AUG 15 1966 LIBRARIES

INVESTIGATION OF EFFECTS OF DISTURBANCE ON ... UNDRAINED SHEAR STRENGTH OF BOSTON BLUE CLAY.

by

NILS-FREDRIK BRAATHEN

B.S.C.E. Northeastern

University (1964)

Submitted in partial fulfillment

of the requirements for the degree of

Master of Science

at the

Massachusetts Institute of Technology

(1966)

Signature of Author Department of Civil Engineering, (May 20, 1966) Certified by Thesis Supervisor Accepted by . Chairman, Departmental Committee on Graduate Students

ii

INVESTIGATION OF EFFECTS OF DISTURBANCE ON

UNDRAINED SHEAR STRENGTH OF BOSTON BLUE CLAY.

by

NILS-FREDRIK BRAATHEN

Submitted to the Department of Civil Engineering on May 20, 1966 in partial fulfillment of the requirements for the degree of Master of Science.

> This investigation examined the effects of sample disturbance on the behavior of Boston Blue Clay during undrained shear. A hypothetical field condition was simulated, and different amounts and types of disturbance was induced into the samples. Earlier investigations have determined a correlation of disturbance with effective stress on the sample prior to shear. At the same time overconsolidated samples were tested in accordance with Ladd and Lambe's method. The general result was that the "perfect" sampling" Su could be estimated on the basis of strength reduction versus overconsolidation ratio using the ratio of the perfect sampling effective stress to the preshear effective stress (G). Investigation of stress-strain data show that disturbance reduced the modulus of elasticity considerably, even below that obtained with the overconsolidated samples.

A direct application of the strength reduction vs O.C.R. was used to correct UU tests with measurements on undisturbed samples from the M.I.T. campus. The se corrected this way agreed very well with the theoretical estimate of the in situ se for triaxial compression.

Thesis Supervisor:

associate Professor of Civil Engineering

Title:

ACKNOWLEDGEMENTS .

The author whishes to acknowledge the assistance of the following persons and organization:

Professor C. C. Ladd, who provided encouragement, constructive criticism, and enthusiastic interest.

Karin Ruud Braathen, who typed the manuscript and contributed encouragement.

Elin Marie Braathen, who contributed generously of her time to do the drafting.

The Waterways Experiment Station, U.S. Army Corps of Engineers, who sponsored the research.

CONTENTS.

			Page.			
	Title	Page	i			
	Abstract Acknowledgment					
	Table	of Content	11 11			
1.	Introd	uction.	l			
2.	Backgr	ound	3			
	2.1	Field Stresses.	3			
	2.2	Origin of Disturbance	4			
	2.3	Methods to Correct for Disturbance	6			
	2.31	Casagrande and Rutledge Method	7			
	2.32	Calhoon Method	8			
	2.33	Schmertman Method	9			
	2.34	Ladd-Lambe Method	10			
	2.341	Correction of from UU Test.	10			
	2.342	Correction of from CIU Tests	10			
	2.35	Seed, Noorany and Smith	11			
×	2.351	Method No. 1.	11			
	2.352	W W 2.	13			
	2.353	" " 3.	13			
3.	Testin	g Program.	15			
	3.1	General Aim	15			
	3.2	General Data on Sample Preparation and Triaxial				
		Test Procedure	15			
	3.21	Sample Preparation	15			
	3.22	Triaxial Test Procedure	17			

			Page
	3•3	Triaxial Testing Series	20
	3.31	Tests to Establish Sul Se ve Sem	20
3	3.311	CIU and CIOU Tests	20
	3.312	CK - UU and CK - CIOU	21
	3.32	Tests to Check Established Curve	21
	3.321	Cyclic Undrained Tests	21
	3.322	UU Tests	22
	3.33	Presentation and Discussion of Test Results	23
	3.331	Isotropically Consolidated Test Series	23
	3.332	Anisotropically Consolidated Test Series	24
	3.333	Cyclic Isotropic Test Series	26
	3.334	Cyclic Anisotropic Test Series	26
	3.335	UU Remolded Test Series	27
	3.34	Final Discussion	27
	3.341	General Result of Testing Program	27
	3.342	Use of Methods to Correct for Disturbance	28
	3•35	Effect of Disturbance on Stress - Strain	
		Characteristics	32
	3.36	Application of Theory of Data from M.I.T. Campus	33
2	3.37	Final Conclusions	34
	3•38	Proposed Future Research	34
	3•39	List of References	36
	3.40	Figures	38ъ
	3.401	List of Figures	38ъ
4.	Append	ix	60
	4.l	Summary Tables of Test Results	61
	4.2	p-q Plots	73

iiiii

iiiiii

		Page.
4.3	Stress - Strain Plots for Individual Tests	82
4.4	Summaries of Individual Tests	99
4.5	List of Symbols	157
4.6	Types of Triaxial Tests	159

1

1. Introduction:

For design problems where immediate stability is the problem, a total stress analysis assuming \$ o is generally used. Basically it is assumed that no drainage takes place during construction. There is therefore a need to determine the in situ undrained shear strength. A field vane test will give "in situ" values directly but unfortunately there is a basic problem of interpretation of the kind of strength measured with a vane. Another approach is to take socalled "undisturbed" samples and test them in the laboratory. Since the effective stresses in the sample is reduced due to stress release and disturbance during the sampling process and handling in the laboratory, it is impossible to test a sample with the same water content and effective stress condition as in situ. By reconsolidating the samples to the in situ stress condition, the water content would be lower than in situ and the shear strength higher. Another approach is to run an unconsolidated-undrained (UU) test at the natural water content. This usually results in underestimation of in situ Su

for triaxial compression. The latter could result in a costly overdesign whereas the former generally results in unsafe designs. This investigation was aimed at correcting the See values obtained from UU tests to where they agree better with See in triaxial compression for a perfect sample i.e. one with no disturbance. Only the undrained shear strength in compression is considered and reduction due to difference in failure plan orientation and reorientation of principal stresses is neglected.

A hypothetical field condition was created in the laboratory

by consolidating samples of Boston Blue Clay (prepared from a slurry) to a certain horizontal and vertical stress. Then some of these samples were tested at this "field" condition to give a "field" Sec. One sample is unloaded undrained and sheared in compression to give the Sec of a "perfect" sample. Other samples were disturbed by stress release, shearing, and/or remolding by hand. Data from these tests were then used to check the existing methods for correction of disturbance. The possibility of improvement of some of these methods was also investigated.

2. Background.

2.1 Field stresses.

For stress conditions in horizontal soil beds at rest (geostatic stresses) the following equations have been developed. The total vertical stress, \Im , is equal to the total unit weight of soil, \aleph , times the depth, 3,

Sv = 8t. 3

The water causes a pore pressure at the same elevation. If a hydrostatic condition exists this can be calculated as follows:

u - Sw Hw

where \mathcal{S}_{ω} is the unit weight of water and \mathcal{H}_{ω} is the height of the water table above the point in consideration.

The horizontal stress is indeterminate according to static considerations. In the special case where no lateral strain in the ground has taken place, we define the ratio of horizontal to vertical effective stress, $\overline{S_{1}}$, as K_{0} .

Effective stress is defined as total stress minus the pore

pressure and gives Sv - u

and

Sh = Sh - U = Ko St

Several methods of estimating K_0 have been proposed. There are expressions developed from elastic models and empirical approaches. Timoshenko and Goadier (1951) used linear stress-strain relationship of a semi infinite medium to calculate K_0 :

 $K_{\bullet} \cdot \frac{\mu}{1-\mu}$ (μ is Poissons ratio)

Jaky (1944) developed an expression for K_0 that is usually a good approximation for normally consolidated clays: $K_0 = 1 - \sin \mathbf{7}$. Experimental work by Brooker and Ireland (1965) seemed to indicate that K_0 is closer to (0.95 - $\sin \mathbf{7}$) for such soils. Rowe (1957) proposed to use Hvorslev's friction angle parameter $\mathbf{7}e$ in the expression $K_0 = \tan^2 (45^2 - \mathbf{7}_2)$.

Measurements of K_0 has been obtained by measuring lateral pressures in oedometer tests and by attempting to keep lateral strains negligible in triaxial specimen during consolidation, with varying amount of success.

See figure 2.1-1 (Ladd, 1965) for values of K_o vs overconsolidation for some soils. K_o varies from about 0.5 for normally consolidated soils to well over 2 for heavily overconsolidated samples.

2.2 Origin of Disturbance:

To determine undrained shear strength of a certain soil bed, "undisturbed" samples are usually taken at desired depths and tested in the laboratory. Unconfined compression and unconsolidated-undrained triaxial tests are common means of determining Su.

However there is a large discrepancy between Sue Spand the maximum shear stress measured in UU tests on "undisturbed" samples. A good example is found in strength data obtained on Lada clay from Ottawa, Canada. Coates and McRostic (1963) report these findings for clay at a depth of 55 to 60 ft.

		Type of Test and Sample		$(tons/ft^2)$	
	1.	Field Vane		0.85	
	2.	Unconfined compression and			
		triaxial			
×		a) 2 in. dia. open drive		0.6	
		b) 3.4 in dia. fixed piston		1.1	
		c) block sample		1.6	
	3.	CIU triaxial, consolidated to ov	er-		
		burden pressure			
		a) 2 in. dia. fixed piston		0.9	
		b) N.G.I. piston sampler		1.35	
		c) block sample		1.65	

The clay is moderately plastic, overconsolidated, and very sensitive with a high liquidity index. Fig. 3.36-2 shows $\mathcal{L} \otimes \mathcal{L} \otimes \mathcal{L} \otimes \mathcal{L} \otimes \mathcal{L}$ on an extensive testing program performed on "undisturbed" samples from M.I.T. Campus. Since the obviously remolded samples (determined by visual examination and \mathfrak{S}_3 measurements) had the lowest strength, a sizeable part of the strength loss is due to disturbance.

For common tube sampling, disturbance occurs during the following operations:

a) Stress release due to removal of overburden as the boring progresses.

b) Stress release during removal of boring equipment.

c) Compression induced when sampler is pushed into the soil.

- d) Shear stresses developed between walls of sample tube and sample both during sampling and during extrusion of sample.
- e) Stress release when sample is removed from tube.
- f) Stresses developed during test preparation as trimming and mounting of sample.

Figure 2.2-1 (Ladd and Lambe 1963) shows how the effective stresses might change during these operations. Point A represents the in situ stresses. At P the original anisotropic stress condition is reduced to an isotropic stress condition, undrained. Since this is the minimum amount of stress change we can possibly achieve in "undisturbed" sampling, this is the condition called "perfect" sampling hereafter. The effective stress at this point is refered to as **Sps**. This parameter is calculated by (Ladd and Lambe 1963):

5ps = 5vo [Ko + Au (1-Ko)]

where $\pi_{k} = \frac{Au - ASh}{\Delta S_{v} - 4Sh}$ is the "A"factor for the undrained release of shear stresses. This expression is good for both normally and overconsolidated samples. Point G refers to the actual sample's stress condition after sampling and trimming, and the isotropic effective stress is at this point denoted \overline{S}_{s} . This stress can be determined by measuring the residual pore pressure. Since the confining pressure is zero, $\overline{S}_{s} - \mathcal{U}_{s}$ provided \mathcal{U}_{s} is less than one atmosphere. It is, however, preferable to use a confining pressure (\overline{S}_{c}) high enough to ensure a B-factor equal to unity so that $\overline{S}_{PS} = S_{c} - \mathcal{U}$ where $\overline{S}_{s} = \text{confining pressure}$ and \mathcal{U} measured pore pressure.

2.3 Methods to correct for disturbance:

It seems logical to divide the change in effective stress

Corrections for differences in undrained strength between "perfect" samples and in situ strength seems to be relatively minor. (Ladd and Varallyzy (1965) report a 2-15% decrease in 54/Sic for a variety of soils so the effort of this testing program is directed towards methods of correction for "gross" disturbance.

2.31 Casagrande and Rutledge (1947): (See figure 2.31-1)

The first method proposed for determining the strength of completely undisturbed samples was advanced by Casagrande and Rutledge (1947) They utilized the results of a series of isotropically consolidated undrained triaxial tests and a standard oedometer test. By plotting the relationship between strength and water content at failure for isotropically consolidated striaxial tests with consolidation pressures higher than the preconsolidation pressure and extrapolating this relationship back to the natural water content, the strength of a sample at the natural water content, can be determined. Actually there would be a series of such relationships corresponding to different degrees of disturbance. Since the samples used to establish the \leq_{\bullet} vs $\boldsymbol{\omega}$ are somewhat disturbed too, the extrapolated value will not fully compensate for the effects of disturbance although it generally will be somewhat higher than the unconsolidated undrained strength of samples with the same amount of disturbance initially.

2.32 Calhoon Method (1956): (See figures 2.32-1 and -2)

Calhoon proposes the following elaborate procedure to improve the Casagrande-Rutledge method:

- 1. Extrapolate the field virgin consolidation curve from:
 - a) one undisturbed oedometer test using a thick
 specimen (~ 1.5 in.)
 - b) one undisturbed oedometer test using a thin specimen $(\sim .75 \text{ in.})$
 - c) one remolded oedometer test using a speciman thickness of either a) or b).
- 2. Determine the triaxial consolidation curve and undisturbed. compressive strength curve from CIU and U tests.
- 3. The remolded consolidation curve from either oedometer or CIU tests on remolded samples and the remolded compressive strength curve from CIU and U tests on remolded samples are plotted.
- 4. The percentage of remolding in the undisturbed triaxial specimens is determined.
- 5. The field compressive-strength curve for the average natural water content or void ratio expected in the field is determined.

The percent disturbance is deduced from the ratio yz/xz on figure 2.32-1 based on oedometer tests. Calhoon then proceeds to correct the Subtained from the actual "undisturbed" samples by

setting yz/xz = y'z'/x'z'.

By doing so it is assumed that only trimming produces sample disturbance. The disturbance ratio yz/xz, is based on both anisotropic and isotropic consolidation tests and neglects the effect of K on the location of the $z \sim c$ relationships. The method besides require time consuming testing program.

2.33 Schertmann Method (1956): (See figures 2.33-1 and 2.33-2)

There is an apparent parallelism of strength vs water content relationship and the consolidation curve at pressures above the preconsolidation pressure for soil samples having equal degree of disturbance.

To use this observation for correction of disturbance, first determine the most probable field consolidation curve from a oedometer test on a good undisturbed sample, then run CIU tests on both "undisturbed" and fully remolded samples to construct the strengh-water content relationships. Theoretically these data should yield two straight lines on a ω vs log su plot that intersect at point 0 (figure 2.33-2). Now draw the field su through point 0 and parallel to field consolidation curve.

The main objection to this procedure is the need for equally disturbed samples to establish the field strength vs water content curve. This is very difficult without some measure of the amount of disturbance. Futhermore although this method is simpler than the foregoint method, it still requires an extensive testing program. A

great uncertainity with the method is the parallelism assumed in the consolidation strength vs water content curves. Appreciable errors in strengths may result from a small error in fixing the slope of the field strength curve.

2.34 Ladd and Lambe methods (1963.)

2.341 To correct test data obtain from unconsolidated undrained test.

The authors propose that the decrease in effective stress caused by disturbance has an effect comparable to that caused by rebound of CIU tests on samples with $\overline{\underline{C}} \rightarrow \overline{\underline{C}} \overline{\underline{C}}$ (to minimize disturbance). It is therefore proposed to determine a curve of $\underline{\underline{S}} = \underline{\underline{C}} \overline{\underline{C}}$ vs OCR for a series of CIU tests with maximum past pressure $\overline{\underline{C}} \overline{\underline{C}}$. Then the residual effective stress of the actual specimen is measured ($\overline{\underline{C}}$). By treating the ratio of $\overline{\underline{C}} \overline{\underline{D}} \overline{\underline{C}} \overline{\underline{C}}$ as an overconsolidation ratio, we can use the curve obtained from the CIU tests to correct the undrained shear strength data from the actual disturbed specimen. (See fig. 2.341-1).

2.342 To obtain correct from CIU tests.

In terms of Hvorslev's strength parameters:

Su = de + 53+ tan Be & - ce coo de where De - Sin Be Te = Hvorslev cohesion. De = Hvorslev friction angle. Ge = Hvorslev equivalent pressure.

It is assumed that the volume change caused by the consolidation of CIU samples to pressures between \Im_3 and \Im_6 has little effect on \cancel{K}_2 during undrained shear and therefore on \Im_6 . Thus Δu and \Im_3 are not affected by disturbance. By futher assuming that \Im_2 is also unaffected by disturbance, the last term, \Im_3 for \Im_6 , would be independent of disturbance.

Thus the strength increase due to lower any caused by disturbance, is calculated from change in Hvorslev cohesion, as comparable to the volume decrease upon reconsolidation to Sps

To use this method, determination of the Hvorslev strength parameters is needed together with an isotropic consolidation curve for the soil.

Both these methods are based on empirical observations of the form of test data and used as engineering approximations for strength corrections.

3.35 Seed, Noorany and Smith (1963).

3.351 Method No 1.

The undisturbed sample strength is calculated by means of the following equation,

Su esps = Sps singe + Ce cos Be 1 + (2Rj -1) sin Be

 $\overline{\Lambda}_{f}$, for a perfect sample, is found by extrapolation of test data on slightly disturbed samples as follows. Eight good quality "undisturbed" samples from the same location are needed. All samples are mounted in cells capable on measuring residual pore pressure. The effective stress in each sample is measured, ($\leq_{5} \cdot \leq -44$,), and compared with the effective stress for perfect sampling (calculated by the equation given in section 2.2). Three pairs of the samples are gently disturbed to achieve a good range of degrees of disturbance in the four pairs of samples. On sample from each pair is then sheared unconsolidated-undrained. The other samples are consolidated to the perfect sampling stress and then sheared undrained. Both series are tested with pore pressure measurements.

($\overline{Sp_3},\overline{Ss_6}$) is used as a measure of disturbance and plotted versus $\overline{A_f}$ values obtained by the eight specimen in fig. 2.351-1. For a perfect sample ($\overline{Sp_3},\overline{Ss_6}$) = 0 and the \overline{UU} and \overline{CIU} should give the same $\overline{A_f}$ value. On this basis the actual test data are extrapolated to ($\overline{Sp_5},-\overline{Ss_6}$) = 0, and $\overline{A_f}$ for perfect sampling determined.

Hvorslev's parameters are determined by a series of tests on overconsolidated samples. The authors describes two additional methods for obtaining these parameters that seem daubtful, especially the Noorany method of using results from CA-UU and CAU tests consolidated to the same stresses. These two tests will plot as two very close points on a ($\leq 1-\leq 2$) vs ≤ 2 graph that leave room for sizeable errors in $\neq =$ and $\neq =$ unless they are combined with other results. The Bishop and Henkel method of using the spread in results of normally consolidated samples has the same drawback if the soil exhibit any amount of normalized behavior.

By using these three somewhat uncertain values (*i.e.* $\overline{c_e}$, $\overline{g_e}$; $\overline{f_4}$) into the calculation of "perfect" sample strength, the combination of errors in each individual value may be sizeable although the individual errors are small.

2.352 Method No 2. (Figure 2.352-1)

The same testing program as described in method No 1. is performed but the results are plotted with undrained shear strength instead on $\overline{A_f}$ versus disturbance, ($\overline{\Box \rho_e} - \overline{\Box s}$). As the amount of disturbance decreases, the difference in $\underline{s_e}$ from \overline{UU} and \overline{CIU} tests decreases. For a sample with no disturbance the shear strength should be equal for the two types of tests. By drawing two converging curves the $\underline{s_e} \in \overline{\Box \rho_s}$ can be determined directly. This method seems much more appealing than the first method because of its simplicity.

2.353 Method No 3. (Figure 2.353-1)

This method uses data from a series of $\overline{\text{CIU}}$ tests with $\overline{\text{S}_c} \cdot \overline{\text{S}_{ps}}$ to plot $\underline{\text{S}_u}$ vs water content. The more disturbed the sample the greater the $\underline{\text{sw}}$ during consolidation. By extrapolating this curve back to in situ water content the perfect strength can be determined directly. Aside from the basic uncertainty of extrapolation, the determination of the in situ water content is very difficult. Considerable scatter is usually found in samples from the same ground location. By using $\underline{\text{sw}}_{\underline{k}}$ instead of water content this problem could be eliminated however.

The basic problem with these three methods are that they work well only for slightly disturbed samples. If the amount of disturbance increases the spread in ($\mathbf{5} \mathbf{e} \mathbf{s} - \mathbf{5} \mathbf{s}$) will be small and at the same time ($\mathbf{5} \mathbf{e} \mathbf{s} - \mathbf{5} \mathbf{s}$) will be large. Since the sought value is found by extrapolating back to ($\mathbf{5} \mathbf{e} \mathbf{s} \cdot \mathbf{5} \mathbf{s}$) a small error in the actual values will be multipled by the large extrapolation needed to find

the sought value.

These methods are, however, somewhat interrelated but not so much so that they can be used to check each other.

3. Testing Program.

3.1 General aim of testing program.

During the past years considerable amounts of testing has been done at M.I.T. in the field of sample disturbance. This effort has been limited mainly to correct for the reduction in S. due to disturbance as compared with S. for perfect samples. The basis for this correction has been the method proposed by Ladd-Lambe and described earlier in this report.

The testing program has consisted of two parts. First a series of triaxial tests were aimed at establishing <u>Support</u> vs overconsolidation ratio and its dependency upon the K-ratio. Secondly an unknown amount of disturbance was induced into "perfect" samples and the resulting undrained shear strengths was used to check the relationship established in the first part of the testing program.

3.2 General Data on Sample Preparation and Triaxial Test Procedure.

3.21 Sample Preparation.

In this testing program Boston Blue Clay was the only soil tested. The clay was obtained from field pits, air dried, and ground up. Ten kilos of this dry powder was mixed into a slurry with tap water at a water content of about 400% and passed through a No 200 sieve. The salt content (NaCl) of the fluid was then increased to about 24 g/l. By allowing the slurry to settle and removing excess water, the water content was reduced considerably. Then the soil was heated to about 70° C, stirred, and placed in a 9.5 in diameter

consolidometer under vacuum. A consolidation pressure of 1.5 kg/cm² made a 4.5 in. high cylinder of soil with enough material for about 18 triaxial test samples (L = 8.0 cm \neq A = 10.0 cm²). A more detail description of the consolidometer and its use is in Wissa (1961). In this manner a uniform supply of clay was obtained. The method yielded a clay with strength properties similar in many respects to those of a natural, normally consolidated clay of moderate sensitivity.

Two batches of clay was stored submerged in Mobilect Transformer Oil No 33 in a humid room until usage. The water content of these batches were $42.5 \pm 05\%$, liquid limit 45.5%, plastic limit 23.2% and specific gravity 2.77. Grain size distribution is given in fig. 3.2-1.

Towards the end of the testing program there was a shortage of samples. Instead of making up another batch of samples it was decided to use samples already prepared the same way for another project. The only difference was the salt content (16 g/l NaCl) and water content ($\omega = 38.5\% \pm 0.5\%$). Atterberg limits are $\omega_{L} = 42.7\%$, $\omega_{P} = 23.9\%$.

A hypothetical "field" stress condition was selected at $\mathbf{G}_{c} = 6.0 \text{ kg/cm}^2 \text{ and } \mathbf{G}_{c} = 3.0 \text{ kg/cm}^2$. The vertical stress of 6.0 kg/cm² was judged large enough to eliminate preconsolidation and disturbance effects (1.5 kg/cm² \ll 6.0 kg/cm²). K₀ = 0.5 was selected on basis of earlier tests on Boston Blue Clay. Figure 2.2-1 showed K₀ vs 0.C.R. for some clays including Boston Blue Clay.

3.22 Triaxial Test Procedure:

Cells:

All tests were performed in standard Clockhouse and Wykeham-Farrance triaxial cells with exception of the cyclic compression extension and UU tests. Geonor cells were already equipped with top caps fastened to the pistons in such a way that they could be used for extension tests. It therefore was natural to use these cells for the cyclic compression extension tests. A Clockhouse cell was equipped with a very fine porous stone and a pressure transducer to measure residual pore pressures in the UU samples. The lead from the bottom pedestal to the transducer is made as rigid as possible to keep the flow of water into the sample an absolute minimum (see figure 3.22-1). The transducer was connected to a BLH Strain Indicator Model 120 with A.C. power pack. The four arm gridge on this instrument provided a very stable voltage supply and at the same time measured the output from the transducer. Sensitivity on this setup was about 1/1000 kg/cm² and the calibration factor stayed constant for over 3 months through intermittent work. Since an absolute transducer was used, however, there was experienced some difficulty with variations in barometric pressure. This could easily be prevented in the future with use of a transducer measuring the gauge not absolute pressure.

Loading frames:

The Geonor and Wykeham-Farrance loading frames were used for all the tests. To insure proper pressure equalization for the tests with pore pressure measurements the strain rate was set at 1% per hour.

For the UU tests on the other hand a typical strain of unconfined testing was used, about $\frac{1}{2}\%/\text{min}$.

Pore pressure Measurements:

All the samples tested were sheared undrained. A N.G.I. null system was used to measure pore pressures in the samples during shear with exception of the UU tests. A description of their use can be found in Ladd and Varallyay (1965). To decrease the responce time the equilibration was improved by use of filter strips. In the cyclic tests no filterstrips were used because of unknown contribution to the measured deviator stress. To insure full saturation all the samples were back pressured to 3.0 kg/cm^2 , at least during last step of consolidation.

The following procedure was used to measure ₹ for UU samples:
Standard triaxial size sample (10 cm² × 8.0 cm) is trimmed.
Excess water is removed from the top of bottom pedestal and the sample placed on the pedestal of a cell like the one shown in figure 3.22-1. Membranes, top cap and 0-rings are placed and cell filled with water. The capillary pore pressure will attempt to suck water from the pore pressure line into the sample. Since the pore pressure line is constructed extremely rigid, only a minute amount of water will flow into the sample before the pressure difference between the sample and the pore pressure line becomes zero. Then the transducer records the pressure in the sample. The fine porous stone, which has a bubbling pressure in excess of several kg/cm², is needed to

prevent the sample from sucking water from stone into the sample.

- 3. The sample is kept at zero confining pressure (measured with a mercury column) until a constant residual pore pressure is recorded. Effective stress is then, 5. 4.
- 4. The confining pressure is raised and an increase in pore pressure is observed simultaneously. If the sample is saturated, the B parameter will be unity and the value of S, will be constant. But if the sample has some trapped air, the increase in pore pressure will be slightly less than the increase in confining pressure, a B = Δu/ΔSc < /</p>
- 5. The confining pressure is increased until **Δu ΔS**₂(B-factor equal to unity and:

Usually confining pressures of 1 to 3 kg/cm² are enough to ashive B equal to unity.

Consolidation:

The steps are summarized in tables 4.1-1 and 4.1-3.

Because of testing error the consolidation pressure for the first isotropically consolidated samples was indreased from 1.5 kg/cm^2 to 5.1 kg/cm² instead of 3.0 kg/cm². It was then decided to do the same for the rest of the isotropically consolidated samples.

Anisotropic consolidation was obtained by loading the piston with dead weights. For each increament the cell pressure was increased first and dead weight equal to deviatior stress times area of sample 20.

plus the force excerted by the cell pressure on the piston (area of piston times cell pressure) was added a few seconds later.

Calculations:

The calculations in this testing program was handled the same way as in Ladd and Varallyay (1965). Area during shear was calculated from $A = \frac{R_c}{1-\epsilon}$ where ϵ is axial strain and R_c preshear area.

Corrections for deviator stress:

Filter Paper Correction (F.S.)

% Strain	Correction, to (S53),	kg/cm ²
0-2	[z(%)/2]×0.10	
2 -	0110	

Piston Friction Correction.

% Strain	Correcti	on, % of (6-5
0-2	0		
2-4	0.5		
4-6	1		
6-8	1.5		
8-10	2		
etc.			

3.3 Triaxial Testing Program:

3.31 Tests to Establish Sul Sen 3.311 CIU and CIOU

1.14

vs O.C.R.

A series of one normally consolidated and three overconsolidated (0.C.R. = 2, 4, and 8) isotropically consolidated undrained tests with pore pressure measurements were performed in order to establish the initial correction curve i.e. $\frac{SumSc}{SumSc}$ vs. 0.C.R.

3.312 CK - UU and CK - CIOU.

To investigate effects of K on the curve above, five samples were consolidated to $\exists e = 6.0 \text{ kg/cm}^2$ and $\exists e = 3.0 \text{ kg/cm}^2$. One was sheared in compression directly to give "in situ" $\leq e$. All the other tests were unloaded, undrained, to an isotropic stress condition to determine $\exists e = directly$. One sample was then sheared in compression to give $\leq e = 1.5$, 0.75, and 0.25 kg/cm² and sheared undrained with pore pressure measurements.

3.32 Tests to Check Established Curve.

To test the reliability for the strength vs overconsolidation ratio as determined in the first part of the testing program, two different approaches have been used to induce disturbance and measure the corresponding undrained strengths.

3.321 Cyclic Undrained Tests.

A series of cyclic tests with pore pressure measurements and a slow strain rate (1% pr. hour) were run. Two samples were consolidated isotropically to $\overline{\mathbf{Se}} = 6.0 \text{ kg/cm}^2$ and sheared by cycling between compression and extension. Each time the samples crossed the K-1 line, additional excess pore pressure built up, yielding another value of $\overline{\mathbf{Se}}$.

The following shear in compression then gave the corresponding $\mathcal{L}_{\mathbf{x}}$ value. The number of cycles was limited. As $\overline{\mathcal{L}}_{\mathbf{x}}$ decreased the effect of cycling had smaller and smaller effect on $\mathbf{A}\overline{\mathcal{L}}_{\mathbf{x}}$ because the sample started to behave more and more overconsolidated. As shear progressed $\overline{\boldsymbol{\rho}}$ was increasing instead of decreasing as it did in the first couple of cycles.

Three samples were anisotropically consolidated to $\overline{S_{1c}} = 6.0 \text{ kg/cm}^2$ and $\overline{S_{3}} = 3.0 \text{ kg/cm}^2$. One was sheared by cycling between $K \cdot I$ and the K_f line while the remaining two where taken into extension during the cyclic shear. The number of cycles was limited. As $\overline{S_{3}}$ decreased the effect of cycling had smaller and smaller effect on $\overline{S_{3}}$ because the sample started to behave more and more overconsolidated.

3.322 UU Tests.

Since the most typical test for obtaining undrained shear strength is an unconsolidated-undrained triaxial test with strain rate. about $\frac{1}{2}$ to 1% per min., it seemed sensible to do likewise.

One sample was isotropically consolidated to $\Im_{e} = 6.0 \text{ kg/cm}^2$ and another consolidated anisotropically to $\Im_{e} = 6.0 \text{ kg/cm}^2$ and $\Im_{e} = 3.0 \text{ kg/cm}^2$. Then both were "sampled" i.e. dismantled and remounted in the modified cell for residual pore pressure measurements, and sheared. The residual pore pressure was measured again after the sample was unloaded undrained to isotropic stress. If the \Im_{e} measured was high enough, another cycle of shearing and unloading was done. This was continued until the \Im_{e} became insignificant. Then the sample was remolded by hand and a new \Im_{e} and \Im_{e} measured.

3.33 Presentation and Discussion of Test Results.

3.331 Isotropically Consolidated Series.

(Consolidation data summarized in table 4.1-1 and figure 3.331-1. Strength data summarized in table 4.1-2 and figures 3.331-2 and 4.2-1).

The undrained shear strength of samples consolidated isotropically to 6.0 kg/cm² is needed for construction for the Suppose vs log 0.C.R. curve. The following list is a summary of the Sufrom the normally consolidated samples in this series.

