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Abstract

A two-port coaxial cell was designed and manufactured to operate under pressures of up to
20,000 psi. The cell can be used for measuring scattering parameters of fluids and fluid-
saturated solids at high frequencies. Inversion models were developed to retrieve the

complex dielectric constant from the measured scattering parameters.

Using this cell, we studied the complex dielectric constant of pure water and .6 i2-m waters

in the pressure range of 14 - 20,000 psi. Also two rock samples, Berea and Massilon,

saturated with .1 9-m water, were measured under pore pressures in the range of 14 -

20,000 psi. At atmospheric pressure, Berea has a porosity of 19% and Massilon has a

porosity of 24%. The effect of pressure on their high frequency dieletric constant and

conductivity was determined. The frequency dependence of this pressure effect is also

investigated.

The dielectric constant of the two water solutions was found to increase as pressure is

applied. The conductivity of the .6 f2-m water was also found to increase as pressure is

applied. The conductivity of the pure water, on the other hand, changed in such small
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amount, that the measurement noise overshadowed the data. The frequency dependence of
the pressure effect on the dielectric constant is to increase the dielectric constant as
frequency is increased. The pressure effect on the conductivity of the .6 f2-m water also
increases as frequency is increased. The high frequency dielectric constant of pure water
was extrapolated to determine the DC dielectric constant for selected pressures. The DC
values were then compared to the data from Srinivasan and Kay. The data from these
experiments and the literature values showed good agreement. The overall behavior of the
conductivity of the two waters is similar to what Adam and Hall observed in their
conductivity data.

The effect of pore pressure on the dielectric parameters of Berea and Massilon at high
frequency was also studied. The dielectric constant of Massilon increased as pressure is
applied. The conductivity of both Berea and Massilon increased as pressure is applied.
There seems to be no apparent frequency dependence of this increase in all cases.
However, it is interesting to note that the overall effect of pressure on the conductivity of
Massilon is greater than that of Berea.

Schlumberger-Doll Research Supervisors: Dr. M. Reza Taherian

Dr. Tarek M. Habashy

M.I.T. Thesis Supervisor: Professor Jin A. Kong

2



Acknowledgements

I thank my two company supervisors, M. Reza Taherian and Tarek M. Habashy, for their
valuable mentorship and friendship. I admire and respect these men for their scientific and
personal accomplishments and for the depth of their personal involvement with me during
the entire research.. They set exceptionally high standards for their peers, and I am honored
by their confidence in me.

I am very grateful to my thesis supervisor, Professor Jin Au Kong, for his guidance and
encouragement.

I thank Ray White for sharing his expertise in design work. I also thank him for the tennis
lessons and for making my stay at Schlumberger very pleasant. You are a great guy.

I thank Lisa Louie and M. Relton for helping me with the mechanical analysis in the design
of the cell.

I thank Andy, Larry, Joe, Ken, Dave, Jeff, and Yupai for their friendship and warmth; you

have given me new confidence that intellectual brilliance and personality are not mutually

exclusive.

3



To my Parents and Grandparents
with Love

4

-" i 11!111 !1111111 -



Table of Contents

A bstract ............................................................................................. 1
Acknowledgements.............................................................................3

Table of contents................................................................................5

List of figures ................................................................................... 7
List of tables.................................................................................... 9
1 INTRODUCTION.........................................................................10

2 LITERATURE REVIEW ............................................................. 12
3 METHODS OF INVESTIGATION ............................................... 15

3.1 Experimental Approach................................................................15

3.1.1 High-pressure cell.......................................................... 16
3.1.2 Acquisition and processing units ......................................... 24
3.1.3 Pressurizing unit........................................................... 26

3.2 Theory and Operation Principles .................................................. 29
3.2.1 Equivalent model..............................................................31

3.2.2 Forward model ............................................................ 34

3.2.3 Inversion ....................................................................... 37
3.2.3.1 Inversion (I) for sample......................................37

3.2.3.2 Inversion (II) for sample ....................................... 39

3.2.3.3 Inversion (III) for sample ......................................... 40

3.2.3.4 Inversion for seal................................................43

3.3 Procedure.............................................................................45

3.3.1 Preparation of solutions and core samples ............................... 45

3.3.2 Temperature consideration ................................................. 46

4 RESULTS .................................................................................. 49

5 SUM M ARY .............................................................................. 78

6 APPENDICES............................................................................. 79

A. 1 Measurement Setup .................................................................. 79

B. 1 Clamping Force versus Thread Friction Coefficient ............................. 82

C. 1 Acquisition Code.....................................................................84

D. 1 Forward Model............ . .................................. 94

5

-1"



E. 1 Inversion (I) for sample ............................................................. 97

E.2 Inversion (II) for sample .............................................................. 100

E.3 Inversion (III) for sample ............................................................. 104

E.4 Inversion for seal.......................................................................110

F.1 Data as a Function of Frequency at 1100 MHz ..................................... 116

R eference ........................................................................................... 124

6

-- % I I 1011



-H

List of Figures

Figure page

3.1.1 Overall High-Pressure System ................................................... 15
3.1.1.1 Disassembled High-Pressure Cell...............................................17

3.1.1.2 Cross Section of the High-Pressure Cell..........................................17

3.1.1.3 Housing Design .................................................................... 18

3.1.1.4 Seal D esign ........................................................................... 19

3.1.1.5 Cap Design..........................................................................20

3.1.1.6 High-Pressure Region without Ends ............................................ 21

3.1.2.1 Simplified View of the Acquisition/Processing System.........................25

3.1.3.1 Pressurizing System...............................................................27

3.2.1 Coaxial Cell.........................................................................29

3.2.2 Definition of Scattering Parameters .............................................. 30

3.2.1.1 Same Orientation..................................................................31

3.2.1.2 Opposite Orientation ............................................................... 31

3.2.1.3 Half-Cell with a PMC Termination .............................................. 32

3.2.1.4 Half-Cell with a PEC Termination ............................................... 32

3.2.1.5 Complete Transformation Process .............................................. 33

3.2.2.1 Schematic of a Half-Cell .......................................................... 34

3.3.2.1 Temperature of the Cell as a Function of Time ................................... 48

4.1 Dielectric Constant of Pure Water as a Function of Frequency for
Selected Pressures ................................................................ 50

4.2 Conductivity of Pure Water as a Function of Frequency for Selected
Pressures...........................................................................51

4.3 Curve-Fitted Dielectric Constant of Pure Water as a Function of
Frequency for Selected Pressures................................................52

4.4 Measurement versus Tait Data for Pure Water................................ 53

4.5 Dielectric Constant of Pure Water as a Function of Pressure for
Selected Frequencies..............................................................55

4.6 Conductivity of Pure Water as a Function of Pressure for Selected
Frequencies ......................................................................... 56

7



4.7 Conductivity of Pure Water as a Function of Pressure at 3000 MHz..........58
4.8 Dielectric Constant of .6 Q-m Water as a Function of Frequency

for Selected Pressures ............................................................. 59
4.9 Conductivity of .6 Q-m Water as a Function of Frequency for

Selected Pressures ................................................................... 60
4.10 Curve-Fitted Dielectric Constant of .6 Q-m Water as a Function of

Frequency for Selected Pressures................................................61
4.11 Extrapolated DC Dielectric Constant for Pure Water and for .6 Q-m

w ater................................................................................ 62
4.12 Dielectric Constant of .6 92-m Water as a Function of Pressure for

Selected Frequencies............................................................. 63
4.13 Conductivity of .6 Q-m Water as a Function of Pressure for

Selected Frequencies............................................................. 65
4.14 Dielectric Constant of Berea, Saturated with .1 fl-m Water, as a

Function of Frequency for Selected Pressures ................................ 67
4.15 Conductivity of Berea, Saturated with .1 Q-m Water, as a Function of

Frequency for Selected Pressures................................................68

4.16 Dielectric Constant of Berea, Saturated with .1 fl-m Water, as a
Function of Pressure for Selected Frequencies.................................69

4.17 Conductivity of Berea, Saturated with .1 fl-m Water, as a Function of
Pressure for Selected Frequencies ............................................... 70

4.18 Dielectric Constant of Massilon, Saturated with .1 92-m Water, as a
Function of Frequency for Selected Pressures ................................ 72

4.19 Conductivity of Massilon, Saturated with .1 Q-m Water, as a Function
of Frequency for Selected Pressures.......................................... 73

4.20 Dielectric Constant of Massilon, Saturated with .1 fl-m Water, as a
Function of Pressure for Selected Frequencies.................................74

4.21 Conductivity of Massilon, Saturated with .1 f-m Water, as a Function
of Pressure for Selected Frequencies .............................................. 76

8



List of Tables

Table page

4.1 Tait Constants for Pure Water...................................................49

4.2 Curve-Fitting Equations for Dielectric Constant of Pure Water as
a Function of Pressure for Selected Frequencies.............................57

4.3 Curve-Fitting Equations for Dielectric Constant of .6 Q-m Water
as a Function of Pressure for Selected Frequencies.........................64

4.4 Curve-Fitting Equations for Conductivity of .6 Q-m Water as a
Function of Pressure for Selected Frequencies................................66

4.5 Curve-Fitting Equations for Conductivity of Berea, Saturated with
.1 Q-m Water, as a Function of Pressure for Selected Frequencies ........... 71

4.6 Curve-Fitting Equations for Dielectric Constant of Massilon, Saturated
with .1 92-m Water, as a Function of Pressure for Selected Frequencies.....75

4.7 Curve-Fitting Equations for Conductivity of Massilon, Saturated with
.1 92-m Water, as a Function of Pressure for Selected Frequencies ........... 77

9



Chapter 1

INTRODUCTION

High frequency dielectric constant and conductivity of rock formations are used for
borehole geophysical applications. Dielectric logging is an established technique in oil
exploration. These dielectric constants and conductivities are usually used to determine
geophysically important quantities, such as water-filled porosity. When compared with
total porosity, the water-filled porosity is used to calculate water saturation of earth
formation. In the oil bearing zones, this is an indication of the mobility of the
hydrocarbons. Therefore, accurate quantitative determination of these parameters is of great
interest in oil-well logging.

Although the dielectric and conductivity measurement of reservoir rock formations is
important, many geophysical factors, such as pressure, affect the measurements. The effect
of pressure on the complex dielectric constant of the reservoir rock formations has been
ignored in laboratory measurements due to the technical difficulty in simulating borehole
conditions. With the rising demand for more accurate determination of dielectric
information in dielectric logging, it is imperative that we take this factor into account. To
my knowledge, no high-pressure, high-frequency dielectric measurement has been reported
in literature.

Measurements of the dielectric constant and conductivity of aqueous electrolyte solutions

and brine-saturated rocks under high pressure have been the subject of several

investigations in the past. However, all these measurements were carried out with DC

excitation. The permittivity of electrolyte solutions and brine-saturated rocks have been

measured at high frequency for many years, but there is no study of their permittivity at

high pressures.
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In studying the behavior of rock formations under pressure, it is important to distinguish
between pore pressure and confining pressure. Pore pressure originates from the fluid
inside the rock. Confining pressure is the pressure imposed on the rock matrix. In an oil
well, these two pressures are functions of rock type, depth, and temperature. In order to
determine accurate dielectric information for dielectric logging, it is important to understand
their respective roles in different conditions.

In this study, we have devised a laboratory method to measure the dielectric constant and
conductivity of electrolyte solutions under high pressure and brine-saturated rocks under
high pore pressure at frequencies up to 3 GHz. This method employs a high-pressure
coaxial cell. A hollow-cylindrical sample is placed inside the cell. A TEM wave propagates
through the cell and the scattered intensities are measured with a network analyzer. From
the scattering parameters, we are able to invert for the complex dielectric constant of the
sample of interest at the pressure of the experiment.

In the next section the work of several pioneers in the field of high pressure dielectric and
conductivity measurements is reviewed. Although these measurements were at DC, we
will later use some of them to compare with our results. The next section is a description of

the proposed permittivity measuring cell. We then briefly describe the theoretical

background needed to develop the forward model and the inversion algorithm. Finally, we

discuss the results obtained from measuring several fluids and fluid-saturated rock

samples.
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Chapter 2

LITERATURE REVIEW

Measurements of the dielectric constant and conductivity of liquids under high

pressure have been made as early as the late 1800s. Roentgen, Ratz, Barus, and Lussana

are among the first researchers to investigate the effect of high pressure on the dielectric

constant and conductivity of the liquids. But the pressures considered were comparatively

low, due to the limited availability of equipments. It is also important to note that all the

early experiments were carried out with DC excitation.

In the early part of this century, fewer efforts are made to understand the high pressure

effect on liquids. The most interesting work was the study on the high pressure dependence

of several polar organic liquids by Onsager and Kirkwood.

Adam and Hall studied the behavior of liquids under high pressure in 1931. They measured

the conductivity of few strong electrolyte solutions and concluded that the pressure has no

significant effect on the resistivity of the solutions except in very conductive solutions.

Quist and Marshal measured the conductivity variations of sodium chloride solutions as a

function of both temperature and pressure in 1967. They descibed the temperature and

pressure effects on dielectric constant in terms of density and viscosity of the solution.

Recently few more liquids have also been measured in a high pressure environment. The

static dielectric constant of H20 and D20 were measured by Srinivasan and Kay in 1973.

Vij studied the pressure and temperature dependence of the dielectric constant of 1,1-

dimethoxy-2-propanol in 1973. Finally, Haynes measured the dielectric constant of normal

butane, isobutane, and propane in 1983.
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The experimental techniques used in all these studies involved a capacitor-type

measurement. Although these studies were at DC, there are cases where frequencies in the

audio and radio range were used. In 1956 Gilchrist, Earley, and Cole studied the effect of

pressure on dielectric constant and loss tangent of 1-propanol and glycerol. They measured
these samples at pressures of up to 1,000 kg/cm 2 (approximately 14,000 psi) and at room

temperature. The increase in static dielectric constant was found to be less than the
predicted value from density increase alone. They explained the difference in terms of
molecular compression and liquid structure effects.

Although Archie was not involved in pressure dependence of the electrical properties of

saturated rocks, he was the first to quantitatively relate the resistivity of the brine-saturated

rocks to the resistivity of the brine in 1941. Although his experiments were carried out at

atmospheric pressure, his work formed the basis on which all future analyses of pressure

dependence of water-saturated rocks have been treated. He defined formation factor, F, by
the following equation:

Ro = FR, (1)

where RO is the resistivity of the brine-saturated rock and R, is the resistivity of the brine.

He then showed that this formation factor is related to the porosity of the rock by the

following equation:

F = (D-' (2)

where (D is the porosity of the rock and m is the porosity exponent or cementation factor.

Archie's law was later generalized by W. Winsauer in 1952. The generalized relationship

has the following form:

F = CG -'" (3)

where C is determined experimentally from measurements of rocks with different 0 or

different R,.

In the next few paragraphs, we review the work done on the measurement of the DC

resistivity of rocks. The first attempt was by I. Fatt in 1957. He studied 21 brine-saturated

rock samples and determined that the resistance, and therefore the formation factor,
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increases as the pressure is increased. He also found that the exponents and coefficients in
the Archie's law are functions of the pressure.

In 1958 Wyble measured the conductivity variations of three sandstones as a function of
pressure up to 5,000 psi. He observed a similar trend of decrease in conductivity, porosity,
and permeability with pressures of up to a 3,500 psi. From this data, the increase of
formation factor over the same range was calculated. His results showed that Archie's
cementation exponent increases with pressure.

Brace, Orange, and Madden in 1965 reported the effect of pressure on the resistivity of
eight igneous rocks and two crystalline limestones. The rocks were saturated with tap water
or brine solution. They observed that the resisitivity increases as pressure increases. On the
other hand, surface conduction (conduction due to the presence of solids, such as clay or
shale, along the network of pores, cracks, and passages) decreases with increasing
pressure. They explained the phenomenon in terms of closure of some flow passages as a
result of an increase in confining pressure.

In 1987 Johnston studied the resisitivity of three shales at pressures of up to 800 bars
(approximately 12,000 psi) and temperature of up to 100*C. He realized that the resistivity
of the shales increases rapidly at lower pressures and levels off at higher pressures due to
the closure of microcracks in the rock matrix. He also noted that shales in general are less
sensitive to pressure changes than sandstones with similar porosity.

Although these studies have attempted to determine the effect of pressure on the dielectric

constant and conductivity of rocks, none has been carried out at high frequency. These

measurements are relevant to resistivity logging, but the frequencies of measurement are

not high enough for dielectric logging. We feel that high pressure permittivity

measurements at high frequencies will provide new information to better relate the

laboratory dielectric measurements with downhole logs.

We have devised a new cell to determine the dielectric constant and conductivity of fluids

and fluid-saturated rocks under high pressure and at high frequencies. This cell is described

in section 3.1.1.
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Chapter 3

METHODS OF INVESTIGATION

3.1 Experimental Approach

In this study, a high-pressure system is designed to operate at pressures of up to

20,000 psi. A photograph of the overall system is shown in Figure 3.1.1.

Figure 3.1.1: Overall High-Pressure System

For the sake of this discussion, the overall system is divided into three sub-units. These

sub-units are the high-pressure cell, the data acquisition/processing unit, and pressurizing
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unit. In the next three sections, we will describe in detail the design, implementation, and
function of each of the three sub-units.

