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Abstract
An integrated model has been developed to evaluate the effect of reactor flux,

fluence, and other operating conditions on crack growth rates in austenitic stainless steels
in boiling water reactor (BWR) environments. The model evaluates the following in order
to account for all factors affecting irradiation assisted stress corrosion cracking.

* water chemistry including radiolysis and hydrogen injection

* radiation induced segregation of the metal

* radiation hardening of the metal
* crack tip strain rate of a growing crack

+ dissolution rate at the crack tip following passive film rupture

The results of each of these models are combined to determine the crack advance
rate for the given conditions.

Environmentally assisted cracking (EAC) is a phenomenon where a combination
of aggressive environment, susceptible material, and significant tensile stress result in
accelerated degradation, including stress corrosion cracking (SCC), and hydrogen
embrittlement. The EAC model is based on first principles electrochemistry and physical
metallurgy. The effect of neutron and gamma radiation dose is included so that
irradiation assisted stress corrosion cracking can be studied. By integrating the bulk
chemistry with crack tip processes, the crack growth behavior of an aqueous system can
be completely characterized. The model integrates chemistry and mechanical behavior to
allow the study of EAC in general. EAC phenomena of interest include anodically driven
stress corrosion cracking as well as cathodically driven hydrogen embrittlement.

The model is able to predict measured data in the literature with good accuracy
and precision. It predicts the effects of dose-rate and accumulated dose on stress
corrosion cracking in BWRs. This model contributes to the field of crack growth
modeling by creating a complete picture including all the major factors effecting crack
growth in irradiated systems.

Thesis Supervisor: Ronald G. Ballinger

Title: Professor of Nuclear Engineering and Materials Science and Engineering
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An integrated model has been developed to evaluate the effect of reactor flux,

fluence, and other operating conditions on crack growth rates in austenitic stainless steels

in boiling water reactor (BWR) environments. The following are the contributions made

here and described in this thesis.

* A fully integrated crack growth model which incorporates the effects of

irradiation on the physical and chemical properties of both the metal and

reactor coolant.

* Accounting for both anodic and cathodic crack tip processes.

* A radiation hardening model for predicting the long-term effect of radiation

on performance of austenitic alloys.

* A correlation between the grain boundary chromium profile and the

equivalent EPR value for which the cracking susceptibility is equal to a degree

of thermal sensitization.

* Use of a complete deterministic derivation of the slip dissolution/ film rupture

model originally developed by Ford and Andresen [1.7, 1.13].

* A Visual Basic graphical user interface.

1. Introduction

Materials developed for high technology applications are increasingly resistant to

general corrosion in the environments in which they operate. As resistance to general

corrosion increases, these materials often suffer degradation due to localized corrosion. This

15



is significant in the nuclear power industry. The increase in susceptibility to localized

corrosion is exacerbated by higher stresses in engineering materials. This is a result of

residual stress from increased use of welding and high operating stress.

Environmentally assisted cracking (EAC) is the most problematic form of localized

corrosion. EAC is any phenomenon where a combination of environment, material, and

tensile stress result in accelerated degradation, including stress corrosion cracking (SCC),

hydrogen embrittlement, and corrosion fatigue. The goal of this research is to develop an

integrated EAC model. The primary dependant variable in the model will be the

environmentally assisted crack growth rate. Independent variables include chemical,

mechanical, and system properties.

As integration is the key factor in the development of the following model, it will

be referred to as the Integrated Environmental Degradation Model (IEDM) throughout

this work. While some researchers continue to search for one mechanism capable of

describing EAC in all situations, most others agree that several separate mechanisms are

necessary to explain EAC. Therefore, the IEDM accounts for both anodically driven stress

corrosion cracking and cathodically driven hydrogen embrittlement. The IEDM integrates

chemistry and mechanical behavior to allow the study of EAC in general. A

characterization of crack tip strain is included to properly define the state of stress of the

crack. The effect of neutron and gamma radiation dose is completely integrated into the

IEDM as well. This includes a model for the radiolysis effect on reactor coolant chemistry,

a model for radiation induced segregation of Fe-Ni-Cr alloys and a radiation hardening

model.

The following three tasks are accomplished in this dissertation:

16



*. Development of an integrated crack growth model that incorporates both

anodic and cathodic processes at the crack tip and in the bulk system.

*. Coupling the necessary models and correlations to the crack growth model

to completely characterize the effect of radiation and chemistry.

Utilization of Visual Basic for creation of a graphical user interface

The primary application for this model is EAC in light water reactor systems. The

input required for the model includes the following:

+ Thermal-hydraulic data such as flow rate, temperature and pressure

Chemical reaction sets for radiolysis products and other present species

Reactor power and dose distributions

Reactor component dimensions

Stress/strain conditions and sensitization data for reactor components

The radiation chemistry analysis loop model by Chun [1.1] and Grover [1.2] has

been updated and is incorporated into the IEDM to model coolant chemistry and

radiolysis. A radiation induced segregation model by Boerigter has been updated and is

used to model the effect of radiation on the sensitization behavior of the metal [1.3]. The

output of this model is profile of chromium concentration across the grain boundary. The

determination of the degree of sensitization (DOS) by microscopic analysis of the

minimum chromium concentration along the grain boundaries is not a simple task.

Therefore, a standard method has been designed for nondestructive testing to determine

the degree of sensitization. This method is the electrochemical potentiostatic reactivation

(EPR) technique [1.4]. In an EPR test, a sample is corroded during a potential scan and

the integrated current is measured. This current is then compared to the grain boundary

17



area to determine the rate of corrosion along the grain boundaries [1.5,1.6]. Because the

grain boundary sensitization of most samples discussed in the literature is given as the

EPR value, an equation converting the radiation induced segregation profile into an EPR

value was developed for this model.

1.1. Crack Advance Mechanisms

The phenomena of environmentally assisted cracking range from those for which

mechanical effects dominate to those that are dominated by electrochemical effects.

However, EAC can be broadly divided into two types of phenomena: those for which the

cathodic crack tip process is responsible for crack advance and those for which the anodic

crack tip process is responsible. While the anodic or cathodic process may be responsible

for crack advance, either process may control the rate of advance. In the local crack tip

environment, it is possible for both processes to occur simultaneously. In this section, the

cathodic and anodic mechanisms of crack advance is discussed.

1.1.1. Cathodically Driven Environmentally Assisted Degradation

Hydrogen embrittlement is significant at relatively low temperatures in cathodically

polarized metals. The requirements for the hydrogen embrittlement mechanism are the

following [1.7]:

* A reducible species that contains hydrogen must be present at the crack tip and

have access to the metal.

* Hydrogen must be reduced at the crack tip and this reaction must be balanced by

an oxidation reaction. The oxidation process need not occur at or near the crack

tip.

18
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* Hydrogen must gain access to the material and be able to migrate to a critical

region. This process is a strong function of the properties of the surface film and

the concentration of hydrogen and other species in the crack.

The role of hydrogen as an embrittling agent is complex. Consequently, several

mechanisms by which hydrogen damage might occur have been suggested. The

following are a few of these mechanisms. One mechanism for hydrogen embrittlement

involves the reaction of hydrogen atoms with dislocations, voids, or the stress field at the

crack tip to decrease the ductility of the metal [1.7]. A second mechanism suggests that

the build-up of gas pressure at vacancies and dislocations in the plastic zone at the crack

tip results in fracture [1.7]. These accumulating gases can include diatomic hydrogen,

methane, and hydrogen sulfide. Another proposal is the decohesion mechanism of

Parkins [1.8]. Here, electrons donated from dissolved hydrogen atoms enter the

incompletely filled d-bond of transition metals. This increased electron density acts to

increase the interatomic spacing of the lattice, which reduces the cohesive strength of the

metal. At any location within the metal lattice where hydrogen concentrates, the cohesive

strength is reduced causing the metal to become more susceptible to fracture.

1.1.2. Anodic Dissolution Mechanisms

At the other end of the spectrum from hydrogen embrittlement are those

mechanisms that result from anodic dissolution of the metal at the crack tip. Stress

corrosion cracking can be either intergranular or transgranular. In intergranular stress

corrosion cracking (IGSCC), electrochemical heterogeneity results from depletion and/or

precipitation of certain species at grain boundaries. This heterogeneity generates a galvanic

cell that results in anodic dissolution of the material at the grain boundaries. Additives and
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impurities in the metal such as copper, tin, antimony, zinc, nickel, and aluminum affect the

susceptibility of the metal to IGSCC by changing the reversible potential of the grain

boundaries relative to the bulk material [1.8]. A galvanic cell can be formed due to the

presence of passive film on the surface of a material. This film is weakened or does not

form where grain boundaries intersect the surface. This is due to diffusion of species from

the grain boundary region and/or the precipitation of species at the grain boundary that alter

the metal matrix. In thermally treated stainless steels, chromium precipitates, such as

Cr23 C6 , result in a chromium depleted region near the grain boundaries [1.9]. Because the

depleted region has a higher passivation potential, the grain boundary will be anodically

dissolved at a certain potential [1.10].

Transgranular stress corrosion cracking (TGSCC) also occurs when a galvanic cell

exists between an active crack tip and passive crack walls. When agents, such as chloride

ions, in the aqueous solution are concentrated in cracks and crevices, they weaken the

passive film. The passive film will rupture at the crack tip because it acts as a stress

concentrator and the underlying material will corrode anodically. The same agents also

encourage crack growth by slowing the formation of a new passive film.

For a passive film to form on the surface of a crack, the electrochemical potential of

the aqueous solution must fall within a certain range [1.11]. Species in the water that affect

this potential include ions such as metals and halides and radiolysis products such as

hydrogen, oxygen, and hydrogen peroxide. The radiolysis products are formed when water

molecules are broken apart by ionizing radiation.

The mechanism of crack advance in austenitic materials that has been widely

accepted in the stress corrosion cracking literature is the slip dissolution/film rupture model
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originally developed by Ford and Andresen [1.7,1.12,1.13]. Crack propagation by the slip

dissolution/film rupture mechanism results from a combination of anodic dissolution and

stress/strain conditions that result in dislocation motion [1.14]. The tensile stress that is

characteristic of all SCC results in a pileup of dislocations at the crack tip because it acts as a

stress concentrator. These dislocations cause the protective film to separate in cross slip at

the crack tip exposing bare metal to the environment. This bare metal then undergoes rapid

anodic dissolution until the metal repassivates. As a result, the new crack tip has advanced

into fresh material where dislocations begin to pile up again.

An alternative method, brittle film rupture, considers the separation of the passive

film to be due to brittle fracture. In this mechanism, dislocations pile up behind the

passive film until it ruptures exposing the bare metal beneath. The former process is

more likely to occur when the passive film is thin and coherent with the underlying

matrix. The latter process will dominate for a thick incoherent passive film. The

dislocations result from a monotonically increasing stress, a cyclic stress, or creep

resulting from a high constant stress. Experimental results have supported the slip

dissolution/film rupture model because the dissolution rate of bare metal has correlated

positively with the SCC propagation rate in a wide range of materials [1.13].

The slip dissolution/film rupture mechanism for stress corrosion cracking occurs

because the thermodynamically stable oxide film ruptures due to strain concentrations at

the crack tip. The crack advance rate is governed by the oxidation rate of the surface

exposed by the fracture of the film, the rate of formation of the new film (repassivation),

and the time required for the crack tip strain rate to rupture the oxide film [1.12].
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1.1.3. Mixed Mechanisms

Another mechanism that involves brittle cracking of the passive film is the film-

induced cleavage or environmentally induced cleavage model [1.12]. This model has

been described as a combination of the slip dissolution/film rupture model and the brittle

film fracture model [1.7]. Here, the brittle film is ruptured as the stress at the crack tip

increases due to the motion of dislocations. The release of energy associated with rupture

of the brittle film results in the cleavage of the underlying metal matrix. The amount of

cleavage induced in the bulk metal is affected by the coherency between the film and the

metal matrix, the thickness and ductility of the film, and the bond strength at the film-

metal interface [1.13].

The film-induced cleavage mechanism is supported by experimental results. The

rate of crack propagation in anodic environments where hydrogen embrittlement is

unlikely to be a factor is often controlled by the dissolution rate of the metal. Crack

propagation rates that exceed the anodic dissolution rate support the concept that

cleavage occurs in the metal matrix. Fractographic observations of transgranular cracks

have also supported the film-induced cleavage mechanism. Specifically, in some cases

the sides of cracks match and interlock completely, indicating that neither dissolution nor

plasticity contribute greatly to the cracking [1.13]. If the conditions for hydrogen

embrittlement are not present, film-induced cleavage is the most reasonable explanation

for this fractography.

In the IEDM, the principles of the film-induced cleavage model are used in a

novel manner. Rather than using the cleavage component, C, to back into a description

of why crack growth rates may be higher than that predicted by the slip dissolution/film
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rupture model, the cleavage component has been formulated here to describe the

contribution of hydrogen embrittlement to cracking at low potentials. When the

hydrogen embrittlement component of cracking is negligible, the additional component of

environmentally assisted cleavage, C, is equal to zero. In this case, the cleavage model

becomes the slip dissolution/film rupture model. Alternatively, hydrogen embrittlement

can dominate cracking at low potentials. In the IEDM the cleavage of the underlying

matrix can dominate the crack growth rate.

1.2. Model Flow

The IEDM consists of several models and correlations. Figure 1.1 is a flow chart

of the interaction between the various components. In the figure, arrows represent the

flow of information from one model or correlation to another. The unframed text

alongside the arrows represents the output of one model and the input to the next. The

boxes represent the models and major correlations included in the IEDM and the ovals

represent direct inputs to each of the various submodels. This data includes mostly

physical or chemical properties of the materials involved. The resulting outcome is the

pentagon that represents the crack growth rate.
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Figure 1. 1. Flow chart of the various models and correlations included in the IEDM.

The basis of th e IEDM is the crack growth model and its inputs determined the

design of the once ofhe IEDM. The crack growth model requires two main classes of

information: physical properties such as stresses and strengths, and electrochemical

properties. The physical properties come from the direct inputs (oval) and the radiation

hardening model. The electrochemical properties are summed up in the current decay

curve. The current decay curve correlation requires three inputs, the electrochemical

potential (ECP), the electrochemical potentiokinetic reactivation value (EPR), and the

bulk conductivity. The ECP is determined within the plant chemistry model using the

concentrations of 02, H2, and H202 and the flow rate. The conductivity is determined

using the concentrations of ions determined by the plant chemistry model. The output
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from the radiation induced segregation model is the profile of alloy chemistry at the grain

boundary [1.3]. The EPR is determined from the chromium profile using a correlation.

Each of these models will be discussed in detail in the appropriate section of this

dissertation.

1.3. Previous Modeling Work

According to Macdonald, "two models have emerged as leading candidates for

the purpose of estimating crack growth rates in light water reactor coolant circuits"

[1.15]. These two are the PLEDGE model of General Electric and his own model, the

Coupled Environmental Fracture Model (CEFM). An additional model is in use by the

Electric Power Research Institute as part of the BWR Vessel and Internals project

(BWRVIP) [1.16]. The CEFM has been utilized in the development of a larger model,

the DAMAGE-PREDICTOR [1.17-1.20]. Both the DAMAGE-PREDICTOR and the

IEDM include a model for reactor chemistry and radiolysis. These three models, as well

as the IEDM developed here share many methods including the slip dissolution/film

rupture crack advance mechanism. The following analysis of PLEDGE, the CEFM and

DAMAGE PREDICTOR, the BWRVIP, and the IEDM will demonstrate the similarities

and differences between these models. Additionally, I will establish that the IEDM is an

improvement over all these previous models both in terms of theoretical rigor and level of

integration.

A significant issue impacting the utilization and improvement of these models is

their availability. Like the CEFM, which was created at Penn State by Macdonald and

his graduate students, the IEDM is available to the public. Access to both the PLEDGE
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and BWRVIP models is extremely restricted. The General Electric Corporation holds

proprietary rights to the PLEDGE model, and the BWRIP model is only available for use

by EPRI member utilities. It is apparent that any improvements to models which are

largely unavailable will only be through their respective companies, while those models

emerging from educational institutions have significantly higher potential for

development.

1.3.1. GE's PLEDGE model

The PLEDGE model of General Electric has chiefly been developed by Andresen

and Ford [1.7,1.12,1.13]. Few details concerning the empirical correlations used in the

PLEDGE model have been published [1.15]. However, many details on the theory

behind this model have been included in published works by Ford and Anderson, as well

as in EPRI reports [1.13]. Specifically, many of the details of the model and theory were

presented at conferences in the late 80s [1.7,1.12,1.21].

Similar to the IEDM, PLEDGE uses the slip dissolution/film rupture mechanism

developed by Ford and Andresen. The model presented by Ford and Andresen in 1988

uses the stress, corrosion potential, conductivity, temperature, and other inputs that are

not expressly stated. These inputs indicate that their model begins with changing plant

parameters that must be measured continuously. This contrasts with the IEDM, which

integrates models to evaluate the chemistry and the materials parameters as they change

during reactor operation. It is possible that empirical correlations have been developed

that add some upstream capabilities to PLEDGE. However, due to the proprietary nature

of the model, its scope at the present time cannot be determined. By comparing
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conference papers [1.7,1.12,1.21] and EPRI reports [1.13] it appears that the crack is

electrochemically modeled only to acquire data for an empirical model rather than

modeling the crack tip each time the crack growth rates for a specific set of parameters

are desired.

The crack growth model at the core of PLEDGE is rather simple. The following

equation is used to find the crack growth rate:

VT=A (1.1)

The crack tip strain rate, &'ct is determined from experimental parameters or

assumptions regarding in core conditions. The slope of the current decay curve slope, m,

is then determined from an empirical correlation of the electrochemical potential (ECP),

the electrochemical potentiokinetic reactivation (EPR), and the conductivity at 25'C.

The current decay curve slope represents the rate at which the corrosion current decreases

when bare metal is exposed to conditions that will result in the formation of a passive

film. As the passive film develops the corrosion rate decreases exponentially with slope,

m. 'A' is a constant replacing several constants from Faraday's Law and other "bulk

system parameters such as, carbon content, effective chromium content, heat treatment,

dissolved oxygen, flow rate, etc." [1.13]. In actuality, A is determined from m by a

second empirical correlation. It was found that for austenitic stainless steels A

0.0078m 3.6. This relationship is used to find the crack growth rate. Therefore, the rates

are based only on m and Cct. Another simplification used in this model is to define the

crack tip strain rate, 'ct, as a simple function of stress intensity factor, K [1.13,1.22]:
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t = 6.1 40.-" -K 4  (1.2)

In Ford and Andresen's work, it is emphasized that although this formulation

leads to a satisfactory statistical agreement between observed and predicted crack growth

rates for a wide range of material and environmental conditions, it is not based on a

fundamental knowledge of the dynamics of crack-tip plasticity [1.13].

The crack tip mechanics model in PLEDGE does not reach the level of

determinism of the IEDM. In the IEDM, the crack tip strain rate is accurately determined

from the crack tip stress intensity factor, while PLEDGE only has a series of simple

correlations between the applied strain rate and the crack tip strain rate which differ for

various loading types. The IEDM is more accurate when data is extrapolated beyond that

used to calibrate the model because it accurately accounts for each factor which effects

the crack growth rate.

1.3.2. Coupled Environmental Fracture Model and DAMAGE-

PREDICTOR

Developed largely by Macdonald and Urquidi-Macdonald [1.23] at Penn State,

the CEFM endeavors to deterministically model the electrochemical processes involved

in cracking. This model differs from the other models (including the IEDM) in the

method used to account for the relationship between the anodic process of metal

dissolution and the cathodic process of oxygen reduction. It requires that the anodic

process occur at the crack tip while the cathodic process occurs outside of the crevice on

the external surface of the metal [1.23]. While maintaining charge conservation is valid

to accurately model the relationship electrochemical reactions, other researchers disagree
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with the premise that cathodic processes do not occur within the crack [1.24,1.25]. Like

the other models, the CEFM model uses the slip dissolution/film rupture model to

describe the cracking process at the crack tip.

Problems with the CEFM have been identified by Ford and Andresen [1.24,1.45]

in a series of critiques interspersed by challenges of the PLEDGE model by Macdonald

[1.15]. It has been pointed out that the requirement of the CEFM that the current outside

the crack equal the crack tip current is inaccurate for several reasons. Primarily, the crack

walls (not just the outer surface) can consume the current emanating from the crack tip.

In the CEFM, reactions on the crack walls are ignored. Additionally, the flow between

the crack tip and outer surface is not likely to control cracking because the coolant within

the crack has been experimentally shown to be highly deaerated by the consumption of

oxygen along the crack walls. This deaerated condition is not indicated by the CEFM

because wall reactions are ignored. If wall reactions were taken into consideration, it

would result in low conductivity along the crack length, making coupling between the

crack tip and outer surface difficult.

The DAMAGE-PREDICTOR model, developed by Yeh, is actually a

combination of the CEFM and a plant chemistry and radiolysis model that is essentially

similar to the RadiCAL model used to determine plant chemistry in the IEDM [1.17-

1.20]. After calculating the concentrations of hydrogen, oxygen, and hydrogen peroxide,

the DAMAGE-PREDICTOR model uses the mixed potential model to deterministically

find the electrochemical potential in the coolant. A crack growth rate for a set of standard

conditions is then calculated using the CEFM. The DAMAGE-PREDICTOR takes a

major step by combining a plant chemistry model with a crack growth model. However,

29



because this model assumes the conductivity and material properties, it does not reach the

level of integration of the IEDM. The DAMAGE-PREDICTOR model is significant

because it is highly deterministic. However, the use of the CEFM obviously leads to the

same problems previously defined.

A major obstacle for deterministic models is that they focus on crack tip

chemistry more than crack tip processes. Put differently, the CEFM assumes that the slip

dissolution/film rupture process controls the crack tip. However, the model for current

decay due to repassivation at the crack tip does not reflect a first principles

understanding. In the CEFM, the repassivation of the crack tip is modeled by assuming

that the fraction of the surface that is bare at time, t, after film rupture follows an

exponential relation [1.23]. In fact, the film thickens evenly over the whole area of

exposed metal. More problematic is the assumption that the slope of the current decay

curve is 0.5. It does not seem logical to develop a highly deterministic model for the

current in the crack only to assume an average figure for the rate of change of that current

during the cracking process. In the IEDM, the slope of the current decay curve follows

an empirical correlation of the potential, conductivity, and sensitization of the system.

1.3.3. EPRI's BWRVIP model

There is little published information regarding the model used in the BWR vessel

and internals project (BWRVIP). However, because some of the early research by

Andresen and Ford, which ultimately became the PLEDGE model, was supported by

EPRI, the BWRVIP model is likely a subset of GE's PLEDGE. It is known that the

BWRVIP model does not take into account radiation effects [1.26]. The effect of
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radiation in terms of water radiolysis, radiation induced segregation, and radiation

hardening is not included. This model attempts only to determine corrosion rates for

given levels of sensitization, yield strength, and water chemistry, rather than attempting

to follow the changes in these parameters over the life cycle and operation cycle of the

reactor.
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2. Effect of Radiation on Stress Corrosion Cracking

2.1.Radiation Effects on Fe-Ni-Cr Alloys

2.1.1. Radiation Induced Segregation

Passivity is the property of a metal in a solution that it corrodes at a very low rate

despite being highly active in the electrochemical series relative to the solution [2.1]. A

metal becomes passive because its corrosion products form a layer that adheres to the

surface of the metal and restricts the rate of further corrosion. In stainless steels, it is the

addition of chromium that allows the metal to be passive in a wide range of

environments.

Sensitization is the process by which the metal matrix near the grain boundary is

depleted in one or more beneficial elements or enriched in one or more detrimental

elements resulting in an increased susceptibility to intergranular stress corrosion cracking

[2.2]. In stainless steels and nickel alloys, such as Inconel 600, chromium is depleted at

the grain boundary. This is significant due to chromium's role in passive film formation.

It has been shown that when chromium levels decrease below approximately 13 wt%,

passivation breaks down along grain boundaries resulting in enhanced stress corrosion

cracking and/or intergranular attack.

For corrosion to take place two half-cell reactions must be operating

simultaneously. One of these, the anodic reaction, is the oxidation of the metal. The

other one, the cathodic reaction, is the reduction of another species that is in the solution.



