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ABSTRACT
This thesis presents a model for dehydration and moisture flow in concrete at temperatures below
the critical point of water. The model is developed from Mainguy's isothermal model, which is
presented in this work along with two other models as part of a literature review. Concrete is con-
sidered a porous material composed of an undeformable skeleton and three fluid phases (liquid,
vapor and dry air) saturating the pore space. The water vapor and dry air form an ideal gas mix-
ture called wet air. The model accounts for the mass conservation of water (liquid and vapor),
mass conservation of dry air, entropy balance and liquid-vapor balance. State equations and con-
duction laws are used as required. In particular, a dehydration law is introduced as a linear rela-
tion between the degree of dehydration and the temperature rise. The set of equations is solved in
cylindrical coordinates using the finite volume method with time discretization. The results indi-
cate a slight increase in liquid water saturation where dehydration took place and a decrease in
capillary pressure. However, due to the phase distinction, the model in its present form is
restricted to a temperature range below the critical point of water. Beyond this point, conventional
liquids do not exist and the model needs to be refined.
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Introduction 9

Introduction

Recent fires in European tunnels have highlighted the vulnerability of concrete structures
subjected to high temperatures. A typical failure pattern observed under this conditions is known
as 'thermal spalling' (a brittle failure with most fracture planes parallel to the heated surface [1]),
and there are several hypotheses about the underlying mechanisms that lead to this type of failure.
Some hypotheses include pressure buildup due to the low permeability of concrete and the
drained conditions at the heated surface [2], and loss of material strength (thermal decohesion)
and of elastic stiffness (thermal damage) [1].

High temperatures do not only affect tunnels in a fire situation but can also affect struc-
tures such as nuclear reactors, in which case a failure of the structure would be catastrophic.
Therefore, it is important to predict a concrete structure's performance under high temperatures in
order to be able to design it properly and ensure the structure's integrity under such conditions.

Even though there is no agreement on the physical origin of thermal spalling, there is
some basic knowledge of the multiple phenomena involved in the process. It starts with a temper-
ature above normal conditions which will affect not only the moisture content of the structure, but
also the mechanical properties of it. As it can be seen in Figure 3 these two processes are not
independent of each other because there is a coupling caused by the dehydration. However, in this
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work this coupling will not be considered as a first approach, and we bear in mind its importance

in the overall process.

Figure 1: Thermal spalling effects on The Chunnel tunnel after the Nov. 1996 fire.

(photo courtesy of The i-Center for Infrastructure Science and Technology, MIT)

Chalk Substratum

e=0.45 m

Intrados

R = 4m

Figure 2: Typical damage pattern in reinforced concrete tunnel rings observed after The Chunnel fire [3]
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Figure 3: Overview

Moisture content is defined as the evaporable water, in liquid or vapor form, that is present
in the material, including the bound water. Bound water results from the hydration process in
concrete and is chemically or physically bound to the skeleton. By contrast, the free water fills
the pore space of the structure and is free to evaporate or flow through the porous medium. Bound
water becomes free water in the process of dehydration. Therefore, the amount of pore water is
reduced by its evaporization and increased by dehydration of the skeleton.

This thesis focuses on the moisture flux and the effects of dehydration on the pore water
content and on pore pressures. To this end, the first chapter of this work will focus on a literature
review and a comparison of different models. The intent is to provide some overview of the dif-
ferent approaches and interpretations of these phenomena. Also, a comparison of these different
approaches gives some insight into the various parameters that govern the processes above.

The second chapter is devoted to the development of a new model for the moisture flow in
concrete that will include the dehydration of the concrete matrix and will be useful under non-iso-
thermal conditions. The model is an extension of Mainguy's isothermal model [4] to non-isother-
mal situations while including dehydration.

Focus of thesis

I I

.nt |I
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12 Thesis

The third chapter develops the numerical method to solve the model's system of equa-
tions. The method used is a finite volume scheme in cylindrical coordinates with time discretiza-
tion. This facilitates its use in geometries such as tunnels. The numerical model is validated for
isothermal conditions and applied considering a temperature rise and dehydration effects in a con-
crete structure. The results allow us to evaluate the effects of dehydration on pore pressure build
up and saturation.

Finally, conclusions are drawn regarding the results, procedure and limitations of the
model.
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Chapter I

Literature Review

This chapter provides a brief summary and comparison of three different models for the
moisture transfer in concrete:

- Bazant and Thonguthai's model for moisture diffusion and pore pressure [5]
- Mainguy's isothermal model for drying of cement based materials [4]
- Gawin et al's hygro-thermal behavior of concrete at high temperature [6]

The notation used in the articles has been altered from its original version in order to facil-
itate cross referencing and comparison among the models.

The dimensions of all parameters are presented in a length (L), mass (M), time (T),
temperature (0), and moles (Mol) base dimension system.

Chapter I: Literature Review



I. 1 Bazant and Thonguthai's (1978) Model for Moisture
Diffusion and Pore Pressure

Bazant and Thongutahi's (1978) model [5] was one of the first attempts to predict, mathe-
matically, the behavior of concrete exposed to temperatures above 100 C. Of the models pre-
sented in this literature review, this model can be considered to be the most macroscopic one,
because it does not differentiate between water phases (liquid, vapor), and it does not explicitly
refer to the porous nature of concrete.

I. 1 . 1 Governing Equations

The model considers two main variables: the moisture content and the temperature. They
depend only on the gradients of temperature and pressure. Any coupling that could exist between
moisture content and temperature is assumed negligible on the basis of data fits.

The model is based on two conservation laws, related to the free water mass content and
the balance of heat.

Conservation of Mass

The mass conservation equation accounts for water consumed during hydration and water
released during dehydration due to heating. The bound water depends on the amount of hydrated
water before heating (which depends on the degree of hydration). It has a strong influence on the
pore pressure and its release depends on the rate of heating.

The conservation of mass reads as follows:

aw diJ+aWd
= - divJ (1.1)Tat

where,

w = Free water (evaporable, not chemically bound), (L- 3M)
Wd = Mass of chemically bound (hydrate) water released to the pores, (L- 3M)

J= Moisture flux, (L- 2MT- 1)

Equation (1.1) accounts for a correction in the normal conservation of mass due to the
dehydration of the skeleton (loss of bound water, Wd) at high temperatures which adds water to

the pores. The term w represents only the moisture in the pores, and does not distinguish water in
form of vapor or liquid.

Conservation of Heat

The balance of heat in the model is written in the form:

pC -C - -CJVo = -divq (1.2)at a t
where,
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Chapter I: Literature Review

p = Mass density of concrete, (L- 3M)

C = Isobaric heat capacity of concrete, (L 2 T- 2 E- 1)

Ca = Heat of sorption of free water, (L 2 T-2 )

C= Isobaric heat capacity of bulk (liquid) water, (L 2 T- 20-')

Both the mass density and the heat capacity of concrete include the chemically combined

water (bounded water) but exclude the free water (i.e. evaporable). Therefore, p and C refer to
the concrete matrix.

Flux equations

The model analyzes the moisture and heat flux separately. As mentioned before, any cou-
pling is assumed negligible on the basis of data fits.

The fluxes are written in the following form:

J = -a Vp (1.3)
-g

q = -kVO (1.4)

where,

q= Heat flux, (M T- 3)

k= Heat conductivity of concrete, (LMT- 3 e- 1)

0 = Temperature, (0)

J= Moisture flux, (L- 2MT- 1)

a = Permeability of concrete, (LT- 1)

g = Acceleration of gravity, (LT- 2)

p = Pore water pressure, (L-IM T- 2)

To reduce uncertainty introduced by material properties into the state equation of pore
water, constitutive relations between pore pressure, water content, and temperature are intro-
duced. It is assumed that at all times there is a thermodynamic equilibrium between all phases of
the pore water.

These relations are developed for three distinct stages of concrete saturation below the

critical point of wateri:

- Non-saturated concrete
- Saturated concrete
" Saturation transition

The permeability of heated concrete was found to increase by two orders of magnitude for

temperatures exceeding 100 'C. A permeability function is introduced and it illustrates the evo-

1. The critical point of water is where conventional liquids cease to exist. It occurs at a temperature of
approximately 647 K.
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lution of the permeability as well as the transition, which occurs between temperatures of 95
C and 105 'C.

The heat conductivity is assumed to be constant in all computations, but the heat capacity
is not because of its dependence on the amount of heat lost in dehydration and vaporization. The
authors showed that the effects of these two heats are quite small because water is a small portion
of the total concrete mass.