3.1.1 High-pressure cell

The high-pressure cell is essentially a two-port symmetrical coaxial line with sections filled
with different materials. The advantage of two-port cells is that a full set of scattering
parameters can be measured. In designing this cell, there are two options available. The
first option involves making a lossless 50- coaxial line up to the sample chamber. This
structure requires calculation of only one reflection coefficient at the interface between the
lossless 504 section and the sample. However, this would cause abrupt jumps in either
the inner or the outer conductor. Consequently, TM modes have to be taken into
consideration. The second option involves making a continuous coaxial line with non 50-0
sections. Local reflection coefficients at the different junctions have be to calculated, but
there is only TEM mode in this case. We chose to use the second option, because it is
simpler in terms of theoretical modeling of the coaxial line. Once we have decided on using
the second option, the following criteria must be observed.

a. It should simulate a coaxial line with no discontinuities or abrupt junps in the
dimensions of either inner or outer conductor.

b. It is preferable to have end configuration which is compatible with the GR900
connectors.

c. There should be provisions to allow additional fluid to enter the sample chamber to
attain the desired pressure.

d. It should withstand pressure up to at least 28,000 psi. This is precaution to make the
high-pressure cell man-safe.

e. The inner and outer conductors should have minimal change in dimensions as a result
of high pressure.

With these criteria in mind, now we will discuss the design of the high-pressure cell. A

photograph of the disassembled cell is shown in Figure 3.1.1.1. An overall cross-section

of the assembled cell is shown in Figure 3.1.1.2.
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Figure 3.1.1.1: Disassembled High-Pressure Cell

housing sample seal cap

Figure 3.1.1.2: Cross Section of the High-Pressure Cell

The cell consists of a housing where the sample is placed in its center. The sample has the
configuration of a hollow cylinder. High-pressure seals are placed on the two sides of the
sample. These are followed by sections of airline which are attached to RF connector
(GR900). The sample compartment is pressurized by the injection of a pressurized fluid (in
the case of water-saturated rocks, this is the same as the saturating liquid) through a small
bleedhole in the middle of the cell (not shown). The two high-pressure seals isolate the
pressurized sample chamber from the atmospheric pressure air sections in the caps. The
caps provide the basic mechanism to hold the seals in place. Even though all the
components have very different structures, when assembled there are no discontinuities or

17



abrupt jumps in either inner or outer conductors. This characteristic is crucial, since this
eliminates the possibility of creating TM modes. However, this translates to the formation

of sections with different characteristic impedances. In the following paragraphs,
descriptions of the components are given.

J71050 2DIA

1.250-20UN-2B

20 Type

00 X 45 Type

3.1 
Material: INCONEL-X750

4.38

Figure 3.1.1.3: Housing Design

A cross sectional view of the housing is shown in Figure 3.1.1.3. Note that the inner
diameter of the center section is the same as that for the GR900 connector. The housing is
made from INCONEL-X750, a nickel-chromium alloy. We choose to use this material for
its excellent corrosion and oxidation resistance. It also has high tensile strength which

enables this material to maintain its shape under high pressure.
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.372 .125 D

MATERIAL: INCONEL-X

1 047 DIA

.885 DIA

.r'5625 DIA

.2 4 42 5 DIA

1.116

.890-14

7501.25750 1.50 --

Figure 3.1.1.4: Seal Design

The high-pressure seal is shown in Figure 3.1.1.4. The inner diameter of the outer
conductor corresponds to that of the GR900 connector. Similarly, the center rod has the
same diameter as the inner conductor of the GR900 connector. The high-pressure seal
conductors are also made of INCONEL. The space between the inner and outer conductors
is filled with a yellowish ceramic called Kyro-flex 314. The metal parts and the ceramic
parts are first heated to a temperature of 1 100'F. Then in its liquid state, the ceramic is
poured into a customized jig, where the outer and inner conductors are fitted precisely in a
manner to achieve a high concentricity. The seal is then placed in an ambient temperature
environment overnight to cool down. After the ceramic solidified in place, a grinding
machine is used to shave off the .003" menicus formed as the result of the cooling process.
The finished seal has a width of 1.116". The seals have been designed to withstand high
pressures. They are manufactured by Kyle Technology Corporation. One major reason for
using INCONEL in the design of the pressure seals is that Kyro-flex binds only to
INCONEL. On the outer surface of the seal two grooves are machined for the installation

of two VITON 95 durometer O-rings. These O-rings prevent any leakage of liquid from the

sample chamber to the air sections.

19
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1.375 HEX

0.625 DIA

0.015 DEEP 45 Type .030 X 45

0.5625
SDIA

*

S0015

0.50

4-1.000

0.100

1.170 DIA

Material: MONEL-K500

Figure 3.1.1.5: Cap Design

The end cap is shown in Figure 3.1.1.5 and is made of MONEL-K500, a nickel-copper

alloy. This metal also exhibits excellent corrosion and oxidation resistance characteristics.
The use of a different metal from INCONEL for manufacturing the end caps reduces the

possibility of galling between the cap and the housing. Galling is a phenomenon where
similar metal parts fuse together as a result of pressure. The cap has a thread length of two
inches. This length is chosen to ensure that the high pressure seals will stay in place when
the pressure is applied in the sample chamber. The connector side of the cap was machined

to specific outer diameter and groove dimensions to match the fitting on the GR900

connector. The inner conductor is made of five pieces of 0.24425" diameter stock. The

inner conductor sections, except for the sections in the pressure seals, are also made of

MONEL. The reason for using different materials is to prevent galling between different

sections.

So far we have discussed the physical construction of the cell to meet the criteria mentioned

earlier. Now we will discuss the mechanical issues to ensure that the cell can indeed operate

20
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with pressures of up to 20,000 psi in its sample chamber. Dimensions of the different
components of the cell were calculated to ensure the safe operation of the system.

In order to avoid any possibility of metal rupture under 20,000 psi, we have determined the
maximum pressure that the cell can withstand with the given dimensions. The high-
pressure seals have been tested by Kyle Technology Corporation and shown to withstand
the pressure. We neglect the inner conductor, since its presence does not effect the pressure
rating of the sample region. The high-pressure region then simply becomes the hollow-
cylindrical structure shown in Figure 3.1.1.6.

R =0.95" P

RI=0.28125"

z

Ld -1.50

Figure 3.1.1.6: High-Pressure Region without Ends

Note that in this analysis cylindrical coordinate system is employed. Since the following
condition holds, thick wall analysis is assumed for the sample chamber.

2(R0 - R1) 0.66875
(R.+R ) - 0.615625 (4)

In this analysis, we can neglect the radial stress experienced by the cylinder, since

calculations based on the radial stress analysis will provide us with only the upper limit for

the sustainable pressure in the sample chamber, we are interested in the lower limit. We

now consider tangential and axial stress components for the cylinder. The fundamental

stress equations can be found in most modem textbooks. The tangential stress equation is

given below. (M.I.T., 2.30 Mechanical Behavior of Materials, Handout 3, Spring 1989)
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Wd 2 -1 +r (5)

where ae is the tangential stress, po is the pressure outside the cylinder, pi is the pressure
inside the cylinder, a is the inner radius of the hollow cylinder, b is the outer radius of the
hollow cylinder, and r is the radial coordinate from the center of cylinder where the stress
analysis is carried out.

The highest point of stress is on the inner wall of the cylinder, where the pressure is
directly applied. Therefore, by setting r to Ri in eqs. (5), we obtained the following
equation:

a,(r) = p, - p,2

R 1 (6)

Making appropriate substitution of variables and rewriting the tangential stress equation,
we obtained the following relationship:

- e[~)2l1]+ 2P. (R)2

1+

In this analysis, po is atmosperic pressure, approximately 14.7 psi. In order to determine
the maximum pressure which can be sustained in the tangential direction, the yield strength
for the cylinder must be known. From a table of mechanical properties for INCONEL-
X750 (Alcan Corporation's Metalog), we obtained a yield strength of 100,000 psi. This
value can be substituted for a(e. Subtituting the appropriate values in eq. (7), we get
pi=83,856 psi. This means that the sample chamber can withstand pressures of up to
83,856 psi in the tangential direction. Since the sample chamber is pressured to only
20,000 psi, there is no problem in the tangential direction.

Now we will consider the axial stress component and carry out a capped cylinder analysis.
Can the end caps hold the seals in place under pressure? In order to analyze this issue, the

force, generated from the pressurized fluid in the sample chamber, on the seal must first be

determined. This force is calculated using the following equation:

22



F =(p, - p.)(a2 - b2 (8)

Since the pressure in the axial direction is actually applying directly on the seals, the inner
and outer radii, a and b, are those for the high-pressure seals shown in Figure 3.1.1.4.
a=.28125" and b=.5235". From eq. (8), we get F=3,896 lbs at pi of 20,000 psi.
Therefore, the clamping force of the pressure cap must be at least 3,896 lbs. to prevent the
seals from shooting outward. Two inches of thread, 1.250-20UN-2A, is machined onto
the pressure caps for this application. In order to ensure that the two inches of thread can
provide a clamping force of at least 3,896 lbs., empirical data is obtained for a similar
thread configuration. This data is included in Appendix B. 1. (Draper Laboratory intralab
memorandum on graphs to determine screw tightening torques) On the graphs, clamping
force is given as a function of thread friction coefficient at different torques. Since the
threads on the pressure cap are well lubricated, a thread friction coefficient of 0.12 is used.
A torque of approximately 100 lb-in is used in securing the pressure cap in place. Since
available data only covers torques of up to 13 lb-in, a linear interpolation scheme is utilized
to calculate the clamping force when the applied torque is 100 lb-in. From this scheme, a
clamping force of 4940 lbs. is obtained for the pressure cap. This indicate that the high-
pressure seals can indeed operate properly with pressures of up to 20,000 psi in the sample

chamber. Actually, the end caps can operate to pressures of as high as 25,354 psi.

Finally, the issue of changing dimensions in both inner and outer conductors of the sample

chamber as a result of high pressure is addressed. The change in dimensions of the inner

and outer conductors can create problems with RF propagation in the cell and it is very

important to keep this change at minimum. To calculate the actual change in the outer

conductor, the strain equation for the coaxial line must be utilized. (M.I.T., 2.30

Mechanical Behavior of Materials, Handout 3, Spring 1989)

Er (1+ V) {(_ 2v)[ P 0 ( )] + (p, - p.)( -E)2

r E ( 1) 
-(

where Er is the strain, ur is the actual displacement, v is the poisson's ratio, E is the

young's modulus, and Eo is initial strain.
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In this analysis, there is no initial strain on the outer conductor, therefore, Ec=0. The actual

change in the outer conductor can be calculated by setting r in the above equation to R;.
Substituting in the appropriate variables, the following equation is obtained.

Ur = (1+v)R' (1-2v)p, - p,(R +(p, - p,)
)1] 

(10)

From a table of mechanical properties for INCONEL-X750, v equals 0.29 and E equals
31,000,000 psi. (Alcan Corporation's Metalog) Now substituting the appropriate values in
the above equation, we obtain ur=0.0002 7 02 3 in. We can neglect the effect of this change,

since it amounts to only 0.05% of the undisplaced dimension.

Now the effect of pressure on the inner conductor is considered. The strain equation has

the following form for a solid stock.

E = =
r r E (11)

The inner conductor is made from MONEL-K500. From a table of mechanical properties

for MONEL-K500, a value of 26,000,000 psi is obtained for its young's modulus. (Alcan

Corporation's Metalog) Assuming maximum stress on the inner conductor is 20,000 psi,

we calculate the strain, Er, to be 0.00076923. Consequently, the actual displacement, ur,
equals 0.00009394". The percentage change under a pressure of 20,000 psi is only .077%.

We can also neglect the effect of pressure on the inner conductor. In the next section the

acquisition and processing units are described.

3.1.2 Acquisition and processing units

The acquisition and processing system consists of the HP network analyzer/S-parameter

test set, desktop computer, mainframe processor, and a laser printer. A schematic of the

system is shown in Figure 3.1.2.1.
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Mainframe
VAX Macintosh II - Line Printer

HP 8753A
Network Analyzer

HP 85046A
S-Parameter Test Set

Cell

Figure 3.1.2.1: Simplified View of the Acquisition/Processing System

The network analyzer (Hewlett-Packard 8753A) and S-parameter test set (Hewlett-Packard
85046A) are the basic components which measure the scattering parameters for the high-
pressure cell. They are connected to the cell by flexible 4-foot coaxial cables. These cables
are the test port extension cables of the TS7878 Series by Quality Microwave Interconnects
Inc. Their operation range is from DC to 6 GHz and they are phased matched to 2' at 1.3
GHz to ensure repeatable, low-loss RF connections to the cell. The HP measurement
system is designed to measure the reflection and transmission characteristics of devices, a
high-pressure cell in this case, by applying a known signal and measuring the response of
the test device. The signal transmitted through the device or reflected from its input is
compared with the incident signal.

The HP 8753A network analyzer integrates a high resolution synthesized source and a dual
channal three-input receiver to measure and display magnitude, phase, and a group delay of
transmitted and reflected power. The built-in synthesized source produces a RF signal in
the range of 300 KHz to 3 GHz. The RF output power is leveled by an internal automatic
leveling control circuit. To achieve frequency accuracy and phase measuring capability, the

network analyzer is phase locked to a highly stable crystal oscillator. For this purpose, a
portion of the output signal is routed via the test set or other external coupling to the input
of the receiver, where it is sampled by the phase detection loop and fed back to the source.
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The HP 85046A S-parameter test set contains the hardware required to make simultaneous
transmission and reflection measurements in both the forward and reverse directions. An
RF path switch in the test set is controlled by the network analyzer so that reverse
measurements can be made without changing the connections to the device under test.

The operation of the network analyzer is controlled with a Macintosh computer. The IOtech
MacDriver488 controller card was installed on the Macintosh II computer to provide an
IEEE interface to the HP measurement system. With this interface installed, a Microsoft
BASIC code was developed to automate the entire data acquisition process. This code

enables the user to access a number of functions, such as calibration of network analyzer

with standard terminations, measurement of scattering parameters, saving of measurement

data to internal memory device, retrieving data, printing data on a laser printer, and finally

plotting data in various graphical forms. A copy of this code can be seen in Appendix C. 1.
The primary function for the Macintosh computer is to automate the data acquisition

process. The secondary function is to send raw data to the mainframe processor where

inversion of scattering parameters takes place.

The actual computation of the complex dielectric constant is performed on the VAX

mainframe computer. Inversion codes are developed and stored on the VAX mainframe.

The VAX receives raw measurement data from the Macintosh computer and perform

different inversion schemes. As a result, a set of complex dielectric constant as a function

of frequency is returned to the Macintosh computer where printing and plotting can be

performed on the data.

3.1.3 Pressurizing unit

A pressure system capable of generating pressure of up to 20,000 psi is described. A

schematic of this system can be seen in Figure 3.1.3.1.
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Figure 3.1.3.1: Pressurizing System

The notations used in Figure 3.1.3.1 are defined in the following:
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PP - pressure pump

VP - vacuum pump (VP1,VP2)

PG - pressure gauge (PG1,PG2)

A - accumulator

OR - oil reservoir

WR - water reservoir

CE - cell

C - cross

V - valve (V1-V8)

A manually operated piston screw pump is used to generate pressures of up to 20,000 psi.
This high-pressure pump is manufactured by High Pressure Equipment and is applicable to
experiments where a fluid is to be compressed with a small volumn in order to develop the
desired pressure. For this specific application, the 37-6-30 generator, pressure rated to
30,000 psi, is employed. However, this generator has a volumn of merely 11 cc. This
small volumn can pressurized the system to only 1,200 psi. In order to generate pressures
of up to 20,000 psi in this study, a procedure has been developed to allow more oil to enter
the system. This procedure is presented in Appendix A. 1.

An EPS Clamart accumulator, which is essentially a piston-type pressure transformer, is
used to transfer pressure from oil region to fluid region. The primary reason for using two
different liquids in this pressurizing system is that the pressure pump functions most
effectively when the hydraulic fluid is viscous. The 200 cs. viscosity oil from Dow
Coming is used in this study.

Two pressure gauges, made by Heise Plant Division of Dresser Industries, are installed to

measure pressures in oil and fluid regions. They have large 1000 scale divisions over their

0-20000 psi range. It is possible to read to the smallest scale division used, or 20 psi.

These gauges are calibrated with dead weigh tester, model 1277, by Harwood Engineering

whose accuracy is traceable to the National Institute of Standards and Technology. The

accuracy, as reported by the Heise Company was 0.1% of the full scale. Since the full scale

reading of the two gauges is 20,000 psi, the maximum error is 20 psi. It is important to

note that a maximum vacuum of 5 m of mercury can be drawn in the gauges. Precaution

must be taken when drawing a vacuum in the two regions during the setup procedure.

(refer to Appendix A. 1)
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Valves and crosses are fitted at various locations to accommodate the installation of vacuum
pumps and inlet sources. A step-by-step setup procedure for the pressurizing system is
given in Appendix A.1. In the following section, the theoretical modeling of the high-
pressure cell is discussed.

3.2 Theory and Operation Principles

The problem of predicting the response of the cell, that is to determine its scattering
parameters when the complex dielectric constant of the sample is known, is called the
forward modeling. The reverse problem of solving for the complex dielectric constant with
known set of scattering parameters is known as inversion. In order to fully understand
these two processes, one must understand the boundary value problem associated with this
coaxial cell. A simplified version of this cell is shown in Figure 3.2.1.

air

I

sample seal

I I

I I T

Figure 3.2.1: Coaxial Cell

The cell is basically a coaxial line with three different sections as discussed in the cell

design in the last chapter. The white portions represents the air sections in the caps. The

checker-patterned middle section represents the sample. The sparsely-dotted sections

represents the high-pressure seals. In our design, each of the sections has a different

characteristic impedance.

