. Therefore, the effective

- di_1))

(34)
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reflection matrix can be calculated recursively and we only need to consider a two-layer

problem at a time. Note that at z = -dN. we have

Esse, Run,(35)

We start the calculation at the N-th layer where RYNsI is known and obtain the

eff
effective reflection matrix at z = -d- Once RNl-N is Obtained we start over and

calculate the effective reflection matrix at z = -dN_2. This is repeated until we have

eff
calculated =Reff , the effective reflection matrix at z = -d,. In region 1, we obtain the

following equations for the constants :, and -y upon matching the boundary conditions:

(El + Q) - R1i -(E1 + - +(EI-Q_) - Q) D(-d) - JTo (36)[ ~ ij -Q 1) (E~- Di-d]

= ':= = eff = =7
(E + Q)- Re 1 (El + Q,) J D1(-d)xi + (Ei - QI) - R12 -(E - Q) = 0 (37)

The above equations can be solved for the constants s and -1. Then, the scattered

intensity in region 0 is obtained from (16) and (17).
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8.5 Results and Discussion

In this section we illustrate the numerical results of the backscattering cross

sections for layered random medium. In our calculations n= 16 is used. In Figs.

8.2 and 8.3, the backscattering cross sections for like-like polarized return Ua, and for

depolarized return cr, are plotted as a function of frequency. The results for three-

layer random medium are compared with the two-layer case. In the three-layer case

we introduced a thin lossy layer at the top, which can be used to model the melting

of snowpack in the afternoon due to sun-light illumination [Hofer and Schanda, 1978:

Stiles and Ulaby, 1980]. The parameters used were the same as the ones used in Chapter

6 to illustrate the diurnal change in the brightness temperature measurements from

snowpacks. We note that in the afternoon, compared with the morning case, there is

a slight decrease in the backscattered power at low frequencies while the decrease may

be substantial at higher frequencies.
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CHAPTER 9

Theory for Thermal Microwave Emission from a Homogeneous Layer

with Rough Surfaces Containing Spherical Scatterers

The radiative transfer theory is used to solve the problem of thermal microwave

emission from a homogeneous layer containing spherical scatterers. To model volume

scattering effects, we use the Mie phase functions. To model rough top and bottom

interfaces. we use the bistatic coefficients for a randomly rough surface obtained using a

combination of Kirchhoff theory and geometrical optics approach. Because the bistatic

coefficients violate energy conservation, there is ambiguity in the emissivity. However,

using two alternate formulations, the upper and lower limits of the emissivity are

calculated. The effect of a rough surface is incorporated into the radiative transfer

theory by modifying the boundary conditions for the intensities. The radiative transfer

equations are then solved numerically by using a Gaussian quadrature method, and

the results are illustrated by plotting the brightness temperatures as a function of

observation angle for different polarizations. It is shown that the presence of a bottom

rough surface increases the brightness temperature except at high angles for vertical

polarization. The rough surface at the top boundary makes the angular behavior flatter

and displays smaller differences between horizontal and vertical polarizations.
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9.1 Introduction

In the passive microwave remote sensing of earth terrain the scattering effects

due to medium inhomogeneities and rough interfaces play a dominant role in the de-

termination of brightness temperatures. The effects of volume scattering have been

treated with two theoretical models for the terrain media: (1) the random medium

model where scattering effects can be accounted for by introducing a randomly fluc-

tuating part in the permittivities. and (2) the discrete scatterer model where discrete

scatterers are imbedded in a homogeneous background medium. The random medium

model has been used extensively to study the thermal microwave emission from earth

terrain [Tsang and Kong, 1975, 1976ab.c. 1980b: Djermakoye and Kong, 1979]. Using

the discrete scatterer model, England 11975) first examined emission darkening of a

medium containing Rayleigh scatterers with the radiative transfer theory. More gen-

eralized results have been obtained [Chang et al., 1976; Tsang and Kong. 1977a, 1979;

Kong et al., 1979] by making use of Mie scattering phase functions. These previous

works on volume scattering all assumed planar boundaries, and the effect of rough sur-

face scattering was neglected. However, in order to understand in a more meaningful

way the problem of thermal microwave emission from natural terrains, we must study

a composite model that can account for both the volume and surface scattering effects.

In this chapter we use radiative transfer theory to solve the problem of thermal

microwave emission from a scattering layer overlaying a homogeneous half space with

rough interfaces at the top and bottom boundaries. Mie scattering phase functions

are used for volume scattering, and the bistatic scattering coefficients of a Gaussian

random surface, obtained using a combination of the Kirchhoff approximation and a

geometrical optics approach, are used for rough surface scattering. The rough surface
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effects are incorporated into the radiative transfer equations by modifying the boundary

conditions satisfied by the intensities at the top and bottom interfaces. The radiative

transfer equations are solved numerically, using the Gaussian quadrature method. We

use two alternate formulations to calculate the emissivity of the scattering layer. By

calculating the bistatic coefficients of a scattering layer with rough top and bottom

interfaces and intergrating over the scattered angles in the upper hemisphere we obtain

an upper limit for the emissivity by invoking the principle of reciprocity. A lower limit

for the emissivity is obtained by directly calculating thermal microwave emission and

assuming that the same medium is at a uniform temperature. The theoretical results

are illustrated by plotting the brightness temperatures as functions of observation angle

and polarization.
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9.2 Formulation

Consider a slab of a homogeneous medium with permittivity el = e'-+ic' and phys-

ical temperature T,, containing randomly distributed spherical scatterers with radius

a and permittivity e. = E' +" on top of a homogeneous medium with a permittivity

and temperature T [Fig. 9.1 The radiative transfer equations that govern

the propagation of intensities inside the scattering layer are, for 0 < 0 < i,

cos t -(&. z) = -K1(0, z) - K,1(6, z) - KC 1T1 C + d6'sin 0' P(. 0') 1(0'. Z) (1)

where

I(0, z) - (2)

I, is the vertically polarized intensity, Ij, is the horizontally polarized intensity, K de-

notes the absorption loss, K, denotes the scattering loss, C1 = KE'/EA 2 with K denoting

the Boltzmann constant, and P(9, 0') is the scattering function matrix which relates the

intensity scattered in the direction 0 to the intensity incident in the direction 0'. For

spherical scatterers of arbitrary size the Mie scattering phase functions can be used,

and the expressions for the absorption and scattering coefficients K and K, and the

scattering function matrix =(0,0') are given in Appendix A Tsang and Kong, 1977a.

The boundary conditions are, for 0 < n/,2 at z = 0,

( - 0,Z = 0) = / d'sin 0' R, 0,') , 1(0' z =0) (3)

and at z= -d

1(0, z = -d) = dO'sin0' R1 2 (0, ') -(7 - 0' z -d)

+ d6 sin0' 0 T2 (0. 01) !,,(01) (4)
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where we have broken up intensities into upward going intensities 1(9,z) and downward

going intensities I(i - 6,z). In the above equations. R,(0,01) represents the coupling

from upward going intensities in the direction 4' into the downward going intensities in

the direction (ir-O) at the boundary of region I and region 0, R 1-2(. ') represents similar

coupling at the boundary of region 1 and region 2. and T 2 (0. 0') represents the coupling

from region 2 to region 1. Once the radiative transfer equations are solved subject to

the boundary conditions (3) and (4), the brightness temperature as measured by a

radiometer is obtained from

T 0,,) j dO'sin ' 0  ( ,0') -1(0',z = 0) (5)
C',o

where

13Go = D"( (6)

T1 (O, 0') represents coupling from region 1 to region 0 and C, = K/A 2 . When Ti =T,

the emissivity of the medium can be calculated by

[e ,(6 ") 1 [T ,(6.) 
(7)

, (0 T, TD 1,(0
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9.3 Boundary Conditions

The boundary conditions for the intensities at the planar dielectric interfaces

have been derived from the continuity of tangential electric and magnetic fields Tsang

and Kong. 1978:. For a rough interface the coupling matrices can be obtained from

bistatic scattering coefficients for a rough interface. We model the interface to be an

isotropic Gaussian random surface and assume that the Kirchhoff approximation can

be used. The bistatic reflectivity function between the scattered direction k, and the

incident direction k, is defined to be

r 2(S,). (8)
( S,),, A, cos 0i

and the bistatic transmissivity function between fe, and ke is defined to be

r 2 (St),,
( S,),, A,, cos 6,

where subscript a represents the polarization of the incident wave, subscript b the po-

larization of the scattered wave, S,, S,, S, the Poynting power density of the incident.

scattered, and transmitted waves. A,, the area of the rough surface projected onto the

xy planeI the incident angle. and r the distance from the observation point to the sur-

face. The expressions for Pi,,h(k,. kJ2) and Q,,, (k, ki) have been derived by means of vector

diffraction integral and the method of stationary phase and are well known [Stogryn.

