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ABSTRACT

The Dynamic Traffic Assignment (DTA) Problem is relevant to many transportation
contexts, including planning and Intelligent Transportation Systems. Existing models
have yielded approximate solutions to this problem using discrete-time methods. We
present and implement several algorithms that enable exact continuous-time solution.

The first of these algorithms is a practical continuous-time algorithm for a variant of the
Dynamic Network Loading Problem (DNLP) in which input parameters take on a
particular functional form. Specifically, path entrance flow rate functions are assumed to
be stepwise and arc performance functions are assumed to be affine. These assumptions
ensure that the resulting arc flow rate functions will be stepwise and enable computation
of an exact solution. The second algorithm is an adaptation of the Bellman-Ford shortest
paths algorithm to continuous-time, dynamic networks. We present algorithms for both
the one-to-all and all-to-one variants of the dynamic shortest path problem. Both the
DNLP and Dynamic Shortest Paths algorithms are implemented and tested on a sample
network.

Finally, we present a DTA solution algorithm which uses the DNLP and DSP algorithms
to find a continuous-time solution. The DTA algorithm is also implemented and tested
on a sample network, thus a continuous-time DTA solution is found.

Thesis Supervisor: Ismail Chabini
Title: Assistant Professor of Civil and Environmental Engineering
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CHAPTER 1

INTRODUCTION

The goal of Intelligent Transportation Systems (ITS) is to use technology to better exploit

the physical capacity of existing transportation infrastructure. In particular, many of the

technologies employed in ITS serve to collect, process, disseminate, and exploit

information about the state of the transportation system. Information technology in ITS

has many applications including commercial vehicle operations and non-predictive

traveler information, however it is the ability to predict the future state of the

transportation network that may provide the most significant advances in transportation

efficiency. Predictive transportation models have applications for the transportation

planner, the transportation service provider and the system user, providing tools for

forecasting as well as for real-time route guidance.

Dynamic Traffic Assignment (DTA) models are predictive tools that, given O-D

demands and network characteristics, determine demand on individual network

components and the resulting cost of trips within the network. When coupled with

demand models, DTA models provide predictive information that can answer various

questions such as: "How congested will a given arc be in the future?" and "How long will
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my commute be today? Should I take the usual route or an alternate route?" DTA

models have many applications, but are particularly important in Advanced Traffic

Management Systems in which they can be used to optimize the network via signals,

changeable message signs, and other traffic control devices. In such applications, the

goal is often to implement systems of real-time monitoring and control, which require

DTA models and efficient solution algorithms. In this thesis we explore the properties

and promise of a continuous-time DTA model and explore its advantages over discrete-

time formulations.

1.1 The DTA Problem

Consider a network composed of arcs and nodes. A path is a set of successive arcs used

to travel from some origin node to some destination node in our network. Each path or

arc experiences some amount of flow as vehicles travel through the network from many

origin nodes to many destination nodes. The DTA problem is to find time-dependent arc

travel times, path travel times and arc flows, given a network with time-dependent origin-

destination travel demands, a model of the relationship between arc flows and arc travel

times and some assumptions regarding user route choice.

The DTA problem can be formulated by either simulation or analytical methods. While

simulation has been used extensively to date to obtain DTA solutions, analytical models

present several distinct advantages. Firstly, they require only one "run" to obtain a

solution and there is no variability in the solution obtained. Secondly, analytical models

can be constructed such that they possess theoretical attributes that permit the

development of efficient solution algorithms. For these reasons, in this thesis we present

an analytical formulation of the DTA problem.

Figure 1 shows a simple DTA framework. Given a set of time-dependent path flows on a

network, we calculate flows on the component arcs. From these arc flows, we can

determine the total flow on a given arc at any time in the analysis period. Travel time on

12



an arc is dependent on these total flows, as described by arc performance functions. By

composing the exit time functions of arcs along a path, we can then calculate the time-

dependent travel time on each path. We then use a shortest path algorithm to determine

minimum time paths between each O-D pair and assign O-D demands to these paths to

obtain a set of path flows. These flows are then averaged with those of previous

iterations. DTA algorithms seek to find a set of path flows such that traversing the DTA

loop no longer yields a significant change in the values of the variables.

The DTA problem is composed of several sub-problems for which specialized algorithms

are developed. To calculate path costs from arc costs, we use a dynamic variant of a

standard shortest path algorithm. Calculating arc travel times from path flow rates is a

sub-problem referred to as the Dynamic Network Loading Problem (DNLP) for which

DNLP algorithms are developed. In this thesis we present a continuous-time DNLP

model and a corresponding continuous-time Dynamic Shortest Paths (DSP) solution

algorithm. For each, we first present the theoretical background of the problem before

presenting the algorithm itself. We then present a DTA algorithm which uses the above

algorithms as subroutines to find a continuous-time DTA solution.

Path assignment

Path Path
Flows * Costs

Composition

Loading .......'" 0. ........ ' of arc exit
time functions

Arc A Arc
Flows Costs

Arc Performance

Figure 1: Components of a DTA Model
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1.2 Motivation for a Continuous Time Dynamic Traffic

Assignment Model

Previous, discrete-time DTA models approximate the behavior of a network, much as

numerical integration methods approximate the properties of a function. Time is

discretized in small intervals and we make approximations at each interval. Like

numerical integration methods, the efficiency of discrete-time models can be improved

by decreasing the width of the interval; this is desired particularly in regions of sharp

change. From a computational standpoint, the compromise made by increasing accuracy

is one of efficiency since a greater number of iterations results in a greater run time.

More sophisticated approaches may attempt to balance efficiency and accuracy by

performing more computations in regions of rapid change and fewer in less dynamic

regions. The success of these approaches however, is limited by the amount of a priori

knowledge about the network's dynamics.

Continuous-time methods may have two primary advantages over their discrete-time

analogs. First, given functional forms that allow us to obtain exact integrals on a

computer, continuous-time algorithms may yield exact solutions. Instead of

approximating network behavior over an interval by calculating parameters at many

intermediate points, a continuous-time algorithm can describe network behavior in

functional form. Thus, values of network parameters may be known exactly for all times

contained in the interval of interest.

While the continuous-time approach yields algorithms with the advantage of being the

most accurate available, it also provides a tool for benchmarking approximate algorithms.

Various algorithms can then be compared not only based on run time, but on their error

as compared to an exact, continuous-time solution.

A second advantage of continuous-time algorithms is that they are efficient in the sense

that they may perform exactly the number of computations required to obtain a solution.

14



Values of network variables need only be determined at certain time instants; doing so

allows us to completely specify the their values at all times in the analysis period. Thus,

network behavior is completely and exactly specified by performing the minimum

number of computations and a continuous-time model may prove more successful at

responding to a network's dynamics than a discrete-time model. This may have

implications for the algorithm's efficiency as well as for its data storage requirements,

particularly for networks in which certain time intervals or arcs are much more dynamic

than others.

1.3 Objectives and Contributions

The objectives of this thesis are to:

. develop an exact, continuous time algorithm for the Dynamic Network Loading

Problem, assuming stepwise path flow rate functions, affine arc performance

functions and a deterministic, user-optimum users' behavior model;

. illustrate the concepts of the continuous-time Dynamic Shortest Paths problem

and provide a simple algorithm for its solution;

. present a Dynamic Traffic Assignment algorithm that uses the above DNLP and

DSP algorithms as subroutines to obtain an exact, continuous-time DTA solution;

and

. implement these algorithms and test them on a small network in order to verify

their correctness and illustrate properties of their solutions.

1.4 Background

In the following section we provide a brief summary of the developments in the literature

that are pertinent to our problem. This includes work on discrete-time variants of the

component algorithms as well as any existing continuous-time methods.
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1.4.1 The DTA Problem

Existing work on the DTA problem is based on the DTA framework shown in Figure 1.

Algorithms are developed for the Dynamic Network Loading Problem and the Dynamic

Shortest Paths problem and a users' behavior model is adopted to reflect how flow is

allocated among paths, once path travel times are known. In a simple users' behavior

model, all users may choose the path of minimum travel time from their origin to their

destination, while a more complex model may take into account the user's perceptions of

travel time and route choice preferences. Inputs to the problem are O-D flow rates and

the arc performance functions that model arc travel time as a function of the total flow on

an arc.

Existing DTA algorithms have discretized time, calculating network variables for each

time interval in the analysis period. Thus, discrete-time Dynamic Network Loading and

Dynamic Shortest Paths algorithms exist in the literature. For the continuous-time

problem, continuous-time Dynamic Shortest Paths algorithms have been developed,

however no practical continuous-time Dynamic Network Lading algorithms exist, to

date. In order to generate a continuous-time DTA solution, it is necessary to develop a

continuous-time Dynamic Network Loading algorithm and ensure that DTA loop can be

traversed using continuous-time variables. The reader is referred to Chabini and He

(2000) and Chabini and Kachani (1999) for an overview of analytical DTA models.

1.4.2 The Dynamic Network Loading Problem

The Dynamic Network Loading Problem is to determine arc travel times, given a network

with are performance functions and time-dependent path flows. Previous work on the

Dynamic Network Loading problem has focused both on its mathematical solution

properties and on the development of solution algorithms.
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In Chabini and Kachani (1999), various properties of the DNLP were established for the

class of problems in which arc performance functions are continuously differentiable and

path flow rates are Lebesgue Integrable. The results are generalized for models that are

linear or non-linear. The proven properties are:

1. the strong FIFO property is verified (the FIFO property will be discussed in

Chapter 2),

2. the exit flow rate function is Lebesgue Integrable, nonnegative and bounded from

above, and

3. the DNLP possesses a solution and this solution is unique.

The reader is referred to Chabini and Kachani (1999) for details of the proofs including

the bounds on various function values.

Existing algorithms for the Dynamic Network Loading problem are of two types: those

that iterate over network components and those that move chronologically. The first

type, called I-Load, operate in a fixed-point manner, searching for a solution that verifies

the constraints, using the Method of Successive Averages as a solution approach. The

second, C-Load, move forward in time, calculating arc parameters as flow is propagated

through the network. Discretized time intervals are used in these computation-s.

Computational results of these two algorithms have been found to be similar (Chabini

and He 2000), however because neither convergence nor uniqueness of solution for I-

Load can be proven, C-Load has been recommended as the preferable network-loading

algorithm.

1.4.3 The Dynamic Shortest Paths Problem

The Dynamic Shortest Paths problem is to determine the time-dependent shortest paths in

a network, given its time-dependent arc travel times. Like the static shortest paths

problem, the dynamic problem has several variants including one-to-all nodes and all-to-

one node. Furthermore, in this dynamic problem we may define the problem in terms of

17



either the departure times of flows, or in terms of their arrival times. The Dynamic

Shortest Path problem can also be posed for FIFO or non-FIFO networks, however the

networks that verify the FIFO property are of interest in this thesis.

Existing algorithms for the discrete-time Dynamic Shortest Paths problem include

dynamic extensions of well-known static shortest paths algorithms including the label-

correcting algorithm and the Bellman-Ford algorithm. Additional algorithms, such as

Algorithm DOT (Chabini 1997, 1998) have been developed specifically for the dynamic

problem. Testing of these algorithms has shown that Algorithm DOT is faster. The

Bellman-Ford algorithm also performed well as compared to label-correcting.

For the continuous-time variant of the dynamic shortest paths problem, the label-

correcting algorithm and Algorithm DOT have been implemented. In this thesis, we

consider a continuous-time adaptation of the Bellman-Ford algorithm. The reader is

referred to Dean (1999) for a more exhaustive treatment of the dynamic shortest paths

problem, with particular attention given to the continuous-time variant.

1.5 Thesis Outline

The goal of this thesis is to formulate and implement a continuous-time DTA solution

algorithm. To do so, we will also formulate and implement continuous-time DNLP and

DSP algorithms. All of these developments will rely on networks whose parameters take

on functional forms which permit exact continuous-time solutions. Arc performance

functions are assumed to be affine; O-D flow rate functions are assumed to be stepwise

and all users are assumed to travel along shortest paths.

Chapter 2 concerns the Dynamic Network Loading Problem. We present a variant of the

problem in which arc performance functions are affine and path flow rate functions are

stepwise. We discuss the advantages of this variant. Furthermore, we present theoretical

properties of the problem including proofs of existence and uniqueness of a solution as

18



well as a proof that the resulting arc travel time functions are piecewise linear. Given

these properties, we then present an algorithm for solving the DNLP in continuous time.

Chapter 2 concludes with a discussion of the implementation and testing of the DNLP

algorithn.

In Chapter 3 we illustrate how the DNLP algorithm can be used to obtain a continuous

time solution to the DTA problem. We first discuss the continuous time Dynamic

Shortest Paths problem, and formulate its optimality conditions for the one-to-all and all-

to-one minimum travel time problems. We then present continuous time DSP algorithms

and discuss the implementation of the one-to-all algorithm. Finally we present a DTA

afgorithm which uses the above algorithms to find a continuous time DTA solution. This

algorithm is also implemented and some numerical results are given.

In Chapter 4 we discuss the strengths and weaknesses of the algorithms developed in

Chapters 2 and 3 and present some directions for further research.
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CHAPTER 2

FORMULATION OF A CONTINUOUS-TIME DYNAMIC

NETWORK LOADING MODEL

In Chapter 1 we stated that the Dynamic Network Loading Problem is to determine arc

travel times given a network with time-dependent path flows and a model of the

relationship between flow and travel time on an arc. This statement of the problem is

quite general and any of several models could be used to generate a solution. Having

recognized the limitations of discrete-time models, we now seek to develop a model of

the DNLP that can be solved in continuous time. To do so, we first make some

simplifying assumptions and discuss their validity. We then present a mathematical

formulation of the model which defines network parameters and expresses their

relationships to one another. We derive various theoretical properties of the model which

enable the development of an exact, continuous-time DNLP algorithm. These properties

include existence and uniqueness of a solution, as well as functional properties of the

unknown variables. Finally, we develop a continuous-time DNLP algorithm and discuss

its implementation and testing on a sample network.

2.1 Discussion of Assumptions

21



In order to develop an exact, continuous-time DNLP algorithm, we make two major

simplifying assumptions. First, we assume path flow rate functions to be stepwise.

Second, we assume the relationship between an arc's total flow and its travel time (called

an arc performance function) to be affine.

Before constructing an algorithm, we consider the strengths and weaknesses of these

simplifying assumptions. We first consider the assumption that path flow rate functions

are stepwise functions. When selecting inputs to our model, it is likely that we would

wish to work from some real world data set to determine origin-destination demands.

Recognizing that:it is likely that such a data set would be represented as a set of discrete

data points, it is advantageous to work with the continuous-time function that naturally

follows from discretized data - a stepwise function. Furthermore, it should be recognized

that stepwise functions have the additional benefit of easily approximating the shape of

any function. Thus, we consider the assumption that path entrance flow rate functions are

stepwise to be both realistic and flexible.

With regard to the assumption that arc performance functions are affine, we consider the

degree to which the arc performance model represents the real world. Consider the travel

time on an arc. In the real world, we know that if the flow on the arc is small enough, a

vehicle may traverse the arc without experiencing congestion-related delay. In this case,

the vehicle experiences the arc's free flow travel time, . Suppose, however that a

vehicle enters a congested arc. We may wish to model the congestion as a queue that the

vehicle must join before exiting the arc. The vehicle's travel time r , is then equal to 1-.,

plus the time spent in queue. For a queue with a deterministic service rate C and X,

enqueued vehicles, we may express this as:

I = Xq IC +r #.