I. 1 . 2 Boundary conditions

There are two types of boundary conditions imposed at the surface of concrete in contact
with the environment. They both assume a linear relation between either flux and the environ-
mental boundary conditions.

The moisture flux is assumed to be linearly dependent on the pressure difference, and the
heat flux is assumed to be linearly dependent on both the temperature and pressure differences.
This coupling of temperature and pressure is because of the loss of heat due to latent heat of mois-
ture vaporization. The boundary conditions read as follows:

n J = Bw(P - Pen) (1.5)

n q = BT(O - Oen) + CvBw(p - Pen) (1.6)

where,

n = Unit outward normal at the surface, [n] = 1

BW = Surface emissivity of water, (L-1 T)

p = Pore pressure just under the surface, (L-1 MT- 2 )

Pen= Water vapor pressure in the environment, (L-1M T- 2)

BT = Surface emissivity of heat, (MT-3&-)

C = Isobaric heat of vaporization of water, (L 2T- 2 )

0 = Temperature at the surface, (G)

Oen = Environmental temperature, (6)

16 Thesis



I . 2 Mainguy's Isothermal Model for Drying of Cement
Based Materials

The next model considered is the isothermal model developed by Mainguy [4] for drying
of cement based materials. This model is the basis for the non-isothermal model with dehydration
effects developed in the next chapter.

I . 2. 1 Porous Material Model

On a macroscopic scale, concrete is a porous material that can be represented as a super-
position of different phases, as sketched in Figure 1.1 (where a homogeneous distribution of
porosity and liquid and gas phases may be assumed). The following partial volumes are consid-
ered:

V= volume occupied by the liquid phase, (L 3)

Vg = volume occupied by the gas phase, (L 3 )

V= volume occupied by the solid phase, (L 3)

V= total volume of the material, (L 3 )

Using the previous definitions we can obtain the following macroscopic quantities:

Pore space of phase i (water, w, gas, g, and solid, s):

Total porosity ([] = 1):

V+

Saturation of phase i ([S] = 1):

Si 0 V V (1.9)

SW+Sg = 1 (1.10)

Water mass content ([w] = 1):

w - = (I.11)mS P S

where,

M= dry mass of material, (M)

P= apparent volumetric mass of the material,(L- 3M)

17Chapter I: Literature Review
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V

VW

Vt

Figure 1.1 Superposition of different phases

Mainguy's model is based on thermodynamics of porous media [7]. The porous medium

is idealized as the superposition of a liquid, a gas and a skeleton. The solid matrix can contain an

occluded porosity. The interesting part of this approach is the expression of any physical quantity

as the sum of three different quantities. The result is the ability to use traditional thermodynamics

for the porous medium.

The following model assumptions are made:

- The skeleton is considered undeformable. This simplifies the model because the

fluid velocities compared to the skeleton become absolute and non-relative.

- The liquid phase, which is also regarded as incompressible, gathers liquid water

present in many ways, and it is likely to evaporate. It is regarded as pure water in spite

of the presence of various ionic species in the interstitial solution (where water is the

main component).
- The gas phase is an ideal mixture of dry air and water vapor, and therefore obeys

the law of perfect gases. The gas pressure is not constant and is not equal to the atmo-

spheric pressure. The overpressures or depressions generated within the medium can

become significant because of the low permeability of the porous material.

- The forces of gravity are small in comparison with the capillary forces, and

therefore are neglected. This assumption is not relevant for the gas phase, and it is par-

ticularly true for the liquid phase with weak saturation. In the case where the satura-

tion is close to unity, the capillary forces are quasi-null; at this point the permeability

to water is at its maximum, and therefore the gravity forces, which are small in com-

parison with the pressures of liquid at strong saturation, can still be neglected.

- The temperature in Mainguy's original model is uniform and constant within the

media. For drying, this assumption of isothermal drying seems accurate because the

strong thermal conductivity, compared to the low permeability of the cement based

materials, ensures that the characteristic time associated with the restoration of the

temperature is much smaller than the characteristic time associated with the transport

of moisture.

Thesis
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I. 2. 2 Governing Equations

The model can be summarized in form of four equations. The equations come from the
conservation of masses (liquid water, water vapor, and dry air) and the liquid-vapor balance of
water (governed by the equality of the Gibbs mass potentials).

Conservation of Mass

The equations for the different water phases are the following:

= -divw - l-*g (1.12)

= -divW,+ l- g (1.13)

ama
a -divwa (1.14)

where,

m di = mass of each component contained in the elementary volume dQ (M)

w = mass flux of each constituents, (L 2MT- 1)

pw -* gdtdi = mass of water that passes from the liquid phase to gas phase in the ele-
mentary volume, dQ ,during time dt. The positive case being evaporation, the
negative one condensation and the equilibrium situation represented as a zero
value.

Using equations (1.7) to (I.11) the following relations can be derived between the mass and
mass flow terms, the total porosity,$, liquid water saturation, S,, and volumetric mass, pi, of
each component:

mW= Op= OSWPW (1.15)

m = OgPV = 0(-SW)pV (1.16)

ma = OgPa = -(-Sw)Pa (1.17)

In addition, the mass flux vectors in (1.12) to (1.14) can be written in the form:

W= 4WPWYW = 0SW (1.18)

!'vw =PgvYv = 0(1 Sw)pvyV (1.19)

-a = OgPaya = -0w)aa (20)

Chapter I: Literature Review 19

(I.20)



The conservation equations are complemented by equations of state for each fluid. The

density of water p, is assumed to be constant, i.e. incompressible or independent of the liquid

pressure p,. The remaining densities are connected to partial pressures pi by the law of perfect

gases:

piMi = ROp (1.21)

where,

pi = volumetric mass of each component, (L- 3M)

R = constant for perfect gases, (LM 2 T- 2 e- 1 Mol) = 8314.41( J kmol-K- 1)

o = temperature, (E)

Mi = molar mass of each constituent, (M Mo1-1)

pi = partial pressure of the constituent, (L- 1 MT-2 )

Also, because dry air and water vapor are assumed to form an ideal mixture, the total gas

pressure pg is the sum of the partial dry air and water vapor pressures.

Pg = Pa + Pv (1.22)

For an ideal mixture the molar fractions of gas, C,, can be defined by ([Ci] = 1):

P-
C 1 - i (1.23)

Pg

The flux terms are further developed into two separate terms: Darcean transport and Fick-
ean transport. This results in the following expressions:

LVTI = pr-k.(S,)grad( pv) (1.24)

M k M(24
i - P -kg(Sw)grad(pg) - dva f (, Sw)grad(L2 (1.25)

- Ma k M f(,S' pa (.6-a Ma -kk (Sw)grad(p) !a~ dy ~ W a)
RO a=- al~g( Sg ad p9 R - va f (0, Sw )grad g(1.26)

where,

k = absolute or intrinsic permeability of the material (L 2)

ml = dynamic viscosity of the corresponding phase, (L-IM T-1)

kri(Sw) = permeability relative to the phase i, which is a function of the liquid water

saturation, ([kri] = 1). The following expressions were used by Mainguy in his

model [4]:

Thesis20



" Permeability relative to liquid phase
1 m_ 2

kr(Sw) = ,[S I I - S (1.27)

- Permeability relative to gas phase 2

_1 2m

kg(Sw) = ,t5 -sj (1.28)

where,
m = material property

dva = factor related to the diffusion coefficient of water vapor in air, Dva

dva = Dva(Pgg O)Pg [dva] = LMT- 3  (1.29)

Patm(O 1.88
Dva(Pg, 0) = 0.217 Pg [Dva] = L2T-1 (1.30)

f($, S) = resistance to diffusion factor. It takes into account the reduction of the

space available to gas to diffuse and the effects of tortuosity, through the form:
4 10

f ($, SO) = $3 ( -S 3 (1.31)

Liquid-Vapor Balance

The liquid-vapor balance equation needs to be integrated and related to a state of refer-
ence, where variables are known (assuming incompressibility of the liquid). The chosen state of
reference is a thermodynamic liquid-vapor balance without capillary action and under atmo-
spheric pressure. The water vapor pressure is assumed to depend on temperature and to be equal
to the saturation vapor pressure for a liquid pressure equal to atmospheric pressure.

The thermodynamic equilibrium is written in the form:

RO
PM Ad(ln(pv)) = d(pw) (1.32)

MV

On the macroscopic scale the capillary pressure is defined as the difference between the
macroscopic pressure of water and gas. In the case of an isotropic medium with an undeformable
matrix, in isothermal evolution and in the absence of hysteresis phenomena, the capillary pressure
is a function of only the liquid water saturation. i.e

Pg -Pw = Pc(Sw) (1.33)

where,

1. Van Genuchten [8] showed that the permeability to water can be estimated by (1.27). Savage and Janssen
[9] showed that this last equation can be applied to materials containing cement.