1967; Tsang and Kong, 1980aI (also see Appendix B). It has been shown that the

solution obtained under the Kirchhoff approximation satisfies reciprocity but violates

energy conservation Lynch and Wagner. 1968,1970: Tsang and Kong, 1980a'. This
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is due to the neglect of the effects of multiple scattering and shadowing. There have

been many works on incorporating the shadowing effect into the bistatic coefficients

Beckman. 1965: \Vagner. 1967: Smith. 1967a.b: Sancer. 1969. In this chapter we use

the shadowing function derived by Sancer 1969 and modify the bistatic reflectivity

and transmissivity functions as follows:

P(k,. k) S Pvik. .1k) Pj,,(k. .kj)1 (10)

Q(kt, k,) S( 1,, 6j) E Q ,(km. i) Q k 1)(11)

where

I
S(61, 0-') =(12)

1 + A(pj) + A(p 2)

1 [ -
A [)= 2/,-- exp(-i 2/2s 2 ) - erfc(p/x/2s) (13)

2 Ay

s- is the mean square surface slope, p = co . and erfc is the complementary error

function.

Making use of (8) and (9) to relate the reflected and transmitted intensities to

the incident intensities, we obtain

1,2, f,2 e l, c) in ; (14)-. cos =P

fCos&

jr() = d i d, c (kt k, ) I,(6j, 0j) (15)
f Cos

Comparing the above equations with (3) and (4) and noting that the thermal microwave

emission is independent of the azimuthal angle , we obtain the coupling matrices:

Cos 0" = -
Tl.%(0,& s) = , Q(k., kf' ) (16)

C O'S "-I
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COS &
R,, 6s joi = d1 Cos P(kj4., kk,,) (17)

The single scattering solution under the Kirchhoff approximation neglects the

multiple scattering effect. Therefore, even with the shadowing effects accounted for.

the energy conservation is only approximately observed. It can be shown that

dOf d sin 6',j dp P,,,, (k,, kjS(6,.' 0') - dt, fj Sil j datQ,(kt, k,)S(Ot, 6j) < 1

(18)

Because of this violation of energy conservation there is ambiguity in the emissivity of

a rough surface [Tsang and Kong. 1980a. The emissivity of a medium may also be

calculated with a commonly used formula Peake. 1959.,

e,,(Ici) =~k -Y d /4g ,, Ii (19)
/I 47Ihemisphere

where (Ik,, Ic,) is the bistatic scattering coefficient due to the rough surface and volume

scattering. The radiative transfer equations satisfy reciprocity and energy conservation.

Therefore, for planar boundaries the above formula and the result of (7) are the same

since the transmissivities and the reflectivities for the planar boundaries also satisfy

reciprocity and energy conservation. However, for the rough surface case, because of

violation of energy conservation, results due to (7) and (19) are not the same, and

there is ambiguity in the emissivity.
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9.4 Emissivity

The radiative transfer theory can be used to calculate the commonly used emssiv-

ity Equation (19)! of a layer of homogeneous medium containing spherical scatterers

with rough interfaces. The radiative transfer equations inside the scattering medium

take the form 'Shin and Kong. 1981

cos 6 7(9, p, z) = -K1 (6, 6, z) - K,1(6, 0, z) + do' d6'sin ' P(O, 0; 9', q$') -(9', 4', z) (20)

where the intensity 7(9, o, z) contains all four Stoke's parameters,

I (0, 0, z) -
Ih (0, 0, Z)

1(0, 4, z) = I I (21)
U (, 'P, z)

.V(, $, z) J

The boundary conditions are, for 0 < 9 < 7/2,

7(7r - , ', z = 0) = d$,, j dO_ sin 6, TI 1 (0, ;6, 17) - 6,, 1,)

+ d4' dO' sin 6' R1, 1(, ; ', 1') 7(0', 0', z = 0) (22)

1(6., .z -d) J d6' dO'sin 0' R 12 (0, 0; 0','p') 7(7r - 0', 0, z = -d) (23)

The incident beam in region 0. lf,,(7 - 6,, e), assumes the form

- 9,, 0.) = I"i 6(cos 9, - cos Oj) 6(0, - #4 ) (24)

where the use of the Dirac delta function is made.
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Once the radiative transfer equations are solved subject to the boundary condi-

tions, the scattered intensity in the direction (, ) in region 0 is determined from

J d1, dt|st"i KR, 1 ) ( - 6- 0-)

+ J do' d'sin ' ( .4;'. ") I('. d',z =) (25)

The bistatic scattering coefficient y-.(K ;,,;,) is defined as the ratio of scattered

power of polarization 3 per unit solid angle in the direction ( , 4) and the intercepted

incident power of polarization a in the direction (&,$ ) averaged over 41r radians.

47r cos6, 1 0m (26)
cos 1

with c,f = v or h.

The radiative transfer equations can be solved with a numerical approach. A

Fourier series expansion is used to eliminate the azimuthal P dependence from the

radiative transfer equations. We let

I(, $, z) I'(Oz) + M " (6, z) cosm( - d ) + "" (6, z) sinm( - di) (27)
ti,= I

P(6 $; 6', ')= P (6, z) + >3P (6. 6') cos m(4 - 4') + P (6. 6') sin m(# - 4') (28)

where the superscript m indicates the order of harmonics in the azimuthal direction

and the superscripts c and s indicate the cosine and sine dependence. Substituting

(27) and (28) into the radiative transfer equations, the q' integration can be carried
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out. Then, by collecting terms with the same cosine or sine dependence, we obtain,

for m = 0.

Cos 6 dz (, Z) = KT"'( z) - K.'(A, z) -- 2 7J d' 'sin ' (&,A') -'(A'. z) (29)

and for m;> I

d
Cos6T" (H. z) = -K1 "(6,z) - K T"'(A, z)

d Z

7r d'sin 0' { (6, ') (( ) " (0' z)} (30)

d_ TI,1 (A z
cos L - " ( z) = - "(6, z) - K, (6, z)

+ J d'sin 0' {P(A, A') ." (A' z) - P (A, A') 7"f (6', z) (31)

Similarily, by expanding the reflection and transmission matrices and the incident

intensity into Fourier series, the boundary conditions for each harmonic can be obtained

from (22) and (23). Once the scattered intensities in region 0 are obtained, the bistatic

scattering coefficients can be obtained from (26). In terms of its Fourier components,

1-10, 1(P ,, os, 0g = N: 0 4 7 cos 04,
cos 0,, 1,.

X + ( 3 ) + I(o,) cos m(4,. - # + I'i(6,,) sin m(6, - ) (33)

Then, the emissivity can be obtained using (19)

e = ( I -) =- - d6,,, sin 6', d$

f/'2 2ircos &,I;.;, (A,)
f 7r sin o, 7 (33)

cos 6,,,

We note that in calculating the emissivity only the zeroth-order harmonic is needed

because of #,, integration, and therefore the complexity of the problem is the same as

the formulation in Section 9.2.
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9.5 Numerical Results and Discussion

Our task now is to solve the radiative transfer equations subject to the boundary

conditions. We solve the equations by a numerical approach using a Gaussian quadra-

ture method. We first replace the boundary conditions by a Gaussian quadrature,

an appropriately weighted sum over 2n intervals between 2r, zeroes of the even-order

Legendre polynomial P,(6). In our calculations, n = 16 is used. The resulting system

of first-order differential equations with constant coefficients is then solved by obtain-

ing eigenvalues and eigenvectors and matching the boundary conditions [Tsang and

Kong. 1977a, 1980b]. Once the brightness temperatures and the bistatic scattering

coefficients are obtained, we can calculate the upper and lower limits of the emissivity

using (19) and (7), respectively. The emissivity calculated using (19) represents the

upper limit of the correct solution since the bistatic scattering coefficients are obtained

using only the single scattering solution for the rough interfaces. If the higher-order

scattering effects at the rough surfaces are included, the net reflected power will be

higher and the emissivity will always be lower. The emissivity calculated using (6) and

(7) with boundary conditions incorporating only single scattering effects represents the

lower limit of the correct solution. If the higher-order scattering effects at the rough

interfaces are included, the elements of the transmission and reflection matrices in (18)

and (17) will both increase. Consequently. more thermal emission from the bottom ho-

mogeneous medium and the scattering medium will be transmitted, and the emissivity

is always increased. Therefore, the two results represent the upper and lower limits

of the correct solution, and the ambiguity is due to the violation of energy conserva-

tion. Note that a well-defined emissivity of a medium depends on (1) the satisfaction

of reciprocity relations, and (2) the satisfaction of conservation of energy by bistatic
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scattering coefficients.