We note that this is equation is an affine function, but that it depends on X,,,, not on the

total flow on the arc, X. In our model, we wish the arc's travel time to be an affine

function of X:

I=0 X + 02.
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If we assume 02 = r, then we note that any amount of flow X, no matter how small,

results in a travel time greater than . This is a weakness of the model, because in real

world networks, positive flow rates can indeed experience free flow travel conditions.

Furthermore, the assumption that congestion can be adequately represented by a single

linear term is overly simplistic. Nevertheless, an affine function is perhaps the most

simple way to model the relationship between flow and travel time and possesses

theoretical properties which enable an "elegant" solution to the DNLP. In Section 2.4 we

will show that by using the linear model above, combined with stepwise path flow rate

functions results we can ensure that other network variables maintain functional forms

that enable continuous.time solution. It is this latter advantage of the linear model that

provides the most compelling argument for its use.

Another advantage of this model is its adaptability to future extensions. We recognize

that a natural extension of this model is to use piecewise linear arc performance functions

to more accurately model the relationship between flow and travel time. This topic is left

to further research.

2.2 Notation and Definitions

In order to represent a physical traffic network in a mathematical model we construct a

conceptual network, G = (N, A) in which N is the set of nodes and A is the set of arcs.

The network consists of a set of paths P, each of which has an origin r and a destination

s. We denote by K, the set of paths connecting r and s. We also denote by K, the set

of paths passing through arc a. For some arc a on path p, we denote by 5 the previous

arc on p and by i the next arc on p .

Below we present a list of variables used throughout this chapter. Some of the variables

express flow rates on each path - we call these path variables; similarly arc variables

express flows, flow rates and travel times on each arc. Additionally, we use arc-path
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variables to express flows and flow rates on a given arc and path. Finally, we present

time variables, which specify the time interval of interest.

Path Variables

ft I(t) departure flow rate on path p for O-D pair (r,s) at time t;

Arc Variables

U', (t) cumulative flow that has entered arc a during interval [0, t];

V, (t) : cumulative flow that has exited arc a during interval [0,t]

X'1 (t) total flow on arc a at time i;

D, (X, (t)): travel time function of arc a, where X,, (t) is amount of flow on arc a;

A, minimum value of D, (X,,(t)) over all times t in the interval [0,t]. If

D,(.) is strictly increasing, then A, equals the free flow travel time,

Di(0);

A : min(k,);

S, (t) : exit time of flow entering arc a at time t. s,, (t) = t + D

Arc-Path Flow Variables

(a, p) an arc-path pair;

(r, s) the origin-destination pair of path p;

u', (t) entrance flow rate at time t for arc a and path p;

v', (t) exit flow rate at time t for arc a and path p;

U:;;A (t) cumulative entrance flow at time t for arc a and path p;

Va' (t) cumulative exit flow at time t for arc a and path p;

" (X, (t));
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X', (t): total flow on arc a due to path p at time t. The total number of vehicles on

an arc at time t is then X,(t)= X, (t);
p7EK,.

Time Variables

t index for continuous time;

[0, T] O-D traffic demand period; and

[0, T.I: analysis period. T is the lease instant, greater than T after which no flow

remains in the network.

FIFO Property

To conclude this section, we present a definition of the First In First Out (FIFO) property

which will be referred to in subsequent sections. In this thesis, we consider an arc to

verify the FIFO property if:

s (t,)< sl(t2) Vti < t?

In the literature this is referred to as the strict FIFO property (Chabini and Kachani

(1999)). Other definitions of the FIFO property exist, the weakest of which is:

s,(t,) s s(t 2 ) Vt : t2 v, 1  t2 *

Alternately, one may refer to the strong FIFO property in which, for t, <t 2 , the

difference between s, (t,) and s, (t,) is at least some positive multiple of the difference

between t, and t, . The reader is referred to Chabini and Kachani (1999) for the details

of these properties.

2.3 Formulation of the Dynamic Network Loading Problem

In the following section we state important relationships between the network variables

that were presented in Section 2.2. These equations are the formulation of the dynamic



network loading model and describe arc dynamics, flow conservation, flow propagation,

arc performance and initial/terminal conditions. Each of these equations is an accurate

and general representation of how flows move through a transportation network; these

equations are common to many dynamic network loading models. In a later section we

will choose functions to approximate the relationship between flow and travel time on an

arc. By choosing functional forms which ensure various solution properties, we can

develop exact, continuous-time solution algorithms.

Arc Dynamics

The arc dynamics equations describe the alniount of flow on a given arc as a function of

time. They state that the total flow on an arc depends on the arc's entrance and exit flow

rates and that the difference between the arc's entrance and exit flow rates is equal to the

rate of change of the total flow.

dX"(11 ) V" (=U (t) - v" (t) V(r, s), Vp E K,, Va. (1)
dt u

Flow Conservation

Flow conservation equations ensure that along a given path, no flow is lost or gained

from one arc to the next on a given path--that is, for two successive arcs along a path, the

amount of flow on the path exiting the first arc is equal to the amount of flow entering the

second arc at any time t. For the first arc on any path, the entrance flow is equal to the

known entrance flow of the path. These conditions are expressed mathematically as:

u[, (t)= f,"() V(r, s), Vp e K, (2)

for the first arc on any path and as:

up (t) = v" () V(r, s), Vp e K, (3 )

for all other arcs in which arc 5 follows arc a on path p.
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Initial and Terminal Conditions

We impose initial conditions such that the network must be empty at time t = 0. They

are:

U'(0)= 0, V(,'(0)= 0, X'(0) 0, V(r,s),Vp e K,,,, e p . (4)

The above initial conditions are assumed for ease of computation without loss of

generality; any set of feasible initial conditions could be used. We likewise denote by

t = T, the time at which the network will again be empty.

U', (T, ) = V,'*"(T. , X,' (T. ) 0 , T. > 0 V(r, s), Vp c- K,,,a E= P

(5)

Equations (5) are the terminal conditions.

Arc Performance

Arc performance functions relate an arc's travel time to its total flow. Given our

discussion of the advantages of a linear arc performance model, we use the equation:

D", (X,, ()) = 0,X( )+, V a e A ((61)

where O, and 0,,2 are the parameters of the arc performance function of arc a.

Flow Propagation

The following equations relate an arc's outflow to its inflow; they express flow

conservation between an arc's origin and destination. In the literature, these equations are

referred to as "flow propagation" equations. Though we feel that this terminology does

not properly express the meaning of these equations, we retain it for consistency. At

some time t, we know that all flows exiting the arc at time t must have entered the arc by

time z such that z + D(, (z) t . If we denote by o a time at which an entering flow can

exit the arc by time t, we can state that the cumulative exit flow on arc a for some path p

with origin r and destination s is equal to the integral over all such times o.

Mathematically, we have:
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V(r, s), Vp e K,,, Va e p.

This flow propagation equation makes no assumptions about the overtaking behavior of

vehicles on the arc. If we assume that the arc operates on a first-in first-out (FIFO) basis,

we can state that flows exiting the arc at time t must have entered the arc at time s-' (t).

Furthermore, we know that the cumulative exit flow at time t is equal to the integral of

the entrance flow over the interval [0,s-'(t)] (given the initial conditions). The flow

propagation equation if FIFO is verified becomes:

xi,-' (i)

VJ/7j'(1) = ju2 "(co)dco) V(rs),Vp EK.,, Va e p . (7)

SuU' (s (t)

Summary of the Formulation

We now review the formulation of the model in terms of its known and unknown

variables. By initial conditions, U, (0), V,'j7(0), and X' (0) are known values for all

arcs, and paths. Ji (t) is also a known variable for all paths and times contained in the

analysis period. We also know the value of T. The unknown variables are:

a To ;

U,(t), J;;(t) and X'(t) Vp e P,

( and v:;(t) Vp e P,

Vae A, te[0,Tj;

Va e A, Vt e [0, T;

. s,(t) Va, Vt e [0,T]; and

0 U,,(t), V,(t), Xf,(t), D,(t), u,(t) and v,(t) Va, Vt e [O, T]

The above summary lists the known and unknown variables of the dynamic network

loading model. In Section 2.4 we rigorously prove that, given stepwise path flow rate

functions and affine arc performance functions, a solution to this dynamic network

loading models exists and this solution is unique.
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2.4 Analysis of the Dynamic Network Loading Problem

The primary focus of the following section is to illustrate that, for a specific class of input

functions, solution properties for the DNLP can be established which enable its solution

in continuous time. More specifically, by assuming path flow rate functions to be

stepwise and arc performance functions to be affine, we will prove that the other network

variables take on piecewise forms. Arc and path flow rate functions are proven to be

stepwise; cumulative arc and path flow functions and total flow functions are shown to be

piecewise linear. Arc exit time functions are also proveh to be piecewise linear. In the

algorithm, this knowledge of the functional forms will be exploited by calculating

problem variables at function "breakpoints". Theorem I presents the functional forms of

the network variables that result from our choice of input functions.

In order to construct an algorithm to solve the DNLP as described in Section 2.3, we must

first establish several mathematical properties of equations (1)-(7). In the following

sections, we provide proofs of several lemmas regarding continuous, differentiable

functions. These lemmas will assist us in proving the existence and uniqueness of.a

solution to the DNLP, for single arc and later for a general network. Following the proof

of existence of a solution, we prove that for the case of stepwise path flow rate functions

and affine arc performance functions, the DNLP possesses a unique solution whose

network variables take on a particular functional form. This knowledge leads to an
"elegant" construction of a continuous-time dynamic network loading algorithm. Finally,

we prove two theorems that assist us in specifying the length of time interval over which

to iterate in our algorithm and establish a bound on the number of computations required

to solve the DNLP. These theorems ensure that our DNLP algorithm will terminate after

a finite number of iterations and provide a basis for discussion of the algorithm's

theoretical run-time.
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2.4.1 Properties of Inverse Functions

The following two lemmas establish properties of inverse functions. In constructing our

algorithm in later sections, we will use s-'(t), the inverse of the function s,(t), thus the

following properties will prove useful. The proofs of Lemmas 1 and 2 are borrowed from

Chabini and Kachani (1999), with some slight modifications for clarity.

Lemma 1 (Chabini and Kachani, 1999): Let g(-) be a continuously differentiable

function on [0, T]. Iffor every x e [0, T] g'(x)# 0 , then g(.) is invertible on [0, T], its

inverse function g (-) is continuously differentiable on

[min(g(O),g(T)),max(g(O),g(T))] and, g' '(x) =
g (g (x))

Proof of Lemma 1 (Chabini and Kachani, 1999):

Since g(-) is a continuously differentiable function, g'(.) is continuous. Furthermore,

since for every x e [0, T], g'(x) # 0, we know that g'(.) has a constant sign. Hence,

g(.) is either strictly increasing or strictly decreasing. Since every strictly monotonic

function is invertible, it follows that g(-) is invertible. Let g-'(.) denote the inverse

function of g(.). According to the definition of an inverse function, we have:

g(g~'(x)) = x. If we differentiate both sides of this equation, we obtain:

-' '(x)g'(g '(x)) = 1. Rearranging terms, we have: gf''(x)= _ . According to
g' (g' (x))

the conditions of the lemma, g'(x) # 0 on [0, T], therefore g-''(x) is defined on

[g(0), g(T)] if g(-) is strictly increasing, or on [g(T), g(0)] if g(-) is strictly decreasing.

Equivalently, we can say that g-'(.) is continuously differentiable on

[min(g(0), g(T)), max(g(0), g(T))].

ED
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Lemma 2 (Chabini and Kachani, 1999): Let f(-) be a continuous and strictly increasing

function on interval [a, b]. For x e [f (a), f(b)], the set W, = {w e [a, b] I f (w) x} is

the interval [a, f -'(x)].

Proof of Lemma 2 (Chabini and Kachani, 1999):

Since f(-) is continuous and strictly increasing on [a, b], it then follows that f(.) is

invertible and its inverse function f-'(.) is continuous and strictly increasing on

[f(a), f(b)].

We first prove that W. c [a,f-'(x)]. By assumption, for a given w e WA,, we have:

jf(w) x. Since w e [a, b] and f(-) is increasing, it results that: f(a) f(w). Hence,

f(a) f(w) x. Since f (-) is increasing, we then have:

f~'(f(a)) f-'(f(w)) f'(x). By the definition of an inverse function,

a 5 w < f' (x). Hence, 14w e [af -'(x)], and W, c [af -'(x)].

We now show that [a, h (x)] c W. For a given -w) e [a, f~'(x)], we have w f' (x).

Since f(.) is increasing, it then follows that f(w) f(ff (x)) and f(w) x.

Furthermore, since x c [f(a), f(b)] and f'(.) is increasing, it results that

f -(x) - [a, b]. Since w e [a, f-'(x)], we have w e [a, b] and w e W,. Hence,

[a, -~'(x)] c W, .

Since W. c [a, -'(x)] and [af~'(x)] c W,, we have proved that W, = [a, -~ (x)].

0
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2.4.2 Existence and Uniqueness of a Solution to the DNLP: Analysis of

One Arc

In order to prove the existence and uniqueness of a solution to the DNLP for a general

network, we first prove the existence and uniqueness of a solution for a single arc. In

addition to assisting us in understanding the proof for a general network, the results that

we establish for the single arc will be used in the analysis of a general network.

This proof relies on several specific network properties, 'namely that arc performance

functions are affine and entrance flow rate functions are stepwise. Proofs of similar

results for a more general class of functions can be found in Chabini and Kachani (1999).

For the model studied in this chapter the proof below is less complicated. At the'heart of

the pioof is the fact that the solution verifies the FIFO property.

Theorem 1 For a single arc, if the pair (D, (-), f,,(.)) verifies the following properties.

(i) the arc performance function D,, () is affine and D',, (-) is nonnegative; and

(ii) the departure flow rate function f, (-) is stepwise, nonnegative and bounded from

above by some positive constant M

then the following properties hold for the DNLP.

(i) the strong FIFO properly is verified; and

(ii) the DNLP possesses a solution and this solution is unique.

Proof of Theorem 1:

We present an induction proof of Theorem 1, which relies on establishing the existence

and uniqueness of a solution, as well as the FIFO property for successive time intervals.

The induction is over the indices of the time intervals, denoted by i. We define our time

intervals such that for some interval [t, ,t1 ), ti,1 is the first time instant at which a flow

entering the arc at time t, may exit the arc. The sequences of instants t, is defined by

to = 0 and ti = t + D,(X,(t,)). Note that ti - ti > D"(0).
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The following is the induction hypothesis for some time interval [t, , -).

Induction Hypothesis

For the interval [t,, t, ), the following properties hold:

(i) s,, (t) is piecewise linear and continuous over [t, ,tj ) and s', (t) > y, + a,,u, (t)

where 0 < y, I ;

(ii) V,, (t) is piecewise differentiable over [t,,ti ) ;

1
(iii) For every t e [ti,, ti), v,(t) and

a,,

(iv) the DNLP has a solution on [0, t, 1 ) and this solution is unique.

Before beginning the induction we establish several properties that hold for all times / in

the analysis period. Since we consider a single arc, we know u,(-) f,(-). Thus, u,, (t)

has a unique value. Since u, (-) is stepwise, and therefore piecewise integrable, we can

obtain U,, () according to:

U, (t) = fu(co)do.

Since u, (t) is unique and the integral operator is unique, we know U,() to be unique.

Furthermore, because u, (-) is nonnegative, U, (-) is non-decreasing.

First Base Case: Time interval [0,t )
Let te[0,t,). We know:

dX1, (t) _

dt

and by integration, we have

X" (t) = U"(t) )- V(t),



for U, (0)= 0, V, (0)= 0 and X,, (0)= 0. Additionally since no flow can exit before I,

V, (t) = 0, so X,, (t) = U,, (t) and

X,(t) = Ju(co)dwv.