The potential and rate at which the reaction takes place are determined by the balance of

the currents produced [2.3]. The two reactions must have equal and opposite currents.

Polarization curves indicate the relationship between the current and the potential for

anodic and cathodic reactions. Figure 2.1 is an illustrative example of polarization curves

for stainless steel with various quantities of chromium. The curved lines represent the

anodic reaction of metal oxidation and the straight line represents the cathodic reaction.

When there is adequate chromium, the intersection of the cathodic and anodic reactions

results in low current density. When the chromium content is low, the same cathodic

reaction intersects the anodic reaction at a much higher current.

EJ

Low Cr
Cont nt Very Low

(10-1 0) Cr Content
(6-80%)
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(14-18%6)

log I

Figure 2.1. Illustration of stainless steel potential curves for varying chromium contents

[2.3].

A source of sensitization in irradiated materials is radiation induced segregation

(RIS) [2.4]. RIS is the result of preferred transport of atoms of specific alloying elements

due to the flux of point defects towards defect sinks (usually grain boundaries). The

point defects are vacancies and interstitials in the lattice that are formed when atoms are

knocked out of their lattice positions by high-energy particles. In a nuclear reactor the
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high-energy radiation responsible for radiation induced segregation is neutrons.

Approximately 25 eV are required to displace an atom from its lattice position [2.5].

Therefore, each I MeV neutron will result in approximately 40,000 displaced atoms.

Several of the displaced atoms will form vacancy defect pairs. This occurs when a

displaced atom comes to rest in an interstitial position leaving a lattice position empty.

At the grain boundaries, the high stacking fault energy masks stress field of the defect

[2.5]. Therefore, it is energetically favorable for defects to be near grain boundaries. In

addition to lowering the energy of the system by masking the stress field, defects at grain

boundaries recombine. This recombination results in a lower concentration of defects

near the grain boundaries. The low concentration of defects results in a defect gradient

and the flow of defects toward the grain boundaries.

The directions of segregation, as well as the rates of segregation are controlled by

the atomic volume of each species. Atoms that are smaller than average, preferentially

migrate with the interstitial flux toward the grain boundaries, while larger atoms migrate

against the vacancy flux away from the grain boundaries. As the vacancies and

interstitials move towards grain boundaries, nickel, silicon, phosphorus, and sulfur atoms

move with them. In response to the defect flux, Chromium, molybdenum, iron, and

titanium move away from the grain boundaries [2.5].

The flow of chromium away from grain boundaries leads to chromium depletion.

This results in an increase in susceptibility to intergranular stress corrosion cracking as

described above. There are two likely mechanisms for RIS. These are the inverse

Kirkendall effect and solute-defect binding [2.5]. The inverse Kirkendall effect is based

on the movement of vacancies and solute-defect binding is based on the movement of an

interstitial and lattice atom pair.
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Figure 2.2. Example of profiles for main elements of austenitic alloys.

The inverse Kirkendall effect is the primary mechanism for radiation induced

segregation. Figure 2.3 is an illustration of this effect. Vacancies in the metal lattice

constantly interchange with lattice atoms. The rate at which atoms move into a vacancy

varies with the atomic volume of the atom. Therefore, in a concentration gradient of

vacancies faster moving atoms will preferentially move in the direction opposite vacancy

motion and, by conservation of mass, slower atoms will move with the vacancies [2.5].

In Figure 2.3, F marks the species that preferentially exchange positions with the

vacancies leaving the grain boundary. The slower moving species marked with an S

move toward the grain boundaries by mass conservation.

37



~jL

C:- FA- F.* F a S S

Figure 2.3. Illustration of the inverse Kirkendall effect.

OnoO

000

Figure 2.4. Illustration of solute-interstitial pair.

The other mechanism for radiation induced segregation is solute-interstitial

binding. Whereas in the inverse Kirkendall effect migration occurs by lattice exchange,

here the solute-interstitial pair must have long-range migration as a pair. Because of the

likelihood that the pair will separate, the inverse Kirkendall effect is the dominant

mechanism of RIS and the solute-interstitial binding mechanism is secondary. The

interstitial here is a self-interstitial, not an impurity. Therefore, the smallest atoms are

those most likely to form a self-interstitial/solute pair. This is because when the pair is

made up of smaller atoms, the likelihood is increased that the migration energy is less

than the dissociation energy [2.5]. Therefore, combinations of smaller atoms are more
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likely to migrate resulting in a net flux of smaller than average atoms toward defect sinks.

This has the same result as the inverse Kirkendall effect where small atoms move toward

grain boundaries and larger atoms move away from grain boundaries to conserve lattice

positions.

In planning the IEDM, it was determined that the radiation induced segregation

had to be modeled to completely characterize the effect of radiation on reactor

components. The model chosen was developed and implemented by Boerigter [2.5]. The

radiation induced segregation model uses a random alloy model to follow the changing

species concentrations in an alloy in the presence of defect fluxes resulting from a

neutron flux. The rate of change of the concentration of defect, d, is the negative gradient

its flux.

acd =-V-Jd (2.1)

The rate of change of the concentration of vacancies and interstitials equals the

negative gradient of the flux plus the net defect production, KO-L.

d=V,I a d = d +K - L (2.2)
at

Partial diffusion coefficients relate the concentration gradients to the atomic

species fluxes.

a__ __ af ac'cc
J =Dv ' +D =I+Dk k + DJ 1 (2.3)

x 3x )x kx

The partial diffusion coefficients, Dk, are computed from experimentally

determined defect-species exchange enthalpies, theoretically evaluated correlation

factors, local species and defect concentrations, and other factors [2.5]. The set of non-

linear parabolic partial differential equations arising from the set of conservation
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equations is then solved using the method of lines [2.5]. In this method, the spatial

dependence of the problem is approximated by finite-difference methods. Then the

remaining non-linear ordinary differential equations are simultaneously solved

numerically. Because the concentrations of self-interstitials are very small (20 orders of

magnitude) compared to the species concentrations, the system of equations is very stiff

and is difficult to solve. The Livermore Solver of Ordinary Differential Equations

(LSODE) is used to solve the equations. This same method is used in the radiation

chemistry analysis loop model, which will be discussed subsequently [2.6,2.7].

The results of the radiation induced segregation model have been compared to

several experimentally measured profiles on alloys exposed to neutron irradiation [2.5].

Select examples of this extensive confirmation can be found in the verification chapter of

this thesis. Agreement with published data is excellent. Of particular importance are the

chromium concentrations near the grain boundaries that are more accurately modeled as

compared to previous RIS modeling efforts in the literature [2.5].

In completing a sensitivity study of the RIS model, Boerigter determined that

segregation is highly dependent on the vacancy exchange enthalpies of the species in the

metal [2.5]. The vacancy exchange enthalpies are used to determine the rate at which

different species exchange lattice positions with defects. Because the exchange

enthalpies are not well known, their high sensitivity is the main source of error in the

model. The exchange enthalpies must be found experimentally, and the results of this

experiment are the limiting factor in the accuracy of the RIS model.

While the majority of the findings from a complete analysis of the RIS model do

not bear significantly on how it is used here, one issue is important. Specifically, the

issue of flux versus fluence is relevant. Radiation induced segregation experiments are

often done at accelerated dose levels to arrive at a fluence comparable to those acquired
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after many years of actual reactor service. Figure 2.5 shows the chromium depletion

profile for stainless steel 304 (19Cr-9Ni) irradiated at 100 DPA/year for 3.6 days, 1

DPA/year for 1 year and 0.01 DPA/year for 100 years. As the total irradiation time

increases, the width and depth of the chromium profile also decreases even while the total

fluence is held constant at 1 DPA. This indicates that accelerated tests are not likely to

accurately indicate the effect of fluence on grain boundary sensitization.
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Figure 2.5. Chromium concentration profiles at various dose rates for SS
288C, 1 DPA [2.5].

304 base case at

In order to utilize the RIS model in the IEDM, the chromium profiles must be

converted into an electrochemical potentiostatic reactivation (EPR) value. This issue is

discussed in detail as the crack growth model is developed subsequently. The EPR value

is used in evaluating the variance of susceptibility to grain boundary cracking by

determining the shape of the current decay curve.
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2.1.2. Radiation Hardening

The central, integrating model of this work is the model for the crack growth

rate. This crack growth rate model combines a standard implementation of the slip

dissolution/film rupture mechanism and a relationship for the crack tip strain rate. The

yield strength of the material is a significant input to the crack tip strain rate correlation.

For completeness, the yield strength must be determined by the model (rather than

inputted by the user) because it is subject to change as the metal is exposed to radiation.

This phenomenon is called radiation hardening. As the metal becomes harder with

exposure to neutron bombardment, its ability to harden further is reduced. This leads to

the exponential form of the equation which radiation hardening follows, as well as a

decrease in the strain hardening exponent. Because the metals investigated here work

harden when exposed to high strains, the model for the crack tip strain rate includes the

stain hardening exponent which gives the exponential slope of this effect. As the metal

becomes harder due to radiation fluence, subsequent strain hardening will be diminished.

Therefore, the strain hardening exponent decreases with radiation fluence.

Radiation hardening is not only important because the yield strength is an input

to the crack tip strain rate solution, rather it has been shown to correlate with an increased

susceptibility to intergranular stress corrosion cracking (IGSCC) [2.8]. In fact, IGSCC

has been shown to correlate better with yield strength than with grain boundary

chromium depletion [2.8]. In another experiment, samples were irradiated at 200 and

400*C. While Cr depletion was significantly suppressed in 200*C irradiation compared

to 400'C irradiation cracking still occurred for both tests. This indicated that radiation

hardening correlated with IASCC better than grain boundary chromium depletion [2.9].
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Despite these indicators of its importance, the role of radiation hardening remains rather

uncertain. Current understanding is inadequate, due partially to radiation hardening

following a similar dose dependence to the grain boundary composition evolution [2.9].

Using the radiation hardening model, the IEDM can isolate the effect of yield strength

and simulate its effect on the crack growth rate.

The yield strength of the metal changes with time slowly relative to the rate of

change of the system chemistry and the time scale for which crack growth rates are

determined. Therefore, the yield strength of the metal at a given time can be determined

from the reactor operation history independent of the other models used in this study.

The model is straightforward so that the input data needed to determine the current and

future hardness is easy to obtain. The necessary information includes the initial state of

the metal, the initial yield strength, and the total fluence. However, the model was

developed so that once the details of the metal at a point in time are known, information

before that point is not needed. That is, if the hardness was determined ten years

previous and the fluence since that time is known, only the best guess at whether the

process that hardened the material before ten years ago was work hardening or irradiation

hardening is needed. The yield stress of irradiated metals converge to a saturation level

that depends primarily on alloy composition and recent irradiation temperature [2.10,

2.11]. Therefore, the complete operation history of a reactor is not necessary as input for

the model.

The majority of radiation hardening research falls into one of two main

categories: irradiation assisted stress corrosion cracking (IASCC) of stainless steels and

nickel base alloys and embrittlement of the reactor pressure vessel and other low-alloy
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steel components. The IASCC of Fe-Ni-Cr alloys is the main thrust of the present work.

While a preponderance of the hardening data for stainless steels in the literature is

relevent to fast reactors [2.12] or fusion systems where radiation doses are very high

[2.13], there is adequate data at the temperatures and dose levels encountered in light

water reactors to formulate a useful statistical model.

To evaluate a statistical model for hardening in stainless steels and nickel based

alloys the underlying phenomena must be considered. Neutron dose is typically

measured in neutrons/cm 2. For damage to materials, displacements per atom (dpa) is also

used. The relationship between neutrons/cm 2 and dpa depends on the energy of the

neutrons and the energy required to move a metal atom from its lattice position. A

typical value for stainless steel in a BWR is approximately 0.7 x 1021 neutrons/cm 2 per

dpa for neutron energies > 1 MeV [2.13]. For irradiation hardening at 288'C and a low-

dose of less than 5 dpa, atom displacements from their normal lattice positions in metals

give rise to the formation of small vacancy and interstitial loops [2.13]. Loop densities

and size increase with dose up to a density of about 1016cm- and a size of about 20nm in

diameter [2.8]. Dislocation loops inhibit dislocation source operation and dislocation

motion through the matrix, thereby increasing the flow stress of the material [2.8]. These

loops can interact to form a dislocation matrix that results in significant hardening and

yield strength increases [2.13].

A phenomenon that results from the interaction of small loops and moving

dislocations is dislocation channeling. During this process, the initial dislocation

annihilates and/or combines with the defects on the slip plane during glide. Subsequent

dislocations will glide along the same path, and this will clear out additional defects
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creating a defect free path (channel). Channeling occurs at high loop density but is not

likely to occur in a dislocation network. Dislocation channels are seen primarily in pure

metals. However, there is limited evidence supporting the theory that dislocation

channels form in stainless steels [2.8]. An alternative source of ductility in stainless

steels is twinning. Twinning is a change in the orientation of the lattice due to shear

stresses. Twinning is the dominant deformation mechanism acting at rapid strain rates

and low temperature, such as those encountered in a light water reactor. Dislocation

channeling is observed at slower strain rates and elevated temperature [2.14]. Both relief

mechanisms produce highly localized deformation and large surface slip steps. As this

model is developed from hardening data, it is not necessary to determine the source of the

ductility.

Neutron fluence in light water reactors increases by up to 1020 n/cm 2 per year,

depending on the location within the reactor. Yield stress increases significantly for

fluence between 1021 and 1022 n/cm 2 (E > 0.1Mev), or about 1 to 20 dpa [2.12]. The most

important factor affecting radiation hardening is the fluence. However, since crack rates

have been shown to correlate better to yield strength than to fluence, other factors besides

fluence should be used to determine the yield strength [2.13]. These factors include the

initial stress state of the material, the alloy composition, and the temperature of

irradiation. The temperature of irradiation is an important factor affecting irradiation

hardening. However, because this model is for the primary side of light water reactors,

the operating temperature will be very near 288*C. Temperature is included in the model

for two reasons. First, the model is more versatile because it can predict the effect on

cracking when the reactor is operating at different temperatures. Additionally, it is useful
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to extrapolate data from other temperatures to extend the size of the database used to

calibrate the statistical model.

An alternate method for extending the database size is to include data from

sources other than light water reactors. It has been shown that for low irradiation doses,

the changes in tensile properties of 316 SS produced by fission reactor neutrons, D-T

fusion neutrons and Los Alamos Spallation Radiation Effects Facility (LASREF)

neutrons are the same at a given fluence [2.15]. Therefore, data from sources other than

light water reactors is useful to calibrate and test the statistical model.

Other factors did not significantly effect the radiation hardening of stainless

steels and nickel-based alloys. It has been reported that changes in the reactor flux do not

effect the rate of hardening due to a particular fluence. There was no observed influence

of flux observed for a damage rate between 1.6x10- 7 to 1 1x10-7 dpa/s [2.11]. Also,

cracking susceptibilities of the BWR components could not be correlated with

segregation of silicon or phosphorus impurities on grain boundaries [2.16].

A possible form of the damage (fluence) dependence is the following equation

[2.11]:

-In(2)D

(D) = ,o +(Y - co)(D- 2  (2.4)

Where co is the initial yield stress, o, is the plateau yield stress, D is the damage

in dpa and a reasonable fit is obtained for DI/2 = 2dpa. Elen and Fenici found that a,,=

820MPa for annealled steel and 1040 MPa for cold worked after 6 dpa [2.11]. In a

separate experiment, yield stress increased rapidly with fluence up to -900 MPa at

3x10^21 neutrons/cm2 (~ 4 dpa) [2.13].
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The radiation hardening model developed here does not use plateau values

because these change with initial cold work, temperature, and alloy content. The model

is based on a least squares fit to data in the literature [2.10,2.11,2.15-2.17]. Two separate

least squares fits were made, one for annealed material (low initial yield strength) and one

for work hardened material (high initial yield strength). If the material is put into service

annealed but has a high initial yield stress then the model for annealed data will be used.

However, the model will begin at some point along the curve where some irradiation

hardening has already occurred. To develop the statistical model, an initial form for the

equation was determined based on the general shape of the yield strength versus damage

curves:

Gy (D)= [ajo] + A,(288 - T)+ A2 (D)A3 (2.5)

Where [cyy] is the initial yield stress, Each A is a different constant, T is the

irradiation temperature, and D is the damage in displacements per atom. For the fit to

both the annealed and the cold-worked data, A, was found to be very close to 1.0. As a

result, this constant was removed from the equation. For the annealed data, A2 is 310 and

A3 is 0.25. For the cold-worked experiments, A2 equals 120 and A3 equals 0.35. The

following are equations with these parameters:

L(D)= [GY] 0 + 288 - T + 3 10(D) 25  (2.6)

9, (D) = [c]. + 288 - T + 120(D) 3 5  (2.7)

Several data sets were used to fit the coefficient A, [2.10,2.15,2.17]. However,

only two data sets for stainless steel 316 [2.11] and 304 [2.16] at reactor coolant
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temperature were used to determine the values for A2 and A3. In this manner, the

remaining data was available to verify the model.

When the material has been annealed prior to service, the model may operate in

three different regimes. If the initial yield strength is less that 250 MPa, Equation 2.6, is

used without modification to determine the yield strength after irradiation. If the initial

yield strength is greater than 350 MPa, then it is assumed that some irradiation hardening

has already occurred. In this case, it would not be meaningful to use Equation 2.6

directly to determine the yield strength curve, as the initial steep increase with damage

would have already occurred. Instead, the fluence already received by the materials can

be determined by reversing the equation:

D cy(D)- [aj] - 288 +T 4(28D =(2.8)
291

Where ay(D) is the initial yield strength (greater than 350), [cy]o is the assumed

initial yield strength at the beginning of life, and D is the fluence encountered before the

period being modeled. Once the fluence before the period being modeled is determined,

it is added to the fluence during the time of interest to determine the final yield strength

for the component. If the initial yield strength is between 250 and 350 MPa the weighted

average value of the results of these two approaches is used to find the final yield

strength.

When the sample has been cold-worked prior to radiation exposure, there are also

three regimes that determine the solution technique. If the initial yield stress is greater

than 700 MPa then Equation 2.7 for cold-worked materials is used. If the initial yield

stress is less than 250 MPa then the equation for annealed materials is used. If the value
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is between 250 and 700 then the parameters (constants A2 and A3) are adjusted to

transition smoothly from insignificantly cold worked to highly cold worked.

Another important effect of irradiation on the properties of these metals is the

reduction of the strain hardening exponent. Unfortunately, little research has been

completed to date on the effect of radiation on the strain hardening exponent. It has been

determined that the strain hardening exponent decreases with increasing neutron

irradiation levels [2.18]. It also decreases with increasing yield stress.
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The decrease in strain hardening exponent with increasing yield stress is

illustrated in Figure 2.6. However, results that separate the effect yield strength has on

the strain hardening exponent from the effect of radiation are unavailable in the literature.

A combination of yield stress versus exponent data from both Samuel and Hilton (Figure
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2.6) indicates that any direct effect of irradiation on the strain hardening exponent cannot

be separated from the effect of yield stress [2.19,2.20]. Therefore, the strain hardening

exponent relationship in the model is based directly on the yield stress. The equation

used in the model comes from a least squares fit of Figure 2.6:

n=2.5 -e ' +0.05 (2.9)

Where oy is the yield strength in MPa. This equation is truncated so that n does

not exceed 0.38 for low values of yield stress. While research confirming the relationship

between yield stress and crack tip stain rate is lacking, the crack tip strain rate value does

not provide a significant source of inaccuracy in the crack growth model. As described in

the sensitivity section of the thesis, the crack growth rate does not change greatly over the

range of the strain hardening exponent from 0.05 to 0.38.

2.2. Radiation Effects on Coolant Chemistry - The Radiation Chemistry Analysis

Loop Model (RadiCAL)

To a large extent the rate at which cracking occurs in a light water reactor is due

to the coolant chemistry at the location where the crack is advancing. The most

important electrochemical properties of the coolant are the electrochemical potential

(ECP) and conductivity. The electrochemical potential determines which metals will be

thermodynamically susceptible to dissolution and what dissolution processes will occur.

The conductivity is a key factor in determining the rate at which cracking occurs because

the current density of the dissolution process is limited by the conductivity of the

electrolyte in which cracking is occurring. The MIT Radiation Chemistry Analysis Loop

(RadiCAL) is a model that determines the plant chemistry in an irradiated coolant loop.
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It has been developed over many years, principally by Simonson [2.21], Chun [2.6], and

Grover [2.7]. The model was originally used to model the primary side of a boiling water

reactor. Additionally, the model has been used to determine the chemistry of

experimental loops, and with new chemistry sets could be easily used to model

pressurized water reactor chemistry [2.32].

The model simulates the radiolysis of water as well as the chemical generation

and annihilation of hydrogen (H 2), oxygen (02), hydrogen peroxide (H 20 2), and other

species. It models the convection of the fluid, the mass transport between liquid and gas

phases, and other thermal hydraulic parameters needed to completely characterize the

coolant chemistry. The output includes the concentrations of stable species and the ECP

at any point along the flow path.

In a BWR, the radiolysis of coolant by gamma and neutron radiation results in

dissolved oxygen concentrations of 150 to 300 ppb under normal water chemistry

conditions [2.6]. Experimental results have shown that reducing the electrochemical

potential (ECP) to below -230 mV, referenced to a standard hydrogen electrode (SHE),

corresponding to a dissolved oxygen concentration of less than 20 ppb will effectively

protect the system against EAC [2.22].

One method of reducing dissolved oxygen concentration is to inject hydrogen into

the reactor feedwater supply. However, excessive hydrogen reacts not only with oxygen

but also with nitrogen, including radioactive nitrogen 16. These nitrogen compounds are

released into the main steam lines and can increase the radiation levels in the manned

operating areas of the plant to unacceptable levels [2.7]. By directly determining the

effect of hydrogen water chemistry on crack growth rates, the IEDM can predict the
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optimal level of hydrogen addition. In-plant monitoring of water chemistry is generally

not sufficient because of chemical changes in the sampling lines, such as the rapid

decomposition of hydrogen peroxide at the operating temperature when the water is no

longer exposed to the radiation conditions of the primary coolant.

MIT radiolysis modeling was begun in 1988 by Simonson with the MITIRAD

code [2.21]. The initial code was used to simulate radiolysis in high level waste packages

in underground repositories. In 1990, this model was expanded by Chun to simulate a

BWR and renamed RadiCAL, for Radiation Chemistry Analysis Loop code [2.6]. This

FORTRAN code models the following processes: radiolysis of water into chemical

species, convection of the fluid, mass transport between gas and liquid phases, chemical

generation of species, and chemical annihilation of the species. In 1993, improved

thermal hydraulic models were added [2.7]. In 1996, the model was expanded and

reformulated to allow for variable cross-sectional flow regions that better represent fluid

velocities in the primary system [2.7]. Also, an improved ECP model was added to

account not only for oxygen concentrations but also liquid velocity, hydrogen peroxide

concentration, and hydrogen concentration [2.7].

The RadiCAL model, as it has been modified, takes as input chemical reaction

data, g-values, radiation dose rates, and thermal hydraulic parameters. G-values are

parameters that give the production rate of radiolysis products from the level of flux

incident on water. Each radiolysis product has a two g-values; one each for neutron and

gamma radiation. The units of g-values are number of atoms per 100 eV. The model was

designed to be completely flexible by requiring all of the physical parameters of the

coolant loop and the complete chemical reaction matrix to be included in the input file.
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BWR input files have been created for a typical BWR-3, and BWR-4, and a BWR-l

(with no jet pumps).

2.2.1. Theoretical Modeling of Water Chemistry

The concentrations of chemical species in the model are calculated using mass

balance equations for each species. These equations are derived for two-phase flow

through a differential control volume. The differential equations represent the

concentration as a function of position throughout the coolant loop.