In Fig. 9.2. the effect of the rough bottom boundary is illustrated by plotting

the brightness termperatures as a function of observation angle for the vertical and

horizontal polarizations (optical depth = Kcd). The volume scattering effects are not

included in order to isolate the rough surface scattering effects on the emissivities. The

solid lines represent the upper and lower limits of the correct solution for the rough

surface case, and the dotted lines represent the plane boundary case. Compared to the

planar bottom boundary case, there is a general increase in the brightness temperature

except at the high angles for vertical polarization. This decrease is due to the decrease

in the emissivity of the bottom medium for the vertical polarization. The increase

in the brightness temperature at nadir is due to the interaction of the rough bottom

boundary and the top boundary. If we consider an incident beam at nadir, some of

the reflected intensities from the rough bottom boundary will be incident at the first

boundary at an angle greater than the critical angle. Therefore, the net reflected

intensity in region 0 is smaller, and the emissivity will increase. Also note the larger

ambiguity for the horizontal polarization due to worse energy conservation. If we keep

all the parameters the same and increase the permittivity t,, the overall brightness

temperature will decrease due to higher reflectivity at the bottom boundary. Also, the

difference between the plane and rough bottom boundaries is greater 'Fig. 9.3g. In Fig.

9.4, the mean square surface slope F is increased to o.i. There is a larger increase in

the brightness temperature. However, the ambiguity is also larger due to worse energy

conservation. In Fig. 9.5 we increase the permittivity of region 1. Ej = (3.0 + i0.0018)E..

and also increase E2= 12 E,, such that =R,2 and =21 remain the same. We note the larger

difference between the results of plane and rough bottom boundaries. This is due to

the fact that for larger ej the critical angle is smaller.
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In Figs. 9.6 and 9.7, the brightness temperature is plotted for the cases of rough

top boundary for two different mean square surface slopes. Both polarizations show the

flattening of the angular behavior. For larger mean square surface slope. the angular

behavior is more flat and also the ambiguity is increased. In Fig. 9.8 the results for

the rough top and bottom boundaries are illustrated. Ve see that the effects of rough

top and bottom boundaries are superimposed resulting in increasing of the brightness

temperature at nadir and flattening of the angular behavior.

In Figs. 9.9, 9.10. and 9.11, the results of volume scattering (albedo = K,/(K+, +

K,)) combined with the rough surface scattering are shown. There is darkening of the

brightness temperature due to volume scattering. Also. there is larger coupling of the

intensities propagating in the different directions causing the larger ambiguities at nadir

angles. In Figs. 9.12 and 9.13, we compare the theoretical results with an experimental

data set obtained during the winter season of 1977-78 in Colorado Shiue et al., 1978j

for vertical and horizontal polarizations at 18 GHz. The combined volume and rough

surface scattering model gives a better match with the data set which exhibits a fairly

flat angular behavior.
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Appendix A: Absorption Coefficient, Scattering Coefficient. and Scattering Function

Matrix for a Homogeneous Medium Containing Mie Scatterers

The scattering coefficient K, is given by

K. N ~ (2n+i l)( A,, B,,.)2 7n=2 (Al)

where N is the number of scattering spheres per unit volume and k' is the real part of

the wave number in region 1, k1 . The coefficients A, and B, are given by IDeirmendjian,

1969]

A Rejq,(p 1)j(k,/k'F (p2 ) +
q, (p1)[ k,/ k'Fn(p2 ) +

B,=-Re Iq, (p11 |k'lk, F,(P2).+
q?,(p 1)k'1/k.F,(p 2 ) +

where k, wv/p-7,

formula

n/pi] - Rejq,_ 1(pj)
n/p 1] - q, 1 (pj)

n/p1 - ReIq,, 1 (pj)
n/ pn// 1 ,-~i

(A2)

(A3)

pI = k'a, and p2 = k,a. The function F,,(p 2 ) satisfy the recurrence

F,,( n n

and

F.(p2) =cot p2

The function q,(pj) satisfy the recurrence formula

2n -- 1
qr,(p1 ) = 2n -1 (p1 ) - q,,-2 (pi)

PI

(A4)

(A5)

(A6)

and

q, (p1 ) = -z exp(ip) (A7)
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(A8)q(p 1) = -exp(zp 1 ) 1-

The absorption coefficient K, can be divided into two parts, K,,,, and K,.. K,,, is

the absorption due to the background medium. and K, is the absorption coefficient

due to the scatterers.

K, K,,, + K,,

K,= 2k'(1 - f)

K,, = K(,.rt K,

(A9)

(A 10)

(All)

where f is the fractional volume occupied by the scatterers and K,,,, is the extinction

coefficient due to the scatterers which is given by

-N k (2in + 1)Re(A,, B,) (A12)

The scattering function matrix is given by ITsang and Kong, 1977a]

P A6 , ) P12(0, ')

1) P- 1(6,,0') P2206,0')1
(A13)

87rN B,,
Pk ( 6') s;(cos 6 )s;' (cos ')

k'2 n(n + )

167rN 00 " 2
+ , JATI me;(cos 0) t;""(cos 0') + Ba;(cos )s "'(cos ']

k1 ,= I , n (n + 1) (A 14)

z6r z>-
n( n 1)t (A 15)P 12 (0, 0') =
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P21(, s' = ,2 A s;(cos 0) t ""(Cos ') + B, t.."(cos 6);(Cos ']

87r A7 A
k(cos 6) S; (cos 6')-'2 (6 T/~1 +)

16k '
/ Li

I
A,,s (cos 6)s '(cos B') Bm 2t "'(cos 6 )t"(cos 6')]n(n - 1) 7

t71(cos6 -P,'"(cos 6) (2n + 1)(n - m)!
sin 2(n + m)!

3,'(cos 6) = n cosat7"(cos 6) -- L 2r,- 1 (r 22ri - 1 - m2) 1/2_t; 1 (cos6)

and P,,"(cos6) is the associated Legendre polynomial of degree n and order m.

function t;L(cos O) obeys the recurrence relations

t 2L +3t2m1 

t;" 1 (cos 0) = (2m + 3)1/2 cos 6 t',(cos 6)

2n 1/2
t(Cos 0) = , , (2n - )

n- - M- I
/2 Cos 0 t",1 (cos6) (n - 1)]2 - m2 1/2 6))

71 -I (os ) - 2n - 3 j-2(o

Note that tl(cos6) -V3/2 and s;'(coso) = mcoso t7;;(cos6).

s;"(cos6) are well behaved as n and m become large.