Thus, like U,, () X, (-) is continuous and unique on [0, i,). We now consider s, (t)

which is defined by:

s,(t) =t + D,(X,(t)).

Since X, (-) is continuous and unique and D,, (-) is affine, D,, (X, (t)) is continuous and

unique, and therefore s,, (t) is continuous and unique. We can also establish that b-ecause

t is strictly increasing, and X, (t) is non-decreasing, D, (X, (t)) is non-decreasing

and s, (t) is strictly increasing. Thus, on the interval [0, i), the DNLP has a solution and

this solution is unique. Because s,() is strictly increasing, we can also conclude that the

solution is FIFO on interval [0, t,).

In later parts of this proof we will use the properties of s,, (t) to find an upper bound on

the exit flow rate function. In particular, we wish to bound the slope of s, (t). We

observe that:

s', (t)=I+D' X(t)) 'X =1+u t)'(X,,(1)).
di

Since D, (.) is affine, D', (-) is known to have a constant value, which we will denote by

a,. Additionally, we replace the value ] with the variable yo to yield:

s' (t) =I + aju, (t).

We now construct a second base case. This base case differs from the first because we

now examine an interval with positive exit flow. After constructing this second, "more

general" base case, we complete the proof with an induction step. We again construct an

interval such that vehicles entering at the beginning of the interval will not exit the arc

before the end of the interval.
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Second Base Case: Time interval [t,, t2 )-

In the first base case, we proved that si, (t) is increasing on the interval [0, t). Since

si, (0) = t, and s, (t) = , then si, (t) is invertible. Using Lemma 1, we know sj (t) on

[t 1 ,t 2 ), s-'(t) e [0,t,) and (s-')'(t)= As sj (t) corresponds to the entry
s', (so ())

time for a flow which exits the link at time t, and s;'(t) e [0,t,), vehicles that exit arc a

before a time t must have entered it before s-'(t) .

As Vi, (0)= 0, we then have:

V(t) = J (w)do Vt e [t 5t?

Since u (-) is stepwise and unique on [0,t/i), V,(-) is piecewise linear and unique (ahd

therefore piecewise differentiable). Additionally, since u,(-) is nonnegative, V (-) must

be non-decreasing. We can then compute v,(-) by differentiating V,(.). We obtain

v,(I)u= ((s) (s'(t)) , which must be nonnegative because u,,(-) is nonnegative

-~ 1
and s',, () is nonnegadve on the interval [0,t,). Given that (se)'(t)= we

s ,(s) (t))

obtain:

ul(s-(l))
V ,(t) =.

From the first base case, we know that u, (s-'(t)) is unique and si, (s-'(t)) is unique.

Si, '(s' (t)) must then also be unique because the derivative operator is unique. Thus,

v1 (-) must also be unique. Furthermore, since s(si(t)) is strictly increasing,

s', (s-'(t)) must be positive, thereby ensuring the positivity and existence of (-).

Additionally, from the first base case we proved that:

s', (t) > yo + a,u,,(t) for t e [0, t,)

so we have:
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Yo ±au, (s (t1))
70 + atiU11(si't)

We also note that given the bound:

uf (setI (t))
ve,(t) <7 a 0(I+ aU,(s-'(t))

used in the proof of Theorem 1, we can obtain the bound:

We create this bound on v,, (), because as we shall see later in the proof, the exit time

function s,, (t) depends on the difference between the entrance flow rate and the exit flow

rate. By bounding the value of the exit flow rate, we can ensure that s, (t) is strictly

increasing and thus that the FIFO property is preserved.
C

Since U, (-) and V, (-) are unique then X, (-) must also be unique according to:

X" W) = U"W)- V,(t ) .

Furthermore, since U,, (-) and V,, (-) are piecewise linear, then X,, (-) must be piecewise

linear and D, (X,! (t)) must be piecewise linear and unique. Thus, s, (t) must also be

piecewise linear. We have also shown that a solution to the DNLP exists on this interval

and this solution is unique.

We now establish that s,(t) is strictly increasing on the interval . First, we recognize that

dX(t)
dt

= 1+ a,, (u,(t) - v, ())

Since v,(t) u (s"( , we have:
70 + a,,U,(SI (1))

r0 + a u, (s ' (t))

Sau, (t) +
(I a~u(s t))
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We recognize that the quantity u,, (t) is bounded from below by zero (because entrance

flow rates are nonnegative) and from above by some positive constant M (because by

assumption we do not permit flows of infinite flow rate), we have:

s ,'(t) a + uY,()+ o
Yo +aM

We know that a, and M are nonnegative, so we recognize that 0 < < 0 ;.
7o + alM

We denote by v, the quantity and we have:
70 +a,,M

sl,'(0) ! ;, + a,(0) .

We know that au,, u,, (t) and y are nonnegative, so sa'(t) must be nonnegative also.

Consequently, (strict) FIFO is verified on this interval.

To complete the proof, we now prove the existence and uniqueness of a solution, as well

as the FIFO property for an interval [tj+± ,t,+) where i 1.

Induction Step: Time interval It,+, i)

In this interval we proceed in a manner similar to the second base case. By the inducdon

hypothesis, we know that s (-) is piecewise differentiable and continuous over [t,,tie)

and s',, (-) > 0 . We recall from Lemma 2 that s',, (-) must then be continuous over

[s,(t,),s, (t,+1)) = [ti, ti) as well as differentiable and unique.

We also have:

V,(t)= u(co)dco Vt e [t+ ,ti ),

and since s-'(.) is differentiable and unique on [t+,t+), and the integral operator is

unique, V, (-) must also be differentiable and unique. We can then obtain

v,(t)'= ((s)'(t)) -u,(s- (t)), and:
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s') (sI (t))

as we did in the second base case. We note that U,(-), V, (-) and X,, (-) are unique and

piecewise linear. Thus, a solution to the DNLP exists and this solution is unique.

From the induction hypothesis, on interval [ti , ti+I ) we have:

S', (t) > y, + a,,u,,(t)

Using flow propagation (equation (6)) we then have:

v,(I)

+ acu,, (sI ())

This gives:

SadX(t)

u,,(s' (U))1 l+ a, ,(t) - a ,"(
yi +a M( (n))

Sa,,u,, (t) +
7i + a,s (S)

We note that u,, (-) is bounded from above by M , so we have:

s', (t) = a,u, (t)+
7, + aM

We denote by yv the quantity
71 +aM

and note that 0 < i I y, 1. This gives:

s',1 (t) au,, (t) +y.

Furthermore, since a,, and u,, (t) are nonnegative, s',, (t) >,0. Thus, s,, (t) is strictly

increasing on [t, , ti+2 ). We have now proven that the exit time function is strictly

increasing over the analysis period, therefore the FIFO property is verified for all
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intervals. The induction stops as the last flow that would enter at I = T will leave during

or before the interval indexed - where A = Min(A,,) Va e A.

2.4.3 Existence and Uniqueness of a Solution to the DNLP for General

Networks

Having established the existence and uniqueness of a FIFO solution to the DNLP for a

single arc, we now seek to establish this result for a general network. In order to do so,

we first establish an upper bound on the exit flow rate function as shown in the proof

below.

This proof is an induction proof over time intervals of length A, where A = Min(A,,).
(lEA

The first such interval is [0, A) and the ith interval is denoted by [iA, (i + 1)A).

Theorem 2 For a network iffor every path p and arc a, the following conditions (re

verified, then:

(i) the arc per/frmancefiunction D(-) is affine and D',, (-) is nonnegative; and

(ii) the departure flow rate function fl, (-) is stepwise, nonnegative and bounded

friom above by some positive constant M

then the following properties hold for the DNLP:

(i) the DNLP possesses a solution and that solution is unique;

(ii) the FIFO property holds; and

(iii) Va e A on [0, iA), V,(-) is piecewise linear and v,, (.) is stepwise and

bounded fiom above by
a
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Proof of Theorem 2:

In order to bound the exit flow rate function of each arc in the network, we adopt the

following notation.

M* = Max(Max(MJ)), Max( ))
pEP (EA a t,

where JPJ is the number of paths and JAI is the number of arcs.

Induction Hypothesis

For the interval [0, iA), the following properties hold for all path p and arcs a:

) s,, (t) is piecewise linear and continuous over

s'I (1) i y + aut(1) where 0 < yj < 1 ;

(ii) V (t) is piecewise differentiable over [(i - 1) A, iA);

(iii) For every, [0, (i + 1)A) v,, (t) -

[0,iA) and

; and

(iv) the DNLP has a solution on [0, iA) and this solution is unique.

Base Case: t e [0. A)

In the base case, we know that for every path

it'",(t) = f" (0

for all arcs that are the first arc on a path and u (t) = v ,(t) = 0 for all other arcs.

all fl, (t) are bounded from above by M*, we know u (t)M *. Using:

u, (t) Y ,,u (t)
p)E 1

Since

(where o,, equals 1 if arc a is on path p and 0 otherwise), we can bound arc flow rate

functions for all arcs in the network according to u,, (t) M * P M * * We also note

that since v, (t) = 0 on this interval, condition (iii) of the induction hypothesis is verified.
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We have also now verified the conditions of Theorem 1 and thus, the results of Theorem

1 hold on the interval [0, A) Va e A .

Given that U,, (0) = 0, V, (0) = 0 and X,, (0) = 0, we have:

X'1(t) =U,(t) -V"(t) Va e A

Since no flow can exit any arc before A, V, (t) = 0, so X,, (t) = U,, (t) and

X,,(t) = u,, (co)dco. Va e A
0

Thus, X, (-) is continuous and unique on [0, A) Va e A. We now consider s,, (t) which

is defined by:

s 1(t)=t +D 1 (X1 (t)) Va e A.

Since X,, () is continuous and unique and D,, () is afine Va e A, D,, (X,, (t)) is

continuous and unique, and therefore s,, (t) is continuous and unique Va e A. We can

also establish that because t is strictly increasing, and X,,(t) is non-decreasing,

D, (X,, (t)) is non-decreasing and s, (t) is strictly increasing Va e A on the interval [0, A).

Given this, we also know that s -() exists on the interval rs1(0),s,(A)). Since

s, (0)= 0 + D,, (X, (0)) A

and

s,,(A) A + D, (X,(A)) 2A

we have [0,2A) c [0, s,, (A)). If I e [o, s,(0)) then v, (t) = 0 <M **. Otherwise, if

t e Is,,(0),s,(A)) then

(t)= Y 45, 1) (t) t-8id5 M**.
pEP a

Thus, for t e [0, 2A), v, (t) M** and the conditions of the induction hypothesis are

verified.

Induction Step: t e [0, (i + l)A)
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We first note that if t e [0, iA) then u, (t) M * according to the induction hypothesis.

If t e [iA, (i + l)A) then we have:

u()= h,()
for all arcs that are the first arc on a path and u (t) = v' (t) for all other arcs.

assumption, we know f,(t) M * for allpaths. We also know that:

vM (t) = u2, (s '()).

Since s-'(t) < iA , then u, (s -'(t)) exists and is bounded by:

1

Thus, we have v; (t) M *, U '(t) < M * and u,, (t) M * Thus, the conditions of

Theorem 1 are verified on [0, (i + l)A) and according to Theoirm 1, a solution to the

DNLP exists for all arcs on this interval and this solution is unique. Furthermore, the

FIFO property is verified for all arcs on the network. Theorem I also proves that

condition (i) of the induction hypothesis is verified on this interval.

condition (iii) is verified on this interval, we note that:

[0, (i + 2)A) c: [Os, ((i + 1)A)).

Thus if t e [0. s, (iA)) then v,. (t) - according to the
a,,

if t e [s,, (iA), s, ((i + 1)A)) then

V, = Y e5 V /'.S (t) : -S1 5(11 **.M
pel, a(

Thus for all

To prove that

results of Theorem 1. Otherwise,

1
t E [0, (i + 2)A), v, (t) I and the conditions of the induction hypothesis

a,

are verified for all arcs.

To determine the time instant at which the induction stops, we consider some time s, (t)

which is the exit time a flow on path p. Since Vp., Vt e [0, T] , s, (t) is increasing, we

have:
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sI (T) > Max(s,, (t), t e [0, T])

and T., = Max(s,, (T)). Thus, the induction stops at some index i= K1
D

2.4.4 Solution Properties of the DNLP for a Class of Input Functions

In earlier sections, we have stated that if we construct the DNLP such that the entrance

flow rate functions are stepwise and the arc performance functions are affine, then the

solution will maintain stepwise exit flow rate functions and piecewise linear cumulative

flow functions. In the following section, we provide a proof of this property.

Theorem 3 For a DNLP with stepwise entrance flow rate functions f, (-), and affine arc

perfbrmance finctions D,(-) , the solution has the fillowing properties:

(i) the cumulative entrance flow functions U,, (), are piecewise linear;

(ii) the exit 11ow rate functions v,,(.), are stepwise;

(iii) the cumulative exit flow functions V , (.), are piecewise linear;

(iv) the total flow functions X,,(.), are piecewise linear; and

(v) the exit time functions, s,, (.) are piecewise linear.

Proof of Theorem 3:

As in the proofs of the previous section, we present an induction proof of the indices of

time intervals denoted by i. Our induction step is that the conditions of Theorem 3 hold

for the interval [0, iA) . We first present the base case and prove that the conditions of the

Theorem hold for the interval [0, A).
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Base Case: t e [0, A)

For any arc in the network we know:

u,(t) = Z davU',,(1)
pP

where 34,, equals 1 if arc a is on path p and 0 otherwise. Thus, u,, (-) is a step function if

all of the u,, (-) are also step functions. Indeed, if a is the first are on path p

u' (-) = f,(-), which is a step function. If it is not, we have u ,(-) =0 since by our

definition of time intervals, we know that no flow can exit any arc in the network during

interval [0, A). Thus we know v,. (-) = 0 Va e A, Vp c P . We can then conclude that

u, (-) is a step function on interval [0, A).

Because u, (-) is stepwise, it is piecewise integrable and:

U,(t)= ju(w)dco
0

and U, (-) is thus piecewise linear. Finally, vg () = 0 and v. (t) = ( ,v, (t) so

v,(-)= 0 for all a, hence we know that the cumulative exit flow function V,(-) equals

zero.

Since X,, (t) = U, (t) - V, (t), X,, (t) must also be piecewise linear on interval [0, A).

s,, (t) is defined according to:

s, (t) = t + D,, (X,, (t)).

Since we know that t is linear, X,, (t) is piecewise linear and D,, (-) is an affine function

of X, (t), then s,, (t) is also piecewise linear on interval [0, A).

Induction Step: t e [0, (i + 1)A)

According to the induction hypothesis, u(I) is stepwise on the interval [0,iA). Since

s,,(t) is increasing on [0,iA) for all arcs in the network, hence t e [0, (i + 1)A),
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s-'(t) t - A iA. Thus, any flow which exits an arc during the interval [0, (i + 1)A)

must have entered the arc in the interval [0, iA). We can calculate V, (-) according to the

equation

V" (t) = I"(~d

and conclude that since u, (-) is stepwise on [0, iA), V,(-) is piecewise linear on

[0, (i + 1)A). Hence v, (-) is stepwise on [0, (i + 1)A).

For any arc in the network we know:

U (t ) = U ap,' (t)
peP

Hence u,, (-) is a step function on [0, (i + 1)A) if all of the u, (-) are also step functions

on [iA, (i + 1)A). If a is the first arc on path p, u '(-) = f,(-) which is a step function by

assumption. If it is not, we have u'',(-)= v' (t). Since the network is FIFO, any two

paths entering an arc at time s,-'(t) must both exit the arc at time t. Thus, it must also be

true that the fraction of an arc's entrance flow rate that is on path p at time sj (t) is equal

to the fraction of the arc's exit flow rate on p at time t. We have:

=u,",(sj ())
vII )- , .x Va(t ).