To completely model the chemical processes in an irradiated reactor coolant loop

the following mechanisms are accounted for:

* Generation of species due to radiolysis by neutron and gamma radiation,

0 Generation and annihilation of species due to chemical reactions,

0 Convection of the coolant,

0 Mass transfer of species between vapor and liquid in two-phase flow.

The differential equations for the concentration of chemical species are derived

with respect space rather than time, because, in two-phase flow the vapor and liquid

velocities are unequal resulting in slip between the two phases. If the differential

equations are taken with respect to time, they will be more complex because the

respective masses of the two phases will be in different locations at the same time

interval. To solve for the concentration of chemical species in the fluid, a mass balance is

developed for the control volume shown in Figure 2.7.
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Figure 2.7. Differential Control Volume Element for a Two-Phase Fluid [2.6]

The mass balance for the liquid phase of the differential control volume is given

by the following equation.

d[C A()d] = A (x)dx[KgragQi+ k CisC Cim -C k Cj]
dt

+ V, (x)AI (x)Ci (x) - V, (x + dx)A, (x + dx)Ci (x + dx)

+A, (x)( - ) ')=0

(2.10)

Where C is the concentration of the given species in mol per liter, A is the cross-

sectional area in square centimeters, V is the fluid velocity, Krad is the conversion factor

for g-values from #/100eV to mol/liter-Rad, g is the g-value of the given species in

#/100eV, Q is the dose rate in Rad/s, 4 is the concentration flux across the gas-liquid

interface, g (subscript) refers to gas phase, 1 (subscript) refers to liquid phase, i refers to
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the i-th chemical species, j refers to the j-th species and m,s refers to alternate species

reacting together to form the i-th species. Similarly, the mass balance for the gas phase is

given by the following equation:

d[CgjAg(x)dx]d[ giA,(* x = Vg(x)A g(x)C gi(x) - Vg(x +dx)A g(x +dx)C gi(x +dx)
dt (2.11)

+ Agi(x)( '4 - $"')=0

Expanding the convection term at x+dx using a Taylor series and neglecting

second and higher order terms because the accuracy in the gas phase is adequate with a

first order expansion.

C'(x + dx)V, (x + dx)A, (x + dx)

rcI C+aidx I[ V1 x) 'Vd[( 'dlC x (x)+ aL xV, (x)+ ax A, (x)+ a

__ av, (2.12)
C (x)V, (x)A, (x) + C'(x)V, (x) a dx + C'(x)A, (x) a dx +

ax ax

V,(x)A,(x) a dx
ax

In addition, the relationship between the cross-sectional area of the phases, the

total cross-sectional area and the void fraction must be characterized to obtain the final

concentration differential equations.

Cross-sectional area and void fraction relationships are used to eliminate the

liquid and vapor cross-sectional areas that cannot be adequately characterized otherwise.

The void fraction, or area occupied by the vapor phase, can be represented as the product

of the void fraction and the total cross-sectional area as in Equation 2.13. Similarly, the

product of the total cross-sectional area and the compliment of the void fraction can
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represent the area occupied by the liquid phases as in Equation 2.15. Differentiating

these equations yields Equation 2.14 and Equation 2.16.

Ag(x) = cc(x)AT (x) (2.13)

BAx) =AT ~ x) ± Ac( (xa g( )= A T ( c(x ) + C(x) () (2.14)
ax N x

At (x) = [1 - a(x)]AT (X) (2.15)

aA,(x) = -AT ((x) +[ -c(x)] AT(X) (2.16)
ax ax x

Radiolysis is the production of chemical species from the destruction of other

chemical species by ionizing radiation. When gamma rays and fast neutrons irradiate

water, it will dissociate into various radicals, ions, and stable species. In this model only

water is considered to undergo radiolysis with the following species being produced:

H 2 0 -+e, H ,H,OH , OHO 2 ,H 2 , H 2 0 2  (2.17)

The rate of production of these species is proportional to the amount of energy

deposited in the water by the radiation dose. The number of molecules produced per 100

eV is defined as the g-value of the radiation and is determined experimentally for each

type of radiation. While g-values for stable species, 02, H2, and H20 2 , can be directly

measured, the g-values for short lived chemical radicals, e-aq, H+, H, OH, 0, 02, and

HO 2, must be calculated using a mass balance. Adding to the difficulty of determining

these parameters is a temperature dependence that differs between gamma and neutron

radiation [2.23]. Table 2.1 gives the G-values for neutron and gamma radiation from

several sources in the literature. For neutron dose, the model uses the Bums values,
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column A [2.7], and for gamma dose, the Kent and Sims dose values, column E [2.7], are

used. These values were chosen at a meeting for that purpose held at MIT in 1992, the

MIT radiolysis workshop. The OH g-values are modified to provide a redox balance

requiring the others to be modified slightly to provide a stoichiometricly balanced set.

Table 2.1. Summary of Neutron and Gamma Radiation G-values [2.24]

G-Value (#/1 00eV)

Neutron Gamma

Species A B C A B C D E

e-aq 0.93 0.4 0.37 2.7 0.4 2.8 4.15 3.69
H+ 0.93 0.4 0.37 2.7 0.4 2.8 4.15 3.69
H 0.5 0.3 0.36 0.62 0.3 0.55 1.08 0.68
H2  0.88 2.0 1.2 0.43 2.0 0.45 0.62 0.72
H2 0 2  0.99 0.97 0.62 0.72 1.25 0.28
HO 2  0.04 0.17 0.03
OH 1.09 0.7 0.46 2.9 0.7 2.7 3.97 4.64
O 2.0 2.0

A: Bums' values for 25 0 C

B: Bums' values for high temperatures, 300-41 0*C
C: Christensen's values based on Forsmark-2

D: Elliot's values for high temperature, 3000 C

E: Kent and Sims' values for high temperature, 2700C

The g-values are converted to moles per liter per Rad for use in the model. The

production of a species is the product of the modified g-value and the dose in the control

volume. Radiolysis is not considered in the vapor phase as the density of this phase is so

low that radiolysis produces only a negligible quantity of chemical species.

Chemical reactions are represented by the following relationship [2.25]:

JsmksmCsCjm -C 1 ZkjCj (2.18)
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The first term represents the production of a chemical species by the interaction of

all species that can form this species. The second term represents the annihilation of a

chemical species by interactions with all other species with which it can react. There is

one such equation for each chemical species.

The following example indicates how reaction kinetics are determined for a first

order reaction. For a chemical reaction with two reactants and two products:

A+B --> C+D (2.19)

The kinetics for the generation of species C is given by:

d[C]= k[AIB] (2.20)
dt

The kinetics for the annihilation of species A is given by:

d[A]= -k[AIB] (2.21)
dt

These equations differ only in the sign of the rate constant, which depends on

whether it is a reactant or a product. Therefore, the same rate constant, KOEF, is used for

both generation and annihilation of chemical species [2.21]. This new reaction solving

method is given by the following relationship:

NRX 3

ZKOEFikjH C'i(x) (2.22)
j=1 m=1

The product is carried out over all reactions inputted in the reaction set matrix and

the species is summed over all the reactions.
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The reaction set must include not only reaction sets for all species initially found

in the coolant, but also reactions for chemical species produced by radiolysis. For

implementation of the model, reaction sets are composed of three parts (1) a symbolic

representation of the chemical reaction occurring, (2) the rate constant which governs the

rate of the reaction, and (3) the activation energy that determines the energy required to

initiate the reaction. In order to model the irradiated water chemistry, these three

quantities must be known accurately for radiolysis products. However, there are several

different opinions of these values. Current chemical reaction sets for radiolysis products

include those listed by Simonsen [2.21], Ibe [2.26], Ruiz [2.27], and Romeo [2.28]. The

set currently used was determined by the MIT radiolysis workshop in 1992. In RadiCAL,

up to three reactants and four products are accepted for each reaction and only up to

second-order kinetics are considered. The current reaction set being used in the model is

given in Table 2.1

Table 2.1. Chemical Reaction Sets

RX Reactants Products Reaction Activation

Name Rates Energy

f3 e- H20 >H OH- 1.6el 12.55

f4 e- H+ >H 3.5e+11 O.eO

f5 e- OH >OH- 2.0e+10 12.55

f6 e- H202 >OH OH- 1.3e+11 O.eO

f7 H H >H2 8.5e10 O.eO

f8 e- H02 >H02- 2.0elO 12.55

f9 e- 02 >02- 2.6eII O.eO

fl0 e- e- >OH- OH- H2 5.e9 12.55

flI OH OH >H202 1.7e10 O.eO

fl2 H OH- >e- H20 2.0e7 18.83

fl3 H e- >H2 OH- 2.5e10 12.55

fl4 H02- e- >OH OH- OH- 3.5e9 12.55
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fl5 H OH >H20 5.5e10 0.e0

fl6 H2 OH >H H20 4.e7 18.0163

r16 H H20 >OH H2 1.042e-4 85.1695

fl7 H 02 >H02 8.6e10 0.eO

fl8 H H02 >H202 2.elO 12.55

fl9 H 02- >H02- 2.elO 12.55

f20 02- e- >H02- OH- 1.3e8 18.83

f21 H H202 >OH H20 9.e7 16.61466

f22 H202 OH >H20 HO2 3.e7 13.01224

f23 HO2 OH >02 H20 8.6e10 0.eO

f24 H202 OH- >H02- H20 1.8e10 12.55

r24 H02- >H202 OH- 5.7e5 18.83

f25 H02 H02 >02 H202 8.5e5 22.82372

f26 H02 >H+ 02- 2.565e4 12.55

r26 02- H+ >H02 5.elO 12.55

f27 H02 02- >H02- 02 5.e9 0.eO

f29 H+ OH- >H20 1.44e11 12.55

r29 >H+ OH- 0.79242 12.55

f30 OH 02- >02 OH- 8.6e10 0.eO

tif 1/202 1/202 >02 1.el5 0.eO

W32 H202 >OH OH 2.00E-03 0.0

SS H202 >1/202 H20 0.124 0.0

The reaction rates used in the RadiCAL input file are given for a reference

temperature of 25*C and adjusted to reactor operating conditions using an Arrhenius law.

Convection is represented by the following relationship with respect to liquid or

gas phase:

Vg, (x)A g / (x)Cgi (x)-- Vg/I (x + dx)A g I (x + dx)Cg/i (x + dx) (2.23)

This relationship represents the time dependent change of concentration across the

differential volume as a function of concentration gradient, velocity gradient, and cross-
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sectional area gradients. The fluid-phase cross-sectional area gradient is a function of

both void fraction and total cross-sectional area.

The flux of chemical species between the gas and liquid phases is represented by

the following relationship:

Agi (x)(' - ' (2.24)

This is the difference between the flux into the phase minus the flux out of the

phase multiplied by the boundary surface area Agi. These terms are represented by the

following equations [2.26]:

6c*
Ag, (x) = AT(x)dx (2.25)

db

' = k f(C1 - aCH) (2.26)

Il' = k1'9 (Cgj -bCgj) (2.27)

The constant, 6, divided by the bubble diameter is constant at a given pressure and

is incorporated into a new constant along with the rate constant and the constants a and b.

These are proportionality constants used to describe the concentration gradient between

the bulk fluid and the fluid at the bubble surface. The new constant (p) is given by the

following expression:

6k!"9
p ' = ' (1 - C) (2.28)

db

916kF W
(i - P) (2.29)

db
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These are referred to as the mass transfer constants, with the values used in the

model given in Table 2.3.

Table 2.3. Mass Transfer Constant Values for Use in Radiolysis Models [2.25]

H2 02

'g, gas release factor 30 23

p '', gas absorption factor 9.9 12.4

Incorporating the previously described relationships into Equation 2.10 gives the

following differential equation for the concentration in the liquid phase:

NRX 3

KradgiQi + 1KOEF kH C i (x)
j=1 m=1 _

dC1 (x) C (x) _ 1 + (1t'Cg, (x) - C (x ) (2.30)
dx V, (x) x ' - aC(x)

+C (x)Vl (x) a(x) +C (x)V1 ( aA (
1 - u(x) Ox AT (x) x

Similarly, the differential equation for the gas phase is:

dCg(x) -l Cgji(x) +1 (, C1 (x) -(.'3C1i(x)
dC gi I ax(2.31)

dx V, (x) Cg i(x)Vg (x) aC C 9(x)Vg(x) aAT

I (x) ax AT(x) Ox

Again, radiolysis and chemical reactions are neglected in the gas phase because

the density of gas phase is approximately five percent that of the liquid phase. These two

equations describe the concentration of various species produced by radiolysis and

chemical reactions.
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In addition to these equations, thermal-hydraulics describes the properties of the

fluid in the boiling region of the system. Thermal-hydraulic effects are determined using

one of two correlations, either Bankoff's or the Chexal-Lellouche [2.7], depending on

which input parameters are available.

The void fraction and fluid velocities are calculated using Bankoffs correlation's

[2.29]:

1 1

C (x 2j )jp, (2.32)

1
1 = 0.833 + 0.OOO1P(psi)

Co

Where x is the fluid quality and p is the density of the phases. The quality of the

fluid is a function of the power dissipated in the reactor core [2.26].

0,(x < xb)

X(x) = qt h, - hi qt o 7x x b (2.33)
2hfg hf 2hfg YhL

q, =hf +xehfg -hi (2.34)

hL -_h_+__h___-h
Xb= COs (2.35)

7C hf + Xchfg - h

Where i is the value at the core inlet, e is the value at the core outlet, L is the core

length, Xb is the point in the reactor where boiling initiates and h is the enthalpy. In

addition to solving the void fraction in terms of operational parameters of the primary

63



system, the expressions that give the gas and liquid velocities in terms of the operating

parameters are determined by defining the slip ratio:

S(x) - (x) - (2.36)
S)- - (x)

CO

The gas and liquid velocities are calculated from the fluid average velocity using

the following equations:

UPgV +( - )pV = p1 V (2.37)

=V, (2.38)
PgOS + p, (1 - a)

Vg = SV (2.39)

The fluid average velocity is given by the definition of mass flow rate in the input

to the model:

V = (2.40)

These equations are sufficient to calculate the concentration of chemical species

in the regions of the reactor containing two-phase flow: the boiling channel of the core,

the upper plenum, and the 2-phase region of the steam separator.

The Chexal-Lellouche correlations [2.7] use the following equations to represent

fluid velocities.

V, (x) = (I- (x)) (2.41)
A (x)p (x (1 - W(x))
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V, (x) = A Z(x) (2.42)
Ai(X)Pg(X)UX(X)

The thermodynamic quantities are calculated using the Chexal-Lellouche

thermodynamic subroutines by inputting the initial temperature, pressure, and power

input for the 2-phase region.

The electrochemical potential (ECP) and concentration of each species at all

points in a reactor coolant loop is determined by computationally traversing each node in

the coolant flow path until a specified number of cycles are complete or convergence

criteria are met. At each interval along the coolant path the concentration equations,

2.30 and 2.31 are solved. There are N simultaneous differential equations to solve, one

for each chemical species being considered. To solve these equations the model uses a

standardized non-linear differential equation solver, Livermore solver for ordinary

differential equations (LSODE). LSODE was developed by Hindmarsh at Lawrence

Livermore National Laboratory [2.30].

2.2.2. Modeling of Electrochemical Corrosion Potential

Experimental studies have shown that reducing the ECP to below -230 mV (SHE)

will significantly reduce or eliminate intergranular stress corrosion cracking in stainless

steel [2.22]. In some previous work, such as a study showing that -230 mV SHE

corresponded to an approximate oxygen concentration of 20 ppb, ECP has been described

as a function only of oxygen concentration [2.22,2.31]. However, the corrosion potential

is due not only to the reduction of oxygen and oxidation of stainless steel, but also to the

reduction of hydrogen peroxide and the oxidation of hydrogen. Flow velocity has also
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been shown to effect the ECP. A mixed potential ECP model by Lin is used by the

RadiCAL model to calculate ECP [2.31].

The corrosion of BWR primary coolant systems is due to the oxidation of

hydrogen and stainless steel coupled with the reduction of hydrogen peroxide and

oxygen. The equilibrium potentials for each of these reactions are given by the Nernst

equation:

2.3RT a_
E = E + log aOXd (2.43)

zF ared

Where E is the cell potential, EO is the standard cell potential, R is the universal

gas constant, T is the temperature in Kelvin, z is the number of electrons transferred in

the reaction, F is Faraday's number, aoxid is the activity of the oxidized species, and ared is

the activity of the reduced species.

The cell potential defines the potential at which the forward and reverse reactions

are in equilibrium. The corrosion potential and associated corrosion rate can be

determined using mixed potential theory. The current densities for all oxidation reactions

are summed forming the total oxidation current. The sum of the currents due to multiple

reduction species are summed as well. The corrosion potential is the point where the

summed oxidation and reduction currents are equal and opposite.

To determine the corrosion potential for a BWR primary system the current

associated with each half-cell reaction would have to be determined. Additionally, the

effect of fluid flow on the limiting current density of each oxidizing species would be

required. Because the determination of these currents by predicting the state of the
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system is not practical, an empirical model has been developed from experimental

measurements [2.31].

The ECP model used here was developed by measuring ECP under simulated

BWR coolant chemistry conditions using a rotating cylinder electrode (RCE) [2.31]. The

model developed accounts for fluid velocity, hydrogen concentration, and either oxygen

or hydrogen peroxide concentration. There are two ECP values, one for oxygen the other

for hydrogen peroxide. The ECP correlation is given by the following equation and is

valid for both oxidants:

ECP = C, tanh log(Cc)C2 +C 4 log(Conc)±+C5  (2.44)
1 C3

Where Conc is the oxidant concentration, 02 or H2 0 2 in ppb and the ECP is

relative to the given oxidant in mV (SHE). The five constants determine the shape of the

curve using different constants for oxygen and hydrogen peroxide. The constants for the

hydrogen peroxide relationship are

C 1 C5 +510 (2.45)

C2 = 0.00574[ConcH ].772 - 0.00754 VRCE + 0.811 (2.46)

C3 = 0.569 (2.47)

C 4 = 25.33 (2.48)

- 4.62[ConcH .808
C 5 = O.O28OCncH + 1.50 VRCE -192.0 (2.49)

e

and the constants for the oxygen relationship are
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CI =C 5 +510 (2.50)

C2 = 0.00531 [ConcH .772 -0.0111 VRCE +1.78 (2.51)

C3 =1.02 (2.52)

C4 =18.7 (2.53)

C5 = - 8.6Conc H.264 -177.0 (2.54)

Where ConcH2 is the hydrogen concentration in ppb and VRCE is the velocity of

the rotating cylinder electrode. The linear velocity in the BWR primary coolant path is

converted to RCE by the following equation:

VRCE = 3 .Ole[O.425+.251n(ViP, O.1791n(die) (2.55)

Once the ECP is calculated for both oxygen and hydrogen peroxide the two are

combined to yield one ECP value for the region modeled. This is done by comparing the

values for each oxidant and selecting the larger. This value is then used to determine an

equivalent concentration of the other oxidant necessary to produce this ECP value (using

the other set of constants). Since the ECP model is not an easily invertable function, the

equivalent concentration is determined iteratively. The equivalent concentration is then

added to the original concentration that yielded the lower ECP value. This new oxidant

concentration is then used to calculate a final ECP for the region.
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Figure 2.8. Boiling water reactor vessel schematic.

2.2.3. Modeling a Boiling Water Reactor

Boiling Water Reactors (BWR) make up about one third of the nuclear reactors

currently operating worldwide [2.6]. The operational parameters of a BWR are a

pressure of approximately 7.0 MPa and a temperature of approximately 300'C. In a

BWR, the steam that drives the turbine is produced in the reactor vessel. Therefore,

BWRs do not require the secondary steam generator loop found in pressurized water

reactors (PWR). The direct steam cycle of a BWR simplifies the design and increases the
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thermodynamic efficiency. The disadvantage, however, is that the steam, which has

passed through the reactor core, contains radioactive gases. This results in higher

radiation dose rates in the balance of plant requiring shielding of the piping and turbines.

Figure 2.8 illustrates the major components of a BWR reactor vessel. The outer

shell consists of the pressure vessel and the recirculation system. Inside the pressure

vessel the core shroud separates the core in the inside and an annular region referred to as

the downcomer between the pressure vessel and the shroud. Above the core is the upper

plenum, which is capped by the core head dome. The steam separator assemblies are

mounted on the core head and the steam dryers are above the separators. The region

around the steam separators is referred to as the mixing plenum because it is where the

feedwater enters the pressure vessel. The region beneath the core is called the lower

plenum. To circulate the water, part of the water flows through the recirculation pumps

and is forced through the narrow jet pump region drawing water from the downcomer

into the lower plenum.

The flow path of the primary coolant through the BWR pressure vessel and

recirculation system begins with the feedwater inlet. The feedwater enters the mixing

plenum and mixes with the saturated liquid from the moisture separator. The coolant

then enters the downcomer region and passes through the jet pump into the lower plenum.

Some fraction of the flow is diverted into the recirculation line to power the jet pump.

From the lower plenum the coolant enters the core. In the core, some of the liquid is

boiled resulting in a two-phase mixture. The flow continues through the upper plenum

and into the moisture separator. The saturated vapor is separated and is transported via
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the main steam lines to the turbines and condensers back to the feedwater inlet. The

saturated liquid is transported directly to the mixing plenum.

To model chemical concentrations and electrochemical corrosion potential along

the BWR flow path, thermal-hydraulic conditions and radiation dose profiles are

required. To accurately model the reactor, any region along the BWR primary coolant

loop where these parameters change substantially is modeled individually. These

individual regions are referred to as components in the RadiCAL model. The model for a

BWR-3 type reactor uses 30 components joined at 18 nodes as shown in Figure 2.9.

Main
Steam

Pressure Vessel Boundary

PeMixing Sparator Sparator

9 10 11 12 13 pper

Uppe Dow Omer1r

20

Smple5
Line 30 12

Rer ir;Cr Cr4 
pass 

olm~gpass15 16 17 18 19 et: Pmp

O~jlet 29m

Lower )ownc. mer Suction

Core

RecircPlate

21 
12

Manifold2528

F re 2Jet Pump

Figure 2.9. BWR Component Schematic [2.7].
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The various components correlating to the nodes in Figure 2.9 are shown on the

detailed reactor schematic in Figure 2.10.
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3. Crack Growth Model

In this section of the thesis, the crack growth model, which comprises the core of

IEDM, will be discussed. In this chapter, the sources of data used in the model will be

discussed and the reason for these choices will be described. Additional information

about the choices made for various parameters can be found in the sensitivity section at

the end of this chapter.

3.1. Mechanical Aspects of the Crack Tip Strain

3.1.1. Crack tip strain distributions

An essential aspect that sets the crack growth model used in the IEDM apart from

other models is the incorporation of a more rigorous determination of the strain

distribution at the crack tip. A great deal of effort has gone into the analytical

determination of strain functions. Conditions of significance in the continuum theory of

cracking include whether the cracks are stationary or growing, whether or not the

material experiences strain hardening, and whether the cracking is under plane-stress

(thin) or plane-strain (thick) conditions [3.1]. Stress corrosion cracks in nuclear reactors

are in plane strain because the dimensions along which cracks grow are thick such as

pipes, bolts, etc. The following equations are the analytical distributions for the strain at

a distance r from the crack tip under plane-strain conditions [3.2]. Here the plastic strain,

sp, is given as a function of the plastic zone size, Rp, and the distance from the crack tip,

r.
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Figure 3.1. Crack tip indicating distance, r, and plastic zone size, Rp.

For stationary cracks, the distribution assuming elastic, ideally plastic conditions

is the following:

S=YS j 1 (3.1)
P E (r

Where cys is the yield strength and E is the Young's modulus. With strain

hardening this equation becomes:

[ = " R -)n (3.2)
SE r

Where cc is a constant and n is the strain hardening exponent. For growing cracks

and elastic, ideally plastic conditions the analystical strain distribution is the following:

= p Ys In( RP (3.3)
E r )

Where P is a constant. With strain hardening the following equation applies:

F, = IS" In 1- (3.4)
E r
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In the above equations the plastic zone size for plane strain conditions is

determined using the following equation:

K 2
RP = -1 (3.5)

Where Ki is the stress intensity factor for a mode I crack.