(A18)

(A 19)

The

(A20)

(A21)

(A22)
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(A 16)

where

(A 17)

The functions t;"(cos6) and
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Appendix B: Bistatic Reflectivity and Transmissivity Functions for Gaussian Random

Surface

The bistatic reflectivity functions have been determined to be !Stogryn, 1967j

ka I I
4 ~ exp -

4Ixk. kcos 6

where

- ki))(hi -k,)R,, (0 , k )(0 k,)R

k,)R,- (0. k )(h,- k,)R,

= (0., -k(h k,)R, - (h, ki)(OD -k,)RI

f,1,, = ~ kj(0, k~.)R,, -~- (i.
2

k )(hi- k,) 1

= £sin 6f cos4, + sin 6, sin - cos 6i

I. =sin 6, cos , + V sin6, sin + Scos 6,

= -sin - z cosdi, = i x x

h,= -5 sill +cos, =2x I/iSxI,

= -5cos 61 cos Oi - 9 cos 6O sinl - i sin6 = k, x Ic

0, = 5 cos 6, cos 0, + p cos 6.. sin , - sin 6, = h, x Ic,

=k - k, = Ska., -kr +k

(Bi)k,Pbtj (k,,I kg) -

fl; ( ,-kg( i
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k,,, = k(sin 6 i cos q, - sin , cos

k,, = k(sin Oj sin $1 - sin 6, sin 44

kd. = -k(cos H, - cos K)

k',, = k2 + k--

S2 is the mean square surface slope and the reflection coefficients for the horizontal and

vertical polarizations are

-(hi ci) + n - 1 + (h . Iij) 1/2

-n( - I)- [?1 - 2 ( 2

- Ici) - In? -1+ ( )

with

n =
+ qkaL,/ka: +Z

k',/k k + + 1)1/2

n= kt/k

k = WV pI IC

kt w = /,

The bistatic transmissivity functions have been determined to be [Tsang and

Kong, 1980a

kcy 77 kEI(nk-') 1 k __

Q,, (IIi) 4 4 exp - W, (B2)
where cos 6 27rs- 2sQk

where

W = (ht - ki)(h I(1 +- Rh) + ( t -Ii ) ( -Ict 1+ Ru 2

nt
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1+ R 1

I-
W (ktf - I)( j Icy)(1 + RI,)-(J k,)( kt)

I-
W Fi ki) )( k) )(1 - Rj,) -+ (it, ki (h,; kj)

Ic = s Sin Of cos -± + 'sin -4 sin $1 - Sl cos

, = -i cos Of cos q'f - cos Of sin , - sin Of

-a=k - Ic1 = i-, ka+ k

ka, = k sin Oi cos $1 - k, sin f cos Of

kav =k sin O, sin ya - kt sin 61 sin $ 1

= -k cos 6 + kt cos 61

( ii - ) - (ii It )nR1, =
(h -i) + (f Ykt)nt

R nt (h Ii) - ( . I_)n__ ,

nt (h kIi ) + (fn-ic ky nj

- t - I ) (h

2t R
nj

R,

Isj)(1 +4 Rj,) - (T, In )(
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Geometrical configuration of the problem.
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n

Figure 9.1
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Figure 9.2 Brightness temperature as a function of angle for rough surface at bottom

boundary.
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Figure 9.3 Brightness temperature as a function of angle for rough surface at bottom

boundary with t = 15c,.
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Figure 9.4 Brightness temperature as a function of angle for rough surface at bottom

boundary with 32 0.1.
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Brightness temperature as a function of angle for rough surface at bottom
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Figure 9.6 Brightness temperature as a function of angle for rough surface at top

boundary.
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Figure 9.7 Brightness temperature as a function of angle for rough surface at top

boundary with 2= 0.1.
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Figure 9.8 Brightness temperature as a function of angle for rough surfaces at top

and bottom boundaries.
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Figure 9.9 Brightness temperature as a function of angle for rough surface at bottom

boundary with volume scattering.
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Figure 9.10 Brightness temperature as a function of angle for rough surface at top

boundary with volume scattering.
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Figure 9.11 Brightness temperature as a function of angle for rough surface at top

and bottom boundaries with volume scattering.
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Figure 9.12 Brightness temperature as a function of angle at 18 GHz for vertical

polarization.
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Figure 9.13 Brightness terperature as a function of angle at 18 GHz for horizontal

polarization.
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CHAPTER 10

Theory for Active Remote Sensing of Two-Layer

Random Medium with Rough Surfaces

The radiative transfer theory is used to solve the problem of scattering from a

layer of random medium on top of a homogeneous halfspace with rough top and bottom

boundaries. The coherent and incoherent bistatic scattering coefficients for the rough

surface are used to modify the boundary conditions. The radiative transfer equations

are solved numerically using the Fourier-series expansion in the azimuthal direction and

the Gaussian quadrature method. The combined volume and rough surface scattering

effects are studied by calculating the bistatic scattering coefficients. The theoretical

results are compared and illustrated for the various cases.
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10.1 Introduction

In microwave remote sensing of earth terrain. the effects of volume scattering have

been treated with random medium and discrete scatterer models for terrain media.

The discrete scatterer model with the radiative transfer theory has been used to study

passive and active microwave remote sensing. In passive remote sensing, Rayleigh and

Mie scattering functions have been used to study the thermal microwave emission from

layered medium with planar and rough interfaces 'England, 1975; Chang et al., 1976;

Tsang and Kong. 1977a, 1979; Kong et al., 1979: Fung and Chen, 1981a; Shin and

Kong, 1982 . In active remote sensing, the Rayleigh scattering model has been used

extensively Shin and Kong, 1981; Fung and Eom, 1981; Fung and Chen, 1981b; Karam

and Fung, 1982]. The random medium model with the radiative transfer theory has

been used to study passive remote sensing from layered earth terrain [Gurvich et al.,

1973; Tsang and Kong, 1975, 1976b, 1980b; Djermakoye and Kong, 1979; Chuang

and Kong, 1980]. In active remote sensing, wave approaches with iterative solutions

have been used widely with the random medium model to calculate the scattering

coefficients [Tsang and Kong, 1976a; Zuniga and Kong, 1980; Zuniga et al., 1979,

1980. The radiative transfer theory with the random medium model has been applied

to active remote sensing by Tsang and Kong 1978 where the iterative approach is

applied to second order in albedo to calculate the bistatic scattering coefficients from

a halfspace random medium. In order to more realistically model the natural terrain,

a composite model that can account for both the volume and rough surface scattering

effects are needed. The Rayleigh scattering model for the volume scattering with the

geometrical optics solution for the random rough surface scattering have been used to

study the combined effects [Fung and Eom. 1981; Fung and Chen, 1981b; Karam and
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Fung. 1982.

In this chapter we use the radiative transfer theory to solve the problem of scat-

tering from a layer of random medium on top of a homogeneous halfspace with rough

interfaces at the top and bottom boundaries. Using all four Stokes parameters the

bistatic scattering coefficients are calculated using a numerical approach which pro-

vides a valid solution for both small and large albedos. The coherent and incoherent

bistatic scattering coefficients for the rough surface are used to modify the boundary

conditions satisfied by the intensities at the top and bottom interfaces. A Fourier-series

expansion in the azimuthal direction is used to eliminate the azimuthal '-dependence

from the radiative transfer equations and the boundary conditions. Then the set of

equations without the c-dependence is solved using the method of Gaussian quadra-

ture. The integrals in the radiative transfer equations are replaced by a Gaussian

quadrature and the resulting system of first-order differential equations is solved by

obtaining eigenvalues and eigenvectors and matching the boundary conditions. Legen-

dre quadrature method is used to properly discretize the boundary conditions which

contain both the coherent and incoherent bistatic scattering coefficients. The numerical

results are illustrated by plotting backscattering cross sections as functions of incident

angle and frequency.
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10.2 Formulation

Consider a layer of random medium with rough interfaces characterized by the

permittivity : - 6. where t stands for the randomly fluctuating part whose amplitude

is very small and whose ensemble average is zero. on top of a homogeneous medium

with permittivity Fig. 10.1. The radiative transfer equations which govern the

propagation of intensities inside the scattering medium are, for 0 < 0 <

d - -= - cP2 (0= _(
os 0,- z) =-K I(0, 4. z) - K,() , (', 4. z) + j dO'sin 0' d0' P(6, $; ' (0', 4', z)

where

I I,(0,$t.z) 
1(0,4. z) = (2)

U(0, 4, z)
.V(0, 4, z) .

1, is the vertically polarized specific intensity, 1 , is the horizontally polarized specific

intensity, and U and V representing the correlation between two polarizations !Tsang

and Kong, 1978; Shin and Kong. 19811, P(O, 4;o', 4') is a 4 x 4 scattering function matrix,

which relates scattered intensities into the direction (0, 4) from the incident intensities in

the direction (0', q'), K is the loss per unit length due to absorption, and AK(O) is the loss

per unit length due to scattering. The random permittivity fluctuation is characterized

by the variance of the fluctuation 6 and the correlation function with lateral correlation

length 1,, and vertical correlation length l. The scattering function matrix and the

scattering coefficient have been derived by applying Born approximation with the far-

field solution and the explicit expressions for the correlation function with gaussian

dependence laterally and exponential dependence vertically are given in Chapter 7

Tsang and Kong, 1978; Chapter 7, Appendix A;.
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Consider an incident wave with specific intensity -1,(7- - 6 q<) impinging from

region 0. which is assumed to be free space. upon the scattering layer. The incident

beam in region 0 assumes the form

7 - . = (cos 6 ,- cos6,) (k - ) (3)

where the use of Dirac delta function is made.