Test Su	(kg/em^2)	$\mathcal{F}(kg/cm^2)$	Sufer .	g/l NaCL	wi	w+	~%.
CIU-Pl	1.695	6.0	.282	23	42.0	31.6	14.8
CIU-CyC-E P9	2.04	6.01	•340	23	42.6	31.1	14.6
CIU-CyC-E Plo	1.94	5.98	•324	23	42.4	31.1	16.0
CIU-CyC-E P20	1.865	6.06	•308	16	38.4	29.9	11.2
CIU-P21	2.005	6.06	•330	16	38.5	30.0	9.2

Average Su/Sz=1.584/g = .317

It is difficult to explain the large variation in $\frac{3u}{5c}$ (.282 - .340). Examination of figure 3.381.1 will point out a large discreppancy in $\frac{4}{5c}$ at the same consolidation pressures between the samples with 16 g/1 NaCl and those with 23 g/l. The foregoing table indicates however that P20 and P21 have a range of $\frac{5u}{5c}$, (.308 - 330), that lies entirely within the range obtained with the samples prepared with 23 g/l NaCl. So the salt content seems to have little effect even though the water content at failure is quite different. The overconsolidated samples are more difficult to evaluate directly because only one sample was tested at each consolidation pressure, but they can be compared to each other. Figure 4.2-1 gives $\vec{p} = 31.1^{\circ}$ and $\vec{z} = 0.08 \text{ kg/cm}^2$. Comparing stress-strain characteristics in figure 3.331-2 we find that the samples behave as expected i.e. with increasing overconsolidation, \vec{s}_{\perp} , \vec{s}_{\perp} , and A-factor decrease while \vec{s}_{\perp} increases. The peculiarity in the stress-strain curve of P2 is probably due to improper seating of the piston in the top cap. The \vec{s}_{\perp} $\vec{$

3.332 Anisotropically Consolidated Test Series.

(Consolidation data summarized in figure 3.332-1 and table 4.1-3. Strength data in figures 3.332-2 and 4.2-2 and table 4.1-4).

The following table summarizes undrained shear strength obtained from normally consolidated samples $(K = K_0)$.

Test	$S_u(kg/cm^2)$	Sie (kg/cm ²)	Suffic
CKoU-CyC-E P15	1.93	5.99	• 322
CKoU-CyC-E P16	2.00	5.99	•334
Average	-Suº 1.965	Suf	5.c= ·328

The results from $\overline{CK_0U}$ -CyC-Pl4 were not included in the table above because the sample was slightly overconsolidated prior to shear due to an error.

The $\mathcal{S}_u \otimes \mathcal{S}_p$ s measured by $CK_o - \overline{UU} P7$ is high however $\mathcal{S}_u \otimes \mathcal{S}_t = 1.94/6.09 = .318$ or only about 3% lower than \mathcal{S}_u from $\overline{CK_0U}$ tests. Ladd and Varallyay (1965) report that the difference is 10 ± 5 per cent less than the in situ strength in compression. The use of 10% reduction would bring **Sume Sps** down to 1.77 kg/cm² for **Sc** = 6.00 kg/cm².

Gps was established by averaging the effective stress measured after unloading from K_0 to K = 1. $CK_0 - \overline{UU}$ P7 and $CK_0 - \overline{CIOU}$ P11 - P12 - P13 tests gave a **Gps** = 3.48 kg/cm² (3.60 to 3.22 kg/cm²).

Since there has been done very little investigation into the overconsolidated range of B.B.C. there is no way of checking the results from Pll - Pl2 - Pl3 except against each other. The p-q plott can be found in figure 4.2-2. Figure 3.342 summarizes the stress-strain behavior. There are no known irregularities in these tests.

With the results of this overconsolidated range available a similar curve <u>Sugge</u> vs O.C.R. should be possible. Since all these samples have undergone a stress change somewhat similar to actual sampling it becomes natural to use the "perfect" sampling stress as a reference point. So <u>Sugges</u> vs <u>Set</u> is used. The results are tabulated below and plotted in figure 3.331-3.

	Su	Ge	State.	Sue Ste
CKo-CIOU-P11	.92	.25	13.9	.516
CK0-CIOU-P12	1.13	•75	4.64	•635
CK -CIOU-P13	1.38	1.5	2.32	.776
5	REGAL	= 1.77 kg/c	2	

3.333 Cyclic Isotropic Test Series. (Summarized in table 4.1-5).

The $\mathcal{L}_{\mathbf{u}}$ measured in the first cycle of these tests varies highly (2.04 - 1.865 kg/cm²). It was therefore decided that in order to have reasonable agreement between the tests regarding the reduction in strength with disturbance, the initial $\mathcal{L}_{\mathbf{u}}$ measured would serve as $\mathcal{L}_{\mathbf{u}} \otimes \mathcal{L}_{\mathbf{u}}$. Since $\mathcal{L}_{\mathbf{u}}$ is equal to $\mathcal{L}_{\mathbf{u}}$ for these isotropic tests no basic error is involved. Examining the stress-strain plot and the p-q plots, the effect of disturbance indeed has a similar behavior to that of overconsolidation. The only peculiarity discovered in all the cyclic tests, including the UU tests, is the S shape on the stress-strain curve of the last cycle (see figures 4.3-9, 4.3-10, 4.3-14). The strength increases gradually to 5 - 6% and then increases more rapidly before finally leveling off. No such behavior was observed in the stressstrain behavior of the overconsolidated samples (\mathcal{Q} figure 3.331-2).

The stress-strain data are summarized in table 4.1-5. Figures 4.2-3 and 4.2-4 contain the p-q plots. The Sud Second vertex of the stress of th

> 3.334 Cyclic Anisotropic Test Series. (Stress-strain characteristics are summarized in figures 4.3-11, 4.3-12, 4.3-13 and tables 4.1-6 and 4.1-7).

The anisotropically consolidated samples sheared cyclic also had some variation in the initial \leq_{k} . \leq_{k} for "perfect" sampling was selected as 1.77 kg/cm² for all the tests, however. As the stress-Strain plots show, the \leq_{k} drops as the number of cycles increased. The "workharening" phenomena observed in the isotropic test, also occurred

to the anisotropically consolidated samples, although only for the tests sheared in cyclic compression-extension. CK_0U -CyC P-14 that was sheared in cyclic compression, did not exhibit this behavior. At the present time there seems to be no logical explanation. Careful check of the testing equipment and procedure used did not reveal any possibility for relative movements in the aparatus used for strain measurements nor any irregularities with the proving rings.

<u>3.335 UU Remolded test series.</u> (Stress-strain curves in figures 4.3-15 and 4.3-16. Stress characteristics are summarized in table 4.1-8)

As shearing progressed, $\mathbf{\overline{s}}$ dropped and $\mathbf{s} \in \mathbf{2}\mathbf{\overline{s}}$ decreased too. The behavior was quite similar to the one observed in the much slower cyclic tests. The range in $\mathbf{\overline{s}}$ was increased in the UU tests by remolding the sample by hand. This was done after additional shearing failed to reduce $\mathbf{\overline{s}}$. Pore pressure measurements were not performed during shear. With such a high strain rate ($\mathbf{z} = \frac{1}{2} - 1 \frac{1}{2}/hr$.) the samples will not equalize the pore pressures fast enough to permit meaningful data.

3.34 Final Discussion.

3.341 General Results of Testing Program.

The results at an extensive testing program on the behavior of normally consolidated samples of Boston Blue Clay with a salt content of 16 g/l are reported by Ladd and Varallyay (1965). The following table shows the agreement between the results of these two testing

programs.

This testing program Ladd & Varallyay

			Suffic	Suffic
CIU			0.317	0.285
CKOU			0.328	0.33
CKUU			0.318	0.28
CK _o U -	10%		0.297	0.297

The "field" strength, \rightarrow from $\overline{CK_{0}}$, is in very good agreement. But both the isotropic and the "perfect" sampling strengths are high. As already mentioned earlier in the discussion of the tes results it was felt that 10% reduction in $\underline{c_{0}} = \overline{CK_{0}}$ was a much more representative figure than $\underline{s_{0}} = \overline{c_{0}} \underline{s}$ obtained in CK_{0} - \overline{UU} -P7. Both the range in and the large differences in $\underline{s_{0}}$ between the two testing programs are hard to explain. There seems to little correlation between $\underline{A_{0}}$ and the relative strengths of the tests. Close examination of the time allowed for consolidation at the last step reveal that all tests had 7000 min. or more. The strengths measured do not correlate with the length of application of the last consolidation pressure.

3.342 Use of Methods to Correct for Disturbance.

Casagrande-Ruthledge, Calhoon, and Schmertmann proposed methods which basically involve extrapolation of water content (or e) vs log \leq plot (from \overline{CIU} data) to the in situ water content (or e_{0}) to obtain the strength of a "perfect" sample. These methods require reconsolidation of samples with various degrees of disturbance via CIU, CAU, and oedometer tests. The tesing program for this thesis was intended only to induce and hopefully to predict the effects of sampling from a hypothetical in situ condition. Therefore none of the

samples were reconsolidated after the disturbance was induced. So, unfortunately it is impossible to evaluate these three methods. Seed, Noorany, and Smith's methods can be evaluated with available data.

Method No. 1:

The strength of a perfect sample is determined by evaluation of the following theoretical equation:

Su @ Sps = Sps sinde + Ce cos de 1 + (2A4 -1) sin de

Hvorslev's parameters (\overline{c}_{e} and \overline{p}_{e}) could be determined for Boston Blue Clay at constant water content for different overconsolidation ratios with \overline{CIOU} tests. But since it is already established that the cyclic tests behave overconsolidated as \overline{c}_{e} drops, we have direct measurements of \underline{c}_{e} , \underline{c}_{e} , and \overline{c}_{e} at constant water content. Figure 3.342-1 show the resulting parameters. The cyclic tests also provided the needed information to estimate \overline{A}_{f} . Figure 3.342-2 shows \overline{A}_{f} plotted against disturbance as recommended by Seed, Noorony, and Smith (1964). The resulting \overline{A}_{f} from the anisotropic cyclic tests averages .50 as compared to .22 for CK_{o} - \overline{UU} -P7. P7, however, has shown too high \underline{c}_{e} \underline{c}_{e} and may warrant some caution in use of results. Ladd and Varallyay (1965) report an average \overline{A}_{f} from CK_{o} - $\overline{UU}C$ of 0.50. So with use of $\overline{A}_{f} = 0.50$, $\overline{c} = .745$ kg/cm², $\overline{p}_{e} = 18^{\circ}$.

$$Su@Sps = \frac{3.48 \cdot \sin 18^{\circ} + .745 \cos 18^{\circ}}{1 + (2 \cdot (0.50) - 1) \sin 18^{\circ}}$$
$$= \frac{1.80 \text{ kg/cm}^2}{1 + (2 \cdot (0.50) - 1) \sin 18^{\circ}}$$

which is low compared to CK -UU-P7 but agree with SeCK U minus 10%.

The small difference is probably due to contributing errors in the determination of the parameters.

Method No. 2:

So vs disturbance i.e. ($\mathbf{S}_{\mathbf{P}\mathbf{s}} - \mathbf{S}_{\mathbf{s}}$) is plotted in figure 3.342-3. The isotropic tests plotted so far to the right on the figure that any extrapolation back to ($\mathbf{S}_{\mathbf{P}\mathbf{s}} - \mathbf{S}_{\mathbf{s}}$)=0 is meaningless.

The anisotropic tests, however, yielded a better spread in $(\overline{S_{PS}} - \overline{S_{S}})$. Su $\overline{C_{SPS}}$ averaged 1.81 kg/cm² (vs 1.77 kg/cm² estimated from Su $\overline{C_{S_{O}}}$ minus 10%). This method is simple and seems to give good agreement with other methods.

Method No.3:

Unfortunately none of the tests in this testing program were reconsolidated after disturbance so there are no data for evaluation of method no. 3.

Correction of Data from UU Test with Ladd and Lambe's Method.

The simplest way of checking this method is to see how well the curves of $\frac{54065}{54065}$ vs for the different types of disturbance agree with the curve of $\frac{54055}{54055}$ vs 0.C.R.

Figure 3.333-1 summarizes the results of the cyclic tests and the UU tests. The isotropically consolidated samples sheared in cyclic compression extension are the only tests that fall outside of a fairly narrow band. Close examination of testing procedure and even an additional
test (CIU-CyC-E P20) did not yield any hints as to reasons behind this behavior.

As for the rest of the tests they do agree reasonably well with the experimental curve established by CIU and CIOU tests. It is reasonable to believe that the $\checkmark \odot \odot \backsim \odot \backsim \odot \backsim \odot \backsim \odot$ used to plot the anisotropically consolidated samples should be somewhat higher than 1.77 kg/cm² since all these samples yield data ploting above the CIOU curve. The general shape of the curves for the different types of tests is the same, however, This leads one to believe that a sample consolidated anisotropically and sheared cyclic in a UU type test would yield enough data to establish the shape of the curve. Futhermore if the sample was first unloaded undrained and then sheared, $\boxdot \backsim \odot \backsim \odot \backsim$ could be determined with the same sample. In this way the methods testing can be reduced greatly. First only one good sample is needed. Secondly the time for testing is cut down considerably. Only pore pressure equalizations for $\boxdot \backsim$ and \backsim take time since the sample can be sheared at a strain rate of $\frac{1}{2} - \frac{1}{2}$ per min.

Extension of the Ladd-Lambe method into the overconsolidated range would be desireable. Use of the same curve to correct for disturbance in overconsolidated camples can be explained easiest the following way:

- Determine the overconsolidation ratio by oedometer tests (as an example use 0.C.R. = 2).
- 2. Measure **S** and **S** on triaxial size sample in cell similar to that one in figure 2.2-1 (say .55 kg/cm² and 1.20 kg/cm² respectively)
- 3. Estimate Spsfrom the equation in section 2.2 (for our example

use 2.20 kg/cm²).

4. Then use portion of curve established as explaned in foregoing paragraph and the lower scale in figure 3.342-4 (Sts/5s = 2.20/.55 = 4, Su OSs = 1.20 (pt. B), Su OSp = 0.8/0.6 · 1.20 = 1.60 kg/cm² (pt. A). The original abscissa can be used directly however by using 0.C.R. times States. (i.e. use of 2 × 4 = 8 on the upper abscissa is synonymus with 4 on lower abscissa).

3.35 Effect of Disturbance on Stress-Strain Characteristics.

Disturbed samples always show a much lower stress-strain modulus than good undisturbed sample during compression to reach the same level of stress. This behavior has long been used to judge the quality of "undisturbed" samples. It was therefore natural to examine the test data in this testing program the same way with the possibility in mind of correlating disturbed and undisturbed modulus in a manner similar to the strength correction.

A close look at figures 3.35-l and 2 reveal that noe such possibility is apparent. All the overconsolidated samples (CK_o -CIOU and CIOU's) exhibit a much higher stress-strain moculus than the samples disturbed by shear or remolding for the same preshear $\overline{\bullet}$. Again it is shown that the results are independent of type of test used to induce disturbance. Even the isotropically consolidated tests sheared in cyclic compression and extension follow the general trend. It is believed that before any futher conclusions are made that a similar series of test be run where extreme care is taken to achieve the same

0,5,5 prior to shear. During investigation of the results of this triaxial program difficulty was experienced in evaluation of time effects on stress-strain behavior and slight variations in the initial stress condition.

3.36 Application of Theory on Data from M.I.T. Campus.

For two of the more recent buildings at M.I.T., the Student Center and the Center for Advanced Engineering Studies, a number of "undisturbed" samples were taken. From each sample an unconsolidatedundrained (UU) triaxial test was performed. Before shear the effective stress was determined (at a B factor of one). Since extensive testing of the remolded Boston Blue Clay has shown that it closely resembles the natural BBC it was natural to try to see how the Ladd-Lambe method would estimate Su@ Tps. Figure 3.36-1 shows the in situ stress condition below two buildings plus calculated Sps and measured svalues. Tables 4.1-9 and 4.1-10 give the summarized data from these test series. On figure 3.36-2 the result of the corrected values are compared with estimated in situ Su and Su for perfect sampling at these two sites. The strength estimates are from Ladd and Luscher (1965) based on several types of triaxial testing om BBC from M.I.T. campus. The uncorrected values are all lower than the estimated S. for perfect sampling. By using the curve on figure 3.333-1 to correct these data, the results are much closer to the estimated Su for perfect sampling but still on the conservative side. The two points falling very high are actually falling outside of the well defined range in figure 3.333-1. The Ss values, measured on these samples were so low compared with the estimated Sesthat there should be no difficulty in predicting that these samples

were badly disturbed before testing.

The discrepancy at higher overconsolidation range may be attributed to possible error in the estimated **Se** curves. Ladd and Luscher (1965) point out that the estimated **Se** is taken from samples consolidated to high pressures and rebound whereas the soil in situ is believed to have been precompressed by partial drying and therefore may have lower strengths.

3.37 Final Conclusions.

The general conclusion of this testing program seems to indicate that the Ladd and Lambe's method works very well for correcting disturbance on "undisturbed" samples of Boston Blue Clay. The large number of tests proposed by Ladd and Lambe to establish the correctioncurve can be drastically cut by using a sample consolidated to $\overline{\Box}_c \gg \overline{\Box}_{v_o}$ unloaded undrained, sheared, unloaded again and shear in cycles while $\overline{\Box}_o$ and $\underline{\Box}_o$ is measured for each cycle, (see section 3.342 under "Correction of Data from UU Tests with Ladd and Lambe's Method" for closer discussion of this test).

The investigation of stress-strain behavior points out, however, that at the precent it is difficult to correct for disturbance in Youngs Modulus.

3.38 Proposed Future Research.

First of all there should be done some UU cyclic tests (as proposed in section 3.342) both for normally and overconsolidated samples with the same soil and the same hypothetical field condition.

This would serve to extend the proposed method into the overconsolidated region.

Next step would be to take an "undisturbed" sample of Boston Blue Clay consolidated it to $\exists c \rightarrow \exists \phi$ and shear it the same way as the tests above. The correction curve established would be used to correct the UU tests with $\exists c$ measurements of M.I.T. Campus. At the same time it could be checked against the curve established on the remolded samples.

A closer investigation of stress-strain modulus and the effect of disturbance is warranted. As mentioned earlier there does not exist any method for correcting for disturbance. 3.39 List of References.

- Bishop, A.W. and Henkel, D.J. (1962) <u>"The Measurements of Soil</u> <u>Properties in the Triaxial Test</u>. Ed. Arnold, London 2nd Edition".
- Brooker, E.W. and Ireland, H.O. (1965) "Earth Pressures at Rest Related to Stress History", Canadian Geotechnical Journal, Vol. 2, No. 1, pp. 1-15.
- Calhoon, M.L. (1956) "Effect of a Sample Disturbance on the Strength of a Clay" <u>Transactions</u>, ASCE, Vol. 121 pp. 925 - 939.
- Casagrande, A. and Rutledge, P.C. (1947) "Cooperative Triaxial Shear Research", Waterways Experiment Station, Vicksburg, Miss.
- Coates, D.F. and McRostic, G.C. (1963) "Some Deficiency in Testing Leda Clay", <u>NRC-ASTM Sym. on Laboratory Shear Testing of Soils</u>, ASTM STP No. 361, pp. 459 - 470.
- Horn, H,M, (1964) "Recommended Procedures for Undisturbed Sampling of Clay on The M.I.T. Campus". Fermit Memorandum No. 1. Department of Civil Engineering M.I.T. February 1964 (unpublished)
- Jaky, J. (1948) "Pressures in Silor", <u>Proceedings</u>, 2nd Inst. Conf. on Soil Mechanics and Foundation Engineering, Vol. II, 1. 16.
- Ladd, C.C. and Lambe, T.W. (1963) "The Strength of Undisturbed Clay Determined From Undrained Tests" <u>Proceedings</u>. ASTM/NRC Symp. on Laboratory Shear Testing of Soils ASTM July 1963.

Ladd, C.C. (1964) "Stress - Strain Modulus of Clay from Undrained Triaxial Tests", ASCE Settlement Conference. June 1964.

- Ladd, C.C. (1964) "Stress Strain Behavior of Anisotropically Consolidated Clays During Undrained Shear". Sixth International Conference, International Society of Soil Mechanics and Foundation Engineering 1965.
- Ladd, C.C. and Varallyay, J. (1965), "The Influence of Stress System on the Behavior of Saturated Clays During Undrained Shear". July 1965 Dept. of Civil Engineering, M.I.T. Research Report R 65-17, Soil Publication No. 117.
- Ladd, C.C. and Luscher, Ulrich (1965 "Preliminary Report on the Engineering Properties of the Soils Underlying the M.I.T. Campus" Fermit Report December 1965. Dept. of Civil Engineering, M.I.T. Research Report R65 - 58. Soil Publication No. 185.
- Lambe, T.W. and Whitman, R.V. (1964) "An Introduction to Soil Mechanics" School of Engineering, M.I.T. September 1964.
- Lambe, T.W. (1951) "Soil Testing for Engineers" John Wiley and Sons, Inc.
- Preston, W.B. (1965) "The Effect of Sample Disturbance on the Undrained Strength Behavior of Boston Blue Clay". S.M. Thesis, Department of Civil Engineering, M.I.T. (unpublished).
- Rowe, P.W. (1957) " *ce=o* Hypothesis for Normally Loaded Clays at Equilibrium". <u>Proceedings</u>, 4th Int. Cinf. on Soil Mechanics and Foundation Engineering.

Schmertmann, J. (1956) Discussion of Paper", "Effect of Sample Disturbance on the Strength of a Clay", <u>Transactions</u>, ASCE, Vol. 121 pp. 939 - 950.

Bolton Seed, H., Noorany, I. and Smith, I.M. (1964) "Effects of Sampling and Disturbance on the Strength of Soft Clays". Department of Civil Engineering, University of California, February 1964.

Wissa, A.E.Z. (1961) "A Study of the Effects of Enviromental Changes on the Stress - Strain Properties of Kaolinite", M.S. Thesis. Dept. of Civil Engineering M.I.T.

3.401 List of Figures.

Fig. No .:	Title:	Page:
211	K _o vs O.C.R.	39
2.2-1	Hypothetical Stresses for a Normally Consolidated	
	Clay Element During Tube Sampling.	40
2.31-1	Casagrande and Ruthledge Method.	41
2.32-1	Calhoon Method.	41
2.32-2	н н	41
2.33-1	Schmertmann Method.	42
2.33-2	н н	421
2.341-1	Ladd-Lambe "	42
2.351-1	Seed, Noorany, and Smith Method No. 1.	43
2.352-1	11 11 11 11 No. 2.	43
2.353-1	" " " No.3.	43
3.2-1	Grain Size Distribution.	44
3.22-1	Cell Modified For Measuring.	45
3.331-1	▲ vs log 👡 for Isotropically Consolidated	
	Samples.	46
3.331-2	Summary of CIU and CIOU Stress - Strain Data.	47
3.331-3	Su Q St. vs Overconsolidation Ratio.	48
3.332-1	AV/ vs log The for Anisotropically Consolidated	
	Samples.	49
3.332-2	Summary of CK - UU and CK - CIOU Stress - Strain Data.	50
3.333-1	Sue Tr VS Tes	51
3.342-1	Hvorslev's Parameters for BBC.	52
3.342-2	\overline{A}_{f} vs ($\overline{\sigma}_{ps} - \overline{\sigma}_{s}$).	53

38ъ

Fig.No.:	Title:		Page:
3.342-3	Su VS (Jps - Je)		54
3.342-4	Proposed use of Standard Curve in the		
	Overconsolidated Range.		55
3.35-1	Youngs Modulus at F.S. = 2 vs O.C.R.		56
3.35-2	Youngs Modulus at F.S. = 2 vs Effective Stress		
	Prior to Shear		57
3.36-1	In situ Stresses and Sampling Stresses for BBC.	•	58
3.37-1	Correction of UU Tests on "Undisturbed" Samples	5	
	from M.I.T. Campus.		59

38c

Horizontal Effective Stress, Th

Ladd and Lambe 1963.

Figure 2.2-1.

 $(\overline{\sigma_{1}} - \overline{\sigma_{3}})$

Figure R. 3R - R

٤

From Seed et al 1964.

Ë,

GRAIN SIZE DISTRIBUTION

For Remolded Boston Blue Clay

Figure 3.2-1

Figure 3.331 - 1. DV/vo va log Te.

For Isotropically Consolidated Samples.

•

.

i-

 $\frac{1}{2}$

Figure 3. 342 - / Hoorslev's Parameters for BBC.

Hypothetical field condition $= 1 \cdot 6.0 \frac{1}{2} - 3.0 \frac{$

Huorslev's parameters

ce = . 184 Je = 180

2 . . 170 0 = 240

ц Ц

Figure 3.342 - 2 Af vs (=ps - =s) for Samples Shear Cyclic.

 \overline{A}_{f}

4. Appendix

		Page:
4.1	Summary Tables of Test Results.	61
4.2	p-q Plots,	73
4.3	Stress - Strain Plots for Inidvidual Tests.	82
4.4	Summaries of Individual Tests.	99
4.5	list of Symbols	157
4.6	Types of Triaxial Tests	159

61.

4.1 SUMMARY TABLES OF TEST RESULTS.

4.1 SUTTARI TADILO OF TESI RESULIS.

- ,	Ac	40	INT:	W± %	Consolidation											heat	9/1	
lest	cma	cm	%		₹, →	0	.375	.75	1.5	5.1	6.0	3.0	1.5	. 75	60	time	NaCL	Commente
CILL					time in min		262	606	4479	1189	14/06				in s			short time
P/	9.30	7.41	42.0	31.6			80	80	-2.38	-7.28	60				60	4398	23	@.375 \$.75
c102					Lime In min		1270	1758	4490	1185	1399	1403						
PR	9.49	7.66	41.2	32.0	AV		- 1.17	82	-2.52	-6.18	67	+. 49			3.0	4295	23	
c1024					time in min		1263	1313	4543	1187	1404	1443	363					
₽з	9.05	7.82	41.7	32.7	۵v		- 1.29	83	-2.37	-6.30	63	+.44	+. 49		1.5	2540	23	
C1024					time in min		12.54	1316	4490	1212	1427	1452	1857	994				
P4	9.11	7. 99	4R.5	33.0			-1.13	85	- 2.50	-6.34	65	T. 43	¥. 48	+.70	.75	1270	23	
Gyc - E					time in min	-	1235	1529	1413	* 15+3	2647							= = 3.0 kg/an
P9	8.97	7.64	48.6	31.1	ΔV		-1.84	97	- 2.14	-317	-3.64				6.01	\$395	R3	instead of 5.1
ciu Cyc - E					time in min		1119	1481	1455	* 1537	1198						-	. = 3.0 kg/cm
P10	8.96	7.64	42.4	31.1	AV		- 3.47	- 1.36	- 2.85	- 2.98	-3.56				5,98	73.15	83	instead of 5.1
C/24					time in min		1466	1265	5529	1612	5605							
P21	9.03	7.42	38.5	30.0	ΔV		88	34	- 36	- 5.50	92				6.06	1440	16	
C124					time in min		1556	1266	553/	1614	5603							-
₽ 20	9.14	7.80	38.4	29.9	Δν		- 22	42	-1.56	- 5.91	88				6.06	1412	16	

Table 4.1-1 Consolidation Data for Isotropically Consolidated Tests.

+ Time in loadingframe prior to shear.

* = = 3.0 tg/cm

62.

Saya

. 282

. 324

.330

Table	4.1 - 2	Symmary	of	Strength	Data	from	Isotropically		
Consol	lidated	Tests.					Allstresses	in	kg/cm*

······································	Wi	W1			OCR	At (=, - =,)max						A	2 5,/	' च_		AŁ(σ, <u> </u>	9/1	
Test	•/。	°/o	om	5		z °/o	Su	 P	A	6-/16-9	E %	9		A	10-/ 10 M	E %	o7, _o <u>7</u> 3	Ē	NaCL
ciu - P/	4/2.0	31.6	6.0	6.0	1.0	9.54	1.695	3./35	1.3417	3.36	Л	íož	rread	hed		20	1.695	847	<i>23</i>
CIOL - P2	42.1	3A.0	6.0	R.92	R.06	/ 9 .8	1.41	<i>2.6</i> 3	. 667	352	N	lot	reac	hed		2. 45	1.411	е з13	RS
C1022 - P3	41.7	32.7	6.0	1.48	4.06	9.08	/.33	2.30	. RO	3.75	[D	בתם	e			. 39	/.33	3, 41	КЗ
C104 - P4	42.5	33.0	6.0	. 74	8.10	14.0	1.18	1.98	034	3.84	م) ا	0.772	e			. 79	1.18	150	23
сти - СуС-Е Р9	42.6	31.1	5.01	6.01	1.0	3.04	2 .04	3.95	1.00	3.14	N	oz ;	react	ed		.09	A.04	AA 60	L3
сти - СуС - Е Р 10	4 A . 4	31. 1	598	5.98	1.0	1.78	1.94	4.14	, 98	2.46	Na	z ,	eact	hed		. 09	1.94	R 160	КЗ
сти -СуС - Е Р RO	38.4	29.9	6.06	6.06	1.0	3.60	1.865	3.56	1.17	3.20	رم ا	0.772	e			. 0 R	1.865	93 <i>85</i>	/6
c14 - P21	38.5	30.0	6.06	6.06	1.0	4.45	R.005	-3.78	1.07	.3.R7	N	oz	read	hed.		.07	A .005	R.860	16

	, ,				Consolidation stage													2/				
Test	<i>₩</i> 2 %	₩ <u>₹</u> %	Hc cm ⁴	Lc cm	o ic o sc	.10	. 50	1.0	1.5 .75	R.0 1.0	8.5 1.25	3.0 1.5	4	5 8.5	6	₹ P£	1.5	. 75	. 25	<u></u> ,	t min	9/2 NaCL
СКо - ЦЦ Р 7					turne in min	1146	1421	1469	1605	131/	14772	1281	1+/89	1418	6042							
	42.0	32.7	9.85	7.38		16	61	- 74	-1.01	99	- /. 33	42	- /. 73	- 1.17	- 1.01	3.60				5.98	3080	<i>\$</i> 3
CK0 - C1024					time in min	ŝ	1023	4527	/334	1398	1356	1484	14/33	1504	4374		1055	1510	5673			
P //	42.8	35.3	9. 82	7.21	▲ √	ę	98	84	- 1.08	- 1.13	35	- . 45	- 1.80	- 1.10	97	3.39	+.53	+. 61	+, 9 5	6.04	1380	23
CKO - CION					time in min	789	1690	5955	R 74/8	5/05	135R	1507	14/10	1512	~15a		1163	307/				:
P 12	4A.6	34.4	9.93	7.16	△ √	08	63	- 58	80	1.01	65	- 1.52	- 1.96	/. 15	98	3. R8	<i>≁. 5</i> 3	<i>†</i> .65		5.99	+1500	L 3
CKO-CIOZ					time in min	5853	/358	1489	1427	1515	4516	10 65	1490	1515	3015		2535					
<i>p</i> /3	42.8	35.8	10.08	7.05	∆ V	01	60	62	80	-/.26	-1.83	-0.3/	-2.50	-/.37	- 85	3.AA	7.55					23
СкоЦ-СуС Р 14					time in min	5876	/387	1467	1414	1516	¥566	1.044	/4/89	1523	63A8							
	42.8	33.8	10.00	6.97	Δ V'	07	72	- 49	-1.68	-1.02	-1.14	41	- 2.46	-1.R6	90		1			6.58	600	83
ско и - СуС-Е					time in min	1666	4404	1090	1450	1508	1590	1492	/589	/37/	1320							
	42.9	33.5	9.99	7.01	ΔV	+.19	- 1.40	- 73	- 1.13	- 1.13	-1.15	-1.05	-1.58	-1.17	- 1.00					5.99	12+16	<i>#3</i>
<u>Ско</u> ч-СуС-Е					time is mis	1695	4379	,,,,,	1465	1512	1548	1494	1580	1271	1295							
P16	41.5	32.1	10.02	7.05	△ ✓	+ 1.40	5/	- 1.44	99	- 1.23	-1.03	-1.03	-1.76	- 82	9/					5.99	1260	R3

Table 4.1-3. Consolidation Data for Anistropically Consolidated Tests.