2. Parker et al. [10] proposed (1.28) as an expression for the relative permeability to gas based on an exten-
sion of the model of Mualem to the non-moistured phase [11].
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-b b
pc(Sw) = a(Swb - 1) (1.34)

with a and b being material properties.

I. 2. 3 Initial Conditions

The gas pressure at the beginning of drying is assumed to be uniform within the material

and equal to the atmospheric pressure, Patm:

Pgo = Patm (1.35)

Providing values for both the relative humidity, hr, and gas pressure has the same effect as impos-

ing pressures for vapor water and dry air within the sample:

Pvo = hrpvs (1.36)

Pao = Pgo Pv, (1.37)

The initial hydrous state represents a thermodynamic balance with the atmospheric pres-
sure. Therefore, the initial water saturation of the samples can be calculated from Kelvin's law:

Pw ln(hr) = -p,(Sv) (1.38)
MV

I . 2 . 4 Boundary Conditions

During drying the conditions imposed at the boundaries are the relative humidity and a
total gas pressure equal to the atmospheric pressure. Similar to the initial conditions, these
boundary conditions have the same effect as imposing pressures for water vapor and dry air:

hr = hb (1.39)

P b = Patm (1.40)

b = b (1.41)

Pab = Pb b (1.42)

The thermodynamic balance also applies at the edge of the material and the liquid water

saturation at the boundary, St , can also be calculated from Kelvin's law (1.38).
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I . 3 Gawin et al.'s Hygro-Thermal Behavior Of Concrete At
High Temperature

High temperatures produce several non-linear phenomena in concrete structures. The
model proposed by Gawin et al. [6] provides a computational analysis of hygro-thermal and
mechanical behavior of concrete structures at high temperatures. Heat and mass transfers are sim-
ulated in a coupled fashion where non-linearities due to high temperatures are accounted for. Iso-
tropic damage effects are taken into account in the model but will not be included in this literature
review. Gawin et al.'s model is also based on the theory of porous media, but applies some differ-
ent assumptions.

I. 3. 1 Introduction

In order to account for the different phenomena that affect concrete at high temperatures,
Gawin et al.'s model considers the following:

- Heat Conduction
- Vapor diffusion
- Liquid water flow (caused by pressure gradients, capillary effects, and adsorbed

water content gradients)
- Latent heat effects due to evaporation and desorption

In order to fully model moisture transport at high temperatures, phase changes and related
thermal effects are included. The authors suggest that a purely diffusive uncoupled model is not
appropriate. At high temperatures, the formulation of the governing equations for heat and mass
transfers must be adapted because the pore structure of concrete and its physical properties
change. These depend on the hydration and aging processes, but are also highly influenced by the
loading and hygro-thermal conditions. For example, at high temperatures the following are
affected:

" Permeability
- Physical properties of fluids filling the pores
- Amount of heat released or adsorbed (hydration or dehydration)

The physical mechanisms behind the liquid and gas transport in the pores relate to gradi-
ents. The capillary water and gas flow are triggered by pressure gradients, adsorbed water surface
diffusion by saturation gradients, and air and vapor diffusion by density gradients.

For the numerical application the authors propose a finite element scheme which allows
simulation of the evolution of

- Temperature
" Moisture content
- Global process kinetics
- Stress and strain behavior

I . 3 . 2 Governing Equations

Concrete is idealized as a multiphase material. The pores of the skeleton are filled by a
liquid and a gas phase. The liquid phase here is composed of bound water (adsorbed) and capil-
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lary water (free and evaporable). The latter appears when the saturation exceeds the solid satura-
tion point SSSP*

Depending on the saturation degree, S, the liquid phase has different origins. Below satu-

ration the liquid phase (1) is the bound water (b). While for the capillary region it is assumed

that only capillary water (w) can move. Then,

S!; SSSP : 1 = b ; Ahphase = Ahadsorp

S > SSSP: 1 = w ; Ahphase = Ahvap

where Ah is the enthalpy of the corresponding process, (L 2 T- 2).

The gas phase is a mixture of dry air (non-condensable) and water vapor (condensable)
and, like in Mainguy's model, the mixture is assumed to behave like an ideal gas.

The mathematical model consists of the following balance equations:

" Conservation of mass for
- solid skeleton
- dry air
- water species (liquid and gas state, taking phase changes into account)

- Energy conservation
- Linear momentum of the multiphase system

Conservation of Mass

The first mass conservation equation is the solid mass conservation equation:

a[(1 - )p]+ V- [(1 - $)psy] = (Amhydr) (1.43)

where,

= total porosity (pore volume / total volume), ([$] = 1)

p, = solid phase density, (L- 3M)

is = velocity of solid phase, (LT-1)

Mhydr = mass source term related to hydration-dehydration, (L- 3MTI)
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The dry air conservation equation accounts not only for mass changes but also for porosity
changes, resulting from the dehydration of concrete, and the displacement of the solid matrix.
The conservation law is given by:

- S)Pga] + (1 S)Pgahydr+ ( - S)Pga (V - U) + V - (Pgag) + V - (Pga Ya= 0

(1.44)

Pga = mass concentration of dry air in gas phase, (L- 3M)

$hydr = part of porosity resulting from dehydration of concrete, ([$] = 1)
a = Biot's constant, ([M] = 1)
u= displacement vector of solid matrix, (L)

v = velocity of gaseous phase, (LT-1)

d
ilga = relative average diffusion velocity of dry air species, (LT- 1)

The water species (liquid - vapor) conservation equation also takes into account porosity
changes from dehydration and displacement of the solid matrix, in addition to the different mass
terms:

S[(G - S)Pgw]+ (I - S)pw ghydr + a(l -S)p (V - U) + V - (p v )=) ( --

a --(SPW) -SPW ahd - aSpW (V -U)-V

+ V - (Pga w)

[ PWE1 ] - (Amhydr)

(1.45)

where,

Pgw = mass concentration of water vapor in gas phase, (L- 3M)

v = relative average diffusion velocity of water vapor species, (LT- 1)gw

-j= velocity of liquid phase, (LT-1)

$a [(1

where,
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The volume-averaged velocities of capillary water and gaseous phase relative to the solid
phase are obtained by using Darcy's law as a constitutive equation:

kkri
v = ~ (VPg -VPc - wb) (1.46)

TIw

vg = -~ (VPg) (1.47)

where,

k = intrinsic permeability tensor, (L 2 )

krg, krI = relative permeabilities of the gaseous and liquid phases, ([ks] = 1)

TI g, I = dynamic viscosity of the gas and liquid phases, (L-IMT-1)

For the bound water flow, the following generalized constitutive law is applied

vb -DbVSb (1.48)

where,

Db = b(Sb) = water bound water diffusion tensor, (L 2 T-1)

Sb = degree of saturation with adsorbed water, given by ([Sb= 1

= { S for S SSSP (149)

SSSp for S > Sssp

According to adsorption theory, Sb depends upon the partial vapor pressure (or the rela-

tive humidity of the moist air) or the capillary pressure, p,:

(1.50)Sb = Sb(Pgw) = Sb(Pc)
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For the description of the diffusion process of the binary gas species mixture (dry air and
water vapor), Fick's law is applied

d MaMW Pga
ga M Pg 

(1.51)g

d _MaM P~
v - 2 D gV - (1.52)

M 2Pg

where,

Deff = effective diffusion coefficient of gas mixture, (L 2 T-1)

Mi = molar mass of phase i, (M Mol- 1)

1 _ Pgw 1 + Pga 1 (1.53)
MK pg MW Pg Ma

For all gaseous constituents (dry air, ga; water vapor, gw; and moist air, g) the Clapey-
ron equation of state of perfect gases and Dalton's law are used as state equations:

Pi = MR (1.54)

Pg = Pga+ Pgw (1.55)

Linear Momentum Balance

In terms of total stresses, neglecting inertial effects, the momentum balance equation for
the whole porous material is given by:

V - a + b = 0 (1.56)at - at -
where,

a = stress tensor, (L-IMT- 2)

b = specific body force term (normally corresponding to the gravity vector),

(LMT-2)

p = averaged density of the multiphase medium (L- 3M), given by

P = (1 - )Ps + $SP,+ ( - S)Pg (1.57)