Figure 3.2 plots actual experimental data for a crack growing in single crystal Fe-

3wt%Si at a stress intensity factor, K=13 MPa/m12 along with the equations for a

stationary crack in strain hardening material and a growing crack in both ideally plastic

and strain hardening materials. For the plot, cc equals 1, P equals 5.46, ays is 270

MPa/m 2, E is 120 GPa, and n is 0.38.
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Figure 3.2. Strain distributions for subcritical crack growth measured normal to the crack

plane. Points are data from the fatigue of Fe-3wt%Si fatigued in I atmosphere dry

H2 [3.2].
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The analytical distribution for a growing crack in a strain hardening material fits

the experimental data well down to within 1 pm of the crack tip. Thus the validity of

Equation 3.4 is illustrated.

3.1.2. Crack Tip Strain Rate

The crack growth model that is central to the IEDM is advanced because it uses

this more accurate strain hardening model for a growing crack originally derived by Gao

and Hwang [3.3] and verified experimentally by Gerberich et. al. [3.1]. The following

derivation of the crack tip strain rate is similar to that of Shoji et. al. [3.4].

The crack tip strain distribution is for an existing and growing crack. The

distribution for a growing crack is chosen because if the crack is not growing we do not

need to worry about it. That the crack exists is important as well. We have assumed that

a crack has initiated in the metal. Therefore, a failure prediction made with the model is

conservative because it ignores the time to initiate a crack. The time to initiate a crack in

a defect on the metal surface is likely to be short compared to the design life of the

component [3.5]. Therefore, this model assumes that a crack has already been initiated

and attempts to find the conditions where propagation will occur and the rate at which the

crack will propagate.

We begin with the analytical strain distribution for a growing plane strain crack

with strain hardening [3.1]:

E; = p In P)I- (3.6)
E (r
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Where P is a dimensionless constant between 4.3 and 5.8, accepted to be 5.5 [3.1].

R, is the plastic zone size for a plane strain crack:

2

RP = IK(3.7)

K is the stress intensity factor at the crack tip, equal to the plane tensile stress at

the crack tip, a, multiplied by the square root of the crack length, a, times 7c:

K = a - -a (3.8)

To determine the crack tip strain rate we must find the time derivative of the crack

tip strain. The derivative is found noting that the strain is a function of stress intensity

factor, K, and distance, r, and the K is a function of the stress, a, and the crack length, a.

dE d dK dc+ dE dK da dE dr
= - - -- + - .--- - + -- (3.9)

dt dK da dt dK da dt dr dt

First, the equation is simplified by assuming that the stress is not changing

significantly. Therefore, the equation becomes the following:

dc dc dK da dE dr= -- - - - -+ ----- (3.10)
dt dK da dt dr dt

Figure 3.3 illustrates the relationship between the crack length, a, and r. It is clear

from the figure that for a time step, dt, the change in length, r, is the opposite of the

change in length, a.

80



L a

a

r

---- I OX

r
Figure 3.3. Illustration of relationship between crack length and the distance r to some point

in the material.

Therefore, the following equation applies:

da dr

dt dt

Which simplifies Equation 3.10 to:

dt dK

dK

da

dc da

dr dt

(3.11)

(3.12)

This equation can be solved analytically by taking the derivative of the crack tip

strain distribution in terms of K and r. The first term is the following:

dE dK =-2. jy
dK da E

1

K(n -1)

j J2
1 K

In3-n ay
ln'

r

n
1-n

dK

da
(3.13)

The second term is simply the derivative of the strain with respect to r:
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dr ET I 1

dr E r(n -1)

1 K
3-Tc ay

In
r

1-n

(3.14)

Combining like terms from these last two equations (3.13 and 3.14) and

multiplying by da/dt gives a relationship for the rate of change of strain with time at some

point a distance r from the crack tip:

1
n-i

I K

In 3- '
r

1-n

C-1 dK 1 da

K da r dt

Moving the negative sign out of the last terms and reversing 1-n to n-1:

1 K

In
r

1-n

2 1 . dK + da
K da r dt

Representing derivatives with respect to time with a dot over the variable and

distributing da/dt:

E- 1
El1-n

In

1 K

r

n
1-n

2 k2
K

(3.17)
r
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This is the equation for the strain rate for a growing crack. To find the stress

intensity factor at the tip of crack the crack length and tensile stress must be known.

Either the stress condition at the position of the reactor being studied must be provided as

an input to the model or some reasonable stress can be assumed.

3.1.3. Sources of Data for Crack Tip Train Rate

In this section the reasons for the particular value assigned to each variable in the

crack tip strain rate relationship is described. Some of these reasons are also revisited

when the sensitivity of each variable is discussed subsequently.

The first term, P, is the proportionality constant of the analytical strain

distribution for a growing plane strain crack. Because there are other uncertain values in

the equation it is difficult to use a fit to data to find a reasonable value for P. Values for

beta have ranged from 4.28 [3.6] to 5.81 [3.7]. Gerberich determined that the most

accepted value is 5.46 [3.2]. Here the beta value chosen is 5.5 to avoid a false sense of

accuracy cause by using three significant digits

The proportionality constant for the plastic zone size for plane strain, is given as

1/(37) as by Gerberich [3.1]. However, this value, known as lambda for simplicity in

other parts of this paper, could vary based on different representations of the plastic zone

size for different cracking modes. Like beta, lambda is kept constant because the

certainty of other parameters is not sufficient to allow calibration.

The next term is the ratio of yield strength, ay, to elastic modulus or Young's

modulus, E. The elastic modulus is a constant for the metal. In the user interface, E can

be supplied to the user based on a choice of default metals, or the user can supply it to the
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model. The default elastic modulus used here for stainless steel 304 is 22000 kg/mm2

The yield strength can be supplied by the user, a default value can be used (annealed

only) or it can be determined by the hardening model. The hardening model uses the

same default annealed value or a value supplied by the user, and calculates the

contribution from radiation hardening. The default yield strength for annealed SS 304 is

20 kg/mm 2 . For other common metals that undergo irradiation assisted stress corrosion

cracking data is compiled in Table 3.1.

Table 3.1. Approximate Properties of Austenitic Materials [3.8]

AISI Type SS 304 SS 316 SS 347 Inconel 600

Yield strength (kg/mm 2) 21 21 21 32

Modulus of elasticity (kg/mm 2) 20000 20000 20000 21700

The strain hardening exponent, n, defines the extent to which a material work

hardens as it is being strained. As the yield strength increases due to cold work or

irradiation hardening, the strain hardening exponent decreases. The strain hardening

exponent, n, can also be determined by the user, the default metal choice, or the radiation

hardening model. If it is determined by the hardening model, the value will be between

0.38 and 0.05 depending on the yield strength. For annealed materials the default value is

0.33. This value was chosen because of good fit with experimental data (subsequent

section).

The stress intensity factor, K, and its rate of change, K', must be input by the user.

K 0c GVira , where a is the far field stress and 'a' is the crack length. This equation

represents proportionality but the constant is nearly one in the cracking mode likely to be

found here [3.9]. It might appear that the model would better define the crack using
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inputs for the crack length and stress. However, for actual reactor condition it is no easier

to make assumptions about the stress than it is to make assumptions about the stress

3/2intensity factor. Likely values for K are between 30 and 150 kg/mm . Many

experiments have been conducted at 88.6 kg/mm (25 ksi in ) [3.9-3.11].

Using the model on actual measured data revealed the importance of the stress

intensity factor rate of change and the term that relates it to K (K'/K). Without this term

added to the term a'/r, the crack growth model overpredicts high crack growth rates and

underpredicts low crack growth rates. This occurs because the crack growth rate is a

variable in the crack tip strain rate equation and vice versa. The stress intensity factor

rate of change, K', that best fits the data used to verify the crack growth model is 0.0001

kg/mm3 /2s.

The distance from the growing crack tip, r, represents the position where the crack

tip strain is defined and evaluated [3.12] Put differently, the strain at the crack tip acts

over some portion of the material at the crack tip whose characteristic length is r. The

choice of r determines the magnitude of the crack tip strain. Therefore, this value is

chosen such that the value for the crack tip strain produces accurate results for the crack

growth rate. The value for r is best determined last, after all the other values are correct

and reasonable. For the data used to verify the crack growth model, the best fit was

attained with r = 0.04mm.

3.2. Slip Dissolution/Film Rupture Model

Previous work by Ford and Andresen [3.9-3.11] and others has shown that crack

advance in austenitic stainless steels at anodic potentials can be modeled accurately by the
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slip dissolution/ film rupture mechanism. In this mechanism, the local buildup of stress at

the crack tip results in rupture of the passive film. Following this rupture event, the exposed

metal repassivates replacing the film at the crack tip. During repassivation, some metal at

the crack tip is consumed by oxidation. The rate at which oxidation occurs, decreases

exponentially as the film thickness increases to steady state. This dissolution of the metal at

the crack tip results in crack advance. Following formation of the new passive film at the

crack tip, local stresses begin to build up leading to film rupture at the crack tip. This

cyclical process continues as long as conditions are appropriate for cracking.

For a passive film to form on the surface of a crack the electrochemical potential of

the aqueous solution must fall within a certain range. Species in the water that affect this

potential include ions such as metals and halides and radiolysis products such as hydrogen,

oxygen, and hydrogen peroxide. The radiolysis products are formed when water molecules

are broken apart by ionizing radiation.

Crack propagation by the slip dissolution mechanism results from a combination of

anodic dissolution and stress/strain conditions that result in dislocation motion [3.13].

Dislocations at the crack tip cause the protective film to separate at the crack tip exposing

bare metal to the environment. During rapid anodic dissolution of the bare metal a new

passive film is formed where dislocations can again pile up. Two slightly different

mechanisms describe the rupture of the passive film. In cross slip, slip bands emanating

from the crack tip result in exposure of the underlying metals. For brittle fracture of the

film, dislocations pile up behind the passive film until it ruptures exposing the bare metal

beneath. The former case is more likely when the passive film is thin and coherent with the

underlying matrix. The latter case will occur for a thick incoherent passive film. The
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dislocations result from a monatonically increasing stress, a cyclic stress, or creep resulting

from a high constant stress. Experimental results have supported the slip dissolution model

because the dissolution rate of bare metal has correlated with the SCC propagation rate in a

wide range of materials [3.11]. Both methods of brittle film separation are illustrated in

Figure 3.4.
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Figure 3.4. Schematic of slip dissolution! film rupture mechanism and oxidation charge

density versus time [3.13]

In Figure 3.4, the equations that will be discussed subsequently are displayed

graphically. Qf is the dissolution charge density. It represents the rate of current and

decreases as the passive film forms at the crack tip. The two curves, Qf, represent the

flow of current during each film rupture and repassivation event. Additionally, the top of

the diagram shows how plasticity (the motion of dislocations) contributes to film rupture

at the crack tip. The slip dissolution/film rupture mechanism for stress corrosion

cracking occurs because the thermodynamically stable oxide film ruptures due to strain
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concentrations at the crack tip. The crack advance rate is governed by the rate of

oxidation of the surface exposed by the fracture of the film, the rate of formation of the

new film (repassivation), and the time required for the crack tip strain rate to rupture the

oxide film [3.14]. Faraday's law is used to define the crack growth rate in terms of the

metal dissolution rate:

a'= --F (3.18)
z-p-F tf

Where M is the atomic mass of the metal, z is the charge quantity of the dissolution

process, p is the metal density, F is Faraday's constant, Qf is the dissolution charge

density passed during tf, a period of film rupture [3.11]. The period of film rupture can

be found by dividing the fracture strain of the film, cf, by the crack tip strain rate, E'ct:

t, = (3.19)
Ct

Thus the slip dissolution/film rupture model is described by the following

equation.

a = _, (3.20)
z-p.F ,f

Another model has been developed that has been described as a combination of

the slip dissolution model and the brittle film fracture model [3.11]. In this model, the

brittle film is ruptured as the stress at the crack tip increases due to the motion of

dislocations. The release of energy associated with rupture of the brittle film results in

the cleavage of the underlying metal matrix. The vertical portion of the solid line in
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Figure 3.5 represents the cleavage component of crack advance, C. Following this

cleavage the underlying metal matrix may undergo rapid anodic dissolution as in the slip

dissolution model or may quickly repassivate. If the film forms quickly with little crack

advance caused by dissolution, the rate of crack advance will be controlled by the

cleavage event. In this situation, the solid line in Figure 3.5 will look like steps because

the bare surface dissolution component would be nearly horizontal on the plot indicating

little crack advance. The amount of cleavage induced in the bulk metal is affected by the

coherency between the film and the metal matrix, the thickness and ductility of the film,

and the bond strength at the film-metal interface.
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Figure 3.5. Schematic of film induced cleavage mechanism and penetration distance versus

time [3.14]

Equation 3.21 is similar to Equation 3.20 but includes the effect of an additive

cleavage term, C.
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a'= -Qf + C C (3.21)
(z -p.-F f,

The film-induced cleavage model is mentioned here because it is well suited for

the integration of multiple crack growth models. When the additional component of

environmentally assisted cleavage, C, is equal to zero the cleavage model becomes the

slip dissolution/film rupture model. Alternatively, the cleavage of the underlying matrix

can dominate the crack growth. Here a novel approach is taken by correlating the

magnitude of the cleavage term C, with the level of hydrogen embrittlement predicted to

be present in the metal matrix at the crack tip. With the cleavage controlled by hydrogen

embrittlement, the additional C term can be determined from cathodic measurements.

In order to determine Qf, the current passed during the dissolution and

repassivation process must be determined. As the film forms at the crack tip it becomes

thicker and the rate of oxidation of the underlying metal decreases exponentially. The

following equation gives the oxidation current, i(t), at time t as it decreases from a

maximum current, io [3.14]:

i(t) = io t (3.22)

Where io is the oxidation current of the bare surface of the metal, to is formation time

constant of the passivation film, and m is the slope of the current decay curve. The shape

of this equation is shown in Figure 3.6 for times greater than 0.1 seconds.

90

. .........



100000

i 10000
10000 -0- - -_-_--

t= 0.1E0

1 0 0 0 -- -- - -- - --
m =0.7

1 0 0- - -- --- -- --

1

0.001 0.01 0.1 1 10 100 1000

Time from Film Rupture Evtent (sec)

Figure 3.6. Current density versus time example plot.

The total dissolution charge density, Qf, is equal to the area underneath the curve in

Figure 3.6. Up to to, the area simply equals the product of io and to. Above to, the area

equals the integral of Equation 3.22 from to to the time of next rupture event tf.

tf
Qf = i0 . to + Ji(t)dt (3.23)

to

I-m

,= io - t f tt-'" (3.24)Qf ~ -- mn EI C ) 0

Notice that the ratio of film rupture strain, Ef, to crack tip strain rate, E'ct, is equal

to the final time. The model must then be simplified for low crack growth rates. Low

crack growth rate means the ratio of the passivation film rupture strain to the crack tip
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strain rate of change is much greater than the time to begin repassivating the crack tip

(/sp'ct>> to). The current decay constant is the time at which crack tip repassivation

begins. This value has been found experimentally to be close to 0.1 seconds. This

simplification is valid and necessary because the slip dissolution / film rupture model is

not meaningful if the strain is so high that the crack tip advances continuously. This

results in the following:

Q = io -t + - - (3.25)
f 0 1-M (6 C

Substituting Qf back into the Equation (3.21) for Faraday's law results in the rate of

advance of the crack tip, a':

a'= Mrio -tio + + eC (3.26)
z -p -F I - m F',t Ef

3.2.1. Sources of Data for Crack Tip Train Rate

In this section, the reasons for the selection of each particular variable in Equation

3.26 are described. The variables come from three sources. They are either known

properties of the system, experimentally obtained values, or values received from model

upstream to the crack growth model. Some of the reasons for selecting certain values are

also revisited when the sensitivity of each variable and the validity of the models are

discussed subsequently.

Faraday's constant, F, is the charge of one mole of electrons: 96485 Coulombs/

mole. Using Faraday's constant, the metal's atomic mass, M, oxidation state, z, and
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density, p, the volume of material removed per Coulomb of current transferred at the

crack tip can be determined. Table 3.2 gives the values of these three parameters for

some common austenitic alloys [3.8].

Table 3.2. Properties of austenitic materials. Data in parenthesis is the value used for the

base case or as defaults in the model [3.8]

AISI Type SS304 SS316 SS347 Inconel 600

Atomic mass (g/mol) 55.9-56.1 (56) 56.6-57.2 (57) 55.3-55.5 58

Oxidation state 2.18-2.20 (2) 2.16-2.18 (2) 2.17-2.19 2.16

Density (kg/m') -7900 (8000) -8000 (8000) 7900 8500

Fe content (wt.%) Balance (72) Balance (71) Balance 8

Ni content (wt.%) 8-11 (10) 10-14 (12) 9-12 Balance

Cr content (wt.%) 18-20(18) 16-18(17) 17-19 16
Other content (wt.%) 2-3 Mo -1 Nb 1 Mn, 2-3 Mo

The values used for the base case for SS 304, M = 56g/mol, z = 2, r = 8000, are

reasonable based on this data. Rounding z to 2 may seem like an unnecessary

simplification. However, the oxidation state is not certain because the stoichiometry of

dissolution is not known accurately. Additionally, cracking occurs at the grain boundary

because of chromium depletion. Therefore, even if dissolution has the same

stoichiometry as the metal, the oxidation state will be higher because the material at the

crack tip has less chromium.

The passive film rupture strain, F-f, has been reported with values ranging from

0.001 to 0.015 [3.15]. In the crack growth model used here, a value of 0.007 is used for

the chromium rich passive film that protects austenitic Fe-Ni-Cr alloys. This value was

measured experimentally for type 304L stainless steel at 288*C in high purity water

[3.15].
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The time constant for current decay, to, is the time at which the passive film

begins to form at the crack tip decreasing the current density. In Figure 3.6, this value is

found at the position where the slope of the current decay curve changes from 0 to -in.

For most experimentally determined current density versus time curves, to is

approximately 0.1 seconds. This value is used in this model.

The oxidation current density of the bare surface, io, is a parameter which can be

satisfactorily determined from corrosion theory. As has been described in previous

sections, stainless steels form a protective passive layer above a critical potential.

However, when the passive film is ruptured at the crack tip the metal momentarily acts as

though it is not passivating. For high potentials, oxidation will initially occur at the

limiting current density as the metal begins to repassivate. The two reduction half-cell

reactions that result in oxidation of the metal are listed here along with their reversible

potentials for a neutral solution:

H2 0 2 + 2H+ + 2e -+ 2H 20 1776 mV (SHE) (3.27)

02 + 2H 20 + 4e -- 40H~ 820 mV (SHE) (3.28)

The limiting current density can be found using the following equation [3.16]:

L= D-z*FCB (3.29)

Where D is the diffusivity of the reacting species (cm 2/s), z is the oxidation state

change, or number of equivalents exchanged, F is Faraday's number (96,500 C/mol), CB

is the bulk concentration of the reacting species (mol/liter), and 6 is the diffusion layer

thickness (dm). Decimeters are used for the diffusion layer so that the resulting units for
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the limiting current density are A/m2 . At 300 0C, the diffusivity, D, for either 02 or

H202 is 0.0004 cm 2/s [3.17]. The number of equivalents exchanged is 4 for the 02

reaction and 2 for the H20 2 reaction. In the BWR coolant system, the concentration of

02 varies between 3 and 6 x 10-6 mol/liter and the H202 varies between 3 and 10 x 10-6

mol/liter. The boundary layer thickness, 6, is approximately 0.01 cm [3.18]. Assuming

an oxygen concentration of 4 x 10-6 mol/liter, the limiting current density for 02 is 0.6

A/m2 . Assuming an H202 concentration of 6 x 10-6 mol/liter, the limiting current density

for H202 is 0.5 A/m2 . Summing these two values gives a limiting current density for the

2oxidation of the metal: 1 A/m . This represents the maximum rate of electrons consumed

by the reduction of oxygen and hydrogen peroxide. Electrons produced by the anodic

dissolution of the metal must be consumed by oxidation. Therefore, this places a limit on

the dissolution rate of the metal based on a current balance with the reduction rate.

While reduction of oxygen and hydrogen peroxide can occur anywhere on the

crack walls or outer surface, oxidation of the metal is occurring predominantly at the

crack tip where the passive film is ruptured. Therefore, the area over which the reduction

is occurring is much larger than the area at the crack tip. The limiting current density for

the crack tip is based on the limiting current of the reducible species because at the crack

tip, when the surface is bare, there is no scarcity of available metal atoms to oxidize. The

current at the anode must balance with that at the cathode. Therefore, the current

densities must differ by the area ratio between the anode and cathode. The crack wall and

relevant external surface areas are between 1000 and 10,000 times the area of the crack

tip. Therefore, the limiting current density at the crack tip is 1000 to 10,000 times the

limiting current density of the cathodic reaction. Experimental verification of the model
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has determined that a factor of 10,000 is most appropriate for stress corrosion cracks.

Therefore, the limiting current density at the crack tip is 10,000 A/m2.

The anodic half-cell reactions are the dissolution of iron, nickel, and chrome. The

following is a list of these reactions and their reversible potentials.

Fe -+ 2e- + Fe 2  -440 mV (SHE) (3.30)

Ni -* 2e- + Ni2 + -250 mV (SHE) (3.31)

Cr -> 2e- + Cr 2  -744 mV (SHE) (3.32)

In order to find the reversible potential for stainless steel, these three potentials

must be combined based on stoichiometry of the metal. For stainless steel 304 with 18%

chrome and 10% nickel the reversible potential is -475 mV SHE. At the crack tip, grain

boundary segregation will have resulted in nickel enrichment and iron and chromium

depletion. This results in a reversible potential of about -450 mV SHE. At this potential,

2 2the current density of the metal dissolution is at the exchange current density: 10-2 A/m2

This current increases with rising potential along the Tafel slope until the limiting current

density is reached. The following plot indicates how the current densities change.
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Figure 3.7. Current density versus potential for oxygen, hydrogen peroxide and stainless

steel half cell reactions.

The Tafel region of the curve is defined by the following equation:

RT-Plog - = -log( . (3.33)
10 axzF io

Where R is the universal gas constant, T is the temperature in Kelvin, z and F are

as above and a is the transfer coefficient. The transfer coefficient is approximately unity.

At a temperature 561K, the oxygen half cell reaction has a Tafel slope of 24.2 mV, the

H20 2 half cell reaction has a Tafel slope of 12.1 mV and the stainless steel half cell

reaction has a Tafel slope of 22.6 mV. The Tafel slopes of the cathodic reactions are not

needed here because the limiting current density is reached at potentials much higher than

that encountered in BWR coolant systems. The tafel slope for stainless steel is

approximately 25 mV per decade. A closer look at the intersection of the stainless steel
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current potential relationship and the limiting current density provides the final

information to completely characterize the bare surface current density.

H20 2 + 2H* + 2e -> 2H 20

02 + 2H 20 + 4e -> 40H

SS --> 2e- + S2

Sum of
cathodic

4-currents

10 100 1000

Anodic Current Density, A/m2

10000 100000

Figure 3.8. Current density versus potential for oxygen, hydrogen peroxide and stainless

steel half cell reactions indicating intersection of total cathodic and anodic currents.

Therefore the current density rises between -450 and -300 and then is fixed at the

limiting current density for the remainder of the potential range.

Revisiting the choice of 10,000 as the ratio between the anode and the cathode

area, we refer to crack growth rate data. Figure 3.9 is a plot of data where the crack tip

strain rate is known [3.19]. In this case, only the slip dissolution/film rupture model is

being used. In Equation 3.26, all the values are known as described above except the

current decay curve slope, m , and the bare surface oxidation density, io. The current

decay curve slope is found, using the correlation described in the next section, to be 0.47.
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The bare surface oxidation density, i0, was then found to be 10000 A/m2 for the best fit to

the data.
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Figure 3.9. Crack tip strain versus crack growth rate for sensitized sstainless steel at high

conductivity and high potential [3.19].

The sources of the remaining values, the current decay curve slope and the

hydrogen embrittlement cleavage factor, are described in the next two sections. First, the

current decay curve slope correlation is described. Then the implementation of hydrogen

embrittlement used here is described.

3.2.2. Current Decay Curve Correlation

The slip dissolution/film rupture model is based on the repetitive cracking and

repassivation at the crack tip. Each electrochemical parameter required for the crack

growth model is part of the current decay curve. However, the decay of current cannot be
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modeled deterministically because there is no clear understanding (much less theoretical

basis) for passivation kinetics as a function of the water and metal chemistry at the crack

tip [3.20]. Thus, measurements must be made to determine the effect of solution

chemistry and metal properties on the rate at which the exposed metal is passivated.