* Time in frame before testing.
| | $W_{i} W_{i} = \overline{\sigma}$ | | | | | . | Ĥ | 12 (5, | - "3 |) ma | x | | A | 1=1/ | 7 3 S | | A. | Į (•, - | =)max/8 | 9/1 |
|-------------|-----------------------------------|-----------------|-------------------|-----------|------|----------------|----------|--------------|--------------|-------|--------------|----------|--------|------|-------|---------|--------------|-----------------|---------|------------|
| Test | <i>₩</i> ₂
% | ₩ <u>₹</u>
% | 6 , cm | -
3 cm | ₹, c | , 2 | ₩
•/a | Su | P | A | | e
•/。 | 9 | p | A | 16-/169 | ٤ | σ, - σ <u>s</u> | E | NaCL |
| CK- 1/1/ | | | | | | | | | | | | | | | | | | | | |
| P'7 | 42.0 | 3R.7 | 6.09 | 3.00 | 5.98 | 1.02 | . 58 | 1.94 | 4.09 | . 82 | A.8 0 | 7.67 | 1.67 | 2.86 | . 54 | 3.43 | .08 | 1.94 | R 885 | A 3 |
| CKO- CIOZE | | | | | | | | | | | | | | | | | | | | |
| PII | 4A.8 | 3R.3 | 6.11 | 3.00 | . 25 | R4.4 | 9.76 | . 92 | 1.45 | /52 | 4.47 | 1.11 | . 4/32 | . 50 | , 225 | 12.4 | 1.35 | . 92 | 68 | <i>R</i> 3 |
| CKo - CIOZL | | | | | | | | | | | | | - | | | | | | | |
| P12 | 48.6 | 34.4 | 6.04 | 3.00 | . 75 | 8.05 | 4.48 | 1.13 | 2.00 | 05 | 3.59 | . 97 | . 67 | 1.02 | . 224 | 3.97 | . 69 | 1.13 | 164 | A3 |
| CKo - CIOL | | | | | | | | | | | | | | | | | | | | |
| P13 | 4 R .8 | -36,8 | 5.98 | 3.00 | 1.5 | 4.0 | A.55 | 1.88 | A. 48 | .145 | 3.51 | 6,36 | 1.35 | R.34 | . 189 | 3.76 | . A 0 | 1.38 | 690 | <i>A</i> 3 |
| CKOLL - CyC | | | | | | | | | | | | | | | | - · · | | | | |
| P14 | 48.8 | 33.8 | 6.00 | 3.00 | 5.49 | 1.09 | . 37 | R.00 | 4.87 | . 530 | 2.76 | . 96- | 1.90 | 3.8R | . 898 | R.98 | . 09 | A .00 | 8220 | R 3 |
| CKOLL-CyC-E | | | | | | | | | l. | | | | | | | | | | | |
| PIS | 42.9 | .33.5 | 6.00 | 3.00 | 5.99 | 1.00 | . 43 | 1.93 | 4.19 | . 85 | 2.71 | 7. | oł | read | hed | | .00 R | 1.93 | 86500 | <i>A</i> 3 |
| EKoll-CyC-E | | | | | | | | | | | | | | | | | | | | |
| P 16 | 41.5 | 38.1 | 5.99 | 3.01 | 5.99 | 1.00 | .35 | R .00 | 4.33 | . 66 | 2.72 | , r. | oł | read | hed | | .01 | <i>R.00</i> | 20000 | B 3 |

Table 41-4 Summary of Stress - Strain Data for Anisotropically Consolidated Tests Allstresses in *9/cm*

5

Table 4.1-5 Summary of Isotropically Consolidated Undrained Tests Sheared in Cyclic Compression and Extension.

		1.9.				σ _{ps}		(0, -	· • • •)	max			5-/-	5- 17	ax		(5-,	- 5	max/a	540 5	01	
Test	No Cycl	"/"	<i>w</i> ₁ %	6	53	وج	E %	54	P	A	6-/63	e °/o	9	īρ	A	ام ^م ا	5).0	°,-°3	Ē	Su@ Fpo	17 22	\$1725323 kg/cm ⁴
6 Q	/	43.6	31.1	6.00	6.00	1.00	3.04	R.04	3.95	1.00	3.14	3.04	3.04	3.95	1.00	3,14	. 09	R .04	R 760	1.00	7	
4	2				1.63	3.68	7.94	1.98	3.30	.076	4.00	3.30	1.98	3.30	.076	4.00	1.90	1.98	104	. 91	Nal	
- CyC	.3				70	8.58	10.3	1.94	3/6	- /32	4.18	.3. 58	1.19	1.81	03/	4.82	£.82	1.94	69	. 95	3 3/2	
110													• *	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~	1.52		7-		Ş
	-4				. 36	/6.7	12.5	1. 34	4.3/	/35	4.83	5.0	. 37	. 70		3.74	7.30	7.04	21	.75		c.
01 Q	/	4R.4	31.1	5.98	5.98	1.00	1.78	1.94	4.14	. 98	\$.76	1.78	1.94	4.17	.97	<i>R.</i> 76	. 09	1.94	\$160	1.00		
4	R				1.84	3.25	8.27	1.80	3.08	0.17	3.82	4.7	1.70	3.02	.20	3.85	1.80	1.80	100	.93	NaCl	
- 260																		100	~~	92	7/5 \$	
י ב	3	┼			. 69	8.68	9.3	1.78	R.84	/00	4.35	4.85	1.20	1.87	.02	4.08	2,3/	7. 48	70	.14	8	
ů	4/				.47	12.7	13.0	1.49	R. 85	- 13	4.47	9.0	. 93	1.40	0	4.96	7.85	1. 419	19	.77		
PAO	/	38.4	80.7	6.06	6.06	1.00	3.60	1.865	3.56	1.17	9.2 0	9.60	1.865	356	1.17	3.20	.04	1.865	9325	1.00	VaCl	
4 - E	2				1.51	3.86	6.79	1. 82	J. /3	. 099	3.78	3.+/7	1.5R	2.57	. 17-1	3.90	1.4	1.84	130	. 91	, <i>1/6</i>	
- 11	.3				.75	8.09	10.8	1.99	3.055	-, 20R	3.78	7.10	1.51	A. 4/6	/36	4.18	6.2	1.445	89	. 95	/6	

Ê

Table 4.1-6. Summary of Ko-consolidated Undrained Test Sheared in Cyclic Compression. All stresses in ¹⁹/cm⁴

		11.	1170					(5 , -	~ 3)	kg/cm	A		=. /	75	max		0, -	~ 3)n	nax /R	548 5
ž	Cyce No	•/.	%		3	7 .3	<u>ب</u> %	Su	 P	A	5.65	÷.	9	p	A	16-18N	<u>ب</u> %	0 7 - 03	£	32 @ 50
	/	42.8	33.8	6.49			.37	R.00	4.27	. 530	R.76	. 95	1.90	3.82	. 898	A .98	0.09	R .00	2220	1.13
╞	2				R.30	1.51	2.34	1.60	R.93	. 3/3	2.41		noł	react	ed		.23	1.60	695	.903
ŀ	ى				1.55	<i>R.45</i>	3.28	1.54	A.63	.147	3.84		507	pe			. s o	1.64	513	.870
	4				1.05	3.38	4,34	1.35	R.R.8	.033	3.92	1.79	1.14	1.84	.1-10	4.25	. óA	1.30	A 60	.762

0.48 J/cm

HIL stresses 112 Jom

Table 4.1 - 7. Summary of Ko-consolidated Undrained Tests Sheared in Cyclic Compression and Extension.

_	. با	w;	We		T	- pe	(, –	(د ح	max			₹,/;	5 , 77,	ax		(-, .	-==5)#	nax/R	Sue 55	
Test	1302	•/.	%	31	و	5,5	₩ °⁄0	Su	- P	A	-	* */o	9	P	A	B-/63	£ */0	σ, - σ ₃	£	Su @ Fre	
2																		×			
Ч /?	/	42.9	33.5	5.99			1.43	<i>!.</i> 93	4.19	. 85	R. 71	·	noz	reac	hed		.002	1.93	86500	1.09	2
7.	R				A. 42	1.44	1.46	1.65	3/1	. 48	9.25	3.01	1.65	£.91	. 337	3.54	.19	1.65	869	.932	Nal
CAC																					3 9/2
- 77 -	3				1.08	5.22	6.24	1.47	<i>R.4</i> 3	.041	4.05		عد.	me			1.30	1.47	113	.836	a
CX	н				. 33	10.5	13.4	1.13	1.96	-:/83	4.64	11.4	1.04	1.53	- 082	5.25	1.35	1.13	15.4	.638	
9/ Q		41.5	3R.1	o. 99			.35	B .00	4.83	.066	Q. 74		ož	rea	hed		. 01	R .00	A0 000	1.13	~
7	R				A. 34	1.49	1.25	1.40	3.20	. 24	3.26	0	ož	read	hed		.10	1.70	1700	.960	NaCi
- JyC -	З				1.05	3.32	6.96	1.45	R.42	017	3.99	4.0	1.38	A.25	0.00	4.05	1.65	1.45	88	-819	3 3/2
<u>CK011</u>	4				. 40	8.70	13, 3	1.21	1.88	- 148	4.62	7.80	0.68	0.97	.051	5.69	7.20	1.21	16.8	·684	પ્ર

0 pe = 3.48 kg/cm22

All stresses in kg/om &

8

וום			19/2
HLL	stresses	Z72	"J/ om

Teot	Cycle No	B _{IC}	عده	Su	₽£.	5	- ps	و م و م	Su@ == Su@ ==ps	£ @ (67 - 63) <u>}</u> R	Type of disturbance
											Removed from cell and
¥.	/	6.00	6.00	1.61	4.72	3.30	6.00	/. 82	. 848	540	mounted in the cell.
R Ni											Shear
0 2 3	2			1.51	6.40	A.82		R. 13	.795	156	
Ř Ý											Shear
10 6	3			1.29	6.33	. 96		6.35	.680	122	
28											
7	4			1.11	6.75	. 85		7.04	.585	117	Inear
10											
	5			. 34	14.8	.09		66.7	.179	6.0	Hemolded by hand
6											Removed from consolidation
ц Д	1	5.92	B.00	1.85	1. 8.2	Q. 70	3.48	1.29	1.045	740	cell to a cell.
5 3											
, Ъ В	2			1.68	3.12	R.03		1.41	. 95	488	Shear
(ک اچ	<u> </u>										
16 16	.3			1.57	7.56	135		258	. 888	349	Shear
20					7.55	1.30	1	4.00			
CH	4			. 59	e	.11		30	. 333		Remolded by hand
	<u> </u>	L	l	L	L	L	↓			L	

Ko : Su @ 0 ps = 1.77 kg/cm A

K=1 Su @ = 1.90 kg/om A

\$

Table	4.1 - 9.	Bumma	ary of	UU	Tests	012	"Undisturbed"	Samples	of	BBC
		from	Studen	t Ce	nter	MIT	Lampus.			

All stresses in kg/cmk

Sample No	Dep# ft	£lev f E	F ro	£sł T ps	و <mark>م</mark>	₩ <u></u> •/。	£f %	ير ک	£ a# F=2	الهرم	£st F _{om}	0.C.R.	وط 24	0.c.R • 5 5	Su@ = Su@ ====	Sule Fr	Corr factor	Su corr
ZL/ - /	39.0	- 16.5	1.54	1.49	0.28	37.4	- 8	0.45		R.96	5.8	3.8	5.34	20.R	. 47	. 71	1.51	.68
111 - 2	44.5	- 22.0	1.66	1.54	0.53	38.1	B .9	(. 143) 0.69		2.94	5.3	3.2	A.85	9.1	. 59	73	1.24	. 85
<u>1</u> 1 - 3	49.0	-265	1.78	1.54	0.40	36.1	A. 4	0.53		R.90	5.0	R.81	J. 86	10. 8	.56	.45	1.34	. #1
141 - 4	54.0	- 3/ 5	1.91	1.54	0.59	358	41	(.096) 0.68		898	46	84	2.6/	6.3	. 64	. 77	1.20	. 82
111 - 6	64.0	- 4//. 5	R.2 0	1.51	0.33	361	1.6	(051) 0.62		2.96	<u>5</u> 7	/7	4.57	7.8	. 6/	. 82	1.34	. 83
Z2 / - 8	1740	- 5/ 5	0 1/4	100	0.015	20.5	0,	0.84		4.08	8.0	10	10	.36	28	. 98	3.A8	. 85
11- 10	86.0	- 63.6	R.80	1.50	0.05	87.0	2/5	0.83		R.94	2.8	1.0	76.5	<i>46.5</i>	. 18	1. 00	5,56	1.28

Remolded values in ()

70.

٦

Center	for	A	dvar	rced	L	ngir	2eeri	ing	Ste	die	s,	M. I.	7	Campus.		All str	63865	in kg/cm
Sample No	Dejoth f2	£lev. f±	6,0	Est Tps	ال <mark>م</mark>	W.f •/。	٤ _f •/ه	<u>س</u> ک	Е а# F= R	.	Let Form	0.L.R.	و م و م	0.C.R.× ===================================	<u>Su@</u> F 3 Su@ F p3	5 <u>4</u> @160 94 9	Lorr: factor	54 corr.
21.7 - 16	46,5	-24.5	1.43	1.35	. 10	36.4	8.0	.40		1.0	5.R	3.6	13.5	48.6	. 24	. 72	3.0	1.20
117-2	50. 0	- 29.0	1.55	1.58	.33	39.5	12.2	.49		1.0	4.4	3.1	1.2	13.0	. 54	. 74	1.34	.67
U7·3	59,5	-38.5	/. 82	1. 41	. 45	38.7	8.3	.55		1.0	3.6	R.0	56	11. 8	.56	. 80	1.43	. 79
14 7 - 4	66.5	-455	Q.00	1.40	. 44	<u>93.</u> 9	9. R	. 46		1.0	3.4	1.7	5.8	9.9	. 58	. 82	1. HRI	. 65
117 - 5	74.3	- 53,2	R.20	1.37	. 37	49.8	1.9	, 1 /5		1.0	<i>R.9</i>	1.3	3.4	4.8	.67	. 89	1.33	. 60
2147 - 6 d	93.0	- 17.9.0	<i>A.</i> 73	1.50	20	3ō, 3	~15	.13		1.0	<i>A.</i> 7	1.0						
21/4 - 7	98.0	- 77.0	A. 88	1.58	.07	A9.6	18.0	. 39		1.0	<i>R</i> .9	1.0	R.A. 6	5 R.R.6	. 4/6	1.00	A.18	. 85
110 - 13	71. 5	-50.#	R. 14	1.38	. 27	38.6	8.0	.56		1.5	<u>3.1</u>	1.5	5.1	<i>4.</i> 7	. 6.84	. 85	1.34	.77
1,10 - 15	81.5	- 60,8	R. 40	1.36	. 13	47.8	14.7	. 26		1.5	<i>A.6</i>	1.1	10.5	11.5	55	. 95	1.73	. 45
2410 - 16	86.5	-65.8	R. 54	1.40	. 12	36.7	9.5	. 34		1.5	<i>A.5</i>	1.0	11.7	z //.77	. 55	1.00	1. 82	. 6R
1210 - 19	101.5	-80.*	R.96	1.64	.08	_	11.1	0.39	,	1.0	3.0	1.0	20.5	A0.5	. 47	1.00	R. 13	. 83

Table 4.1-10. Summary of Ull Tests on "Undisturbed" Samples of BBC from

71.

Table 4.1 - 11. Summary of Strength Data from Anisotropically Overconsolidated UU Tests.

Tesż	lycle No	w <u>i</u>	ψ _f	Ficm	,	0.C.R.	59	Fps	ह <u>ह</u> ह ह	0. L.R. 7 po 7 s	£ f %	54	<u>Su@</u> = <u>s</u> Su@ = _{ps}	Disturbance
Per		39. 8	.9 2.8	6.00	3.00	Q.00	R.07	<i>R.27</i>	1. 1	<i>R.</i> L	R .10	1.750	. 988	Shear
) Rm	R						/.63		1. 4	<i>A.</i> 8	3.56	1.614	. 923	Shear
1/6 9/ - 1111 (⊴*	3						1.09		R. 1	4.2	5.54	1.419	. <i>84</i> 2	Shear
CKo	4						.85		A.86	5.36	549	/.375	. 776	_Shear

Normally consolidated Su @ = 1.77 kg/cm2

2

~

4.2 p-q PLOTTS.

 $\frac{1}{p} = \frac{1}{2} \left(\overline{e_1} + \overline{e_3}\right) \frac{k_3}{cm^2}$

77•

 $\overline{P} = \frac{1}{2} \left(\overline{\sigma}_{1} + \overline{\sigma}_{3}\right), \frac{kg}{cm^{2}}$

9 -

 $\overline{\mathcal{P}}$ · $\frac{1}{R}$ ($\overline{\sigma}_1 + \overline{\sigma}_3$), $\frac{kg}{cm^R}$

 $\overline{\mathcal{P}}$: $\frac{1}{k}$ $(\overline{\sigma}_{1} + \overline{\sigma}_{3})$, $\frac{kg}{cm}^{A}$

and the second s

8 10 Strain %

10

1R

14

6 Axial

- 0.2 | 0

R

4

Axial Strain %

1.1.20

and the second se

CONSOLIDATED - UNDRAINED TRIAXIAL TEST - DATA SUMMARY SHEET

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TEST NO. CTU - PI		W,%	е	S,%	V, cc	L, cm	A,cm ²	PRE	SHEAR ·	DURI	NG SHEAR
SOIL Remolded BBC	INITIAL	42.0	1.17	99	80.8	8.00	10.10	σ _{ic} = <u>6.00</u>	t _c =	CONTROLLED	STRAIN STRESS
PROJECT Earth Science	PRESHEAR	31.6	. 88	100	68.90	7.41	9.30	<i>a</i>₃₀ = 6.00	P.P.R.= 100 %	RATE	006 "/min
TESTED BY WP DATE 43.65	G _s =	77		TYPE	CELL.	C.H	1.		u _B = <u>3.00</u>	PATH_446	trained loading
ALL STRESSES IN Kg/cm ²	PRESHEAR	STRESS	HISTO		-0	to 1	1.54	7/cm², isctrop	vic 3-D to	6.0 to/ca	e /

ELAPSED TIME	AXIAL STRAIN, %	$(\overline{\sigma}_1 - \overline{\sigma}_3)^{(1)}$	$\frac{(\overline{\sigma}_{1} - \overline{\sigma}_{3})}{\overline{\sigma}_{1c}}$	$\overline{\sigma}_3$	σι	σ _ι ∕ σ ₃	۵u ⁽²⁾	<u>au</u> $\overline{\sigma}_{l}c$	A ⁽³⁾	q	ą	ō,	σa			
	0	0		6.00	6.00	1.00	0		-	0	6.00]
	.016	.09		6.02	6.11	1.02	OZ		-	.045	6.065					
	. 066	.28		5.95	6.23	1.05	7.05		. 179	.14	6.09					
	.100	. 76		5.71	6.47	1.13	. 29		. 38Z	.38	6.09			 	 	_
	. /33	1.15		5.50	665	1.21	.50		. 435	.575	6015					
	.167	1.49		5.35	6.84	1.28	.65		. 437	.745	6.095			 		
	. 200	1.67		4.92	659	134	1.08		.647	.835	5.755					
	. 233_	2.01		4.80	6 81	1.42	1.20		.597	1.005	5.805				 	
	. 300	2.19		4.59	6.82	1.51	1.50		. 647	1.16	5.685					
	. 333	2.32		4.50	7.02	1.61	1.64		617	1.33	5.69]5
	<u>• 417</u>	8.66		4.36	6.64	1.68	2.04		.762	1.34	5.30					$_{\circ}$
	.500	2.68		3.96	659	1.74	2.22		.790	1 405	5.185					
	.69	3.01		3.98	6.42	1.88	2.59		. 86/	1.505	4.915					
	. 86	3./Z		3.13	6.25	2.00	2.87		.921	1.56	469					
	1.03	3.20		2.97	6.17	2.08	3.07		.961	1.60	4.57				 	1
	1.20	8.25		2.78	6.03	2.17	3.22		.992	1.625	4405					1
	1.36	3.27		2.65	5.92	2.23	335		1.023	1635	4.285]
	1.53	327		2.52	5.79	2.30	3.48		1.042	1.635	4.155					
	1.70	3.27		2.46	5.73	2.33	3.54		1.082	7635	4.095					1
	2.04	3.28		2.28	5.56	2.48	3.7z		1.100	1.64	3.92					7
	2.38	3.30		2.17	5.47	2.52	383		1.160	1.65	3.82					1
	2.75	3.31		2.03	5.54	2.63	3.97		1.200	1.655	3.685					7
	3.07	3.34		1.95	5.29	2.71	405		1.213	167	3.62					1
	3.41	3.35		1.86	5.21	2.80	4.14		1.238	1.675	222.5					1
	4.08	336		1.79	5.55	2.88	4.21		1.253	1.68	3.47					1
	4.77	3.36		1.68	5.04	3.00	432		1.287	1.68	3.36					1
	5.46	3.36		1.63	4.99	3.06	4.37		1.300	1.68	3.31					-
	6.13	3 33		1.58	4.91	3.11	4.42		1 327	1.665	3.245					1
	6.82	3.34		1.55	4.89	3.16	4.45		1.332	1.67	322				 	1
	7.50	3.36		1.50	4.86	3.24	4.50		1.340	1.68	3.13				 	1
	8.17	3.35		1.48	483	3.27	452		1348	1.675	3.155					1
	8.86	3.37		1.46	4.83	331	4.54		1.348	1.685	3.145			1		1
	9.54	3.39		1.44	4.83	3.36	4.56		1.547	1.695	3.135			 		1
	10.21	3 34		142	4.76	3.35	458		1.372	1.67	3.09					1
	10.91	3.36		140	4.76	3.40	4.60		1.370	1.68	3.08				 	1

(i) CORRECTED FOR <u>P.F.J.F.S.</u> (3) $A = \frac{\Delta u - \Delta \sigma_r}{\Delta \sigma_0 - \Delta \sigma_r}$ FOR COMPRESSION TESTS

REMARKS

 $A = \frac{\Delta u - \Delta \sigma_a}{\Delta \sigma_r - \Delta \sigma_a}$ FOR EXTENSION TESTS
SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

OIL	ender Earth WP	d BBC Science DATE 3/3 Ag/Co	65 4 ^C	IN P G _S PR	NITIAL RESHEAR = 27 ESHEAR ST	1.17 3.6 88 7 RESS HIST	94 80. 100 68. TYPE CELL ORY 1-0	8 8.00 /0 9 68:4 9 C . H to /	2.1 2.50 1. 5. tylen	σ _{ic} = 6.0 σ _{ic} = 6.0 σ _{ac} = 6.0 <i>σ</i> _{ac} = 6.0	oo oo o trop	t _c = P.P.R.= <u>/0</u> u _B = <u>3.C</u> τ _C <u>3</u> -	0 <u>%</u> >0 -D to	LED STRAIN	V STRI	iss
LAPSED TIME	AXIAL STRAIN, %	$(\overline{\sigma}_1 - \overline{\sigma}_3)^{(1)}$	$(\overline{\sigma}_1 - \overline{\sigma}_3))$ $\overline{\sigma}_{1c}$	$\overline{\sigma}_3$	$\overline{\sigma}_1$	$\overline{\sigma_{i}}/\overline{\sigma_{3}}$	۵u ⁽²⁾	<u> <u> </u> <u></u></u>	A ⁽³⁾	q	ą	σŗ	₹a			
	11.58 12.24	3.38 3.37		1.39 1.38	4.71 4.75	345 344	4.61 4.62		1.36Z 1.370	1.69 1.685	3.08 3.065					
				······································												

٠

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TEST NO	CIOU	- P2				N,% e	S,% V,0	cc L, cm A, cm	ⁿ 2		PRESHE	AR				HEAR	
SOIL Her	molde	d BE	BC_	IN	ITIAL	12.11.172	99.2 80.	72 8.00 10.	09	 قر <u>ة</u>	0	t_=		CONTROL	LED STRAI		RESS
	Earth.	Scier	nce			32.0 914	100 71	157.6592	19	- <u>.</u> <u>3</u> . a	•	, a	7 %	DATE	. 000	6 "/min	7
TESTED BY	W.P.		13 65		97	7	TYPE 051	CH	-7	- 3		r.r.n		RAIE	in alcai	mad la	
IESIED BI				. _{Gs}		L	IYPE CEL	=	•	σ _{ac} =	<u> </u>	u _B =		PATH	ALICAL	760 16	<u> </u>
ALL STRES	SES IN	Alle		. PRE	SHEAR ST	RESS HISTO	RY	Ocim #	6.00	regio	<u></u>						<u> </u>
								(2)					I	T			
TIME	STRAIN %	(;; - ;;)	$\frac{(\overline{\sigma_1} - \overline{\sigma_3})}{\overline{\sigma_1}}$	$\overline{\sigma}_3$	σı	$\overline{\sigma}_1 / \overline{\sigma}_3$	(2) Qu		A ⁽³⁾	q	ā	σ _r	ਰ ਹ				
		-	~ic	3	*					~	7				<u> </u>		
	200	.017		2.00	294	1.00	0		0 00	200	2.00						
	1/4	- Un	+	274	214	1.005	26	+	6.00	20	2.45						
	229	175	+	2.59	224	1.280	3	+	. <u>630</u> . <u>СШ</u>	375	2915			-	-	+	
	. 293	.83		252	325	1330	· 118	+	C70	UIC	2025						
	477	95		1 4	3.44	1 392	- 51		570	· 1.3	2915						
	.573	103		345	240	141		+	574	- 515	2965						
	.741	1.04		1 30	3.41	1.44	-33	++	596	.0.0	2.90		1			1 1	
	902	126		2 24	2 60	1.54	1.6		574	1.7	107				•		·
	1068	1 25	•	2 32	3.67	1.59	40	++	504	1.75	7000						
	1230	1 20		2 31	219	1.50	- 29		500T	10	2.713						
	1 203	1 27		231	210	110	19	+	500	1.85	2.00						
	1 650	1 24		2 31	215	1.60		-	SUL	. 600	1.475						
	1.006	120		7 22	212	1.57	-67		513	145	2.70						
	2 130	1 21		1.3	2.00	1.56	90		JAU -	. 673	4.713						
	7 40	1.20		2 22	200	1:25	- 60	+	.370	- 63	2.75			-			
	2 700	1 77		2 24	251	1.57	- 67	+	503	.373	1.715						
	2 170	1 23		7 27	3.00	1.52	17	1	CUC	- 61	2.75						
	3.12	1 27	+	1 71	2.00	1.53		++	. 373	. 613	2.773		<u> </u>			<u> </u>	
	204	100	+	214	2.50	1.56	· 17		-383	· 623	1.875						
	575	176	·	2.17	2.12	1107	. 80	+	.575	- ac	1.73						
	5.25	1.11		1 au	J.80	1.81	106	+	- 520	,075	4.765	···			-		
	500	22	+	1.77	110	275	110	+	177/	1.00	3.02				+		
	1.51	7 40	, 	1.80	Tim	2117	1.17	+	· T 12	1.10	2.04						
	0.00	2 0		1.67	Lin	210	1.3/		- 318	1.24	2.73		<u> </u>				
	7 07	2.62	+	1.58	7.15	1 7/	1.4%	++	222.	1. 685	1.065						
	0.01	714		1:50	7.13	1.16	1:50	++	.511	1.313	1.815						
	833	710		1.71	7.05	1.08	1:57	┼	. 602	1.32	2.73			+	+		
	0 6-	1.67		1.33	TOL	2.0K	1.61	┿╼╴──┼	. 622	1.575	1.67S				<u> </u>		
	7.05	3 74		1:27	4.00	2.10	1.11	┼───┼	1631	1.355	2.645		l	+			
	10.60	5 15		1.18	7.0X	3.17	1.18	+	<u>. 620</u>	1.31	1.65		<u> </u>				
	11.20	2.70		1.10	3.71	2.5/	1.80		. 650	1.585	1255						
	11.00	1.18		1.15	3.43	3.72	1.85	<u> </u> e	665 I	1.57	3.54			<u> </u>			
	12 12	1.11		1.15	3.7%	3.41	1.85	ļļ•	668	1.585	125	,					
	13.12	1.11		1:17	2.75	2.45	1:86	<u> </u>	.661	1.57	22.5			ļ			
L	14 4	2.02		1.14	3.77	2.52	1.88		66/	1.71	12.5 <u>3</u>						
ω CORRECT	FD FOR	DEA	F.S.	(3) A	Δ0 - Δ0,	FOR COM	PRESSION	TESTS R	E MARKS	1.41	10.2						

14.42 2.82 1.11 (I) CORRECTED FOR _______ (3) A =

 $\frac{\Delta U - \Delta U_r}{\Delta \sigma_q - \Delta \sigma_r}$

(2) Δu FOR $\Delta \sigma_3 = 0$

FOR EXTENSION TESTS

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TEST NO	CIOU	- P3	• 	_	5	N.% e	S.% V.0	CL. cm A.	cm ²		PRESH	AR				SHEAR	
SOIL He	no/dec	d BB	ac			4.2 1119	97 - 80	58004	20	=	50	+ -					DECS
PROJECT	Facth	. Sie	MCC			2-2 000	11.500	- 70.00 R		- / .	50	'c	^	CONTROL		L 4/	RESS
PROJECT	NY D	~10	2/_ /-	- [P]		1. 1 709	100 11.	21.827.	//	σ _{3c} =	50	P.P.R.= <u>10</u>		RATE	. 000	0 141	4
TESTED B	<i>w.r.</i>	DATE	7/2 65	- G _s	- 6.77		TYPE CEL	L. C. H.	<u> </u>	σ _{ac} =	50	u _B ⁼_ <u>3.0</u>	OMYLE	PATH_	indra	incd	loading
ALL STRE	SSES IN	<u>Reg/c</u>	~~~ ^c	– PR	ESHEAR ST	RESS HISTO	DRY	Scm	= 6.0	o try	cme				<u>-</u>		
ELAPSED	AXIAL	(ā - ā) ⁽¹⁾	$(\bar{\sigma}_1 - \bar{\sigma}_3)$			æ (#	(2)	<u><u></u> (2)</u>	A ⁽³⁾		_	æ					
	STRAIN, %		σ _{ic}	•3	°1	0,703	<u></u>	σic		Ч	ч Ч	^o r	°a				
	0	0		1.50	1.50	1.00	0	0		0	1.50						
	.033	. 027		1.48	1.51	1.02	. 02		1.095	.014	1.49						
	.078	.538		1.28	1.82	1.42	. 22		. 613	. 269	1.55						
	.163	. 899	.	1.14	1.98	1.74	.36		. 603	. 422	1.56						
	.22/	1.041		1.08	1.13	1.98	. 42		.573	.503	1.58						
	.19%	1.181		1.03	2.2/	2.15	.97		.567	.598	1.62						
	. 426	1.396		. 48	4.38	2.43	.5%		1.528	648	1.68						
	.57	1.557	1	. 9/	253	1.61	.53	· · · · · · · · · · · · · · · · · · ·	.486	. 117	1.75	ļ				<u> </u>	
	. 138	1.122		. 98	1.10	1.16	.52		, 432	· 861	1.84						L
	883	1.844	<u> </u>	. 98	1.81	2.88	.52		· 402	1922	190						c
	1.01	1.05		. 76	3.01	3.14	.36		. 91/	1.025	1.97					<u> </u>	
	1.21	2.05		. 99	3.02	3.05	.5/		225.	1.015	2.005						
	1.38	2.01		. 48	3.05	317.	.52		.382	1.035	2.015						L
	1.57	1.13		1.00	3.13	3.13	.50		.333	1.065	2.065						
	1.18	2.20		1.01	3.21	3.18	.44		. 3/4	1.10	2.11				_		
	2.11	1.25		1.0/	3.16	3.23	. 47		. 307	1.135	2.135						
	2.76	1.17		1.01	3.30	3.21	. 47		. 301	1.145	2.155	<u> </u>					
	1.18	4.31	ļ	1.02	3.33	5.21	. 48		. 294	1.156	2.176						
	3.09	1:50	+	1.02	3.38	3.32	. 78	ļ	. 288	1.18	2.200	<u> </u>					
	3.3X	1.39		1,02	3.41	355	. 78		.285	1.20	2.20						
	3.40	1. 45		1.00	3.45	3.45	.30	<u> </u>	. 240	1.225	2.225						
	T.ST	1.51		· 77	3.51	3:55	.3/		. 186	1.26	2.25					<u> </u>	
	3.28	1.06		. 7/	3.53	3.67	22.		.113	1.28	2.25						
	3.86	1.56		. 98	3.34	3.62	<u></u>		. 185	1.28	1.26						
	6.78	2.55		. 4/	351	361	52		. 197	1.275	2.24						
	7.15	1.60		. 48	3.58	2.66	Sh		. 281	1.30	1.18	<u> </u>					
	1:05	2.67		. 91	3.6/	275	<u>دی</u> .		. 287	1.02	2.29			ļ			
	14.75	1.64		-7/	3.6/	2/2	<u>ک</u> ک.		. 284	1.32	1.29	<u> </u>				<u> </u>	
	à 01	1.66		17/	2.63	3 K	.55	+	. 282	1.35	2.30					<u> </u>	
	7.00	7.60	<u> </u>	.78	2.64	2.12	52		. 200	1.35	1.31						ļ
	10.70	1:00	+	17/	2.60	2/0	کې کې		1 200	1. 32	1285	<u> </u>			ļ	┥────┘	<u> </u>
	11:05	117	+	1.7	2.63	2/2	22	<u>├</u>	101	1.35	1.30					+ł	↓
	12 20	1.61	•	17/	212	2.10	20.		1.81	1. 233	2.305				+	<u> </u>	<u> </u>
	1215	2.64		.7/	2 17	3.70	52	<u> </u>	270	1. 22	1.505						↓
	11.2.63	1 4 9 T	1	1 7 7	1.7. OL	1110		1		1106	14.50	1		1	I	1 2	

(i) CORRECTED FOR P.F. g.F.S. (3) $A = \frac{\Delta U - \Delta \sigma_r}{\Delta \sigma_o - \Delta \sigma_r}$

FOR COMPRESSION TESTS REMARKS

(2) Δu FOR $\Delta \sigma_3 = 0$

 $A = \frac{\Delta u - \Delta \sigma_{\rm c}}{\Delta \sigma_{\rm r} - \Delta \sigma_{\rm c}}$ FOR EXTENSION TESTS

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TEST NO. CIOU - P4 W, % e S, % V, cc L, cm A, cm² PRESHEAR DURING SHEAR SOIL Remolded BBC 42.5 1.172 100 80.8 8.00 INITIAL CONTROLLED STRAIN _____ STRESS _____ PROJECT Earth Science TESTED BY W.P. DATE 4365 σ₃₀ - .74 P.P.R.= /00 % PRESHEAR 33.0.905 100 70.9 7.79 9.11 RATE . 0006 "/ mg . ____ .74 _{G,=} <u>2</u>.77 3.00 PATH Undrained loading TYPE CELL C. H. kg/cm ALL STRESSES IN _____ Jem = 6.00 talent PRESHEAR STRESS HISTORY.