Here we note that if u (s- (t)) is equal to zero at any instant, then v- (t) must also be

equal to zero and v ", (t) is then equal to zero. It can be shown that division or

multiplication of stepwise functions yields stepwise functions, thus we have proven that

u,"(-) and u,,(-) are stepwise on interval [0,IA) and that v,,(.) is stepwise on interval

[0,(i+1)A), thus v'"(.) must also be stepwise on [0,(i+1)A). Since both f,(-) and

v' (-) are stepwise on this interval, u,, (-) must also be stepwise on [0, (i + l)A).

Integration of u,, (-) to obtain U,, (-) using
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U(1) fu,,(co)dco
0

yields a piecewise linear function. Thus U,, (-) is piecewise linear on [0, (i + 1)A). Since

Xa (t) = U, (t) - V, (t), X,, (t) must also be piecewise linear on interval [0, A). s, (t) is

defined according to:

s,(t) = t+D,,(X' (0).

Since we know that t is linear, X,(t) is piecewise linear and D, (-) is an affine function

of X, (t), we know that s, (t) is also piecewise linear on interval [0, (i + 1)A). Thus, we

have verified the conditions of the induction hypothesis.

We also note that since U,() and V, (-) are obtained by integrating stepwise functions,

then they are continuous on the time interval [0, (i + 1)A) . Since we obtain X, (t) using:

X(t )=Ul(t)-V,

X, (t) must also be a continuous piecewise linear function. Thus, given

s,, (t) = t + D,, (X,(t))

and since t is linear and D,(-) is affine, s, (t) is continuous and piecewise linear.

As we will see in later sections concerning the construction of a network-loading

algorithm, the above properties are essential in the construction of an exact, continuous-

time solution. Each of the functional forms described above is characterized by having

"breakpoints" between adjacent pieces of a piecewise-linear or stepwise function.,

Preserving these functional forms will permit us to construct a DNLP solution by looping

over the breakpoints of the relevant functions. To determine the location and number of

such breakpoints, we provide two proofs. Theorem 4 establishes how breakpoints in the

exit flow rate functions are formed. Theorem 5 provides a bound on the number of

breakpoints.
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Theorem 4 For every a e A with exitflow rate function v, (-), each breakpoint of v,(-)

is caused by either.

(i) a breakpoint in the function u,(-) al s'(t) ; or

(ii) a breakpoint in the function v,,() at s (t).

Proof of Theorem 4:

From Theorem 3, we know that v,,(-) is a step function, and thus contains breakpoints.

From Theorem 3, we also know that u,, () is stepwise. We also have:

s'I, (t) = I + (11,(t) - v,,(t)) D',, (X,,(t))

where s', (t) is the slope of s,, (t) to the right of t. Since D',, (X,, (t)) is a constant, we

know that s',, (t) must be a step function with breakpoints occurring at every time t at

which either u,, () or v,, () contains a breakpoint. Thus, s,,(t) must be a piecewise linear

function such that for every time t for which s,, (t) contains a breakpoint, s',, (t) must

also contain a breakpoint. From Theorems 1 and 2, we have:

u, (s (1))
vel(t) = .1s

s (s' (t))

Thus, every breakpoint in V, (-) corresponds to a breakpoint in s', (t) or u,(), and

therefore to breakpoint in u,, () or v,,()

L]1

In later sections we will discuss the efficiency of the continuous-time DNLP algorithm.

For this purpose, we will be interested in the maximum number of breakpoints in the arc

variables. The proof below provides a bound on the number of breakpoints in an arc exit

flow rate function, given the number of breakpoints in its entrance flow rate function.
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For every a e A with entrance flow rate function u,,(-) over interval

t e [0, T] the number of breakpoints in the exit flow rate function v,, () is bounded from

above by [T+ N,, where N,, equals the number of breakpoints in

A = min(D,,(t) It e [0, T]).

Proof of Theorem 5:

From Theorem 4, we know that a breakpoint in the exit flow rate function v,, () at time t'

may be caused by either:

(i) a breakpoint in the function u,,(-) at a previous time t; or

(ii) a breakpoint in the function v,,(-) at a previous time t such that t e [0, T].

Since any flow which enters at some time t cannot exit before time t + A, we conclude

that any two breakpoints on v,, (), t and t' must be separated by at least A. Thus, on the

interval t e [0, T] there are at most K] non-differentiable points of v,, (t) . Additionally,

we know a priori the value of N,,, thus, we can bound the number of breakpoints on

v1,() by L- + N,, for the interval t e [0, T..

2.5 Construction of a Continuous-Time Dynamic Network-

Loading Algorithm

In the following section we develop a continuous-time algorithm for the Dynamic

Network Loading problem, assuming stepwise path flows and affine arc performance

functions. We first present an algorithm for a single arc, then extend this algorithm to

general networks.
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2.5.1 A DNLP Algorithm for a Single Arc

Taking advantage of the theoretical developments in the above proofs, we now wish to

construct an algorithm that moves chronologically, computing relevant network

parameters. We first consider a single arc. Consider some time interval [tLs,,.,tm,) in

which u,(-) and v,(-) are constant. According to the arc dynamics equation, we know

that on this interval, X,, (-) is linear and thus that s, (t) is linear. We can compute v,(-)

on the interval [s, (t,,,.), Si, (t,,,,)) according to the equation:

( 'U (si (t))
s' (, (sJ())

which we obtained in the proof of Theorem 1. We note that since u, (-) is constant on

[tc,,,.r, tf,) and s,(t) is linear on te,,.,., ), then v,,(.) is constant on [s,,(t,,,), s1(t)).

Since all flow that enters the link between tI,., and t, will exit the link between

s, (te1,,) and s (t,). we have:

i td 1 1))01)) JVitt (;) dy .

Since u, (-) and v,() are constant (and assuming stepwise functions are specified as

Vx e [a, b) f(x) = lim f(x) we can rewrite this as:

V (s (I tl,,)) = (8)
s (I(tfl )- Sit(ten,.,.)

An illustration of this computation is shown in Figure 2. A, and A 2 are equal to the

integrals u, (y)dy and 1v,, (y)dy , respectively and are equal to each other.
"E'll~r 'V(I1 11r)
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Ua(t) I

Ua(tcir.)

va(t) tcur tfut t

va(Sa(tCtr))

Sa(tcurr) s1(ttb) t

Figurfe 2: Graphical Interpretation of the DNLP Solution

We note that for any interval in which u, (t) and v, (t) are constant, we can compute the

value of v, (s, (t)) using the simple geometric relationship in equation (8). Thus, we

construct an algorithm that loops over intervals with this property. Each interval is

defined by t, and t,,, the beginning and end of the interval. At each loop, the

algorithm determines the exit time of a flow entering the arc at the beginning of the

interval, s, (t, 1 .,.) . It also determines the exit time of a flow entering the arc at the end of

the interval, s,(tfi). The algorithm moves forward chronologically, according to the

values of tcrr At some later time, the algorithm "arrives" at some interval which begins

at s (t,.,) and computes the value of v,, (Sl, (te,,,r)).

In Figure 2 time interval [ctr.t,,) was defined by two successive breakpoints of the

function u, (t). We note, however that for two successive breakpoints of u, (t), between

which u,, () is constant, it is not necessarily true that v, (-) is constant. Consider Figure
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3. Here we note that a flow entering the arc at time t will exit the arc at time s,(t.,).

At time s,(t,,.,.), the exit flow rate function will then contain a breakpoint. According to

the arc dynamics equation, this breakpoint will cause a breakpoint in the function X, (-),

and therefore will also cause a breakpoint in s, (t). Here, the shortest interval beginning

at t ,., such that u,, (t) and v, (t) are constant is [tcr,. S, (tir,.)).

Ua(t)

ua(tCrr)

v (t) tCirr fty tnext t~a(L

va(sa(tctirr)) -

sa(tcurr)Sa(tfut) Sa(tnext)t

Figure 3: Graphical Interpretation of the DNLP Solution

The above discussion has several important implications for our algorithm. Firstly, we

note that it is not sufficient to simply iterate over the intervals defined by the breakpoints

of u, (t); this may not yield a correct solution. Instead, we must iterate over intervals

such that both u, (t) and v,, (t) are constant. A second implication regards the number of

breakpoints in our exit flow rate function, v,, (t). We note that a breakpoint in the exit

flow rate function of an arc can be caused by either (a) an earlier breakpoint in the

corresponding entrance flow rate function or (b) an earlier breakpoint in the exit flow rate

function itself. Examination of the arc dynamics equation shows this to be true. Thus,
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for any time t at which our algorithm detects a breakpoint in either u, (t) or v,, (t), there

may be a future breakpoint in v,, (-) at time s,, (t).

We propose an algorithm which moves forward chronologically, computing arc variables

at each step. Having established that we can completely specify the solution by

specifying arc parameters at function breakpoints, we then loop over these breakpoints in

an event-based manier. At the end of each loop, we select the time of the next loop

based on the first breakpoint of either an entrance or exit flow rate function.

Our algorithm- begins by initializing arc variables according to the initial conditions. It

al.so defines two sets, I and E which contain all known breakpoints in the entrance and

exit flow rate functions. Set I is initialized with the set of breakpoints contained in the

path flow rate function; set E is initially empty. To begin the main loop, we select the

breakpoint of I which occurs at the least value of t. For each value of t,,,. we find the

next breakpoint in either the entrance or exit flow rate functions, t,,, . These two

breakpoints define an interval for which u,, (t) and v,, (t) are constant. We then compute

v,(t) for this interval, based on the value of u,(-) at s(t,,.). By integration, we can

then determine the values of U, (t), V, (t) and X, (t). We then calculate the time at

which a flow entering the link at time tc,, will exit. At this time, sf (t,,.,.) there may be a

breakpoint in the function v((-), thus we will add this time to E, the set of future

breakpoints in the exit flow rate function. To repeat this loop, we then select the next

breakpoint in either I or E.

Step 0: (Initialization)

U'(0), V" (0), u"(0), v)"(0), X,(0)=0

Set of entrance breakpoints I c all breakpoints off(-)

Set of exit breakpoints E=0

te,.., = min(I)

Step 1: (Main Loop)
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t,,, = min(J, E)

v,(t) <-
u, (s' (t.,,.,. ))(s-' (t,,) -s) (ter,))

tfa -t

V" (t) <- fv, (14)dw

U (t ) <- fu,,(w)dw
0

Vt e [tl,.,i. ,f

vt e [tCHI,,,tfl

Vt e [tcurr,..t

Vt e [tell,,,ltflX,(t ) < U: ) ±D,, ( -Vl, (t cr)

s (tc,,.,):-t +,.1+ (.Xa(tcur))

s (tfil) -s it(tell )
s (f< -' " VI "" x(t -t +,,.)+s (tc ,,.)

t, -tf

E = E u {(s, (t.,. ))}

Step 2: (Stopping Criterion)

If the network is empty then stop.

Otherwise,

,.. ., = min( E )

if( min(I) < tK,.)

,= min(I)

I = I \ {tLeiI }

else

E = E \{t }

and go to Step 1.

2.5.2 A DNLP Algorithm for a Network
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To extend the algorithm of Section 2.5.1 to a general network, we must construct

intervals such that the values of u,(t) and v,(t) for a given arc are constant. Within

each interval, we will then compute the value of all variables on the given arc. The

algorithm then loops over the intervals of all arcs in the network. In the following

section, we will review the network algorithm, highlighting the differences between it

and the single arc algorithm.

The initialization routine for the network algorithm is similar to that of the single arc

algorithm. We initialize the network parameters for all arcs on the network, then place

all know enfrance flow breakpoints in a set I. In the network algorithm, it is necessary to

associate the time at which a breakpoint in a stepwise function occurs with the arc on

which it occurs. To do so, we create an element called a "step" and define a step to be the

time of a breakpoint in an entrance or exit flow rate function, paired with the arc on

which that breakpoint occurs. We represent a step at time tL,,, on arc a as (ta.,,,a).

When we select the "minimum" step from a set of steps, we select that step whose time

tCtl,r is the minimum. The "ArgMin" of tc.,., is then the arc a . In the algorithm below, I

is the set of all future steps in entrance flow rate functions of all arcs in the network.

In the main loop we first determine the value of tfi, by selecting the minimum step in

either I or E such that this step occurs on arc a. We then calculate the value of u,, (t) by

summing path entrance flow rate functions, u';(t) over all paths that contain arc a. We

then compute v,, (t), U,, (t), V, (t) and X,, (t) in the same manner as in the single link

algorithm. It is then necessary to split the arc exit flow rate, v,, (t) among the paths that

travel through a. Since the network is FIFO, any two paths entering the arc at time

s71 (t) must both exit the arc at time t. Thus, it must also be true that the fraction of an

arc's entrance flow rate that is on path p at time sj (t) is equal to the fraction of the arc's

exit flow rate on p at time t. To split the exit flow rate among paths, we then multiply

v,, (t) by the fraction:
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u,', (s U tn,)

uJ( (tCHI)

According to flow conservation, we then pass this exit flow rate along to the next arc on

the path. To finish the main loop, we then determine the exit time of a flow entering arc

a at ta,,., and add new steps to the sets I and E. A step is added to I to conserve flow

between arcs a and 5. A step is added to E because, as shown in Section 5.2.1, any

breakpoint in either the entrance of exit flow rate function of an arc can cause a later

breakpoint in the exit flow rate function.

In selecting the next step from the sets of entrance and exit flow rate steps, it is important

to note that, if the minimum step of I occurs at the same time as the minimum step of E,

then we should select the latter step first. To illustrate why, consider the following two

successive links on some path:

1 2

Consider some time , at which there exist a breakpoint in both v ,(t) and u, (t).

Suppose we first select the breakpoint in the function u2 (t) and compute the values of arc

2's variables on some time interval. These computations would be based on the most

recently computed value of u, (t), however this value of u, (t) will not reflect the

breakpoint of v1, (t) that occurs at te,,,.. According to the flow conservation equation, a

breakpoint in v, (t) will cause a breakpoint in u, (t), thus to yield correct results, our

computations must be based on the value u,(t...).

To correctly compute network variables, we should select the breakpoint in the function

V, (t) first. We can then set the value of u,(*,) according to:

It, (tcll,,1) <-V,(tV11,,1 .
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At the next loop, we can then select arc 2 at time tL,. and correctly compute are 2's

variables. To avoid incorrect computations, in our algorithm we always select exit flow

breakpoints before entrance flow breakpoints if they occur at the same time.

The algorithm follows.

Step 0: (Initialization)

Va e A

Set of entrance steps I c all steps of f,' ()

Set of exit steps E=0

tCii.., = min(I)

a = ArgMint,,)

Step 1: (Main Loop)

(tfi,, , a) = min(I, E) s.t. a = a

(t ) Ye al W
p~eK,,

v (t ) I-
u 0(s-' 1(t t,,))w s;' I(ti,, - '(te,)

t,,, -t

Ulft W <l u(w) dw
0

X ( ) < U l (tell,,.) (I (tC1,.,.)

U I.Vs- (t )
ru s- IT))

u , (t) < 17 (t cu,)

St, (tc,.,) <- tc,.,. + D,, (iX ( (te,.,.I))

Vt G [ t,t ,,

Vt e- [tclint, fill)

Vt e Et/Lu,,tfil)

V t E= [teln, .l,

Vt e (tct,.,.,t il

Vt e [tcur,t !,l)
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Ulf(0),1 V11,(0), 1Ulf(0) , v , (0), X" (0) =0

V,(t ) <7- fv (14,)d14;



s,( < - "o (t~f - ' x (t - te,,. + SOI(teI,,1ll t E [ti,. l,
tfi,, -t ,.