These experiments are conducted by rapidly stressing wires to break the passive film, or

by rapidly changing the polarization from a very low potential where corrosion does not

occur to the potential for which passivation is being investigated. From these tests the

time constant, current constant and the slope of the current decay curve can be

determined. As mentioned previously the time constant, to, is approximately 0.1.

Additionally, the best fit value for the limiting current at the crack tip has been shown

here to be electrochemically valid, placing the bare surface dissolution rate at 10,000

A/m 2 . Therefore, the current decay correlation is relied upon only to determine the

current decay curve slope. Examples of current decay curve data reported by Ford and

Andresen are shown in Figure 3.10 [3.21].

This plot shows steel data from bare surface dissolution tests conducted in a

flowing solution of deaerated 0.01 mNa2SO4 at 288 0C with a pH of 6.3. The test was

conducted by rapidly changing the potential from -1520 mV SHE to -20 mV SHE. The

current decay correlation used in this model is a completely empirical correlation made

from experimental measurements such as this one. The measured data was developed

into the correlation used in the IEDM by Ford and Andresen [3.11, 3.14, 3.21]. This

correlation is used as is rather than creating a new correlation for the model because the

battery of experiments necessary to create the correlation is proprietary and difficult to
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reproduce. The correlation depends on the conductivity and potential (ECP) of the

coolant and on the degree of sensitization of the metal as represented by the EPR value.
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Figure 3.10. Oxidation current density versus time for bared surface Fe-Ni-Cr alloys in 0.01

M Na 2SO 4 at 288*C.

The following equation is the statistical formulation developed to fit the bare

surface oxidation data [3.14].

e)f (Cond+EPR) f (EPR )
m - L f(Cond+EPR) } ff(ECP) R

The functional forms of the dependencies of these equations are proprietary.

Therefore, a lookup table was made from plots of the data [3.11]. These plots are shown

in Figure 3.11 [3.11].
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Figure 3.11. Current decay curve slope, m, in terms of ECP and conductivity (at 25C) for

stainless steel at three different EPR values [3.11].
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The electrochemical potential is an output of the bulk chemistry model and the

EPR value comes from the radiation induced segregation model. The conductivity is

determined from the output concentrations from the bulk chemistry model and reactor

parameters input by the user.

3.2.3. Conductivity

One of the three inputs necessary to the current decay correlation is the

conductivity. The conductivity is an essential factor in determining the rate at which

cracking occurs because the current density of the dissolution process is limited by the

conductivity of the electrolyte. In order for corrosion to occur, two half-cell processes

must be occurring simultaneously. The electrochemical potential of the system is the

combination of the potential difference between the water and the metal and the potential

drop across the water between the side of the anodic and cathodic half-cell reactions.

When the conductivity is high, the potential difference at the surface of the metal is

maximized because the potential drop in the water is minimized. Low conductivity

increases the potential drop in the water decreasing the potential at the metal surface.

Some possible impurity species that could be present in a BWR are chlorides,

hydroxides, nitrates, phosphates, sulfates, thiosulfate, Pb2+, Cu2+, Fe2+, Ni2+, Zn2+, I-,

and 12. These species arise from corrosion products, contaminants in the feedwater, or in

the case of iodine, fission products [3.22]. Feedwater contaminants result from intrusions

of demineralizer resins, seawater from condenser leaks, and other failures in the coolant

system [3.23].
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While this model assumes that cracking increases with conductivity, some

evidence indicates that, this may not be the case. Specifically power plants that have

reported higher aqueous conductivity do not necessarily have higher rates of pipe

cracking [3.23]. Additionally, experiments have shown that the specific salt used to

produce a conductive electrolyte gave different IGSCC results in controlled

electrochemical potential tests [3.23]. Given this evidence, one might conclude that

assuming an increase in cracking with increasing conductivity would be invalid.

However, two logical and reasonable assumptions are made in order to validate the effect

of conductivity. The first is that salts that result in elevated conductivity in a BWR do

not vary greatly from one reactor to another. That is, the conductivity in excess of that of

pure water will be due to iron ions, chlorides, sulfides, radiolysis products and other ions

which result from the corrosion of reactor components and do not vary greatly between

reactors. The second assumption is that differences in cracking between reactors with

different conductivities are not valid controlled experiments. Since no two reactors are

identical and many parameters effect the cracking rates of reactors, it is not significant

that reactors with different conductivities have different rates of intergranular stress

corrosion cracking.

In order to calculate the conductivity of the water Equation 3.35 is used:

F2

K = lzCSDi (3.35)
RT

Where F is Faraday's number, R is the gas constant, T is the temperature in

Kelvin, z is the charge of ionic species i, C is the conductivity and D is the diffusion

coefficient. Additionally, Equation 3.36 can be used to describe the conductivity:
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K = F zi Ciu (3.36)

Where u = D/RT.

Table 3.3 gives the diffusion coefficients and mobilities for H+ and OH- (found in

all water) and HO2 and 02 (which are radiolysis products).

Table 3.3. Diffusion coefficients and mobilities [3.17, 3.24].

25'C, D, cm 2/s 25 0 C, u, cm 2mol/Js 300*C, D, cm 2/s 300 0C, u, cm 2mol/Js

DH+ 0.0000931 uH+- 3.76E-8 DH+ 0.00176 uH+- 3.7E-7

DOH-= 0.0000527 UOH- 2.13E-8 DOH-= 0.00098 UOH- 2.1E-7

DH02- = 0.00002 uH02- =0.00002 DH02- = 0.0002 uH02- =0.00002

D02-= 0.00002 u02-= 0.00002 D02-= 0.0002 u02-= 0.00002

The correlation used to determine the parameters of the current decay curve

requires the conductivity at 25 0C as input. It would seem logical to have the correlation

based on the actual conductivity at 3000C rather than that at room temperature. However,

in actual reactor operation only the conductivity of samples that are removed from the

reactor and cooled to 25 0 C has been reported. Therefore, the correlation uses the 25'C

conductivity value in order to facilitate verification of the result and to increase the utility

of the correlation. Completely pure water has a conductivity of 0.055 pS/cm at 25*C. At

300*C the conductivity of pure water is 13 pS/cm. The reason for this huge increase is

twofold. The first reason is that both mobilities and diffusion coefficents increase with

temperature as indicated in Table 3.3. The second reason is that the minimum

conductivity of pure water is determined by the concentration of 01-1 and H+, which

increases with increasing temperature. The sum of the pH and pOH of water at 25 0C is
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14. Therefore, at neutral pH the concentration of both H+ and OH- are 10~7 moles per

liter. At 300'C, the sum of the pH and pOH of water is 11.3. Therefore, at 300'C and

neutral pH the concentration of H+ and OH- are 2.24x 10-6 moles per liter.

Because the chemistry set used with the plant chemistry model is based on

radiolysis and only accounts for compounds made up of hydrogen and oxygen, impurity

concentrations, which result in higher conductivity, are not determined by the model.

One solution to this problem would be enlarging the chemistry set. However, while an

increase in the size of the chemistry set would allow monitoring the effect of corrosion

products in the coolant, it would still not account for impurities introduced from fission

products or in the feedwater. It would also greatly increase the time required to run the

model. Because of these issues, the baseline conductivity, which is the conductivity of a

neutral (pH =7) coolant sample at 25'C, must be provided to the model. This value is a

common parameter measured at reactors. It is requested by the graphical user interface

before the current decay correlation is used to ensure that all sources of conductivity are

accounted for. Inputting this figure directly is a valuable feature because the effect of

conductivity transients can be studied using the IEDM.

Since the conductivity of a solution is the sum of the contribution of each ionic

species, the effect of OH- and H+ on the baseline conductivity can be subtracted and then

the total conductivity based on all oxygen and hydrogen species can be added back. The

conductivity of neutral pure water (0.055ps/cm) is subtracted from the baseline

conductivity. Then, the conductivity due to ionic radiolysis products, as well as H+ and

OH- concentration, which may not be neutral, will be added. This results in the
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conductivity that is used by the current decay curve correlation to find the slope of

current decay, m.

3.3. Hydrogen Embrittlement

The final parameter in the slip dissolution/film rupture relationship is C, the

cleavage contribution due to hydrogen embrittlement. Like other forms of

environmentally induced cracking, hydrogen embrittlement cracking requires the

combination of a susceptible material, a sufficiently aggressive environment, and a tensile

crack tip stress. The crack tip stress is the same as that resulting in dissolution based

stress corrosion cracking. The material and environment conditions, however, are quite

different.

Hydrogen embrittlement is an important factor in cracking for body-centered

cubic (BCC) iron alloys due to the restricted slip capabilities found in these alloys [3.16].

The austenitic alloys (which include the stainless steel alloys studied here) have face

centered cubic (FCC) crystal structures. This structure has an increased resistance to

hydrogen embrittlement due to its high ductility and lower hydrogen diffusivity.

However, both resistance to embrittlement and low diffusivity diminish when the metal is

highly cold worked [3.16]. The dislocation density produced by radiation hardening

leads to the same conditions as cold work; an increased hydrogen diffusivity and

decreased ductility. Therefore, in terms of material, it is somewhat likely that hydrogen

embrittlement will be relevant for the conditions relevant to the IEDM.

The hydrogen embrittlement effects are included in the IEDM because of their

applicability to materials other than austenitic stainless steels. Hydrogen embrittlement
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effects are more severe in high strength materials [3.16]. While hydrogen embrittlement

does not significantly affect common stainless steels, problems are more frequently

experienced with the use of high strength superalloys. Precipitation-strengthened Ni-Fe-

Cr alloys are widely used as light water reactor core internal structural materials [3.25].

Therefore, the hydrogen embrittlement contribution is important in allowing the model to

be adapted for evaluation of superalloys and other high strength metals.

In addition to a susceptible material and significant tensile stress, the environment

in which hydrogen embrittlement is likely to occur must also be considered. In order for

hydrogen embrittlement to occur, the electrochemical potential of the system must be low

enough that the reduction of hydrogen is a dominant cathodic reaction. Since the

measurement scheme for potential is based on the reversible potential for hydrogen, the

ECP of the system must be less than 0 mV vs. SHE. At 0 mV SHE no net reduction of

hydrogen occurs, rather the reduction and oxidation of hydrogen are balanced and each

reaction occurs at the exchange current density. Therefore, the potential must be further

reduced before the reduction of hydrogen in a crack becomes significant.

As a result, the factor C depends on the metal and the environment. For a given

metal, C increases with hardness, which signifies a decrease in ductility and an increase

in the diffusivity of hydrogen through the material. Additionally, the diffusivity varies

with alloy content of the metal. Looking at environmental factors, C increases with

hydrogen reduction in the crack. Hydrogen reduction occurs when the potential is

between the reversible potential of hydrogen (0 mV SHE) and the reversible potential of

the metal (-450 mV SHE for stainless steel). Hydrogen reduction increases with the

amount of H+ ion in the system, which is signified by lower pH. The change in pH is not
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significant in boiling water reactors, as the coolant is nearly neutral. Another

environmental effect is temperature. Hydrogen embrittlement increases in severity at

temperatures where the diffusivity of hydrogen is high enough to carry the hydrogen to

the crack tip but not so high that it will diffuse out of the crack tip region.

A logical step in the development of any model is to select a mechanism.

However, a multitude of proposed mechanisms have been suggested. While many of

these have not stood up to critical examination, several mechanisms have been deemed

viable [3.26]. It is possible that several of the remaining failure mechanisms are valid

and that different mechanisms operate for varying conditions. The following three

requirements must be met to provide hydrogen to the crack tip [3.14]:

(1) A species which contains reducible hydrogen must be present at the crack tip

due to diffusion along the crack tip or high concentration in solution.

(2) The hydrogen must be reduced at the crack tip and this reaction must be

balanced by an oxidation reaction. The oxidation process need not occur at or near

the crack tip.

(3) The hydrogen on the surface of the metal must diffuse to the crack tip region

within the metal.

Five mechanisms will be outlined in the following paragraphs to indicate the wide

range of mechanisms developed to describe hydrogen embrittlement. One mechanism for

hydrogen embrittlement purports that the reaction of hydrogen atoms with dislocations,

voids, or the stress field at the crack tip to decrease the ductility of the metal [3.21]. In this

mechanism, hydrogen diffusing through the metal matrix congregates at positions where the
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interstitial spacing is greater. This includes areas such as just behind the crack tip where

there is significant triaxial tensile stress, as well as dislocations and voids. The

accumulation of hydrogen atoms restricts the flow of dislocations resulting in embrittlement

of the metal.

Another mechanism purports that the build-up of gas pressure at vacancies and

dislocations in the plastic zone at the crack tip results in fracture [3.21]. Accumulating

gases include diatomic hydrogen, methane, and hydrogen sulfide. This mechanism might

explain the effect which carbon and sulfur have on intergranular cracking. This

mechanism contrasts the previous mechanism in that the gases result in increased stresses

in the material rather than limiting plastic deformation.

Another mechanism is the atomic decohesion theory [3.27]. Electrons donated from

dissolved hydrogen atoms enter the incompletely filled d-bond of transition metals. The

increased electron density acts to increase the interatomic spacing of the lattice, which

reduces the cohesive strength of the metal. At any location within the metal lattice where

hydrogen concentrates, the cohesive strength is reduced, and the metal becomes more

susceptible to SCC.

In a mechanism developed by Jani, et al., the stacking fault energy of the crystal is

lowered in the hydrogen affected region [3.28]. This restricts cross-slip, allowing only

planar slip to occur. Lomer-Cotrell supersessile dislocations then form, reducing slip further

and causing high stresses to result. Like the first model, where hydrogen acts interstitially,

or the decohesion model, the Jani model predicts decreased plasticity. This contrasts the

final model that I will mention which predicts that plasticity is enhanced.
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This model supposes that hydrogen reduces the shear stress required for dislocation

motion at the crack tip [3.41]. Because of the reduction in sheer stress, the local plastic-flow

process associated with crack propagation is eased. This model works in combination with

another mechanism such as the slip dissolution-film rupture model. Dislocation motion to

the crack tip is aided allowing the stresses required to break the passive film at the crack tip

to acquire more quickly.

Given that it is not even clear whether plasticity is enhanced or reduced by hydrogen

embrittlement, it is obvious why deterministically accounting for hydrogen embrittlement is

difficult. The solution to this problem is to account for hydrogen embrittlement empirically

knowing that it increases with hardness, crack tip hydrogen availability and optimal

temperature.

3.4. Correlation between RIS and EPR

Sensitization is the process by which the metal matrix near the grain boundary is

depleted in one or more beneficial elements or enriched in one or more detrimental

elements resulting in an increased susceptibility to intergranular stress corrosion cracking

[3.29]. In austenitic alloys, the main element that is depleted at the grain boundary is

chromium. Due to chromium's role in passive film formation, its depletion at grain

boundaries results in increased vulnerability to cracking. The radiation induced

segregation discussed previously can cause sensitization during reactor operation. An

additional source of sensitization that develops during construction of the reactor and

preparation of the materials is thermal sensitization.
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Thermal sensitization results from heat treatment or the cooling process following

welding. Thermal sensitization is caused by the precipitation of chromium rich carbides

(Fe,Cr)23C6 along the grain boundary [3.16]. Because precipitation occurs at grain

boundaries and the carbides are very high in chromium, the metal matrix near the grain

boundaries is depleted of chromium. Precipitation of chromium carbides occurs between

425*C and 815*C. Below 425*C, the diffusion rate of chromium is not sufficient for

carbide formation; above 815'C, the chromium remains in solution. One might ask, if

thermal sensitization is an important cause of irradiation assisted SCC in nuclear Reactor

environments, why is there no model here for thermal sensitization? A model or

correlation for thermal sensitization is feasible. However, it is more likely that an

operating reactor would have estimates of the sensitization of various components than

the exact thermal history before and during construction. Therefore, thermal sensitization

is taken as an input while radiation induced segregation can be determined over the

lifetime of the plant.

It is important to note that in addition to chromium, excess carbon is required to

form the species whose precipitation results in thermal sensitization. Therefore, one

method to reduce sensitization is to reduce the carbon content of the steel. In 304L and

316L steels, the 'L' stands for low carbon; these alloys were developed to prevent

sensitization.

In addition to measuring the degree of sensitization (DOS) by microscopic

analysis of the minimum chromium concentration along the grain boundaries, a standard

method has been designed for nondestructive testing and has become widely used to

describe the degree of sensitization. This method is the electrochemical potentiokinetic
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reactivation (EPR) technique. EPR tests allow rapid in-situ testing of DOS [3.30]. The

standard single-loop EPR technique was developed by Striecher et al. and is

advantageous relative to previous methods of testing IGSCC susceptability because it is

sensitive, quantitative and nondestructive [Striecher]. To conduct a single-loop EPR test,

first the sample is polished to a 1 -pm diamond finish. The test is conducted by forming a

passive film on the specimen surface by exposing the sample to a sufficiently high

potential, usually 200 mV vs. SCE [3.31]. Following, a two minute hold the reactivation

scan begins and the potential is reduced at a rate of 6V per hour. The current passed as

the metal oxidizes in the active region is measured to quantify the film breakdown and

grain boundary attack [3.32]. The standard electrolyte for this test is 0.5 M H2 SO 4 + 0.01

M KSCN at 30 0 C [3.33]. The reactivation charge, Q, measured in coulombs must be

normalized for the specimen area and grain size. Therefore, the standard single-loop EPR

value, Pa, is given by dividing Q by the grain boundary area. Pa has units of Coulombs

per square centimeter.

A modification to the standard EPR test is the double-loop EPR test [3.34, 3.35].

In this test, an anodic scan rather than a passivation hold precedes the reactivation scan.

During the anodic scan, the electrochemical potential of the system is increasing. The

anodic scan has a higher maximum current than the reactivation scan and the results of

double-loop test are reported as the ratio of the maximum currents during the reactivation

scan and the anodic scan [3.35]. The advantages of the double-loop test are that the result

is a ratio and therefore need not be normalized and that the metal does not need to be

polished as finely.
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The effect of radiation induced sensitization following thermal sensitization is not

well understood because little research in this area has been conducted. The depletion

profile for radiation induced segregation is narrower (usually 5-10 nm [3.36]) than that

due to thermal segregation (50-100 nm). Therefore, RIS is unlikely to greatly effect

sensitized materials. In the model, either an input value is provided for the EPR due to

thermal sensitization or the RIS model is used to determine an equivalent EPR due to

radiation induced segregation. The most accurate method, given the differences between

the two processes and the resulting depletion profiles, is to use whichever EPR value is

greater.

The fact that radiation induced segregation tends to result in a narrower chromium

depleted region than that due to thermal sensitization is an important consideration. The

reactivation current in the standard EPR test depends mainly on the width of chromium

depletion where the grain boundary intersect the specimen surface [3.35, 3.37]. EPR has

been used and has even come to define degree of sensitization in thermally sensitized

steels [3.35]. That EPR and degree of sensitization have come to be interchangable can

be seen as a problem because the outcome of an EPR test depends on what test is

conducted. That is, EPR and therefore DOS is defined in terms of the EPR test

conducted whether it is a single-loop, double-loop or modified EPR test. Therefore,

sensitization is a relative term and the relationship between susceptibility to IGSCC and

EPR must be determined for each type of EPR test and each type of metal being studied.

By changing the electrolyte in which the EPR test takes place the test can be made to be

more sensitive to the depth of the chromium depletion rather than the width [3.37]. These

differences are significant when comparing EPR data to IGSCC susceptibility. In the
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IEDM, the EPR is not correlated directly with IGSCC. Instead the equivalent EPR value

for a standard single-loop test is determined from chromium depletion profile following

radiation induced segregation or a value is provided to the model. Then the EPR value is

used only to determine the electrochemical behavior of the metal following rupture of the

passive film protecting the metal at the crack tip. This is reasonable because like the EPR

test, the current decay following a repassivation event also depends on the

electrochemical response to changing potential.

Having determined that EPR will be useful in the model, we must now look at

how to determine the EPR. There are correlations between EPR test results and IGSCC

susceptibility in the literature. However, they have been designed for thermally

sensitized materials and may not be adequate for RIS. The following paragraphs describe

the development of an EPR correlation for thermally sensitized materials with known

chromium profiles.

The output of the RIS model which is most relevent to IGSCC susceptibility is the

chromium profile. However, the input to the current decay correlation which gives the

metal chemistry is the EPR value. The EPR value is the result of an electrochemical test

of grain boundary dissolution kinetics. In order to utilize data from the RIS model in the

current decay curve correlation, an intermediate correlation is needed. This correlation

must estimate the EPR value from the chromium profile. Breummer has developed a

correlation to estimate the EPR value of a metal specimen based on the shape and size of

the chromium profile. The correlation uses the volume depletion parameter originally

formulated by Was [3.38]. The volume depletion parameter is a measure of the cross
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sectional area of metal that has a chromium concentration below a certain value.

Equation 3.37 is the equation for the volume depletion parameter:

VDP = (Crit - Crmin)Writ (3.37)
2Crcri

Where Crcrit is the critical chromium concentration, Crmin is the minimum

chromium concentration and Writ is the width of the profile at the critical concentration.

The source of these variables is shown in Figure 3.12. The equation is divided by two

because the area represents a triangle. This term is irrelevent but is maintained because

of its use by Was and later Bruemmer. The equation is divided by the critical chromium

concentration simply to normalize the units. For a given correlation between VDP and

EPR, Crcrit will be constant. By dividing by Crcrit the units of concentration are removed

allowing the use of percentages or fractions by weight or atom.

S18

.2 16

4 Wcrit
w14

0 Crcrit- Crmin
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Distance from Grain Boundary, nm

Figure 3.12. Example of volume depletion parameter from the chromium profile.
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Figure 3.13. Correlation between volume depletion parameter and the electrochemical

potentiokinetic reactivation (EPR) for a critical chromium value of 14%.

Figure 3.13 is a plot of most of the data used to calibrate a correlation between

the volume depletion parameter and the measured EPR. Notice that the scatter of the data

is not severe. This plot is much tighter than either a plot of minumum chromium

concentration versus EPR, or a plot of the profile width at the the critical concentration

(Wcrit) versus EPR. The following is the equation for the solid line on the plot.

EPR = 0.42(VDP)- 0.00 1(VDP) 2 +1.10-6 (VDP)3 (3.38)

While this equation is valid for thermal segregation, the model does not evaluate

chromium profiles for thermal segregation. Rather, it determines and evaluates

chromium profiles for radiation induced segregation. Therefore, the volume depletion
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parameter must be correlated with experiments from the literature on the effect of RIS on

crack growth rate.

The most complete battery of experiments to determine the effect of RIS on crack

growth rate is that of Jenssen and Ljungberg [3.39]. This battery of experiments has been

used to determine a reasonable fit between the volume depletion parameter and the

equivalent EPR for RIS. This battery of compact extension rate tests studies SS 304 and

316 over a wide range fluences. Compact extension rate tests were conducted to

determine crack growth rates. The test conditions were similar to BWR conditions and

those conditions used to verify the crack growth model. The samples were tested in

reactor feedwater with a conductivity of 0.2pS/cm and potential between 100 and 200

mV SHE. Therefore, it is reasonable to use this data to "back out" a relationship for RIS.

A major problem with this data was that it was taken from linear plots. The crack

growth rates were shown on a scale from 0 to 2 x 10-6 mm/s. Therefore, growth rates

below 10-8 mm/s are shown as 0 mm/s. Another problem was a lack of clarity in terms of

the irradiation scheme. The samples were irradiated in a reactor for 1, 2 and 5 reactor

cycles, at fluxes ranging from 1 to 4 DPA per year [3.39]. While the fluence is given

explicitly for each data point, irradiation times of 1, 2 or 5 cycles is excrutiatingly vague.

This is especially significant because the susceptibilty varies with time for the same

fluence as indicated by the figure at the end of the section describing the RIS model. It

was assumed that a cycle was 6 months; because this made the choice of 1, 2 and 5 cycles

reasonable given the relationship between the fluxes and fluences.
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A best fit to the data with two sets of output from the crack growth model (ECP =

100 mV SHE & 200 mV SHE) yielded the following relationship between the volume

depletion parameter.