ELAPSED TIME	AXIAL STRAIN, %	$(\bar{\sigma}_1 - \bar{\sigma}_3)^{(1)}$	$\frac{(\bar{\sigma}_{i} - \bar{\sigma}_{3})}{\bar{\sigma}_{ic}}$	$\overline{\sigma}_3$	σι	σ ₁ / σ ₃	۵u ⁽²⁾	<u>au</u> (2)	A ⁽³⁾	q	₫	σ _r	σα					
	0	0		. 74	. 74	1.00	0			0	. 74]
	, 032	.076		. 69	.77	1.11	.06		. 72	.039	.73							
L	.0714	.269		.61	. 88	1.44	.14		.52	. 134	.744							
	.129	.473		.53	1.00	1.90	. 22		.46	. 237	.767							_
	.195	.612		.47	1.16	2.3/	.28		. 46	. 306	. 776						ļ	
	. 26	.692		. 47_	1.24	2.47	. 28		.41	. 346	.816				ļ			
	. 32	- 767		. 4/	1.38	2.63	.28		.37	. 387	·859				ļ	ļļ	L	
	. 49	.901		. 48	1.51	2.88	.21		.30	.451	.93/					ļ	l	4
	.65	1.02		. 49	1.6%	3.08	. 26		. 26	.510	1.06					ļ!		
	1.81	1.13		.5/	1.15	321	. 24		. 21	.56%	1014					<u> </u>	ļ	-15
	:47	1.22		.55	1.87	2.30	.26		. 18	.610	1.14					ļ	ļ	
	1.15	1.30		.33	1.41	3.46	. 22		. //	.651	1.18					<u> </u>	l	4
	1.30	1.57		.38	2.01	290	.1/		- 12	. 693	1.11				<u> </u>			-
	1.46	1.76		.6	1.15	2.28	.17		.076	128	1.34			<u> </u>		<u> </u>		4
h	1.63	1.01		· 9.	2.11	2.73	./3		. 08-	· 135	1:24						<u> </u>	-
	277	171		70	nua	244	10		079	052	1.55					<u>↓</u> /		-
	260	1.77		77	749	244	00		017	997	1.40					╆╌───┥		+
	2.92	113		77	2.57	3.52	02		.011	- 005 A IA	1.65					<u> </u>		-
	308	1.858		73	2.59	255	OZ.		.010	919	1.66					╂─────┦		4
	3.57	1910		.75	2.66	3.55	0		0	955	1.71				<u>}</u>	<u>}</u>		1
	4.22	1.95		. 76	271	3.55	01		005	.97	1.7.7							1
	4.87	203		. 77	2.80	3.64	OZ		010	1.01	1.78					1		1
	5.52	2.08		. 81	289	3.57	06		029	1.04	1.85				1			1
	6.17	2.15		. 81	2.96	3.65	06		029	1.07	1.88							1
	6.82	2.22		. 81	3.03	3.74	06		0Z8	1.11	1.92							1
	7.47	2.21		. 81	302	3.73	06		027	1.10	1.91]
	8.12	2.25		. 81	302	3.73	06		027	1.10	1.91							
	8.77	2.28		. 83	308	3.73	08		036	1.13	1.96							
	9.42	2.29		83	3.11	3.71	08		035	1.14	1.97							
	10.07	2.32		.84	3.13	3.75	09		039	1.15	1.99							
	11.36	23		.84	3.16	3.73	09		038	1.16	7.01							
	12.02	2.30		.83	314	3.76	08		635	1.15	1.98					L	<u>-</u>	
<u> </u>	12.66	Z.3/		. 83	314	3.79	08		035	1.13	1.98				L		ļ	
L	13.31	X·3/_	l	. 83	3,13	3.71	08		035	1.15	198		L		L		L	

(i) CORRECTED FOR **P.F. # F.S.** (3) $A = \frac{\Delta U - \Delta \sigma_r}{\Delta \sigma_0 - \Delta \sigma_r}$

FOR COMPRESSION TESTS

REMARKS

FOR EXTENSION TESTS

SOIL MECHANICS LABORATORY, DEPT OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

 TEST NO CIOU - PH
 Mu w w e s, w V, cc L, cm A, cm²

 SOIL Manual ded BIBC
 Mu w w e s, w V, cc L, cm A, cm²

 PROJECT Larth Science
 DURING SHEAR

 TESTED BY W.P. Date 3/3 65
 G_g = 1.77
 TYPE CELL C.H.
 TYPE CELL C.H.
 THE UNIT OF COLL ON TROLLED STRAIN CONTROLLED STRAIN

 ALL STRESSES IN _______
 TYPE CELL C.H.
 TYPE CELL C.H.

 THE DATE 3/3 65
 PRESHEAR STRESS HISTORY______
 DURING SHEAR

 ALL STRESSES IN ________
 PRESHEAR STRESS HISTORY_________
 PRESHEAR STRESS HISTORY________

 (2) 4 u A ⁽³⁾ $\overline{\sigma}_1 = \overline{\sigma}_1 / \overline{\sigma}_3$ q ą σŗ σ .83 3.17 3.79 -.08 -.035 1.15 1.98 .83 3.19 3.84 -.08 -.034 1.18 1.98 .88 3.22 3.66 -.13 -.056 1.17 2.05 13.32 2.31 13.97 2.36 14.61 2.34 .83 3 (1) CORRECTED FOR <u>P.F. 4. F.S.</u> (3) $A = \frac{\Delta u - \Delta \sigma_r}{\Delta \sigma_o - \Delta \sigma_r}$ FOR COMPRESSION TESTS REMARKS : $A = \frac{\Delta u - \Delta \sigma_{e}}{\Delta \sigma_{e} - \Delta \sigma_{e}}$ FOR EXTENSION TESTS (2) ΔU FOR $\Delta \sigma_3 = 0$

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

EST NO.	Cho-U	<u>IU - P</u>	7		\ \	W,% e	S,% V,c	c L, cm A,	cm ²		PRESH	EAR			DURING S	HEAR	
OIL Men	rolded	BBC	<u> </u>	IN		2.01.192	97.5 80	9 8.00 10	p./	مرء <u>ح</u>.9	78	tc =		CONTROL	LED STRAIN	STR	ESS
ROJECT	Earth	Seic	nce	PR		32.7.90H	100 70.	37.07 9.	RS	σ <u>, - 3.</u>	00	P.P.R.=	75 %	RATE	. 000	5 4/min	•
ESTED BY	W.P.	DATE	19 65		2.	77	TYPE CEL	C.H.		۰.ک 🚛	98	". 3a	28	ратн 🖌	indra	incd	
		Kgl	and C	- 3			a	niso	tropi	6 60	1.50	lida	tion	4:+4	. 1a	ading	
LL SINLS	3E3 IN		Ð		SHLAR SI	RESS HIST						/	4=0.5	5		0	
FLAPSED	ΑΧΙΔΙ	(1)	(ā ć ā)				(2)	(2)	(-)				T		1		
TIME	STRAIN, %	$(\overline{\sigma}_1 - \overline{\sigma}_3)^{\prime\prime}$		σ	Kr	$\bar{\sigma_1} / \bar{\sigma_3}$	Δu ⁽²⁾	<u><u> </u></u>	A ⁽³⁾	q	ą	σ _r	₹a				
	0	2.98	3.08	5.98		2.00	0			4.49	4.49				+		
	0	2.35	3.28	5.63		1.72	28		. 43/	1.18	4.46						
	0	1.16	3.69	4.85		1.3/	69		. 375	.58	4.27						
	007	.53/	3.73	4.26		1.14	73		. 296	.266	4.00						
	038	. 113	3.10	3.81		1.05	10		. 242	. 256	516	/				<u>↓</u>	
	078	086	2.60	3.37	2	.91	00		. 228	075	3.07				+	+	
	078	.068	3.50	3.57	AC	1.02	710		2.64	.034	3.53	· · · · · · · · · · · · · · · · · · ·	+		+	<u>├</u> ───┤	
	078	.63	3.30	3.93		1.19	38		604	24	3.6/	1			1		
	. 078	1.59	2.89	4.44		1.54	. 8/		.509	.78	3.67				1	1	
	078	2.30	2.65	4.95		1.87	1.32		. 573	1.15	3.80						
	+156	3.37	2.38	5.75		2.42	1.44		427	1.69	4.07						
	. 295	3.7/	2.26	5.97		2.65	1.55	· · · · -	.418	1.86	4.12						
	.38	3.87	2.15	6.02		2.80	1.11		. 442	1.88	4.09					L	
	1.12	3.76	2.00	5.76	ļ	2.88	1.85		487	1.84	3.88				+		
	742	261	1:01	5.51		205	209		.351	1.76	3. 11			+	+	<u> </u>	
·	3.09	3.31	159	502		3.00	2.01	·	120	110	2.71		+				
	379	3.36	1.52	4.88		3.21	2.21		650	1.66	3.20				+		
	451	331	1.47	4.78		3.26	7.73		.174	1.64	3.13		+			1	
	5.24	3.28	1.45	4.73		3.26	2.31		. 704	1.63	309				1		
	6.11	3.26	1.39	4.63		3.38	2.35		. 722	1.59	3.00						
	6.98	3.17	1.33	4.50		3.38	2.39		. 754	1.57	2.92						
	7.67	3.14	1.29	4.43		3.43	2.39		.762	1 S7	2.86		<u> </u>		l	l l	
	8.58	3.10	1.27	4.57		3.40	2.40		. 774	1.55	2.84						
	7.78	3.08	1.28	7.56		3.4/	24		. 118	1.54	2.82						
	10.31	3,00	1.21	1/21		2.77	2.42	<u> </u>	. 181	1.33	277				+		
	11.05	3.02	·	70		3.70			. 004	1.3/	2.11		<u>+</u>				
	<u> </u>						<u> </u>	<u> </u>				+	+		+	† †	
															1		
	<u> </u>										L			<u> </u>			
								<u> </u>									·
							L	L	L		l			1	<u> </u>		

(2) ∆u FOR ∆σ₃ = 0

 $A = \frac{\Delta u - \Delta \sigma_{a}}{\Delta \sigma_{r} - \Delta \sigma_{a}} \quad FOR \quad EXTENSION \quad TESTS$

TEST NO	Firs : CTU-C	t Cyc	ele Pg	CONS SOIL MECH	OLIDATE	ED - UNI BORATORY, 1, % e	DEPT. OF	D TRIAX	(IAL TE NEERING, m ²	ST — massach	DATA S	UMMAR NSTITUTE	Y SHEE of techi	T IOLOGY	DURING	SHEAR		
SOIL Re	molde	d Bl	9C	. IN		26 1.200	98.3 80.	9 8.00 10		σ _{ic} =6.0	00	t _c =		CONTROL	LED STRAI	N 🔽 ST	RE\$S	-
PROJECT	Earth	n Sei.	ence	PF	RESHEAR 3	1.1 .861	100 68.	57.629.	00	<u>, − 6,8</u>	0	P.P.R.=	5_%	RATE	606	mig/cm		
TESTED BY ALL STRES	SES IN_	DATE	423 65	G _S =	= 277 ESHEAR STF	RESS HISTO	TYPE CEL	. Geono 150 troj	r pical	_{σα=} _6, (14 co	60_ 175	u _B = <u>3.0</u> fo 6.	oo ky/	PATH	yclic	exten	<u>rc3516</u> 5104	7
ELAPSED TIME	AXIAL STRAIN, %	() () () () () () () () () () () () () ($\frac{(\bar{\sigma}_{\rm i}-\bar{\sigma}_{\rm 3})}{\bar{\sigma}_{\rm IC}}$	¯₹	Ē	۵/ ۳۰	(2) Δu	<u>Au</u> (2)	A ⁽³⁾	<u>ر</u> ه	ē	σ¯r	σα					
	0	. 01		6.00	6.01	1.00	0		0	. 005	6.00							
	. 0/	. 17		6.00	6.17	1.03	0		0	.09	6.09		<u> </u>					-
	. 03	.63		5.79	6.42	1.11	. 2/		.33	. 32	611		+					-
	.17	2.97		4.42	7.29	1.45	1.58		.55	1.44	5.86							1
	.25	3.25		4.08	7.35	1.80	1.92		.59	1.63	5.71							
	.42	3.63		3.54	7.17	2.03	2.46		. 68	1.82	5.37							
	.58	3,77	ļ	3.28	7.05	7.15	2.72		.72	1.89	5.26		+				+	-
	. 19	3.88		2.78	6.86	1.50	3.08		. 18	100	4.42						+	-+-
	114	3.96		266	6.10	249	3.34		. 84	198	4.64		+					卡
	1.57	4.00	+	2.46	6.46	2.63	3.54		. 89	2.00	4.46							-10
	1.67	4.02		2.33	6.35	2.72	3.64		.90	2.01	4.34							
	1:93	4.03		2.20	6.23	2.83	3.80		.94	2.02	4.22							
	2.08	4.01		2.17	6.18	7.85	3.83		. 78	2.01	4.18		+	+		<u> </u>	<u> </u>	-
	2.47	4.05		1.07	6.07	2.99	2.46		99	2.03	7:01							-
	3.04	4.08		1.00	599	3.14	4.09		1.00	1.94	3.95					+		1
	3.10	3.82	<u> </u>	1.94	5.76	2.97	4.06		1.06	1.91	3.85							
	3.11	3.37		1.95	5.32	2.73	4.05	1		1.69	3.64				1			
	3.11	2.75		2.05	4.80	Z. 34	3.95			1.38	3.43						<u> </u>	_
	3.07	7.69		2.05	4.11	1.3/	3.45			1.35	5.40	+	+		+		+	4
	3.07	1.11		2.11	7.28	1.69	2.87	:		. 78	3.04		+			+	+	+
	2.97	1.04		2.35	339	1.41	3.65			.52	2.87		+				+	\dashv
	2.68	.37		8.39	2.76	1.16	3.61			.19	2.58		1					
	2.60	. 26		2.34	2.60	1.11	3.66			./3	2.47							
	2.47	21	ļ	1.54	2.33	. 92	3.46	ł		//	2.43					<u> </u>	<u> </u>	4
	2.29	38		1.56	2.28	. 87	3.44			14	2.31						<u> </u>	-
	105	30		2.40	1.07	.0/	3.76			31	7 19		+		+		+	-
	1.30	- 72		2.45	1.73	.71	3.55	·		36	2.09		+	<u>+</u>	1	+	+	-
	1.16	93		2.59	1.66	. 64	3.41			47	2.12							
	.94	-1.09		2.54	1.45	. 57	3.46			22	1.99					1	<u> </u>	
	.59	-1.33		2.59	1.26	.49	3.41			67	1.92							

(1) CORRECTED FOR <u>P.F. \neq F.S.</u> (3) $A = \frac{\Delta u - \Delta \sigma_r}{\Delta \sigma_r - \Delta \sigma_r}$ FOR COMPRESSION TESTS REMARKS: $q \cdot \frac{1}{2} \left(\overline{\sigma_a} - \overline{\sigma_r}\right)$ (2) Δu FOR $\Delta \sigma_3 = 0$ $A = \frac{\Delta u - \Delta \sigma_6}{\Delta \sigma_r - \Delta \sigma_6}$ FOR EXTENSION TESTS

First Cycle

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TEST NO. CIU-CYC-E P9	W,% e	S,% V,cc L,cm A,cm ²	PRESHEAR	DURING SHEAR
SOIL Nemolded BBC	INITIAL 47.6 1.20	o 48.3 80.9 8.00 10.11	$\overline{\sigma}_{1c} = \underline{6.00}$ $t_c = $	CONTROLLED STRAIN STRESS
PROJECT Earth Science	PRESHEAR 31.1 .86	100 68.5 7.62 9.00	$\overline{\sigma_{3c}} = 6.00$ P.P.R.= 95 %	RATE 606 min/em
TESTED BY W.P. DATE 3/23 65	Gs= 2.77	TYPE CELL GEONGE	$\overline{\sigma}_{ac} = 6.00$ $u_{a} = 3.00$	PATH Cyclic compression
ALL STRESSES IN Kalome	PRESHEAR STRESS HIS	ORY Cons. isotrop	. to b.co talcant	Crtensien
/-				

ELAPSED TIME	AXIAL STRAIN, %		$\frac{(\bar{\sigma}_1 - \bar{\sigma}_3)}{\bar{\sigma}_{1C}}$	₫₹	₫	<u>م</u> / ، -	∆u ⁽²⁾	<u>au</u> a u a 10	A ⁽³⁾	(۴)	ą	σ _r	σα					
	. 31	-1.51		2.66	1.15	. 43	3.34			76	1.90							
	. 17	-1.65		2.73	1.08	.40	3.27			83	1.90							
	57	-1.92		2.84	.92	. 32	3.16			96	1.88							7
	79	-1.57		2.55	.98	. 38	3.45			79	1.76							1
																		7
																		1
																		1
		1								· · · ·		· · · · · · · · · · · · · · · · · · ·	<u>+</u>			· · · · · · · · · · · · · · · · · · ·		1
		1																1
				<u>+</u>									+				<u> </u>	1-
		1											+				├	48
<u> </u>				<u> </u>	<u> </u>												<u> </u>	-10
		+			<u> </u>												ļ	-
				+	+									+	l		<u> </u>	-
																	<u> </u>	4
		· · · · · · · · · · · · · · · · · · ·			ļ								<u> </u>					4
L		+																_
																	<u> </u>	4
		L								ļ			L					
		_										[
																		7
																		1
												· ·			1			٦
																		1
			<u> </u>										1					1
					1							······				· · · · · · · · · · · · · · · · · · ·		1
					·								<u> </u>					1
																		1
	<u> </u>	+	t	<u>+</u>	t								<u>+</u>					-
	+				<u> -</u>			· · · · ·				<u> </u>						+
		+	<u> </u>		<u> </u>					<u> </u>			<u> </u>		<u>├</u>			4
	┼───	+			<u> </u>					<u>+</u>							<u>├───</u>	-
L	1		L		L	L	I			L	l	L	L	l	1	L	I	_
(I) CORREC	TED FOR _			(3) A	$= \frac{\Delta u - \Delta \sigma_r}{\Delta \sigma_q - \Delta \sigma_r}$	FOR CON	PRESSION	TESTS	REMARKS	(4) a	· 1/2 (5- 50	5-)					
(2) ∆ u FO	R Δσ3 = 0			А	$= \frac{\Delta U - \Delta \sigma_{d}}{\Delta \sigma_{r} - \Delta \sigma_{d}}$	FOR EXT	ENSION TE	STS		1		-	-					

Second Cycle CONSOLIDATED - UNDRAINED TRIAXIAL TEST - DATA SUMMARY SHEET

SOIL MECHANICS LABORATORY, DEPT OF CIVIL ENGINEERING. MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TEST NO. S SOIL PROJECT TESTED BY ALL STRES	CTU-C melde Earth W.P.+ NA	<u>чС-Е</u> <u>Бсісн</u> В ате ³ Ку/ст	P9 3C 7C C 23 65 2	IN Pf G _S	IITIAL 2 RESHEAR 3 = 2.77 ESHEAR STI	N, % e 2.6 /.20 31.1 .86/ 7 RESS HISTO	S,% V,c 98.3 8.c 100 88 TYPE CEL DRY 30	E L, cm A,c 88.00/0 57.629.0 57.629.0 57.629.0		$\overline{\sigma}_{1c} = \underbrace{b}_{c}$ $\overline{\sigma}_{3c} = \underbrace{b}_{c}$ $\overline{\sigma}_{ac} = \underbrace{b}_{c}$		EAR tc= P.P.R.=9 u _B =3 6.00 A	25 % 00 5 %		DURING LED STRAI 606 YCIIC	shear N st min/cm Complex stensi	RESS
ELAPSED TIME	AXIAL STRAIN, %	(ē - ē → ⁽¹⁾	$\frac{(\bar{\sigma}_1 - \bar{\sigma}_3)}{\bar{\sigma}_{1c}}$	⊂ e r••	⊽ھ	ā⁄ <i>⁼</i> г	۵u ⁽²⁾		A ⁽³⁾	q (7)	ą	σŗ	$\overline{\sigma}_{a}$				
	52	75		1.92	117	61	4.08	<u> </u>		- 26	166						*
	04	.01		1.62	1.63	1.01	0		-	008	1.63						
	.23	.34		1.39	1.73	1.24	73		.68	17	1.56				1		+
	.38	.57		1.26	1.83	1.46	. 36	†	.63	.29	1.55				+		
	.74	.97		1.08	2.05	1.90	.54		.57	.48	1.Sh						
	1.17	138		100	238	7.38	.62	1 1	.45	19	1.19						+
	1.51	1.70		.97	267	275	45	•	. 38	28	1.82				1		
	2.00	2.07		97	2.04	3.14	- 65	1 1	.31	1.04	2.01		T				
	2.54	2.57		104	361	347	.58		.73	1.79	2.33						
	3.72	307		1.13	4.20	3 77	49		16	1.54	2 17				<u> </u>		
	4.13	3.43		1.23	446	3.79	.39		. 11	1.72	2.00	•	1	1			
	4.74	369		1.23	492	400	39			185	3.08						+
	6.23	3 82		130	512	394	32		083	191	3.21		+		<u> </u>		+
	7.30	3.87		132	519	294	30		070	1.94	3.26	1					+
	794	396		132	5 28	400	. 30		076	198	320						
	870	396		1.37	5 23	3.89	.25		063	100	220		+	+	1	+	+
	876	319		1.33	4 62	340	29		091	160	2.93					-	1
	868	2.02		1.50	3.02	2.45	12	++		1.02	2.52				+	1	+
	8.51	1.33		157	2.86	1.89	00			DLL	219		+	+	t	-+	+
	810	43		140	1.82	1.30	17	<u> </u>		27	1.67		<u> </u>		1		<u>+</u>
	7.93	- 20	t	1.0	1.30	87	.12	1		10	1.40		+	1	+		+
	6.66	- 40	<u> </u>	1.24	.84	. 69	33	<u>+</u>		20	1.09	+	1				1
— —	6.39	- 50		121	7/	.59	.41	1		- 25	.94						+
	5.60	59		1 22	. 43	.52	.40	1 1		- 30	.92	-	+	1		1	+
	5.06	- : 64		1.18	49	.42	40	<u> </u>		- 34	, śŶ		+		+		+
	4.32	- 81		118	37	31	44	1 1		- 40	79					<u> </u>	t

 $A = \frac{\Delta u - \Delta \sigma_{e}}{\Delta \sigma_{r} - \Delta \sigma_{e}} \quad \text{FOR EXTENSION TESTS}$

(3) $A = \frac{\Delta u - \Delta \sigma_r}{\Delta \sigma_q - \Delta \sigma_r}$

FOR COMPRESSION TESTS

REMARKS: (+) 4 * 1/2 (5a - 5r)

Third Cycle

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TEST NO CIU-CYC-E P9 SOIL Remolded BBC W, % | e | S, % | V, cc | L, cm | A, cm ² PRESHEAR DURING SHEAR

 INITIAL
 1/2.6
 2.0
 98.5
 80.9
 8.00
 0.11
 $\overline{\sigma}_{1c} = \underline{6.00}$ $t_c = \underline{-}$

 PRESHEAR
 31.1
 36/
 100
 68.5
 7.62
 9.00
 $\overline{\sigma}_{3c} = \underline{6.00}$ $t_c = \underline{-}$
 $G_s = \underline{2.77}$ TYPE CELL
 Geometry
 $\overline{\sigma}_{ac} = \underline{6.00}$ $u_B = \underline{300}$

 PRESHEAR
 Stress History
 Jsottop
 Const.
 40
 6.00
 $m_B = \underline{300}$
CONTROLLED STRAIN 🗹 ____ STRESS ____ PROJECT Earth Science RATE 606 min/cm TESTED BY WP NFB DATE 123 65 PATH Cyclic Compression ALL STRESSES IN _____

ELAPSED TIME	AXIAL STRAIN, %	(5 - 5	$\frac{(\bar{\sigma}_1 - \bar{\sigma}_3)}{\bar{\sigma}_{1c}}$	*	ā	هر <u>،</u> د	2) مر	<u><u></u> <u> </u> <u> </u></u>	A ⁽³⁾	(4)	ą	σ _r	₹a	2 relative	
	4.02	40		.97	. 57	.59	65			20	.77			.+	
	4.75	. 13		.63	.76	1.21	. 08		.62	. 06	. 69			. 18	
	5.14	.32		. 43	.75	1.75	. 23		.72	. 16	.57			. 47	
	5.34	.56		.45	1.01	2.35	. 26		. 47	. 28	.73			.67	
	5.60	.82		.38	1.20	3.16	. 33		.3/	. 41	.79			. 93	
	5.98	1.02		.39	1.41	3.61	. 32		.14	.57	. 90			1.31	
	6.18	1.44		.51	1.92	3.77	. 20		.085	. 74	1.25			2.11	
	1.44	1.88		<u>کې،</u>	2.43	4.42	.16		. 035	.94	1.47			Z.77	
	8.95	1.37		. 67	2.99	4.82	.09		- 031	1.19	1.81			3.38	
	8.95	<u>, 44</u>		.80	3.14	4.67	09		073	1.47	2.27			4.28	
	10.2	5.94		.96	4,40	4.58	25		090	1.72	2.68			5.53	
	11.10	3.56		1.03	4.57	4.45	32		090	1.78	7.81			6.43	
	11.40	3.70		1.04	4.74	4.56	33		104	1.85	2.89			6.74	
	12.20	3.73		1.10	4.83	4.38	39		110	1.87	2.97			7.53	
	12 40	3.8/		1.13	4.94	4.37	-, 42		117	1.91	3.04			8.21	
	13.65	3.84		1.17	3.01	4.28	-, 45		123	1.42	3.09			8.98	
	19.00	3.75		1.18	4.93	4.18	76		/32	1.87	3.05			9.31	
	15,00	3.88		1. ZZ	3.10	4.18	<u>S</u> /		/7/	1.94	3.16			10.3	
	15.07	3./6		1.25	4.41	353	54			1.58	2.83			10.4	
	14.84	1.69		1.38	3.02	2.19	67			. 82	2.20				
	14.0	1.14		1.38	2.52	1.83	67		_	.57	1.95				
	14.8	. 6/		1.31	1.92	1.46	60			.30	1.61				
	14.2	.53		1.12	1.65	1.47	41			. 26	1.38				
	13.2	30		1.08	. 18	· /2	3/			15	. 83				
	12.0	43		.96	• 53	.55	25			22	. 74				
	11.5	52		. 92	. 44	. 46	25			26	. 70				
	10.8	58		. 42	.34	.37	23			29	.68				
	10.1	64		.92	.28	.30	23			32	.60				
	7.55	<u>//</u>		. 72	. 2/	. 23	23			35	.57				
	8.58	<u> </u>		1.01	. 23	. 22	30			39	.62				
	1.78	- 8/		1.03	.16	.15	32			44	.54				
	6.83	71		1.12	.15	<u>.14</u>	41			48	. 64				
	0,84	-1.08		1.23	.15	.12	52			54	• 69				
	4,66	-1.22		1.56	.14	.10	65			6/	.75				
L	7.5/	~. 53		. 83	.30	. 36	12			27	.57				

(2) Δu FOR $\Delta \sigma_3 = 0$

 $\Delta \sigma_{a} = \Delta \sigma_{c}$ $A = \frac{\Delta u - \Delta \sigma_{a}}{1 - \Delta \sigma_{a}}$

Δσ- Δσ

FOR EXTENSION TESTS

REMARKS: (4) q = 1/2 (Ga - Gi)

Fourth Cycle CONSOLIDATED - UNDRAINED TRIAXIAL TEST - DATA SUMMARY SHEET SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TEST NO-	CIU-	CYE-E	pg		V	V,% e	S,% V,c	c L, cm A,	cm ²		PRESHE	AR			DURING	SHEAR		
SOIL He	molda	H BB	°C	INI		26/20	98.3 80.9	7 8.00 10		ō. = <u>6</u>	00			CONTROL	LED STRA	N ST	RESS	_
PROJECT	Earth	Scien	ce	PR	ESHEAR	3/19/1	100 68	57.629	00		00		5 %	RATE	606	min/cm		
TESTED BY	W.P.M	BDATE 2/2	\$ 65	6 =	2.7	7	TYPE CELL	Georg	 >/~	= <u>6</u> .	00	. 3.0		DATH (Curli.	Com	ressie	
		Kaka		os Do r				'satro	nica	lle ca	M.S. +	6 60	hen land	:	V e	xtens,	04	
ALL SIRES	SES IN	0		PRE	SHEAR SIE	RESS HISIC)R Y	50110	pica	1 00		0_00	50710-			/		•
ELAPSED TIME	AXIAL STRAIN, %	(ā - ā) (i) (i	$\frac{\overline{r}_1 - \overline{\sigma}_3}{\overline{\sigma}_1 c}$	∂ ₽-		<u>م</u> / <i>ō</i> ۲	۵u ⁽²⁾	<u>au</u> (2) 	A ⁽³⁾	(4)	ą	σ _r	σα					
	528	- 23		58	.35	. 61	. /3			- 11	. 47		+	<u> </u>		+	+	1
	5.61	. 07		30	. 37	1.23	.08		1.14	.04	.34							l
	6.65	. 24		18	. 42	2.33	, 20		. 83	·12	.30							
	7.30	.30		14	.44	3.14	. 24		. 80	.15	. 29							4
	8.30	. 38		13	.5/	3.92	.25		.66	.19	. 32						+	ł
	7.10	. 78		13	. 6/	7.68	. 25		.01	. 24	- 31						<u> </u>	{
	103	.00		18	100	5.74	20		24		57		+			+		1
	11.5	1.06		20	1.26	6.30	. 18		.17	53	73					+	<u>+</u>	1
	12.4	1.34		27	1.61	5.98	. //		.082	.67	.94			<u> </u>	+	+		الدينية. المتحد
	13.1	1.60		34	1.94	5.72	.04		.035	. 80	1.14							
	13.7	1.99		44	2.43	5.53	06		030	1.00	1.44							
	14.9	2.32	••	51	2.83	555	13		256	1.16	1.67						<u> </u>	
ļ	16.1	2.73		<u>65</u>	3.38	5.21	27		100	1.3/	2.02							-
<u> </u>	100	2.76		18	3.12	7.17	40		135	1.48	2.26					+		-
	18.0	0.0F		17	3.03	7.03	41		/ 35	1.52	X. 31		-			+	+	1
															+	+		1
															+	+	<u> </u>	1
																		1
L																		
	<u> </u>													ļ	+		ļ	-
													+					-
																		-
																		1
		t																1
															1		<u> </u>	1
]
		ļ											<u> </u>			+	ļ	
	<u> </u>												ļ		+		<u> </u>	-
						┝───							+			+	<u> </u>	1
		<u> </u>											+		+	+	<u> </u>	1
				-						<u> </u>			1		+	+	t	1
() CORRECT	ED FOR	P.F.		(3) A	$= \frac{\Delta u - \Delta \sigma_r}{\Delta \sigma_r}$	FOR CON	PRESSION	TESTS	REMARKS	(4) -	. 1/-	1=	- =-)	•	- .		·	•
(2) ∆u FO	R ∆σ₃ ≃ o			А	$= \frac{\Delta U - \Delta \sigma_{e}}{\Delta \sigma_{r} - \Delta \sigma_{e}}$	FOR EXT	ENSION TE	STS		9	- /#	ر ~a	-12					