I =I {te,, )

E =E a)

Step 2: (Stopping Criterion)

If the network is empty then stop.

Otherwise,

tc,,. = nmin(E)

a = ArgMin(tn;.,,)

if( rmin(I) < t",,)

,= min(I)

a = ArgMin(t,,,.)

I =I \ {(teu,,., a)}

else

E =E \ {t(tcll,,, a)}I

and go to Step 1.

2.6 Algorithm Implementation

The above algorithm was implemented in Java and tested on a Dell workstation running

RedHat Linux 6.2 with a Pentium III 933MHz processor and 256MB RAM. In the

following sections we highlight several important aspects of the implementation

including input and data storage, the use of methods in the computer code and some

details concerning the storage and manipulation of breakpoints.
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2.6.1 Input Data Files and Representation of Paths

We first consider the input required by the algorithm. This consists of a list of origin-

destination pairs, a list of paths between each of these pairs, a set of arc performance

functions for all arcs in the networks, and a set of path flow rate functions. With the

exception of the path flow rate functions, all of these inputs are properties of the network

itself and it is therefore natural to group the lists of O-D pairs, path and arc performance

functions together in a single data file. An example of such a file used in our

implementation is included in Appendix A.

Recognizing that many paths in the network share one or more arcs, we use a data

structure called a subpath table in our implementation to store paths. This data structure

has been developed in the literature to reduce the amount of memory required to store

paths (see for instance He 1997). In such a table, a path is stored as a set of subpaths,

each of which stores a reference to the next arc and an index to a subpath. This is

illustrated by the example below. Consider the paths [1,3, 4] and [2, 3, 4] in the small

network shown in Figure 4.

3 4

/2

Figure 4: A Small Network

In a subpath table representation, arcs 3 and 4 are stored as subpaths which are referenced

by both the subpath containing arc 1, and the subpath containing arc 2. Table 1 shows

the resulting subpath array.

Table ]: A Subpath Representation
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The last lines of the network data file specify the subpath list used in our implementation.

It should be noted that a relationship exists between the list of O-D pairs and the subpath

array. Subpaths in the array are listed in such an order that the subpaths pertaining to the

first O-D pair appear first, those pertaining to the second pair appear second, and so on.

Thus if the first O-D pair is listed in the data file as having 5 paths, then subpaths 0

through 4 are the first subpaths of each of these paths.

Path flow rate data is also a required input. Since our algorithm assumes that this data is

stepwise, we can store path flow rate functions by specifying the time of and value at

each breakpoint. In our implementation, we specify stepwise functions such that

Vx e [a, b) f(x) = limf(x). An example of a path flow rate data file used in our

implementation is included in Appendix A.

2.6.2 Use of Vectors to Store Functions

In implementing the algorithm, we recognized that the number of breakpoints in a flow

rate function (whether for a path, arc or arc-path pair) may vary greatly from path to path,

from arc to arc or from O-D pair to O-D pair. Additionally, even if we know the number

of breakpoints in the path entrance flow rate functions, we have no a priori knowledge of

the resulting number of breakpoints in subsequent arc or arc-path entrance and exit flow

rate functions. Thus, it necessary that our data structure for flow rate functions be resized

throughout the algorithm's execution. While this could be accomplished by resizing

arrays, our implementation uses Java vectors to store stepwise and piecewise-linear

functions. Vectors are Java objects which can be sized dynamically and are a convenient
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way to store a variable number of objects. With respect to ease of implementation, the

ease with which vectors can be appended made their use in this implementation natural.

2.6.3 Methods for Piecewise Functions

In reviewing the statement of the algorithm, it is clear that there are several operations on

piecewise functions that must be carried out repeatedly during its execution. In

particular, our algorithm requires that we add stepwise functions, integrate stepwise

functions, and find the inverse of a piecewise linear function. In our implementation,

each of these operations was written as a Java method which operates on a piecewise

function or functions that have been stored as a vector. Discussion of each of these

methods can be found in Appendix B. A pseudocode for each method is included.

2.6.4 Storage and Computation of Functions

In the following section we review how we can compute and store the stepwise and

piecewise linear functions used in our algorithm. We note that our implementation often

operates on functions, calculating values at all breakpoints. This approach was adopted

for ease and clarity but often results in excess computation. More efficient approaches

could be adopted by the implementer wishing to test the empirical performance of the

algorithm. Our objective was instead to establish the feasibility of this continuous time

approach.

In our implementation, the value of u, (t) is computed at each loop (for the current arc)

for all times in the interval [0, t . .,.) according to:

U, (t) - EU'I,(t) .

This is done using a method which calculates the sum of stepwise functions over a given

interval (Appendix B).
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We now note that in order to compute:

U, (s-' (t, C, ))(s (t,,) - s'(t ,,,))

t;, -te
it fit CIT

it is necessary to determine the value of s-' (t) at the current and future time instants,

and to determine the value of U,, (t) at some previous time instant. In our

implementation, s-'(t) is found by storing the function s,(t) for the interval [0, tc,,),

then using a method to compute the function's inverse at a given point (this method is

given in Appendix B). Ul (sJ(t,.,.)) is computed by storing the function u, (1) for the

interval [0, t ,n.,), then using a method to find the function's value at a given point.

In order to compute each of the following two integrals in the algorithm:

V(t ) < fv, (w)d-w
0

U"(t) <= fill,()d
0

we use the functions u(t) and v,,(1) for the interval [0,10 ,,,). We then use a method

which computes the integral of a stepwise function over some interval to compute the

values U,, (t) and V, (t).

To compute v[," (.) we use:

u111 (s -,(te,.)

Va -1<: ,1 xVa(tcu,.,r
u,(I si (tC11,,1))

This computation requires that we determine the value of u' (t) and u, (t) at previous

time instants. We have noted above that in our implementation we compute and the latter

function for the interval [0, tc...) at each loop. To determine u' (t), we store all arc-path

entrance flow breakpoints for the interval [0,utc,,,) s) (t) is computed using a method
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that finds a function's inverse at a given point. The value of v,, is computed at an

earlier step in the loop.

Each of the remaining computations in the algorithm is straightforward. In summary we

note that in our implementation, the functions it" (t), v, (t) and s,, (t) are stored for each

arc and path for the interval [0,tlr,,,). All other functions and values are computed at

each loop using methods which manipulate stepwise and piecewise linear functions.

To select the next exit flow rate breakpoint, we maintain a heap of the next steps in the

exit flow rate functions of each arc. Since entrance flow rate functions are stored by arc-

path pair, if we wished to select the next entrance flow breakpoint in a similar manier,

we would need to maintain a larger heap with the next step on all arcs and all paths on

each arc. To reduce the computational burden of this selection operation, we instead

maintain a heap of the next breakpoints on any path for each arc. To select the next

entrance flow rate breakpoint, we then select the element at the top of this smaller heap.

2.6.5 Other Notes on the Implementation

With regard to maintaining the set of future breakpoints in our implementation, we wish

to note the following. At some time t ,,the exit time of a flow entering a given arc at

time tLI,, is computed using:

sl(tcl,,l) <- tell,,, + D(I(X,(tI,,

It should be noted, however that at time I,,,.,, we do not know the value of vU (s., (tc,,)).

This is because v, (s, (tlm..,)) is computed according to:

u tif (t'Li/l)
U (SU (tl st U (tC11,,.)

To determine v , (s,(,,) we need the values of u,, (t.,,,.) and s',, (t .. ,.). Since s,

is a piecewise linear function, we the value of s,(t,.,) at at least two points in the
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interval [t,,,,rr I, ) to compute s', (),,,). At time t,/. however, we do have sufficient

information to compute s', (tc,,.,) and thus cannot compute v,, (s,(t ,,)) Thus, in our

implementation at time t ,,r, we "mark" time s(,,) as a future breakpoint of the exit

flow rate function of a, but do not compute its value until the algorithm "arrives" at

2.7 Algorithm Testing

The algorithm was tested on the sample network of 9 nodes and 12 arcs in Figure 5. This

network is equivalent to the network used by Xu et al. (1999) to test a discretized version

of a continious DNLP algorithm. By testing our implementation on the network below,

using similar data sets, we can compare and evaluate our results.

We note that throughout this thesis values of time, flow rates and other variables are

unitless quantities. The example is not intended to model a real-world transportation

system but rather to illustrate the correctness of our algorithms and implementations.

1 *4 7
1 2

3 5 6.

2 4 5 7 8

8 9 10

" 11 12
3 6 9
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Figure 5: A Sample Network

The network includes 7 O-D pairs and 14 paths. These pairs and paths are listed in Table

2 below.

Table 2: Network Data

As Xu et al. (1999) implemented a discretized version of a continuous DNLP algorithm,

in their implementation it was not necessary to select path flow rate functions and are

performance functions which permit exact continuous-time solution. In particular, Xu et

al. (1999) specify the above functions as polynomials. Since it is the goal of this thesis to

achieve exact, continuous time implementation, we select affine arc performance

functions and stepwise path flow rate functions. To provide a basis for comparison, we

selected the above functions to approximate the polynomials used by Xu et al. (1999).

Path flow rate functions in Xu et al (1999) are of the form:

f,"(t)= 01,(5t - t 2)

where O, is a parameter of the path ranging from 0.1 to 0.35. Step functions containing

5 steps were selected to approximate these functions. Figure 6 shows the relationship of
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O-D Pair Path
(1,9) 1: (1, 2, 6, 10)

2: (1, 5, 7, 10)
3: (1, 5, 9, 12)
4: (3, 4, 7, 10)
5: (3, 4, 9, 12)
6: (3, 8, 11, 12)

(1,5) 7: (1, 5)
8: (3, 4)

(5, 9) 9: (7,10)
10: (9, 12)

(1, 3) 11: (3, 8)
(3,9) 12: (11, 12)
(1, 7) 1 3: (1, 2)
(7, 9) -14: (6, 10)



the original function to the stepwise approximation for values of 0,, of 0.1, 0.15, and 0.2.

Table 3 gives the parameter 0, for each of the paths in the network.

1.5 r-

1.25F-

0.75
C.
CL

0.5

0.25

0

1-. 74

/ I

/
/

/
- .1

I -

/I

/

~1 /

I,
//

L \K

/ N

2
time

3 4

\ ~'.

\ __

_ -1

5

Figure 6: Approximation of Path Flow Rate Functions

Table 3: Parameters for Path Flow Rate Functions

Path 0p

1 0.10
2 0.15
3 0.18
4 0.20
5 0.10
6 0.12
7 0.20
8 0.10
9 0.15
10 0.15
11 0.12
12 0.10
13 0.10
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14 0.35

Selection of functions to approximate arc performance functions used by Xu et al. (1999)

is discussed in Appendix C. Table 4 contains a summary of the parameters of these

functions.

Table 4: Parameters for Arc Performance Functions

Arc Intercept Slope
1 1.88 0.235
2 1.80 0.443
3 1.39 0.269
4 1.60 0.443
5 1.32 0.408
6 1.92 0.408
7 1.50 0.443
8 1.62 0.408
9 1.80 0.443
10 2.12 0.408
11 2.00 0.443
12 2.32 0.408

2.7.1 DNLP Results

Figure 7 shows the arc exit time functions for each of the twelve arcs in the example

problem. Comparison of this figure with the results given in Xu et al. (1999) shows that

the continuous time implementation of the Dynamic Network Loading algorithm yields

results comparable to those from the discretized version. Small discrepancies do exist;

these are most likely due to the linear approximation of the arc performance functions or

stepwise approximation of path flow rate functions. The general similarities between the

results of the models and algorithms in this thesis an in Xu et al. (1999) indicate the

correctness of each.
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Figure 7: Arc Exit Times

Here it is important to note that all of the exit time functions shown in Figure 7 are

strictly increasing functions and are greater than or equal to t for all times in the analysis

period. This indicates that the computed arc travel times do indeed verify the FIFO

property.

Figure 8 shows the path traversal times for each of the 14 specified paths. These

functions show a shape similar to those in Xu et al. (1999) with path travel time

increasing as t increases and arcs become congested. The figure also shows that the paths

containing more arcs have greater travel times than those containing fewer arcs.
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Figure 8: Path Traversal Times

Figure 9 shows arc volumes on each of the 12 arcs throughout the analysis period. This

figure is compatible with the results of Theorems 4 and 5. Early in the analysis period,

the functions contain relatively few breakpoints and the piecewise linear form can be

clearly seen. As t increases, the number of breakpoints in each function increases rapidly

until the functions appear smooth (though in fact, they consist of many small linear

pieces). This is because, for each arc, the number of breakpoints in the arc's exit flow

rate functions may be greater than the number of breakpoints in its entrance flow rate

function. The next arc on the path then uses the exit flow rate function of the previous

arc as its entrance flow rate function and the number of breakpoints in the function is

again increased. This process continues until flows reach the end of their path, thus the

number of breakpoints in the functions of each arc tends to increase with time.

Furthermore, it should be noted that the number of breakpoints in the entrance flow rate
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function of each arc may be as great as the sum of the number of breakpoints in each of

the arc's path flow rate functions. This also increases the number of breakpoints The

shapes and magnitude of the arc volume functions are in agreement with the results

presented by Xu et al. (1999). The results shown in Figure 9 are reproduced in Appendix

D for the reader wishing to identify particular arc flows.
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Figure 9: Arc Volumes

2.8 Conclusions

To conclude this chapter we note that we have provided a formulation of the DNLP and

proven than we can solve the DNLP in continuous time for the case of affine arc

performance functions and stepwise path flow rate functions. We have presented a

DNLP algorithm and implemented this algorithm, testing it on a small example network.

Results of this testing indicate that this implementation is correct since they are in

agreement with those of similar models and with the theoretical developments of this

chapter. They also confirm findings regarding the number of breakpoints in the DNLP
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solution. We note that for any execution of the DNLP algorithm, the number of

breakpoints in the exit flow rate functions can be greater than the number of breakpoints

in the input functions. Furthermore, we have noted that as the value of t increases, the

number of breakpoints in any given time interval is likely to increase. The implications

of these conclusions on the efficiency of a DTA solution will be discussed in Chapter 4 of

this thesis.
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CHAPTER 3

CONTINUOUS TIME DYNAMIC TRAFFIC

ASSIGNMENT

In Chapter 2, we established that, given path flow rate functions, we can use a

continuous-time dynamic network loading problem (DNLP) algorithm to calculate time-

dependent arc travel times. We now wish to use these arc-based network conditions to

determine path flows. To do so, we use a shortest paths algorithm to calculate path travel

times based on arc travel times, then assign flows to these shortest paths. Through

multiple revisions of our set of path flows, we can obtain a dynamic traffic assignment

(DTA) solution.

The objective of this chapter is to present several algorithms which, when combined with

the DNLP algorithm of Chapter 2, yield a DTA solution. The first of these algorithms is

a dynamic shortest paths (DSP) algorithm which enables us to determine path flows. The

formulation of the DSP problem and development of a solution algorithm are given in

Section 3.1. In Section 3.2 we present a DTA algorithm which manages the DNLP and

DSP subroutines to obtain a DTA solution. Before presenting these developments, we

outline the remaining steps required to solve the DTA problem.
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The first step is to obtain a set of dynamic shortest paths. In a static network, calculation

of path travel times from arc travel times is straightforward. We can traverse paths,

adding the cost of each arc along a given path. If we are interested in the minimum travel

time from a given origin to a given destination, we can use one of many existing static

shortest paths algorithms. In a dynamic network, calculation of path travel times from

arc travel times is more complex, since the minimum travel time for a given O-D pair

may vary with departure time. Furthermore, because arc travel times are time-dependent,

the shortest path itself may vary as a function of departure time.