The boundary conditions are, for 0 < 6 < r /2,

7(7r - 6, =, z 0) = d4' d6, sin 0', T( 1 (6, ; ',, ').

- fd4' d6'sin 6' R io(6, 4; 6', 4')

1(6, -j, z = -d) = d '

,i(7 - ,

I(6', 0', z = 0)

(5)

where we have broken up the intensities in the scattering layer into upward going

intensities 7(6, 4, z) and downward going intensities ](7- - 6, 4, z). In the above equations

T),(6, 4;6., 4,) represents the coupling from region 0 to region 1, Rio(6, 4;6', ') represents

the coupling from upward going intensity in the direction (6',4') into downward going

intensity in the direction (7r - 6, $) at the boundary of region 1 and region 0, and

R , ;6', ') represents similar coupling at the boundary of region 1 and region 2.

Once the radiative transfer equations are solved subject to the boundary condi-

tions, the scattered intensity in the direction (6,,0,,,) in region 0 is determined from

f r /2 -I.,, ,)= ]dq',] d6,' sin 6,', R 1 (6,, 0'4,; 0',, 1,) I,,4(i - 6', q',)

+t 7 dqY' d6'sin 6' Tio(6,, 4,,,; 6',') 0 (6', 0', z = 0)

d6'sin 6'R 12 (6, 4; 6',) -7( - 6', 4, z = -d)

(4)

(6)
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where Tm(_ .,,;', o') represents coupling from region 1 to region 0.

The bistatic scattering coefficient q z',-:.&-: ,, ,i) is defined as the ratio of the

scattered power of polarization 1- per unit solid angle in the direction ( ,,,) and the

intercepted incident power of polarization ) in the direction (0,, ) averaged over 47-

radians !Peake., 1959J.

cos&, L

where o, v or h with v denoting vertical polarization and h denoting horizontal po-

larization. In the backscattering direction 6, = 0,, and qe =r- $"?. The backscattering

cross sections per unit area are defined to be

= cos & i Y1(6 i, r + fi; 6 , I) (8)(8)
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10.3 Boundary Conditions

The boundary conditions satisfied by the specific intensities at rough dielectric

interfaces are derived in this section. Unlike the planar interface case where the cou-

pling at the boundary is only to the specular reflection and transmission directions,

the incident intensity is coupled to all of the reflection and transmission directions.

The reflection and transmission matrices are related to the bistatic scattering matri-

ces. which is the generalization of the bistatic scattering coefficients to include the

correlation between polarizations of the scattered fields.

Consider a plane wave incident from medium I onto medium 2 along the direction

ki upon a rough dielectric interface. The electric field of the incident wave is given by

Zi = i E.i e (9)

where ki denotes the incident wave vector and , is the polarization of the electric field

vector. The rough surface is characterized by a random height distribution z =(r1)

where f(r ) is a Gaussian random variable with zero mean, (f(-r)) = o. The incident

field will generate the reflected and transmitted fields in medium 1 and 2, respectively.

The solutions to the problem of scattering from a random rough surface have been

studied in Chapters 2, 3, and 4. In general, the scattered and transmitted fields for

vertical and horizontal polarizations for the incident field with vertical and horizontal

polarizations are given by

E, ek, r f (0::, 0, a2 §)f,6,, , 2) E]1
EI r (10)

Eir . P (", 0.,; 6i, 0 i) fir,, (0.,, 0,; Oi, Oi) Ei

E,, t ~ ft "(Ot, O; Oi, 4i) ff,(0t, 4t; Oi, Oi) E,,i

EIt f (, j4t; Oi, Oi) fl,,h(0t, 4t; Oi, 42) E,
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Now the scattered specific intensities can be expressed in terms of the incident specific

intensities.

1, R Ii

7 T I,

(12)

(13)

where 7j, 7, and 1, are the column matrices for the specific intensities containing the

four Stokes parameters

I,,,
- 1'=,

a = i, r, t

and

(14)

= L
A, cos ,

1 t7 t
T12(0t, Ot; L, )

A, cos 61 r 2

with

( Kf " 2)

2 R
2 1em(f f;7;

2Re((f,,f; )

2Im((f", f; ))

R e ((f' f ", ))1

Re (f f; f))
IRe((f;,,1 f;,, )) f

M ((17)

-Im((f, - fONhfj;: ))
T(" f"f ,)) f

Thus, the boundary conditions for the specific intensities at a rough interface is given

by

11 (k,) = d4i

12(kic) fd4

fr/2

/2

d6, sin O, R12 (6,, 4,; 6j, 4) ( I8(k))

(18)

(15)

(16)

R12(0,, 4,; 6 j, 0 i)

d6i sin 6, T 12 (6t, Ot; Oz, I I (ki)
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The reflected and transmitted intensities at the directions kc, and k, are given by in-

tegration of all the scattered intensities which are coupled to that direction from the

incident intensity.

The reflection and transmission coupling matrices can also be related to the

previously used bistatic scattering coefficients. First, we generalize the definition of

bistatic scattering coefficients to include the correlation between polarizations. We

define the bistatic scattering matrix i whose elements are given by

S, ; 64, Oi4lr0) = 47r Cos = 1. 2, 3,4 (20)
cos (2I)

where

"A= = KiS (21)

.14o. V11.

The previously used bistatic scattering coefficients are

^ r ')I] _YvI = 'Y12 'Yhr :- ' 2J 'id, = Y22 (22)

The reflection coupling matrix is related to the bistatic scattering matrix as follows:

I COS ' -

R 12(6,,4,; 6i, Oi) = ' :(6 ...4 ; 6i, 4i) (23)
4.7r cos 0,

In a similar manner, we can relate the transmission coupling matrix to the bistatic

scattering coefficients for the transmitted intensities:

1 Cos 6, =t
T12(Of ; 0 4, ) = C - (o2 , Ot; Oi, 4) (24)

47r cos 61
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The explicit expressions for the reflection and transmission matrices. obtained using the

scattered and transmitted fields derived by a combination of Kirchhoff approximation

and geometrical optics approach, are given in Appendix A. The other solutions for the

scattering from a rough dielectric interface. such as small perturbation method (SPM)

or modified SPM. can also be used to derive the coupling matrices to be used with the

radiative transfer equations.

We also note that the coupling matrices can be broken up into coherent and in-

coherent components in a manner similar to the breaking up of the bistatic scattering

coefficients. The coherent components only couple the incident intensity into the spec-

ular reflection and transmission directions while the incoherent components couple to

all reflection and transmission directions.

R 2(,,0-;Oi O)= R 1 2 (.:6 1 2 4i) ±R- ?1 2 (o, 1; 0' - 0) (25)

- C --- ?

T1(0!41: 6- )= 120 - t;67 -ti T12 (6f , 0; O I O) (6(26)
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10.4 Fourier Series Expansion

The radiative transfer equations and the associated boundary conditions can be

solved using a numerical approach. We first use a Fourier-series expansion in the az-

imuthal direction to eliminate the (-dependence from the radiative transfer equations.

We let

, ,Z) =" ,z) cos m( - $) '"(6, z) sin m($ - 4i) (27)

P (6,; P ( C,')cosm( - d') r P (6, 0') sin m(O - 0') (28)

where the superscript m indicates the order of harmonic in the azimuthal direction,

the superscripts c and s indicate the cosine and sine dependence, and the Neumann

number 6,,, = 0 for m # 0 and 6- = 1. Substituting (27) and (28) into the radiative

transfer equations, the $'-integration can be carried out. Then, by collecting terms

with the same sine or cosine dependence, we obtain a set of equations without the

q-dependence [Chapter 7, Section 7.3}.

The p-dependence from the boundary conditions can also be eliminated using the

Fourier-series expansion. We let

7 - 0 , ) S(cos 6 - cos 6 1) $ Cos m(4) - (29)

and, for a, 13 =o, 1, 2,

00

R,,/.,(0, 0; 0', R') = R,(0) 6(cos 0 - cos 0') 1 ) cos m(4 - 4') (30a)

cc

R,(,q'; 0', ') =c E 6,,,)ir (0, 0') cos m(d, - 1)+ R,,:t (6, 0') sin m(k - 0~')] (30b)
T = (1 I _-6f)r I
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T 1(. 4; 9', $!,) T,1 (9,) (cos 6.- - cos ') 1 cos m(O, - .') (31a)

T:,,( -,1 T, "il m

T 1  @9'6 <:0. f) =T (9, 9,) cos mn(5.. - < ') - To (9. K') sin m(4. - 4/) (31b)

where 1,, and 6 are related by the Snell's law.