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TEST NO. CIU - CYC-E PIO	W, % e S, % V, cc L, cm A, cm ²	PRESHEAR	DURING SHEAR
SOIL Hemolded BBC	INITIAL 41.14298.3 80-68.00 10.00	$\overline{\sigma}_{1c} = 600$ $t_c =$	CONTROLLED STRAIN STRESS
PROJECT Earth Science	PRESHEAR 31.1 860 100 68.5 7.62 9.00	σ _{3c} = <u>6.00</u> P.P.R.= <u>96 %</u>	RATE 606 Min/cm
TESTED BY WP+NFB DATE 3/23 65	Gs= 2.77 TYPE CELL 60000	σ_{αc} <u>6.00</u> μ_B <u>3.00</u>	PATH Cyclic compression
ALL STRESSES IN Kgleme	PRESHEAR STRESS HISTORY 150 +10p. COM	5. to 6.00 kg/cm2	Y extension
		<i>U</i>	

ELAPSED TIME	AXIAL STRAIN, %	(ā - ōr)	$\frac{(\overline{\sigma}_1 - \overline{\sigma}_3)}{\overline{\sigma}_{10}}$	⊽۲	°Q.	ē	(2) Δu		A ⁽³⁾	(ک)	ą	$\overline{\sigma}_r$	σα				
	0	D		5.98	5.98	1.00	0			0	5.98		<u> </u>		 	+	4
	.01	.3/		5.68	5.99	1.06	.30		1.00	.15	5.83				 	+	1
	.03	.50		5.29	5.79	1.10	. 69		1.40	.25	5.54			-	 	1	1
	.09	1.95		4.76	5.71	1.20	1.22		. 063	.98	5.74				 		1
	.13	2.46		4.42	6.88	1.56	1.56		.64	1.23	5.65						1
	.17	2.92		401	6.93	1.73	1.97		. 68	1.46	5.47						1
	.30	318		3.66	6.84	1.87	231		. 73	1.59	5.25]
	.44	3.46		3.36	6.82	2.03	2.62		. 76	1.73	5.09						
	.52	362		3.17	6.79	2.14	2.81		. 78	1.81	4.98				_		
	. 78	373		2.92	665	2.28	3.06		. 82	1.87	4.79]=
	.97	3.82		2.76	658	2.39	3.22		. 84	1.91	4.67						1
	1.09	3.86		2.48	6.34	2.56	3.50		.91	193	4.31						
	1.50	3.85		2.38	6.23	2.62	3.60		.94	1.93	4.14						
	1.78	3.87		2.20	6.07	2.76	3.78		.97	1.94	4.17						
	1.90	3.87		223	610	2.74	3.75		1.00	1.94	4.04						
	1.97	3.79		2.17	5.96	2.75	3.81			1.90	3.99						
	1.99	3.55		2.21	5.76	2.61	3.77			1.78	3.88				 		
	1.98	324		2.26	5.50		3.72			1.62	3.60						
	1.95	137		2.41	4.78		3.57			1.19	3.56				 		
	1.92	2.07		2.52	4.59		346			1.04	3.33				 		
	1.83	1.26	ļ	2.70	5.96		3.28			.63	3.19				 		
	1.71	. 67		2.85	6.51		3.13			. 34	309				 		
	1.56	. 37		2.90	6.27		308	L		. 19	2.09				 		
	1.40	39		3.17	5.78		7.81			20	2.97				 		
	1.30	63		3.18	5.55		2.80			32	2.86				 		
	1.16	84		3.18	5.34		Z.80			42	2.76				 		_
L	1.02	-1.09		3.24	5.15		2.74			55	2.69				 		
	. 82	- 1.35		3.3/	4.96		2.61			68	2.63		ļ	_	 		
	.63	-1.55		3.38	4.83	L	2.60			78	2.60				 		1
	.51	-1.69		3.45	4.76	ļ	2.53			85	2.60				 		_
L	.18	-1.82		352	4.70		2.46			91	2.61		ļ		 	<u> </u>	
	17	-2.18		360	5.78		2.38		L	-1.69	2.51				 +	<u> </u>	_
ļ	32	-2.25		363	5.88		1.35			-1.13	7.50				 <u> </u>	<u> </u>	_
	74	-2.40		3.67	6.07		2.3/	ļ	L	-1.20	2.47	<u>.</u>	ļ		 	<u> </u>	
	-1.13	<i>- 2</i> . 37	L	5.68	6.05		2.30	1	L	- 1.28	~70		l	1	 		

() CORRECTED FOR ______

First Cycle

> (3) $A = \frac{\Delta U - \Delta \sigma_r}{\Delta \sigma_a - \Delta \sigma_r}$ FOR COMPRESSION TESTS

REMARKS: (+) = 1/2 (5 - 5)

(2) Δu FOR $\Delta \sigma_3 = 0$

 $A = \frac{\Delta u - \Delta \sigma_{d}}{\Delta \sigma_{r} - \Delta \sigma_{d}}$ FOR EXTENSION TESTS

First Cycle

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TEST NO CIU-CUC-E PIO SOIL NEMOLOCI BBC PROJECT Earth Science TESTED BY WPANFBDATE 3/23 65 PATH<u>Cyclic compression</u> extension ALL STRESSES IN Kylane

ELAPSED TIME	AXIAL STRAIN, %	(🕫 - 👼 (1)	$\frac{(\bar{\sigma}_{1} - \bar{\sigma}_{3})}{\bar{\sigma}_{1c}}$	⊽• −−	⊽م	≣ر∕ ⊽ر	22) م u	<u>au</u> a ic	A ⁽³⁾	q (4)	ą	σ _r	σ _a				
	-1.33	-2.52		3.72	6.24		2.26		-	-1.26	2.46				 	+	=
	-1.37	-2.11		3.43	4.32		2.55			-1.06	2.37				t	<u> </u>	-
	-1.30	.85		2.49	4.64		349			UR	2.06				 1	<u> </u>	-
											2.00				 		-
																	-
															 <u> </u>		-
															 	<u> </u>	-
										1					 t		1
															 		-
															 <u> </u>	+	- -
				· · · · · · · · ·											 		-0
													·		 		-*
									-						 <u> </u>	+	-
										h					 <u> </u>	<u>+</u>	-
									· · · · · · · · · · · · · · · · · · ·	<u>+</u>					 <u> </u>	+	-
	T														 	<u> </u>	4
															 		-
	-														 <u>+</u>		-1
															 	┼───	-
										t					 	<u> </u>	-
															 <u> </u>	•	-
															 		-
															 		-
															 		-
															 <u> </u>		-
															 <u> </u>		-
								-							 		-
															 		-
															 		-
															 		-
															 		-
															 		-
															 []		1
															 	<u> </u>	1
										-					-		-
	TED FOR			(3) A	$= \frac{\Delta u - \Delta \sigma_r}{\Delta \sigma_a - \Delta \sigma_r}$ $\Delta u - \Delta \sigma_r$	FOR COM	IPRESSION 1	TESTS I	REMARKS	(4) q	• 1/2	(5	5.)	<u> </u>	 		-
	π Δσ ₃ = 0			А	Δσ- Δσ	FOR EXT	ENSION TE	STS									

PROJECT Earth Science TESTED BY WHANTED DATE 1/23 65 G

Second Cycle	CONSOLIDA	TED - ι	INDRAI	NED	TRIAXIAL	_ TEST - DATA	SUMMARY SH	EET
	L MECHANICS I	ABORATO	RY, DEP1	OF C	IVIL ENGINEE	RING, MASSACHUSETTS	S INSTITUTE OF TEC	CHNOLOGY
TEST NO. CIU-CYC-E PIO		W,% e	s,%	V, cc	L, cm A, cm ²	PRE	SHEAR	DURING SHEAR
SOIL Hemolded BBC	INITIAL	42.11.1	92 98.3	80.6	8.00 10.1	σ _{ic} = <u>5.98</u>	t _c =	CONTROLLED STRAIN STRESS
PROJECT Earth Science	PRESHEAR	31.1 .8	60 100	68.5	662 9.00	<u> </u>	P.P.R.= 96 %	RATE 606 mig/cm
TESTED BY WIPANED DATE 2/23 65	G _s =	77	TYPE	CELL	Geonor	- <u>σ_{ac} - <u>5.98</u></u>	u ₈ = <u>3.00</u>	PATH Cyclic compression
ALL STRESSES IN	PRESHEAR	STRESS HI	STORY_	507	tro pic	cons. to	6.00 kg/c=	e Verteusion

ELAPSED TIME	AXIAL STRAIN, %	(ā, - ā, (1)	$\frac{(\vec{\sigma_1} - \vec{\sigma_3})}{\vec{\sigma_{1c}}}$	≅₩	⊽ھ	تد ^ر قر	(2) م	<u>au</u> <u></u> (2)	A ⁽³⁾	(4)	ą	σ¯ŗ	₹a					
	-1.23	56		2.30	1.74		3.68			28	2.02				1			1
	-1.00	.08		1.78	1.86	1.05	.10		1.03	.04	1.82			-				1
	67	.57		1.46	2.03	1.39	. 42		.74	. 29	1.75							1
	21	1.03		1.25	2.28	1.83	. 63		.61	.52	1.82							
	.03	1.24		1.20	7.44	2.03	. 68		.51	.62	1.85							
	. 2/	1.40		1.15	2.55	2.22	.73		.50	.70	1.96							
	.37	1.72		1.10	2.82	2.56	.78		.50	. 86	2.16							
	. 68	2.13		1.09	3.22	2.96	. 79	<u> </u>	. 37	1.07	2.57							
	1.81	7.81		1.16	3.47	3.42	.72		.26	1.41	2.70							
	2.34	3.05		1.17	4.22	3.61	• 7/		.23	1.53	2.80					_		
	3.18	3.11		1.21	4.38	3.61	.67		. 2/	1.59	2.89							
	4.68	3.34		1.19	4.58	3.85	.69		.20	1.70	3.02							
	3.15	3.43		1.30	4.73	3.63	.58		.17	1.72	3.09							
	6.75	3.58		1.30	4.88	3.75	.58		. 16	1.79	3.08							
	7.17	3.6/		1.28	4.89	3.82	. 60		.17	1.80	2.88							
	1.16	2.83		1.46	4.29	2.96	. 42		.15	1.42	2.90							
	6.96	1.85		1.97	3.32		. 41			1.43	1.90	. <u> </u>						
	6.28	.14		1.40	Z. 14		. 48			. 37	1.77							
	5.12	06		1.25	1.18	ļ	. 63			03	1.22							
	4.20	66		1.24	.38		. 64			33	.7/							
	3.46	79		1.21	.48		. 61			40	. 81							
	7.53	- 94		1.34	.40		.54			47	. 87							
	1. 10	-1.08		1.48	.40		. 40			54	. 44							_
																		_
																		_
																_		_
						<u> </u>				L								_
	· · · · ·															1	<u> </u>	
		l					· - · ·										ļ	_
																		_
	· · · · · ·	<u> </u>															<u> </u>	_
		<u> </u>													<u> </u>		+	4
										<u> </u>				l			+	4
						L												
(I) CORRECT	TED FOR	P.F.		_ (3) A	$= \frac{\Delta u - \Delta \sigma_r}{\Delta \sigma_e - \Delta \sigma_r}$	FOR CON	IPRESSION	TESTS	REMARKS	(4) =	1/2 (3	Ja -0	5~)					
(2) ∆u FO	R ∆ σ ₃ ≖ ο			А	$= \frac{\Delta U - \Delta \sigma_{a}}{\Delta \sigma_{r} - \Delta \sigma_{a}}$	FOR EXT	ENSION TE	STS										

Third Cycle so TEST NO CTU-CyC-E PIO SOIL REMOLETED BBC PROJECT Earth Science CONSOLIDATED - UNDRAINED TRIAXIAL TEST - DATA SUMMARY SHEET

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

W, % e S, % V, cc L, cm A, cm² PRESHEAR DURING SHEAR INITIAL 421 1.192 98.380.6 8.00 CONTROLLED STRAIN <u></u>STRESS_ RATE <u>606 Min/Cm</u> PRESHEAR 31.1 .860 100 68.5 7.62 9.00 PATH Cyclic compression extension G.= 2.77

ELAPSED TIME	AXIAL STRAIN, %	(قم- مر) (۱)	$\frac{(\bar{\sigma}_1 - \bar{\sigma}_3)}{\bar{\sigma}_{1C}}$	σ 	₿ B	ā ^{/ਰ} ែ	(2) کل	<u><u>Au</u> (2) <u><u>a</u>(2)</u></u>	A ⁽³⁾	q	ą	σ _r	σα	E.		
	1.76	40		.94	.54		.94			20	.74				 	
	2.66	. 34		. 47	.81	1.73	. 24		.71	.17	.64			. 36		
	3.40	. 46		.46	.92	2.00	. 23		.50	.23	. 67			1.20		
	423	.98		.40	1.38	3.45	.31		. 32	.49	.89			2.03		
	5.23	1.45		. 49	1.94	3.97	. 22		.15	. 73	1.22			308		í l
	6.17	1.97		.58	2.55	4.40	.13		. 07	.99	1.57			3.97		
ļ	7.95	2.40		.67	307	4.58	.04		.02	1.20	1.87			4.85		
	7.96	2.79		.79	3.58	4.54	08		03	1.39	2.18			5.76		
	8.87	3.06		.87	3.93	4.52	16		95	1.53	2.40			6.67		
ļ	9.75	3.13		.97	4.10	4.22	26		08	1.57	2.54			7.55		
ļ	10.8	3.39		1.04	4.43	4.26	33		10	1.70	2.74			8.62		
	11.3	3.55		1.06	4.61	4.35	35		10	1.78	2.84			9.12		•
	121	3.49		1.11	4.60	4.14	40		11	1.75	2.86			9.92		
	131	3.55		1.16	4.71	4.06	45		13	1.78	2.93			10.9		
<u> </u>	13.1	1.96		1.20	4.16	3.46	49		16	1.48	2.68			10.9		
	12.9	1.51		1.34	7.85		.76			2.10	2.10					
	123	.13		1.28	201		•37			1.65	1.65				 	
ļ	118	• 43		1.22	1.65		. 22			1.44	1.44					
	11.8	//		1.30	1.19		06			1.25	1.25					
	11.2	30		1.13	.83		15			.98	.98				 	
	10.5	44		.78	.34		22			. 76	. 76			L	 	
<u> </u>	7.86	77		.43	. 44		25			. 69	. 69				 	
	7.10	5/		. 73	.36		27			.65	.65					
	8.11	65		. 43	.28		33			.61	.61				 	
	6.66	- 91		104	. 20		41			.65	.65					
	2:4	/		1.08	.//		- 46			.65	.63					
	360	-1.01		1.25			5/			. 13	· /S				 	
	760	-1.16		1.30	.//		38			. 12	.12			<u> </u>	 L	
	2.06	-1.26	<u> </u>	1.01	. 23		-,63			. 08	. 88				 	
	3.00	00		.00	.75		17			. 67	. 67				 ł	
	<u> </u>														 ┝───┤	
	<u> </u>														 <u>├</u> ───┤	
L			L,	····	I				L		I			<u>ا</u> ا	 LI	

() CORRECTED FOR +. F.

TESTED BY W.P. MB DATE 2/2365

ALL STRESSES IN My/cmc

(3) A =

Α =

FOR COMPRESSION TESTS REMARKS:

Fourth Cycle CONSOLIDATED - UNDRAINED TRIAXIAL TEST - DATA SUMMARY SHEET SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TEST NO CIU-CYC-E PIO SOIL MEMOLAND BBC

 $\frac{W, \% e s, \% V, cc L, cm A, cm^{2}}{soil \underline{Mcmo}/\underline{Acd} BBC}$ $\frac{W, \% e s, \% V, cc L, cm A, cm^{2}}{int ial \underline{4.1}/\underline{1/2}298.380.6800/0.1}$ $\frac{W, \% e s, \% V, cc L, cm A, cm^{2}}{int ial \underline{4.1}/\underline{1/2}298.380.6800/0.1}$ $\frac{W, \% e s, \% V, cc L, cm A, cm^{2}}{int ial \underline{4.1}/\underline{1/2}298.380.6800/0.1}$ $\frac{W, \% e s, \% V, cc L, cm A, cm^{2}}{int ial \underline{4.1}/\underline{1/2}298.380.6800/0.1}$ $\frac{W, \% e s, \% V, cc L, cm A, cm^{2}}{int ial \underline{4.1}/\underline{1/2}298.380.6800/0.1}$ $\frac{W, \% e s, \% V, cc L, cm A, cm^{2}}{int ial \underline{4.1}/\underline{1/2}298.380.6800/0.1}$ $\frac{W, \% e s, \% V, cc L, cm A, cm^{2}}{int ial \underline{4.1}/\underline{1/2}298.380.6800/0.1}$ $\frac{W, \% e s, \% V, cc L, cm A, cm^{2}}{int ial \underline{4.1}/\underline{1/2}298.380.6800/0.1}$ $\frac{W, \% e s, \% V, cc L, cm A, cm^{2}}{int ial \underline{4.1}/\underline{1/2}298.380.6800/0.1}$ $\frac{W, \% e s, \% V, cc L, cm A, cm^{2}}{int ial \underline{4.1}/\underline{1/2}298.380.6800/0.1}$ $\frac{W, \% e s, \% V, cc L, cm A, cm^{2}}{int ial \underline{4.1}/\underline{1/2}298.380.6800/0.1}$ $\frac{W, \% e s, \% V, cc L, cm A, cm^{2}}{int ial \underline{4.1}/\underline{1/2}298.380.6800/0.1}$ $\frac{W, \% e s, \% V, cc L, cm A, cm^{2}}{int ial \underline{4.1}/\underline{1/2}298.380.6800/0.1}$ $\frac{W, \% e s, \% V, cc L, cm A, cm^{2}}{int ial \underline{4.1}/\underline{1/2}298.380.6800/0.1}$ $\frac{W, \% e s, \% V, cc L, cm A, cm^{2}}{int ial \underline{4.1}/\underline{1/2}298.380.6800/0.1}$ $\frac{W, \% e s, \% V, cc L, cm A, cm^{2}}{int ial \underline{4.1}/\underline{1/2}298.380.6800/0.1}$ $\frac{W, \% e s, \% V, cc L, cm A, cm^{2}}{int ial \underline{4.1}/\underline{1/2}298.380.6800/0.1}$ $\frac{W, \% e s, \% V, cc L, cm A, cm^{2}}{int ial \underline{4.1}/\underline{1/2}298.380.6800/0.1}$ $\frac{W, \% e s, \% V, cc L, cm A, cm^{2}}{int ial \underline{4.1}/\underline{1/2}298.380.6800/0.1}$ $\frac{W, \% e s, \% V, cc L, cm A, cm^{2}}{int ial \underline{4.1}/\underline{1/2}298.380.6800/0.1}$ $\frac{W, \% e s, \% V, cc L, cm A, cm^{2}}{int ial \underline{4.1}/\underline{1/2}298.380.6800/0.1}$ $\frac{W, \% e s, \% V, cc L, cm A, cm^{2}}{int ial \underline{4.1}/\underline{1/2}298.380.6800/0.1}$ $\frac{W, \% e s, \% V, cc L, cm A, cm^{2}}{int ial \underline{4.1}/\underline{1/2}298.380.6800/0.1}$ $\frac{W, \% e s, \% V, cc L, cm A, cm^{2}}{int ial \underline{4.1}/\underline{1/2}298.380.6800/0.1}$ $\frac{W, \% e s, \% V, cc L, cm A, cm^{2}}{int ial \underline{4.1}/\underline{1/2}298.380.6800/0.1}$ $\frac{W, \% e s, \% V, cc L, cm A, c$

ELAPSED TIME	AXIAL STRAIN, %	(ਰੁੱਖ - ਰੱਜ	$\frac{(\bar{\sigma}_1 - \bar{\sigma}_3)}{\bar{\sigma}_{1C}}$	⊽⊢	₹a	$\overline{\sigma}_1 / \overline{\sigma}_3$	۵u ⁽²⁾	<u>Au</u> (2) o₁c	A (3)	(<i>4</i>)	, ą	ōŗ	σα]
	3.15	~.23		. 67	0.44					12	.56					1
	3.39	. 01		.46	.47	1.0Z	. 01		1.00	.01	.47		1			1
	4.42	.20		.32	.52	1.62	. 15		. 75	.10	. 42					1
L	5.14	.27		.18	.45	2.50	.29		1.02	, 135	.32					1
	6.25	.39		.16	22,	3.44	. 31		. 80	,20	.36					7
	7.03	.47		.17	. 64	3.76	.30		.64	.24	. 41]
	7.88	.59		.18	. 77	4.28	. 29		.49	.30	. 48					7
	853	. 7/		. 21	.92	4.38	. 26		, 37	. 36	.57					
	9.49	.93		.27	1.20	4.45	. 20		. 22	.47	.74					
	10.4	1.25		.32	1.57	4.92	.15		.12	. 63	.95					
	11.4	1.55		. 41	1.96	4.79	.06		. 04	.78	1.18					Ø
	12.2	1.86		. 47	2.33	4.96	0		0	,93	1.40					7
	13.4	2.33		.6/	2.94	4.83	14		06	1.17	1.78					
L	14.3	2.60		.70	3.30	4.72	23		09	1.30	2.00	•				
	153	2.84		.79	3.63	4.60	32		11	1.42	2.21					7
	16.1	2.94		. 86	3.80	4.43	39		13	1.47	2.33					1
	16.3	2.98		. 86	384	447	39		13	1.49	2.35]
																7
											_					1
																1
																7
																7
																1
																1
		_														1
																7
																1
														_	-	1
																1
																7
																1
															· · · ·	1
																1
																1
	ED FOR	P.F.		. (3) A	$= \frac{\Delta u - \Delta \sigma_r}{\Delta \sigma_a - \Delta \sigma_r}$ $= \frac{\Delta u - \Delta \sigma_a}{\Delta \sigma_a - \Delta \sigma_a}$	FOR CON		TESTS	REMARKS	(4) -	1/2 (52	G r)			-

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TEST NO.	CHO - C	CIOU.	- PII		5	N. % P	5.% V		cm ²		PRESHE	AR			DURING S	HFAR		
SOU Her	nolda	1 BB	30	-		179/101	100 80	7 8 00 1	07	- 6.	04	+ -					DECS	
	Eath	Sain					1. 7	C 7 24		- 2	- <u>-</u>	'c ⁻	9 ~		AL MI	* / 311	1233	-
PROJECT	arring	- 1	Va -	- <u>P</u>		<u>5.3.9/8</u> 7	100 10	51.4 9	82	σ _{3c} = 2 .0		P.P.R.=	<u> %</u>	RATE 🚅		<u>/cm</u> /		- 1
TESTED BY	WP1NP		1965	- G _s	=//		TYPE CEL	<u>. С. Н.</u>		σ _{ac} [₌] _6.	07	u _B =C	0	PATH 6	<u>h1000</u>	, MCCM	wound	<u>4</u> %e
ALL STRES	SES IN	- 71	1cm ²	PR	ESHEAR ST	RESS HIST	DRY Hn.	sotro	pic ca	ins to	0 6.00	teg/e = 1	to = 0.	5	- com	P12.551	°C4	_
	T	,		T	r	T	<u></u>	(2)	F		F		L		T	T		٦
TIME	AXIAL	$(\overline{\sigma}_1 - \overline{\sigma}_3)^{(1)}$	$\frac{(\bar{\sigma}_1 - \bar{\sigma}_3)}{\bar{\sigma}_2}$		σι	$\overline{\sigma_1} / \overline{\sigma_3}$	<u>م</u> ں ⁽²⁾		A (3)	q	p	σ _r	$\overline{\sigma}_{a}$					
		204		2.	1	2-1	~			102	11co				+		<u></u>	4
	- 011	207		3.00	6.07	1,0			717	1.31	7.52					<u> </u>	───	-
	- 071	221	+	216	30	174	- 11	+	228	117	1/ 22				+	}	<u>+</u>	-
	- 04	147		3.70	5.30	120	- 27	+	2.52	910	475	···			+	+		-
	- 078	1.54		328	492	146	- 38		252	. 77	415				+			-
	-17	1.18		343	421	1.34	- 43		221	59	402				+			-
	- 18	.765		3.47	4.24	1.22	- 47		.207	38	3.65							-
	- 25	.39		2.40	3.79	1.12	40		.103	195	3.60	†		1	1	<u>+</u>		-
	38	. 002	_	332	3.32	1.00	32		105	.001	3.32							1
															1			
		Dra	vinaa	e lin	cs a	ocner	an	1 3	mp	0 00	insc	lida	ted	700	5.0	25/5	the c]-1
			\leq] •
			Ne	r an	<i>a •</i>	9.8/ c	m - /	Kengt	- 7.4	zem	3-1	00 %0	e :	1.033	\$			
		L	· · ·					\checkmark										
	0	0		.25	. 25	1.00	0		-	0	. 25		ļ	L			L	
	0	.0/		.23	.24	1.04	.02		2.00	.005	.23					<u> </u>		_
	. 04			.17	. 28	1.65	.08		.727	.055	. 22		l		<u></u>		ļ	4
	. 08	. 20		./5	135	2.33	.10		1.500	./0	.25		ļ				ļ	_
	.19	.3/		. 07	. 38	5.43	.18		. 582	. 155	. 22				<u> </u>		<u> </u>	_
	.34	. 46		.05	. 5/	1021	. 20	-	. 435	.23	.29		ł		<u> </u>	<u> </u>	<u> </u>	4
	.4/	.33		.04	.59	14.8	10		. 37/	.265	. 32				+		<u> </u>	-
	1.63	.61		. 06	.68	11.3	.17		.301	.3/	- 38				+	<u> </u>	<u> </u>	4
	10	· 65		.00	. //	1.8	.17		274	343	· 4/		<u></u>		+	<u> </u>		-
	17/	. 00		.01	. 18	124	.18		.257	. 333	. 75				╆────			-
	1 27	12		. 01	· 04	Â.	1.18	-	159	44	.50		+		┥────	╀────	<u> </u>	-
	100	au		10	1.04	INK	15		140	.47	57				+		<u> </u>	-
	1.61	102	+	14	117	075	.11		107	62	. 44							-
	1.00	1.17		./7	1.20	225	.02		.07/	.57	74			1	+		<u> </u>	-
	2.14	1.22		.19	1.41	7.42	.04		.049	.6/	.80				+		<u> </u>	1
	2.54	1.34	1	. 25	1.59	6.34	0		0	.67	.92		1	1	1	1	<u> </u>	1
	2.74	1.40	+	27	1.67	6.19	07	-	014	.70	.97					<u>+</u>		-1
	2.92	1.45		.28	1. 73	6.18	03		OZ/	.73	1.01		T		<u> </u>			1
	3.12	1.50		.29	1.79	6.17	04		- 025	.75	1.04				1			1
	3.66	1.58	1	. 36	1.94	5.39	11		070	.79	1.15				1	1		٦

(i) CORRECTED FOR **P.F. J. F.S.** (3) $A = \frac{\Delta U - \Delta \sigma_r}{\Delta \sigma_0 - \Delta \sigma_r}$