EPR =135 -VDP -7.0 (3.39)

This relationship was found to minimize the error in the highly scattered Jenssen

data for stainless steel 304. Figure 3.14 is a plot showing the data and the model

predictions. This plot is shown with a linear y axis for similarity to the data in Jenssen.
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Figure 3.14. Fluence versus DPA for stainless steel 304 in oxidizing conditions, Circles:

experimental data; lines: model output.

This plot indicates the source of some of the scatter exhibited in the Jenssen data.

The variation in potential leads to large variation in the output data. The following plot

shows the same data with the crack growth rate plotted logarithmicly. On this plot the

zero values are plotted at 10-8 mm/s.
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Figure 3.15. Fluence versus DPA for stainless steel 304 in oxidizing conditions. Circles:

experimental data; lines: model output.

For 316 stainless steel the following equation correlates the volume depletion parameter

with an equivalent EPR for radiation induced segregation.

EPR = 57 -VDP - 5.2 (3.40)

This value shows agreement similar to that found for stainless steel 304.

However, less data was available in the paper to define this relationship.

IGSCC of sensitized Alloy 600 has been demonstrated to be most severe in

samples with narrow but deep chromium-depleted zones [3.34] The mechanism of

IGSCC in Alloy 600 in nuclear reactor environments is not well understood. When more

data is available a correlation for Alloy 600 can be added to model. Until such a time that

data is available to determine an equivalent EPR for the volume depletion parameter of
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Alloy 600, an EPR value will have to assumed in order to model the cracking

susceptibility.

3.5. Sensitivity Analysis

This section describes the sensitivity of the various parameters used by the crack

growth model. It has been developed from a parametric study. It is important to

understand which values have the greatest effect on the crack growth model. This way

special attention can be paid to parameters that have a large effect on the crack growth

rate and are difficult to determine with great accuracy. For each variable a rate of change

factor is determined and listed in Table 3.5 at the end of this section. Additionally, the

precision by which this value is likely to be known is also given in the table. The

following table indicates the base case for cracking used for the sensitivity analysis.

Table 3.4. Base case values for sensitivity analysis.

Variable Base Case Value

X, Plastic zone size constant 1/(37r), 0.106

P, Analytical strain distribution constant 5.5

M, Metal atomic mass 56 g/mole

p, Metal density 8000 kg/m

z, Oxidation state of dissolution 2

gf, Passive film rupture strain 0.007

E, Young's modulus 22000 kg/mm2

(-y, Yield strength 20 kg/mm2

n, Strain hardening exponent 0.33
K, Stress intensity factor 80 Kgmm"2 /mm2

K', Stress intensity factor rate of change 0.0001 Kg/mm s

r, Distance from growing crack tip 0.04 mm

C, Hydrogen embrittlement cleavage factor 0 mm

m, Oxidation current decay curve slope 0.7

to, Time constant for current decay 0.1 s
io, Oxidation current density of bare surface 10000 A/m2
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First the sensitivity of constants that are fixed in the model (X, P) were evaluated.

Then parameters which are determined directly from the metal (M, z, p, Ef, E) were

studied. Additionally, the sensitivity of the two materials parameters which may be

determined by the irradiation hardening model (o-y, n) were evaluated. Next the stress

intensity factor (K), its rate of change (K'), and the distance from the crack tip at which

the strain is acting (r) were varied. The effect of the hydrogen embrittlement term (C)

was evaluated next. The sensitivities of the electrochemical parameters (m, to, io) were

determined. Additionally, the sensitivity of the values used in the current decay curve

slope correlation (Conductivity, ECP, EPR) were assessed.
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Figure 3.16. Crack growth rate versus plastic zone size constant for the base case parameters.
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Lambda is the proportionality constant for the plastic zone size. For plane strain,

it is given as 1/(3 n) by Gerberich [3.1]. Lambda could vary based on different

representations of the plastic zone size for different cracking modes. As Figure 3.16

indicates, the crack growth rate increases with rising plastic zone size constant with a

dimensionless slope of 0.12 (% rise/% run) at 0.106. The crack growth rate does not

change significantly over the range of lambda.
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Figure 3.17. Crack growth rate versus analytical strain distribution constant for the base case

parameters.

Beta is the proportionality constant of the analytical strain distribution for a

growing plane strain crack. Values for beta have ranged from 4.28 to 5.81 with 5.5 being

used here [3.2]. As Figure 3.17 shows, the crack growth rate increases with rising

analytical strain distribution constant with a dimensionless slope of approximately 1. The

crack growth rate does not change significantly over the likely range of Beta.
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Figure 3.18. Crack growth rate versus metal atomic mass for the base case parameters.
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Figure 3.19. Crack growth rate versus metal density for the base case parameters.

124

W)

E
E

0i

0

CU

CGR = 2.4E-10 M1 4

a . . a .

-1.
CGR= 0.021 -p

..................... - -



The metal atomic mass and metal density are obviously constant for a given

metal. These are used to calibrate Faraday's relationship in the model. Therefore, they

are simple multiplicative factors in the model. However, their effects on the crack

growth rate are still interesting. They have the opposite effect of one another. As Figure

3.18 shows, the crack growth rate increases with rising atomic mass (slope = 1.4 at 56

g/mole). In Figure 3.19, the crack growth rate is decreasing with increasing metal density

(slope = -1.4 at 8000 kg/m 3).
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Figure 3.20. Crack growth rate versus oxidation state for the base case parameters.

The oxiadation state of dissolution is considered a property of the metal but it is

actually more complicated than that. It depends on the alloy content of the metal

(locally), on which alloy components dissolve during the corrosion event, and on what

the oxidation states of the oxidized metals are. The value used here is 2 because most of

the corrosion at the crack tip is iron and nickel which both have an oxidation state of 2.
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However, some chromium may also corrode with an oxidation state of 3. Therefore, this

value may be higher than 2. Figure 3.20 indicates that the crack growth rate decreases

with increasing oxidation state with a slope of -1.4 at z = 2. The crack growth rate does

not change greatly over the likely range of oxidation states relative to other sources of

error.
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Figure 3.21. Crack growth rate versus passive film rupture strain for the base case
parameters.

The passive film rupture strain has been reported with values ranging from 0.001

to 0.015 [3.15]. In the crack growth model used here, a value of 0.007 is used for the

chromium rich passive film that protects austenitic Fe-Ni-Cr alloys based on

experimental measurement [3.15]. Figure 3.21 shows the effect of the passive film

rupture strain on the crack growth rate for the base case. At 0.007 the crack growth rate

is decreasing with a dimensionless slope of -0.9. As the passive film rupture strain
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increases by one order of magnitude, the crack growth rate decreases by an order of

magnitude. This is significant because the passive film rupture strain is uncertain within

the range from 0.001 to 0.01.
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Figure 3.22. Crack growth rate versus Young's modulus for the base case parameters.

The Young's modulus is a property of the metal that does not change appreciably

with irradiation or temperature in the temperature range of model validity. Figure 3.22

shows that the crack growth rate decreases with increasing Young's modulus with a

dimensionless slope of -1. Because the Young's modulus is known with better than 10%

accuracy, it does not contribute significantly to error in the result.
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Figure 3.23. Crack growth rate versus yield strength for the base case parameters.

The yield strength of the metal is an important parameter in the determination of

the crack trip strain distribution. Figure 3.23 indicates its effect of the crack growth rate.

Its uncertainty is high due to radiation hardening. It is found in both the numerator and

the denominator, and therefore the crack growth rate increases for low strength value and

decreases with increasing strength for high strength values. The peak value occurs when

the yield strength is equal to the stress intensity factor. Despite the high uncertainty of

the yield strength, the variance in crack growth rate is low. For the input values studied

here the crack growth rate only changes by a factor of two over the entire range of yield

strength.
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Figure 3.24. Crack growth rate versus strain hardening exponent for the base case
parameters.

The strain hardening exponent, n, defines the extent to which a material work

hardens as it is being strained. As the yield strength increases due to cold work or

irradiation hardening, the strain hardening exponent decreases. As shown in Figure 3.24,

as the strain hardening exponent increases, its effect on the crack growth rate increases as

well. The strain hardening exponent is a significant source of error because its

uncertainty can be as high as +/-0.1. Over the range from 0.2 to 0.4 the crack growth rate

changes by nearly a factor of 3.
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Figure 3.25. Crack growth rate versus stress intensity factor for the case where the stress
insety factor is equal to 0.

The stress intensity factor, K, is determined from the far field stress at the crack

tip and the crack length. Rather that being calculated, it is usually simply inputted to the

model. Therefore, it has high uncertainty. Figure 3.26 indicates the effect of stress

intensity factor for cracking when the stress intensity factor rate of change is 0. Here the

stress intensity factor only varies by a factor of 2 over the likely range of values.

Therefore, despite the high uncertainty of this value, it does not contribute greatly to error

in the crack growth rate for high stress intensity factors and high crack growth rates.
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Figure 3.26. Crack growth rate versus stress intensity factor rate of change for the base case

parameters.

The stress intensity factor rate of change, K', indicates an increasing stress

intensity factor due to increasing crack length and/or tensile stress. The dimensionless

slope is between 0.5 and 0.6 for values above 0.0001. Figure 3.26 shows that the slope

increases with increasing strain rates. The sensitivity to the crack growth rate is not high.

However, K' has high uncertainty; it is likely to be known only within 1 order of

magnitude. Therefore, K' contributes significantly but not greatly to the error in the crack

growth rate.
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Figure 3.27. Crack growth rate versus distance from the growing crack tip for the base case
parameters.

The distance from the growing crack tip, r, represents the position where the crack

tip strain is defined and evaluated [3.12]. Figure 3.27 is a plot of the effect of the choice

of r on the crack growth rate. The value, r, comes from the analytical strain distribution:

6P TYs In R P)]
SE r

Here the strain varies with r. Following the derivation of the crack tip strain

expression, r must be selected to determine the crack tip strain rate. The choice of r

determines the magnitude of the crack tip strain. A value for r is chosen such that results

for the crack growth rate are accurate. Combining the high uncertainty and the variation

of crack growth rate with r results in a large contribution to error of the model. The
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plateau beyond 0.05 mm is misleading because this plateau will occur beyond the

appropriate value for r.
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Figure 3.28. Crack growth rate versus contribution from hydrogen embrittlement for the base

case parameters.

Figure 3.28, indicates the effect of C on the base case. The crack growth rate does

not converge for C > 0.02 for this case. The shape of this curve is determined by the

nature of the C term. C is added to the crack advance due to anodic dissolution. In this

case, the anodic dissolution term dominates the equation when C is less than 0.001.

When C is greater that 0.01, the hydrogen embrittlement contribution becomes

significant. At C = 0.02 the iterative combination of the crack growth rate and the stress

intensity factor will not converge. This indicates high uncertainty due to the hydrogen

embrittlement contribution factor. Additionally the necessity of this value being
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"reasonable" is indicated. It is important that this value not grow without bound as the

concentration of hydrogen provided to the crack tip is increased.
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Figure 3.29. Crack growth rate versus current decay time constant for the base case

parameters.

The time at which the passive film begins to form following rupture at the crack

tip surface is another parameter determined experimentally from the current decay curve.

Figure 3.29 shows the significance of the choice of to. The crack growth rate increases

with increasing time constant because the dissolution at the crack tip occurs at the

maximum density for a longer period. This formation of the passive film begins after

about 0.1 seconds in most of the experiments on stainless steels in pure water at 2880C.

However, on some current decay curves the time constant appears to be lower. The

difference in crack growth rate between to = 0.1 and 0.01 is less than an order of
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magnitude. Therefore, the contribution to the error from uncertainty in the time constant

is medium relative to other contributions of error.
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Figure 3.30. Crack growth rate versus oxidation current density of the bare surface for the

base case parameters.

The oxidation current density of the bare surface is the maximum rate at which

dissolution will occur following film rupture at the crack tip. As shown in Figure 3.30,

the crack growth rate increases with increasing bare surface current density. Due to high

uncertainty in the ratio of crack tip area to crack wall and outer surface area

(anode/cathode ratio), the current density is not known with great certainty. High error

may result from this uncertainty.
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Figure 3.31. Crack growth rate versus current decay curve slope for the base case

parameters.

The crack growth rate decreases with increasing current decay curve slope. As

Figure 3.31 indicates, the effect of the current decay curve slope is extremely high. The

dimensionless slope reaches a peak of -14 at 0.6. The current decay curve slope is

determined from an empirical correlation, in which error will doubtless be present.

Therefore, even with a small (and likely) 10% error in the current decay curve slope, the

crack growth rate will vary significantly. Therefore, the current decay curve slope

represents a large source of error in the crack growth rate.

In the base case, the current decay curve slope, m, equals 0.7. The current decay

curve slope is found by the current decay curve correlation using the bulk conductivity at

25'C, the electrochemical potential, and the EPR value. Values for these which result in

m = 0.7 might be conductivity = 0.3 pS/cm, ECP = 10 mV SHE, EPR = 15 C/cm 2. These
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are reasonable values for a reactor with sensitized stainless steel, normal water chemistry,

and somewhat high (but not out of spec.) conductivity. The same current decay curve

will result with conductivity = 0.2 pS/cm, ECP = 105 mV SHE, and EPR = 15 C/cm2.

These are conditions where stress corrosion cracking is known to be a problem. The

following plots bring the current decay curve into the sensitivity analysis by adding these

values to the base case.
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Figure 3.32. Crack growth rate versus bulk conductivity for the base case parameters, EPR

= 15 C/cm2 , and ECP = 10 mV SHE.

Figure 3.32 indicates the effect of conductivity on cracking. The crack growth

rate increases with conductivity. The conductivity at 25 0C can usually be measured or

predicted accurately within 0.1 pS/cm. Therefore, the effect of error in the conductivity

on the crack growth rate is significant but not high.
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Figure 3.33. Crack growth rate versus electrochemical potential for the base case parameters,

EPR = 15 C/cm 2 , and conductivity = 0.3 pS/cm.

The effect of ECP on crack growth rate is shown in Figure 3.33. The crack

growth rate increases with conductivity throughout the range of conductivities likely to

be found a BWR. The error in the conductivity is likely to be less than 100 mV SHE.

This error is high due to uncertainty in the effect of flowrate on ECP [3.40] as well as

other sources of inaccuracy in the chemistry modeling. Therefore, the crack growth rate

could vary by as much as half an order of magnitude due to error in ECP.
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Figure 3.34. Crack growth rate versus EPR value for the base case parameters, ECP = 10 mV

SHE, and conductivity = 0.3 pS/cm.

The crack growth rate increases with EPR as indicated in Figure 3.34. While this

increase is not extreme, it is significant in light of the high uncertainty in the EPR value.

Metals that are thermally sensitized to a low degree, such as those that are weld

22
sensitized, are usually assumed to have EPR values of 15 C/cm2 [3.11, 3.14]. These

values actually might fall between 10 and 20 C/cm2 . The error in this case would be less

than half an order of magnitude. Therefore, the EPR, ECP, and conductivity all provide

medium sources of error. The combination of these three values to determine the current

decay curve slope leads to the high error in that variable, as listed in Table 3.5.

The following table is a summary of the contribution of the error from each

variable in the crack growth model. It describes the error as low, medium low, medium

high, or high for each variable.
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Table 3.5. Contibution level in crack growth rate error.

Variable Contribution to Error

X, Plastic zone size constant Low

P, Analytical strain distribution constant Low

M, Metal atomic mass Low

p, Metal density Low

z, Oxidation state of dissolution Low

sr, Passive film rupture strain Medium High

E, Young's modulus Low

oy, Yield strength Medium Low

n, Strain hardening exponent Medium High

K, Stress intensity factor Medium Low

K', Stress intensity factor rate of change Medium High

r, Distance from growing crack tip High

C, Hydrogen embrittlement cleavage factor High

to, Time constant for current decay Medium

io, Bare surface oxidation current density High

m, Oxidation current decay curve slope High

140



3.6. Graphical User Interface
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Figure 3.35. Graphical user interface main window displaying nodal flow of BWR3

components (gray and white reversed for clarity).

In order to create a usable program that would be valuable to utilities and future

researchers a graphical user interface (GUI) was created to guide the user through the

various models that comprise the IEDM. The interface greatly enhances the usability of

the model by taking the user through a wizard-like progression where the user chooses

which models are relevant to the case being studied. The progression allows the models
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to share information such as flux, fluence and metal properties so that data need only be

entered once. The user interface allows for two types of plant chemistry models. One

modeled after a boiling water reactor (BWR) type III with jet pumps and the other a

BWR type I where all the downcomer flow goes through the recirculation pumps. The

plant chemistry model is actually highly flexible and has been used in this thesis to model

an experimental loop. It is also possible to model pressurized water reactors (PWR) with

the plant chemistry model. However, the chemistry information has not been compiled

and the GUI does not contain a nodal setup for PWR systems.

When the GUI is opened a nodal model of the primary side of a BWR is

produced. This is illustrated in Figure 3.35. After selecting whether to model with jet

pumps or direct recirculation, the dimensions of each reactor component are inputted.

Additionally the power dissipated and neutron and gamma flux levels are required for

each component where they are significant. From this main window, other windows can

be opened to view output and to run the radiation induced segregation, radiation

hardening, and crack growth models. Figure 3.36 is the main page for the crack growth

model. When this window is loaded a choice is made whether to load input values from

the plant chemistry model, then a window pops up asking whether the radiation induced

segregation model should be run. From the crack growth model window, the hardening

model and the current decay curve correlation can be run.
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Figure 3.36. Crack growth model physical and mechanical input parameter window from

GUI.

The GUI provides a framework in which an inexperienced user can quickly learn

to us the IEDM to characterize the effect of irradiation on the long term cracking of

boiling water nuclear power plant components. This allows the models developed here as

well as those developed previously to come out of the lab and be used as tools to advance

the understanding of flux and fluence effects on life prediction.
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4. Verification

In order to verify the IEDM, a large quantity of data has been collected from the

literature. Some of this data represents the effect of various parameters on the crack

growth rate. The problem with the crack growth rate data is that incomplete information

is given on the parameters of the experiment. Data in the literature is printed with only

the information necessary to verify the model or effect being described in the particular

paper. Because this model accounts for more effects and requires a wider range of inputs

than any other model, none of the data in the literature can be used to verify the IEDM as

a whole. There are two solutions to this problem. The first is to verify the each model

separately, overlapping where possible.

By verifying each model separately, the accuracy of each model can be verified to

discover the sources of error. First, the radiation induced segregation, and radiation

hardening models will be verified. Then the verification of the plant chemistry model

will be discussed. Finally, a great deal of data will be used to verify the various aspects

of the crack growth model. Most of this data will overlap with the current decay

correlation and some of the verification data will overlap with other models as well. Data

received from the Electric Power Research Institute will be used to verify a significant

portion of the IEDM model. However, assumptions are still necessary to compare this

data to the IEDM.

The second way to verify the entire model solves the problem above where

incomplete information is given. An ideal battery of laboratory experiments for
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verification has already been completed. Specifically, the doctoral thesis work of Bruce

Hilton as part of the MIT IASCC project includes four experiments in which stress

corrosion cracking occurred. Two important elements can be analyzed with this data.

The first is the connection between the bulk chemistry model and the crack growth

model. An input file was developed for the plant chemistry model (RadiCAL) for the

BWR simulation loop used to conduct the IASCC experiments. The second element is

difference between the effect of thermal segregation and radiation induced segregation.

This verification is at the end of this chapter.

4.1. Radiation induced segregation

The results of the radiation induced segregation model have been compared to

several experimentally measured profiles on alloys exposed to neutron irradiation.

Agreement with published data is excellent. Of particular importance are the chromium

concentrations near the grain boundaries, which are more accurately modeled as

compared to previous RIS modeling efforts in the literature [4.1].
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Figure 4.1. Measured chromium profile across a grain boundary and RIS model output.

20Cr-25Ni-Nb irridiated in a SGHWR, 298*C [4.2].

Figure 4.1 [4.2] and Figure 4.2 [4.3] are plots that illustrate the accuracy with

which the grain boundary chromium profiles are modeled. The lines on the plots

represent the model calculations and the points represent published measured data. In

Figure 4.1, the solid line is the results from the RIS model and the triangles are actual

data from 20Cr-25Ni-Nb irradiated at 289*C in a steam generating heavy water reactor.

In Figure 4.2, the triangles are data from 20Cr-25Ni-Nb irradiated to 1 displacement per

atom, at 354*C in an advanced gas-cooled reactor. In addition to looking at chromium

profiles, the nickel profiles where solved with equal success by the radiation induced

segregation model.
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Figure 4.2. Measured chromium profile across a grain boundary and RIS model output.

20Cr-25Ni-Nb irridiated in a AGR, 1 dpa, 354*C [4.3].

4.2. Radiation Hardening

The radiation hardening model was developed from two data sets for radiation

hardening of austenitic stainless steel (304 and 316) at reactor coolant temperatures [4.4,

4.5]. Figure 4.3 shows plots of data from the literature used to fit the statistical model

(triangles) and data from the model (lines). The scatter in this data represents range of

possible values associated with radiation hardening as well as variance in initial hardness,

and other experimental parameters.
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Figure 4.3. Yield Strength versus DPA for annealed stainless steel irradiated at 288*C
showing experimental data (triangles)[4.4, 4.5] and model output (lines).
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Figure 4.4 Yield Strength versus DPA for cold-worked stainless steel irradiated at 288 0 C
showing experimental data (triangles)[4.4, 4.5] and model output (lines).
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Additional plots are presented to verify the data. Rather than containing only data

for stainless steel 304 and 316, these plots contain data for a number of Fe-Ni-Cr alloys,

including super-alloys developed for fusion application. In addition, because the super-

alloy data is from research based on fusion, the samples were irradiated at temperatures

outside the optimal range for the statistical model [4.6]. The first verification plot, Figure

4.5, shows measured data for stainless steel 304 and 316 irradiated at 288*C versus model

output [4.7]. The model output is shown for initial yield strengths of 200 and 300 MPa.
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Figure 4.5. Yield Strength versus DPA for annealed stainless steel irradiated at 2880 C
showing experimental data (triangles)[4.7] and model output (lines).

The second verification plot, Figure 4.6, also represents annealed data. This data

is for Fe-Ni-Cr super-alloys irradiated at high temperatures (365, 465, 490, and 600*C)

[4.6]. This data is not fitted as well as that irradiated at 2880 C because the hardening

model contains a very simple relationship for temperature which is not valid well outside
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of the operating conditions for light water reactors. Figure 4.6 does indicate that

agreement with measured data for the hardening of a wide range of Fe-Ni-Cr alloys is

good for the hardening model.
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Figure 4.6. Yield Strength versus DPA for annealed Fe-Ni-Cr super-alloys irradiated at high

temperatures showing experimental data (triangles)[4.6] and model output (lines).

Figure 4.7 plots irradiation hardening data for cold-worked Fe-Ni-Cr super-alloys

against model predictions. This data is from the same high temperature tests as that

shown in Figure 4.6. Again there is difficulty fitting the data at the highest temperatures.
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Figure 4.7. Yield Strength versus DPA for cold-worked Fe-Ni-Cr super-alloys irradiated at

high temperatures showing experimental data (triangles)[4.6] and model output.

Good agreement with the hardening model for cold-worked is also evidenced in

Figure 4.8 for irradiated cold-worked 316 stainless steel. The hardening for these

experiments was due to irradiation at 35*C. Therefore, the model output will be

somewhat high for low irradiation levels as seen in this data. It might seem that the

temperature effect should be adjusted so that it is nonexistent for 0 dpa and increases

rapidly up to full strength at 1 dpa. This would also fix the intercept for temperature

values other than 288*C. This was not added to the model because it would imply that

the model is accurate over a wide range of temperatures, which it is not. It is better to

leave the model simple and ensure that it is not used for temperatures outside the range of

200 to 350'C. Because the entire IEDM is based on light water reactor conditions, it is

expected that the hardening model be used only in these instances as well.
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Figure 4.8. Yield Strength versus DPA for cold-worked stainless steel irradiated at 35 -C
showing experimental data (triangles)[4.8] and model output (lines).