Substituting (29). (30), and (31) into the boundary conditions (4) and (5) and

carrying out the di' and d$', integrations. we obtain the following set of equations. For

0 < 9 < 7r/2 and m = 0, 1, 2,-

i( - ,z=0):

z= -d)

dq!, sin , T (9, o!,) I" ( - 0',) + T'I 1 (6,.9') Of 7(i - 9',)

dO'sin O' ((0,') - 0 ( ',z = 0)

dO'sin 0' [R,, (0, 0' 1 0 ("' z = 0) - R 1 ( (6, 0') -I"(0' z =0) (3 2a)

I 7r'.
f 2

[/2/

d9', sin 0' T, 1 (9, 0') I (T - K)

d' sin 9' R 1,(.') I ' 1 z = 0)

d9'sin 0' [q(9 ') 1 (0' z =0) +(. , R,"(0',z= 0) ] (32b)

d9'sin0' R 1 2 (0,') -I"" (-r - '. z = -d)

,, =,Ifl I Z ddO' sin 0' R (. 9') -T"(7 - 0' z = -d) - R1 (9,9') -T" (7r -9',z = -d)]

(33a)

=J dR'sin'Rid 0,') -T"(ir - 0',z = -d)
f 1  (2 (, 6'' )f l 4

+ / dO'sin9' (R . 9') - "(7r - 9', z = -d) -+ (0, 0' (7 - 0', z = d)

(336)

T"' (

"U.(0, z = -d)
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where

r)(r - K) = Z )ICOs 6 - cosKu) (34)(6~ (Co 01) o O

We note that the Fourier-series expanded coupling matrices for azimuthally

isotropic rough boundaries do not couple the first two Stokes parameters to the last

two Stokes parameters. The coupling matrices can be expanded as follows. For A = R

or T. and a. = 0. 1. 2.

A':" A 71" 0 0 -

A" A?,, 0 0
Af W_ (35a)

0 0 A'" 3  A"", 33 '1034

. 0 0 A'"';4 A"'I 4 -

S0 0 .A"" A"~

0 0 A" A I0
A I I 0 (35)

A'"1 A'" 0 0

- 1:"i(. z) 1
A Ar( Az)= 0 (36)

UT"'' (,z)I

.V "' (t, z)N

- 1,. "(tz) 1
Tit "' (6, Z)

I"''(6, z) K z) (36a)

1 "" fit . ,Z)

.i " (6, z).

where superscripts e and o stands for even or odd dependence in the first two Stokes

parameters. After carrying out the do, integration, the decoupled boundary conditions

are given by, for a = e or o,

7(r - , z = 0) = 1 (6) (7,- - 0,,) +T, (0, ,) - I "

T' I' 1I , = )] V'sin q' [R 1() 6 0' R 1) (0.6 ') J7L (0', z = 0) (37a)
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i ". = -d ) J d 'sin ' . . " (1 ( - ', z -d) (37b)

where, for A= R or T. and a = o, 1, 2.

-A '"7 A" .471? -A 4

A"' A "'/ -A' -- A"
A - (38a)

.4"' A"' A"' A"'"
''22oig " x 1 g11

A"'' 4""' 4"'1. A'

A"" 3  A"" 2  A""~2  A""

A" A" A" A""

A t142 3" A 'I4

and. for a =e or o,

fI (7 -9G) = jIl7 1 6(cos O ,- cos 6,,,) (39)

with

- " I(40a

,-o(40-
0

- (38b)

t03

The radiative transfer equations for the even and odd series can be obtained in

a similar manner. We have, for a e or o and m= 0,1,2,

4 ( i- -. 'T 1 -- -. 7r * (Cos)" -J (,' "4

with -' (,z K Z 0 )-K ( ' (0 )+ d 'sn6 0,' ' (' ) (1

(4a
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where P (0, ') is defined in a similar manner to (38) 'Chapter 7. Section 7.3).

We define Mia., and m',,, to be the number of harmonics that has to be kept in the

expansions of the scattering function matrix and the coupling matrices. respectively.

such that

for M > mr,,., (42)

and

P (, ')~P 0, ')

A, ~A,, ~0o for mn > m'. (43)

Then, for m > mr,,,, the radiative transfer equations simplify to

d
cos -- "(6, z) = -Kj"' - K,(0) -I"'"(Oz)

dz

where a = e or o. Similarly, for m > m',,r the boundary conditions simplify to

"T" Z=- 6,z=O) =(7r()I - 6, ) + R11)(0) ± 7""(Rz = O)

(44)

(45a)

and

(45b)

where dO' integrations are carried out. Thus, for m > max m,,L, m ,,,,), we can use the

simplified radiative transfer equations and the boundary conditions, given by (44) and

(45), to obtain the solutions analytically without resorting to the numerical approach.

i ""'r(6, z = - d) = =R1 (0) -T" "(7' - 6. = - d)
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10.5 Numerical Solution

The set of decoupled radiative transfer equations without the azimuthal depen-

dence for each harmonic can be solved numerically using the Gaussian quadrature

method. The integrals in the radiative transfer equations are replaced by Gaussian

quadratures and the resulting system of first-order differential equation with constants

coefficients are solved by obtaining eigenvalues and eigenvectors. The numerical solu-

tion for the specific intensity is given by !Chapter 7], for each harmonic and for even

or odd series.

J (= (- Q) D(z) .- 2+(E- Q) -U(z+ d) - - (46a)

I =(E + Q) D(z) - (E - Q )U(z + d) - (46b)

where l- and !~ represent the upward and downward propagating intensities and Y

and - are the unknown constants.

The boundary conditions, which are to be used to determine the unknown con-

stants x and -, can be obtained by discretizing the boundary conditions given by (37).

Following the procedure outlined in the Appendix B, we obtain the following set of

equations:

(z = 0) = 0Ie 1 (z =) + To, - (47a)

7I(z = -d) R I (z = -d) (48a)

Substituting in the expressions for the upward and downward propagating in-

tensities into the boundary conditions (54) and (55), we obtain the following set of

equations for Y and v:

(E + Q) - RI( (E - Q) - Rl (E- Q) *D(-d) -y= TOj ,j1 (49a)
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(49b)

The above equations can be solved for the constants Y and - for the each cases when the

incident intensity is at one of the quadrature angles. Note that in the halfspace random

medium case when d - oc. D - 0 and the equations for 5 and u become decoupled and

the matrix equation does not become singular Fung and Chen. 1981b. This is due to

the form of the solution assumed in (46).

Once the constants i and u are determined, the scattered intensities from region

1 to region 0. represented by the first term on the right-hand-side of (6), can be

determined. We have

(50)

Thus, the complete solution can be obtained by solving the radiative transfer equa-

tions using the Gaussian quadrature method for each harmonic as outlined above and

reintroducing the azimuthal dependence. The total scattered intensities in region 0 is

given by

R- j -1Tj( R(IRio -exp:-- K. d,] T61 I~(0u

+ ~R, 1 *':; cos m(0 -$, 1 )-+ i sin m($,-q,4
,II I

+-T10 I (z = 0)cosm(0" - po) +T I (z 0)sinm(o, - 0,,)

+ T I' (z=)-T I (z = 0) s -0)

- T1  [I- R1 -R12 exp -, K, d!] To, (Cosm(# -#Oi)

(Z 0) + T I " (z 0) sin m(O,, - ) (51)

[-I = I I = - -
E -Q) - Ri,-(E -Q) D(-d)2 (E-Q)- R12.(E -Q) -Y=0

=10 [(E+ Q) - + (E - Q) -D(-d) -p
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where m" =, maximI.',, and for m> m',v,. we have evaluated the scattered

intensities analytically and summed them up. Once the scattered intensities in region

0 are obtained, the bistatic scattering coefficients and the backscattering cross sections

can be obtained from (7) and (8). We note that if we are onIx' interested in calculating

the scattering intensities for vertically or horizontally polarized intensities, then we

only need to calculate the even series. This is because the odd series, represented by

(36b). is zero due to the fact the incident intensity for the odd series as given by (40b)

is zero.
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10.6 Results and Discussion

In this section we illustrate the theoretical results by plotting backscattering

cross sections as functions of incident angle and frequency for various cases. In our

calculations i =i is used. The combined volume and rough surface scattering model

is illustrated using the geometrical optics solution for the rough surface modified with

the shadowing function. In Fig. 10.2, the backscattering cross sections for like-like

polarized return Ca, and depolarized return Ua, are plotted as a function of incident

angle at 5.0 GHz. The bottom boundary is assumed to be rough with mean square

surface slope 2 = o.05. We note that unlike the case of only volume scattering, which

has a fairly smooth angular dependence, we have a peak near nadir. This is due to

the contribution from the bottom rough surface. Also, depolarization return for the

combined model is higher than the volume scattering model. In the volume scattering

case. the depolarizaion of the backscattered power is due to the second-order and

higher-order scattering effects. However, in the presence of a rough boundary, there is

the effect of interaction between the rough surface and volume scattering.