FOR COMPRESSION TESTS REMARKS

(2) Δu FOR $\Delta \sigma_3 = 0$

FOR EXTENSION TESTS

SOIL MECHANICS LABORATORY, DEPT OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Sol dismo letter (336	TEST NO.	CHO-C	100	PIZ			W,% e	S,% V,	cc L, cm A,	cm ²	_	PRESHE	AR			DURING	SHEAR	_	
PROJECT Learth Services PROJECT Learth Services TESTION MP21 MP3 INTO INTEREST HIS MADE CILL CILL BR. 300 PRA. 91 B. INTE 606 MP1/200 RESTION MP21 MP3 INTO INTEREST HIS MADE CILL CILL BR. 500 PRA. 91 B. INTE 606 MP1/200 PREMIERS INTEREST HIS MADE CILL CILL BR. 500 PRA. 91 B. INTE 606 MP1/200 PREMIERS INTEREST HIS MADE CILL CILL BR. 500 PRA. 91 B. INTE 606 MP1/200 PREMIERS INTEREST HIS MADE CILL CILL BR. 500 PRA. 91 B. INTE 606 MP1/200 PREMIERS INTEREST HIS ON FINITE SOLUTION FINITE	SOIL He	molda	ed E	BC	- 11		12.61.16	99 80	58.00 10	2.1	σ ₀ =	99	te =		CONTROL	LED STRA		RESS	
	PROJECT	Earth	Seid		P	RESHEAR	4.5-416	100 71.	12 7.16 9.	.93	σ _{3c} = 3 .	00	P.P.R.=	8 %	RATE	606	min/cm		_
ALL STRESSES IN	TESTED BY	KPIN	EB DATE	3/9 65	- G _s	<u> </u>	7	TYPE CEL	L C.H.		σ _{ac} = <u></u> .	99	u _n = <u>3.6</u>	0	РАТН 🕰	nload	ling, rec	cand,	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ALL STRES	SES IN	trgle	- my 2	- PR	ESHEAR ST	RESS HIST	ORY Am	sofr.	<u>L095</u>	to	Fre - 6.	o tople	at Ma	:0.5		· Appre	551 64	<u>·</u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ELAPSED	AXIAL	(=)('	$(\bar{\sigma}_1 - \bar{\sigma}_3)$	_			(2)	۵u ⁽²⁾	. (3)						1		1	7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TIME	STRAIN, %	$(\sigma_1 - \sigma_3)$	σ _{ic}	σ3	σ	$\overline{\sigma_1}/\overline{\sigma_3}$		σ _{ic}	A	q	ą	σ _r	σ _a					
- 003 187 - 003 264 - 003 264 - 037 265 - 046 - 046 - 056 - 05		0	2.99		3.00	5.99	2.00	6	1		1.50	4.50							
- 012 264 3.11 3.75 1.85 -11 . 314 1.32 4.43 - 024 1.80 3.34 5.16 1.54 -36 3.01 1.13 4.36 - 024 1.80 3.34 5.16 1.55 -31 1.13 4.36 - 024 1.80 3.34 5.16 1.45 -36 3.01 1.13 4.36 - 024 1.80 3.34 5.16 1.45 -36 3.01 1.13 4.36 - 024 1.80 3.34 5.16 1.45 -36 - 125 91 3.34 5.16 1.45 -36 - 125 91 3.34 5.17 1.27 -42 3.24 4.35 8.8 - 125 91 3.34 5.99 1.12 -58 1.60 3.3 5.67 - 1487 003 3.2.6 3.2.6 3.2.6 -2.6 1.60 3.3 5.67 - 487 003 3.2.6 3.2.6 3.2.6 -2.6 1.60 3.3 5.67 - 487 003 3.2.6 3.2.6 3.2.6 -2.6 1.60 3.5 5.79 - 1487 003 3.2.6 3.2.6 3.2.6 -2.6 1.60 1.50 1.60 1.50 1.60 1.50 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.6		003	7.89		3.06	5.95	1.95	06		. 600	1.45	4.51				<u> </u>			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		014	2.64		3.11	5.75	1.85	//		. 314	1.32	4.43				L			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		037	2.25		3.23	5.78	1.70	23		.311	1.13	4.36	<u> </u>			<u> </u>			4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0/7	1.80		3.36	3.16	1.55	36		<u>. 302</u>	.40	4.26							_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		//6	1.76	+	3.40	4.86	1.45	40		. 261	. 13	4.13						<u> </u>	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		//3		+	3.7×	7.33	1.61	72		. 202	. 46	3.88						<u> </u>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		E. 2/9	<u>.61</u>	+	3.36	3.77	1.18	- 38		.760	.3/	3.67				+			_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		TOI	./96	+	2.3/	3.71	1.05	3/		, 110	.08	3.37	·					<u> </u>	4-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		401	005	+	3.28	2.48		8		.047	. 002	3.28				<u> </u>		+	-1.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			17.	+							<u> </u>			1-	1	+	- tent		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Train	rage 1	1 MCS	өрсн	ed a	and .	samp	PC CC	27.5.	150710	pico	119 7	to Oz	• a :	7517/~	م	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Mart	Varia	00	il .	- 1/-	1	-11 -	7.7.			18	1				+	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			rea	arca	7.7	Tem	NE	K /CM	779 1	. 1 / 0	r 9	<u> </u>	78	10.	39.5	1			_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0	-		75	75	100							+		<u> </u>			_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.06	0	+	- 73	. 73	1.00	0			0			+				+	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		13	34			. 14	112	20		CHO	17	. 17				+		+	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		203	1.57		.55	100	712	. 20		1/22	11	1.12		+	+	<u> </u>		+	\neg
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		219	. 49		1/1	112	711	. 27		141	. 27	. 80				 	_	+	\neg
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		230	79		127	171	7.0	23		10	14	. 18						+	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $. 4.9	1.15		111	124	200	- 74	+	1/20	112	· 6A		+		<u> </u>	-+		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 470	93	+	17	121	2 27	137		. 900	173	· 87		<u> </u>		<u> </u>		<u> </u>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		557	90	+	1/2	1.3	270	32	+	2/7	10	.01					_ <u></u>	+	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		L & & & & & & & & & & & & & & & & & & &	1.13	+	· +3 Uz	1.51	3.20	82		1.311	. 77	.7%				<u> </u>			_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		\$ 27	125		47	110	201	27		- 110	.3/	1.00			+			<u> </u>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		aL0	1 211		110	1 73	207	- 34	+	. 270	.03	1.00						+	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		111	ite	+	. 75	101	2.71	- 30	1	111	. 61	1.02		ļ	+			+	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1.20	1.75	-	.3/	211	2.57	1.27	+	120	12	1.27		+		 		+	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		127	110	+	.30	125	200	10	<u> </u>]	107	· ou	1.32				<u> </u>		<u> </u>	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		177	102	+	.31	245	200	17	┼───┤	071	107	1.71				+	+	+	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>	201	1.03	+	10	201	2:73	1.13	+	.011	· Th	1.55		<u> </u>		<u> </u>	-+		_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		224	207	+	-67	171	277	1.11		.037	175	1.38			+	<u> </u>	<u> </u>	+	4
$(1) CORRECTED FOR P.F. F.S. (3) A = \frac{\Delta U - \Delta G_{1}}{\Delta G_{0}^{-} \Delta G_{1}} FOR COMPRESSION TESTS REMARKS:$		30	207	+	- 13	700	3.01	.02	┼	010	1.01	11/1-		<u> </u>		<u> </u>		+	4
(i) CORRECTED FOR <u>P.F. g.F.S.</u> (3) $A = \frac{\Delta u - \Delta \sigma_r}{\Delta \sigma_r - \Delta \sigma_r}$ FOR COMPRESSION TESTS REMARKS:		277	211		. 13	707	2.070	- 1	┼───┤	. 007	1.07	1.07				 			
(i) CORRECTED FOR $HF.$ (i) $A = \frac{\Delta u - \Delta \sigma_r}{\Delta \sigma_0 - \Delta \sigma_r}$ FOR COMPRESSION TESTS REMARKS:	L	<u> < · / /</u>			, 10	1 2.2	2.18	0/	I	003	1.00	1.82	L			L		L	
$\Delta u = \Delta U^{-} \Delta U^{-} \Delta U^{-} \Delta U^{-} = 0$	(I) CORREC	TED FOR	P.F. 🛊	F.S.	(3) A	$= \frac{\Delta u - \Delta \sigma_r}{\Delta \sigma - \Delta \sigma}$	FOR CON	PRESSION	TESTS	REMARKS									
	(2) A EO					_ <u></u>			-										

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

(2) Δu FOR Δσ₃ = 0

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TEST NO	CNO-	CIOU	- P13			V,% e	S,% V,c	c L, cm A,	cm ²		PRESHE	AR			DURING S	HEAR		
SOIL	molda	d B.	BC			2.8 1.201	98.880.	2 8.00 10	2.03	<u>.</u> 5	49	t_ =		CONTROL	LED STRAI	N K ST	RESS	
PROJECT	Earth	Seie	nce	PF		4.0.942	100 70.	77.05/0	02	σ. = 3 .	00	с — РРВ = 98	7 %	RATE	000	6 in/mi	• •••	-
TESTED BY	WP+ NF		3/12 65	- G	. 2.	77	TYPE CELI	C. H.		ک	49	3.0	0		uloadi	49.00		-
ALL STRES	SES IN	hajc.	n E	PRE	SHEAR ST	RESS HIST		sotr. c	ons.	to 6.0	skaler"	. 5.	KEO	.5	Com	ALLIS		-
		4			I I I I I I I I I I I I I I I I I I I													-
ELAPSED	AXIAL	$(\bar{\sigma}_1 - \bar{\sigma}_3)^{(1)}$	$\frac{(\bar{\sigma}_1 - \bar{\sigma}_3)}{\bar{\sigma}}$	$\overline{\sigma}_3$	σ ₁	ਰ / ਰੋ,	(2) Δu	<u><u>Au</u> (2)</u>	A (3)	q	ā	σ _r	<u>σ</u>]
	31 KAIN, 78	110	010	2	<u>rua</u>	1.07				120	1/20	·			+	+	╞────	4
	0	213		312	525	168	- 12		. 333	107	4.13				<u>+</u>		+	-
	- 007	1.79		3.20	4.99	1.56	20		. 28L	.90	4.10							-
	039	1.26		3.36	4.62	1.38	36		. 293	. 63	3.99				_			1
	088	. 82		3.44	4.36	1.27	44		.263	. 41	385							_
	166	· 38		3.46	3.84	1.11	46		. 218	.19	365		·			<u> </u>	<u> </u>	-
	- 33	0		3.70	3.73	1.00	-, 22		· 175	0	7 77					+	<u> </u>	-
		0		2.40	<u> </u>	7.00			, (/00		A V					+	1	-
		Dra	image	line	ope	ned	Gua	san	ple .	COMS	1.50	trop	icall	4 70	Ge ·	1.50	4/	៍ដ
									<u> </u>				1					1
		Ŋe	u an	<i>cq</i> •	9.90	6 04		7.15	cn,	er	957	w:	358	<u> 6/0 .</u>				_
	D	0		1.50	1.50	100	0			0	1.50						+	-
	0	.178		1.48	1.66	1.12	. 02		.112	.089	1.57					+	+	-
	. 607	.335		1.42	1.75	1.23	.08		. 239	.168	1.59							
	.032	. 593		1.40	1.99	1.42	.10		. 168	.297	1.70							
	.068	. 820		1.33	7.15	1.62	.17		. 207	. 410	1.74						<u></u>	4
	102	1.16		1.18	2.34	1.78	. 3%		225	12	1.16							-
	279	1.57		105	256	248	47		.307	- 63	1795			<u>† </u>	+	+		-
	. 405	1.66	·	97	2.63	2.71	.53		. 3/6	. 83	1.80		†					1
	. 558	2.02		.96	2.98	3.10	.54		. 268	1.01	1.97					1		1
	. 785	2.06		1.00	3.03	303	.50		. 243	1.03	2.015							
	1.00	2.44		1.03	3.47	3.37	.47		.193	1.22	2.25				ļ	<u> </u>		_
	1.29	2.60		1.08	3.68	3.41	. 42		.162	1.30	2.38					+	÷	-
	196	2.65		1.11	376	3.31	- 37		147	1225	2625							
	215	2.69	<u> </u>	1.11	3.80	3.42	.39		145	1.920	2.455			 			<u> </u>	-
	228	2.71		1.11	3.82	3.44	.39		144	1.355	2.465]
	2.55	2.73		1.11	3.84	3.46	.39		.143	1.365	2.475							
	3.37	2.76		1.10	3.86	3.51	.40		.145	1.39	2.48						ļ	4
	5.76	275		1.08	5.84	2.55	· 47		17/	1.38	7.46					+	<u> </u>	-
<u> </u>	5.76	272	<u> </u>	1.0/	3.72	3.69	· 1/4		100	1 71	227		<u> </u>	<u> </u>		+	<u>↓</u>	-
		<u> </u>	DE		Δu-Δσ.					- <u> </u>	1.3/		L	I	-L	<u> </u>	<u> </u>	_
(I) CORREC	TED FOR 🖌		<u> </u>	(3) A	$= \frac{1}{\Delta \sigma_{\rm o} - \Delta \sigma_{\rm r}}$	FOR CON	PRESSION	TESTS	REMARKS									

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

$\begin{vmatrix} AXIAL \\ STRAIN, \% \end{vmatrix} (\overline{\sigma}_1 - \overline{\sigma}_3)$	$\stackrel{(1)}{=} \frac{(\bar{\sigma}_1 - \bar{\sigma}_3)}{\bar{\sigma}_{1c}}$	$\overline{\sigma}_{3}$	$\overline{\sigma}_{i}$	$\vec{\sigma_1} / \vec{\sigma_3}$	∆u ⁽²⁾	<u>au</u> <u></u> <u></u>	A ⁽³⁾	q	ą	σ _r	$\overline{\sigma}_a$				
6.35 2.70		99	369	3.76	.51		1.89	135	2.74		+	+	<u> </u>		<u> </u>
7.15 2.62		.99	3.61	3.45	.51		195	131	2.20						
8.01 2.59	7	.98	3.57	3.64	.52		.201	1.295	2.375						
8.83 7.58	2	.96	3.54	368	.54		210	1.29	2.25						
9.41 7.58	?	. 95	3.53	3.72	.55		. 213	1.29	2.24						
10.37 2.53		. 95	3.50	3.69	.55		.216	1.275	2.225						
11.50 2.49	2	.95	3.44	3.62	.55		. 22/	1.245	2.195						
12.42 2.4		.97	3.39	3.68	.58		.235	1.235	2.155				ļ		
13.28 2.46	5	. 92	3.38	3.68	.58		. 236	1.23	2.15						
14.14 2.43		. 91	3.34	3.67	.57		. 245	1. 215	2.125						
15.09 2.36		. 91	3.27	3.60	.37		, 250	1.18	2.09						Ļ
<u>+</u>															ļ
+															
															L
+											┼				
<u>+</u>													<u> </u>		
+															<u> </u>
											<u> </u>				
															<u> </u>
†										· · · · · · · · · · · · · · · · · · ·					
+															L
<u> </u>		······													Ļ
	_ I I										L				L
red for F.S. # R Δσ ₃ = 0		P.F.	(3) A	(3) $A = \frac{\Delta U - \Delta G_r}{\Delta G_r - \Delta G_r}$ $A = \frac{\Delta U - \Delta G_r}{\Delta G_r - \Delta G_r}$	(3) $A = \frac{\Delta u - \Delta \sigma_r}{\Delta \sigma_e - \Delta \sigma_r}$ FOR COM $A = \frac{\Delta u - \Delta \sigma_a}{\Delta \sigma_e - \Delta \sigma_a}$ FOR EXT	(3) $A = \frac{\Delta U - \Delta \sigma_r}{\Delta \sigma_a - \Delta \sigma_r}$ FOR COMPRESSION $A = \frac{\Delta U - \Delta \sigma_a}{\Delta \sigma_r - \Delta \sigma_a}$ FOR EXTENSION TE	(3) $A = \frac{\Delta U - \Delta \sigma_r}{\Delta \sigma_r - \Delta \sigma_r}$ FOR COMPRESSION TESTS $A = \frac{\Delta U - \Delta \sigma_a}{\Delta \sigma_r - \Delta \sigma_a}$ FOR EXTENSION TESTS	(3) $A = \frac{\Delta u - \Delta \sigma_r}{\Delta \sigma_a - \Delta \sigma_r}$ FOR COMPRESSION TESTS REMARKS: $A = \frac{\Delta u - \Delta \sigma_a}{\Delta \sigma_r - \Delta \sigma_a}$ FOR EXTENSION TESTS	$R = \frac{\Delta U - \Delta \sigma_r}{\Delta \sigma_r - \Delta \sigma_q}$ FOR COMPRESSION TESTS REMARKS: $A = \frac{\Delta U - \Delta \sigma_q}{\Delta \sigma_r - \Delta \sigma_q}$ FOR EXTENSION TESTS	$R = \frac{\Delta U - \Delta \sigma_r}{\Delta \sigma_r - \Delta \sigma_q}$ FOR COMPRESSION TESTS REMARKS: $A = \frac{\Delta U - \Delta \sigma_q}{\Delta \sigma_r - \Delta \sigma_q}$ FOR EXTENSION TESTS	$R_{F} = \frac{\Delta U - \Delta \sigma_{r}}{\Delta \sigma_{r} - \Delta \sigma_{r}}$ FOR COMPRESSION TESTS REMARKS: $A = \frac{\Delta U - \Delta \sigma_{r}}{\Delta \sigma_{r} - \Delta \sigma_{r}}$ FOR EXTENSION TESTS	$RF.$ (3) $A = \frac{\Delta u - \Delta \sigma_r}{\Delta \sigma_e - \Delta \sigma_e}$ FOR COMPRESSION TESTS REMARKS: $A = \frac{\Delta u - \Delta \sigma_e}{\Delta \sigma_e - \Delta \sigma_e}$ FOR EXTENSION TESTS	$RF.$ (3) $A = \frac{\Delta U - \Delta \sigma_r}{\Delta \sigma_r - \Delta \sigma_r}$ FOR COMPRESSION TESTS REMARKS: $A = \frac{\Delta U - \Delta \sigma_r}{\Delta \sigma_r - \Delta \sigma_r}$ FOR EXTENSION TESTS	$R_{F} = \frac{\Delta U - \Delta \sigma_{r}}{\Delta \sigma_{r} - \Delta \sigma_{0}}$ FOR COMPRESSION TESTS REMARKS: $A = \frac{\Delta U - \Delta \sigma_{r}}{\Delta \sigma_{r} - \Delta \sigma_{0}}$ FOR EXTENSION TESTS	$RF.$ (3) $A = \frac{\Delta U - \Delta G_r}{\Delta G_r - \Delta G_q}$ FOR COMPRESSION TESTS REMARKS: $A = \frac{\Delta U - \Delta G_q}{\Delta G_r - \Delta G_q}$ FOR EXTENSION TESTS

CONSOLIDATED - UNDRAINED TRIAXIAL TEST - DATA SUMMARY SHEET

1 st cycle

(2) Δu FOR $\Delta \sigma_3 = 0$

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TEST NO CHON-CYC PIH SOIL Hemolder BBC

ELAPSED TIME	AXIAL STRAIN, %	$(\overline{\sigma}_1 - \overline{\sigma}_3)^{(1)}$	$\frac{(\bar{\sigma}_1 - \bar{\sigma}_3)}{\bar{\sigma}_{1C}}$	$\overline{\sigma}_3$	σ	σ ₁ / σ ₃	۵u ⁽²⁾	<u>Au</u> $\overline{\sigma}_{ic}$ (2)	A ⁽³⁾	q	ē	₹ŗ	σ _a					
	0	2.53		3.05	558	1.83	0		-	1.27	4.32							
	.02	2.92		2.91	5.81	2.00	.14		.360	1.45	4.37							
	. 05	3.46		2.67	6.13	2.30	. 38		. 404	1.73	4.40							
	.12	3.90		2.45	6.35	2.59	.60		. 438	1.95	440							
L	. 25	3.95		2.26	6.21	2.54	.79		. 556	1.97	4.23		ļ					
	.37	4.00		Z.27	6.27	2.76	.78		.530	7.00	4.27						L	
	.51	3.97		2.13	6.10	2.87	.92		. 640	1.99	4.12							
	.95	3.79		1.92	5.71	2.98	1.13		. 898	1.90	3.82							4
	1.64	3.75		1.90	5.65	2.98	1.15		.943	1.87	3.77							
	1.11	3.65		1.85	5.50	2.98	1.20		1.07	1.83	3.68					ļ		
L	1.13	3.22		1.88	5.10	2.68	1.17		1.70	1.6/	3.49				ļ	ļ	ļ	_[
	1.12	2.70		1.95	4.65	2.38	1.10		.648	1.35	3.30							_
	107	2.47		2.03	4.50	2.22	1.02		-17.0	1.23	3.27							
·`	. 99	1.62		2.22	3.84	1.73	.83		912	. 81	3.03							
	. 89	1.15		2.27	3.42	1.51	. 78		565	. 38	2.85							
	. 73	. 57		2.34	2.91	1.24	. 7/		357		7.63		ļ					_
	. 47	.04		7.37	2.41	1.02	.68		273	. 02	2.39							
	- 3/	0		<i>Z.3</i> 3	7.33	1.06	.72		285	0	2.33	ļ					ļ	
L																		
											L		L				ļ	
							<u> </u>		ļ		ļ	L			ļ	ļ	<u> </u>	_
												ļ	ļ			L		_
											ļ							
											<u> </u>							_
	÷			<u> </u>				+		ļ		····-			ļ	<u> </u>	<u> </u>	\neg
									<u> </u>		L		ļ				L	_
				ļ							ļ	L	L				<u> </u>	
													·					_
																	ļ	_
<u> </u>		 					L		L								<u> </u>	
					L				<u> </u>									\neg
				<u> </u>	L		<u> </u>				<u> </u>				ļ	ļ	<u> </u>	┥
			<u> </u>								ļ			l	l			
L			L		L		L		L				<u> </u>		L		└───	
	TED FOR	PF4	F.S.	(3) A	$= \frac{\Delta u - \Delta \sigma_r}{\Delta \sigma_r - \Delta \sigma_r}$	FOR CON	PRESSION	TESTS	REMARKS:								<u> </u>	

 $A = \frac{\Delta u - \Delta \sigma_{e}}{\Delta \sigma_{e} - \Delta \sigma_{e}}$ FOR EXTENSION TESTS

2nd cycle

PROJECT Earth Science

ALL STRESSES IN ______ Kg/cm^-__

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TEST NO CHOU-CYE PIH SOIL Remoded BBC W, % e S, % V, cc L, cm A, cm² INITIAL **117.5/205 98 80.0 8.00/0.0** PRESHEAR DURING SHEAR $\bar{\sigma}_{ic} = \underline{SSB}$ $t_c = \underline{CONTROLLED STRAIN} \underline{V}$ STRESS _ PRESHEAR 33 7 .948 100 70.67 7.16 9.88 σ₁ = <u>300</u> P.P.R.= /00 % RATE . 0006 in/min Gs= 2.77 TYPE CELL Gromer Jos S.58 UB= 3.00 PATH Cyclic compression PRESHEAR STRESS HISTORY Finisotropic cond to The 6.0 kg/c H = 0.5 TESTED BY HPANES DATE 3/16 65

ELAPSED TIME	AXIAL STRAIN, %	$(\overline{\sigma}_1 - \overline{\sigma}_3)^{(1)}$	$\frac{(\bar{\sigma}_1 - \bar{\sigma}_3)}{\bar{\sigma}_{1c}}$	$\overline{\sigma}_3$	σι	$\overline{\sigma}_1 / \overline{\sigma}_3$	2) مر	<u>∆u</u> ō,c	A (3)	q	ą	σŗ	₹a	2 relation		
	. 31	0		2.33	2.33	1.00	0		-	D	2.33			0	 +	+
	.31	.04		2.47	2.51	1.02	16		-	.02	2.49			0	 	t
	. 38	.74		1.93	2.67	1.38	. 40		.541	. 37	2.30			.07		
	. 43	1.10		1.68	2.78	1.66	<u>کگ ،</u>		.318	.55	2.23			.13		
	.61	1.87		1.47	3.34	2.27	. 86		.460	.94	2.41			. 31		
	. 79	2.41		1.37	3.78	276	.96		. 383	1.21	2.58			. 48		
	1.56	7.43		1.41	3.84	2.72	.92		- 379	1.22	2.63			1.25		
	2.65	320	<u> </u>	1.33	453	3.41	1.00		.3/3	160	2.93		·	234	 -	
	3.41	3.16		1.28	4.44	3.47	1.05		.333	1.58	2.86			316		
	3.52	1.88		1.32	4.20	3.18	1.01		. 344	1.44	2.76			3.Z/	 	
	3.47	2.21		1.92	3.67	2.60	. 91		. 702	1.14	1.55			3.18	 	
	3.40	1.61		1.5/	3.18	1.10	. 8%		. 44%		235			309	 	
	3.10	. 83		1.57	2.42	1.52	· 14		- 845	. 72	1.0/			7.85	 	<u> </u>
	7.77	. 37		1.54	1.98	1.25	. 19		1.40	, 20	1.17			2.65	 	
														7.80		
															 +	
															 ++	
															 I	
			· · · · · · · · · · · · · · · · · · ·													
()) CORRECT	ED FOR	P.F. #	F.S.	(3) A	$= \frac{\Delta u - \Delta \sigma_r}{\Delta \sigma_r - \Delta \sigma_r}$	FOR CON	PRESSION	TESTS	REMARKS							
(2) 🛆 u FO	R Δσ₃ ≖ο			А	$= \frac{\Delta u - \Delta \sigma_{a}}{\Delta \sigma_{a} - \Delta \sigma_{a}}$	FOR EXT	ENSION TE	STS								

3rd cycle

CONSOLIDATED - UNDRAINED TRIAXIAL TEST - DATA SUMMARY SHEET

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TEST NO. CHEU - CyC P14		W, %	e	s,%	V, cc	L, cm	A,cm ²	PRESHEAR	DURING SHEAR
SOIL Hemolded BBC	INITIAL	42.8	1.203	98	80.0	8.00	10.0	σ _{ic} =t _c =	CONTROLLED STRAIN STRESS
PROJECT Earth Serence	PRESHEAR	33.7	948	100	7067	7.16	9.88	σ _{3c} <u>3. σο</u> <u>P.P.R. 100 %</u>	RATE . 0006 19/14.14
TESTED BY VP1 NFB DATE 3/1665	G _s =	77		TYPE	CELL	Scor	10-	<u></u>	PATH Cyclic compicesies
ALL STRESSES IN Kg/cm ^c	PRESHEAR	STRESS	HISTO	RY_	Ton.	sof	mpi	cons. to See 6.0 hg/c	K.85

ELAPSED TIME	AXIAL STRAIN, %	$(\bar{\sigma}_1 - \bar{\sigma}_3)^{(1)}$	$\frac{(\bar{\sigma}_i - \bar{\sigma}_3)}{\bar{\sigma}_{ic}}$	$\overline{\sigma}_3$	σι	σ₁ / σ₃	۵u ⁽²⁾	<u>au</u> ₍₂₎	A ⁽³⁾	q	ą	σ _r	$\overline{\sigma}_{a}$	E relative	
	2.17	0		1.54	1.54	1.00	0		-	0	154				
	2.08	.04		1.54	1.58	1.03	0		0	. 02	1.56			0	
	2.12	.50		1.36	1.86	1.37	.18		. 900	. 25	1.61			.04	
	2.16	.74		1.22	1.96	1.61	. 32		. 432	. 37	1.57			.08	
	2.22	1.08		1.08	2.16	2.00	.46		. 426	.54	1.62			.14	
	2.37	1.52		.95	2.97	2.60	.59		. 388	• 76	1.71			.29	
	2.64	2.01		.93	2.91	3.16	.6/		. 303	1.01	1.94			.56	
	298	2.49		,91	3.46	3.57	.57		. 229	1.25	2.22		<u> </u>	. 40	
	3,58	2.77		1.03	280	3.69	.51		. 184	1.39	242			1.50	
	4.51	2.99		1.09	4.08	3.75	. 45		.150	1.50	2.59			2.29	
	3.28	3.07		1.09	4.16	3.82	. 45		.147	1.54	263			328	
	6.93	2.96		1.08	4.04	3.74	. 46		, 156	1.48	256			4.85	
	8.60	2.91	ļ	1.05	3.96	3.77	.49		.168	1.46	2.51			652	
	9.51	2.15		1.09	3.24	2.47	. 45		.210	1.08	2.17			7.49	
	9.31	1.02		1.18	7.20	2.71	. 36		.353	.51	1.69			7.23	
	8.67	.//		1.07	1.25	1.16	.47		2.71	.09	1.16			6.61	
	8.25	0		1.02	1.02	1.00	.52			6	1.02			6.17	 ļ
	<u> </u>										ļ			-	
	ļ				<u> </u>										
												······			
													 	+	 ļ
														+	 ļ!
	<u> </u>				<u> </u>						ļ				 ļ
														+	
											L			+ +	
															 ļ
	÷								<u> </u>						
				L					ļ		ļ		ļ		 <u> </u>
	ļ			ļ			L		L		L			1	 ļ!
	L										L				
	<u> </u>								1						

(2) Δu FOR $\Delta \sigma_3 = 0$

 $A = \frac{\Delta u - \Delta \sigma_{e}}{\Delta \sigma_{r} - \Delta \sigma_{e}} \quad \text{FOR EXTENSION TESTS}$

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

W, % e S, % V, cc L, cm A, cm² W, 10° B, 20° V, CCL, CM | A, CM - L, CM | A, CM | A, CM - L, CM | A, CM | PRESHEAR DURING SHEAR PATH Cyclic compression

ELAPSED TIME	AXIAL STRAIN, %	$(\bar{\sigma}_1 - \bar{\sigma}_3)^{(1)}$	$\frac{(\vec{\sigma}_1 - \vec{\sigma}_3)}{\vec{\sigma}_{1c}}$	$\bar{\sigma}_3$	σι	$\overline{\sigma_1} / \overline{\sigma_3}$	∆u ⁽²⁾	<u>Au</u> (2)	A ⁽³⁾	q	ą	σ _r	σα					
	8.25	0		1.0Z	1.02	1.00	0			6	1.02							1
	8.16	. 03		1.02	1.05	1.03	0		0	.02	1.04							
	8 19	.43		. 78	1.21	کک /	. 24		.56	. 22	1.00							
	8.31	. 86		.61	1.47	2.41	. 41		. 477	. 43	1.04		L				ļ	
	8,60	1.28		.54	1.82	3.37	. 48		.375	.64	1.18							
	913	1.62		.64	2.26	3.53	.48		. 234	. 81	1.45							
	9.95	2.28		. 70	2.98	4.25	. 38		. 140	1.14	1.84		ļ					
	11.1	2.53		85	338	3.98	. 32		. 067	1.27	2.12	ļ	ļ	ļ		ļ	ļ	1
	11.7	2.58		.89	3.47	3.90	.17		. 051	1.29	2.18							
	122	2.58		.93	3.51	3.77	.13		. 035	1.29	2.22						ļ	ļ
	12.5	2.70		.93	3.65	3.92	. 09		.033	1.35	2.28							
	12.8	2.58		.93	3.51	3.77	.09		.035	1.29	2.22							1
	134	2.56		.92	3.48	3.78	. 09		.039	1.28	2.20				l			
	14.4	2.42		. 91	3.40	3.74	. //		.046	1.25	2.15							
															ļ			
				ļ				L										
														L		ļ		
									<u> </u>		ļ			L				
									L		L				ļ			
······																		
]
																		1
													1					1
		ES a	PE	· · •	Δ υ - Δσ _r				DEMARKO									1

 $A = \frac{\Delta u - \Delta \sigma_0}{\Delta \sigma_{-} - \Delta \sigma_0}$ FOR EXTENSION TESTS

(2) Δu FOR Δσ₃ = 0

4th cycle

TEST NO. CHOU-CYC PIH SOIL HEMOLOGY BBC

PROJECT Earth Science TESTED BY WR. AND DATE 41665

ALL STRESSES IN ______

1st cycle

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TEST NO. CNOU-CYC-E PIS	W, %	e S,% _V,cc L,cm A,cm ²	PRESHEAR	DURING SHEAR
SOIL Hemolded BBC	INITIAL 42911	73 100 80.0 8.00 10.0	σ _{1c} =t _c =	CONTROLLED STRAIN STRESS
PROJECT Earth Science	PRESHEAR 33.3 .9	724 100 70.4 7.0 9.98	σ _{3c} = <u>3.0/</u> P.P.R.= 100 %	RATE 606 min/cm
TESTED BY WEANER DATE 3/16 65	G _s = 2.77	TYPE CELL Geonge	σ _{ac} = <u>5.99</u> u _B = <u>3.00</u>	PATH Cyclic compression
ALL STRESSES IN Kg/cm2	PRESHEAR STRESS HI	ISTORY Anisotropic	cans to Sie + 6.00 tople	toos + extension
		·····		

<u>3</u>) σ ₃	$\bar{\tau}_1 = \overline{\sigma}_1 / \bar{\sigma}_3 = \Delta u^{(2)} = \frac{\Delta u}{\bar{\sigma}_1 c}^{(2)}$	A ⁽³⁾ q	ą	∂r	₹a		-	
301 5	79 199 0	- 1.49	450					
2.72 6	20 729 .29	58 1.79	4.50					
2.53 6	31 7.50 48	.60 1.89	442					
2.26 6	12 2.71 75	85 1.93	4.19					
1.94 5	59 2.88 1.07	1.60 1.83	\$ 72					
193 5	16 268 1.08	1.62	3.55					
1.94 4	68 2.41 107	1.37	3.31					
206 4	58 2.23 .97	1 26	3.32					
2.13 4	30 2.02 .88	109	3.22					
2.25 2	82 169 76	.79	3.04					
2.35 3	25 1.38 .66	.45	2.80					
2.38 2	74 1.15 .63	18	256					
2.38 2	45 1.07 .63	. 04	2.41					
		+	1 1					
					_			
					-			
	(3) $A = \frac{\Delta U}{\Delta \sigma_c}$ $A = \frac{\Delta U}{\Delta \sigma_c}$	(3) $A = \frac{\Delta U - \Delta \sigma_r}{\Delta \sigma_o - \Delta \sigma_r}$ FOR COMPRESSION TESTS $A = \frac{\Delta U - \Delta \sigma_0}{\Delta \sigma_r - \Delta \sigma_0}$ FOR EXTENSION TESTS	(3) $A = \frac{\Delta U - \Delta \sigma_r}{\Delta \sigma_a - \Delta \sigma_r}$ FOR COMPRESSION TESTS REMARKS: $A = \frac{\Delta U - \Delta \sigma_0}{\Delta \sigma_r - \Delta \sigma_0}$ FOR EXTENSION TESTS	(3) $A = \frac{\Delta U - \Delta \sigma_r}{\Delta \sigma_o - \Delta \sigma_r}$ FOR COMPRESSION TESTS REMARKS: $A = \frac{\Delta U - \Delta \sigma_0}{\Delta \sigma_r - \Delta \sigma_0}$ FOR EXTENSION TESTS	(3) $A = \frac{\Delta U - \Delta \sigma_r}{\Delta \sigma_o - \Delta \sigma_r}$ FOR COMPRESSION TESTS REMARKS: $A = \frac{\Delta U - \Delta \sigma_q}{\Delta \sigma_r - \Delta \sigma_q}$ FOR EXTENSION TESTS	(3) $A = \frac{\Delta U - \Delta \sigma_r}{\Delta \sigma_a - \Delta \sigma_r}$ FOR COMPRESSION TESTS REMARKS: $A = \frac{\Delta U - \Delta \sigma_a}{\Delta \sigma_a - \Delta \sigma_a}$ FOR EXTENSION TESTS	(3) $A = \frac{\Delta U - \Delta \sigma_r}{\Delta \sigma_a - \Delta \sigma_r}$ FOR COMPRESSION TESTS REMARKS: $A = \frac{\Delta U - \Delta \sigma_a}{\Delta \sigma_a - \Delta \sigma_a}$ FOR EXTENSION TESTS	(3) $A = \frac{\Delta U - \Delta \sigma_r}{\Delta \sigma_e - \Delta \sigma_r}$ FOR COMPRESSION TESTS REMARKS: $A = \frac{\Delta U - \Delta \sigma_6}{\Delta \sigma_e - \Delta \sigma_6}$ FOR EXTENSION TESTS