The next step is to obtain a set of path flows. To do so, we compute the minimum travel

time between given O-D pairs and use this knowledge to assign time-dependent flow

along each of the paths. Various methods for performing this assignment exist. In a

deterministic user-optimum model, all flow between a given origin and destination

travels along a shortest path. In other models, however, it is assumed that users have

imperfect information regarding the shortest paths in the network, or are unwilling to

deviate from their preferred path (He 1997). In such models, system users are grouped

into several categories according to their preferences. This grouping, a "Users' Behavior

Model," assigns flow along a set of paths for each origin-destination pair. In order to

maintain the functional forms of our network variables (which permit continuous-time

solution), we assume users have perfect information regarding travel times on all routes

and always select the path with the minimum travel time.

Having computed dynamic shortest paths and assigned flows along these paths, we have

obtained a revised set of path flows. The final step required to obtain a DTA solution is

to continue to revise the set of path flows until a satisfactory solution is obtained. If path

flows obtained at successive iterations of the DTA algorithm are sufficiently similar, we

conclude with a solution to the DTA problem. If, however, the results are dissimilar, we

continue to revise our set of path flow rate functions. In Section 3.2 we present a DTA

algorithm which yields a continuous-time solution. This algorithm uses the continuous-

time DNLP and DSP algorithms to solve the DNLP and DSP subproblems, respectively.
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As in other DTA models, we use a Method of Successive Averages (MSA) algorithm to

generate a set of path flow rate functions at each traversal of the DTA loop.

Section 3.1 gives formulations and algorithms for the DSP problem. We first consider

the one-to-all problem, then consider the all-to-one problem. Results from

implementation and testing of the one-to-all algorithm are also given. In Section 3.2 we

discuss the DTA problem and present an algorithm for its solution. Results of DTA

testing on a small network are included.

3.1 Continuous-Time Dynamic Shortest Paths

The Dynamic Shortest Paths problem has been studied extensively in the literature, yet

because the problem has many variants, each of which may yield different solution

properties, further exploration continues to yield interesting results. As with other

dynamic problems, most existing developments pertain to a discrete-time version of the

problem. Since the goal of this thesis is to present a set of continuous-time algorithms for

the DTA problem, in the following section we explore relevant continuous-time variants

of the DSP problem.

Like their discrete-time analogs, some continuous-time DSP algorithms are dynamic

adaptations of well-known static shortest path algorithms. Orda and Rom (1990, 1991)

presents a theoretical algorithm that can be viewed as a dynamic extension of the well-

known Bellman-Ford algorithm for static shortest paths. Yadappanavar (2000) and

Chabini and Yadappanavar (2000) present a practical interpretation of Orda and Rom's

algorithm, given piecewise linear input functions. This algorithm was implemented and

tested against other continuous-time DTA algorithms. In Section 3.1.2 we present an

algorithm which can be understood as another interpretation of the Bellman-Ford

algorithm. The development of this algorithm was largely undertaken prior to the

implementation of the Orda and Rom (1990, 1991) algorithm.
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While the representation of time (discrete versus continuous) is one dimension along

which DSP problems can vary, several other dimensions also exist. Problems may be

either deterministic or stochastic; they may be concerned with minimizing travel time or

some more generalized cost; they may require that the network verify the FIFO property

or they may permit non-FIFO networks; they may allow or prohibit waiting at nodes.

The statement of the problem itself may also vary. Some statements require a solution

for a single departure time, while others require shortest paths for all departure times.

Alternately, some problems require solutions for one or all arrival times. Some may

require shortest paths from one node to all nodes in the network while others require

those from all nodes to one node.

To narrow our discussion of continuous-time shortest paths algorithms we specify a

problem variant which is appropriate for the DTA problem variantof this thesis. We first

note that at a given iteration, the DTA will require a solution of the DSP problem

between all origin-destination pairs on which there is flow, thus a many-to-many solution

of the DSP problem for all departure times is required. To obtain this we may execute

either a one-to-all or an all-to-one algorithm repeatedly. We also note that the proofs of

Chapter 2 guarantee that the network travel times verify the FIFO property. As a result,

waiting at nodes will never improve our shortest paths solutions and need not be

considered. We also know the network to be deterministic. We will assume that we

wish to minimize path travel time as this is variant of the problem that is relevant to the

DTA problem of this thesis. Hereafter in this thesis, the term "shortest path" will refer to

the minimum travel time problem.

In Section 3.1.2 we first present a formulation and algorithm for a one-to-all variant of

the DSP problem. This algorithm has been implemented and tested on the small sample

network of Chapter 2. We note that this algorithm requires that the network verify the

FIFO property thus, for greater generality and the benefit of other applications, we will

also present an all-to-one version in Section 3.1.3 which permits non-FIFO networks as

well.
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3.1.1 Notation, Definitions and Assumptions

In the following section we present notation and definitions for the one-to-all dynamic

shortest paths problem for all departure times. This notation will first be used in the

development of optimality conditions for the problem and again in the statement of the

algorithm. The reader may note that this notation (namely that of exit time functions)

differs from that of Chapter 2. In both chapters we have chosen notation that is

consistent with that which is in use in the literature, though these notations differ from

each other.

We consider a network G = (N, A) consisting of a set of nodes N and a set of arcs, A.

We designate one node, r as the origin node and assume that there exists a path from r

to every other node in N. We also use the notation:

dy, (t) : the travel time on an arc between nodes i and j, departing i at time t;

di (t) : the minimum travel time from r to i, departing r at time t;

B(j) : the set of nodes i for which there is some arc (i, j); and

[0, T.] : the time interval of interest. T is defined in Chapter 2; beyond T". we

assume the network to be static.

We denote by aM (t) the arrival time at node j if we depart node i at time t. We have:

a0 (t) = dj (t)+ t.

We note that if an arc verifies the strict FIFO property (given in Chapter 2 of this thesis),

then we know a,. (t) to be a strictly increasing function. Similarly, we also denote by

a, (t) the arrival time at node i if we depart node r at time t. It is defined as

a,(t) = d,(t) +t .
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Consider some path (i, -+ '2 -... -+ 'k). According to our notation, if we depart node i,

at some time t, we will arrive at node i2 at a, 2 (t). We will then arrive at node i3 at

a 2 ,, (a,,2 (t)) . Continuing in this manner, the arrival time at node ik, given by:

a, 'A-] (a 4-2 , JA -1 (a S 2 ())

In Chapter 2 we proved that the solution to the DNLP is FIFO on every arc in the

network and thus that each of the functions composed in the expression above is strictly

increasing. Proofs presented in Chabini and Yadappanavar (2000) provide the properties

of the composed functions. A summary of these properties follows:

. If f(-) and g(-) are two non-decreasing functions, then the composition of these

functions is also non-decreasing.

. The composition function of a finite number of non-decreasing functions is a non-

decreasing function.

. For any path in a FIFO network, the arrival time at the end of the path as a

function of the departure time at the start of the path is non-decreasing.

. For any path in a FIFO network, the minimum arrival time at a destination node is

an increasing function of the departure time at the origin node.

. Waiting at any node in a FIFO network never decreases the arrival time at the end

of any path.

The above properties allow us to assume that no waiting occurs at nodes and therefore

that a, (t) is a non-decreasing function. As we will see in Section 3.1.2, this will allow us

to develop and efficiently implement a continuous-time DSP algorithm.

3.1.2 The One-to-All Minimum Travel Time Paths Problem:

Formulation and Solution Algorithm
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We now present a set of optimality conditions for the one-to-all minimum travel time

problem. We note that if a1 (t) is indeed the arrival time on a shortest path from node r

to node j, then it must verify the necessary condition:

a,.(t) = t Vt e [0,T, ]

a, (t) = Min(IMin (a,,(s)))
iEB1(j) V>(/;(1)

j r, Vt e [0, T.].

Since we know all arcs to in the network to be FIFO, the latter equation can be rewritten

as:

a, (t) = Min(a,, (a, (t)))
ieB(j)-

If the latter condition is not verified at any point, then there must exist some path to j via

some node k e B(J) such that a1 (t) > (a,, (a, (1))). If this were true, we could reduce the

travel time from r to j by traveling via k, thus contradicting the optimality of a (t).

Let us now prove that the optimality conditions are sufficient. We want to prove that for

all i e N and t e [0, T], if a1 (t) verifies the optimality conditions, then a1 (t) is the

minimum arrival time at nodej if one departs node r at time t. To prove this, it suffices

to. prove that a, (t) is less than or equal to the arrival time at the end of any path from

node r to nodej. Let p = i l-, - -- -i be an arbitrary path between'r andj.

arrival time atj if one departs node r at time s is:

a (a..q. ((a. ())).

We want to prove that a, (t) is less than or equal to the above quantity. We have:

a2 (t) a, (t)

The

Hence,

a6 (a 2 (t)) a l (a, (0)).

We know from optimality conditions that

a 26 (a 2 (t)) a,, (t),

hence;

a, (t) a 2" (a,, ())
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Repeating the above argument for arcs (i3, 1 4 )... U , I) , we have:

a,( (t) s ai,-, ( ap - - -..(aij (0))).

Thus, any path from r to j must have an arrival time greater than or equal to a1 (t).

Furthermore, since a, (t) is the arrival time of some path from r to j, then a1 (t) is the

minimum arrival time atj if one departs node r at time t.

We now present an algorithm for the minimum time dynamic shortest paths problem that

uses the above developments. This algorithm is a dynamic adaptation of the well-known

Bellman-Ford algorithm for static shortest paths. The static algorithm operates by

determining, at the kth iteration, the shortest paths from some source to all nodes among

paths which may have no more than k arcs. Initially, k = 1 and only those nodes adjacent

to the source have finite shortest path labels. As the value of k is increased, the number

of nodes reachable from the origin increases, and when k is equal to the maximum

nunber of arcs on a shortest path. the algorithm terminates with an optimal solution. In

the dynamic case the algorithm is similar in structure, however the value of the minimum

time path to a given node changes as a function of the time, as does the path itself.

We denote by a' (t) the minimum arrival time at j on a path from r that contains at

most k arcs. In accordance with the optimality condition given previously in this

section, at every iteration we wish to find the value of a1 (t) = a, (t) that satisfies:

a, (t) < a (o)GB

To find such a value, we first determine the minimum arrival time function for a path

containing exactly k arcs. We then compare this function to the minimum arrival time

function of a path containing fewer than k arcs. At any time t, the lesser of these two

functions is the minimum arrival time function of a path containing at most k arcs.
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We denote by a'>, (t) the arrival time at j on a path with exactly k arcs from the source

to node j via a given predecessor node i. We calculate a_,i (t) according to:

S (t)= -(a -(t)).

We note that the minimum travel time function of a path from node r to nodej containing

exactly k arcs is equal to:

Min (a'->, (o))
irB(.i)

Thus, we compute a (t) for each i e B(J) and select the minimum of these functions.

To do so, we loop over the indices i, making a pair-wise comparison at each loop. To

find the minimum arrival time function for a path containing at most k arcs, we then

compare the resulting function with a-' (t) and select the minimum for all t e T .

While we could execute the main loop of the algorithm until k is equal to the maximum

number of arcs in a shortest path, we recognize that a more efficient termination criterion

may exist. We observe that if, for any value of k, a (t) = a'-'(t) Vj e N, then successive

iterations will never yield a path with lesser arrival time functions. Thus, we can

terminate the algorithm if this condition is ever met. In any case, k (n - 1) as there

always exist optimal paths with at most (n-1) arcs.

We present the algorithm below. For clarity, we have omitted the operation of setting

predecessor node values. In the implementation setting these values is straightforward

and the reader may note that these values may need to be reset each time the "Min"

function is called.

One-To-All Bellman-Ford Algorithm for Continuous-Time Dynamic Networks

Given: G=(N,A)

source node r

Step 0: Initialize

a, (t) = 00 Vt e [0,T],Vwrl = 0,1
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a,' (t) =t Vt e [0,T,V l 0

k =1

a. (t)= a, (t) V e A(r)

Step 1: Compute Shortest Paths

While a (t) a - (t)V] e N, Vt e [0, T.

k=k+1

For every nodej

a, (t) = +C*

For every node i e B(j)

a,,1 (t) < a11 (a', (t)) Vt e [0, T.]

a (t) <- Min(a (t), a,,1 (t)) Vt e [0, T,,]

a (= Min(a (t), a; (t)) Vt e [0, T]

We now consider how the above algorithm relates to that of Orda and Rom (1990, 1991).

Both algorithms iterate over the value of k. At each iteration our algorithm compares a

optimal path of exactly k arcs from r toj (via some node i), to that of an optimal path of

at most k-1 arcs from r to j. In contrast, Orda and Rom's algorithm computes the optimal

paths containing at most k arcs from r toj via all intermediate nodes. It then selects the

shortest of these paths. Bertsikas and Tsitsiklis (1989) contains a discussion of the

difference between these two approaches as it pertains to static networks.

3.1.3 The All-to-One Minimum Travel Time Paths Problem:

Formulation and Solution Algorithm

In order to develop optimality conditions and an algorithm for the all-to-one problem, we

adopt the following notation change. We denote by s the destination node and denote by

a, (t) the arrival time at s if we depart some node i at time t. Additionally, we denote
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by A(i) the set of nodes j such that there exists an arc (i, j)

necessary and sufficient optimality conditions for the all-to-one problem is very similar to

that of the one-to-all problem. This development follows.

If a, (t) is the arrival time on the shortest path from node i to node s , then it must verify

the necessary condition:

a (t) = t Vt e [0, T]

a,(t) = Min(a1 (a (t)))
JC A(O)

i s, Vt e [0,Tj.

If this condition is not verified at any point, then there must exist some path from i to s

via some node k E A(i) such that a (t) > (ak(a, (t))) . If this were true, we could reduce

the travel time from i to s by traveling via k, thus contradicting the optimality of a (t).

Let us now prove that the optimality conditions are sufficient. We want to prove that for

all i e N and t e [0, T], if a, (t) verifies the optimality conditions, then a (t) is the

minimum arrival time at node s if one departs node i at time t. To prove this, it suffices

to prove that ai (t) is less than or equal to the arrival time at the end of any path fromn

node i to node s. Let p = i -+ 12 -+ - -+i be an arbitrary path. The arrival time at s if

one departs node i at time t is:

a (a ' (-2 '- I (t))).

We want to prove that a, (t) is less than or equal to the above quantity. We have:

a ' (t) :! a, (t).-

Hence,

a2 6 (a 2 (t)) a, 13 (a,,, (t)).

We know from optimality conditions that

aY (ai, (t)) >: a,, (t),

hence;

aV3 (t) a'2,, (a', (t)) .
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Repeating the above argument for arcs (ii, ) ... (iq ,- I), we have:

a, (t) :! a 'qlq(a q2, (- --(a 2 (0))).

Thus, any path from i to s must have an arrival time greater than or equal to a, (t).

Furthermore, since a,(t) is the arrival time of some path from i to s, then a, (t) is the

minimum arrival time at s if one departs node i at time t.

Below we present an algorithm for the all-to-one minimum time DSP problem. This

algorithm is similar to that of the one-to-all problem. At each iteration, it considers paths

of at most k arcs. For each origin node i, it first finds the minimum travel time among

paths of exactly k arcs to node s, via any intermediate node,.j. This is done by composing

the arrival time function ofj corresponding to the minimum travel time fromj to s using

exactly k-1 arcs with that of the arc (ij). It then compares the obtained arrival time

functions to the minimum arrival time functions among paths containing at most k-1 arcs.

The minimum of the latter functions is then computed for all values of t in the analysis

period. The value of k is increased at each iteration until it is kiown that subsequent

iterations will never yield paths of lesser travel time.