If this last expression was derived for Mainguy's model, the only difference would be the distinc-
tion between the components of the gas phase. In Gawin et al.'s model the gas phase, g, is treated

as a whole, whereas in Mainguy's model the gas phase is a mixture of dry air, a, and water vapor,
v. On the other hand, both models assume the gaseous phase to be an ideal gas.
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Conservation of Energy

The energy conservation in this model is presented in the form:

PC, ao+ [CpwPvi + C pgg Y]VO - V - (Xeff VO)

Ahphase (SPw) + SpW hydr + LSw (V - U) +V - [pvl]J + Ahhydr (Amhydr)

(1.58)

where,

p = apparent density of porous media, (L- 3M)
CP = effective specific heat of porous media, (L 2T- 2 0-1)

o = temperature, (E)

C, P= specific heat of water in liquid phase, (L 2 T- 2 E-')

CPg = specific heat of gas mixture, (L 2 T-2 E- 1)

pg = gas phase density, (L- 3M)

vg = velocity of gaseous phase, (LT- 1)

keff = effective thermal conductivity, (LM T- 3 E)

I. 3 . 3 Initial conditions

At t = 0 the initial conditions specify the full fields of gas pressure, capillary pressure,
temperature and displacements:

0
Pg = Pg (1.59)

0
PC = PC (1.60)

o = 00 (1.61)

0u u (1.62)
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I. 3. 4 Boundary Conditions

The boundary conditionsI can be of the first kind or Dirichlet's boundary conditions on

F.

1
Pg = Pg on Fg

1
= Pon F7c

"0 1
0= on IE0

u_ = i' onE1u

(1.63)

(1.64)

(1.65)

(1.66)

1.The boundary conditions can also be of the second kind or Neumanns condition on Fi
d 2 d 2

-(Pgalg - Pdg - = qga on 17 -(Pgag + pY+P )- - , = gw + q, on r2

-(pwyvAhphase -effVO) = qT on F2 a - = t on r

and of the third kind or Cauchy's (mixed) boundary conditions on rF

(P gv + pwyw + p vd ) -L = ),(pg - pg.) on F 3

(pwXvlAhphase - XeffVO)- L - a,( - 0.) + ea(- 0) on r

Where the boundary F = rI u rF u IF, n is the unit normal vector, pointing toward the surrounding gas,

qga, qgw, q, and qT are, respectively, the imposed dry air flux, the imposed vapor flux, the imposed liquid flux, and the

imposed heat flux, t is the imposed traction, pgw. and 0. are the mass concentration of water vapor and the temper-

ature in the far field of undisturbed gas phase, e is the emissivity of the interface, CO is the Stefan-Boltzmann con-

stant, while acx and P, are convective heat and mass transfer coefficients.

The convective boundary conditions usually occur at the interface between the porous media and the surrounding

fluid. In the case of heat transfer they correspond to the Newton's law of cooling. When concrete behavior at high

temperatures is analyzed, the radiative boundary conditions are usually of importance. [6]
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I . 4 Comparison of Models
Table 1.1 compares the three models that were reviewed in this chapter. This comparison

is made in terms of the equations they use and the approach taken with the water mass conserva-
tion.

Bazant Mainguy Gawin et al.

Solid Mass Conserva- X
tion

Dry Air Conservation X X

Water Conservation X X X
(only distinguishes (liquid and vapor sepa- (liquid and vapor
between bound and rately) together)

free)

Energy X X

Linear Momentum X
Balance

Heat Flux X

Moisture Flux X

Liquid Vapor Balance X

Table 1.1: Model Equations

With regard to the very nature of the problem, it is evident that the mass conservation
equations must be included regardless of any other assumption made in the model. However, the
way this mass is interpreted may well differ between models. Bazant's model deals with this in
what seems to be the most simple way: all water phases are treated as one component and only
free and bound water are distinguished. Mainguy's model goes one step further by separating the
water into three phases: liquid water, water vapor, and dry air (these last two forming and ideal
mixture which constitutes the gas phase). Finally, Gawin et al.'s model considers in addition a
solid mass conservation (the model is also the only one that accounts for mechanical behavior
such as strain and stress). However, in contrast to Mainguy's model, Gawin et al.'s model does
not separate the conservation equations for liquid and vapor phases: there is only one conservation
equation for water species. On the other hand, this model differentiates between the origin of the
liquid phase. If the saturation state is above the saturation point the water is said to come from the
capillary pores, whereas below saturation the water is said to come from the skeleton itself (i.e.
bound water).

Obviously, when temperature is one of the variables, conservation of energy has to be
included as one of the conservation equations. This is also true for the non-isothermal extension
of Mainguy's model proposed by Heukamp [12]. As a matter of fact, the equation for conserva-
tion of energy is the only additional equation required for Mainguy's isothermal model to become
temperature dependent.
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Chapter II

Non-Isothermal Model with

Dehydration Effects

In this chapter we propose an extension of Mainguy's isothermal model to non isothermal
evolution with dehydration effects. This extension requires the consideration of entropy conser-
vation, following developments proposed by Heukamp [12]. However, in addition, we will con-
sider the dehydration phenomenon which affects concrete behavior at high temperature. This
dehydration term needs to be integrated in the mass conservation equation of the liquid water.

First, a brief introduction to the model is given, and the conservation and state equations
for the model are developed. The conduction laws are then presented, and finally the initial and
boundary conditions are introduced. At all times, comparisons with the isothermal model are
made in order to identify the new terms which account for both dehydration and temperature
changes.
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II. 1 Introduction
The porous medium is still considered to be composed of an undeformable skeleton and

three fluid phases saturating the pore space (see Figure 1.1). The fluid phases are:

- liquid water, w

- vapor water, v

- dry air, a

The last two phases, v and a, are assumed to form an ideal mixture, the wet air (the gas phase,
g), which is assumed to behave like an ideal gas.

The total porosity, $ ([$] = 1), is filled by the liquid water, of partial porosity $,, and by

the wet air mixture, of partial porosity $g. From [1.7] to [I.10] it follows that:

$ = $W+ $g = SW$+$ (11. 1)

with SW = liquid saturation ([Sm] = 1)

Based on the previous notation the masses in an elementary volume du are given by
[1.15] to [1.17], which we recall:

- Liquid water
mW = $S pW (11.2)

- Water vapor
MV = $(1 - SW)pV (11.3)

- Dry air
ma = (- Sw)Pa (11.4)

with pi = volume mass density of phase i, (L- 3 M)

II . 2 Conservation Equations
The mass conservation equations in this model are almost identical to those in the isother-

mal model. The only difference is the dehydration term, which is added to the liquid water mass
conservation. This term accounts for the water that leaves the skeleton (dehydration) and enters
the pore space.

In addition, to account for non-isothermal conditions, the entropy conservation equation is
introduced.
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II. 2. 1 Mass Conservation

The three mass conservation equations [1.12] to [1.14] become:

- Liquid water conservation

OCD a S + Vw = -R - p _,;* (11. 5)

- Water vapor conservation

$ (1 - SO ) + Vw, = gw _- (11.6)

- Dry air conservation
Ma avP

$ R (1 S ) + V'a = 0 (11.7)

where,

p g = formation rate from liquid water to vapor, (L- 3MT-1)

dtd&2 = amount of liquid water which transforms, in the elementary volume

dA over a time interval dt , into vapor (M).

9S = dehydration mass rate, (L- 3M T- 1)

1= mass flux vectors of the corresponding fluid phase, (L- 2MT- 1)

Note here that the fluxes are related to the relative velocities ( Y ) in the same way as for

the isothermal model (i.e. equations (1.18), to (1.20)).

The liquid water mass conservation equation (II. 5) contains the dehydration term, , _s ,
which represents the dehydration phase change of chemically or physically bound water (part of
the skeleton), that goes into the free (evaporable) liquid phase. This term can be expressed in the
following way [1]:

9s -+ = - 0 (11.8)

where,

mb 1 = combined (bound) water mass involved in the dehydration process, (L- 3M)

(t) = hydration degree, ([] = 1)
- reference configuration, E 1
- complete dehydration, 0
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The hydration degree depends on a kinetics law. However, since the characteristic time of
dehydration is very small compared to the time scales of the transport of heat and fluid masses, it
can be assumed that the dehydration process is permanently at thermodynamic equilibrium [1].
This leads to a relation linking the hydration degree to the temperature:

= () = 1 - H(0 - 0 0) (II. 9)

where,

H = constant that linearly relates temperature and hydration
This dehydration function is shown in Figure 11.1.