An incident TEM wave from a network analyzer, I, enters the cell from the left and

propagates to the right. Because of the impedance mismatch at the boundaries separating
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various sections, part of this incident wave is reflected back at each boundary and travels to
the left, R. The remainder of the wave is attenuated through different sections and
transmitted to the right end, T. In the steady state, and because of multiple reflections
between the various boundaries, a standing wave is developed in the various sections of the
cell. Since we are making a two-port measurement, four scattering parameters, namely,

S11, S12, S21, and S22 are obtained. They are defined in Figure 3.2.2.

1 =
-

I-
imI!.I~i pI~I uu I-

R2

Coaxial waveguide

Y0  [S] Y

I I

Scattering representation

R
Si 12) =0

I i

R 2
S21= 2 12=

12

R
s12=--1  Ii1=o

1 2

_R 2 11=0
S22--

12

Figure 3.2.2: Definition of Scattering Parameters
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From these scattering parameters, we can infer the complex dielectric constant for the
sample.

The original boundary value problem in Figure 3.2.1 can be simplied a great deal if one
considers the following equivalent problem.

3.2.1 Equivalent model

The original configuration in Figure 3.2.1 can be made up from the superposition of two

simpler configurations shown in Figure 3.2.1.1 and Figure 3.2.1.2. In Figure 3.2.1.1,
one should note that the incident field on the opposite ends of the cell have the same
amplitudes and orientations. On the other hand, the incident fields at the two ends of the
cell in Figure 3.2.1.2 differ in orientations, but have the same amplitudes.

Case 1

1/2

R1/2

JI/ 2

T1/2

R1=T1

Figure 3.2.1.1: Same Orientation

Case 2

1/2

R2/2 -4

-1/2

T2/2

R2=-T2

Figure 3.2.1.2: Opposite Orientation

One can now exploit the symmetry in case 1 (configuration in Figure 3.2.1.1) to further

simplify the problem. The incident waves, with an amplitude half that of the wave of the
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original problem, enters the cell from the two ends and propagate towards the sample. Due
to the mismatch at the different junctions, reflected waves are generated. From symmetry,
the amplitudes of these reflected waves should be identical. Because the incident electric
fields have similar orientations, they would reinforce each other at the center plane of the
cell and the magnetic fields would cancel. Realizing that this is a characteristic of a perfect
magnetic conductor (PMC), one can replace the two-port cell of Figure 3.2.1.1 with the
simpler structure of a one-port cell with PMC termination as shown in Figure 3.2.1.3.

1/2

R1/2

PMC

Figure 3.2.1.3: Half-Cell with a PMC Termination

The analysis for case 2 (the configuration in Figure 3.2.1.2) is very similar to that for case
1. The incident fields now have opposite orientations, but with the same amplitudes.

Consequently, the reflected and transmitted waves generated also have opposite

orientations and with the same amplitudes. The opposite orientations of the electric fields
would cause a cancellation of fields at the center plane of the cell. This phenomenon is a

characteristic of a perfect electric conductor (PEC). Therefore, the configuration in Figure

3.2.1.2 can be replaced with the one in Figure 3.2.1.4.

1/2

R2/2

PEC

Figure 3.2.1.4: Half-Cell with a PEC Termination

The complete transformation process is summarized in Figure 3.2.1.5.
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Complete Transformation

17T

I

1/2

PMC

1/2
R2/2 I-

PEC

R R+ R2 T=R--R2
r 3 :2

Figure 3.2.1.5: Complete Transformation Process
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Therefore, the two-port problem of Figure 3.2.1 is reduced to two one-port problems of
Figure 3.2.1.3 and Figure 3.2.1.4. In the next section, we will describe the forward
model.

3.2.2 Forward model

We first consider a half-cell with three different sections as shown in Figure 3.2.2.1,
terminated by either PMC or PEC. This cell has an air section (section 1), a kyro-flex
ceramic (section 2), and a sample of interest (section 3). Note that the length of the sample
in Figure 3.2.2.1 is one-half the length of the original sample.

air n=1 ceramic n=2 sample n=3

4--hi - 4-h2 -- 4-h3 -1

Measurement plane PMC or PEC 4 ]

Figure 3.2.2.1: Schematic of a Half-Cell

Note that the above notations are applicable to half-cell with PMC or PEC termination. The

measurement plane, which is the plane where calibration is performed for the network

analyzer, is located on the leftmost plane of Figure 3.2.2.1.

The cell is excited by TEM waves and since there are no abrupt dimensional changes, both

incident and reflected waves are TEM. Any mode conversion is small and is not included in

the following derivation. The electric field in the n-th section of Figure 3.2.2.1 can be

represented as the linear combination of incident and reflected TEM waves.

E (p,z)= A. Io(p)[e"zn + Rekin(2h.-z.)
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where k, is the propagation constant of section n and has a value of o -. E,. n is the

complex dielectric constant of the material filling the space between the inner and outer
conductors in section n. P. is the magnetic permeability of the medium and is assumed to
be the same as that of free space. R, is the global reflection coefficient at the junction
between section n and section n+l. z, is the local axial distance. That is to say zi= 0
represents the measurement plane, zi=hi represents the end of the air section or the
beginning of the ceramic section. Note that zi=hi is the same plane as z2=0. Similarly,

z2=h2 is also the same plane as Z3=O. T(P) is the eigenfunction of the coaxial structure,

corresponding to TEM mode. An are unknown amplitude coefficients, . T,(p) = 1/p.

The magnetic field of the n-th section can be derived as

Hn ,1(p,z) = -E,(p,z)= 1 A TO(p)[e"i^ - Reik.(2 h.-z.)

i(O. D z In (13)

where Ti n is the characteristic inpedance = .

For the (n+1)-th section the electric and magnetic fields are

E nle,(p,z) = A n,1 TO (p)[e'k+ z'+ RlzI lii. (2h+., -z, )

H(nD(p, Z) = 1- AI To(p)[e *+I*' - Re ek"+I (2h..I-z..,)

In+1 (15)

Boundary conditions require that the transverse components, p and (D, of the electric and

magnetic fields of the n-th and (n+1)-th sections to be continuous at the plane of interface,

zn=hn and za+i=0.

An To(p)[1 + Rn]eikhn =AnI TOP(p)[1 + Rn+iei2k..Ih.+, (16)

1 R o (p)[1 Rn]e kha 1- A n+1 'P (p)l 1- R eIei 2k.+Ih..l

11n 1n+1 (17)

35



Solving for R,, the reflection coefficients, the following equation is obtained.

RR- R,,i+ R ei 2k., hR - n,n++ Rn+l01

S +R Rni+ R n ei2 I..., (18-a)

where

Rn k-knl -
1 n+1 = k-n

"'+ 1  T1+ 1 + In (18-b)

Rn,,,+ is the reflection coefficient at the boundary, while Rn is the global reflection
coefficient. In the case of PMC, R3, the reflection coefficient at the rightmost plane in
Figure 3.2.1.3, is equal to +1. For the case of PEC, R3 is equal to -1. With the above
equations, we can now solve for the reflection coefficient at the measurement plane, where
the calibration takes place, for both PMC and PEC cases. We denote the reflection
coefficient for the case with PMC as R(m) and for the case with PEC as R(e). To solve the
original boundary value problem as presented in Figure 3.2.1, we simply substitute the
reflection coefficients, R(m) and R(e), into the following equations:

R = - (R(M, + R(-))
2 (19)

T =-I(R(M- R )2 (20)

Realizing that the air section is a no loss 502 coaxial section, we do not need to include this
section explicitly. It is sufficient to calculate the reflection and transmission coefficients at
air/seal interface and to include a phase shift term for the air section. Therefore, the

scattering parameters, as measured by the network analyzer, can be denoted by the

following equations:

1
Sil =S=2 = - (R,,,+ R,.)e 2kjh,

2 (21)

1
S12 = S21 = -(R1 - R,.)e 2k,

2 (22)
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We have developed a FORTRAN code which, given the complex dielectric constants for
both the sample and the seal, computes the reflection and transmission coefficients at the
measurement plane as a function of frequency. This program uses two input files: one with

the dielectric constant and conductivity for the seal and one with the dielectric constant and
conductivity for the sample. This code is included in Appendix D. 1.

3.2.3 Inversion

The forward model calculates the reflection and transmission coefficients, i.e. the scattering
parameters, once the complex dielectric constant of the sample is specified. However, the
objective is to retrieve the dielectric information of the sample from the scattering parameter
measurements obtained from the network analyzer. This is known as inversion. In the last
section, a full-wave model that can predict the response of the coaxial cell (the forward
model) was developed. In the following sections, three different inversion schemes for the
sample and one inversion scheme for the high-pressure seal are described.

3.2.3.1 Inversion (I) for sample

The first inversion scheme employs the close form solution to the forward model problem.
Solving for Rim and Rie, using eqs. (21) and (22), we obtained the following:

Ri = S11 +S12
IM I2kth' (23)

R _S11 _Si2I kihl (24)

The set of eqs. (23) and (24) can be repeated using other measured scattering parameters.

In general, four sets of such equations can be formed in different combinations of the

measured scattering parameters.

Keep in mind that ki(propagation constant for air), k2(propagation constant for the high-

pressure seal), and h's(lengths of the three sections) are known and k3 (propagation
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constant for the sample) is what we are inverting for. Using eq. (18-a) for n=1 and solving
for R2, we get the following:

R = R1,2-Rim
2M (RimR 2 -1)ei2k2h2

R = R1 2-R 1,
2 (RiR 2 -1)ei2k2h2

(25)

(26)

where R1 , and Rim are known from eqs. (23) and (24). Assuming the permittivity of the
seal is known, R1,2 can be calculated from eq. (18-b). Now that R2m and R2e are known
and knowing R3 is +1 for PMC and -1 for PEC, we can write the following expressions:

R3M =+1= R2 3-R 2 m
(R2mR 2 -1)ei2k3h3 (27)

- R2 3- R2eR3 ( = -1
- R2.R2,3-1)e i2~h3 (8)

Letting b= e12k3h 3 and a = R 2,3 , eqs. (27) and (28) take the following form:

+1= Rm
(R2 m a -1)b

-1=aR2e
(R21 a -1)b

Isolating a and b into separate equations, the following quadratic relationships are obtained.

(R 2m+ R21)02 - 2(R 2mR 2e+ 1)a + (R 2m+ R2 .)= 0

(R 2m- R20)b 2 + 2(R 2mR 2 -1)b + (R 2m - R21) = 0

Using the conventional quadrical formula, a and b become:
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(R2mR 29+1) ± 1(R 2mR 2e+1)2 - (R2m+ R2.) 2

(R2m+ R2.) (33)

b - -(R 2mR 2e-1) ± V(R2 mR2e- 1)2 - (R2M- R2 e)2

(R2m- R29) (34)

Finally, k3 can be retrieved from a or b in the following manner.

k (1-a)k2 _ In(b)
1+a i2h3 (35)

In this scheme, four identical complex dielectric constants can be derived from four
different equations, assuming no measurement error. A FORTRAN code simulating this
inversion scheme is included in Appendix E. 1.

3.2.3.2 Inversion (II) for sample

The second inversion scheme also utilizes both reflection and transmission coefficients.
The analysis is similar to the first inversion scheme up to eqs. (27) and (28). This approach
involves solving for k3 iteratively using either eq. (27) or eq. (28).

In R2 3- R 2m In R2 e- R2.3

k = R 2mR2.3-1) R 2eR2.3-1
i2h 3 i2h3 (36)

where the first equality is from eq. (27) and the second is from eq. (28).

Using eq. (18-b), R2,3 can be expanded and eq. (36) becomes:
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( k2 -k -R

In k2+ki
I (k 2 - k,

k3 = M ( k2+ k3
i2h3

R2@_ 2k 3

In - k2+k 3

R2. 2 3  1

_J2+k3)
i2h3

This equation can not be solved analytically, but we can solve for k3
reason, eq. (37) is rewritten in the following form.

(37)

iteratively. For this

k2 -k 3() -R R2 k2 -k 3(1)

In k2 +k 3( 1) 22 k2+jk3i

R 2 m 2 k3( 1-1 R 2 .f 2 _3()J

k3(1+1) = k2+k 3 ( k2+k3()
i2h3 i2h 3 (38)

where the index, i, refers to i-th iteration. Now that k3 is expressed in an iterative form, we
can solve for its value by forming an initial guess for k3(,) and iteratively generating k3(2),
k3(3), k3(4), etc., until (k3(t+l)-k 3(t)) is less than a specified tolerance. A FORTRAN code

simulating this inversion scheme is included in Appendix E.2.

3.2.3.3 Inversion (III) for sample

The third inversion scheme uses the individual reflection or transmission coefficient. This

method involves using the Newton-Raphson scheme. A broad discussion on the Newton-

Raphson approximation may be found in any numerical analysis text book; nevertheless, a

brief review of this method is appropriate at this point.

This approach enables us to compute a root of the equation f(x) = 0. We start by guessing
at this root, the guess being x = xi. Suppose, however, that the root is actually xi + h.

Then, by the Taylor expansion of f(x), we get

f(H, + h) = 1I=.l + h f +.
(39)
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where the prime refers to the derivative with respect to x.

Now our reasoning takes the following step:

1. The error in our approximation to the actual root is h.
2. This error is small enough to permit us to neglect the terms in the Taylor expansion in

which "h" appears to a power higher than the first.

3. Furthermore, and since the actual root is (x1+h), then f(xl) + hf'(xl) 0 .

4. Thus, the error, h - (HI)
f'(x1 )

5. A closer approximation to the actual root will be

H =H, -
1ft(HI (40)

The iterated use of this method gives us the general formula

= -f(x,)

H =H f (Hj

(41)

where i represents the i-th iteration.

In our problem, we attempt to use this method to solve for e2 with the following equation:

EO E(H-)_ \ 2
2 2 P'(-I(E2 (42)

where E-')is the value of E2 at the i-th iteration, E-1) is its value at the (i-1)-th iteration, F is

a function of E2 and F' is the derivative of F with respect to E2. We can write this more

specifically as:

E2 2 

= ;-1),
Spq (E2) p = 1,2;q = 1,2
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where Sq(E ~1) are the S-parameters computed from the forward model using E-~,.

Spq(ms) is the measured S-parameter. S'p, (Er1)) is the derivative of the S-parameter with

respect to E2 , evaluated at e(")

It is important to note that this approach can be employed for inversions of either the seal or
the sample, once the derivative of the scattering parameter is specified. In the remainder of
this section we will solve for the derivative of the reflection and transmission coefficient
with respect to the dielectric constant of the sample. In the next section we will solve for the
derivative of the reflection and transmission coefficient with respect to the dielectric
constant of the seal.

Taking the derivatives of the reflection coefficient in eq. (21) and the transmission
coefficient in eq. (22) with respect to the dielectric constant of the sample, we get the
following:

-sl 1 ( Alm + Me)e 2k, h,

DE3 2 E3 (44)

DS12 _ 1 (- R1m Mie. 12khl

apE3 2 aE3 aE3 (45)

Note that all the terms in eqs. (44) and (45) are known, except for a" anda3 3
Solving for these unknown, we obtain:

aR 2M i 2 k2h2

-1 1 2 i2k2h2)

aC3 1+ R1R 2mei2k2h2 1 + +ime 2k2h2 (46)

aR2. ei 2
2h2 i2k2h2

aE, 1- R(R,+R2ee

aE3 -1+RR2,ei 2 k2h2 1+ R12 R2,ei 2 k2h2 (47)

From eqs. (46) and (47), we obtain:
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(R, a i2,'iis aR. 2,, i2k ,h,

aR2 3 + a 2 ' R2,+e i2 k)h3 e i2k,, + ae R2 3aR 2 m _F-3 + (E aE '

3 1+ R2,3e'2k, (I + R2 3ei 2 k3h3 )2 (48)

aR2 .3  aei 2k3h3 (22, ( h R2 3 i2k, 3 +aei2kh3 R
- RI- 2aR2* _ +3 E, aE3 DE3  '

aE3  1- R23 e
2k3h3 (1- R 2 3ei 2k3h, )2

Finally, from eq. (18-b), we obtain:

(50)

aei2k3h3 = 3 i2k3 h,

aE2 k3 (51)

Now that all the terms in eqs (44) and (45) are solved, the derivatives of the scattering
parameters can be used in the Newton-Raphson approximation in eq. (43) to solve for the
complex dielectric constant of the sample. This inversion scheme is better than either the
inversion scheme in section 3.2.3.1 or the one in section 3.2.3.2, because it only requires
the knowledge of one scattering parameter. Due to measurement error, sometimes one may
only have confidence in either reflection or transmission coefficient. This method allows
one to accurately invert for the sample, knowing only one of the four measured parameters.
A FORTRAN code simulating this inversion scheme is included in Appendix E.3. In the
next section, the derivatives of the scattering parameters with respect to the dielectric

constant of the seal are solved, so the Newton-Raphson approximation can be used to

invert for the dielectric constant of the seal.