All-to-One Bellman-Ford Algorithm for Continuous-Time Dynamic Networks

Given: G=(N,,)

destination node s

Step 0: Initialize

a, (t) = 00 Vt e [0, T,Viws,l=0,l

a,(t) = t

k=l

a'(t) = a,(t)

Step 1: Compute Shortest Paths

Wieak (t) # a-'(t) Vi E AT,Vt E T

Vt e [0, T], Vl

Vt e [0, TJ], Vi e B(s)

k = k +1
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For every node i

For every node j e A(i)

a,, (t) < a (a,, (t)) Vt e [0, TI]

a' (t) <- Min(a' (t), ai,(t)) Vt c [0, TJ]

a' (t) = Min(a-'(t), a' (t)) Vt e [0,TJ]

We note that in this algorithm, it is not necessary that the FIFO property be verified. In

the one-to-all formulation FIFO must be verified in order for the optimality condition:

a, (t) = Min(a1 (a, (t)))

to be valid. In the all-to-one algorithm however, the optimality condition:

a,(t) = Allin(/(a!, ((t)))
/EA(i)

does not require FIFO, therefore the all-to-one algorithm does not require the FIFO

property to be verified. If d > 8 >0 , there exist optimal paths of at most + n -1

arcs. Thus the algorithm will terminate after k is at most + n -1. If FIFO is

verified on the network, then there always exist an optimal path that is acyclic and there

will exist a solution with at most (n-1) arcs. Thus, if FIFO is verified the algorithm will

terminate with k equal to at most (n-1).

3.1.4 Implementation of a Dynamic Shortest Paths Algorithm

In this section we describe the implementation of the one-to-all algorithm. While the

applications of this algorithm are more limited than those of the all-to-one algorithm

(since the FIFO property must be verified), the one-to-all algorithm is appropriate for the

DTA problem since, according to the proofs of Chapter 2, we know the network to verify

the FIFO property.
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In order to enable continuous-time implementation of the above algoritlns, we must be

able to perform two operations on piecewise linear functions. Firstly, we must be able to

compose any two non-decreasing piecewise linear functions. Secondly, we must be able

to find the minimum function of two non-decreasing piecewise linear functions. Our

implementation uses subroutines to perform each of these operations. Details of each

these subroutines are given in Appendix B.

To ensure that the above subroutines will terminate in a finite number of iterations, we

refer tb Lemmas 2.1-2.7 of Chabini and Yadappanavar (2000). These lemmas specify the

domain and range of the resulting functions and prove that the resulting functions are

piecewise linear. Furthermore, they provide a finite bound on the number of linear pieces

of the resulting functions.

In particular, Chabini and Yadappanavar (2000) proves that if f(t) and g(t) are non-

decreasing piecewise linear functions, then the number of linear pieces of h(t) = f(g(t))

is bounded from above by the sum of the number of linear pieces in f(t) and g(t).

Chabini and Yadappanavar (2000) also illustrates that the number of linear pieces of

h(t)= Min(f(t), g(t)) is bounded by twice the sum of the number of linear pieces in

f(t) and g(t). An important result however is that Lemma 3.3 of Chabini and

Yadappanavar (2000) proves that the number of linear pieces of each arrival time

function is less than or equal to twice the total number of linear pieces in all arc travel

time functions.

The one-to-all algorithm was implemented in Java and tested on a Dell workstation

running RedHat Linux 6.2 with a Pentium III 933MHz processor and 256MB RAM. The

algorithm was tested on the sample network presented in Chapter 2 using output data

from the DNLP algorithm. The algorithm yields a piecewise-linear, time-dependent

minimum time path to each destination node. Since the main objective of this thesis is

not the development of efficient DSP algorithms but rather the implementation of a DTA

algorithm, the all-to-one algorithm has not yet been implemented. It is, however
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anticipated that this implementation will be relatively straightforward for FIFO networks

as we already implemented the functional operations needed for its implementation.

Figure 10 shows partial results of our shortest path algorithm for some set of arc travel

time functions found on iteration 8 of the DTA algorithm. The graph shows the shortest

path between nodes 1 and 9 computed by the algorithm. For comparison, the path travel

time on all paths between nodes 1 and 9 of the example network given in Figure 5 are

also shown. The reader may note that the shortest path travel time never exceeds the path

travel time on any of the paths. At each instant in time, the shortest path travel time is

equal to the minimum travel time of all the paths. Consider, for example, the time

interval defined by approximately [1.6, 2.3]. On this interval, the travel time on Path 1 is

equal to the shortest path travel time and the travel times of other paths are greater. The

graph illustrates that our implementation is correct and that over a given time period, the

travel time on the shortest path changes as does the path itself

16 -

14 -

12

1! - -- Path 4----- Path 2
- - Path43

10 Path 5
-7-o. Path 6

Shortest Path

2 4
time

Figure 10: Results of Shortest Paths

85



3.2 A DTA Solution Algorithm

In Chapter 2 and Section 3.1 we have implemented solution algorithms for the two main

sub-problems of the Dynamic Traffic Assignment Problem. The DNLP algorithm

presented in Chapter 2 enables us to calculate time-dependent arc travel times from time-

dependent path flow rate functions. The Dynamic Shortest Paths algorithms presented in

Section 3.1 enable us to use these arc travel time functions to obtain time-dependent

minimum time paths.

In this section we describe the tasks that must be completed by a DTA algorithm to

obtain a DTA solution. We also discuss how each step may be implemented for the case

of the continuous-time problem with stepwise O-D demand functions and affine arc

performance functions. Finally, we present a DTA algorithm and discuss the results

obtained from its implementation.

The first task of the DTA algorithm is to manage calls to the subroutines for the DNLP

and Dynamic Shortest Paths subproblems. This includes using these subroutines to

generate an initial assignment, and later calling the subroutines for subsequent, revised

sets of path flows. In our implementation we generate an initial set of path flows using a

static network in which the network is empty and arc travel times are equal to the

constant term of the arc performance function. We use this network to determine shortest

paths, then perform an deterministic, user-optimum assignment of our time-dependent 0-

D flows along these paths. In subsequent iterations, the DTA algorithm calls the DNLP

subroutine for a given set of path flows. It then uses the output of this subroutine as input

to the Dynamic Shortest Paths subroutine.

Another task of the DTA algorithm is to load flows along shortest paths. In our

implementation, this is accomplished by iterating over the shortest paths for each O-D

pair. For a given O-D pair, the shortest path varies throughout the analysis period. For

some path p which is a shortest path between some O-D pair (r, s) on interval [a, b), we

assign the O-D flow during [a, b) to p. Performing this assignment for all O-D pairs and
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for all time intervals yields a set of path flows gj(t). This set of path flows is then

averaged with that of the previous iteration.

A third task of the DTA algorithm is to compare path flows yielded in successive

iterations. If two sets of path flows are sufficiently similar, we conclude that a solution to

the DTA problem has been found and terminate the DTA algorithm. If not, we perform

another iteration of the DTA algorithm. In order to compare two successive iterations of

the DTA algorithm, we determine the absolute value of the area between path flow rate

functions for some path p yielded by successive DTA iterations,

Y( ( f' '(t) -f1'(t)j)dt) s 6
pP' 7'

If the value of this area is below some threshold, e for all paths p, we conclude that the

solutions are sufficiently similar.

If successive assignments are not sufficiently similar, we wish to generate a new

assignment. In our implementation, this is accomplished by using the Method of

Successive Averages to average path flows. These averaged path flows can then be used

by the DNLP and Dynamic Shortest paths subroutines to generate a new revised set of

path flows. If we denote by f,'(t) the path flow at the kth iteration, and g, (t) the path

flow obtained by loading along shortest paths, averaged path flow is:

f'l(t= g,(t) k-l f,(t)k k

where f''(t) is the flow assigned in the current iteration.

3.2.1 The DTA Algorithm

The following is the DTA algorithm. Given a network with time-dependent origin-

destination travel demands, we first execute a static shortest paths algorithm and assign

these demands to the static shortest paths . This assignment provides the basis for our
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first execution of the DNLP algorithm, which calculates time-dependent arc travel times

from path flows. We then use a dynamic shortest paths algorithm and load flows on

these shortest paths. We average this solution with our initial solution to obtain a revised

set of path flows, which is denoted in the algorithm below by Steps 2 through 5. Step 5

illustrates how the flow averaging is performed and gives the algorithm's termination

criterion.

The DTA Algorithm

Step 0: Compute Static Shortest Paths

Step 1: Assign d-D demands to shortest paths -+f,' (t)

Step 2: Compute piecewise linear arc travel times using DNLP algorithm

Step 3: For all origins, compute dynamic shortest paths

Step 4: Load on shortest paths -gk (t)

Step 5: (Method of Successive Averages)

g +() k- 1

k k

'f ( Z( f(I'(t) -f''())dt) e), STOP
PE-/' 7'

k=k+].:

Return to Step 2;

3.2.2 Some DTA Numerical Results

The above DTA algorithm was implemented in Java, and tested on the sample network

presented in Chapter 2. This implementation used the previously developed code for the

DNLP and DSP algorithms as subroutines. The DTA implementation then managed the

calls to these subroutines and assigned flows to shortest paths.

The assignment of O-D flows to shortest paths was performed by looping over the

breakpoints of the shortest path travel time function for each O-D pair. For each
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breakpoint, the relevant shortest path was determined using the records of time-dependent

predecessor nodes. Flows were then assigned to this shortest path according to the

original O-D demand function. The resulting path entrance flow rate function is denoted

by g' (t) in the algorithm above. Figures 11-16 show assignments of the flow between

nodes 1 and 9 on paths 1 through 6 in iteration 8 of the algorithm. Each figure shows the

travel time on a given path, compared with the shortest path travel time between the

origin and destination nodes. In areas in which the path travel time is equal to the

shortest path travel time, an assignment of O-D flow to the given path is shown. The

reader may note that the sum of these path flow rate functions is equal to the total O-D

flow rate function shown in Figure 17.

- - - - Shortest Path
- Path 1

Path I Flow Rate
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Figure 11: Loading on Shortest Paths
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Figure 12: Loading on Shortest Paths
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Figure 13: Loading on Shortest Paths
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Figure 14: Loading on Shortest Paths
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Figure 15: Loading on Shortest Paths
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Figure 16: Loading on Shortest Paths
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Figure 17: O-D Demand on Between Nodes 1 and 9

The above path flow rate functions were then averaged with the path flow rate function of

the previous iteration according to Step 5 of the DTA algorithm to obtain the value of the
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path flow rate function for the current iteration. Figure 18 and 19 and show the results of

this averaging for path 4 for the first 9 iterations. We note that in the initial assignment,

all flow between nodes 1 and 9 is carried on the static shortest path, which is path 4.

Thus, path 4's entrance flow rate function is equal to the O-D demand function. In

subsequent iterations, the flow is distributed among the other paths between nodes 1 and

9 and the entrance flow rate on path 4 is decreased.
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Figure 18: Path 3 Entrance Flow Rate
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From Figures 18 and 19 we note that the trend in the difference between the entrance

flow rate functions in subsequent iterations is decreasing. While it is not proven that the

flows obtained using the MSA method converge to a solution, we can illustrate that in

general this difference decreases. Figure 20 shows the value of the difference between

successive assignments on all paths in the network as a function of the value of k. The

dependent variable is calculated by determining the absolute value of the difference

between two assignments for each path and for all times in the analysis period according

to:

( f(f (t)-f, (t)jdt)=
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Figure 20: Difference Between Successive Assignments as a Function of the Iteration Number

From Figure 18 and Figure 19 we can also draw some conclusions about the formation of

breakpoints in the DTA. We note that the original O-D demand function contains only

five breakpoints, but that by iteration 9, the number of breakpoints in Path 4's entrance

flow rate function is much more numerous. We note that this is a result of both the

formation of breakpoints in the DNLP algorithm, and the formation of breakpoints in the

DSP algorithm. Furthermore, we note that the averaging operation performed in the

DTA algorithm provides further opportunities to increase the number of breakpoints in

the path entrance flow rate functions. Given this, it should not be surprising that the DTA

algorithm ran more slowly as the iteration index increases. While a detailed study of the

empirical run times of any of the algorithms contained in this thesis has not yet been

made, it is reasonable to conjecture that the major limitation of these continuous-time

methods would be the relatively high value of the number of breakpoints created as

iterations increase.
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3.3 Conclusions

To conclude this chapter, we note that we have provided formulations and

implementations of algorithms which permit solution of the Dynamic Traffic Assignment

Problem in continuous time. Results of these algorithms indicate their implementations

to be correct. We note that for a small example network, the difference between

successive iterations of the DTA algorithm seems to be decreasing, but that further

iterations of the algorithm will have increasingly long run-times due to the increasing

number of breakpoints in the network's functions. Further discussion of this topic is

given in the concluding chapter.
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CHAPTER 4

CONCLUSIONS AND FURTHER DIRECTIONS OF

RESEARCH

The Dynamic Traffic Assignment problem has applications in various transportation

contexts, from planning to ITS. In each context the requirements of the DTA model may

differ: for some applications the run-time of the implemented model may be critical,

while for others the accuracy of the solution may be more important. It is thus important

to explore various DTA solutions and establish their theoretical and empirical properties.

While various discrete-time DTA models exist in the literature, we have presented a

continuous-time model. Recognizing the computational challenges of implementing

continuous-time algorithms, we have considered a particular class of functions for which

the theoretical properties yield a relatively simple solution. By exploiting these

properties, we have developed an exact, continuous-time Dynamic Network Loading

algorithm. To complement this algorithm, we have also presented a continuous-time,

dynamic extension of an existing static shortest paths algorithm. Finally, we have

presented an MSA-based DTA algorithm which uses the above two algorithms to yield a

DTA solution.

Each of these algorithms was implemented and tested on a sample network. This testing

allowed us to verify that the solutions given by each algorithm are correct. Further

testing of these algorithms should be performed on larger networks and should focus on
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determining the run-time of the algorithms on networks of various sizes and with various

properties. These empirically-determined run-times should then be compared to those of

discrete-time algorithms to determine the computational performance of the algorithms.

The strongest point of these algorithms is that they yield an exact solution, unlike

discrete-time methods which approximate functions over time. Thus, in contexts in

which solution accuracy is more critical than run-time, this continuous-time model could

prove more promising than existing methods. In particular, the algorithm may be

effective for benchmarking other DTA algorithms. To do this, existing discrete-time

algorithms should be applied to the DTA model of this thesis with stepwise O-D flow

rate functions, affine arc performance functions and a deterministic, user-optimum users'

behavior model. This will then yield an approximate solution to a model for which we

have obtained an exact solution and the differences between these solutions should be

analyzed.

In the absence of such testing, we note that our theoretical results indicate that the

creation of breakpoints in both of the two sub-algorithms presented may be problematic

from an efficiency standpoint. We have provided a fairly loose bound on the number of

breakpoints created in the DNLP algorithm and a tighter bound on the number of

breakpoints created in the DSP algorithm. We have not yet provided a bound on the

number of breakpoints created in the DTA algorithm, but have noted the potential for the

number of breakpoints to increase with each execution of these algorithm. Thus, we have

concluded that the number of breakpoints in each the network's various functions may

increase with each iteration of the DTA algorithm. For this reason, we feel that it is

unlikely that this continuous-time model will be practical in real-time contexts. Further

research should be undertaken to attempt to tighten the bounds on the number of

breakpoints created by each algorithm.

An area of further work that may provide greater generality to our model is to permit

input functions to take on additional functional forms. In particular, we believe it is

possible to formulate and implement an exact solution to the continuous-time DNLP for
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which arc performance functions are piecewise linear. If such a model were developed,

the transportation modeler would have greater flexibility in how to model the effect of

congestion on travel time.