2nd Cycle

(2) Δυ FOR Δσ₃ = 0

CONSOLIDATED - UNDRAINED TRIAXIAL TEST - DATA SUMMARY SHEET

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

DURING SHEAR

here's

PATH Cyclic compression

extension

STRESS

Т

CONTROLLED STRAIN

RATE 606

Т

TEST NO. CITOD-CyC-E PIS		W, %	e	s,%	V, cc	L, cm	A,cm ²		PRES	HEAR	
SOIL Memolded BBC	INITIAL	42.9	1.175	100	80.0	8.00	10.0	<u></u> σ _{ιc} =	99	t _c =	-
PROJECT Earth Science	PRESHEAR	333.	924	100	70.4	7.06	9.98	<u></u> <i>σ</i> _{3c} = <u>3</u>	01	P.P.R.= 100 9	<u>e</u>
TESTED BY WIPY NEB DATE 3/16.65	G _s = 2	77		TYPE	CELL	Geo	nor	σ _{ac} = <u>5</u> ,	99	u _B =	-
ALL STRESSES IN	PRESHEAR	STRESS	HISTO	DRY	Zui.	E @ 7	hopic	Coms.	100	Tic 6.00 kg	<u>_ </u>
						(2)		1		

 $A = \frac{\Delta u - \Delta \sigma_{e}}{\Delta \sigma_{r} - \Delta \sigma_{e}}$ For extension tests

LAPSED	AXIAL STRAIN, %	(ā ēr)	$\frac{(\overline{\sigma}_1 - \overline{\sigma}_3)}{\overline{\sigma}_{1c}}$	σ r	¯~	ت ر/ ، -	(2) مر		A ⁽³⁾	q	ą	σ _r	$\overline{\sigma}_{a}$	E.		
	. 43	.07		2.38	2.45	1.07	0		0	.04	2.41			0	+	
	.41	.26		2.23	2.49	1.12	.15		.578	.13	236			0		
	. 41	.46		2.19	7.65	1.21	19		.414	23	2.42			0		
	. 45	.104		1.90	2.94	1.55	.48		462	.52	2.42			.043		
	. 56	1.73		1.64	3.37	2.06	.74		. 427	. 87	2.51			. 16		
	. 67	2.14		1.54	3.68	2.39	.84		. 393	1.07	2.61			. 26		
	1.21	3.13		1.50	4.63	309	. 88		.282	1.57	3.07			.80		
	1.89	3.29		1.46	4.75	3.25	.92		.280	1.65	3.11			1.47		
	2.43	3.29		1.36	4.65	3.42	1.0Z		.310	1.65	3.01			2.03		
	8.42	3.26		1.28	4.54	3.54	1.10		. 337	1.63	2.91			3.01		
	3.95	3.23		1.29	4.52	3.50	1.09		. 338	1.62	2.91			355		
	4.01	2.78		1.32	4.10	3.11	1.06		. 382	1.39	2.71			3.60		
	3.97	2.22		1.44	3.66	2.54	.94		.424	1.11	2.55			3.56		
	3.86	1.54		1.54	3.08	2.00	84		.546	. 77	2.31			3.45		
	3.63	.91		1.57	2.48	1.58	. 81		. 890	.46	2.03			3.22		
	2.94	.10		1.50	1.60	1.07	. 88			.05	1.55			2.53		
	2.52	4Z		1.57	1.15	. 73	. 81			-,21	1.36			2.11		
	2.01	46		1.47	1.01	.69	.91			23	1.24			1.60		
	.79	66		1.44	. 78	.54	.94			33	1.11			. 38		_
	1.43	31		1.27	.96	. 76	1.11			16	1.11			1.02		
		· · · · · · · · · · · · · · · · · · ·														
	L			ļ	ļ			ļ								
					ļ									1		
								L								
		ļ		ļ	L			l								
														ļ		
		L			ļ	L								<u> </u>		
					ļ								ļ	<u> </u>		
				ļ	L	L										
		L	l					1								

3rd cycle

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TEST NO CIU-CyC-E PIS S,% V,cc L,cm A,cm² W, % е PRESHEAR DURING SHEAR SOIL Remoland BBC 42.91.173 100 80.0 8.00 10.0 <u> 599</u> INITIAL t_c = _____ CONTROLLED STRAIN V STRESS PROJECT Earth Science P.P.R.= 100 % RATE 606 min/cm PRESHEAR 33 3-924 100 70.4 7.06 9.98 3.01 σ. ----TESTED BY KIP NEB DATE 3/16 65 ō...= <u>5</u>.99 G.= <u>2.77</u> TYPE CELL 60000 UB= <u>3.00</u> PATH Cyclic compression ALL STRESSES IN Kg/cm² + extension PRESHEAR STRESS HISTORY Anisotropic cons Sign: 6.00 M/L-

ELAPSED TIME	AXIAL STRAIN, %	(ॡ - ज्•	$\frac{(\bar{\sigma}_{1} - \bar{\sigma}_{3})}{\bar{\sigma}_{1c}}$	∂₹	.⊅⊽	ā/ēr	2) ۵u	<u>au</u> <u>a</u> u <u>a</u> ic	A ⁽³⁾	ر (4)	p	σ _r	$\overline{\sigma}_a$	E Re.		
	1.43	0		1.08	1.08	1.00	0		-	0	1.08					
	1.90	.68		.7/	1.39	1.96	.37		.544	24	105			. 47		
	2.59	1.30		.66	1.96	2.97	.42		. 322	43	1.31			1.16		
	3.70	2.23		.74	2.97	4.02	.34		.152	1.12	1.86			2.17		
	4.67	2.65		. 89	3.54	3.98	.19		.072	1.33	2.22			3.24		
	5.68	2.81		.97	3.78	3.90	. //		· 039	1.41	2.38			4.25		
	6.41	2.86		.93	3.79	4.07	.15		.asz	1.43	2.36			498		
	7.29	2.88		.99	3.87	3.91	.09		. 031	1.44	2.43			586		
	7.67	2.93		.96	3.89	4.05	.12		.041	1.47	2.43			6.24		
	8.45	2.91		.98	3.89	3.97	.10		. 033	1.46	2.44			7.02		
	9.47	2.91		.98	3.89	3.97	.10		.033	1.46	2.27			8.04		
	9.72	2.55		.99	3.54	3.58	. 09			1.28	2.02			8.29		¢
	9.67	1.88		1.08	2.96	2.74	0			.94	1.84			8.24		
	9.47	1.42		1.13	2.55	2.26	05			. 7/	1.49			8.04		
	9.46	.77		1.10	1.87	1.70	OZ			. 39	1.28			8.03		
	875	. 49		1.03	1.52	1.48	.05			.25	.94			.7.32		
	8.24	. 43		.87	1.00	1.15	.21			.07	.92			6.8		
	7.99	23		1.04	· 81	.78	.04			<i>12</i>	. 7/			656		
	7.18	42		.92	.50	.54	./6	_		21	. 61			5.85		
	5.70	49		. 86	.40	.46	.22			25	.59			4.27		
	3.91	62		.90	. 32	.36	. 18_			3/	.57			2.54		
	2.10	10		.92	. 22	.24	.16			35	.60			-1.27		
	1.57	78		.99	. 21	· 21	. 09			39	. 60			16		
	. 38/	86		1.09	. 23	.21	01			43	• 66			84		
	058	9/		1.1Z	. 2/	.19	04			46	.66			-1.49		
L	60/	46		1.18	. 2Z	./9	10			48	. 70	_		-2.03		
	-1.414	79		1.06	.27	.25	. 02			40	. 66			-2.85		
	- 1.54	52		.83	.31	.37	. 25			26	.57			- 2.77		
	48	3/		. 6/	.30	. 99	. 47			16	.45			- 2.4		
	/7	12		. 77	. 32	. 15	• 67			06	. 38			· 2.22		
	<u> </u>													L		
	<u> </u>															
	ED FOR	P.F.		(3) A	$= \frac{\Delta u - \Delta \sigma_r}{\Delta \sigma_g - \Delta \sigma_r}$ $\Delta u - \Delta \sigma_s$	FOR COM	PRESSION 1	TESTS	REMARKS:	(4) •	1/2/5	- 5 r)	<u> </u>	l	
(2) <u>A</u> u FOI	π Δσ3 = 0			Α	Δσ Δσ.	FOR EXT	ENSION TE	STS								

$\frac{4}{4} \frac{1}{4} \frac{1}$ CONSOLIDATED - UNDRAINED TRIAXIAL TEST - DATA SUMMARY SHEET $\begin{array}{c|c} \mathsf{A} \times \mathsf{IAL} \\ \mathsf{STRAIN, \%} \end{array} \left(\left(\overline{\sigma}_1 - \overline{\sigma}_3 \right)^{(1)} \\ \left(\overline{\sigma}_1 - \overline{\sigma}_3 \right)^{(1)} \\ \overline{\sigma}_{1c} \end{array} \right)$ ELAPSED E (2) $\overline{\sigma}_{i}$ A ⁽³⁾ $\overline{\sigma}_{3}$ $\overline{\sigma}_1 / \overline{\sigma}_3$ Δu q ą σr TIME <u></u> reta. · 255 .01 · 442 .13 .32 .33 1.03 0 -.005 .33 0 .22 .35 77 .07 .29 1.59 .10 .187 129 .21 . 16 .37 .44 .47 .63 2.31 .76 .27 . 16 . 11 . OK 2.05 .27 3.10 .31 2.94 2.94 3.94 .17 .16 .15 .56 .14 .31 .16 .16 .52 32 4.06 .47 5.20 .64 6.22 .79 . 16 .34 .24 .20 ·32 580 . 40 . 51 . 62 . 16 .40 .13 7.72 1.20 8.99 1.48 7.84 1.75 91 .008 .60 .74 1.09 -. OZ 30 -.046 .88 1.28 7.58 11.1 1.94 -.088 .97 1.46 10.8 11.7 2.08 12.1 2.15 12.8 2.22 13.6 2.26 14.6 2.26 -.082 1.04 1.53 -.098 1.08 1.61 -.099 1.11 1.65 -.133 1.13 1.75 11.4 11.8 12.6 13.6 133 -. 132 1.13 1.75 14.4 (i) CORRECTED FOR \overrightarrow{PF} . (3) $A = \frac{\Delta U - \Delta \sigma_r}{\Delta \sigma_r - \Delta \sigma_r}$ FOR COMPRESSION TESTS REMARKS $A = \frac{\Delta u - \Delta \sigma_{a}}{\Delta \sigma_{a} + \sigma_{a}}$ FOR EXTENSION TESTS (2) Δu FOR Δσ₃ = 0 $\Delta \sigma_r - \Delta \sigma_n$

| st eyele

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

SOIL A	Tarth.	7 100 Seien B date 3	c rcc 116 65	- IN PI	IITIAL 7 RESHEAR 7 =2.7	1.6 1.162 1.2 .903 7	100 84.2 100 71.3 TYPE CEL	8.00 10. 3 7.18 9.9 Econor	¥ ¥	$\overline{\sigma}_{1c} = \underbrace{\mathbf{S}}_{\mathbf{S}} \underbrace{\mathbf{S}}_{\mathbf{T}} = \underbrace{\mathbf{S}}_{\mathbf{S}} \underbrace{\mathbf{S}}_{\mathbf{T}} \mathbf{S$	17 98 79	t _c =/c P.P.R.=_/c u _B =_ <u>3.06</u>)0 %	CONTROL RATE PATH	LED STRAIN 606 M	<u>У</u> STF 	RESS
LL STRES	SES IN	kgle		PR	ESHEAR STI	RESS HISTO	DRY HMI	st ropic	<u>ally</u>	cons	10 5	- 6.0	, kg/_2	K.0.5	ext	cusicu	
ELAPSED TIME	AXIAL STRAIN, %	$(\overline{\sigma}_i - \overline{\sigma}_3)^{(i)}$	$\frac{(\bar{\sigma}_{\rm I} - \bar{\sigma}_{\rm 3})}{\bar{\sigma}_{\rm IC}}$	₹	σι	$\overline{\sigma_{_{\rm I}}} / \overline{\sigma_{_{\rm 3}}}$	2) م u	$\frac{\Delta u}{\overline{\sigma}_{1}c}^{(2)}$	A ⁽³⁾	q	ą	σ _r	σα				
	0	3.01		2.98	5.99	2.01	. 08			1.56	4.49						<u> </u>
_	.01	352		282	6.34	2.25	.18		. 35	1.76	4.58						
	. 05	3.81		2.64	6.45	2.45	.36		.44	1.91	4.55						<u> </u>
	.35	5.77 4.00		2.33	6.33	1.61	.52		· <u>53</u> · 67	2.00	4.33			-			<u> </u>
	.54	3,93		2.21	6.14	7.78	. 79		.85	1.97	4.18						
	.71	3.84		2.12	5.96	2.81	. 88		1.05	1.92	4.04						
	1.12	364		1.93	557	2.89	1.02		1.25	1.90	3.75						
	1.15	3.50		1.93	5.43	2.81	1.07			1.75	3.68						
	1.15	2.78		2.00	4.71	2.31	1.00			1.5%	346						
	1.13	2.34		2.11	445	2.11	. 89			1.17	3.28			+			<u> </u>
	1.06	1.67		2.21	3.88	1.76	. 79			. 84	3.05						
	.88	. 66		2.3/	2.97	1.29	.69			.69	2.95						
	.77	. 3/		2.31	2.62	1.13	. 69			. 16	2.47						<u> </u>
_																	
_																	
														<u> </u>			

(2) Δu FOR Δσ₃ = 0

 $A = \frac{\Delta u - \Delta \sigma_{a}}{\Delta \sigma_{r} - \Delta \sigma_{a}} \quad FOR \quad EXTENSION \quad TESTS$

2nd cycle

SOIL MECHANICS LABORATORY, DEPT OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TEST NO. CHOU-CYC-E PIG W,% e S,% V,cc L,cm A,cm² PRESHEAR DURING SHEAR SOIL BEMOIDE BBC INITIAL 41.6 1.162 100 81.2 8.00 10.14 σ_{ic}= <u>5.99</u> CONTROLLED STRAIN _____ STRESS †c = - $\overline{\sigma}_{3c} = \frac{2.98}{5\sigma_{ac}} = \frac{100\%}{5.99}$ PROJECT Earth Science RATE 606 min/cm PRESHEAR 37.2 903 100 71.3 7.18 9.94 G_s= 2.77 TYPE CELL GEOMOT TESTED BY WP NFB DATE 3/16 65 PATHCyclic compression PRESHEAR STRESS HISTORY Anisotropic coms to Sicne 6.0Kg/cm2 KEO.S ALL STRESSES IN Kg/cm²

ELAPSED TIME	AXIAL STRAIN, %	(ā - ā, (1)	$\frac{(\bar{\sigma}_1 - \bar{\sigma}_3)}{\bar{\sigma}_{1c}}$	⊽←	Ē	ā ^{ر ت} ر	(2) م	<u>au</u> d u d ic	A ⁽³⁾	q	p	σ _r	σα	Z rel.			
	.672	. 08		2.31	2.39	1.05	0		-	. 04	2.35			.00	<u>+</u>		
	.61	.12		2.28	2.40	1.13	. 03		. 25	.06	2.34			. 01			
	.61	.28		2.22	2.50	1.26	.09		. 32	.14	2.36			. 01			
	. 61	.55		2.11	2.66	1.59	.20		. 36	. 28	2.39			.01			
	. 65	1.09	ļ	1.84	2.93	2.11	. 47		.43	.55	2.39			. 05			
	. 7/	1.86		1.59	3.35	241	. 7z		. 39	.43	2.52			. 11			
L	. 80	2.22		1.58	3.80	2.91	.73		. 33	1.11	2.69			. 20			ļ!
	.41	2.82		1.48	4.30	3.11	.83		.24	1.41	2.89			. 37	l		ļ/
	1.24	3.20		1.52	4.12	3.26	.79		.25	1.60	3.12			. 64	ļ		l
	1.85	7.39		1.50	4.87	3.34	. 8/		. 27	1.10	3.20			1.25			<u>اا</u>
	3.02	2.35		1.40	4.15	347	. 41		. 21	1.68	5.08			1.42			ļ
	3.53	5.35		1.36	4.7/	3.11	.95		8	1.68	8.04			293			ļ'
	3,54	1.95		1.56	4.3/	2.99	. 75		, 3×	1.48	1.84			2.94			ļ'
	3.51	7. 7/		1.48	3.67	1.43	.83			1.11	1.59			2.41			ļ!
	3.48	1.45		1.51	3.0%	1.4/	.74			. /3	2.30						ļ'
	3.24	. 65		1.58	7.23	1.17	. 18			.33	1.41						
	3.03	. 27		1.58	1.87	1.01	.13			. 15	1.73						ļ
	1.80	. OZ		1.51	1.53	. 88	. 80			. 01	1.52						ļ!
	2.67	ZO		1.57	1.37	· 40	. 12		<u> </u>	10	1.47				<u> </u>		ļ!
	1.53	74		1.6	1.14	.68	. 10			21	1.40				·		↓ /
	1.27	30	· · · ·	1.54	1.04	. 65	. /5			25	1.37			<u> </u>			<u> </u> /
	1.78	-, 60		1.5%	. 78	. 70	. /7			50	1.24					+	<u>├</u> ───┤
	1.30	02		1.44	. 62	. 37	. 81		<u> </u>	42	1.02				l	+	<u>↓</u>
	. 65	17		1.73	. 30	31	. 88			- 47	. 47						<u> </u>
	. 63	-, 73		1.20	+ . //	••7	1. "			22	.70					<u> </u>	↓J
																	┟────┛
	+										+			<u> </u>			ļd
	+	······································			<u>}</u>						+			<u> </u>		1	↓
	+																┟───── <i>┙</i>
					+						1						<u>├</u> ────┤
	+										<u> </u>			<u> </u>	<u> </u>	┥───┥	
	+														<u> </u> -	┼───┤	
	+															+	
<u> </u>			<u> </u>							·					<u> </u>	<u>+</u>	<u>├──</u> ────
L	1		L	L	1	L	L	L	L		1		L	l	L	I	L

(2) Δu FOR $\Delta \sigma_3 = 0$

Α =

3rd cycle

PROJECT Earth Science

ALL STRESSES IN Kg/cm²

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TEST NO CHOU-CUC-E PIL W, % e S, % V, cc L, cm A, cm² PRESHEAR DURING SHEAR J. = 5.99 INITIAL 41.6 1.162 100 81.2 8.00 10.14 CONTROLLED STRAIN _____ STRESS PRESHEAR 32.2 905 100 71.3 7.18 9.94 2.98 P.P.R.= 100 % RATE_ 606 σ. ---- $\bar{\sigma}_{ac} = 5.99$ $u_{B} = 3.00$ TESTED BY PINES DATE 3/16 65 G. = 2.77 TYPE CELL Georger PATH Cyclic compression PRESHEAR STRESS HISTORY Anisotropic cons. S. + 6.00 Kale K=0.5

ELAPSED TIME	AXIAL STRAIN, %	$(\overline{\sigma}_1 - \overline{\sigma}_3)^{(1)}$	$\frac{(\overline{\sigma}_{1} - \overline{\sigma}_{3})}{\overline{\sigma}_{1c}}$	σ,	⁷ •	ھ ر∕ <i>न</i>	۵u ⁽²⁾	<u>∆u</u> ₍₂₎	A ⁽³⁾	q	ą	σ _r	₹a	E rel·]
	. 80	.188		.92	1.11	1.21	0		-	.094	1.01					
	1.08	.50		.68	1.18	1.27	. 24		.48	.25	.92			. 22		
	1.99	1.11		.57	1.68	2.95	.35		. 32	.56	.93			1.13]
	2.97	1.82		.80	2.47	3.80	.27		.15	.91	1.13			2.11		
	3.90	2.38		. 87	3.18	3.97	.12		.05	1.19	1.56			3.04	 	
	4.86	2.65		.93	3.52	4.05	.05		. OZ	1.38	1.99			4.00	 	
	5.70	2.77		.96	3.70	3.98	01		004	1.39	2.25			4.84	 	
	6.80	2.85		.97	3.81	3.93	04		014	1.43	2.32			5.94	 	_
	7.82	2.90		1.0Z	3.87	3.99	05		017	1.45	2.39			696		
	8.16	2.61		1.08	3.63	3.56	10		034	1.31	2.42			7.30	 	しい
L	8.14	1.89		1.06	257	2.75	16			. 95	2.33			7.28	 	10
	8.02	1.28		1.06	2.34	2.21	14			.64	203					
	7.70	.52		.97	1.58	1.49	14			. 26	1.70					
	7.17	.20		1.01	1.17	1.21	05			.10	1.32				 	
	7.04	15		.90	. 86	. 85	- 09			08	1.07					
	6.45	38		. 87	.52	.58	.02			19	.93					
	6.17	41		. 86	.46	.53	.05			ZI	. 71					_
	5.81	48		.85	.38	.44	.06			24	. 66					
	5.24	53		.85	. 32	. 38	. 07			27	.62					
	4.54	63		.85	. 22	.26	. 07			32	. 58					
	3.4z	71		. 88	.14	.17	. 07			36	.53					
	2.64	77		. 88	. //	.13	.04			39	.49					
	1.61	86		.97	. //	. //	.05			43	. 37					
	94	91		1.01	.10	.10	. 09			46	.55					
	.10	95		1.07	.12	. 11	15			48	. 55					
	55	-1.03		1.12	.09	.08	20			52	.60					
	-1.38	-1.09		1.18	.09	. 08	26			55	.63					
	-1.83	49		. 93	.44	.47	01			25	.68					
	-1.77	4Z		.80	. 38	. 48	, <i>I</i> Z			21	.59					
	-1.67	29		.64	.35	.55	. 28			15	.49					_
	-1.37	09		. 45	. 36	. 80	. 47			as	.40				 	
															 	4
		<u> </u>			-											7
		P.F.			Δ u - Δσ _r			TECTO							 	-

() CORRECTED FOR P.P.

 $(3) \quad A = \frac{-}{\Delta \sigma_{a} - \Delta \sigma_{r}}$

 $A = \frac{\Delta U - \Delta \sigma_{\mathbf{c}}}{1 - \Delta \sigma_{\mathbf{c}}}$

 $\Delta \sigma_{r} - \Delta \sigma_{a}$

FOR EXTENSION TESTS

(2) Δu FOR Δσ3 = 0

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TEST NO CHOU -CyC-E PIL SOIL Here Ided BBC e S,% V,cc L,cm A,cm² W,% PRESHEAR DURING SHEAR CONTROLLED STRAIN V STRESS RATE 606 min/cn PATH Cyclic compression 0.5 C Extension TESTED BY KIPAVEB DATE 3/16 65

ELAPSED TIME	AXIAL STRAIN, %	(ā, - ō,) ⁽¹⁾	$\frac{(\bar{\sigma}_1 - \bar{\sigma}_3)}{\bar{\sigma}_{1c}}$	ਰਿ	ō	ā{∕ ⊽∽	۵u ⁽²⁾	<u>au</u> <u> </u>	A ⁽³⁾	q	ą	σ _r	σ _a				
	-1.00	09		. 39	.30	.77	. 53		-	05	. 34						
	63	.15		.24	. 39	1.63	.12		.80	. 07	. 31						
	.15	.19		.16	. 35	2.19	.20		1.05	. 09	. 25						
	.98	. 24		.14	. 38	2.71	. 22		.916	. 12	. 26						
	2.12	.33		./3	. 36	7.77	.23		.697	. 16	.29						
	307	. 45		./3	. 58	447	.23		.512	. 23	. 36						
	4.19	6/		.17	.78	4.58	.19		. 312	. 31	. 48						Ļ
	5.57	. 46		, 22	1.18	5.36	.14		.146	. 48	. 70						ļ
	6.90	1.36		. 29	1.65	3.69	.07		.051	. 68	.97						Ļ
	7.66	1.59		. 35	1.94	5.54	.01		. 006	. 80	1.15					+	
	8.50	1.8%		. 43	2.25	5.23	07		-038	.91	1.34						L
	7.61	2.10		.55	2.65	4.83	19		091	1.05	1.60						Ļ
	10.4	7.22		. 56	2.78	4.91	20		090	1.11	1.67						ļ
	11.0	1.29		1.3/	7.86	5.03	21		092	1.15	1.12						<u> </u>
	11.8	1.58		. 60	2.98	4.97	24		101	1.19	1.19						
	12.4	<u>2.42</u>		. 67	3.09	4.6Z	31		128	1.21	1.88						L
																	ļ
																	<u> </u>
																	L
																	<u> </u>
																	L
									-								
																	ļ
																	
																	L
									1								
																	ļ
																	
	<u> </u>														·		<u> </u>
																	<u> </u>
																	<u> </u>
L							l					L		1		1	L

(2) Δu FOR Δσ₃ = 0

4th cycle

PROJECT Earth Science

ALL STRESSES IN Kylen

 $A = \frac{\Delta u - \Delta \sigma_{a}}{\Delta \sigma_{a} - \Delta \sigma_{a}}$ FOR EXTENSION TESTS

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TEST NO. C.I.-WI(S) Proc - PITW, % e S, % V, cc L, cm A, cm²SOIL BURGED BSCINITIAL ##1/165 98.2 8/68 8.00 10.2PROJECT Earth SciencePROJECT Earth ScienceOURING SHEAROURING SHEAROURING SHEAROURING SHEAROURING SHEAROURING SHEARINITIAL ##1/165 98.2 8/68 8.00 10.2PRESHEAR #15 973 108 70.6 755 9.28G₃ = 6.04CONTROLLED STRAIN VSTRESSG₃ = 2.77TYPE CELL C.H.TOT TYPE CELL C.H.<tr $\begin{vmatrix} \mathsf{A} \times \mathsf{IAL} \\ \mathsf{STRAIN}, \% \end{vmatrix} (\overline{\sigma}_1 - \overline{\sigma}_3)^{(1)} \end{vmatrix} \frac{(\overline{\sigma}_1 - \overline{\sigma}_3)}{\overline{\sigma}_{\mathsf{IC}}} \end{vmatrix}$ $\Delta u^{(2)} \qquad \frac{\Delta u}{\overline{\sigma}_{i}c}^{(2)} \qquad A^{(3)}$ ELAPSED Jo Area Lo Cycle cmª cm Wo $\overline{\sigma}_{a}$ σ, $\overline{\sigma}_{1}$ *σ*, ∕*σ*, σ, q p TIME 0 0 3.30 9.98 7.55 First shear . 303 1.70 · St 2.40 .87 2.77 .21 2.92 1.55 3.03 1.95 3.10 2.29 3.15 3.50 3.17 4.72 3.22 3 S 6.05 3.19 0 0 Second shear 2.82 10.42 675 2 .23 .72 Mira shear 0 0 .25 .61 .58 .95 .96 11.52 6.10 3 1.00 1.27 1.50 1.64 2.00 1.94 2.50 2.16 2.92 2.27 3.96 2.35 5.00 2.54 (i) CORRECTED FOR _____ (3) $A = \frac{\Delta u - \Delta \sigma_r}{\Delta \sigma_r - \Delta \sigma_r}$ FOR COMPRESSION TESTS REMARKS $A = \frac{\Delta u - \Delta \sigma_0}{\Delta \sigma_0}$ FOR EXTENSION TESTS

(2) ΔU FOR Δσ3 = 0

Δ. - Δ. C.