'10,8

=.0,6

S0,4

5 0,2

0

degree ([H] = 6-1).

f

0 200 400 600 800
Temperature [*C]

Figure II.1: Thermal dehydration function () (cited by Ulm et al [1] from Fasseu [13])

II . 2 . 2 Entropy Conservation

As part of the extension to non-isothermal conditions, the entropy balance for the elemen-
tary volume is considered. Neglecting volume heat sources this equation reads as follows:

C as s = -V -
I = W, V, a

(II. 10)

where,

si = specific entropy per unit mass of the corresponding fluid phase (i = w, v, a)

([si] = L 2T- 2 E- 1)

sjwv - nda = efflux of entropy of the fluid flux, jv, through an infinitesimal

surface da oriented by unit normal n (the boundary)

q = heat flux vector, ([q] = MT- 3)

-(q - iL)dadt = heat supplied from the outside through the boundary in time dt

q
- = efflux of entropy by heat through the boundary
0

-Thermal Dehydration
-- Function

.- - Heating of the Cut
Slices

A Heating of the Cored
Specimen

a Residual 50 days after
heating
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S = total internal entropy of all matter contained within the elementary volume dA,
([S] = L- 1MT-2 e- 1); it reads:

S =SS + I misi (I 1
i= w, v, a

where,

M= mass content of fluid phase, (M)

Both, the entropy of the solid phase, Ss, and the one of the fluid phases, si, need to be specified

by the solid phase and liquid phase state equations, respectively.

II . 3 State Equations
Use of the entropy balance equations requires the definition of state equations related to

the entropy of the fluid and of the solid phases.

II . 3. 1 Fluid State Equations

Before deriving the equations for each phase, some common terms need to be defined:

- Specific free energy of the fluid phase (N)

Vi = U - Osi (II. 12)

where u1 = specific internal energy, (L 2 T-2 )

Specific free enthalpy of a fluid phase (gi(pi, 0), Gibbs potential)

g(pi, 0) = Wi + - (11. 13)
Pi

where pi = thermodynamic pressure of the fluid phase, (L-IMT-2 )
From the potential we obtain the fluid state equations:

g_ 1 
(II. 14)

pi P

ag. = -s,(II. 15)

- Enthalpy h,, (L 2 T- 2 )

hi = Ui + P = gi+0s; (11. 16)
Pi

The enthalpy allows derivation of the specific heat of fluid phase i (at constant pressure pt):

ah.
, = h(II. 17)

pli
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II . 3 . 2 Incompressible Water Phase

The incompressibility of the liquid water phase implies that the specific free energy
depends only on temperature:

WI = i (0) -> sw = -a =Swo + Cpw ln

sO = reference specific entropy (at temperature 00 and pressure pwo)

C,, = specific heat of liquid water phase (at constant pressure), (L 2T-2&-)

Using (II. 18), the total differential Gibbs potential (II. 13) reads:

d p
dg = -sw(0)d + --

where pw = fluid pressure, (L-1MT- 2 )

Integrations of the last two equations, (II. 18) and (II. 19), result in:

9W = _ + _- s_(_ - 00) - C_ _0n

II. 3 . 3 Vapor as an Ideal Gas

The ideal gas state equation reads as follows:

__, 1 RO

ap Pv Mvpv

and the specific entropy:

S = g4) = Svo + CPvln( - RIn0 ln Cv
Integration leads to

9, = g,, +fA - - 00 svd0
0 Pv 0

9, = 9yo +
ROIn Pv - s,(0

0A1 PO

- 00) - C P[0 n

The same procedure can be applied to the dry air. In this case the specific entropy reads:

where,

(II. 18)

(11. 19)

-(0-00)] (II. 20)

(II. 21)

(II. 22)

(II. 23)

(II. 24)
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a a Sao + Cpa 0 - In -
U 06 Mai a T Pa)

(II. 25)

II. 3. 4 Thermodynamic Equilibrium Water-Vapor

The equilibrium state is defined by the equality of the Gibbs potentials:

gw(P",0) = g(py,0) (11.26)

Assuming that the reference state corresponds to a state of thermodynamic equilibrium it
is apparent that:

9wo - 9vo = 0 (II. 27)

In addition, the latent heat of vaporization in the reference state is given by:

LOg _ g = 0 0(sVO - s,) (II. 28)

Using the previous expressions together with equations (II. 20) and (II. 24) we arrive at:

Pv

Pvs(O)
- exp [ W - Pw)]

where,

pvj() = pvOexp [M L00 ( - 0 0) -(Cpw - ln(O -(0-0) (II. 30)

(II. 29)

Pv
-VS = relative humidity relative to the saturating vapor pressure

Pvs

II . 4 Mixture State Equations and Capillary Pressure

We recall that the total pressure of the mixture, pg, is the sum of the partial pressures of

the mixture components (water vapor, v, and dry air, a):

Pg = PV+ Pa (11.31)

We also note that the volume mass is related to the molar volume density cv and ca by:

PV = M

Pa = Maca

(II. 32)

(LI. 33)

This in hand, the ideal fluid state equation (II. 21) together with (II. 31), (II. 32) and (II. 33)
yields:

(II. 34)pv = ROcv = Cvpg
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Pa = ROca = CaPg (II.35)

where,

C= molar fraction of vapor in the mixture, ([CV] = 1)

Ca = molar fraction of dry air in the mixture, ([Ca] = 1), defined by:

CV P
C - = _(II. 36)

C +Ca Pg

Ca~ Ca _ Pa (II.37)
C, + Ca Pg

Cv + Ca = 1 (II. 38)

Finally, in this model the capillary pressure is the difference between the wet air pressure
and the liquid pressure:

PC = Pg -Pw (11.39)

II . 5 Solid State Equation
The solid state equation refers to the skeleton and the interface [14]:

SS =S- I misi = Sm+ SC (11.40)
i= w, v, a

where,

Sm = entropy of the solid matrix, (L-IMT- 2 &-1)

Sc = entropy associated with capillary actions at the liquid-gas interface,

(L-IMT-2 E- 1)

II . 5. 1 Entropy of the Solid Matrix and Dehydration

If the material was chemically inert in addition to being incompressible, the entropy would
only depend on the temperature [12]:

SM S = Cln - (11. 41)

where,

T= free energy of the skeleton, (L 2 T- 2 )

CS = volume heat capacity of the skeleton (per unit of porous volume du )

CS = mrcs, (L 2 T-2 E-1).

MS = skeleton mass (solid matrix + combined water), (M)
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MS = (1 - $)pS

p,= associated mass density of the skeleton, (L- 3M)

cS= specific heat capacity of the skeleton, (L 2 T-20-1)



On the other hand, due to dehydration, the entropy Sm depends not only on the tempera-

ture, 0, but also on the hydration degree 4:

dO
dSm C +M s d (11.42)

where,

s= specific entropy which is released during dehydration d < 0

We should note that the specific entropy, s,, may well depend on temperature, 0. If that is

the case, then Maxwell symmetries would require:

2
as5 1ac _C a

M = aT (11. 43)

which leads to,

s= [ss +Cs lnI0 (11. 44)

C =cS m C (11.45)

where,

c= specific heat capacity of the skeleton in the reference state

s = specific entropy of the skeleton in the reference state.

The reference state is defined by: m, = (1 - O)ps and 00

In a first approximation, we will assume that there is no coupling between specific heat and dehy-
dration, and between specific entropy and temperature. This assumption means that (II. 43) is
equal to zero, thus:

CS # CS -> CS = C5 0 (11.46)

ss s(0)=s = so (11. 47)

Assumptions (II. 48) and (II. 49) allow writing an analytical approximation for the entropy
of the solid matrix, which is linear in :

Sm = Csln +msosso (11.48)
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II . 5 . 2 Entropy of the Gas-Liquid Interface

The gas-liquid phase entropy is given by [12]:

Pc/Y(0)

S= -- Y (0) f S,(x)dx (11.49)

where,

S= liquid mass saturation, ([SW] = 1)

Heukamp [12] proposed the following function for non-isothermal evolution (valid only
when the liquid phase is continuous within the porous medium):

SwL+KY(o) a

where,

n, m = material constantsi

y (0) = capillary surface tension at the liquid-gas phase interface formed by a menis-
cus.

Heukamp [12] suggested the following dependence in temperature:

Y (0) = Y (0 0 )[1 - c0 (0 - 0 0)] (II. 51)

CO = 3x1O-3 K- 1 (II.52)

1. Assuming that m = 1 - 1/n, we often find that: m = Iand n = b
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II . 6 Conduction Laws

The conduction laws are needed for the fluid fluxes (in all phases) and the heat conduction
in the entropy balance.