The strain hardening exponent verification is shown in Figure 4.9. However,

there is a serious problem with this plot: It is the same data that was used to develop the

relationship between yield strength and strain hardening exponent. This was necessary

because these two data sets were the only ones at 288*C that were found in an extensive

literature search.
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Figure 4.9. Strain hardening exponent versus yield stress data at reactor coolant temperature

with model solution line [4.9,4.10].

Another check of any model is whether it is reasonable. It is reasonable that the

strain hardening exponent decreases with increasing yield strength. In addition, the range

of values from 0.38 to 0.05 is reasonable. The discontinuity at 255 MPa is necessary

because 0.38 is the value of the strain hardening exponent used here when no cold work

or irradiation hardening has occurred. During radiation hardening the yield stress will

initially increase rapidly leading to a decrease in strain hardening exponents.

4.3. Radiation Chemistry Analysis Loop

The RadiCAL model supplies the electrochemical potential (ECP) to the crack

growth model. It also determines differences in conductivity due to reactor operation

regimes and radiation effects. These two inputs must be accurate if the model is to be

used as it is intended to model the entire reactor over a wide range of conditions and

operating times. The radiolysis model has been verified in previous work [4.11, 4.12].
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Additionally, test cases have been run following each stage of model development to

ensure that mistakes are not introduced to the code.

Three main techniques were used to verify the code when the model was initially

implemented [4.11]. The first method was to use the Bateman equations, which describe

the kinetics of radioactive decay. Because the Bateman equations are analytically

solvable, the chemical kinetics routines could be thoroughly verified [4.11].

The second technique was to use an input file for a process that was very well

understood. An input file that described the burning of a cesium flare was used to test the

model. This method had been used to test previous radiolysis models as well [4.13].

The third technique to verify the radiolysis model is similar to that used to verify

the current implementation. The model is compared to previous modeling efforts and

errors are eradicated from both models until the results are reasonably similar. When the

RadiCAL model was originally coded it was compared to the MITIRAD radiolysis

simulator for a simple experimental loop case [4.11]. After several rounds of bug fixing,

the codes revealed similar results that were also physically reasonable [4.11].

The empirical model for electrochemical potential (ECP) was added to the

RadiCAL model in a significant subsequent revision [4.12]. While accuracy of the

concentrations of species and flow velocities in the updated model could be validated by

comparison to previous versions of the model, it is extremely important that the ECP

model be verified as well. This is especially important in light of the fact that this is the

key variable from the plant chemistry model used by the crack growth model in the

IEDM.
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The ECP model was developed by Lin et. al. [4.14] using data for the effect of 02

and H202 on a rotating cylinder electrode in an autoclave containing high purity water at

288*C. The data collected from the experimental setup had high precision and, like any

complex empirical model, the model predicted the test data with high accuracy. A real

test of the model was to compare it to actual reactor data. However, the only comparison

that was made was between the output of the entire plant chemistry model (including the

ECP model) and actual reactor data. While this is not the best way to verify the ECP

correlation, it does indicate the validity of the entire RadiCAL model. Figure 4.10 and

Figure 4.11 compare actual reactor data for the effect of hydrogen water chemistry on

ECP in the core bypass region to RadiCAL output.
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-200
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Figure 4.10. Reactor data (symbols) for upper core bypass region and RadiCAL model ECP

output using BWR3 input file [4.14].
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Figure 4.10 shows reactor data for the core bypass region near the top of the

active fuel. Plotted with this data are two curves from the RadiCAL model output using

the BWR3 standard input file. The data used is from the next to the last spatial step in the

core bypass and core boiling regions. This plot indicates fair agreement between the

actual data and the simulation. The simulation results are somewhat low. However,

information is not available to determine whether the plant chemistry or the ECP model is

the source of the inaccuracy. It is important to note that in the simulation boiling cannot

occur in the bypass region, while in the actual reactor a small amount of boiling will

occur resulting in decreased hydrogen. The core boiling curve is put on the figure to

show the effect of boiling on ECP. The hydrogen added in the feedwater goes into the

vapor phase allowing the oxygen produced by radiolysis to lead to a high ECP.
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Figure 4.11. Reactor data (symbols) for lower core bypass region and RadiCAL model ECP
output using BWR3 input file [4.14].
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Figure 4.11 shows reactor data for the core bypass region near the bottom of the

active fuel. Plotted with this data are curves from RadiCAL using the BWR3 standard

input file. The data used is from the first spatial step in the core bypass and core boiling

regions. Agreement between the actual data and the simulation is good. As mentioned

above, the simulation data for the core bypass region should be slightly lower than the

measured data. Therefore, the combination of the plant chemistry model and the ECP

model yields a slightly higher value than measured.

4.4. Crack Growth Model

The crack growth model has been verified using data from the literature. Several

sources as well as several different types of experiments have been used [4.15-4.17].

This literature search for crack advance rate data serves two functions. This data both

allows the refinement of uncertain parameters and verifies that the model accurately fits

both the shape and magnitude of the effect of various parameters on cracking. The

problem with using this data to refine uncertain parameters is that in the literature

parameters that should be certain are not always given. That is, parameters such as, the

distance from the crack tip to the point at which the strain acts, r, are not known and rely

on data to find a reasonable value. However, in the literature, the metal yield strength,

and crack length are not usually reported. There are more unknown values than equations

to solve them. Assumptions must be made over a large number of data sets so that the

assumptions can be tested even as the parameters are being determined.
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Figure 4.12. Crack growth rate versus ECP for sensitized SS 304 with conductivity = 0.1-0.3

pS/cm and K=88 Kg/mm3 /2 from Andresen, circles [4.15], trianlges [4.16], with

crack growth model predictions.

In theses five figures, the crack growth model is verified independently of the

other models. Most of the input parameters used for these five plots are the same. The

constants are fixed: P = 5.5, plastic zone size constant, k = 1/37r. Since all these plots are

for stainless steel 304 and 316 the metal parameters are constant: atomic mass, M = 56

g/mole, density, p = 8000 kg/M3, oxidation state, z= 2, Young's modulus, E = 22000

kg/mm2, yield strength, o-y -20 kg/mm 2, strain hardening exponent, n= 0.33, passive film

rupture strain, Ef = 0.007. The stress intensity factor, K, was assumed by the authors who

published this data to be 88.6 kg/mm3/2 (25ksi-in12 ). The time constant for current decay,

io, is 0.1 s and the oxidation current density on bare stainless steel is 1 0000A/m2
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Two values were determined by finding the best fit to the data in these five sets

and several others that are not published here [4.15-4.17]. The stress intensity factor rate

of change, K', is 0.0001 kg/mm 3/ 2s and the distance to the growing crack tip is 0.04 mm.

Only one parameter is left: the current decay curve slope, m.
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Figure 4.13. Crack growth rate versus ECP for sensitized SS 304 with conductivity = 0.1-0.3

ptS/cm and K=88 Kg/mm3
/
2 from Pathania [4.17], with crack growth model

predictions.

The current decay curve slope, m, depends on the electrochemical parameters of

the coolant solution. Its value is determined by the current decay curve correlation. For

Figure 4.12, Figure 4.13, and Figure 4.14 the electrochemical potential (ECP) varies. The

data used in the experiments comes from both laboratory and reactor data. The

conductivity of the bulk solution at 25'C is given as 0.1 to 0.3 pS/cm. This is the range

of conductivity found in an operating BWR. Each of these three plots has two lines from
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the crack growth model output for these two extremes of conductivity. The

electrochemical potentiokinetic reactivation (EPR) is assumed by the authors who

published this data to be 15 C/cm2 [4.15, 4.16]. This is a standard assumption for

thermally sensitized stainless steel, and the current decay curve correlation was created

with this assumption in mind.
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Figure 4.14. Crack growth rate versus ECP for sensitized SS 304 with conductivity = 0.1-0.3

pS/cm and K=88 Kg/mm3 2 from Yeh [4.18], with crack growth model predictions.

The scatter in the data on these plots is likely due to the parameters that are not

well characterized. As just mentioned, the EPR is not well characterized. The samples in

these plots come are furnaced sensitized and simply assumed to have an EPR near 15.

Another assumption is that the stress intensity factor equals 88.6 kg/mm3/2. This is an

average value because the Stress intensity factor increases as the crack grows.
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Additionally, the stress intensity factor is not well characterized for the portion of these

experiments that were conducted in reactor.
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Figure 4.15. Crack growth rate versus solution conductivity for solution annealed SS 316L
with potential between -30 and 50 mV SHE and K=88 Kg/mm3 /2 from Andresen

[4.19], with crack growth model predictions.

For the data where the conductivity is varied over the range from 0.1 to 1 (Figure

4.15 and Figure 4.16), the conductivity is not well characterized. The dissolved oxygen

content is given with the data as 200 ppb. While the dissolved oxygen is not perfectly

constant it is probably maintained within 25% of this value. For the ECP model

employed by the plant chemistry portion of IEDM, 200 ppb 02 leads to an ECP of 15 mV

SHE. A reasonable assumption is that the ECP is between -30 and 50 mV SHE for the

water in these experiments. The two lines on Figure 4.15 and Figure 4.16 represent these
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Figure 4.16. Crack growth rate versus solution conductivity for sensitized SS 304 with

potential between -30 and 50 mV SHE and K=88 Kg/mm3
/
2 from Andresen [4.19],

with crack growth model predictions.

Data for pre-irradiated 304 stainless steel can indicate the validity of the crack

growth model in combination with the radiation induced segregation model and the

correlation for the equivalent EPR for RIS. Figure 4.17 shows data for samples irradiated

to between 1 and 5 dpa.
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Figure 4.17. Crack growth rate versus ECP for pre-irradiated SS 304 from Andresen [4.16],
with crack growth model predictions.

Data has been obtained from the Electric Power Research Instititute (EPRI) in

order to access the validity of the entire model. However, inadequate information was

provided to test the plant chemistry model with this data. The only plant/operating

information given was the reactor, the location of the cracking, the temperature, the ECP,

and the conductivity. Therefore, it is most logical to analyze the remainder of the model.

Because the total fluence of at the location where the cracks are growing is given, the

effects provided by the RIS model and the radiation hardening model can be verified.

The name of each reactor is withheld because the data set is EPRI proprietary material.

The following table gives the data as received.
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Table 4.1. Data for shroud cracking.

Reac- Position Shroud Initial R/t Temp Fluence Compari ECP Cond. Duration

tor Thicknes Crack ('C) (N/cm2) ng (mV- (pS/cm (months)

(mm) Length Extention SHE)

(mm) (mm)

A H4 weld 38 10.2 60 288 2.3E+20 1.52 -323 0.12 18
A H4 weld 38 12.2 60 288 2.3E+20 -2.29 -323 0.12 18
A H4 weld 38 19.3 60 288 2.3E+20 -1.52 -323 0.12 18
A H4 weld 38 15.7 60 288 2.3E+20 2.03 -323 0.12 18
A H4 weld 38 17.5 60 288 2.3E+20 0.25 -323 0.12 18
A H4 weld 38 16.5 60 288 2.3E+20 0.00 -323 0.12 18
A H4 weld 38 17.5 60 288 2.3E+20 -2.29 -323 0.12 18
B H2 weld 51 2.0 52 288 8.OE+18 0.51 200 0.11 16
B H2 weld 51 17.8 52 288 8.OE+18 0.51 200 0.11 16
B H3 weld 51 8.6 52 288 1.6E+20 1.02 200 0.11 16
B H3 weld 51 11.4 52 288 1.6E+20 4.32 200 0.11 16
B H3 weld 51 17.3 52 288 1.6E+20 7.62 200 0.11 16
B H3 weld 51 0.3 52 288 1.6E+20 3.30 200 0.11 16
B H5 weld 51 18.8 52 288 8.OE+16 1.52 200 0.11 16
B H5 weld 51 21.8 52 288 8.OE+16 1.27 200 0.11 16
B H5 weld 51 2.0 52 288 8.OE+16 0.51 200 0,11 16
B H5 weld 51 16.3 52 288 8.OE+16 1.02 200 0.11 16
B H5 weld 51 0.3 52 288 8.OE+16 2.29 200 0.11 16
B H5 weld 51 3.0 52 288 8.OE+16 0.00 200 0.11 16
C H3 weld 31 12.24 49 288 2.5E+20 -1.91 105 0.106 11
C H3 weld 31 18.34 49 288 8.6E+20 -0.10 105 0.106 11
C H4 w.(area 1) 31 8.84 49 288 8.6E+20 0.51 150 0.106 11
C H4 w.(area 1) 31 9.55 49 288 8.6E+20 -0.20 150 0.106 11
C H4 w.(area 2) 31 9.42 49 288 8.6E+20 4.50 150 0.106 11
C H4 w.(area 2) 31 16.05 49 288 8.6E+20 -0.41 150 0.106 11
C H4 w.(area 2) 31 12.14 49 288 8.6E+20 2.31 150 0.106 11

This data being comprised of growing cracks in actual reactors during service the

measurement of crack growth rates (comparing extension in table) is difficult. Negative

values have been measured for reactor A and C. While it might seem that these values
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could be changed to zero noting the fact that the crack can not get shorter, it is more

accurate to use an average value with all measurements. Therefore, the comparing

extensions are averaged and divided by the total crack length to determine the growth rate

at each weld. The following table gives the parameters determined by the model which

differ from the base case as well as the measured and simulated crack growth rates.

Table 4.2. Data for shroud cracking.

Reac- Position Conducti ECP EPR m, Yield Strain IEDM Average

tor vity (mV- (C/cm2) current Stress hardening Crack Measured
(pS/cm) SHE) decay (kg/rn exponent Growth Crack

slope m2) Rate Growth
(mm/yr) Rates

(mm/yr)

A H4 weld 0.12 -323 22 0.94 42 0.14 low -0.22

B H2 weld 0.11 200 0 0.88 30 0.29 0.32 0.38
B H3 weld 0.11 200 20 0.57 41 0.15 23 3.5
B H5 weld 0.11 200 0 0.88 23 0.33 0.32 0.83
C H4 weld 0.11 150 30+ 0.56 52 0.09 30 1.5

This data shows excellent results for the materials that are not predicted to be

sensitized. For the sensitized materials the crack growth predictions are high. This is

likely to due overprediction of radiation induced segregation effects.

4.5. IASCC Experiments

Recently experiments were conducted at MIT to characterize irradiation assisted

stress corrosion cracking (IASCC) in austenitic stainless steels. These experiments are

ideal for verifying the IEDM as a complete entity. Slow strain rate (SSR) tests at

approximately 4 x 10-7 s-, were performed on several samples of types 304 and 316L

stainless steel in an autoclave situated in the MIT Research Reactor core [4.10]. The
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autoclave held 288 0C water flowing at 1.3 m/s [4.10]. The water had an electrochemical

potential (ECP) for stainless steel of between 0 and 100 mV versus the standard hydrogen

electrode and was chemically similar to the coolant in an actual BWR. The neutron and

gamma fields at the sample were 5 x 1013 n/m 2 and 1 x 105 R/s, respectively. The metal

samples included solution annealed and furnace sensitized specimens, as well as samples

that had been preirradiated up to approximately 0.8 dpa following solution annealing.

Because of the relatively high strain rate only a few of the samples experienced

measurable stress corrosion cracking. That is, while many of the samples exhibited

enhanced cracking due to factors such as chromium segregation, hardening, and

radiolysis, there were only four samples for which crack growth rates could be

determined for stress corrosion cracking. These four samples are all stainless steel 304.

Two of the samples were irradiated to 0.8 dpa following solution annealing. The other

two samples were furnace sensitized with one of them being 30% cold worked prior to

sensitization to simulate radiation hardening effects [4.10]. The parameters associated

with these four experiments are show in Table 4.3.

Table 4.3. IASCC output for which crack growth rate could be determined from SEM
analysis [4.10].

Specimen Heat Fluence Yield Hardening Tested Average

Number Treatment (x10 25n/m2) Stress Exponent crack growth

(Mpa) (n) rate (mm/s)

2012 SA+CW+Sen 0 632 0.21 out of core 3.07E-06

2003 SA+Sen 0 182 0.26 4.2 MW 3.96E-06

81 SA 0.8 570 0.12 4 MW 5.57E-07

82 SA 0.8 536 0.13 4 MW 6.62E-07
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The first step in verifying the model is to create an input file for the plant

chemistry model. The graphical user interface does not aid in this task because it is

designed for BWR loops. For this experimental loop, an input file was created by hand

(text editor). A schematic of the IASCC loop is shown is Figure 4.18.
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Figure 4.18. Schematic of IASCC testing rig (not to scale) [4. 10].
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The flow chart in Figure 4.19 is a graphical representation of the radical input file.

All of the data in the input file except for the chemistry and radiolysis reaction sets is

contained in the flow chart. The reaction sets were the same ones used in the BWR

model. The reaction sets and G-values were those deemed appropriate for BWR plant

chemistry at the MIT radiolysis workshop in August 1992 [REF].

Flow Rate Total = 753 g/s Charging Row Inlet Conc.
Heat Balance at Inlet Pipe Length = 100 cm H2 = 2 ppb
Convergence at Specimen Incore Diameter = 1.2 cm 02 = 205 ppb
Convergence Species H2,02, H202 Area = 1.2 cm2 H202 = 0 ppb

Inlet Pipe Heater Pump Retumn Pipe
Length = 200 cm Length = 283.7 cm Length = 61 cm Length = 230 cm
Diameter = 1.0 cm Diameter = 1.2 cm Diameter = 1.5 cm Diameter = 1.5 cm
Area = 1.2 cm2 Area = 2.2 cm2 Area = 1.2 cm2 Area = 1.2 cm2

Upper Downcomer Upper Upcomer Outlet Pipe
Length = 350 cm Length = 350 cm Length = 200 cm
Diameter = 0.43 cn Diameter = 1.3 cm Diameter = 1.2 cm
Area = 4.35 cm2 Area = 5.03 cm2 Area = 1.0 cm2

Dose Profiles

Gamma (rad/s) Neutron (rad/s)
Lower DC XCore Lower Upcome r 2850 0.3
Length = 54 cm Length = 59.5 cm 7840 3.4
Diameter= 0.44 cn Diameter = 1.3 cm 2160 37.0
Area = 2.35 cm2 Area = 4.41 cm2 5930 122

16,300 404
27,000 4390

14,500

27,000 14,500
38,100 78,500

Lower DC Incore Specimen Incore 67,300 150,000
Length = 43.5 cm Length = 38 cm 88,800 201,000
Diameter= 0.44 cl Diameter = 1.6 cm 102,600 232,000
Area = 2.35 cm2 Area = 3.96 cm2 108,700 242,000

108,800 240,000

Figure 4.19. Flow diagram of RadiCAL input file for IASCC test loop. Parameters indicate

equivalent dimensions of the flow channels and other input information [4.10].
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For the IEDM, the important parameters from the plant chemistry model output

are the ECP and concentrations of ionic species. The concentrations of ionic species are

used to plot the change in conductivity as the water moves through irradiated portions of

the coolant loop. The conductivity determined directly from these concentrations is

lower than that found in the coolant loop because the plant chemistry model input file

does not account for the concentration of impurities. Therefore, the conductivity of

neutral coolant at 25*C must be inputted. The baseline conductivity desired for the

IASCC experiments was 0.11 p.S/cm based on EPRI guidelines for BWRs [4.10].

However, the conductivity of the water exiting the loop measured approximately 0.7

pS/cm. This conductivity did not result form deleterious ions. Their concentrations were

determined by ion chromatography to be below the critical values cited in the same

reference as the target conductivity [4.10]. It was deemed that the higher conductivities

were caused by radiolysis of organic species leached into the test loop. For the IASCC

project, it was assumed that while these species contributed to conductivity they did not

contribute to cracking [4.10]. I find this assumption questionable as the reason that

cracking increases with conductivity is not certain. Additionally, it is not known whether

radiolytic organic species contribute to enhanced cracking. To continue using this data, a

baseline conductivity of 0.3 p.S/cm will be assumed. However, it should be noted that

this is a principal source of error in this comparison.
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Figure 4.20. ECP throughout IASCC test loop.

The rapid (discontinuous) increases and decreases in ECP seen in Figure 4.20 are

due to changes in flow velocity. Gradual changes are due to the production of 02, H2,

and H20 2 by radiolysis as well as the recombination of these species. The output from

the plant chemistry model gives the ECP at the specimen region as 140 mV SHE. The

ECP was measured in the coolant loop with the reactor operating at 4 MWt at the

specimen. For platinum electrodes the ECP was 150 mV SHE at the core midplane, 235

and 73 mV SHE (different times) 23 cm higher, and 290 mV SHE 46 cm above the core

midplane. For silver electrodes the ECP was 86 mV SHE at the core midplane, 70 and 94

mV SHE (different times) 23 cm higher, and 69 mV SHE 46 cm above the core

midplane. These values indicate a wide scatter for ECP that may be attributed to several

issues. The potentials were measured during two separate experiments with different

sample position resulting in slight geometric differences. Additionally a titanium spacer
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was added in the second experiment. Regardless of ECP measurement difficulties, the

value (140 mV SHE) predicted by the model agrees well with the range of measured data.

The third electrochemical parameter is the EPR. The two samples that were

furnaced sensitized were heat treated at 650 C for 10 hours. This results in heavily

sensitized material. Data from the literature indicates that this heat treatment results in an

EPR of 30 C/cm 2 [4.20,4.2 1]. The current decay curve correlation implemented in this

model is not valid for EPR values greater than 30 C/cm 2 . The EPR value might be higher

or lower than 30 because only the time and temperature are given to describe the

sensitization state of the sample. This is not a problem because the effect of EPR on

cracking plateaus around 30 C/cm2. Therefore, this value will be used for the furnace

sensitized data as I continue through the model.

For the two preirradiated samples, chromium depletion at the grain boundary

results from radiation induced segregation. In the write-up of the MIT IASCC project

[4.10] only the total fluence of the irradiation is given. The irradiation rates are not

given. This is significant as we have seen in the section describing the functionality of

the RIS model. It is assumed that the sample was irradiated at 0.8 dpa per year for 1 year.

Figure 4.21, shows the grain boundary profile for a sample irradiated to this degree as

predicted by the radiation induced segregation model.
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Figure 4.21. Grain Boundary chromium concentration profile for stainless steel 304

irradiated to 0.8 dpa at 288*C.

The equivalent EPR value for this data using the RIS to EPR correlation for

stainless steel 304 is 8.

The experimental values for the yield strength and strain hardening exponent were

used to determine the crack growth rate for the thermally sensitized materials. For the

pre-irradiated samples this data comes form the hardening model. For 0.8 dpa and an

initial yield strength of 182 MPa (from the unhardened sample) the final yield strength is

47 kg/mm2 (460 MPa) and the strain hardening exponent is 0.11. This compares

favorably with the experimentally determined yield strengths of 536 and 570 MPa and the

strain hardening exponent values of 0.12 and 0.13. The radiation hardening model output

will be used in the crack growth model.
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In order to find the stress intensity factor, it is assumed that the crack opens from

the outside to inside of the sample. Additionally the crack is assumed circular around the

entire circumference of the specimen. This crack morphology is shown in Figure 4.22

[4.22].

htP

Figure 4.22. Assumed crack morphology in slow strain rate test specimen [4.22].

For this crack morphology the following equation gives the stress intensity factor,

K1, at the crack tip [4.22].

KI = net a a + 2 + -ab 0.363( b +0.731 } (4.1)

Where a and b are shown on the figure and Unet equals the true stress (P/Ta 2).

Figure 4.23 shows how the stress intensity factor changes with crack depth.
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Figure 4.23. Plot of stress intensity factor over stress for all depths of cracking in a 2.54 mm
cylinder.

From this plot it is clear that the stress intensity factor for each specimen will be

between 0.6 and 0.7 mm1/2 times the true stress acting on the specimen. The following

table gives the yield stress, the ultimate stress (engineering), the strain over which plastic

deformation is observed and the minimum and maximum stress intensity factors. The

minimum stress intensity factors are found by multiplying 0.6 mm1/2 by the yield stress.

The maximum stress intensity factors are found by multiplying 0.73 mm112 by the

ultimate engineering stress.

Table 4.4. Determination of low and maximum stress intensity factors.