In Fig. 10.3. we compare the backscattering cross sections for volume scattering,

rough surface scattering, and the combined volume and rough surface scattering. We

can see that the backscattering cross section near nadir is dominated by the rough

surface scattering whereas for larger angles of incidence volume scattering effects dom-

inate.

In Figs. 10.4 and 10.5, we compare the volume scattering effects and the combined

volume and rough surface scattering effects by plotting the backscattering cross sections

as a function of frequency. In Fig. 10.4 the angle of incidence is 6 = 4.20. At low

frequencies the backscattered power due to volume scattering diminishes and the rough
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surface effects dominate. As frequency is increased the effect of the bottom rough

surface diminishes since the intensities do not penetrate the scattering layer as much

as at lower frequencies. and the backscattered power is due to the volume scattering.

In Fig. 10.5. we illustrate the same case for the angle of incidence 6, 32'. Again,

the rough surface scattering dominates at low frequencies. However, the rough surface

scattering effect diminishes faster as frequency is increased which is due to the fact

that at higher incident angles the intensities have to travel a longer path before being

affected by the bottom rough surface.
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Appendix A: Expressions for Coupling Matrices obtained using Geometrical Optics

Solution

The reflection and transmission coupling matrices at the rough dielectric interface

can be obtained using the scattered and the transmitted fields derived by a combination

of Kirchhoff approximation and geometrical optics approach. The explicit expressions

for the coupling matrices =R 12 and 7 12 are given by [Chapter 2, Section 2.5i

1 |kii4 k 2 -, k2 ] -,-
12 (0, 0, ;, i O) =exp - ,,C16, - s,4)

COS 6., 4 Ikci x k,\ 14k4 21rs 2k2acos £ ~ ~ 1k4 l 27r, 2 ex

,1 kk 2 j 2(h - c)2 71 1 k 2 + k T
= O k X k|4k f r 2 -XP 2k 2 ] 12t,;i

where s2 is the mean square surface slope

k 1, = k -k,

k2,( = k, - kt,

Re(f. f ', .)

Re (f;i f"J;,)

Re (f ',f;" + f,, f;' )

Jmr l' + fi", )
1)? f7il1 l 11

-J(f f ?) 1

Im(f7 ' f; )

Re(f,f,7, - f" j )I.

f (,- Ic)(hi -Ic)R,, + (, -ki)( 2  k,)R,

f = (h. , I)(, +c)R,, - ki)(h -Ic,) R,

(Al)

(A2)

R (f?" fill,

(A3)

(A4)

.2

2Re(f7( f;,',: )

21m(f"7,, fj;)

with

(A5)

(A)

(A 7)

(A8)
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-( Ik (i, k)(1 - RJ,) (k,

-( - ) I ( R,) - ( I

fil,= (I , Ik)(i, Ic)(l + RJ,) + (I -

R, and R, and RI and RI, are the local reflection

izontal polarizations evaluated at the stationary

spectively.
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(.49)fh, = (-, c)(0, I.4,)R- (I. -I)(hi ,)

S =(A 1 - cj(h, Ik1 )(3 -~ R,) (fi, - 2 )(f, -kI)'i(J +- R,')f 2 (~ (ii--( kt) R. (A10)

(A11)

(A12)

(A13)

77)( Ie) (1 + R")
r/ j

( ) 1  + R )

Ic) '7-I ') 1+R )

coefficients for the vertical and hor-

phase points ( and (a.,,,), re-

As mentioned in Chapter 2, the geometrical optics solution used to derived the

boundary conditons for rough dielectric interface satisfies the principle of reciprocity

but violates the principle of energy conservation. This is due to the neglect of the effects

of multiple scattering and shadowing. The shadowing effects can be incorporated to

modify the boundary conditions. Following the same procedure as in Chapter 2, we

obtain

=M(k,; Ici) = S (c, 1, ) =R (c; c)R12(k;1k(k.; k)

T 12(kt;ki) = S (ic, ki)T 12(ki; ki)

(A14)

(A15)

where s(I.fk) is the probability that a point will be illuminated by rays having the

directions Ic and -k,,, given the values of the slope at the point and has been discussed

in Section 2.5.
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Appendex B: Application of Legendre Quadrature Formula to the Boundary Condi-

tions

The boundary conditions given by (37) can be put into the matrix form using

the quadrature formula. In this appendix we will illustrate the application of the

Legendre quadrature formula to the boundary conditions. The boundary conditions

are approximated in a manner such that the formulation does not have to be changed

when applied to the flat surface case.

Consider the following scalar version of the boundary condition at z= -d:

1(6,z = -d) = J dO'sin 0'r,2 (6, ') I(r - 6', z = -d) (Bi)

One way to approximate the above equations is to apply the Gaussian quadrature

method. We obtain, for ', j= 1, 2, n,

I(, = -d) = aj r12(01, 6 ) I(7r - 0., z = -d) (B2)
j=1

This approach is justified as long the approximation of changing the integration to the

summation is accurate. This means the number of quadrature points n has to be large

enough so that the above approximation is valid. Note that as r12(6, 6') becomes more

sharply peaked function at the specular direction, the number of quadrature points

has to be increased. Thus, it would be difficult to use the above approach for the case

of near specular surface. In the limit of specular surface the coupling function is given

by

r,2(0, 0') = r 2 (O) (cos 0' -cos) ((B3)
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and boundary condition simplifies to

-(. z d) = r12()1( 7 - 6, z -d) (B4)

In this limit we note that the number of quadrature points does not have to be large

as long as r 1 2 (6) is a fairly smooth function.

One way to overcome the above problem is to use the Legendre quadrature for-

mula. We let =cos . Then. for =1,2, n and j -n, ,-1,1,2 ,n,

I(pi , z = -d) = wi. I(p,, z = d) (B5)
3= --

where

I F' f(p)wy =, dp rie,.(y i) (B6)
W3 (p3 ) Jp - (B6

l(p) = (P - p1)(p - p2) (p - An)(y p1) (Y + 92) . (p + p,,) (B7)

d|
H'(p1 = (P)| (B8)

dpu

Pi = cos Oj P-3 cos(ir - 0j) (B9)

In the above formulation, we note that as r12 (p, p') becomes a sharply peaked function

around the specular direction, the number of quadrature angles n does not have to

be increased as long as the coefficients wg are evaluated accurately. In the limit of

specular surface, we have

Wij = ri2(pi) 6 ?1 (B10)

where

{f 
(B 1)

0 otherwise
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Therefore, in the limit of specular surface. we have

(r, z - d) - . -d) (B12)

Thus, if we use the Legendre quadrature formula to discretize the boundary conditions.

then as the surface becomes more specular the number of quadrature angles does not

have to be increased and also the formulations does not have to be changed.

The boundary condition (B5) can be cast into the following the following matrix

equation:

I(z = -d) = W12 - I (z = -d) + ( 1 2 -1 (z = -d)

where

(B13)

Z4 (z = -d) =

-I(Pi, z -d)

I(p.z =-d)z

7 (z = -d) =

W W=

Iy, = -d)

z = -d)

Will

U) yl

U12 =

Thus, the appropriate boundary condition is given by

(B16)

(B17)

where

R 1 2 = I- U12 1

(B14)

(B15)

I+(z = -d) = R 12 - I (z = -d)

(B18)
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We note that

1, ~ 0 (B19)

and the coupling matrix is given by

R 2 = 12 (B20)

The boundary condition at z = 0 is next considered. Unlike the boundary con-

dition at z = -d, there is an additional source term. which is the incident intensity

being transmitted from the upper region. Consider the following scalar version of the

boundary condition at z 0:

I(r - 6, z = 0) = g(6, 0"j) - d6'sin 6' r 1 (6, 6') 1(0', z = 0) (B21)

where g(6, 6,,j) represents the incident intensity at 6,,, transmitted from region 0 to region

1. The second term in the left-side of the above equation can be approximated following

the same procedure outlined above for the boundary condition at z = -d. Thus, we

will concentrate on approximating the source term g(6,6,j).