II . 6. 1 Fluid Conduction Laws

Similarly to Mainguy's [4] and Gawin et al.'s [6] model, Darcy's law is used to describe
the flux of liquid water and wet air, and Fick's law is used for the gaseous phases.

Darcy's Law

For the wet air, Darcy's law reads:

(0( - S)v = kg(S,)grad(pg) (II. 53)

and for the liquid phase,

k
Sww= k k1 (Sw)grad(pw) (11. 54)

11

where,

k = intrinsic permeability of the porous material (independent of the fluid phase)

([k] = L 2 )
kri(Sw) = relative permeability of phase i ([k,.] = 1).
We will assume that [1.27] and [1.28] remain valid also for high temperatures:

k,.i(SW) = ~ - - 1 2 (11.55)

k,(S.w ) = -S)2b (11. 56)

b = material constant

I = dynamic viscosity of phase i, (L-IMT-1).
The dynamic viscosity for the liquid phase depends strongly on temperature, but the

one for the gas phase varies little with it.

Use of Darcy's Law for the liquid phase with the ideal gas law, allows us to write the final
equations for the liquid water flux in the form:

_VW = -pWk ,.(Sw)grad(pw) (11. 57)
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Fick's Law

The average molar velocity of the wet air (vg, convective transport of vapor and dry air) is

defined as:

vg = Cvv + Ca-a (II. 58)

where,

C,, Ca = molar fractions of the mixture (II. 36) and (II. 37)

The conduction laws of the gas phase read:

CV(v, - Yg) = -Dgrad(CV) (II. 59)

Ca(ya - Yg) = -Dgrad(Ca) (II. 60)

where,

D = diffusion coefficient,

da
D = dv = tDva

Pg

with,

( 1.88
dva = dvaoPatm (~ (II.61)

pg = wet air pressure defined by (II. 31)

dvao = 0.217cm2 /s

00 = 273K

Patm = atmospheric pressure

, = tortuosity coefficient (accounts for effects of pore size and shapes in the diffusion
process).

Combination of Conduction Laws to Obtain Gas Fluxes

Using Darcy's law for the gas phase (II. 53) in the previous definitions of the gas conduc-
tion laws (II. 59) and (II. 60) leads to the final expression for the water vapor and dry air fluxes.

Indeed, if we rewrite the conduction laws in the form

D dva(0)
Y = -C grad(Cv)+ v = -T grad(Cy)+ yg (11.62)

D dva(0)
a = -grad(Ca) + = -T grad(Ca)+ V (11.63)

Ca -g Pa -
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we can now combine them with Darcy's law:

- V

PV
w-a

Pa

= (1 -S)v, = -

= $(1 -SJ)Va = -

dva(O) k
1 -SW)x grad(CV) - -krg(S,)grad(pg)

Pv T1g

-(Sw)T O)grad(Ca)
Pa

- krg(Sv)grad(pg)
ig

(II.64)

(11.65)

For numerical calculations the resistance to diffusion factor, f($, Sw), will be used instead of the

tortuosity. These are related in the following way [4]:

T($,Sw)= $1/3(1_Sw)7/3

f ($, Sw) =04/3(l _ Sw)10/3 =TS )[0(1 _ SW)]

(I. 66)

(II. 67)

Finally, taking advantage of the ideal gas law the final version of the flux equations for the water
vapor and dry air are obtained:

MV(pV My k
y = -f($, Sw)-dva()grad -Pv p ,kg (Sw)grad(pg)wROva\g RO0 Vrg

a = - f(0, Sw)T dva(O)gradT-aJ
Mak

- Ma -k ,k(S )grad( pg)

II. 6. 2 Heat Conduction Law

For heat conduction Fourier's law is applied. It reads:

q = -Xgrad(O)

(11.68)

(11.69)

(11. 70)

where,

= heat conductivity, which can be expressed as the weighed sum of the different

components (MT-30- 1):
9= xS +$Sw XW + $(1 - SW) X g

N= thermal conductivity of the skeleton

X= thermal conductivity of the liquid water

X = thermal conductivity of the wet air

II . 7 Boundary and Initial Conditions

(11. 71)

The boundary and initial conditions are the same as for the isothermal model, which are
defined in section 1.2.3 and 1.2.4.
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II. 8 Summary

The model developed in this chapter is an extension of Mainguy's isothermal model. The
dehydration term is added to the liquid water mass conservation equation (II. 5) and, in order to
account for the non-isothermal situation, the conservation of entropy equation (II. 10) is inte-
grated into the model. The liquid vapor balance equation is still used, but the temperature changes
introduce some modifications to Mainguy's version (1.32).

The entropy conservation equation requires the use of an additional state equation for the
liquid and solid phases. These state equations allow us to write the entropy of the different
phases.

Finally, the conduction laws were written in a similar way to Mainguy's but with the addi-
tion of the heat conduction law.
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Chapter III

Numerical Application by Means of
the Finite Volume Method

In order to solve the set of equations developed in the previous chapter, the finite volume
method is used. This is the same method used by Mainguy in his model [4], but here it will be
developed in cylindrical coordinates (contrary to Mainguy's cartesian coordinates). This type of
coordinate system facilitates the use of the model in geometries such as tunnels (see Figure 11.1).

First, a brief review of the finite volume scheme is provided, and then the geometrical
characteristics of the model are explained. Finally, a summary of the differences between the car-
tesian and cylindrical coordinates formulation is presented.

III. 1 Finite Volume
The basic principle of the finite volume method is to integrate the balance equations over

each control volume, 9,, of the mesh. The control volume 92i starts at point xi and goes to point

xi + I . In addition to this space integration, a time discretization has to be considered (because
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this is an evolution problem). This is done by introducing discrete values of time tn = n(dt), for

all integers n and time step dt, which we consider to be constant. The analysis is now restricted

to a grid which is uniform in both space x and time t, and therefore the integration of the set of

equations must be done over the control volume Qi and time step dt [15].

The solution at the i-th grid point at time tn is given by:

{uy, = u(t", x;)(I.

Using the equations of the non-isothermal model with dehydration effects, the finite vol-
ume scheme is written as:

Liquid water conservation

+1 dtdQ + n+1 div(w,)dtdQ = t (- )dtdQ + fft-+l(m dtdQ

(III. 2)

Water vapor conservation

Mvj a 1- Sv)pydtdQ + div(w )dtdQ =
92t 92t

Dry air conservation

M a
aft(1 -Sw)Padtd +

O t
f div(a)dtdQ = 0 (III.4)

Liquid-vapor balance

f ROin dt dQ = PwPwo + 1 (0 - 00 ) + ( CP - CP)[0 - 00 - 0l1n dtdQ
pfo 00' - ). +) (r 00

(111. 5)

Entropy conservation

misj + Ia
i=W,v ,a

siLV idtd&2 = ff[-div(q)]dtdQ
Q t

_ gdtdQi
92t

(III. 3)

Q t Ss+
(III.6)
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III . 2 Geometrical Characteristics

L

L

rn7-

Figure 11.1: Tunnel Shape

The consequences of changing the coordinate system from cartesian to cylindrical have
not only an effect on the numerical methods, but also affect the shape and position of the elemen-
tary volume under consideration (see Figure 11.2).

The elementary volume is a ring defined by its inner and outer radii. Its thickness is
assumed to be of unit length in the z direction (Lz). The position of the volume values, however,
are located in the middle of the elementary volume (see Figure 11.2); therefore, we define the fol-
lowing:

- = inner radius of elementary volume i

- = outer radius of elementary volume i

r = radial position of the middle of elementary volume i

The radial spacing, dr, can be determined in two ways: it can be assumed constant or its
value can change so that the volume remains constant. This choice of spacing will mainly affect
expressions for the volume integrals.
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dr

r

Lz-

rl

dr

Figure 11.2: Typical Elementary Volume
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III . 3 Parameters Affected by Change of Coordinates
Equations (III. 2) to (III. 6) can be used in either the cartesian or cylindrical coordinate

system. However, the volume and area integrals will introduce some differences in the resulting
expressions for the discretized equations.

In order to simplify the approach, the discretization of the equations is limited to the one-
dimensional case, i.e. nothing changes along the $ or z direction (see Figure 11.2).

The first difference that the change in coordinate system introduces is the resulting volume
integral. It was determined in the derivations (Appendix A) that the differences in volume inte-
grals resulting from the coordinate system change can be summarized in one variable called
m(K).

For either coordinate system, the approximation of the volume integral in the one dimen-
sional case is given by the same expression:

adQ = m(K){a} (111.7)

Therefore, the discretized equations obtained can be adapted by changing the value of
m(K) for their use in either coordinate system.