Specimen Yield Ultimate Strain Low K, Maximum K-rate, K'

Number Stress Stress Range (kg/mm 3/2) K, (kg/mm3/2s)

(kg/mm 2) (kg/mm 2) (kg/mm 3/2)

2012 64 90 0.01-0.035 38 65 0.00015

2003 19 35 0.01-0.08 11 25 0.00004

81 47 85 0.02-0.13 28 62 0.00007

82 47 80 0.02-0.13 28 658 0.00006
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The last column in this table gives an approximate value for the stress intensity

factor rate of change. This value is determined by subtracting the low value from the

maximum value for K and dividing by the total time for the experiment. The stress

intensity factor could be higher if the actual change in K equals K max. However, the

method used here gives the most reasonable approximation of K'. These results for K,

are reasonable and agree will with the value chosen for the base case which best fits the

crack growth rate data found in the literature. Table 4.5 summarizes the inputs and final

outputs of the crack growth model and current decay curve correlation used to find the

final output for these four specimens.

Table 4.5. Crack growth model inputs and outputs for IASCC experimental specimens.

Specimen Conductvity ECP EPR m, current Yield strength Hardening

Number (us/cm) (mV SHE) (C/cm 2) decay slope (kg/mm2) exponent, n

2012 0.3 140 30 0.45 64.5 0.21

2003 0.3 140 30 0.45 18.6 0.26

81 0.3 140 8 0.66 47 0.11

82 0.3 140 8 0.66 47 0.11

Specimen K (kg/mm") K-rate, K' 'Ict, crack tip Calculated Measured CGR

Number (kg/mm 3 /2 s) strain CGR (mm/s) (mm/s)

2012 65 0.00015 4.5E-6 8.6E-6 3.1E-6

2003 25 0.000044 7.2E-7 3.8E-6 4.OE-6

81 62 0.000073 7.6E-8 1.2E-7 5.6E-7

82 58 0.000058 6.7E-8 1.1E-7 6.6E-7

Agreement between the output of the entire IEDM and the experimental

parameters is excellent. The samples sensitized by radiation induced segregation were

low by a factor of approximately 5. This is very low considering the many orders of
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magnitude over which cracking occurs and the uncertainty in the conductivity value. The

two thermally sensitized values are highly accurate.
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5. Application and Discussion

5.1. Near Weld Cracking

In boiling water reactors, stress corrosion cracking is most significant near welds

because welds provide two of the necessary factors for SCC. These factors are a

sufficiently sensitized material and high tensile stresses. The material is sensitized near

welds due to chromium carbide precipitation described in section 3.3. High tensile stress

levels are often present near welds for several reasons. Residual stresses from welding,

stresses due to different thermal expansion coefficients due to welding of unlike metals

and stress (including fatigue) due to the flow of coolant through the welded pipes are

among these reasons.

Specific areas where SCC in weld heat affected zones has occurred in current

operating reactors include the control rod drive housings and stub tubes, the jet pump

recirculation system, and the core spray piping system. To model these areas,

assumptions must be made to define the materials near the welds. The material, which

will be considered, is stainless steel 304, a common material in these components. The

first assumption is that the electrochemical potentiokinetic reactivation is 15 coulombs

per square centimeter. This value expresses the sensitivity of the metal due to grain

boundary chromium depletion. Fifteen is the value that is commonly chosen for an

average EPR of weld sensitized stainless steel. For the radiation hardening, it is assumed

that the reactor has operated for 20 years at 75% utilization. In this time it is likely that



some radiation induced segregation will have occurred. However, the fluence levels at

the components listed here are not likely to contribute significantly to the sensitization

already caused by the welding process.

The radiation hardening is determined for each area mentioned above. For the

control rod drive system, output data from the BWR type one reactor model is used. The

flux is between the stub tubes and the core plate varies greatly with the value near the

stub tubes being too low to cause significant irradiation hardening effects. For the jet

pump recirculation system, output data for the BWR type three reactor must be used. For

the components that are within the pressure vessel, (the jet pump riser, throat, and

diffuser) the doses vary from 0.00001 dpa/year to 0.0005 dpa/year. The highest fluence

at these components is therefore .0075 dpa. It is predicted that a small amount of

radiation hardening will occur at this fluence. At the core spray piping system, using the

BWR-3 model, the dose rates are significant. At the beginning of the upper plenum (just

above the fuel), the flux is 0.008 dpa/year, this value drops to insignificant values on the

way to the top. Some of the welded components are in the region of significant flux

where the total fluence might be as high as 0.1 dpa.

Table 5.1. Assumptions for model output case

Variable Base Case Value

k, Plastic zone size constant 1/(37), 0.106

P, Analytical strain distribution constant 5.5

M, Metal atomic mass 56 g/mole

p, Metal density 8000 kg/m

z, Oxidation state of dissolution 2

sE, Passive film rupture strain 0.007

E, Young's modulus 22000 kg/mm2
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The stress and strain parameters used are those that were assumed in the previous

section where the model was verified with actual measurements. Therefore, the stress

intensity factor, K, is 80 Kgmm 1 2/mm 2 , the rate of change of K is 0.0001 Kg/mm3 /2 s and

the distance from the growing crack tip, r, is 0.04 mm. The base case values that will be

used for most of these results are summarized in Table 5.1.

In the stub tube region, crack growth rates for a reactor operating at full power

and flow are predicted to be 1.7x10-7 mm/s (0.5cm/year). This means that significant

cracking will occur once a crack is initiated in weld sensitized material in a reactor

operating with normal water chemistry provided that the significant stresses assumed here

are acting on the crack. To mitigate cracking either stresses must avoided or the water

must be treated (hydrogen water chemistry) to reduce the electrochemical potential. For

this data, negligible radiation hardening will have occurred therefore the yield strength is
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TY, Yield strength Determined from hardening model

n, Strain hardening exponent Determined from hardening model

K, Stress intensity factor 80 Kgmm" 2 /mm2

K', Stress intensity factor rate of change 0.0001 Kg/mm1s

r, Distance from growing crack tip 0.04 mm

C, Hydrogen embrittlement cleavage factor 0 mm (not significant under NWC)
to, Time constant for current decay 0.1 s
io, Bare surface oxidation current density 10000 A/m2 (above -300 mV SHE)
m, Oxidation current decay curve slope Determined from the following

three inputs

EPR, sensitization 15 C/cm 2

ECP, corrosion potential Determined from plant chemistry

Bulk conductivity at 25C 0.12 pS/cm base value PLUS
contribution determined from plant
chemistry model



20 kg/mm2 and the strain hardening exponent is 0.33. Figure 5.1 shows the effect of

power level and coolant flow rate on crack growth rates.

9.56E+06

8.59E+06

U) 7.63E+06

i 6.66E+06

L 5.70E+06

4.73E+06

3.77E+06

2.80E+06
0. 21 0.32 0.43 0.54 0.66 0.77 0.88 0.69 1. 10

Power Lewl (fraction)

Figure 5.1. Crack growth rate (mm/s) as a function of power level and flow rate for BWR

type 1 reactor stub tube region. Darker areas indicate faster cracking.

The black region on Figure 5.1 indicates an area where a reactor cannot operate

because the flow is too low to cool the reactor. Figure 5.1 shows that cracking rate

generally increases with power level and flow rate. The next zone where weld sensitized

materials are significant is the jet pump components that are within the pressure vessel.

These components receive significant dose and will have undergone irradiation hardening

leading to yield strength of 29 kg/mm 2 and a strain hardening exponent of 0.3. At the top

of the jet pump suction (the jet pump intake) the crack growth rate at full power and flow

is 2x10-7 mm/s (0.6 cm/year). The following plot indicates the effect of power and flow

at this point in the reactor.
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Figure 5.2. Crack growth rate (mm/s) as a function of power level and flow rate for BWR

type 3 reactor at the top of the jet pump suction. Darker areas indicate faster

cracking.

As Figure 5.2 shows, the crack growth rate decreases with increasing with

increasing flow rate. After the coolant flow reenters the reactor from the recirulation

pump, it goes up the jet pump riser. At the center of the riser the crack growth rate at full

power and flow is 2.5xlO~ mm/s (0.8 cm/year). The following plot indicates the effect of

power and flow in the jet pump riser.
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Figure 5.3. Crack growth rate (mm/s) as a function of power level and flow rate for BWR

type 3 reactor jet pump riser. Darker areas indicate faster cracking.

Figure 5.3 indicates that the crack growth rate decreases with increasing with

increasing flow rate. Following the jet pump riser, the coolant enters the jet pump throat

and diffuser. These two components were separated in the input file when the model was

adapted to account for changes in the flow area of a component. In the diffuser, the area

is increasing to decrease the flowrate of the coolant. The coolant had been previously

sped up to provide suction at the top of the jet pump. At the midpoint of the jet pump

throat the crack growth rate at full power and flow is 2.3x1 0-7 mm/s (0.7 cm/year). At the

midpoint of the jet pump diffuser the crack growth rate at full power and flow is 2.2x10-7

mm/s (0.7 cm/year). While these value are very close, the crack growth rate does

decrease slightly as the flow rate decreases. The following plots indicate the effect of

power and flow in the jet pump throat and diffuser.
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Figure 5.4. Crack growth rate (mm/s) as a function of power level and flow rate for BWR

type 3 reactor jet pump throat. Darker areas indicate faster cracking.
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Figure 5.5. Crack growth rate (mm/s) as a function of power level and flow rate for BWR

type 3 reactor jet pump diffuser. Darker areas indicate faster cracking.
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Figure 5.4 and Figure 5.5 indicate that the cracking rate generally decreases with

increasing flow rate. These plots are for the inside of the jet pump system. On the

outside of the jet pumps the downcomer is divided into five radial sections for modeling

purposes. This is done to allow different dose levels across the downcomer. In reality

the coolant in these five zones is able to mix. At full power and flow the crack growth

rate at the bottom of the inner layer of the downcomer is 1.6x10-7 mm/s (0.5 cm/year).

For the outermost layer of the downcomer the crack growth rate at the bottom is 2.3x10-7

mm/s (0.7 cm/year). Figure 5.6 and Figure 5.7 show the crack growth rates at the bottom

of the innermost and outermost regions of the downcomer.
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Figure 5.6. Crack growth rate (mm/s) as a function of power level and flow rate for BWR

type 3 reactor at the bottom of the downcomer close to the core shroud. Darker

areas indicate faster cracking.
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Figure 5.7. Crack growth rate (mm/s) as a function of power level and flow rate for BWR

type 3 reactor at the bottom of the downcomer close to the pressure vessel. Darker

areas indicate faster cracking.

Another zone where weld sensitized materials are significant is the core spray

system. These components receive significant dose and will have undergone irradiation

hardening. Following fifteen years of operation at the maximum flux rate in this region

of 0.008 dpa/year, the yield strength is 37 kg/mm 2 and the strain hardening exponent is

0.18. At the top of the core (beginning of the upper plenum) the crack growth rate at full

power and flow is 1.2x10 7 mm/s (0.4 cm/year). Figure 5.8 indicates the effect of power

and flow at this point in the reactor.
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Figure 5.8. Crack growth rate (mm/s) as a function of power level and flow rate for BWR

type 3 reactor at the start of the upper plenum (top of fuel). Darker areas indicate

faster cracking.

These data not only provide a look at crack growth rates where sensitized

materials and high stresses meet under normal water chemistry conditions, they also

indicate the effects of transients such as start up and shutdown.

5.2. Effect of Hydrogen Water Chemistry

The results of the previous section indicate that significant cracking will occur

under normal water chemistry conditions for sensitized materials under high tensile

stresses. Therefore, in order to reduce the cracking rate on weld sensitized materials

either the stresses must be reduced, or the coolant must be made less aggressive. The

addition of hydrogen to the feedwater decreases the electrochemical potential of the

water. The IEDM is ideally suited to directly determine the effect of hydrogen addition

on cracking throughout the reactor. The effect of hydrogen on the key areas used in the
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previous section will be studied for reactor operation at full power and flow. The same

base case variables for stainless steel 304 and high stresses and strain rates is used. The

following plot demonstrates the effect of feedwater hydrogen on cracking in the stub tube

region of a BWR type 1 reactor.
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Figure 5.9. Crack growth rate (mm/s) as a function of feedwater hydrogen input for BWR

type I reactor at center of the reactor stub region.

Figure 5.9 indicates that crack growth rate is below 10-9 mm/s when hydrogen

addition to the feedwater exceeds 500 ppb. It is important to note that the crack growth

rate is plotted linearly. Therefore, the crack growth rate does not go to zero but it is

below1 0-9 (the minimum resolution on this plot). This correlates to a crack growth rate of

0.03 mm/year or a millimeter over the lifetime of the plant (no cracking). The next area

of interest to weld sensitized is the jet pump system. Because this region is preceded

closely by the entry of the feedwater to the system, the hydrogen addition is effective in

reducing cracking. However, this is not evidenced in the following plot.
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Figure 5.10. Crack growth rate (mm/s) as a function of feedwater hydrogen input for BWR

type 3 reactor in the jet pump suction component.

Figure 5.10 shows the effect of hydrogen water chemistry on cracking in the jet

pump suction. The reason that cracking is not suppressed by hydrogen additions of 1000

ppb and higher in the jet pump suction component is because the flow rate is extremely

high. The electrochemical potential increases with flowrate. However, the correlation

used is not valid for flow rates as high as those predicted in the jet pump suction.

Therefore, it is likely that these crack growth rates are higher than those actually seen in

the jet pump components.
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Figure 5.11. Crack growth rate (mm/s) as a function of feedwater hydrogen input for BWR
type 3 reactor in the jet pump riser component.

Figure 5.11 plots the crack growth rate in the jet pump riser against the feedwater

hydrogen content. In the jet pump riser, the crack growth rates are reduced 10-8 mm/s

with 1800 ppb hydrogen in the feedwater and 10-9 mm/s with 5000 ppb hydrogen.
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Figure 5.12. Crack growth rate (mm/s) as a function of feedwater hydrogen input for BWR

type 3 reactor in the jet pump throat component.

Figure 5.12, indicates that hydrogen water chemistry is not highly effective in the

jet pump throat. Like the jet pump suction, the jet pump throat has higher flow rates than

are valid for the ECP correlation used in the model.
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Figure 5.13. Crack growth rate (mm/s) as a function of feedwater hydrogen input for BWR

type 3 reactor in the center of the jet pump diffuser component.

In the jet pump diffuser, the crack growth rates are reduced 10-8 mm/s with 1000

ppb hydrogen in the feedwater and 10-9 mm/s with 2000 ppb hydrogen. Figure 5.13, plot

represents a reasonable appraisal of the effect of hydrogen water chemistry on cracking in

the jet pump recirculation system, because the flow rates in the diffuser are closer to

those for which the ECP correlation is highly accurate. The cracking rates at the bottom

of the downcomer region indicate the predicted rates of cracking on the outside of the jet

pump components. Two plots have been made for the bottom of the downcomer, one

close to the core shroud and one close to the pressure vessel.

195



2.OE-07

E,

E
E

0

0U
0

1.5E-07

1.OE-07

5.OE-08

0.OE+00
1 10 100 1000 10000

Hydrogen added in Feedwater (ppb)

Figure 5.14. Crack growth rate (mm/s) as a function of feedwater hydrogen input for BWR

type 3 reactor at the bottom of the downcomer close to the core shroud.
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Figure 5.15. Crack growth rate (mm/s) as a function of feedwater hydrogen input for BWR

type 3 reactor at the bottom of the downcomer close to the pressure vessel.
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Figure 5.14 and Figure 5.15 are plots of the crack growth rate versus hydrogen

water chemistry at the bottom of the downcomer. Close to the core shroud, at the bottom

of the downcomer, the crack growth rates are reduced 10-8 mm/s with 400 ppb hydrogen

in the feedwater and 10-9 mm/s with 700 ppb hydrogen. At the outer slice of the

downcomer near the pressure vessel, the crack growth rate drops below 10-9 mm/s at 400

ppb hydrogen. These plots indicate that hydrogen injection effectively mitigates cracking

in the downcomer.

An area were hydrogen water chemistry is less affective is above the core.

Following passage through the core boiling region of the reactor, the hydrogen

concentration is reduced. As the coolant is boiled, the dissolved hydrogen gas passes into

the steam and is carried out of the pressure vessel.
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Figure 5.16. Crack growth rate (mm/s) as a function of feedwater hydrogen input for BWR

type 3 reactor at the bottom of the upper plenum where the water is exiting the

reactor core.
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Figure 5.16, indicates the effectiveness of hydrogen water chemistry at the top of

the core. At 5000 ppb hydrogen injection, the crack growth rate falls to 10-8 mm/s. The

effect of hydrogen being carried away by the boiling water is more pronounced at the top

of the core boiling region
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Figure 5.17. Crack growth rate (mm/s) as a function of feedwater hydrogen input for BWR

type 3 reactor at the top of the of core boiling component.

Figure 5.17 indicates that the cracking is not mitigated even at 10000 ppb

hydrogen injection at the top of the core. This plot indicates cracking rates at the top

node of the core boiling region as modeled in the BWR simulation. This plot is based on

separating the core into concentric zones, such that boiling occurs only in the center zone.

Mixing between these zones in ignored. Therefore, a great deal of boiling has occurred

leading to the ineffectiveness of the hydrogen water chemistry. This is the worst case

scenario, likely to be seen only near the top and center of the core. In this region of the

reactor an aggressive environment cannot be completely mitigated. Additionally, high
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fluxes are likely to result in radiation induced segregation causing materials to become

susceptible to cracking even if they were not put into service in such a condition.

Therefore, in order to prevent cracking of materials within the core, the tensile stresses

must be minimized.

5.3. Effect of Age on Cracking Susceptibility

In this section, the metal is considered to begin its life in the annealed condition

without thermal sensitization. Because of the high flux rates, the top of the core is an

ideal place to look at the effect of age on cracking susceptibility. Figure 5.18,

demonstrates the effect of plant age on susceptibility to stress corrosion cracking. It is

clear from the figure that the material is not sensitized for the first ten years. The slight

decline in the crack growth rates is due to the reduction of the strain hardening exponent

due to radiation hardening. Beyond 35 years of service, the crack growth rate is level.

This is because while the EPR number is increasing beyond 30 C/cm2, the susceptibility

to cracking increases only slightly.
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Figure 5.18. Crack growth rate (mm/s) as a function of reactor age for BWR type 3 reactor at

the bottom of the upper plenum where the water is exiting the reactor core.

The maximum flux in a BWR is equivalent to 0.1 dpa per year. At this flux

susceptibility to cracking can be seen as early as 2 years into the life of the reactor.

5.4. Future Work

While the modeling of nickel based alloys has not been discussed in detail in this

thesis, most components of the IEDM have already been implemented with nickel in

mind. In order to completely model IASCC in nickel based alloys such as Inconel

600/182, a correlation between the chromium profile determined by the RIS model and

the EPR value would have to be developed. Additionally, current decay curve

measurements would have to be made to create a nickel based current decay curve

correlation. The development of these two correlations requires a large set of

experiments which are not found in the current literature. However, if an equivalent EPR

can be determined which acts like the EPR value for austenitic stainless steel when used
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in the current decay curve correlation, then this EPR can validate that correlation. Put

differently, if the current decay curve shape, the ECP, and the conductivity are all known,

then an EPR can be backed out of the current decay curve correlation. This EPR can then

be used with reasonable accuracy for a range of conductivity and ECP values to

determine crack growth rates of nickel based alloys. This method could greatly reduce

the battery of experiments necessary to analyze the crack growth rates of nickel based

alloys.
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6. Conclusions

The development of the IEDM has created the most deterministic and complete

crack growth model to date. By starting with an expression for strain near the crack that

has been shown to be highly accurate, the crack growth model correctly predicts the crack

tip strain rate. This crack tip strain rate relationship includes the effect of crack growth

and changing stress intensity factor. Additionally, the Young's modulus, the yield

strength, and the strain hardening exponent are accounted for explicitly.

To complete the crack growth model, the crack tip strain rate relationship is

combined with a complete derivation of the slip dissolution/film rupture model. This

expression was derived in such a manner that the only assumption that is made is that the

crack growth rate is not so fast as to negate the electrochemical effects of cracking. Also,

a term is added which can account for the effect of hydrogen embrittlement. However,

this work focuses on stainless steels for which hydrogen embrittlement is not a significant

issue. The slip dissolution/film rupture model accounts for the repeated rupture of the

passive film at the crack tip due to the crack tip strain rate. Following each rupture event,

corrosion of the underlying metal matrix occurs with current decreasing exponentially

along the current decay curve. The current is equated with a crack growth rate using

Faraday's law.

An integrated model, the IEDM, was developed around the crack growth model to

provide all the models and correlations needed to completely characterize the behavior of

IASCC. Short-term effects of radiation dose on cracking are caused by interaction of the

radiation with the coolant. When water is irradiated, the water molecule is destroyed



resulting in unstable radicals.

peroxide, and hydrogen. The

the electrochemical potential

are ions that contribute to the

growth model that is effected

Higher conductivity and ECP

passive film at the crack tip.

These radiolysis products form oxygen, hydrogen

production of oxygen and hydrogen peroxide can increase

of the water. Additionally, some of the radiolysis products

electrical conductivity of the water. The input to the crack

by ECP and conductivity is the current decay curve.

result in higher corrosion current following rupture of the

In order to determine the concentration of radiolysis products, a model for the

chemistry of an irradiated coolant loop has been integrated into the IEDM. The MIT

Radiation Chemistry Analysis Loop (RadiCAL) model requires the plant dimensions,

power level, flowrate, and gamma and neutron fluxes as inputs. To allow the ECP and

conductivity to be determined directly, chemical reaction parameters are used to

completely characterize the chemistry of the reactor coolant. These parameters include

reaction rates, activation energies and production rates from the interaction of radiation

with water.

In addition to short term effects of radiation on the coolant, long term effects of

radiation are seen in the metal. The long term effects of neutron irradiation include

hardening and radiation induced segregation. As neutron fluence accumulates, the yield

strength of the material is increased due to the build-up of dislocation loops. Along with

the increase in yield strength, a decrease occurs in the strain hardening exponent. The

rising yield stress and decreasing strain hardening exponent offset one another and

therefore hardening has little effect on crack growth rate. An empirical model has been
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developed to provide the yield strength and strain hardening exponent to the crack growth

model.

The other long term effect, radiation induced segregation, leads to increased

susceptibility to cracking along the grain boundary of the metal. RIS begins to contribute

to cracking after several years of accumulated fluence when grain boundary chromium

levels have been sufficiently decreased. As the grain boundary chromium concentration

is further depressed the crack growth rate increases. The IEDM indicates that the

increase in crack susceptibility due to RIS does not increase directly with fluence.

Cracking susceptibility actually increases with time and to a lesser extent with flux.

Therefore, a specimen irradiated to one dpa in one year (1 dpa per year) will be less

susceptible to cracking than one irradiated to one dpa in 20 years (0.05 dpa per year).

In order for the crack growth model to utilize information about cracking

susceptibility due to radiation induced segregation, the current decay curve must be

altered based on the degree of sensitization. A model is used to determine the evolution

of the grain boundary chromium concentration profile with time. This profile is then

used to compute a volume depletion parameter representing the area of the profile cross

section below 14% chromium. An expression has been determined from cracking

susceptibility data to convert the volume depletion parameter into an equivalent value for

the electrochemical potentiokinetic reaction. The EPR value is then used to determine

the shape of the current decay curve that is used by the slip dissolution/film rupture

model to determine the rate of crack growth.

An integrated model has been developed to evaluate the effect of reactor flux,

fluence, and other operating conditions on crack growth rates in austenitic stainless steels
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in boiling water reactor (BWR) environments. The following are the contributions made

here and described in this thesis.

* A fully integrated crack growth model which incorporates the effects of

irradiation on the physical and chemical properties of both the metal and

reactor coolant.

* Accounting for both anodic and cathodic crack tip processes.

* A radiation hardening model for predicting the long-term effect of radiation

on performance of austenitic alloys.

* A correlation between the grain boundary chromium profile and the

equivalent EPR value for which the cracking susceptibility is equal to a

degree of thermal sensitization.

* Use of a complete deterministic derivation of the slip dissolution/ film rupture

model originally developed by Ford and Andresen [1.7, 1.13].

* A Visual Basic graphical user interface.
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