We note that for g(g,6,,) which is a smooth function, there is no problem as long

as the number of quadrature angles is sufficiently large. Then, the boundary condition

can be discretized in a straightforward manner. In the limit of a specular surface, the

source term is given by the delta function and another approach must be used. One

way to bypass the problem of discretizing the delta function is to change the source

term at the boundary into the source term in the volume by calculating the zeroth-

order solution explicitly and using the radiative transfer equations for the higher order

terms with the zeroth-order solution acting as the volume source [Fung and Chen,
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1981b. However, this approach requires two different formulations for the rough and

planar boundaries. Also, the case of near specular surface where the source term is

very sharply peaked in the specular direction cannot be treated easily.

In Chapter 7. we outlined the procedure for discretizing the delta function and

keeping the source term at the boundary. This approach also gives the same solution

as the other approach of using the volume source terms. We will now generalize that

procedure and discretize the sharply peaked incident intensity. Consider an integral

given by

I f (0, ') g(' ( ) (B22)

where f(6. -') is a smooth function. Using the Gaussian quadrature method, the integral

I is approximated as

I a(f (6,j) g (B23)

Our task is to come up with a set of coefficients gj, such that the above approximation

is accurate for an arbitrary function g(o',6,j). Using the Legendre quadrature formula.

the integral I is accurately approximated as

.J=)

f (0S')w (B24)

where

W = dp g(p, pj) (B25)

Comparing (B24) and (B25), we obtain

_3 1 . (B26)
a1
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If we now let g(o', 1 ) (cos ' - cos 4,,) where t , is one of the quadrature angles

in region 0. the coefficients w, is given by

(B27)
cos j

SCOS 9

Thus. the discrete form for the delta function is given by

- 1 EcosO,2
93 ' - s a. C I Cos 1

(B28)

which is the same as the result given in Chapter 7. If g(6',&6j) is a smooth function,

then the coefficients w. can be approximated as

wJ ~-- g( py, p) J dyu

(B29)

Therefore,

g. = g(ftj, P i) (B30)

which is also a consistent result. Thus. the disretization of the source term by (B25)

and (B26) gives the correct results in both limits of very sharply peaked and smooth

incident intensities. We also note that

wy ~ 0 for j = -1, -2, - * , -n

= g(pi, y ei)ay

(B31)



Incident intensity

Region 0 Ell

Region I

2 Scattered intensity

z=0

= ~ ± t
1 1

(~). ~ / 1I,

(E If (F),f (F') = E'2,~ 6 exp [ .- + ' m !" -1 1j

z = -d

Region 2 to

Geometrical configuration of the problem.

298

Figure 10.1



299

z=0
= (1.01 + i0.001)q.,

0 = 0.05
. = 0.4 cm, 1,, = 0.4cm

z = - 50 CM
0 E2 = (10.0 + s1.0)C, s2 =0.05

hh

-10

Cvh
-20

-30

0 100 20 300 40 500 600 700 80

Figure 10.2 Backscattering cross sections as a function of incident angle for rough

surface and volume scattering at 5 GHz.
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CHAPTER 11

Conclusions and Recomendations for Future Studies

In this thesis, various theoretical models have been developed for electromagnetic

wave scattering and emission from layered scattering media with applications to mi-

crowave remote sensing of earth terrain. In the active and passive microwave remote

sensing of earth terrain, scattering effects due to medium inhomogeneities and surface

roughness play a dominant role in the determination of brightness temperatures and

radar backscattering coefficients. The volume scattering effects have been accounted

for by modeling earth terrain either as a random medium or as a homogeneous medium

containing discrete scatterers. The rough surface effects have been studied with mod-

els of random and periodic rough surfaces. In order to more realistically model earth

terrain. a composite model which accounts for volume and rough surface scattering is

developed.

The volume scattering effects due to medium inhomogeneities have been studied

by characterizing earth terrain with a layered random medium model. The radiative

transfer theory is used to calculate the backscattering and bistatic scattering coef-

ficients from a two-layer random medium. Radiative transfer equations are solved

numerically using the Fourier series expansion and the Gaussian quadrature method.

In order to explain the scattering and emission characteristics of earth terrain which

exhibit the effects of layered structure, the results have been generalized to the case
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of multi-layered random medium. The complexity of the problem is kept at the same

level as the two-layer cases by deriving effective boundary conditions which incorporate

all the properties of the medium below that boundary.

The rough surface effects have been studied with the models of random and pe-

riodic rough surfaces. The scattering and emission characteristics of randomly rough

surface is studied by deriving bistatic scattering coefficients for the reflected and the

transmitted waves with the Kirchhoff approach and the small perturbation method.

The geometrical optics solution modified to incorporate the shadowing effect is used to

study energy conservation and to derive the upper and lower bounds for the emissivi-

ties. The small perturbation method is modified with the use of a cumulant technique

which is shown to have wider regions of validity. Active remote sensing of plowed

fields has been studied with the model of a randomly perturbed quasiperiodic surface

and the Kirchhoff approach. The narrow-band Gaussian random variation around the

spatial frequency of the sinusoidal variation is used to introduce the quasiperiodicity.

It is shown that there is a large difference between the cases where the incident wave

vector is parallel or perpendicular to the row direction. When the incident wave vector

is perpendicular to the row direction, the maximum value of the backscattering cross

section does not necessarily occur at, normal incidence. The scattering pattern is in-

terpreted as a convolution of the scattering patterns for the sinusoidal and the random

rough surfaces.

The composite model comprising an inhomogeneous layer over a homogeneous

halfspace with rough boundaries has been developed to study the scattering and emis-

sion characteristics of earth terrain. The radiative transfer theory is used. The random

medium and discrete scatterer models are used to incorporate the volume scattering

effects. To model rough top and bottom interfaces, the bistatic scattering coefficients
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for a randomly rough surface obtained using a combination of Kirchhoff theory and

geometrical optics approach are used. Rough surface effects are incorporated into the

radiative transfer theory by modifying the boundary conditions. Because the bistatic

scattering coefficients for the rough surface violate energy conservation there is ambi-

guity in the emissivity. However. two alternate formulations are used to calculate the

emissivitv. By calculating the bistatic scattering coefficients of the scattering layer with

rough top and bottom interfaces and integrating over the upper hemisphere an upper

limit for the emissivitv is obtained by invoking the principle of reciprocity. A lower

limit for the emissivitv is obtained by directly calculating thermal microwave emission

and assuming that the same medium is at a uniform temperature. It has been shown

that the backscattering cross section for the angles of incidence near nadir is dominated

by the rough surface effects whereas the large angle of incidence behavior is dominated

by the volume scattering effects. The rough surface also causes the angular behavior of

thermal emission to become flatter and displays smaller differences between horizontal

and vertical polarizations due to more coupling of intensities at the boundaries.

The task of developing theoretical models is by no means complete. We have

considered primarily the radiative transfer theory which deals with the intensities of

the field quantities and neglects the coherent effects. There is a need to develop a

more complete theory that accounts for the coherence effects. The interference effects

due to the boundaries in the layered structures have been observed to be important in

some snow field measurements. Also, the coherence effects due to the conjugate fields

is large in the backscattering direction, especially for the depolarizied backscattered

intensities.

The problem of scattering and emission of electromagnetic waves from rough

surfaces remains a challenging problem. The solution which accounts for shadowing and
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multiple scattering and satisfies the principles of energy conservation and reciprocity

needs to be investigated.

The combined rough surface and volume scattering problem for the anisotropic

media still remains to be solved. The volume anisotropy plays a dominant role in the

remote sensing of vegetation canopy with row structures or sea ice where the brine

inclusions display a preferred direction. The rough surface anisotropy is a dominant

effect in the remote sensing of plowed fields.
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