Also, for the cylindrical coordinates case, the value of m(K) is the only parameter
affected when changing from a constant to a varied spacing.

Another difference in the discretized results is given by the area integral, f adA, resulting
A

from the use of the divergence theorem to simplify the volume integrals of the divergence opera-
tors in equations (III. 2) to (III. 6).

Details for all these derivations are given in Appendix A. A summary of the different
expressions in both coordinate systems is given in Table III. 1.

Appendix B provides detailed derivations of the discretized equations, for both isothermal
and non-isothermal model with dehydration effects. They are derived in the one-dimensional case
for both the cartesian and cylindrical coordinate systems.
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Cartesian Cylindrical

di dxdydz rdrdpdz

9 Q = LXLYLZ Q = nLLz (r)2_ (ro)}

2 2

m(K) Lx r1 -- ro
2

dA dydz dpdz

A L t fLZ 2cLz

Table III. 1: Summary of changes resulting form coordinate system modification (I1-D case)
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Chapter IV

Applications

This chapter presents the results obtained with the model developed in Chapter II and also
verifies the accuracy of the development from cartesian to cylindrical coordinates. After the veri-
fication is performed, results obtained using the non-isothermal model, with and without dehydra-
tion effects, are presented and discussed. Finally, remarks regarding the extension of the model to
temperatures beyond the critical point of water are developed.

IV. 1 Finite Volume Mesh
The mesh used for the cartesian and cylindrical coordinate models have similar character-

istics. The distance xi, or ri for cylindrical coordinates, locates the middle of the control vol-

umes, Ki. These midpoints are separated from each other by a constant 'spacing', dx for

cartesian and dr for cylindrical coordinates. The first and last control volumes, KO and K__ ,

are of half the length of the other ones and their 'mid-point' position is located at the beginning
and end of the control volume, respectively. There are n control volumes in the mesh. This is
illustrated in Figure IV. 1.
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KO K1  K2  K3  Ki Kn-1

I I I - II
dx dx dx

xo x1 x 2  x 3  xi xn-1

Figure IV. 1: Typical mesh for cartesian coordinates (for cylindrical coordinates replace 'dx' with 'dr' and 'x' with 'r')

IV. 2 Verification of Model
First, the theory behind the verification is explained and then the conditions under which

the simulations were performed are described. Finally, the results are presented.

IV . 2. 1 Large Radius Verification

The extension to cylindrical coordinates is verified by using a large inner radius which the-
oretically will give a cartesian response. To illustrate this we use the liquid water mass conserva-
tion equation from the isothermal model (1.12):

amw
= -divwv- i->g (IV. 1)

The only difference between the cartesian and cylindrical coordinates version of the previ-
ous equation is the divergence operator. For the one-dimensional case in cartesian coordinates
this is given by [16]:

abx
div(b) -= (IV. 2)

ax

where,

b = vector field, b(, t) = bj(x, t)ej

For the cylindrical coordinates case the divergence operator is given by [16]:

div(b) = 1 a = 1 R abR] bR abR (IVb 3)
RaR(RR) ~[R R -j = R aR
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From (IV. 3) it appears that if the radius, R, becomes large, then the divergence operator
has the same form as (IV. 2), corresponding to l-D cartesian coordinates:

R -+ oo -> div( b (IV. 4)
WR

IV. 2 .2 Simulation Conditions

The conditions and parameters attempt to simulate the isothermal drying of concrete for a
period of 730 days.

Initial Conditions

At time t = 0 the following values are prescribed to all control volumes [4]:

{PI = hrPvso

{pg}, = patm

{0}? = 293K

where,

h, = relative humidity, ([hr] = 1) = 0.85

pvsO = saturation vapor pressure, (L-IMT- 2) = 2333Pa

Patm = atmospheric pressure, (L- 1MT- 2 ) = 10.13MPa

Boundary Conditions

At the inner boundary, similar conditions to the ones prescribed initially are imposed. The
only difference is now the value for the relative humidity:

hb = 0.5

Geometrical and Time Parameters

In this simulation there are 201 control volumes (n = 201) and the total thickness, e, of
the sample is 1 meter. The spacing is determined by:

spacing = e
n - I

The total time for the simulation is 730 days and the time step, dt , is 0. 1 seconds.

The initial inner radius, ro , is 50 meters.
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IV. 2. 3 Comparison of Results

The results from the original isothermal model in cartesian coordinates were compared to
a modified version of it in cylindrical coordinates. The results obtained with a large R were sim-
ilar to those obtained with the cartesian model. Therefore, we conclude that the coordinate modi-
fications are accurate.

Figure IV.2 and Figure IV.3 contain the results for the cartesian and cylindrical coordi-
nates, respectively. They contain graphs for the variations along the specimen length of: (a) pres-
sure, (b) concentrations, (c) capillary pressure and (d) liquid-vapor exchange rate. Boundary
conditions were only imposed at the inner surface, i.e. left side of the graphs.
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Figure IV.2: Results with the isothermal model in CARTESIAN coordinates
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Figure IV.3: Results with the isothermal model in CYLINDRICAL coordinates for R large.

Chapter IV 57

0.2

0.15F-

CD

PD
E)

0.1

0.05 F

0

100

liquid water
-dry air
- vapor

90

80

70

60

50

as

a,

a,
CO

0 40 F

30

20'
0 1 1



IV. 3 Results of the Non-Isothermal Model with and without
Dehydration Effects

The following section provides the results obtained using the non-isothermal model with
and without dehydration effects. The results presented in this section correspond to a temperature
rise to 600 K for a period of 12 hours. First, the initial and boundary conditions plus the geomet-
rical and time parameters used in the simulations are presented. Finally, the results are presented
and compared.

IV. 3. 1 Simulation Conditions

The conditions attempt to simulate a typical tunnel structure with an imposed temperature
at the inner surface, i.e. a fire inside the tunnel.

Initial Conditions

The initial conditions prescribed to all control volumes are the same ones used for the ver-
ification of the model. The only difference is the value for the relative humidity:

hr = 0.95

Boundary Conditions

At the inner boundary, moisture and temperature conditions are prescribed:

- Relative humidity, hb = 0.63

- Temperature, Ob

The temperature rises according to the following expression [3]:

0,p(t) = 0 + 345log(8t + 1) O '"x (IV. 5)

where,

t = time in minutes, (T)

00 = initial temperature, (E)

0'nax= maximum imposed temperature, (0)

It has been shown [3] that the time scale of heating is much smaller than the time scale of
heat conduction for typical characteristics. The temperature rise takes approximately 12 minutes
to be complete.

The outer boundary has no imposed temperature and no fluxes exit to the outside.
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Geometrical and Time Parameters

There are 101 control volumes in this simulation, n = 101. The inner radius and total

thickness, e 1, have the following values:

* = 4m

- e = 0.5m

The total time is 12 hours and the time step, dt, is 0.01 seconds.

IV. 3 . 2 Results

Figure IV.4 illustrates the results for the non-isothermal model including dehydration
effects. Figure IV.5 contains all the graphs for the case where the dehydration effects were not
considered. Therefore, the dehydration degree does not only remain constant at a value of one,
but also does not affect any of the equations used in the model.

Both figures are the results of a simulation performed under identical conditions with the
only difference being the dehydration term. The graphs included are: (a) pressure variations, (b)
dehydration degree, (c) temperature changes and (d) liquid water saturation degree. Boundary
conditions where only imposed at the inner surface, i.e. left side of the graphs, at R = 0.

Results Including Dehydration Effects

As expected [4], the capillary pressures are quite high at the boundary due to its depen-
dence on the liquid water saturation (which is quite low in this area). The vapor pressures reaches
a peak not far from the surface. Throughout the evolution of the diffusion process, this peak tends
to move toward the inside of the structure. The same occurs with the dry air pressure but with the
difference that it has two peak points. It still moves toward the inside of the structure.

The dehydration degree is linearly dependant on the temperature (II. 9). Therefore, when
the temperature reaches its maximum the dehydration degree will no longer change.

The liquid water saturation also behaves as expected, having low values close to the heated
surface and going through large jump to reach the initial saturation state. The jump appears as a
front.

Results Without Dehydration Effects

With the exception of the dehydration degree, most of the graphs have similar shapes as
those obtained when the dehydration effects were included. However, there are some variations in
the orders of magnitude of the different parameters.

1.e = rn - 1 - rg =final outer radius minus the initial inner radius

Chapter IV 59



Comparison of Results

Even though the results in both figures (Figure IV.4 and Figure IV.5) look quite similar
there are some interesting changes in the parameters they represent.