3.2.3.4 Inversion for seal

The dielectric parameters for the high-pressure seals, Kyro-flex, were not known initially,

therefore, one of the first steps required to use the cell was to obtain these parameters as a
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function of frequency. We extend the Newton-Raphson approach, which was described in
previous section, for inversion of the seal. We will solve for the derivatives of the
scattering parameters with respect to the dielectric constant of the seal. This solution is
based on the assumption that the dielectric parameters of the material in region 3, the
sample chamber, is known. This criterion can easily be satisfied by using air as the sample
initially. From eqs. (21) and (22), the derivatives are:

aSl _ 1_ 1 RIM + lRi.R1  12k R
aE2 2 aE2 aE2 (52)

S,_2  _ aRm aR, ,"

aE2 2 aE2 aE2 (53)

Using eq. (18-a), we obtain the following:

__ ( De aei2k 2h2 R + aR2m ei 2 k2h2

aRim _ E2 + E2 2m aE2
E2 (1 + Rt2 R2me 2 k2h2

+ R. aei 2k2h2
(R R2 me i 2 k2h2 R 2k2h2 m R ei 2 k2h2 + R R

aE2 2 2

(1+ RI,2R2mei2k2h2) 2  
(54)

aR aei2k2h2 aR2. i2k2h2aR ae a R 29 + 2e I
aRI, _ E2 aE2 as 2

aE2  (1+ R1 2 R2*ei 2k2h2

(R 2+ R2,ei 2 k2h R2, ei2k2h2 + R, ei 2 k2h2+ De 2k2h2 R2+R
ae 2  as 2  1. 2

(1+ R,, 2R26 ei 2 k2h2)2 (55)

The parameters in eqs. (54) and (55) can all be calculated using the following equations.

aR2,3aR2,3 ~ e i2 k3h3 (R 2 k3aR2m - aE2  i _kR ei2 k3hl

as2 1+ R i2 kh3 1+ Rei2 kh3 (56)
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2DE2 1+ ei 2 k3h3 (R2,3-ei 2 k3h3
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2.3 -,(57)

A81,2__
aR ~2  _ I____+ _

a 2  _2(58)

_V2 C2+4F)a2 _( + 2 (59)

aei 2k2h2 ih 2 i2k2h2

aE2 2  (60)

Using Newton-Raphson approach, we inverted for dielectric constant of the seal in the

coaxial configuration. A FORTRAN code simulating this inversion scheme is included in

Appendix E.4. The fundamental theoretical model, describing the coaxial system, is

established. In the next section, we will explain the procedures involved in preparing the

sample and the temperature dependence of sample under pressure.

3.3 Procedure

3.3.1 Preparation of solutions and core samples

In this study, two water solutions and two water-saturated rock samples are measured. The

water solutions are pure water and .6 Q-m water. The rock samples are Berea and Massilon

rocks, saturated with 0.1 Q-m water.

Pure water is obtained from a de-ioninzing chamber. The DC resistivity of this water was 1

mega-ohm. This chamber purifies the water by removing all the ions. The .6 K2-m and .1

.Q-m water solutions are prepared by mixing tap water with sodium chloride in their
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appropriate proportions. The resulting solutions were then measured with a four-terminal
resisitivity measurement cell.

The two rock samples are Berea 423 and Massilon 1065, taken from large cores obtained
from Ohio. These samples were machined to hollow cylinders with an i.d. of 0.24425", an
o.d. of 0.5625", and width of 1.500". The cores were first cut with a diamond core drill in
the milling machine to obtain an i.d. of 0.24425". Then a larger diamond core drill is used
to cut the o.d. of 0.5625". The ends of the cores were then faced off with a low speed saw
and grinded down to precisely 1.500". Once the cores are machined to the specified
dimensions, they are placed in a radiant dry heat oven at 60'C for 12 hours to dry out the
moisture left in the cores. They are then placed in a vacuum vessel where a vacuum pump,
along with Cyrocool freezer, draws a vacuum of down to 7p±m of mercury. Once this
specified vacuum is attained, the appropriate solution is allowed into the vessel to saturate
the rock samples.

3.3.2 Temperature consideration

In the measurements reported here, the temperature of the sample is assumed to be at room
temperature between 20'C and 22'C. Application of pressure increases the temperature of
the sample in the cell. In this section, a heat transfer equation is used to analyze the rate at
which the temperature of the sample will return to equilibrium.

A lump system analysis is assumed. The relevant equation is given in eq (61). (Heat
Transfer Textbook by J. Lienhard)

T(t)- Tr _

T -T T (61)

where T is the temperature of the cell as a function of time, Ti is the initial temperature, Tf

is the final temperature, and X is a time constant. Note that Ti is the temperature of the cell

immediately after the sample is pressurized and Tf is the room temperature. X is defined in

eq. (62).
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_hR1

pUC (62)

where A, is the surface area exposed to the heat sink, h is the heat transfer coefficient, p is
the density, V is the volumn of cell and C is the specific heat of the cell. Since the cell is
made from both INCONEL-X750 and MONEL-K500, we chose to use the higher values
of C and p to obtain the lower limit for our calculations. We used the specific heat constant
for INCONEL-X750, 0.103 Btu/lb/'F, and the density for MONEL-K500, 0.306 lb/in3 .

(Alcan Corporation's Metalog). The volumn and outer surface area of the cell can be
approximated by assuming a hollow-cylinder with an o.d. of 1.90", an i.d. of .5625", and
a length of 8.00". We obtained V=20.69 in 3 and A,=47.75 in 2. The heat transfer
coefficient, in general, is determined empirically. But since this empirical information is not
available, we will use the free convection heat transfer coefficient, h=1 Btu/hr/sq-ft/F.
This heat transfer coefficient provides an extreme low limit in our calculations. Now
substituting appropriate values into eq. (62), we calculated that X=0.008475015/sec. Eq.
(61) can now be rewritten as:

T(t) = (T, - 21.2)e o475""t +21.2 (63)

In the course of our experiements, the temperature increase of the cell body was never

noticeable. So we estimate Ti to be only a few degrees above room temperature. However,

since the decay constant of eq. (63), 1/k, is quite large, the sample will reach thermal

equilibrium very first. To demonstrate this, we will use an overly estimated Ti of 50'C and

plot the sample temperature as a function of time in Figure 3.3.2.1.
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Temperature of the cell as a function of time

100 200 300 400 500 600 700 800 900

time (sec)

Figure 3.3.2.1: Temperature of the Cell as a Function of Time

Normally, there is a 15 minutes delay between the increase in pressure and the actual

measurement. This figure shows the temperature of the cell is back to equilibrium even if

the initial temperature were as high as 50C. If Ti were 30'C, T(900)=21.2043'C. If Ti

were 40'C, T(900)=21.2092'C. If Ti were 50'C, T(900)=21.2140'C. It is clear that the

temperature at which the measurements were taken is almost independent of Ti. We

conclude that the temperature increase of the sample due to pressure can be neglected.
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Chapter 4

RESULTS

Two water samples and two water-saturated rock samples have been measured in this

study. Before the data is presented, we like to point out that there is no information on high

frequency dielectric parameters on either water or water-saturated rocks as a function of

pressure in literature. Fortunately, the static dielectric constant of pure water was studied by
Srinivasan and Kay in 1974. They used an all-glass, three terminal, Kay-Vidulich-type

dielectric cell to measure the static dielectric constant of water at 10, 25, and 40'C at

pressures of up to 3 kbar. Their results were then fitted to the Tait equation. The Tait
equation is defined as:

1E(l) = inB+P
E(P) ( B+1 (62)

where P is pressure in bars and constants A, B, and E(i) are specified for different

temperatures. These parameters for 10', 25', and 40'C have been given by Srinivasan and

Kay and are listed in Table 4.1.

Temperature (C) E(1) A B

10 83.95 0.1916 4133

25 78.45 0.2154 4574

40 73.16 0.1824 3672

Table 4.1: Tait Constants for Pure Water
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In our measurement on pure water, scattering parameters were measured from 20 MHz to 3
GHz at a number of pressures and at a constant temperature of 21.2'C. The inverted
dielectric constants and conductivities at high frequencies are plotted as a function of
frequency at various pressures in Figure 4.1 and Figure 4.2.

Dielectric constant of pure water as a
function of frequency for selected pressures

85_
ahn
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84- ---- 6000 psi
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77 i i '
1.0e+9 1.5e+9 2.0e+9 2.5e+9 3.0e+9
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Figure 4.1: Dielectric Constant of Pure Water as a Function of Frequency for
Selected Pressures
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Conductivity of pure water as a function
of frequency for selected pressures

1.5e+9 2.0e+9 2.5e+9 3.0e+9

frequency (Hz)

Figure 4.2: Conductivity of Pure Water as a Function
Selected Pressures

of Frequency for

Although the data in these figures are somewhat corrupted with measurement noise, the

increasing trend in the dielectric constant as pressures increases can be observed quite

readily. A closer analysis of this trend is warranted. The dielectric constant is plotted as a

function of frequency from 1 GHz to 3 GHz at 6 different pressures, ranging from

atmospheric pressure to 15,000 psi at intervals of 3,000 psi. The results indicate an

increase in the dielectric constant of pure water at all frequencies as pressure is applied. It is

interesting to see if the measured high frequency dielectric constants of pure water are
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consistent with the previously measured values. But since the high frequency
measurements have not been reported before, we will extrapolate these results to DC and
compare the results with the data of Srinivasan and Kay. This is done by first curve-fitting
the high frequency measurement data at each pressure to a third degree polynomial. A third
order polynomial is capable of describing the frequency dependence of these results very
well. We then used this polynomial to extrapolate the DC dielectric constant. The curved-
fitted dielectric constants as a function of frequency are plotted in Figure 4.3.

Dielectric constant of pure water as a
function of frequency for selected pressures
(curve-fitted)
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frequency (Hz)

Figure 4.3: Curved-Fitted Dielectric Constant of Pure Water as a Function
of Frequency for Selected Pressures
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We applied this curve-fitting scheme to the dielectric constant of water as a function of
frequency, predicted by Klein-Swift. This exercise showed that the data can always be
curve-fitted to a third degree polynomial with a correlation factor of 1. Using this approach,
the static dielectric constant as a function of pressure is obtained. The temperature of our
measurements is 21.2'C. Constants for the Tait equation are not available for this
temperature. But it would be interesting to compare the measured data at 21.2'C with the
data from the Tait equation at 10', 25 , and 40'C. This plot is shown in Figure 4.4.

Dielectric Constant of pure water as a
function of pressure from the Tait equation
and from measurement

0o-

85 -

80-

70 -
at IOC from Tait Equation

at 25C from Tait Equation

at 40C from Tait Equation

-4 at 21.2C from measurement

65 1
0 3000 6000 9000 12000 15000

pressure (psi)

Figure 4.4: Measurement versus Tait Data for Pure Water
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The measured data shows the same pressure dependence as the three curves generated from
the Tait equation. It also falls between the 10C and 25'C results as expected.

The conductivity, on the other hand, does not show such apparent pattern as pressure is
applied. There seems to be very little, if any, change at frequencies below 2 GHz. Above 2
GHz, it seems that the conductivity is actually decreasing as the pressure is increased.

So far we focus on the effect of pressure on the DC dielectric constant and conductivity of
pure water. We now proceed to examine the high frequency data as a function of pressure.
Five frequencies, ranging from 1 GHz to 3 GHz at intervals of 500 MHz, were selected for
this analysis. At each frequency the dielectric parameters are plotted as a function of
pressure. The plots for dielectric constant and conductivity as a function of pressure for the
five frequencies are shown in Figure 4.5 and Figure 4.6 respectively. Additional data as a
funtion of pressure at 1100 MHz for pure water and subsequent samples are included in
Appendix F. 1. 1100 MHz is a very important frequency, because most of the available
dielectric and resistivity logging tools operate at this frequency.

54



Dielectric constant of pure water as a
function of pressure for selected frequencies
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Figure 4.5: Dielectric Constant of Pure Water as a Function of Pressure for
Selected Frequencies
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Conductivity of pure water as a function
of pressure for selected frequencies
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Figure 4.6: Conductivity of Pure Water as a Function of Pressure for
Selected Frequencies

The increasing trend in the dielectric constant is apparent at all the selected frequencies. But

a closer analysis reveals that the rate of change of dielectric constant as a function of

pressure actually increases as the frequency is increased. In order to make this observation

more concrete, a linear curve-fit is performed on the data in Figure 4.5. The resulting

curve-fitting equations for different frequencies are given in Table 4.2.
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Curve-fitting equations

1000 E=79.226+2.4090e-4P

1500 E=78.927+2.4364e-4P

2000 E=78.530+2.4543e-4P

2500 E=78.035+2.5520e-4P

3000 E=77.427+2.6650e-4P

Table 4.2: Curve-Fitting Equations for Dielectric Constant of Pure Water as
a Function of Pressure for Selected Frequencies

From the slopes of the fitted curves, it is clear that the rate of increase of dielectric constant

increases with frequency.

A similar curve-fitting scheme is performed on the conductivity results. However, a closer

analysis of this data set reveals that the change in conductivity as a function of pressure is

so small that noise becomes an overshadowing factor. To be more specific, the

conductivity as a function of pressure at 3,000 MHz is plotted in Figure 4.7.

Frequency (MlHz)



Conductivity of pure water as a function
of pressure at 3000 MHz
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Figure 4.7: Conductivity of Pure Water as a Function of Pressure
at 3000 MHz

Although the data shows an overall decreasing trend, the noise makes it very difficult to be

certain that this is indeed the behavior of the conductivity of pure water at high frequencies.

The measurement on pure water is interesting in the sense that we were able to compare

results with that in literature. These measurements also reflect how the intramolecular

structure of liquid water changes with applied pressure. In the following, we present our
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results on the dielectric parameters of .6 Q-m water as a function of pressure. These
measurements are more relevant to dielectric logging.

The second sample is a water with a static conductivity of .6 92-m. The measurements were
taken at frequencies between 20 MHz to 3 GHz. The inverted dielectric constant and
conductivity at high frequencies are plotted as a function of frequency at different pressures
in Figure 4.8 and Figure 4.9 respectively.

Dielectric constant of .6 Q-m water as a
function of frequency for selected pressures

atm

5000 psi

- - 10000 psi

84.-. 15000 psi

S20000 psi

82-

e 80-

78-

76-

74 -i i i
1.0e+9 1.5e+9 2.0e+9 2.5e+9 3.0e+9

frequency (Hz)

Figure 4.8: Dielectric Constant of .6 fl-m Water as a Function of
Frequency for Selected Pressures
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Conductivity of .6 Q-m water as a function
of frequency for selected pressures

----- atm

- - 5000 psi

3.50 - 10000 psi
--- 15000 psi

- - 20000 psi

3.25-

3.00-

2.75-

2.50-

2.25

2.00 - g

1.75
1.0e+9 1.5e+9 2.0e+9 2.5e+9 3.0e+9

frequency (Hz)

Figure 4.9: Conductivity of .6 92-m Water as a Function of Frequency for
Selected Pressures

Data at 5 different pressures, between atmospheric pressure and 20,000 psi at intervals of

5,000 psi, are included in these figures. The results on the dielectric constants show

behavior similar to that exhibited by pure water. As the pressure is applied, the dielectric

constant increases at all frequencies. The curve-fitting to a third order polynomial, utilized

for pure water, is also useful in smoothing out the measurement errors. The results of the

fit are given in Figure 4.10.
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Figure 4.10: Curve-Fitted Dielectric Constant of .6 Q-m Water as a
Function of Frequency for Selected Pressures

It is interesting to see the variation of the DC dielectric constant of .6 Q-m water compares

with that of pure water. In Figure 4.11, the extrapolated DC dielectric constants of pure

water and of .6 92-m water are plotted.
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Figure 4.11: Extrapolated DC Dielectric Constant for Pure Water
and .6 Q-m Water

Also it would be interesting to see if the frequency dependence of the pressure effect is

consistent with that observed for pure water. Five frequencies were selected, ranging from

1 GHz to 3 GHz at intervals of 500 MHz. At these frequencies, the dielectric constants are

plotted as a function of pressure in Figure 4.12.
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Dielectric constant of .6 K2-m water as a
function of pressure for selected frequencies
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Figure 4.12: Dielectric Constant of .6 Q-m water as a Function of Pressure
for Selected Frequencies

The pressure dependence of dielectric constant is apparent. However, the frequency

dependence of this pressure effect is not as linear as that exhibited by the pure water. In

order to examine the behavior a bit closer, a linear curve-fitting scheme is utilized to

approximate the slopes for the respective curves in Figure 4.12. The curve-fitting equations

for different frequencies are given in Table 4.3.
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Curve-fitting equations

1000 E=77.237+2.6851e-4P

1500 E=76.964+2.7787e-4P

2000 e=76.487+2.7211e-4P

2500 E=76.047+2.8558e-4P

3000 E=75.389+2.8682e-4P

Table 4.3: Curve-Fitting Equations for Dielectric Constant of .6 K2-m Water
as a Function of Pressure for Selected Frequencies

The overall trend observed in Table 4.3 is that the pressure effect on dielectric constant
increases as the frequency increases. This observation is consistent with the pure water
data. However, the slope at 1500 MHz is actually greater than that at 2000 MHz. This is
probably due to noise in the measurement system.

A similar analysis is carried out for the conductivity to see its frequency dependenct of the
pressure effect. A plot for the conductivity as a function of pressure is shown in Figure
4.13.
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Conductivity of .6 9-m water as a function
of pressure for selected frequencies
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Figure 4.13: Conductivity of .6 9-m Water as a Function of Pressure for
Selected Frequencies

It is evident from this figure that the conductivity increases as the pressure is increased.