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

 $\begin{vmatrix} \mathsf{AXIAL} \\ \mathsf{STRAIN, \%} \end{vmatrix} (\overline{\sigma}_1 - \overline{\sigma}_3)^{(1)} \begin{vmatrix} (\overline{\sigma}_1 - \overline{\sigma}_3) \\ \overline{\sigma}_{1C} \end{vmatrix}$ ELAPSED <u><u>Au</u> <u></u>(2)</u> (2) Δu A⁽³⁾ σ₃ σ $\overline{\sigma}_1 / \overline{\sigma}_3$ σr σα q p TIME 6.33 2.58 8.34 2.55 11.52 6.10 Fourth shear . 85 12.42 5.65 4 0 0 · 58 . 93 .95 1.49 1.69 36 1.90 :05 2.02 4.95 2.06 837 2.20 Sample remolded, sheared 0 10.00 6.86 0 .09 1 .0 0 22 0 55 .03 1.11 .09 2.22. - 11 3.32 .18 ,20 .27 . 33 40 7.38 9.25 10.32 52 12.20 .57 13.30 . 63 14.78 68 (3) $A = \frac{\Delta u - \Delta \sigma_r}{\Delta \sigma_a - \Delta \sigma_r}$ FOR COMPRESSION TESTS () CORRECTED FOR _____ REMARKS $A = \frac{\Delta u - \Delta \sigma_{e}}{\Delta \sigma_{e} - \Delta \sigma_{e}}$ FOR EXTENSION TESTS

(2) ΔU FOR $\Delta \sigma_3 = 0$
TEST NO.	CKG-UL	(Ss) fi	PIA PIA			W,% e	S,% V,c	cc L, cm A,	_{cm} 2	_	PRESHE	AR			DURING S	HEAR		
SOIL MCM	nokled	I BB	C	IN	ITIAL		81.	2 800 10	15	<i>σ</i> _{ic} =	92	t _c =		CONTROLL	ED STRAIN	🗶 ST	RESS	_
PROJECT	Earth	Scie	nce	PF	RESHEAR	37.21.0	0 100 76	0 7.39 10	29		00	P.P.R.	.991%	RATE	015 in	luin		_
TESTED BY	NFB	DATE	3/22 65	G	2	77	TYPE CEL	CH. WI	1403	.ي 🚛	92	3.	00		Main	d la	ding	
		ha/c.	4 ²	-5		TRESS HIS	TORY AM	isotro	pica	114 00	us. to	5.94		# 3.00	(5-)	7	-
ALL SINES	5L5 IN	<u> </u>		111	JULAN 3	111233 1113				2								-
ELAPSED TIME	AXIAL STRAIN, %	$(\bar{\sigma}_{1} - \bar{\sigma}_{3})^{(1)}$	$\frac{(\bar{\sigma}_1 - \bar{\sigma}_3)}{\bar{\sigma}_{1C}}$	$\overline{\sigma}_3$	σι	σ ₁ / σ ₃	۵u ⁽²⁾	<u>∆u</u> (2) ¯ G _I C	A ⁽³⁾	q	ą	154	D 3	5,	Lo	Ho cm²	Cycle]
	0	0											6.11	2.70	6.98	10.29	1	1
	.004	. 283				Fire	5134	car										
	.018	.332			<u> </u>										<u> </u>		ļ	4
	036														<u> </u>		<u> </u>	4
	1013	132			<u> </u>						+	+			ł		}	-
	.218	1.068																-
	291	1.585																
	. 364	1.93																<u> </u>
	. 437	2.22													<u> </u>			43
	. 3/	2.44																
	. 6%	2.60	+										-		+	<u>├</u>	ł	-
	- 84	376	<u> </u> -															-
	.95	3.40								1					t			-
	1.09	3.44																
	1.27	3.54													ļ		ļ	4
	1.46	3.68									+			+	<u> </u>		 	-
	1.82	3.67													<u> </u>		l	-
		+				Sec	cond	shea	r						<u>+</u>		<u> </u>	-
	0	0											6.11	2.03	6.92	10.39	2	
	.018	.061																
	.074	. 107													<u> </u>		ļ	_
	.147	.141													<u> </u>		<u> </u>	4
	· 220	· 377 agu															<u> </u>	-
	368	1.248						+								1	<u> </u>	-
	. 478	1.56	tt															
	.588	1.85																
	. 698	2.08	 	·										<u> </u>	<u> </u>	ļ	ļ	\neg
	.845	2.40																4
	1911	10L	<u> </u>								··			+	<u> </u>			-
	1.396	3.11							<u> </u>									-
()) CORREC	TED FOR_		·	(3) A	$= \frac{\Delta u - \Delta \sigma}{\Delta \sigma_{\rm g} - \Delta \sigma}$	FOR C	OMPRESSION	TESTS	REMARKS	•	•					•	·	-
(2) ∆u FC	OR Δ σ ₃ = ο			А	$= \frac{\Delta u - \Delta \sigma_{t}}{\Delta \sigma_{t} - \Delta \sigma_{t}}$	FOR E	XTENSION T	ESTS										

TEST NO.	Sto-UC	(\underline{G})	Ra PIG)		W,% e	S,% V,0	cc L, cm A, ci	^m 2	_	PRESH	EAR			DURING S	HEAR		
SOIL _	mold	ed Bl	BC		NITIAL					σ _{ic} =		t _c =		CONTROLL	ED STRAIN	STI	RESS	_
PROJECT_	Earth	n Seid	EACE		PRESHEAR					σ _{3c} =		P. P. R. =	%	RATE	.015	in Jui	7	
TESTED BY	NFC	DATE_	12/22.65	G.	s ⁼		TYPE CEL	L		₫ ₀₀ =		V.a =			idea	ified	load	4
ALL STRES	SES IN	Kg/c.	m 2	PI	- RESHEAR S	STRESS HIST	ORY					0						1
	······				-													-
ELAPSED TIME	AXIAL STRAIN, %	$(\bar{\sigma}_1 - \bar{\sigma}_3)^{(1)}$	$\frac{(\bar{\sigma}_1 - \bar{\sigma}_3)}{\bar{\sigma}_{1c}}$	$\overline{\sigma}_3$	σı	σ ₃	۵u ⁽²⁾		A ⁽³⁾	q	ą	σ _r	43	Ēs	Lo	<i>H</i> o	Cycle	
	1.54	3.19																7
	1.76	3.26]
	2.06	3.30								<u> </u>								_
	2.37	325			+		+										<u> </u>	-
	312	336															<u> </u>	-
	3.49	3.36															 	1
	4.04	3.36															1	1
						-7	1	/]
		-				_ Thie	934	24			-		6.11	1.35	6.73	10.67	<u> </u>	-'
	070	0															<u> </u>	4
	076	1081															<u> </u>	4
	1.151	1.199							· · ·									-
	. 226	1.21								<u> </u>								-
	.340	1.45																
	. 492	1.61			_					ļ.								
	·680	1.84						┥───┤	1911								<u> </u>	4
	1.057	721						<u> </u>					-					-
	1.321	2.54															<u> </u>	-
	1.70	2.77															<u> </u>	1
	2.08	2.91													_			1
	2.64	3.02																1
	5.02	3.06																
	3.40	3.08															<u> </u>	-
	4.92	313						<u> </u>		<u> </u>								-
	5.66	3.13	++					++									<u> </u>	-
	7.65	3.14								1		1						1
	8.31	3.11				2 ,	111	11										1
					1 M	emolde	ed 40	urth.	5400	21			6.11	. 11	Ż	2	4	1
		0.	117-				or to	1.2					_				ļ	4
		-4.	1.30			f = 1.1	05 1										<u> </u>	-
L	1	L			AU- A0	<u>.</u>		۰ <u>ــــــــــــــــــــــــــــــــــــ</u>			1			<u>ا</u> ــــــــــــــــــــــــــــــــــــ		I	L	_
(I) CORRECT	TED FOR		·	(3)	$A = \frac{\Delta \sigma_0}{\Delta \sigma_0} - \Delta \sigma_0$	FOR CO	MPRESSION	TESTS R	EMARKS									
(2) ∆u FO	R ∆ σ ₃ = o				$A = \frac{\Delta u - \Delta \sigma}{\Delta \sigma}$	FOR EX	TENSION TE	ESTS										

1st cycle

TEST NO.	CID-C	YC-E	P20		· · · · · · · · · · · · · · · · · · ·	W,% e	S,% V,c	c L, cm A, cm	n ²	_	PRESH	EAR			DURING	SHEAR	_
soil	no/deð	BBC	16.9/2/	Vacl IN		38.41.080	100 80.	\$ 00 10.0	8	σ _{ιc} = <u>6.</u>	06	t _c =		CONTROL	LED STRA	IN K s	TRESS
PROJECT	Earth.	Seice	<i>ce</i>	. P		307 .84	100 72	47.809.1	4	. . 6.	06		0 %	RATE	600.0	51 min/	le m
TESTED BY	NFB		9/73 LC		2.7	7	TYPE CELL	beana	 r	- 6.	06		2		uclic	COMP	ressier
		ka	lan c	s	·			trania			601	ka la s			0	xton SI	ion .
ALL STRES	SSES IN	/	12	– PR	ESHEAR ST	RESS HIST	ORY	stropic	2043	2 70	0.06	-770-		/		9000	
			(= =)		1			(2)		(4)			[T		1
TIME	STRAIN, %	(ā - ē)	$\frac{(\sigma_1 - \sigma_3)}{\overline{\sigma_1}}$	σ	ه	ā ^{/ σ} ۲	Δu ⁽²⁾		A ⁽³⁾	q ()	p	σ _r	ਰਾ				
		0		1.01	1.00	100	0			6	606				+		
	. 6026	.117		5.97	6.06	103	09		.540	083	6.00				+		
	. 004	919		5.52	6.44	1.16	.54		.588	. 46	5.98	<u> </u>			+		-
	.005	1.55	1	5.16	6.71	1.30	90		.581	. 725	5.955				+		
	.018	1.86		4.85	6.71	1.39	1.28		.652	.93	5.78						
	.042	207		4.75	6.82	1.43	1.31		. 632	1.035	5.785	-					
	.145	2.58		4.27	6.85	1.61	1.79		.694	1.29	5.56						
	. 255	2.79		3.85	6.64	1.73	2.21		. 794	1.395	5.245	1					
	. 41	3.08		3.54	6.62	1.87	2.52		. 819	1.54	508						
	. 64	3.31		3.09	640	2.07	2.97		. 898	1.665	4755	-					
	.92	3.46		2.76	6.22	2.25	3.30		.955	1.73	4.49						
	. 99	3.49		2.73	62Z	2.28	3.33		.955	1.745	4.475	-	[
	1.25	3.56		2.52	6.08	2.42	3.54		.994	1.78	4.30						
	1.74	3.64		2.21	5.85	2.64	3.85		1.058	1.82	4.03						
	2.18	3.65		2.00	5.65	2.83	4:06		1.112	1.825	3.825	•					
	2.97	3.70		1.83	5.53	3.02	4.23		1.142	1.85	368						
	3.60	3.73		1.70	5.43	3.20	4.36		1.169	1.865	3565						
	408	3.73		1.71	5.44	3.18	4.35		1.192	1.865	3575						
	4.12	3.30		1.71	5.01					1.65	3.36						
	3.97	1.84		1.93	3.77					.92	2.85						
	3.36	.086		2.02	2.11					.043	2.06						
	2.27	86		2.00	1.14					43	1.57						
	1.57	-1.08		2.15	1.07					54	1.61						
												_					
				_													
		DF.			Δu - Δσ,					(4) -	11.	- ~	- \				
(I) CORREC	TED FOR		·	_ (3) A	$= \frac{1}{\Delta \sigma_{\rm q} - \Delta \sigma_{\rm r}}$	FOR CO	MPRESSION	TESTS R	EMARKS	(T) g	• 1/2 (04-0	5r)				
(2) AU FC)R Δσ₂=0			Δ	$= \Delta u - \Delta \sigma_{c}$	FOR FY	TENSION TE	STS		7							
	, •				∆ ማ− ∆ ማ												

2ndcycle

her	aldet	100	~ 1191	-													
		DOC	- 16/1L	Maci		8.41.080	100 803	48.00 10.0	9		6	t_ =		CONTROL	LED STRAI	N 🗹 ST	RESS
FCT	Earth	Scie	nce			30.7.94	100 711	1.80 9.15		- 6.c	6		50 %	RATE	600.	or min	cm
	NER		3/02 66		27	7		Gener	-J -	- 6.0	56	3	<u>^</u>		-undia	Came	m cci
ED BY_			2	G	s=			<u>George</u>	-	σ _{ac} =	1 /	u _B =	1 4		V	1	
STRESS	SES IN	ng/c		PI	RESHEAR ST	RESS HISTO	DRY_1SC	Tropic	. co	45. 7	TO 6.	06 14	lem		1 ext	cusic	- 4
		<u>v</u>				r		· · · · · ·					T	1	т	<u> </u>	т
PSED	AXIAL	(. (1)	$(\bar{\sigma}_1 - \bar{\sigma}_3)$	a	ā	E / E -	(2)	<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	A ⁽³⁾	(4)	5	Æ	=				
IME	STRAIN, %		σ _{ιc}	•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<u> </u>	σic		4	۳	~r	°a				
	1.570	. 003		1.57	1.57	1.00	0			.0015	1.57						
	1.516	. 281		1.33	1.61	1.21	. 24		852	.14	1.47						
	1.518	.306		1.32	1.63	1.23	. 25		817	.153	1.47						
	1.619	. 427		1.25	1.68	1.34	• 3/		125	. 213	1.46			-			
	1.657	.516		1.20	1.13	1.44	.5/	·	102	. 26	1.76				<u> </u>		
	1.12	-625		1.15	1.18	1.55	.75		681	. 51	1.44	<u> </u>	+	<u> </u>	+		<u> </u>
	197	- 610	· · · · · · · · · · · · · · · · · · ·	1.05	1:23	195	.32		600	46	1 54	<u> </u>	+		+		
_	214	100		. AC	202	214	. 62		576	.54	1.49						
	728	120		95	2.75	7.26	.62		516	60	155						+
	2.64	1.53		91	2.44	268	.66		432	765	1.675		1				-
	3.08	1.91		93	2.84	3.06	. 64		334	955	1.885	-					
_	354	2.33		.94	3.27	3.48	.57		253	1.165	2.105						
	4.04	3.04		1.05	4.09	3.90	.52		17/	1.52	2.57						
	4.67	3.10		1.15	4.25	3.70	. 42		135	1.55	2.70						
	5.20	3.22		1.17	4.39	3.75	.40		124	1.61	2.78						
	5.59	3.31		1.21	4.52	3.73	.36		.108	1.855	2.865	ļ					
	6.25	3.45		1.30	4.75	3.66	.37		107	1.125	3.025						
	6.12	3.50		1.27	4.11	3.75	.30	<u> </u>	086	1.75	<u> 3.07</u>						
	1.06	3.36		1.25	4.81	305	. 32	•-	090	1.18	205						
	0.21	3.37		1.31	1100	3.15	.56	++-	100	1.075	2/05			+	+		<u>+</u>
	070	2/2		1.31	17.73	275	. 36	•	017	100	3.13						
	8.70	244		1 34	175	3.75	. 30	<u>├</u> ──┤*	011	1.73	205			<u> </u>			
	874	247		1.45	- 4.91			<u> </u> -		1235	2.685	· · · · ·					
	844	31		1.17	1.01					15	1.17						
	660	43		1. ZZ	. 74					22	.95						
	5.53	73		1.24	. 47					375	. 74				1		1
	4.93	79		1. Z¥	.45					- 395	. 84						
					<u> </u>			L					ļ	ļ	<u> </u>		ļ
					+	+		↓						<u> </u>	+		
			<u> </u>					<u> </u>					+				
						 		<u>├───</u>			<u> </u>				+		┝───
			I			I		II		L	L		<u> </u>	I			I

3rd Cycle

SOIL Remainded BBC 1671/1		w, % e 38:4/.080	S,% V,cc L,cm A	.,cm ²	σ _{ic} =	PRESHE	AR		DURING SI	HEAR
PROJECT Earth Science TESTED BY NF13 DATE 9/23 66 ALL STRESSES IN Ky/cm ²	G _s = PRESHEAR	AR 307 843 2.77 R STRESS HISTO	166 71.247.80 9 TYPE CELL 600 DRY 1.30 100 pt	7.14 10 <u>-</u> 1'C COP	σ _{ac} = <u>6.0</u> σ _{ac} = <u>6.0</u>	<u>56</u> 56 56.00	P.P.R.= <u>6</u> u _B = <u>3.03</u> <u>5 kg/ca</u>	2 <u>~</u> Z	rate <u>600.01</u> path <u>Cyclic c</u> V <i>ex</i> 7	onpressiey cnsieu
ELAPSEDAXIAL STRAIN, % $(\overline{\sigma}_1 - \overline{\sigma}_3)^{(1)}$ $(\overline{\sigma}_1 - \overline{\sigma}_3)^{(1)}$ TIMESTRAIN, % $(\overline{\sigma}_1 - \overline{\sigma}_3)^{(1)}$ $(\overline{\sigma}_1 - \overline{\sigma}_3)^{(1)}$	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	$\overline{\sigma}_1 = \overline{\sigma}_1 / \overline{\sigma}_3$	Δu ⁽²⁾ <u>Δu⁽²⁾</u> <u>Δ</u> u ⁽²⁾	A ⁽³⁾	q	ą	σ _r	σα		
5.10 .004 5.11 .015 5.11 .10 5.13 .27	.57 .5 .72 .7 .70 .8	4 1.00 4 1.03 0 1.14 2 1.37	0 /8 /6 06	-/2.0 -/.60 -275	.002 .0075 .05 .//	.54 .75 .75 .7/				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.46 .1 .44 .8 .46 1. .47 1. .59 2	7 7.68 9 2.02 71 3.72 75 3.72 20 3.9	+.08 +.10 +.08 +.07	7.242 7.222 7.064 7.055	. 168 . 225 . 625 . 64	. 625 . 665 1. 085 1. 11				
10.69 2.95 11.53 3.02 12.20 3.20 12.93 3.29	· 82 3. .91 3. .95 3. 1.03 4.	30 4.02 86 4.24 87 4.18 23 4.12	-, 37 -, 4/ -, 4/ -, 49 -, 54	113 125 136 136	. 033 1.24 1.475 1.51 1.60	2.16 2385 2.46 2.63				
/3.52 3.46 /5.60 3.55 /5.82 3.55 /5.90 3.55	1.08 4. 1.24 4. 1.22 4. 1.28 4.	37 4.04 64 3.74 77 3.91 83 3.78	70 68 74 74	16# 206 192 208	1.645 1.70 1.775 1.775	2.725 2.94 2.995 3.055				
/5.% 3.54	1.28 4.	82 3.76	74	209	1.70	3.05				
ORRECTED FOR P.F.	$(3) A = \frac{\Delta u}{\Delta \sigma_o} -$	$\Delta \sigma_r$ FOR COM	PRESSION TESTS	REMARKS:						

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TEST NO_CIV - P21		W,%	e S	% V, c	c L, cm	A,cm ²	PRES	HEAR	DURING SHEAR
SOIL Nemalded BBC	INITIAL	385	1.10 9	3 77	1 7.54	10.28	σ _{ic} = <u>6.06</u>	t _c =	CONTROLLED STRAIN STRESS
PROJECT Earth Science	PRESHEAR	30.0.	88 10	o 67.	0 7.42	9.03	σ ₃₀ = 6.06	P.P.R.= 100 _%	RATE . 00048 "/min
TESTED BY NFB DATE 3/22 66	G _s =2.	77	יד	PE CEL	. WI		σ _{ac} = <u>6.06</u>	u,₌_ <u>3.o</u>	PATH Loading
ALL STRESSES IN Kg/cm²	PRESHEAR	STRESS	HISTORY	1-0	10 1.	5 hr/	cm ² 3-0 · 375,	.75, 1.5, 5.1	6.06 4

ELAPSED TIME	AXIAL STRAIN, %	$(\bar{\sigma}_1 - \bar{\sigma}_3)^{(1)}$	$\frac{(\bar{\sigma}_{i} - \bar{\sigma}_{3})}{\bar{\sigma}_{ic}}$	$\overline{\sigma}_3$	σī	$\bar{\sigma_i} / \bar{\sigma_3}$	۵u ⁽²⁾	<u><u><u></u> <u></u> <u></u> <u></u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u></u></u></u>	A ⁽³⁾	q	ą	σ _r	σ _a			
8:12	0	0	0	6.06	6.06	1.00	0	0		0	6.06			 		
	.05	.28	.046	621	6.21	1.05	.65	. 021	. 47	.14	6.07					
	.10	.44	.073	5.92	6.36	1.08	.14	. 023	. 32	.22	6.14					1
	. 22	.75	.124	5.72	6.47	1.13	. 34	.056	.45	.375	6.10					<u> </u>
	. 39	. 81	. 134	5.43	6.44	1.14	.43	.07/	.53	. 41	6.04			1		
	.43	. 85	.140	5.41	6.26	1.16	. 65	.107	.77	. 43	5.84					
	.44	1.48	. 244	5.15	6.63	1.29	.91	.150	.62	. 74	5.89			 		
	. 47	1.69	. 279	4.87	6.56	1.35	1.19	.197	.71	. 85	5.72			 		-
	.52	2.48	.410	4.52	7.00	1.50	1.54	.1.54	. 62	1.24	5.76			 1		
	.56	2.70	. 446	4.35	7.05	1.62	1.71	.252	.64	1.35	5.70					t
	. 67	3.16	. 522	3.89	7.05	1.81	2.17	.379	. 69	1.58	5.47					
	.705	3.22	.532	3.87	7.09	1.83	2.19	.361	. 68	1.61	548			 		<u> </u>
	. 89	3.51	580	3.39	6.90	2.04	2 47	442	. 76	1.76	515			 		
	1.15	3.68	.607	3.07	6.75	2.20	3.00	195	. 82	1.84	4.91			 		
	1.31	3.72	614	2.87	6.59	7.30	219	.571	86	1.86	473			 		
	1.55	3.77	. 422	2.54	6.31	2.48	3.40	542	.90	1.89	4.42					1
	1.73	3.82	. 630	2.41	6.23	2.59	3.57	582	.91	1.91	4.32					
	2.14	3.84	6.53	2.28	6.12	2.68	3.70	. 678	.90	1.92	4.20			 	+	<u>+</u> -
	2.76	3.95	652	1.09	604	2.89	3 9 9	.150	1.01	1.98	407			 		+
	3.64	3.97	. 656	1.89	5.86	3.10	4.17	1.88	105	100	200			 1		+
	4.45	4.01	661	1.77	5.78	5.27	419	709	1.07	2005	3.70			 		
	498	401	161	1.69	5.70	3 37	4/44	714	100	7005	3.70			 		<u> </u>
	5.52	401	441	1.68	549	3.38	4 28	725	1.00	2005	3.19			 		
15:26	6.45	400	- 610	1.66	54	341	44	72/	1.10	2 44	3.01			 	+	<u> </u>
	0.0	1.00		7.00	3.00	0.77	7.10	. /	1.10	2.00	3.00	·····		 	+	
														 		+
														 +		
														 		+
														 		<u> </u>
														 		<u> </u>
														 		<u> </u>
																<u> </u>
														 		<u> </u>
														 		<u> </u>
														 		L
L																

(2) Δu FOR Δσ₃ ≠ ο

 $A = \frac{\Delta u - \Delta \sigma_{e}}{\Delta \sigma_{r} - \Delta \sigma_{e}}$ FOR EXTENSION TESTS

SOIL	CHOD- oldad Earth	UUE BBC	s) R. P. 16 J/L N ncc	22 • C () 	NITIAL	w, % e 17.8 1.112 12.8 808	s,% V,cc 99 80.2 100 72.2	E L, cm A, c 8 8.00 / 0. 8 7.23 / 0.	m ²	$\overline{\sigma}_{1c} = \underline{3.0}$ $\overline{\sigma}_{3c} = \underline{2.1}$	PRESHE	t _c =	1.00	CONTROLI	DURING SI ED STRAIN	STF	RESS	-
TESTED BY		DATE	<u>71266</u> m ^e	G _s	= X.7	RESS HIST	TYPE CELL	<u>C.H.</u> Sofrod	7403 Tic ce	_{∂ac} = <u>⊃.0</u> = + ≤ . /	<u> </u>	_{us=} <u></u>	<u> </u>	PATH 4	3.0	rcd ce		<u>_</u>
		4									• • • • • • • • • • • • • • • • • • •	1						- -
ELAPSED TIME	AXIAL STRAIN, %	$(\overline{\sigma}_1 - \overline{\sigma}_3)^{(1)}$	$\frac{(\bar{\sigma}_1 - \bar{\sigma}_3)}{\bar{\sigma}_{1c}}$	$\overline{\sigma}_{3}$	$\overline{\sigma}_{i}$	$\overline{\sigma_1} / \overline{\sigma_3}$	2) م بر (2)	<u><u>Au</u> o₁c (2)</u>	A ⁽³⁾	q	ą	σ _r	σα	5,	Q2	Ħ.	ho	
	0	0				F	irst =	shear	•					2.07	3.97	10.00	7.23	
	. 07	.168										<u> </u>						4
l	.175	.269																4
	.244	.340													<u> </u>			-
	. 755	.487	┼────┤															
	.621	.602				<u>+</u>												-
	682	845				<u>+</u>							1					1
	.699	.972				<u> </u>												
	.716	.982]
	.734	1.199											L					1
	. 77	1.382											ļ					-1
	. 84	1.74									Ļ		ļ					_
	.91	7.04																4
	.78	2.31			+									+				-
	1.12	2.30																-
	119	104				<u> </u>			_			+						-
	1.26	3.09	+		+								<u>+</u>					-
	1.36	3.25								+			†					1
	1.57	3.44	1 1				<u> </u>						1					-
	1.92	3.47																
	2.10	3.51																
	2.45	3.50											ļ					4
	6						acon .	1.54	1.21					1.63	397	10.19	714	-
	07	145														10.17	1/	-
	. 11	.253	1	· · · · · ·	1	1	<u> </u>				†		1	1				1
	. 14	450																
	.16	. 606																4
	.18	. 692				ļ	L				ļ							
	.21	1.005	d		+	+						<u> </u>						4
	. 28	1.185				+							+					-
	1.56	1.31			+	+								+				-
L	.73		I							I	I		1					
()) CORREC	TED FOR	P.F.		(3) 🖌	$\Delta = \frac{\Delta u - \Delta \sigma_r}{\Delta \sigma_a - \Delta \sigma_r}$	FOR CO	MPRESSION	TESTS	REMARKS									
(2) 🛆 u FO	OR Δσ ₃ = 0			Ļ	$\Delta = \frac{\Delta u - \Delta \sigma_{e}}{\Delta \sigma_{r} - \Delta \sigma_{e}}$	FOR EX	TENSION TE	STS										

TEST NO.	K00-1	Was))R P2	2		W,% e	S,% V,c	c L, cm A,	cm ²	_	PRESH	EAR			DURING S	HEAR		
SOIL MEN	olded	BBC	16. g/L M	626 LIN		39.8 1.112	99 80.	88.00 10	0./	σ. = <u>3</u> .	00	t_=		CONTROLL	ED STRAIN	STI	RESS	_
PROJECT	Earth	Scie	uce	P	RESHEAR	32.8 888	100 72.	37.23/	20	$\overline{\sigma}_{1c} = 2.$	10	P.P.R.=	1.00	RATE	015	in/min	r	_
TESTED BY.	NFB		2/12 66	G	- 2.7	7	TYPE CELI	C.H	1455	₹= <u>3.</u>	08	u.= <u>3.c</u>	0	РАТН 🖌	Idrai	nede	omp	
ALL STRESS	SES IN	Hgla	m C	PR	FSHEAD ST	BESS HIST	NEV KO	0150	lida	tion	Sim	- 6.0	E		2		/ _	_
		4			LONCAN ST	AE33 1131									-			
ELAPSED TIME	AXIAL STRAIN, %	$(\bar{\sigma}_{1} - \bar{\sigma}_{3})^{(1)}$	$\frac{(\bar{\sigma}_1 - \bar{\sigma}_3)}{\bar{\sigma}_1}$	σ ₃	σı	$\overline{\sigma_1}/\overline{\sigma_3}$	(2) م		A ⁽³⁾	q	p	σ _r	σ _a	5.	53	FF,	L.]
	50	178	-10		<u> </u>					+		+				C'm-		=
	.57	1.94																-
	.64	2.10	1								-							-
	.71	2.25																-
	. 89	2.58]
	1.07	2.83]
	1.25	3.00								L							L	_
	1.42	3.10	+								+							_
	214	2.24					<u> </u>											
	249	326																-5-
	3.20	3.28																-+
			1			-		1		+		-		1				1
	0	0					Thire	1 31	rar					1.09	3.97	10.58	6.88	-
	.04	.096																1
	.07	. 33																
	.///	. 30															L	_
	. /5	1635												<u> </u>			<u> </u>	_
	. 76	- 12																4
	: 33	.00																-
	.41	1.071								<u> </u>								-
	.52	1.21																1
	.63	1.33									1							1
	. 70	1.46																1
	. 42	1.69					ļ			L	<u> </u>							_
	1.20	1.71			<u> </u>	+		L										4
	1.70	1.20	┼───┤									+			·			4
	2.03	2.59			t	+	<u> </u>											-
	2.40	2.71	1 1															-
	2.77	2.79				1	1			+		-						-
	3.33	2.90]
ļ,	4.07	7.89													_]
	4.80	7.97	L]		1					L								
(I) CORRECT	ED FOR	P.F.		(3) A	$= \frac{\Delta u - \Delta \sigma_r}{\Delta \sigma_q - \Delta \sigma_r}$	FOR COM	PRESSION	TESTS	REMARKS									
(2) ∆u FOF	R Δσ3 = 0			А	$= \frac{\Delta u - \Delta \sigma_{c}}{\Delta \sigma_{r} - \Delta \sigma_{c}}$	FOR EXT	TENSION TE	STS										

Kene	Ided I	BC 16	JIC NO			9.8 1.112	2 99 80	8 8.00 / 6	2./	σ _{ιc} =_ <u>3.0</u>	<u>>0</u>	[†] c [≞]		CONTROLL	ED STRAIN	ST in/	RESS
JECT	arthe	<u> </u>	<u>c</u>	P	RESHEAR	28.88	8 100 72.	3 7.23 16	2.0	σ _{3C} =	0	P.P.R.	1.00	RATE 💶	O/S	1 1 1 1 1	
TED BY.	NFB		12 66	Gs	<u>= 7.77</u>	?	TYPE CEL	C.H. mi	11 55	σ _{ac} = 3 .0	00	u _B = <u>3.0</u>	0	РАТН	drain	nad co	omp
STRESS	SES IN	ky/cm	E	PR	ESHEAR ST	RESS HIST	FORY Ko	conso	lidat	ion, e	STen .	6.0	<u>5</u>	- 3.0			•
		4					•••			· · · · ·							
APSED	AXIAL	$(\bar{\sigma}_1 - \bar{\sigma}_3)^{(1)}$	$\frac{(\bar{\sigma}_1 - \bar{\sigma}_3)}{\bar{\sigma}_1}$	σ ₃	σī	$\overline{\sigma}_1 / \overline{\sigma}_3$	(2) کار		A ⁽³⁾	q	p	ōŗ	σα	5	53	Ħ.	Lo
	5.54	298	-10										+				
	6.28	2.96															
	7.39	2.94					_										
							Font	th S	hear					0.85	3.97	11.23	6.4
	0	0															
	.039	. 230															
	.079	. 169									<u></u>						_
	.17	.468				+											+
	./6	.551															+
	.20	1371									+		+				
	. 28	. 676					_										+
	.57	. 820											+				
	10,	1.05									+		+	-			
		125										-					+
	100	143									+		+			<u> </u>	+
	1.27	1.61		· · · · · · · · ·				+				··· <u> </u>	+				
	1.47	170		· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·		+						+
	1.67	194			+						+		1			· · · · ·	
	1.86	207			+												1
	2.16	2.25				<u>+</u>					+					<u> </u>	+
	2.55	2.41									1						
	2.94	2.52															
	3.34	2.59															
	3.73	2.63															
	4.32	2.68															
	4.72	2.71									L						
	5.49	2.75											<u> </u>				
	6.67	2.72															
											+						_
	ļ							ļ			+					ļ	<u> </u>
	<u> </u>				+	+					+					<u> </u>	+
					+	+											+
	<u> </u>				+	+					+	+		+		<u> </u>	+
	L		L		1				L		L		1		l	L	J
ORRECT	TED FOR	PF		(3) A	$= \frac{\Delta u - \Delta \sigma_r}{\Delta \sigma_r}$	FOR CO	OMPRESSION	TESTS	REMARKS								

(2) AU FOR A 03 = 0

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

(2) Δu FOR Δσ3 = 0

EST NO. UUSSJ-U/-S-/ OIL BBC- undisturbed ROJECT CFTES ESTED BY NFB DATE 5/22 64 LL STRESSES IN tog/cmt	W, % e S, % V, cc L, cm A, cm ² INITIAL 48.9, 1.58 100 80.0 8.00 10.0 FINAL 48.9 1.38 100 10.31 G. 2.78 TYPE CELL C.H. u. H(G)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DURING SHEAR CONTROLLED STRAIN V STRESS RATE C C C C ''/miy PATH
ELAPSED AXIAL $(\sigma_1 - \sigma_3)$ $\overline{\sigma}_3$	σ _i σ _i /σ ₃ (2) A q p		SAMPLE DESCRIPTION
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

(2) Δu FOR Δσ3 =0

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

(2) ∆u FOR △σ3=0

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

(2) Δu FOR Δσ₃ = 0

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

(2) Δu FOR Δσ₃=0

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

(2) <u>∧</u>u FOR <u>∧</u>σ₃=0

SOIL MECHANICS LABORATORY, DEPT. OF CIVIL ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY

(2) Δu FOR Δσ3=0

Types of Triaxial Tests.

an elevated bar over letters denoting a type of shear test, indicates that pore pressures were measured during shear.

compression test on isotropically normally consolidated sample..

CIU

CIOU

CKU

compression test on isotropically overconsolidated sample. compression test on "perfect" sample after K_0 consolidation. Perfect sampling denotes an undrained release of K_0 stresses to attain an isotropic state of stress (Ladd and Lambe, 1963).

 CK_0 -CIOU compression test on isotropically consolidated sample after K_0 consolidation, i.e. sample is consolidated to K_0 , unloaded undrained to attain an isotropic state of stress (Sps) and then consolidated isotropically to

CIU-CyC-E cyclic compression-extension test on isotropically consolidated sample.

where Se < Ses

 $\overline{CK_0U}$ -CyCcyclic compression test on K_0 consolidated sample. $\overline{CK_0U}$ -CyC-Ecyclic compression-extension test on K_0 consolidated
sample.

CI-UU compression test on isotropically consolidated sample rebound to zero total stress before shear. CK_o-UU compression test on K_o consolidated sample rebound

to zero total stress before shear.

List of symbols.

SV, Sh	vertical and horizontal total stress
5. 54	vertical and horizontal effective stress
5, 5	major and minor effective stress
Gem	maximum past consolidation pressure
Se	consolidation pressure (isotropic)
51c, 53c	consolidation pressures (anisotropic)
Sps	effective residual stress after perfect sampling
5.	effective residual stress after actual sampling
e	void ratio
8	unit weight
8t	total unit weight
Yu	unit weight of water
K	ratio of horizontal to vertical effective stress
Ko	ratio of horizontal to vertical effective stress when
	no strain is taking place in the direction of minor stress
R	Skemtons A-factor = $\Delta u - \Delta \sigma_{3}$
Au	" " " during unloading = <u>Au - ASh</u>
R ₄	Skemtons A-factor at failure
Su	undrained shear strength
Sul Ops	undrained shear strength at perfect sampling
Su O Ts	undrained shear strength at sampling
ī.	Hvorslev's cohesion parameter
Þe	Hvorslev's friction angle parameter
- Se	Hvorslev's equivalent pressure
O.C.R.	overconsolidation ratio = 5 . 50m

Equ. Ock	"Equivalent "overconsolidation" ratio	= Sps
5, , 53	strain in major and minor stress dir	ections
u	pore pressure	
Us	residual pore pressure	
w	water content	
w	liquid limit	
wp	plastic limit	
wn	natural water content	
3	depth	
Re	preshear crossectional area of triax	ial sampl
Le	preshear length of triaxial sample	
5	degree of saturation	
P.F.	piston friction	

F.S. filter strips

0