Another area of future work is to test the algorithm's empirical performance on networks

in which the dynamics of the network vary greatly from arc to arc or from time interval to

time interval. In networks in which most arcs can be assumed to be static for most time

intervals, our continuous-time algorithm will result in a solution that contains few

breakpoints and may perform well, whereas discrete-time approaches would be slowed

by performing many computations on static arcs. Such networks are important as tfiey

reflect the nature of many real world transportation networks.
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APPENDIX A - SAMPLE INPUT AND OUTPUT DATA

FILES

The Dynamic Network Loading algorithm requires two input data files. The first

contains the specification of the O-D pairs, the arcs and the paths; we call this the

network data file. The second is a path flow data file and contains the path entrance flow

rate functions. The output file of the Dynamic Network Loading algorithm is the arc exit

time data file, which is used as an inpuit to the Dynamic Shortest Paths algorithm. The

details of each file are given below.

Network Data File

An example of the network data file are shown below. The first section of the file

specifies the number of O-D pairs, an index for each given O-D pair, its origin node,

destination node and the number of paths between the two nodes. The total number of

paths specified thus far is also contained at the end of each line.

In the second section of the file the details of each arc are given. This includes the total

number of arcs and, for each arc its index, origin, destination, and the intercept and slope

of its travel time function.

The third section of the network data file specifies the paths in the network using the

subpath data structure described in Chapter 2 of this thesis. The first line of this section

specifies the total number of subpaths. Each subsequent line contains the number of the

next arc, next subpath and an index for the given subpath.
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of OD pairs#

origin, destination,
9 6 0

#number
7
#index,
0 1
1 1
2 5
3 1
4 3
5 7
6 1

2
2
1
1
1
1

number of paths, count#

6
8
10
11
12
13

#number of arcs#

origin, destin
3 .235
6 .443
1 .269
4 .443
4 .408
7 .408
7 .443
2 .408
5 .443
8 .408
Z; .443
8 .408

of subpaths#

ation,
1.88
1.80
1.39
1.6
1.32
1.92
1.50
1.62
1.80
2.12
2. 00
2.32

slope, intercept#

next subpath, index#
0
1
2

4

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
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5
9
3
9
9
7

12
#index,
0 0
1 3
2 0
3 1
4 3
5 6
6 4
7 1
8 4
9 7
10 2
l21 5
Tnumber

26
# this
0
0
0
2
2

4-

2
6
8
2
10
5
0
1
4
4
3
3
7
9
1
11
7
4
3

arc,
14
15
16
17I

1c

24
25
20
22
23
22
20
21
12
8
9
8
9
11
-1
-1

-1
-1
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Path Flow Data File

The first line of the path flow data file contains the number of paths in the network and

the number of steps in each path. Data for each path are given in rows. Odd-numbered

columns give the time of a breakpoint in the path's entrance flow rate function; even-

numbered columns give the function's value at that breakpoint. Path flow rate functions

for the first five paths are shown below.

#number of breakpoints, number of paths#
6 14
#time, value, time, value, time, value, time, value ...
0 0.225 0 0.3375 0 0.405 0 0C. 45 0 0.225 ...
1 0.525 1 0.7875 1 0.945 1 1.05 1 0.525 ...
2 0.625 2 0.9375 2 1.125 2 1.25 2 0.625 ...

0.525 3 0.7875 3 0.945 3 1.05 3 0.525 ...
4 0.225 4 0.3375 4 0.405 4 0.45 4 0.225 ...
5 0 5 0 5 0 5 0 5 0 ...

Arc Exit Time File

The output of the Dynamic Network Loading algorithm is an arc exit time file, which

specifies the piecewise linear arc exit time functions. This file is in a form similar to that

of the path flow data file, but instead of specifying the function's value at each

breakpoint, the file specifies its slope. The dynamic shortest paths algorithm can then

construct each arc's exit time function, given the following two properties of the exit time

function. Firstly, we know that at the first breakpoint of an arc's exit time function, the

value of the function is equal to the intercept of the are performance function. This can

be obtained from the network data file. Secondly, we know that the arc exit time

functions are continuous. Thus we can obtain the function's value at any time in the

analysis period using basic algebra.
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The first line of the arc exit time file gives the number of arcs in the network.

Subsequent lines give the exit time function for each arc. Odd-numbered columns

specify the time at which a given breakpoint occurs. Even-numbered columns give the

function's slope to the right of the breakpoint. A portion of this file is shown below.

#number of arcs, number of breakpoints#
12 525
#time, value, time,' value...
0.0 1.5181749999999998 0.0 1.0 ...
1.0 2.2090749999999995 1.8 0.9999999999999972 ...
2.0 2.098060592899369 3.398174999999999 1.4737673007933205 ...
3.0 1.8677605928993675 3.6 1.473767300793323 ...
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APPENDIX B - METHODS FOR PIECEWISE

FUNCTIONS

The algorithms presented in this thesis have relied on the properties of piecewise

functions to obtain exact, continuous time solutions to the Dynamic Network Loading,

Dynamic Shortest Path and Dynamic Traffic Assignment Problems. In this appendix we

explore in further detail the methods that operate on piecewise functions and are used

repeatedly in the execution of these algorithms. They are:

. a method to integrate a stepwise function;

" a method to sum two stepwise linear functions;

. a method to construct the inverse of a strictly increasing, piecewise linear

function;

* a method to take the minimum of two piecewise linear functions; and

. a method to compose two piecewise linear functions.

Below, we discuss each of these methods and present pseudocode for its implementation.

Each method assumes that stepwise functions are represented as Vx e [a, b)

f(x) = lim f(x) .

Integral of a Stepwise Function

Since a stepwise function can be though of as sequence of rectangular blocks, it is

straightforward to obtain its exact integral. To do so, we iterate over the breakpoints of

the function, adding the area under the curve and between the previous and current

breakpoint. Consider g(x) to be a stepwise function and G to be the set of breakpoints
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in g(x). Each breakpoint is characterized by its value of x and we denote by min(G)

the breakpoint of G with the least value of x. Our method is then:

sum = 0;

to = min(G);

G=G\{t};

while G 0

t = min(G);

sum = sum + (t - to) x g(to)

to =t

end while

return sum;

Value of the Inverse of Strictly Increasing Piecewise Linear

Functions

We first note that our DNLP algorithm does not require that we determine the inverse of

a piecewise function at all points in the interval, but rather that we find its value at a

single point. Thus, for ease and efficiency, we present a method that returns the value of

the inverse function that corresponds to a particular value of the original function. We

denote the original function by g(x) and denote by G the set of breakpoints of g(x),

each of which is characterized by its value of x. Our method also assumes that we know

the slope of g(x), g'(x) at each breakpoint (that is, the slope of g(x) to the right of x).

We define the method "min" to return the time at which the next breakpoint occurs. The

method below returns the value of g' (.) at some point, t.

x, = min(G) ;

while g(x) t
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if g(x,) = t then return x and stop;

G =G \{x,}

xo = x,

x, min(G);

end while;

Ay = t - g(x,);

slope = g'(x,);

A slope'

return x0 + Ax;

We note that the above method can operate on strictly increasing functions only. The

inverse of a function with a slope of zero at any time within the interval of interest is not

well-defined and is therefore not considered here.

Sum of Two Stepwise Functions

This method is of use in the DNLP algorithm in which it is used to calculate the arc

entrance flow rate function from arc-path entrance flow rate functions. We consider two

stepwise functions f(x) and g(x), each having a set of breakpoints, F and G . These

sets contain the x coordinates of the breakpoints in F and G . Our method returns a third

stepwise function, a(x) with a set of breakpoints, A. We note that a breakpoint in either

f(x) or g(x) corresponds to a breakpoint in a(x), thus our method iterates over the

breakpoints of the input functions to determine the breakpoints of the output function. To

do so, the method keeps a record of the current breakpoint of each of the functions, f,
and g,. It also keeps a record of the smaller of these two breakpoints, x1 . At each

iteration, the method uses the values of the functions at these breakpoints to calculate the
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slope and value of the output function. The method continues until it reaches some

specified endpoint, end. The method follows.

f, = min(F), g = min(G);

F =F\{f 1}, G=G\{g};

y, =f(f1 )+g(g,);

x1 = min(f , g,)

while(x, < end)

A = Au{x,}, a(x,) =y,, a'(x,) =slope;

if(x, fl )then f, = min(F), F = F \ {fx}, x2 = min(g, F, G);

if(x < g, )then g, = min(G), G = G \ {g }, x, = min(f, F, G);

x1 = min(f , g,)

y, = f(xI)+ g(x,);

if(x, = x 2 ), x 2 = min(F, G)

return A, a, a';

We assume that both functions are defined for the same time interval. The above method

returns the set of breakpoints in the function a(x), as well as the functions value and

slope at these points. These data completely specify the function at any time in the

analysis period.

Minimum of Two Piecewise Linear Functions

In the continuous dynamic shortest paths problem, it necessary to determine the shortest

path from a given node for all departure times. To do so, we make multiple pair wise

comparisons of travel time functions, generating the minimum function for each pair.

When these functions are piecewise linear, it is possible to compute this minimum

function by iterating over the function's breakpoints. The following method operates in a
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manner similar to the method to sum piecewise functions. We note that in finding the

minimum function of two piecewise linear functions, it is possible to fully specify the

function by finding its value at, and slope to the right of its breakpoints. These

breakpoints are located at the breakpoints of the input functions, or at additional

breakpoints created when the input functions intersect.

We again consider two piecewise linear functions f(x) and g(x), each having a set of

breakpoints, F and G. We denote by M the set of breakpoints of the minimum

function m(x). At each iteration we determine whether the next breakpoint of m(x) will

be due to a breakpoint in an input function or due to the intersection of the two input

functions. This is done by computing the value of x at which the functions intersect.

We call this value cross. We assume that both functions are defined for the same time

interval. The method follows.

fl = min(F), g, = min(G);

x1 = min(f,, g,);

if(xI = f,)thenx, =rmin(g1,F,G);

else x, = min(f, F, G);

while(x, < end)

M =MU{x, 1};

n(x,) = min(f(x,), g(x,));

if(f(x,)= g(x,), then, m'(x,)= min(f'(x), g'(x 2 ));

else if(m(xi ) = f(x, ))then, m'(x, ) = f'(x, );

else if(m(x,) = g(x, ))then, m'(x,) = g'(x,);

cross = (g(, (,-
f(f (x,) - g' (x,))'

if (cross > 0 and (x, + cross) < x 2 )

x X + cross;

else x, = x2;
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if(x I> fl) then f, = min(F), F = F - fl, x 2 = min(g , F, G)

if(xi > g,)then g, = min(G), G = G - gi, x2 = min(f,, F, G)

if(x1 = x2 ), x2 = min(F, G);

return M, m, mt ';

Composition of Increasing Piecewise Linear Functions

According to the statement of the dynamic shortest paths algorithm it is necessary to

obtain the quantity a4 (a, (1)) where a,, (t) and a, (t) are piecewise linear functions. To

do so, we develop a method that composes two piecewise linear functions, f(-) and g(.)

to obtain g(f(-)). We denote by c(.) the resulting piecewise linear function, and by

F, G and C the sets of breakpoints of the functions f(), g(-) and c(.), respectively.

Our algorithm proceeds by moving forward on the x-axis of f(-). At each loop it selects

the next breakpoint of either input function and updates the slope and value of c(.)

accordingly. The location of each breakpoint in the composed function corresponds to

either the location of a breakpoint in the function f(.), or to the projection of a

breakpoint of function g(-) on the x-axis of function f(-). Slope values for the

composed function are calculated by multiplying the appropriate values of the slopes of

f () and g(.). Since we know the function c(.) to be continuous, we can calculate the

value of c(.) by basic algebra.

C =0;

time1 = min(F)

slope, = f'(time,);

valuef = f(iime, );

F = F \{time,} ;

timeg = min(G) s.t.timeg > value,;
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slopeg = g'(value, ) x f'(time.,)

valueg = g(value, );

C =C u{time,} ;

c'(time, ) = slopeg;

c(time, ) = valueg;

while (timef <end)

if (time, < f - (timeg))

slopeg = g'(value,. ) x f'(time,);

valueg = g(value.,);

C = C u {lime, };

C'(times ) = slopeg;

c(time,) = value,;

time. = min(F) ;

slope, = '(time,);

value, = f (time, )

F = F \ {time, } ;

else

slope, = g'(time) xf'(f~'(timeg));

ctime = max(C);

cslope = c'(ctime);

cvalue = c(ctime);

value, = (f' (time.) - ctime) x cslope + cvalue;

C =C u{f '(time,)} ;

c'(f -' (time, )) = slope,;

c(f (time,)) =valueg
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timeg = min(G) s.t.timeg > timeg

return c ;
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APPENDIX C - SELECTION OF ARC PERFORMANCE

FUNCTIONS

In order to compare the results of our DNLP implementation with those of previous

implementations, we wished to select arc performance functions which approximate

those used in examples in the literature. Xu et al. (1999) use arc performance functions

of the form:

D(, (Xl ()) = a, + a2X, (t) + a ()

where a,,, aa2, and a,3 are the parameters of each arc. Since our algorithm requires the

function D,, (X, (t)) to be affine, we wish to determine a linear function of a,, , a, 2 , and

aa3 that approximates the above function. The values of a a,, a,2 and a,3 used by Xu et

al. are given in the following table.

Arc a a,2  a,

1 2.0 0.2 0.0138889
2 2.0 0.2 0.038889
3 1.5 0.2 0.011111
4 1.8 0.2 0.038889
5 1.5 0.2 0.033333
6 2.1 0.2 0.033333
7 1.7 0.2 0.038889
8 1.8 0.2 0.033333
9 2.0 0.2 0.038889
10 2.3 0.2 0.033333
11 2.2 0.2 0.038889
12 2.5 0.2 0.033333
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As it was observed that the value of total flow on each arc most often falls within the

interval (0,5) (Xu et al. 1999), we are most concerned with the goodness of our

approximation for values within this interval. Since 2.5 is the middle value of this

interval, we estimated the value of the term aX 2 (t) to be equal to:

a,3X, (t) x 2.5.

This yielded the affine function:

D(, (Xt, (t)) = a, + (a, 2 + 2.5a, 3 )X, (t).

Graphing the above function and comparing it with the original function showed that in

general it slightly overestimated the value of D,, (X, (t)). To compensate for this, we

decreased the intercept of the function slightly, subtracting ao . This yielded the

function:

D, (X, (t)) = (au, - a3') + (an,2 + 2.5a,3 )X,, (t).

This function was found to be a good approximation to the original arc performance

function of each arc. The following graphs compare the value of the above affine

function with that of the original function for values of X, (t) within the interval (0,5).

For brevity, only the functions of several arcs are shown: the functions of the other arcs

are similar.
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Figure 21: Linear Approximation of the Performance Function of Arc I
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Figure 22: Linear Approximation of the Performance Function of Arc 2
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Arc 3
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Figure 23: Linear Approximation of the Performance Function of Arc 3

The slope and intercept values resulting from the linear approximation of the original

functions are shown in the table below. These values specify the arc performance

functions used in our example.

Table 5: Parameters of Affine Arc Performance Functions

Arc Intercept Slope
1 1.88 0.235
2 1.80 0.443
3 1.39 0.269
4 1.60 0.443
5 1.32 0.408
6 1.92 0.408
7 1.50 0.443
8 1.62 0.408
9 1.80 0.443
10 2.12 0.408
11 2.00 0.443
12 2.32 0.408

118



APPENDIX D - DNLP RESULTS

Here we give the arc total flow functions resulting from testing the DNLP algorithm on

our smalf example described in Chapter 2. These figures are included to assist the reader

in viewing the DNLP results for a particular arc.
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