However, it is very difficult to see exactly how this increasing trend changes with

frequency. One easy way to study this effect is to employ the linear curve-fitting approach

used earlier. Linear curves are fitted to each of the five data sets in Figure 4.13 and the

resulting curve-fitting equations at different frequencies are given in Table 4.4.
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Frequency (MHz) Curve-fitting equations

1000 O=1. 8 171+5.3321e-6P

1500 a=2.1029+4.6496e-6P

2000 O=2 .4 870+3.8073e-6P

2500 a=2.9829+2.8783e-6P

3000 0=3.5829+2.7650e-6P

Table 4.4: Curve-Fitting Equations for Conductivity of .6 .Q-m
Function of Pressure for Selected Frequencies

Water as a

The pressure effect on conductivity is greatest at low frequencies. As
increases, this effect diminishes. From the equations given in Table 4.4, the
on conductivity at 3 GHz is approximately 50% of that at 1 GHz.

the frequency

pressure effect

From the water measurements, it is interesting to note the overall behavior of the
conductivity under pressure is similar to what Adam and Hall observed in their DC
conductivity data in 1931. They realized that the pressure effect has no significant effect on
the conductivity of the solutions except in very conductive solutions.

In order to gain some understanding of the effect of pore pressure on the dielectric
parameters of water-saturated rocks, we measured Berea and Massilon rocks, saturated
with .1 .2-m water, from 20 MHz to 3 GHz and at a constant temperature of 21.2'C. The
dielectric constant and conductivity of Berea are plotted as a function of frequency, from 20

MHz to 3 GHz, at different pressures in Figure 4.14 and Figure 4.15 respectively.
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Dielectric constant of Berea, saturated
with .1 9-m water, as a function of
frequency for selected pressures
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Figure 4.14: Dielectric Constant of Berea, Saturated with .1 fl-m Water, as
a Function of Frequency for Selected Pressures
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Conductivity of Berea, saturated with
.1 Q-m water, as a function of frequency
for selected pressures
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Figure 4.15: Conductivity of Berea, Saturated with .1 9-m Water, as a
Function of Frequency

In Figure 4.14 the dielectric constant seems to increase slightly. Similarly, the conductivity

in Figure 4.15 increases with pressure. In order to see the changes more clearly, the

dielectric constant is plotted as a function of pressure for selected frequencies.
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Dielectric constant of Berea, saturated
with .1 Q-m water, as a function of
pressure for selected frequencies

-- 100 MHz
- 500 MHz

---i-- 1000 MHz
- 1500 MHz

-2 2000 MIHz

-a-- 2500 MHz
3000 MHz

5000 10000

pressure (psi)

15000 20000

Figure 4.16: Dielectric Constant of Berea, Saturated with .1 Q-m Water, as
a Function of Pressure for Selected Frequencies

The dielectric constant seems to be independent of pressure. A closer observation reveals

that the dielectric constant decreases at lower frequencies and increases at higher

frequencies. However, these changes are too small and within experimental uncertainties.

Therefore, it would be unwise to claim that this is indeed the behavior for this rock sample

based on only this set of data. The conductivity is also plotted as a function of pressure for

selected frequencies in Figure 4.17.
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Conductivity of Berea, saturated with
.1 K2-m water, as a function of pressure
for selected frequencies
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Figure 4.17: Conductivity of Berea, Saturated with .1 K2-m Water, as a
Function of Pressure for Selected Frequencies

The conductivity in Figure 4.17 exhibits a definite increasing trend as a function of

pressure. This behavior is similar to that observed for .6 92-m water. It would be

interesting to see the frequency dependence of the pressure effect on conductivity. Linear

curve-fit is again employed and the resulting fitting equations at different frequencies are

given in Table 4.5.
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Frequency (MHz) Curve-fitting equations

100 a=0.39032+8.4077e-7P

500 O=0.47127+9.7923e-7P

1000 O=0.53459+7.2759e-7P

1500 a=0.58228+9.3 101e-7P
2000 Y=0.63485+6.879 le-7P

2500 0=0.70404+7.7557e-7P

3000 0=0.78161+8.3162e-7P

Table 4.5: Curve-Fitting Equations for Conductivity of Berea, Saturated
with .1 f-m Water, as a Function of Pressure for Selected Frequencies

The apparent increasing trend of conductivity as a function of pressure is confirmed with
the positive slopes in Table 4.5. However, there is no simple pattern of slope variation as
the frequency varies. Based on these results, there is significant frequency dependence on
the conductivity with pressure.

The last sample is this study is Massilon, saturated with .1 92-m water. The dielectric

constant and conductivity as a function of frequency for selected pressures are shown in

Figure 4.18 and 4.19 respectively.

71



Dielectric constant of Massilon, saturated
with .1 9-m water, as a function of
frequency for selected pressures
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Figure 4.18: Dielectric Constant of Massilon, Saturated with .1 f2-m Water,
as a Function of Frequency for Selected Pressures
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Conductivity of Massilon, saturated with
.1 K2-m water, as a function of frequency
for selected pressures
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Figure 4.19: Conductivity of Massilon, Saturated with .1 Q-m Water, as a
Function of Frequency for Selected Pressures

Again we will look at the dielectric constant as a function of pressure for selected

frequencies. It is plotted in Figure 4.20.
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Dielectric constant of Massilon, saturated
with .1 K2-m water, as a function of
pressure for selected frequencies
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Figure 4.20: Dielectric Constant of Massilon, Saturated with .1 K-m Water,
as a Function of Pressure for Selected Frequencies

The data shows an increasing trend for dielectric constant as a function of pressure. Linear

curve-fitting scheme is applied to the data at 7 different frequencies. The parameters of the

resulting curves are given in Table 4.6.
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Frequency (MHz) Curve-fitting equations

100 E=20.422+3.1757e-5P

500 E=16.690+1.0715e-5P

1000 E=15.057+1.9171e-5P

1500 E=14.570+1.9539e-5P

2000 E=14.386+1.9485e-5P

2500 E=14.181+2.0785e-5P

3000 E=13.858+1.9609e-5P

Table 4.6: Curve-Fitting Equations for Dielectric Constant of Massilon,
Saturated with .1 K2-m Water, as a Function of Pressure for Selected

Frequencies

The positive slopes confirms that the dielectric constant does indeed increase as the
pressure is increased. However, the slopes as a function of frequency exhibits no clear
trend. This means that the frequency dependence of the pressure effect on dielectric
constant is within experimental errors. The conductivity as a function of pressures is
plotted in Figure 4.21 for selected frequencies.
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Conductivity of Massilon, saturated with
.1 92-m water, as a function of pressure for
selected frequencies
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Figure 4.21: Conductivity of Massilon, Saturated with .1 f-m Water, as a
Function of Pressure for Selected Frequencies

The conductivity also shows an increasing trend as a function of pressure. This behavior is
similar to that of both the .6 f-m water and Berea. Linear curve-fitting the data for selected

frequencies gives the slope of the conductivity as a function of pressure. The slopes are
given in Table 4.7.
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Frequency (MHz) Curve-fitting equations

100 0=0.89129+2.0924e-6P

500 Y=0.97203+2.3091e-6P
1000 0=1.0327+2.0877e-6P

1500 0=1.0735+2.1617e-6P

2000 0=1.1307+1.9523e-6P

2500 0=1.2110+1.9685e-6P

3000 0=1.2915+1.9470e-6P

Table 4.7: Curve-Fitting Equations for Conductivity of Massilon, Saturated
with .1 Q-m Water, as a Function of Pressure for Selected Frequencies

The slopes do not indicate any definite pattern. It seems that for both Berea and Massilon,
the pressure effect on conductivity is not a function of frequency. It should be noted that
the porosity for Berea 423 is 19% and that for Massilon is 24.6%. From the data in Table
4.5 and Table 4.7, it is obvious that the pressure effect on conductivity is more significant
for Massilon than for Berea. There are two possible expanations. Since Massilon is more
porous than Berea, there is a greater number of ions entering Massilon when pressurized.
Another explanation is that Massilon is "softer" than Berea, therefore more susceptible to
pressure.
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Chapter 5

SUMMARY

A two-port coaxial cell is designed and manufactured to make scattering parameter
measurement of fluids and fluid-saturated rocks at high pressures of up to 20,000 psi. It is
essentially a coaxial line, filled with sections of different dielectric materials. When
assembled, the cell has neither discontinuities nor abrupt jump in both inner and outer
conductors. Inversion models were developed to retrieve the dielectric information from the
measured scattering parameters.

Two water solutions and two rock samples were examined in this study. This study
concerned with the effect of pressure on the high frequency dielectric constant and
conductivity of the samples. The extrapolated DC dielectric constant of the pure water at
21.2'C displayed a pattern similar to that at 10'C, 25'C, and 40'C reported in literature by
Srinivasan and Kay. The overall behavior of the conductivity of pure water and .6 K2-m
water under pressure is similar to what Adam and Hall observed in their conductivity data.

Our results on the high frequency, high pressure complex dielectric constant of rocks are
the first in literature. In these measurements, the pore pressure was varied.

In order to gain a complete understanding of the pressure effect on the dielectric parameters

of rocks, it would be interesting to make similar measurements, varying the confining

pressure. This requires a new design for the dielectric cell.
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Chapter 6

APPENDICES

A. 1 Measurement Setup

In order to make an accurate measurement, the pressurizing unit must be set up correctly.
The oil section needs to be filled up with a 200 cs. viscosity oil from Dow Coming only
once. The fluid section needs to be filled up with the fluid under study. That means filling
up with a different fluid in the fluid section each time the fluid of interest changes. The
procedures to filling up both the oil and fluid sections are given in the following steps.
(Please refer to Figure 3.1.3.1 for specific notations)

Filling the oil section: (To be done only once)

1. Shut Vi to isolate the oil section from the oil reservoir.

2. Crank the PP handle up to the highest position.

3. Open V2.

4. Open V3.

5. Push piston to the bottom of the accumulator.

6. Open V4 and operate VPl.

7. Shut V3 to isolate the pressure gauge from the rest of the system, when the vacuum

meter reads a vacuum of lOpm in the oil section.

8. Shut V4 and stop VP1, when the vacuum meter reads a vaccuum of 24m.

9. Open VI to allow the inflow of oil from the oil reservoir.
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10. After the oil section has been filled with oil, open V3 to allow additional oil into the
PG1.

11. Shut VI to again isolate the oil section from the oil reservoir.

Filling the fluid section: (To be done everytime the measuring fluid changes)

1. Dry the sample compartment of the high-pressure cell.
2. Put the seals in place and install the high-pressure cell in the system.
3. Shut V5 to isolate the fluid section from the fluid reservoir.
4. Open V7.

5. Open V8.

6. Open V6 and operate VP2.
7. Shut V8 to isolate the pressure gauge from the rest of the system, when the vacuum

meter reads a vacuum of 10gm in the fluid section.
8. Shut V6 and stop VP2, when the vacuum meter reads a vacuum of 2gm.
9. Open V6 to allow the inflow of fluid from the fluid reservoir.
10. After the fluid section has been filled with fluid, open V8 to allow additional fluid

into PG2.

11. Shut V5 to again isolate the fluid section from the fluid reservoir.

In the case of measuring fluid, the above setup procedure is sufficient. In the case of
measuring fluid-saturated rock, additional steps are necessary and are listed below.

12. Remove the top seal from the high-pressure cell.
13. Open V5.

14. Using a fluid pump, pump fluid into the fluid section until fluid overflows the
high-pressure cell.

15. Submerge the fluid-saturated sample in the fluid and push it into the sample chamber.
16. Stop the stop pump.

17. With V5 still open, put the top seal back into place.

18. Shut V5.

The pressure pump has a volumn of 11 cc. This small volumn of oil is insufficient to

pressurize the entire system to 20,000 psi. The following procedure was devised to enable

us to pump more oil into the system, thereby generating pressures of up to 20,000 psi.
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1. With the entire system in order, crank the PP all the way down.

2. Shut V2 to maintain the pressure in the accumulator.

3. Crank the PP all the way up to create a partial vacuum in the pressure pump.

4. Open Vi to allow inflow of oil into the pressure pump.

5. Shut V1 after the pressure pump is filled.

6. Crank PP partially downward to minimize the differential pressure across V2.

7. Open V2 to allow more oil into the accumulator by cranking the PP.

8. Repeat 1 if necessary.
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C.1 Acquisition Code

The following code is written in Microsoft BASIC and stored on the Macintosh computer.
It automates the data acquisition process on the HP8753A/85046A. The code enables the
user to perform a variety of functions, such as calibrating the network analyzer with
standard terminations, measuring scattering parameters, saving raw data to an external
memory device, retrieving data from an external memory device, printing data on a line
printer, and plotting data in various graphic forms.

REM Title: DataAcquisitionversion_2.
REM This code (DataAcquisitionversion_2) is developed to make S-parameter
REM measurement with either the coaxial-circular or the coaxial cell on the
REM HP8753A network analyzer and 85046A S-parameter test set.
REM Done in June 1989 by David Yuen.

OPTION BASE 1
CLEAR, 200000!
DIM freq(1000),PHAS 1 1(1000),LMAGS1 1(1000),PHAS 12(1000)
DIM LMAGS12(1000),PHAS21(1000),LMAGS21(1000),PHAS22(1000)
DIM LMAGS22(1000),PPHAS1 1(1000),PLMAGS 11(1000)
DIM PPHAS 12(1000),PLMAGS 12(1000),PPHAS21(1000)
DIM PLMAGS21(1000),PPHAS22(1000),PLMAGS22(1000)
DIM EX(4,15 1),EY(4,151),SX(4,151),SY(4,151),S(12,151)
PI=3.14159265358979#
F1 = 20
F2 = 3000
BAND = 10
DELTAF = 20
prog$="DataAcquisitionversion_2"
savflag= I
PRINT"Type in the necessary information or press return for the default values:"
PRINT"DEFAULTS:";TAB(15);"Starting-freq = ";F1V; "MHz"
PRINT TAB(15);"Ending-freq = ";F2;"MHz"
PRINT TAB(15);"IF-bandwidth = ";BAND;"Hz"
PRINT TAB(15);"Delta-freq = ";DELTAF;"MHz"
PRINT"Enter the starting frequency in MHz:"
INPUT ANS1$
IF LEN(ANS 1$) =0 THEN PRINT Fl ELSE F1=VAL(ANS 1$):
PRINT"Enter the stopping frequency in MHz:"
INPUT ANS2$
IF LEN(ANS2$) =0 THEN PRINT F2 ELSE F2=VAL(ANS2$)
PRINT"Enter the If-bandwidth in Hz: "
PRINT"Note that the range is 10,30,100,300,1000,and 3000Hz."
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INPUT ANS3$
IF LEN(ANS3$) =0 THEN PRINT BAND ELSE BAND=VAL(ANS3$)
PRINT"Enter the frequency increment in MH:"
INPUT ANS4$
IF LEN(ANS4$)=0 THEN PRINT DELTAF ELSE
DELTAF=VAL(ANS4$)
npt=INT((F2-F1)/DELTAF)+1
PRINT"The number of data point is "npt

MENU 6,0, 1,"Commands"
MENU 6,1,1,"Calibration"
MENU 6,2,1,"Measurement"
MENU 6,3,1,"Save data"
MENU 6,4,1,"Read data from disk"
MENU 6,5,1,"Print data"
MENU 6,6,1,"Plot data"
MENU ON

100 CALL TEXTFACE(8)
PRINT
PRINT "Select a Command"
CALL TEXTFACE(0)
WHILE MENU(0)<>6
WEND
ON MENU(1) GOSUB
calibration,measurement,savdata,readdata,prindata,plotdata
GOTO 100

calibration:

LIBRARY "MacDriver488"
CALFLG=1
RST
WR"RESET"
WR"EOL IN NONE"
WR"HELLO"
A$=""
RD A$
PRINT A$
WR"REMOTE 16;"
WR"OUTPUT 16;PRES;"
WR"OUTPUT 16;HOLD;"
F1$=STR$(F1)
F2$=STR$(F2)
BAND$=STR$(BAND)
DELTAF$=STR$(DELTAF)
UNIT1$="MHz"
UNIT2$="Hz"
WR"OUTPUT 16;EDITLIST;"
WR"OUTPUT 16;SADD;"
WR"OUTPUT 16;STAR";F1$;UNIT1$;CHR$(59)
WR"OUTPUT 16;STOP";F2$;UNIT1$;CHR$(59)
WR"OUTPUT 16;STPSIZE",DELTAF$;UNIT1$;CHR$(59)
WR"OUTPUT 16;SDON;"
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WR"OUTPUT 16;EDITDONE;"
WR"OUTPUT 16;LISFREQ;"
WR"OUTPUT 16;SING;"
WR"OUTPUT 16;IFBW";BAND$;UNIT2$;CHR$(59)
WR"OUTPUT 16;CALIFUL2;"
WR"OUTPUT 16;REFL;"
INPUT"Please connect an open to port 1.",DUMMY$
PRINT"Calibration in progress."
WR"OUTPUT 16;CLASS1 1A;"
WR"OUTPUT 16;AUTO;"
INPUT"Please connect a short to port 1.",DUMMY$
PRINT"Calibration in progress."
WR"OUTPUT 16;CLASS1 1B;"
WR"OUTPUT 16;AUTO;"
INPUT"Please connect a load to port 1.",DUMMY$
PRINT"Calibration in progress."
WR"OUTPUT 16;CLASS 1 1C;"
WR"OUTPUT 16;AUTO;"
INPUT"Please connect an open to port 2.",DUMMY$
PRINT"Calibration in progress."
WR"OUTPUT 16;CLASS22A;"
WR"OUTPUT 16;AUTO;"
INPUT"Please connect a short to port 2.",DUMMY$
PRINT"Calibration in progress."
WR"OUTPUT 16;CLASS22B;"
WR"OUTPUT 16;AUTO;"
INPUT"Please connect a load to port 2.",DUMMY$
PRINT"Calibration in progress."
WR"OUTPUT 16;CLASS22C;"
WR"OUTPUT 16;AUTO;"
WR"OUTPUT 16;REFD;"
WR"OUTPUT 16;TRAN;"
INPUT"Please connect the two ports together",DUMMY$
PRINT"Calibration in progress."
WR"OUTPUT 16;FWDT;"
WR"OUTPUT 16;REVT;"
WR"OUTPUT 16;FWDM;"
WR"OUTPUT 16;REVM;"
WR"OUTPUT 16;TRAD;"
WR"OUTPUT 16;ISOL;"
WR"OUTPUT 16;OMII;"
WR"OUTPUT 16;ISOD;"
WR"OUTPUT 16;SAV2;"
FOR i=1 TO 50000!
NEXT i
PRINT"Calibration finished."
RETURN

measurement:

IF savflag
PRINT b$
IF b$="R" OR b$="r" THEN RETURN
b$="d"
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TDEGC = 21.2
RW =.25
MAT$="water"
PRINT "Type in the necessary information or press return for the default values:"
PRINT "DEFAULTS: ";TAB(15);"Temperature-C = ";TDEGC;"
PRINT TAB(15);"Resistivity-W = ";RW;"
PRINT TAB(15);"Material= ";MAT$;
INPUT"Enter the temperature in degree Celsius: ",ANS5$
IF LEN(ANS5$) =0 THEN PRINT TDEGC ELSE TDEGC=VAL(ANS5$)
INPUT"Enter the water resistivity: ",ANS6$
IF LEN(ANS6$) =0 THEN PRINT RW ELSE RW=VAL(ANS6$)
INPUT "Enter the type of material: ",ANS7$
IF LEN(ANS7$) =0 THEN PRINT MAT$ ELSE MAT$ = ANS7$
savflag=0
TODAY$=DATE$
MTIME$=TIME$
WR"RESET"
WR"OUTPUT 16;FORM4;"
INPUT"Please connect the cell to the two ports.",DUMMY$

REM Calculating the phase for S11
PRINT"Measurement for S1 1(phase) in progress."
WR"OUTPUT 16;S 11;"
WR"OUTPUT 16;CHAN2;S11;PHAS;"
WR"OUTPUT 16;SING;"
WR"OUTPUT 16;AUTO;"
WR"OUTPUT 16;OUTPFORM;"
FOR i= 1 TO npt
WR"ENTER 16 #50"
RD DAT$
PHAS 11(i)=VAL(MID$(DAT$,l,25))
NEXT i

REM Calculating the magnitude for S11
PRINT"Measurement for S11 (magnitude) in progress."
WR"OUTPUT 16;CHAN2;S 1 1;LOGM;"
WR"OUTPUT 16;AUTO;"
WR"OUTPUT 16;OUTPFORM;"
FOR i= 1 TO npt
WR"ENTER 16 #50"
RD DAT$
LMAGS 11(i)=VAL(MID$(DAT$, 1,25))
NEXT i

REM Calculating the phase for S12
PRINT"Measurement for S 12(phase) in progress."
WR"OUTPUT 16;S12;"
WR"OUTPUT 16;CHAN2;S12;PHAS;"
WR"OUTPUT 16;AUTO;"
WR"OUTPUT 16;OUTPFORM;"
FOR i= 1 TO npt
WR"ENTER 16 #50"
RD DAT
PHAS12(i)=VAL(MID$(DAT$,1,25))
NEXT i

REM Calculating the magnitude for S12
PRINT"Measurement for S12(magnitude) in progress."
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WR"OUTPUT 16;CHAN2;S 12;LOGM;"
WR"OUTPUT 16;AUTO;"
WR"OUTPUT 16;OUTPFORM;"
FOR i= 1 TO npt
WR"ENTER 16 #50"
RD DAT$
LMAGS12(i)=VAL(MID$(DAT$,1,25))
NEXT i

REM Calculating the phase for S21
PRINT"Measurement for S21(phase) in progress."
WR "OUTPUT 16;S21;"
WR "OUTPUT 16;CHAN2;PHAS;"
WR "OUTPUT 16;AUTO;"
WR "OUTPUT 16;OUTPFORM;"
FOR i= 1 TO npt
WR"ENTER 16 #50"
RD DAT$
PHAS21(i)=VAL(MID$(DAT$,1,25))
NEXT i

REM Calculating the magnitude for S21
PRINT"Measurement for S21(magnitude) in progress."
WR"OUTPUT 16;CHAN2;S21;LOGM;"
WR"OUTPUT 16;AUTO;"
WR"OUTPUT 16;OUTPFORM;"
FOR i= 1 TO npt
WR"ENTER 16 #50"
RD DATS
LMAGS21(i)=VAL(MID$(DAT$,1,25))
NEXT i

REM Calculating the phase for S22
PRINT"Measurement for S22(phase) in progress."
WR"OUTPUT 16;S22;"
WR"OUTPUT 16;CHAN2;S22;PHAS;"
WR"OUTPUT 16;AUTO;"
WR"OUTPUT 16;OUTPFORM;"
FOR i= 1 TO npt
WR"ENTER 16 #50"
RD DAT$
PHAS22(i)=VAL(MID$(DAT$,1,25))
NEXT i

REM Calculating the magnitude for S22
PRINT"Measurement for S22(magnitude) in progress."
WR"OUTPUT 16;CHAN2;S22;LOGM;"
WR"OUTPUT 16;AUTO;"
WR"OUTPUT 16;OUTPFORM;"
FOR i= 1 TO npt
WR"ENTER 16 #50"
RD DAT$
LMAGS22(i)=VAL(MID$(DAT$,1,25))
NEXT i
fr=F1
FOR i=1 TO npt
freq(i)=fr
fr=fr+DELTAF
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NEXT i
PRINT "Measurement finished."
RETURN

savdata:

nameout$=FILES$(0,"Enter filename to save raw data")
commentl$="NONE"
comment2$="NONE"
fr=F 1
FOR i=1 TO npt
freq(i)=fr
fr=fr+DELTAF
NEXT i
PRINT "Please enter the first line of comment :"
INPUT com1$
IF LEN(coml$)=O THEN PRINT commentl$ ELSE commentl$=coml$
PRINT "Now enter the second line of comment :"
INPUT com2$
IF LEN(com2$)=O THEN PRINT comment2$ ELSE comment2$=com2$
OPEN nameout$ FOR OUTPUT AS #2
PRINT "Raw data saving in progress."
PRINT #2,""
PRINT #2,TAB(28);"Date: ";TODAY$;" Time: ";MTIME$
PRINT #2,""
PRINT #2,TAB(5);"FILENAME ";nameout$
PRINT #2,TAB(5);"ACQUISTION CODE ";prog$
PRINT #2,""
PRINT #2,TAB(5);"Number of points per measurement is ";npt
PRINT #2,TAB(5);"The material used is ";MAT$
PRINT #2,TAB(5);"The temperature in Celsius is ";TDEGC
PRINT #2,TAB(5);"The water resistivity is ";RW
PRINT #2,""
PRINT #2,TAB(5);"COMMENT:"
PRINT #2,TAB(5);commentl$
PRINT #2,TAB(5);comment2$
PRINT #2,""
PRINT #2,""
PRINT #2,TAB(5);"For S 11"
PRINT #2,TAB(5);"Frequency(i) , Phase(i) , Magnitude(i)"
PRINT #2,""
FOR i=1 TO npt
PRINT #2,TAB(5);freq(i);" , ";PHAS 11(i);" , ";LMAGS 11(i)
NEXT i
PRINT #2,""
PRINT #2,TAB(5);"For S12
PRINT #2,TAB(5);"Frequency(i) , Phase(i) , Magnitude(i)"
PRINT #2,""
FOR i=1 TO npt
PRINT #2,TAB(5);freq(i);" , ";PHAS12(i);" , ";LMAGS12(i)
NEXT i
PRINT #2,""
PRINT #2,TAB(5);"For S21
PRINT #2,TAB(5);"Frequency(i) , Phase(i) , Magnitude(i)"
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PRINT #2,""
FOR i=1 TO npt
PRINT #2,TAB(5);freq(i);" , ";PHAS21(i);" , ";LMAGS21(i)
NEXT i
PRINT #2,""
PRINT #2,TAB(5);"For S22
PRINT #2,TAB(5);"Frequency(i) , Phase(i) , Magnitude(i)"
PRINT #2,""
FOR i=1 TO npt
PRINT #2,TAB(5);freq(i);" , ";PHAS22(i);" , ";LMAGS22(i)
NEXT i
PRINT #2,""
savflag= 1
CLOSE #2
PRINT "Data saving finished."
RETURN

readdata:

namein$=FILES$(1,"TEXT")
OPEN namein$ FOR INPUT AS #2
nameout$=namein$
INPUT #2,L$
PRINT L$
INPUT #2,L$
PRINT L$
TODAY$=MID$(L$,14,10)
MTIME$=MID$(L$,45,8)
INPUT #2,L$
PRINT L$
INPUT #2,L$
PRINT L$
INPUT #2,L$
PRINT L$
prog$=MID$(L$,23,23)
INPUT #2,L$
PRINT L$
INPUT #2,L$
PRINT L$
npt=VAL(MID$(L$,37))
INPUT #2,L$
PRINT L$
MAT$=MID$(L$,21)
INPUT #2,L$
PRINT L$
TGDEC=VAL(MID$(L$,30))
INPUT #2,L$
PRINT L$
RW=VAL(MID$(L$,25))
INPUT #2,L$
PRINT L$
INPUT #2,L$
PRINT L$
INPUT #2,L$
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PRINT L$
commentl$=L$
INPUT #2,L$
PRINT L$
comment2$=L$
INPUT"Type R(return) for more:",R$
INPUT #2,L$
PRINT L$
INPUT #2,L$
PRINT L$
IF R$="R" OR R$="r" THEN GOTO 10

10 INPUT #2,L$
PRINT L$
INPUT #2,h$,L$,k$
PRINT h$,L$,k$
INPUT #2,L$
PRINT L$
FOR i=1 TO npt
INPUT #2,h$,L$,k$
freq(i)=VAL(MID$(h$,1))
PHAS 11 (i)=VAL(MID$(L$, 1))
LMAGS 11(i)=VAL(MID$(k$, 1))
PRINT freq(i),PHAS 11 (i),LMAGS 11(i)
NEXT i
INPUT #2,L$
PRINT L$
INPUT"Type R(return) for more:",R$
IF R$="R" OR R$="r" THEN GOTO 11

11 INPUT #2,L$
PRINT L$
INPUT #2,h$,L$,k$
PRINT h$,L$,k$
INPUT #2,L$
PRINT L$
FOR i=1 TO npt
INPUT #2,h$,L$,k$
PHAS12(i)=VAL(MID$(L$,1))
LMAGS12(i)=VAL(MID$(k$,1))
PRINT freq(i),PHAS 12(i),LMAGS 12(i)
NEXT i
INPUT #2,L$
PRINT L$
INPUT"Type R(return) for more:",R$
IF R$="R" OR R$="r" THEN GOTO 12

12 INPUT #2,L$
PRINT L$
INPUT #2,h$,L$,k$
PRINT h$,L$,k$
INPUT #2,L$
PRINT L$
FOR i=1 TO npt
INPUT #2,h$,L$,k$
PHAS21(i)=VAL(MID$(L$,1))
LMAGS21(i)=VAL(MID$(k$,1))
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PRINT freq(i),PHAS21(i),LMAGS21(i)
NEXT i
INPUT #2,L$
PRINT L$
INPUT"Type R(return) for more:",R$
IF R$="R" OR R$="r" THEN GOTO 13

13 INPUT #2,L$
PRINT L$
INPUT #2,h$,L$,k$
PRINT h$,L$,k$
INPUT #2,L$
PRINT L$
FOR i=1 TO npt
INPUT #2,h$,L$,k$
PHAS22(i)=VAL(MID$(L$,1))
LMAGS22(i)=VAL(MID$(k$,1))
PRINT freq(i),PHAS22(i),LMAGS22(i)
NEXT i
savflag=1
CLOSE #2
PRINT "Data reading finished."
RETURN

prindata:

PRINT "Data printing in progress"
OPEN "o", #2,"lptl:"
PRINT #2,"FILENAME ";TAB(30);nameout$
PRINT #2,"ACQUISITION CODE ";TAB(30);prog$
PRINT #2,""
PRINT #2,"Number of points per measurement is ";npt
PRINT #2,"The material used is ";MAT$
PRINT #2,"The temperature in Celsius is ";TDEGC
PRINT #2,"The water resistivity is ";RW
PRINT #2,""
PRINT #2,"Date and time of the measurement"
PRINT #2,TAB(7);"Date: ";TAB(14);TODAY$
PRINT #2,TAB(7);"Time: ";TAB(14);MTIME$
PRINT #2,""
PRINT #2,"COMMENT"
PRINT #2,commentl$
PRINT #2,comment2$
PRINT #2,""
PRINT #2,"FOR S1 1"
PRINT #2,"Frequency(i) Phase(i) Magnii
PRINT #2,""
FOR i=1 TO npt
PRINT #2,freq(i),PHAS 11 (i),LMAGS 11(i)
NEXT i
PRINT #2,""
PRINT #2,"FOR S 12"
PRINT #2,"Frequency(i) Phase(i) Magnit
PRINT #2,""
FOR i=1 TO npt

tude(i)"

ude(i)"
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PRINT #2,freq(i),PHAS 12(i),LMAGS 12(i)
NEXT i
PRINT #2,""
PRINT #2,"FOR S21"
PRINT #2,"Frequency(i) Phase(i)
PRINT #2,""
FOR i=1 TO npt
PRINT #2,freq(i),PHAS2 1 (i),LMAGS2 1(i)
NEXT i
PRINT #2,""
PRINT #2,"FOR S22"
PRINT #2,"Frequency(i) Phase(i)
PRINT #2,""
FOR i=l TO npt
PRINT #2,freq(i),PHAS22(i),LMAGS22(i)
NEXT i
PRINT #2,""
CLOSE #2
PRINT "Data printing finished."
RETURN

Magnitude(i)"

Magnitude(i)"

plotdata:

OPEN "clip:" FOR OUTPUT AS #3
FOR i=1 TO npt
WRITE #3,freq(i),PHAS 11(i),LMAGS 11(i),PHAS 12(i),LMAGS 12(i),
PHAS21(i),LMAGS21(i),PHAS22(i),LMAGS22(i)
NEXT i
CLOSE #3
PRINT "Finished sending data to clipboard;"
PRINT "You can now use CRICKET GRAPH to plot the data."
RETURN
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D. 1 Forward Model

The following code is written in FORTRAN and runs on the VAX. It simulates the forward
model for the coaxial cell in Figure 3.2.1. The first input file contains the dielectric constant
and conductivity of the high-pressure seal. The second input file contains the dielectric
constant and conductivity of the sample. The output file contains the scattering parameters.
All the data are given at a range of frequencies.

C This FORTRAN code computes the scattering parameters, as measured with the
C HP8753A network analyzer and 85046A S-parameter test set, based on the given
C complex dielectric constant of the sample in the high-pressure coaxial cell.

real*8 pi,freq,kO,aep(3),asig(3),alen(3),alenn(3)
complex* 16 ci,aeps(3),temp l,temp2
complex* 16 ar(2,3),are(3),arm(3)
complex* 16 reftra,num 1,num2
character*40 out

C Input file "coaxin 1" contains the dielectric constant and conductivity of the high-
C pressure seal at a range of frequencies.
C Input file "coaxin2" contains the dielectric constant and conductivity of the sample
C at a range of frequencies.
C Output file "coaxout" contains the S-parameters for the coaxial cell at a range of
C frequencies.

open(unit= 1,file='coaxin 1',status='old')
open(unit=2,file='coaxin2',status='old')
open(unit=3,file='coaxout',status='new')

C n is the number of sections in the coaxial cell. In this particular case, I am assuming
C a three section coaxial line.

n=3
ci=(0.d0, 1.dO)
pi=3.141592653589793d0

C aep(i) and asig(i) represent the dielectric constant and conductivity of the i-th section
C in the coaxial cell.

aep(l)=L.dO
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asig(1)=0.dO

C alen(i) represents the length of the i-th section in meter.

alen(1)=1.210939d-1
alen(2)=2.83464d-2
alen(3)=1.90373d-2

do 10j=1,150
read(1,*) freq,aep(2),asig(2)
read(2,*) freq,aep(3),asig(3)
k0=2.d0*pi*freq* 1.d-8/3.dO
do 20 i=1,n
aeps(i)=aep(i)+ci* 1.7975078d+ 10*asig(i)/freq
alenn(i)=alen(i)*kO

20 continue
aeps(2)=aeps(2)+(j- 1)*0.0 1 *aeps(2)
do 30 i=1,n-1
ar(i,i+ 1)=(cdsqrt(aeps(i))-cdsqrt(aeps(i+ 1)))/
1 (cdsqrt(aeps(i))+cdsqrt(aeps(i+ 1)))

30 continue
are(n)=- 1.dO
arm(n)=1.dO
do 40 i=0,n-2
k=n-i
temp1=ar(k-1,k)+are(k)*cdexp(ci*2.dO*cdsqrt(aeps(k))*alenn(k))
temp2=1.dO+ar(k-1,k)*are(k)*cdexp(ci*2.dO*cdsqrt(aeps(k))*alenn(k))
are(k- 1)=temp 1/temp2
temp 1 =ar(k- 1,k)+arm(k)*cdexp(ci*2.dO*cdsqrt(aeps(k))*alenn(k))
temp2= I.dO+ar(k- 1,k)*arm(k)*cdexp(ci*2.dO*cdsqrt(aeps(k))*alenn(k))
arm(k-1)=templ/temp2

40 continue
ref=dconjg((arm(1)+are( 1))*cdexp(ci*2.dO*cdsqrt(aeps( 1))
1 *alenn(1))/2.dO)
tra=dconjg((arm(1)-are(1))*cdexp(ci*2.dO*cdsqrt(aeps(1))
1 *alenn(1))/2.dO)
call comphase(reftra)

write(3,60) freq,char(9),dreal(ref),char(9),dimag(ref),char(9),dreal(tra),char(9),
ldimag(tra)

10 continue
60 format(sp,Ix,1pe13.6,4(al,1pe13.6))

end

C This subroutine changes S-parameters from (real,imaginary) to (phase,amplitude).

subroutine comphase(reftra)
complex* 16 reftra,ci
real*8 freqreal,imag

ci=(0.dO, 1.dO)
real=datan2d(dimag(ref),dreal(ref))
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imag=20.dO*dlog 10(cdabs(ref))
ref=real+ci*imag
real=datan2d(dimag(tra),dreal(tra))
imag=20.dO*dlog 1O(cdabs(tra))
tra=real+ci*inag
return
end

***************************************************
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E.1 Inversion (I) for sample

The following code is written in FORTRAN and runs on the VAX. It implements the

inversion scheme described in section 2.3.1 using the Newton-Raphson approach. Various

subroutines are integrated to provide greater flexibility. Parameters, such as frequency

range, length of the sample, and measured scattering parameters, are taken as input. The

output is the dielectric constant and conductivity of the sample under test.

C This FORTRAN code computes the complex dielectric constant of the sample using
C both measured reflection and transmission coefficients by solving a set of
C simultaneous equations, given the complex dielectric constant of the high-pressure
C seal.

real*8 pi,freq,kO,aep(2),asig(2),alen(3),alenn(3)
complex* 16 ci,aeps(2),unknown 1,unknown2,unknown3,unknown4
complex* 16 ar(2,3),are(3),arm(3),temp1,temp2
complex* 16 s1L,s12,s2 1,s22,reftra
complex* 16 eps l,eps2,eps3,eps4

C Input file "coaxinvlin 1" contains the measured scattering parameters at a range of
C frequencies.
C Input file "coaxinvlin2" contains the dielectric constant and conductivity of the
C high-pressure seal at a range of frequencies.
C Output file "coaxinvlout" contains the dielectric constant and conductivity of the
C sample at a range of frequencies.

open (unit=1,file='coaxinv I in 1',status='old')
open (unit=2,file='coaxinvlin2',status='old')
open (unit=3,file='coaxinv lout',status='new')

C n is the number of sections in the coaxial cell. In this particular case, I am assuming
C a three section coaxial line.

n=3
ci=(0.d0,1.d0)
pi=3.141592653589793d0

C aep(i) and asig(i) represent the dielectric constant and conductivity of the i-th section
C in the coaxial cell.
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aep(1)=1.dO
asig(1)=0.dO

C alen(i) represents the length of the i-th section in meter.

alen(1)=1.210939d-1
alen(2)=2.83464d-2
alen(3)=1.90373d-2

do 10j=1,150
read(1,*) freq,s 11,s12
read(1,*) freq,s21,s22
read(2,*) freq,aep(2),asig(2)
s 11=dconjg(s11)
s 12=dconjg(s 12)
s21=dconjg(s21)
s22=dconjg(s22)
kO=2.dO*pi*freq* 1.d-8/3.dO
do 20 i=1,n
alenn(i)=alen(i)*kO

20 continue
do 30 i=1,n-1
aeps(i)=aep(i)+ci* 1.7975078d+ 10*asig(i)/freq

30 continue
ar(1,2)=(cdsqrt(aeps(1))-cdsqrt(aeps(2)))/
1(cdsqrt(aeps(1))+cdsqrt(aeps(2)))

C Moving the plane of measurement to the interface between air and the seal.

ref=s 1 1/cdexp(ci*2.dO*cdsqrt(aeps(1))*alenn(1))
tra=s 12/cdexp(ci*2.dO*cdsqrt(aeps(1))*alenn(1))
arm(1)=tra+ref
are( 1 )=ref-tra
temp1=ar(1,2)-arm(1)
temp2=(arm(1)*ar(1,2)- i.d)*cdexp(ci*2.dO*cdsqrt(aeps(2))*alenn(2))
arm(2)=templ/temp2
templ=ar(1,2)-are(1)
temp2=(are(1)*ar(1,2)-i .dO)*cdexp(ci*2.dO*cdsqrt(aeps(2))*alenn(2))
are(2)=templ/temp2

C Solving the quadratic equation.

temp1=arm(2)+are(2)
temp2=-2.d0*(are(2)*arm(2)+1.dO)
unknown 1=(- 1.d0*temp2+cdsqrt(temp2*temp2-4.dO*temp 1 *temp 1))
1/(2.dO*temp 1)
unknown2=(- 1.d0*temp2-cdsqrt(temp2*temp2-4.d0*temp 1 *temp 1))
1/(2.dO*temp 1)
temp1=arm(2)-are(2)
temp2=2.d0*(are(2)*arm(2)-1.dO)
unknown3=(-1.d0*temp2+cdsqrt(temp2*temp2-4.d0*temp1*templ))
1/(2.dO*temp 1)
unknown4=(- 1.d0*temp2-cdsqrt(temp2*temp2-4.d0*temp 1 *temp 1))
1/(2.dO*temp 1)
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C Solving for eps from the roots obtained from the quadratic equation.

eps 1 =(cdsqrt(aeps(2))-unknown I *cdsqrt(aeps(2)))/
1(unknownl+1.dO)**2
eps2 =(cdsqrt(aeps(2))-unknown2*cdsqrt(aeps(2)))/
1(unknown2+1.dO)**2
eps3=(cdlog(unknown3)/(2.dO*ci*alenn(3)))**2
eps4=(cdlog(unknown4)/(2.dO*ci*alenn(3)))**2

write (3,60) freq,dreal(eps1),dimag(eps1)*freq/1.7975078d10
write (3,60) freq,dreal(eps2),dimag(eps2)*freq/1.7975078dl0
write (3,60) freq,dreal(eps3),dimag(eps3)*freq/1.7975078d10
write (3,60) freq,dreal(eps4),dimag(eps4)*freq/1.7975078dl0

10 continue
60 format(sp,1x,1pel3.6,2(a1,1pe13.6))

end
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E.2 Inversion (II) for sample

The following code is written in FORTRAN and stored on the VAX. It implements the
inversion scheme described in section 2.3.1 using the Newton-Raphson approach. Various
subroutines are integrated to provide greater flexibility. Parameters, such as frequency
range, length of the sample, and measured scattering parameters, are taken as input. The
output is the dielectric constant and conductivity of the sample under test.

C This FORTRAN code computes the complex dielectric constant of the sample using
C both measured reflection and transmission coefficients with an iterative approach,
C given the complex dielectric constant of the high-pressure seal.

ieal*8 pi,tol,freq,kO,aep(3),asig(3),alen(3),alenn(3)
complex* 16 ci,aeps(3),unknown 1,unknown2,unknown3,unknown4
complex* 16 ar(2,3),are(3),arm(3),temp 1,temp2
complex*16 sll,s12,s21,s22,reftra,aeps31,aeps32
complex* 16 eps 1,eps2,eps3,eps4
real*8 alenn3
complex* 16 aeps2,arm2,are2
common /par/aeps2,alenn3,ci,tol
common /parl/arm2
common /par2/are2

C Input file "coaxinv2inl" contains the measured scattering parameters at a range of
C frequencies.
C Input file "coaxinv2in2" contains the dielectric constant and conductivity of the
C high-pressure seal at a range of frequencies.
C Output file "coaxinv2out" contains the dielectric constant and conductivity of the
C sample at a range of frequencies.

open (unit= 1,file='coaxinv2in 1',status='old')
open (unit=2,file='coaxinv2in2',status='old')
open (unit=3,file='coaxinv2out',status='new')

C n is the number of sections in the coaxial cell. In this particular case, I am assuming
C a three section coaxial line.

n=3

C aep(i) and asig(i) represent the dielectric constant and conductivity of the i-th section
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C in the coaxial cell.

aep(1)=1.dO
asig(1)=0.dO

C alen(i) represents the length of the i-th section in meter.

alen(1)=1.210939d-1
alen(2)=2.83464d-2
alen(3)=1.90373d-2

C tol represents the tolerance for the iteration process.

tol=1.d-10

C Initial guess for the complex dielectric constant for the sample.

aep(3)=30.dO
asig(3)=3.d-3

ci=(0.dO,1.dO)
pi=3.141592653589793d0
do 10j=1,150
read(1,*) freq,s 11,s12
read(1,*) freq,s21,s22
read(2,*) freq,aep(2),asig(2)
s 11=dconjg(s11)
s 12=dconjg(s 12)
s21=dconjg(s21)
s22=dconjg(s22)
kO=2.dO*pi*freq* 1.d-8/3.dO
do 20 i=1,n
alenn(i)=alen(i)*kO

20 continue
do 30 i=1,n
aeps(i)=aep(i)+ci* 1.7975078d+ 10*asig(i)/freq

30 continue
ar(1,2)=(cdsqrt(aeps(1))-cdsqrt(aeps(2)))/
1 (cdsqrt(aeps(1))+cdsqrt(aeps(2)))

C Moving the plane of measurement to the interface between the seal and sample.

ref=s1 1/cdexp(ci*2.dO*cdsqrt(aeps(1))*alenn(1))
tra=s 12/cdexp(ci*2.dO*cdsqrt(aeps(1))*alenn(1))
arm(1)=tra+ref
are(1)-ref-tra
templ=ar(1,2)-arm(1)
temp2=(arm(1)*ar(1,2)-i .dO)*cdexp(ci*2.dO*cdsqrt(aeps(2))*alenn(2))
arm(2)=templ/temp2
templ=ar(1,2)-are(1)
temp2=(are(1)*ar(1,2)- i.d)*cdexp(ci*2.dO*cdsqrt(aeps(2))*alenn(2))
are(2)=templ/temp2
aeps31=aeps(3)
aeps32=aeps(3)
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alenn3=alenn(3)
aeps2=aeps(2)
arm2=arm(2)
are2=are(2)
call fl (aeps3 1)
call f2(aeps32)

write (3,60) freq,char(9),dreal(aeps31),char(9),dimag(aeps31)*freq/1.7975078dl0
write (3,60) freq,char(9),dreal(aeps32),char(9),dimag(aeps32)*freq/1.7975078d10

10 continue
60 format(sp,1x,1peI3.6,2(al,1pe13.6))

end

C This subroutine f 10 computes the complex dielectric constant assuming a PMC.

subroutine fi (aeps3 1)
real*8 alenn3,tol
complex* 16 aeps3,aeps3 1,aeps2,arm2,ar23,ci
common /par/aeps2,alenn3,ci,tol
common /parl/arm2

10 ar23=(cdsqrt(aeps2)-cdsqrt(aeps3 1))/(cdsqrt(aeps2)+cdsqrt(aeps3 1))
aeps3=(cdlog((arm2-ar23)/(1.dO-arm2*ar23))/(2.d0*ci*alenn3))**2
if(cdabs(aeps3-aeps31).lt.cdabs(tol*aeps31)) then
aeps3 1 =aeps3
return
else
aeps3 1=aeps3
goto 10
endif
return
end

C This subroutine f20 computes the complex dielectric constant assuming a PEC.

subroutine f2(aeps32)
real*8 alenn3,tol
complex* 16 aeps3,aeps32,aeps2,are2,ar23,ci
common /par/aeps2,alenn3,ci,tol
common /par2/are2

10 ar23=(cdsqrt(aeps2)-cdsqrt(aeps32))/(cdsqrt(aeps2)+cdsqrt(aeps32))
aeps3=(cdlog((are2-ar23)/(are2*ar23-1 .dO))/(2.dO*ci*alenn3))**2
if(cdabs(aeps3-aeps32).lt.cdabs(tol*aeps32)) then
aeps32=aeps3
return
else
aeps32=aeps3
goto 10
endif
return
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end
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E.3 Inversion (III) for sample

The following code is written in FORTRAN and stored on the VAX. It implements the
inversion scheme described in section 2.3.1 using the Newton-Raphson approach. Various
subroutines are integrated to provide greater flexibility. Parameters, such as frequency
range, length of the sample, and measured scattering parameters, are taken as input. The
output is the dielectric constant and conductivity of the sample under test.

C This FORTRAN code computes the complex dielectric constant of the sample using
C either reflection or transmission coefficient with a Newton-Raphson approximation
C approach, given the complex dielectric constant of the high-pressure seal.

real*8 pi,freq,kO,aep(3),asig(3),alen(3),alenn(3)
real*8 re11,sig11,re12,sigl2,re21,sig21,re22,sig22
complex* 16 ci,aeps(3),tem 11 ,tem I2,tem2l,tem22
complex* 16 ar(2,3),are(3),arm(3)
complex*16 s 1,s12,s21,s22
common /parl/ci
common /par2/aeps,alenn,ar
common /par3/are,arm
common /par4/n

C Input file "coaxinv3in 1" contains the measured scattering parameters at a range of
C frequencies.
C Input file "coaxinv3in2" contains the dielectric constant and conductivity of the
C high-pressure seal at a range of frequencies.
C Output file "coaxinv3out" contains the dielectric constant and conductivity of the
C sample at a range of frequencies.

open (unit=1 ,file=coaxinv3in 1',status='old')
open (unit=2,file='coaxinv3in2',status='old')
open (unit=3,file='coaxinv3out',status='new')

C n is the number of sections in the coaxial cell. In this particular case, I am assuming
C a three section coaxial line.

n=3

C aep(i) and asig(i) represent the dielectric constant and conductivity of the i-th section
C in the coaxial cell.
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aep(1)=1.dO
asig(1)=0.dO

C alen(i) represents the length of the i-th section in meter.

alen(1)=1.210939d-1
alen(2)=2.83464d-2
alen(3)=1.90373d-2

C Initial guess for the complex dielectric constant for the sample.

aep(3)=30.dO
asig(3)=3.d-3

ci=(0.dO, 1.dO)
pi=3.141592653589793d0
do l0j=1,150
read(1,*) freq,s 1,s12
read(1,*) freq,s21,s22
read(2,*) freq,aep(2)asig(2)
s 11=dconjg(s11)
s 12=dconjg(s 12)
s21=dconjg(s21)
s22=dconjg(s22)
kO=2.dO*pi*freq* 1.d-8/3.dO
do 20 i=1,3
alenn(i)=alen(i)*kO

20 continue
do 30 i=1,3
aeps(i)=aep(i)+ci* 1.7975078d+ 10*asig(i)/freq

30 continue
ar(1,2)=(cdsqrt(aeps(1))-cdsqrt(aeps(2)))/
1 (cdsqrt(aeps(1))+cdsqrt(aeps(2)))
are(3)=- 1.dO
arm(3)=1.dO
tem 1=aeps(3)
teml2=aeps(3)
tem21=aeps(3)
tem22=aeps(3)

call fs11(temI1,s11)
re 11=dreal(tem11)
sig 11=dimag(tem11)*freq/1.7975078d10
write(3,60) freq,char(9),re 11,char(9),sig 11

call fs12(temI2,s12)
re12=dreal(tem12)
sigl2=dimag(tem12)*freq/1.7975078d10
write(3,60) freq,char(9),re12,char(9),sig12

call fsl2(tem21,s21)
re21=dreal(tem21)
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sig21=dimag(temn21)*freq/1.7975078d10
write(3,60) freq,char(9),re21,char(9),sig21

call fs 11 (tem22,s22)
re22=dreal(tem22)
sig22=dimag(tem22)*freq/1.7975078db0
write(3,60) freq,aep(3),asig(3)

aep(3)=re22
asig(3)=sig22

10 continue
60 format(sp,1x,1pe13.6,2(a1,1pe13.6))

end

C The subroutine fs 11() compute complex dielectric based on s11.

subroutine fs 11(weps,s 11)
real*8 tol
complex* 16 weps,s11,reps,deps,refderefdetra,epsn

tol=1.d-13
reps=weps
deps=weps

10 call refl(repsref)
call der(deps,derefdetra)
epsn=weps-(ref-s 11)/deref
if (cdabs(epsn-weps).lt.cdabs(tol*epsn)) then
weps=epsn
return
else
weps=epsn
reps=weps
deps=weps
go to 10
endif
return
end

C The subroutine reflo computes s 11 based on (ep,sig).

subroutine refl(repsref)
real*8 alenn(3)
complex* 16 cireps,aeps(3),temp 1,temp2,ref
complex* 16 ar(2,3),are(3),arm(3)
common /parl/ci
common /par2/aeps,alenn,ar
common /par3/are,arm

aeps(3)-reps
ar(2,3)=(cdsqrt(aeps(2))-cdsqrt(aeps(3)))/
1 (cdsqrt(aeps(2))+cdsqrt(aeps(3)))
do 10 i=O,1
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k=3-i
temp 1 =ar(k- 1,k)+are(k)*cdexp(ci*2.dO*cdsqrt(aeps(k))*alenn(k))
temp2=1.dO+ar(k- 1,k)*are(k)*cdexp(ci*2.dO*cdsqrt(aeps(k))*alenn(k))
are(k-1)=templ/temp2
temp 1=ar(k- 1,k)+arm(k)*cdexp(ci*2.dO*cdsqrt(aeps(k))*alenn(k))
temp2=1.dO+ar(k- 1,k)*arm(k)*cdexp(ci*2.dO*cdsqrt(aeps(k))*alenn(k))
arm(k-1)=templ/temp2

10 continue
ref=(arm(1)+are(1))*cdexp(ci*2.dO*cdsqrt(aeps(1))*alenn(1))/2.dO
return
end

C The subroutine fs12() computes complex dielectric constant based on s12.

subroutine fs12(weps,s12)
real*8 tol
complex* 16 s 12,weps,reps,deps,tra,derefdetra,epsn

tol=1.d-13
reps=weps
deps=weps

10 call tran(reps,tra)
call der(deps,derefdetra)
epsn=weps-(tra-s 12)/detra
if (cdabs(eosn-weps).lt.cdabs(tol*epsn)) then
weps=epsn
return
else
weps=epsn
reps=weps
deps=weps
go to 10
endif
return
end

C The subroutine tran() computes s 12 based on (ep,sig).

subroutine tran(reps,tra)
real*8 alenn(3)
complex* 16 cireps,aeps(3),templ,temp2,tra
complex* 16 ar(2,3),are(3),arm(3)
common /parl/ci
common /par2/aeps,alenn,ar
common /par3/are,arm

aeps(3)=reps
ar(2,3)=(cdsqrt(aeps(2))-cdsqrt(aeps(3)))/
1 (cdsqrt(aeps (2))+cdsqrt(aeps (3)))
do 10 i=0,1

k=3-i k)temp 1=ar(k- 1,k)+are(k)*cdexp(ci*2.dO*cdsqrt(aeps(k))*alenn(k))
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temp2=1 .dO+ar(k- 1,k)*are(k)*cdexp(ci*2.dO*cdsqrt(aeps(k))*alenn(k))
are(k- 1)=temp 1/temp2
temp1=ar(k-1,k)+arm(k)*cdexp(ci*2.dO*cdsqrt(aeps(k))*alenn(k))
temp2= 1.dO+ar(k- 1,k)*arm(k)*cdexp(ci*2.dO*cdsqrt(aeps(k))*alenn(k))
arm(k-1)=templ/temp2

10 continue
tra=(arm(1)-are( 1)) *cdexp(ci*2.dO*cdsqrt(aeps(1))*alenn( 1))/2.dO
return
end

C The subroutine der() computes the derivative of reflO and tran() at eps3.

subroutine der(eps3,derefdetra)
real*8 alenn(3)
complex* 16 eps3,derefdetra
complex* 16 ci,aeps(3),ar(2,3),k l,k2,k3
complex* 16 con 1,decon 1,con2,decon2,con3,decon3,con4,decon4
complex* 16 con5,derm,dere
common /parl/ci
common /par2/aeps,alenn,ar

aeps(3)=eps3
kl=cdsqrt(aeps(1))
k2=cdsqrt(aeps(2))
k3=cdsqrt(aeps(3))

C The value of (k2-k3)/(k2+k3).
con 1 =(k2-k3)/(k2+k3)

C The derivative of con1 with respect to eps3.
decon 1=-i .dO*k2/(k3*(k2+k3)**2)

C The value of cdexp(ci*2.dO*k3*h3)
con2=cdexp(ci*2.dO*k3*alenn(3))

C The derivative of con2 with respect to eps3.
decon2=ci*alenn(3)*con2/k3

C The value of R2M or (con1+con2)/(1.d+con1*con2).
con3=(con 1 +con2)/(1.dO+con 1 *con2)

C The derivative of R2M with respect to eps3.
decon3=- 1.dO* (con 1 +con2)*(con 1 *decon2+con2*decon 1)/
1(1 .dO+con 1 *con2)**2+(decon 1 +decon2)/(1.dO+con 1 *con2)

C The value of R2E or (con 1 -con2)/(1.dO-con1 *con2).
con4=(con 1 -con2)/(1.dO-con 1 *con2)

C The derivative of R2E with respect to eps3.
decon4=(conl -con2)*(con 1 *decon2+con2*decon 1)/
1 (1.dO-con 1 *con2)**2+(decon 1-decon2)/(1.dO-con 1 *con2)

C The value of cdexp(ci*2.dO*k2*alenn(2)).
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con5=cdexp(ci*2.dO*k2*alenn(2))

C The derivative of RiM with respect to eps3.
derm=- 1.dO*(ar(1,2)+con3*con5)*ar(1,2)*con5*decon3/
1(1.dO+ar(1,2)*con3*con5)**2+decon3*con5/(1.dO+ar(1,2)*
lcon3*con5)

C The derivative of RIE with rspect to eps3.
dere=- 1.dO*(ar(1,2)+con4*con5)*ar(1,2)*con5*decon4/
1(1.dO+ar(1,2)*con4*con5)**2+decon4*con5/(1.dO+ar(1,2)*
lcon4*con5)

deref=(derm+dere)*cdexp(ci*2.dO*k 1 *alenn(1))/2.dO
detra=(derm-dere)*cdexp(ci*2.dO*k 1 *alenn(1))/2.dO
return
end
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E.4 Inversion for seal

The following code is written in FORTRAN and stored on the VAX. It implements the
inversion scheme described in section 2.3.1 using the Newton-Raphson approach. Various
subroutines are integrated to provide greater flexibility. Parameters, such as frequency
range, length of the sample, and measured scattering parameters, are taken as input. The
output is the dielectric constant and conductivity of the sample under test.

C This FORTRAN code computes the complex dielectric constant of the high-
C pressure seal using either reflection or transmission coefficient with a Newton-
C Raphson approximation approach, given the complex dielectric constant of the
C sample.

real*8 pi,freq,kO,aep(3),asig(3),alen(3),alenn(3)
real*8 sr(6),si(6),temp3,junkjunk1
complex* 16 ci,aeps(3),tem l,tem2,tem3,tem4,tem5,tem6
complex* 16 are(3),arm(3)
complex*16 sllave,sl2ave,sll,s12,s21,s22
common /parl/ci
common /par2/aeps,alenn
common /par3/are,arm
common /par4/n

C Input file "coaxinv4in 1" contains the measured scattering parameters at a range of
C frequencies.
C Input file "coaxinv4in2" contains the dielectric constant and conductivity of the
C sample at a range of frequencies.
C Output file "coaxinv4out" contains the dielectric constant and conductivity of the
C high-pressure seal at a range of frequencies.

open(unit= 1,file='coaxinv4in 1',status='old')
open(unit=2,file='coaxinv4in2',status='old')
open(unit=3,file='coaxinv4out',status='new')

C n is the number of sections in the coaxial cell. In this particular case, I am assuming
C a three section coaxial line.

n=3
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C aep(i) and asig(i) represent the dielectric constant and conductivity of the i-th section
C in the coaxial cell.

aep(1)=L.dO
asig(1)=0.dO

C alen(i) represents the length of the i-th section in meter.

alen(1)=1.210939d-1
alen(2)=2.83464d-2
alen(3)=1.90373d-2

C Initial guess for the complex dielectric constant for the seal.

aep(2)=16.dO
asig(2)=3.d-4

ci=(0.dO, 1.dO)
pi=3.141592653589793d0
do l0j=1,150
read(1,*) freq,s11,s12
read(1,*) freq,s21,s22
read(2,*) freq,aep(3),asig(3)
s 1=dconjg(s 11)
s 12=dconjg(s 12)
s21=dconjg(s21)
s22=dconjg(s22)
kO=2.dO*pi*freq* 1.d-8/3.dO
do 20 i=1,3
alenn(i)=alen(i)*kO

20 continue
do 30 i=1,3
aeps(i)=aep(i)+ci* 1.7975078d+ 10*asig(i)/freq

30 continue
are(3)=-L.dO
arm(3)=l.dO
teml=aeps(2)
tem2=aeps(2)
tem3=aeps(2)
tem4=aeps(2)

call fs11(teml,s11)
sr(l)=dreal(teml)
si(1)=dimag(tem1)*freq/1.7975078dl0
write(3,60) freq,sr(1),si(1)

call fs12(tem2,s12)
sr(2)=dreal(tem2)
si(2)=dimag(tem2)*freq/1.7975078d10
write(3,60) freq,sr(2),si(2)

call fs12(tem3,s21)
sr(3)=dreal(tem3)
si(3)=dimag(tem3)*freq/1.7975078d10
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write(3,60) freq,sr(3),si(3)

call fs 11 (tem4,s22)
sr(4)=dreal(tem4)
si(4)=dimag(tem4)*freq/1.7975078d10
write(3,60) freq,sr(4),si(4)

aep(2)=sr(4)
asig(2)=si(4)

10 continue
60 format(sp,lx,ipe13.6,2(al,ipe13.6))

end

C The subroutine fs 11() compute complex dielectric based on s11.

subroutine fs11(weps,s11)
real*8 tol
complex* 16 weps,s11,reps,depsrefderefdetra,epsn

tol=1.d-10
reps=weps
deps=weps

10 call refl(repsref)
call der(deps,derefdetra)
epsn=weps-(ref-s 1 1)/deref
if (cdabs(epsn-weps).1t.cdabs(tol*epsn)) then
weps=epsn
return
else
weps=epsn
reps=weps
deps=weps
go to 10
endif
return
end

C The subroutine reflo computes s11 based on (ep,sig).

subroutine refl(repsref)
real*8 alenn(3)
complex* 16 cireps,aeps(3),temp l,temp2,ref
complex* 16 ar(2,3),are(3),arm(3)
common /parl/ci
common /par2/aeps,alenn
common /par3/are,arm

aeps(2)=reps
ar(1,2)=(cdsqrt(aeps(1))-cdsqrt(aeps(2)))/
1(cdsqrt(aeps(1))+cdsqrt(aeps(2)))
ar(2,3)=(cdsqrt(aeps(2))-cdsqrt(aeps(3)))/
1 (cdsqrt(aeps(2))+cdsqrt(aeps(3)))
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do 10 i=O,l
k=3-i
temp1=ar(k-1,k)+are(k)*cdexp(ci*2.dO*cdsqrt(aeps(k))*alenn(k))
temp2= 1.dO+ar(k- 1,k)*are(k)*cdexp(ci*2.dO*cdsqrt(aeps(k))*alenn(k))
are(k-1)=templ/temp2
temp1=ar(k-l,k)+arm(k)*cdexp(ci*2.dO*cdsqrt(aeps(k))*alenn(k))
temp2=1.dO+ar(k- 1,k)*arm(k)*cdexp(ci*2.d0*cdsqrt(aeps(k))*alenn(k))
arm(k-1)=templ/temp2

10 continue
ref=(arm(1)+are(1))*cdexp(ci*2.dO*cdsqrt(aeps(1))*alenn(1))/2.dO
return
end

C The subroutine fs12() computes complex dielectric constant based on s12.

subroutine fs12(weps,s12)
real*8 tol
complex* 16 s12,weps,reps,deps,tra,derefdetra,epsn

tol=1.d-10
reps=weps
deps=weps

10 call tran(reps,tra)
call der(deps,derefdetra)
epsn=weps-(tra-s 12)/detra
if (cdabs(epsn-weps).lt.cdabs(tol*epsn)) then
weps=epsn
return
else
weps=epsn
reps=weps
deps=weps
goto 10
endif
return
end

C The subroutine tran() computes s 12 based on (ep,sig).

subroutine tran(reps,tra)
real*8 alenn(3)
complex* 16 cireps,aeps(3),temp l,temp2,tra
complex* 16 ar(2,3),are(3),arm(3)
common /parl/ci
common /par2/aeps,alenn
common /par3/are,arm

aeps(2)=reps
ar(1,2)=(cdsqrt(aeps(1))-cdsqrt(aeps(2)))/
1 (cdsqrt(aeps(1))+cdsqrt(aeps(2)))
ar(2,3)=(cdsqrt(aeps(2))-cdsqrt(aeps(3)))/
1 (cdsqrt(aeps(2))+cdsqrt(aeps (3)))
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do 10 i=0,l
k=3-i
temp1=ar(k-1,k)+are(k)*cdexp(ci*2.dO*cdsqrt(aeps(k))*alenn(k))
temp2=1.dO+ar(k- 1,k)*are(k)*cdexp(ci*2.dO*cdsqrt(aeps(k))*alenn(k))
are(k-1)=templ/temp2
temp 1 =ar(k- 1,k)+arm(k)*cdexp(ci*2.dO*cdsqrt(aeps(k))*alenn(k))
temp2=1.dO+ar(k- 1,k)*arm(k)*cdexp(ci*2.dO*cdsqrt(aeps(k))*alenn(k))
arm(k-1)=templ/temp2

10 continue
tra=(arm(1)-are(1))*cdexp(ci*2.dO*cdsqrt(aeps(1))*alenn(1))/2.dO
return
end

C The subroutine der() computes the derivative of refl() and tran() at eps2.

subroutine der(eps2,deref,detra)
real*8 alenn(3)
complex* 16 eps2,derefdetra
complex* 16 ci,aeps(3),kl,k2,k3
complex* 16 R12,DR1 2,R23,DR23,E1 ,E2,DE2,E3,RM2,DRM2
complex* 16 RE2,DRE2,DRM 1,DRE 1
common /parl/ci
common /par2/aeps,alenn

aeps(2)=eps2
kl=cdsqrt(aeps(1))
k2=cdsqrt(aeps(2))
k3=cdsqrt(aeps(3))

C The value of R12.
R12=(kl-k2)/(kl+k2)

C The derivative of R12 with respect to eps2.
DR12=- 1.dO*kl/(k2*(kl+k2)**2)

C The value of R23.
R23=(k2-k3)/(k2+k3)

C The derivative of R23 with respect to eps2.
DR23=k3/(k2*(k2+k3)**2)

C The value of El.
El =cdexp(ci*2.dO*kl *alenn(1))

C The value of E2.
E2=cdexp(ci*2.dO*k2*alenn(2))

C The derivative of E2 with respect to eps2.
DE2=ci*alenn(2)*E2/k2

C The value of E3.
E3=cdexp(ci*2.dO*k3*alenn(3))
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C The value of R2M.
RM2=(R23+E3)/(1.dO+R23*E3)

C The derivative of R2M with respect to eps2.
DRM2=- 1.dO*(R23+E3)*E3*DR23/(1.dO+R23*E3)**2+
1DR23/(1.dO+R23*E3)

C The value of R2E.
RE2=(R23-E3)/(1.dO-R23*E3)

C The derivative of R2E with respect to eps2.
DRE2=(R23-E3)*DR23*E3/(1.dO-R23*E3)**2+
1DR23/(1.dO-R23*E3)

C The derivative of R1M with respect to eps2.
DRM1=-1.dO*(R12+RM2*E2)*(DR12*RM2*E2+DRM2*Rl2*E2+
1DE2*R12*RM2)/(1.dO+R12*RM2*E2)**2+(DR12+DE2*RM2+
1DRM2*E2)/(1.dO+R12*RM2*E2)

C The derivative of RIE with respect to eps2.
DRE1=- 1.dO*(R12+RE2*E2)*(DR12*RE2*E2+DRE2*R12*E2+
1DE2*R12*RE2)/(1.dO+R12*RE2*E2)**2+(DR12+DE2*RE2+
1DRE2*E2)/(1.dO+R12*RE2*E2)

deref=(DRM1+DRE1)*E1/2.dO
detra=(DRM1-DRE1)*E1/2.dO
return
end
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F.1 Data as a Function of Frequency at 1100 MHz
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Figure F.1.1: Dielectric Constant of Pure Water as a Function of Pressure
at 1100 MHz
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Conductivity of pure water as a function of
pressure at 1100 MHz
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Figure F.1.3: Dielectric Constant of .6 Q-m Water as a Function of
Pressure at 1100 MHz
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Conductivity of .6 Q-m water as a function
of pressure at 1100 MHz

---- 1100 MHz
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Figure F.1.4: Conductivity of .6 K2-m Water
1100 MHz

as a Function of Pressure at
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Dielectric constant of Berea, saturated
with .1 Q-m water, as a function of
pressure at 1100 MHz
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Figure F.1.5: Dielectric Constant of Berea, Saturated with
as a Function of Pressure at 1100 MHz
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Conductivity of Berea, saturated with
.1 92-m water, as a function of pressure at
1100 MHz
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Figure F.1.6: Conductivity of Berea, Saturated with .1 .Q-m Water, as a
Function of Pressure at 1100 MHz
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Dielectric constant of Massilon, saturated
with .1 f2-m water, as a function of
pressure at 1100 MHz
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Figure F.1.7: Dielectric
Water, as a

Constant of Massilon, Saturated with
Function of Pressure at 1100 MHz
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Conductivity of Massilon, saturated with
.1 f2-m water, as a function of pressure at
1100 MHz
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