The water liquid saturation slightly increases in those areas where the dehydration degree
has changed. This is expected, because the dehydration of the skeleton releases liquid water into
the pores. This increase in saturation results in a decrease of the capillary pressure. The increase
of the pore water also could have an effect on the temperature propagation because there is more
mass to counterbalance temperature changes; however, the temperature did not change as the
other parameters did.

Figure IV.6 illustrates the variations for:
temperature and (d) liquid water saturation.
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IV. 4 Beyond Critical Temperature
While the model performed accurately in temperature ranges below the critical tempera-

ture, it does not perform well beyond this point. This problem may well be related to the physical
phenomena that occur beyond this point.

"...the critical point is the point where the curve of vapor pressure versus tempera-
ture comes to an abrupt halt. The temperature at which this occurs is the critical
temperature and the corresponding vapor pressure is the critical pressure. The
significance of this point is that, if the temperature exceeds the critical one, all the
liquid molecules have sufficient kinetic energy to separate from one another;
regardless of the pressure, and a conventional liquid no longer exists. Instead the
substance is called a supercritical gas. A supercritical gas is one at a pressure so
high that its density resembles a liquid's, while its viscosity (ability to flow)
remains close to that of a gas... in the supercritical state, certain fluids, such as
water and carbon dioxide, take on unexpected properties, such as the ability to dis-
solve normally insoluble materials".[ 17]

Hence, beyond the specific temperature, the water phases that were differentiated in our
model can no longer be separated from one another. This restricts the model in its present form to
temperature below the critical temperature.
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Conclusion

This thesis proposes a non-isothermal model for the moisture flow in concrete including
dehydration effects, and uses a finite volume scheme in cylindrical coordinates to solve the system
of equations. The model is an extension of Mainguy's isothermal model.

The porous material, concrete, is composed of a skeleton with three fluid phases saturating
the pore space. The three water phases are liquid water, vapor water, and dry air. The equations
that define the model are the mass conservation of the three different phases, the conservation of
entropy, and the liquid-vapor balance equation. Also, the necessary state equation and conduction
laws are used.

Numerical methods need to be implemented in order to solve the set of equations. To this
end, the finite volume scheme in time and space is used with the discretized version of the equa-
tions in cylindrical coordinates. The coordinate modification from cartesian to cylindrical refer-
ence system shows a high accuracy. The choice of cylindrical coordinates allows the use of the
model for structures such as tunnels.

The model shows that, due to dehydration, the liquid water content in the pore space is
slightly increased, resulting in a small reduction of the capillary pressures. The temperature, how-
ever, did not change considerably.
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Changes with respect to the non-dehydrated approximation are quite small because the
additional mass that enters the pores due to dehydration is quite small, too. The temperature only
reached 600 K, meaning a dehydration degree of 0.6 for that small part of the structure where this
temperature is reached. If the temperature was allowed to reach real life fire type of temperatures
of 900 K or more, then not only the dehydration degree would be higher but the portion of the
total structure affected by this temperature would increase too. In this case, the liquid water mass
added to the pores would most likely play a bigger role in the results, and the differences with the
non-dehydrated model would be more pronounced.

It is important to note that the small differences between the results are only limited to the
moisture content and pore pressures. Dehydration also affects other properties of concrete struc-
tures, such as strength (chemoplastic softening) [3]. These effects on material properties are not
accounted for in the model developed.

Because of the phase distinctions used (liquid water, vapor water and dry air), the model in
its present form is restricted to temperatures below the critical point of water. Beyond this point,
a conventional liquid no longer exists and a reformulation of the model may be required. The
development of a model without this limitation seems to be the most appropriate next step to
acquire a better understanding of the behavior of concrete structures at high temperatures.
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Appendix A

Numerical Approximations

Divergence Theorem

f(Vw)dQ = f( -n)dy = I (w - )dy
K aK L e N(K)eKL

Where

N = Neighbor of K

eKL = Common interface between 2 volumes

Volume Integral

Average Value at time t"

{a}In = A adQ
K

Cartesian coordinates:

d= dxdydz

{a}|" = fadQ = adxdydz
K K

In the one-dimensional case where only x is the controlling variable we have,

L Y L .

{a} = dy fdz = adx = L adx = f adx

XLYLZy= 0 z= 0 X X x

Then,

adx = m(K){a}jI
fx
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where,

m(K) = Lx

Cylindrical coordinates:

dK = rdrddz

d =
K

a L, r,

fdlf dzf rdr

0 0 ro

xL [ r 2 21(r 2

2 L

{a}|" = fadQ = fardQdpdz
K K

In the one-dimensional case, where only r is the controlling variable,

{a} I= 2

cxLz (r)2_ (ro)2 0= 0

{a} " = 22'rl -In'

d3 J dz f ardr

z= 0 r= r.

I2rL I
r,

z f
cL Z(r)2 -(ro)2 r= ro

J ardr
r= ro

Then,

ardr = r { = m(K){a}f"
r= ro

where,

2 2

m(K) 2 1 r

ardr
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Constant Spacing (dr):

r

I

dr /2

In this case the radial positions can be determined directly from the spacing:

ro= r 1
r1= r 0+dr r[i] = ro+idr

rn- 1 = ro+(n-1)dr

For i(o, n -1)

r dr dr I
r= r-2= ro+idr- 2 =ro+ dr(i- 2

r = r + = ro+idr+

,22
(r i) -(r )

m(K1) = 12 0

= ro+dr i+ I

= ro+dr + - ro+dr i--

m(Kd) = (ro) +2rdr i+l)+ dr i+ -(ro) -2rodr i- - dr 1

m(Ki) = 42rodr i + - i + + (dr) i + - -

m(Kd) = I{2rodr + 2i(dr)2 } = dr(r0 + idr) = dr - r[i]

2rdr + (dr)2 i2 + + -.2+i-1
4 4i

Then,

1 ]2}
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For i = o

= and ro = ro + d

Then,

0 2 0 2
(rj) - (ro)_

m(KO) = 2 + 2 (r) = 2 (ro)2+ rodr + (dr)
4

- (ro) 2

For i = n -1

ro = rnI - 2= ro+(n- )dr- = r- +dr n -

rn-i = r dr = (n - +)drT ne-, 1  0

Then,

m(K 1) = (rn 2 -(r n-1 )2 [ro + (n - 1)dr]2
_ ro+dr n- - ]2

m(Kn -1) = (ro)2 + 2(n - 1)dr+ (dr)2 (n - 1)2- (r)2-2 n - dr -(dr) 2(n - 2)2

m(Kn- 1) = 2dr n-I-n+ +(dr) (n-1)2-(n-

m(Kn_ 1 ) = T {1+dr(n -4)

Constant Volume (Q )

We already know the volume expression,

92 = 2z(r )2 (ro)

Assuming the value for ro is given, the following scheme can be derived:

r i i 2 )+ r io2
ri aI-ILro I

The the spacing dr is given by:

dr(i) = rii - r o

which leads us to the expression for the radius of the midpoint:

,= r 1  dr(i) = rii-r - r o + r '+ro

Using the previous expressions we derive the m(K) values:

dr
=T(

2 ro+dr)

= dr + (dr) 2 [n2 - 2n + 1 - n2+ 3n - 9]



Appendix A 71

For i(o, n -1)

i i-i

r 2) +ri- 1/2

Then,

~22
(r1) -(r0)

m(K) 
2

For i = o
0

roe ro

r = &2 + ro 1/2

Then,

0 2 0 2
(ri) -(ro)

m(K 0 ) = 2

For i = n -1

rn-i = ry-2
0 1

r- = [( +rn-2 1/2

Then,

n-I 2- n-i 
2

m(KO) = (,)2 (o)

+ ri- I - (ri-1)2

1 2z
2-1(x + r - (ro)2I

Appendix A 71

=[2+2rn-2-(r n-22



Thesis72



Appendix B 73

Appendix B

Discretization of Equations

Useful Relations

The following expression will be used to approximate the partial derivative of the pressure
of phase i with respect to the distance in the j direction:

n In + n{p} d (C.1)

F {P}IKK 
(C.2)

The following expression will help to separate the discretized values of the liquid water
saturation, sW, and vapor water or dry air pressure, pw or p.:

{p,(1-Sw)}" = {p,}"{1- S,}" (C.3)

=Pa(-Sw an Pa Sw}n (C.4)

The following expression will accumulate pressure and saturation values, they represent
the mass of phase i:

{M} n PwSn (C.5)

{m} = ({p,}n{1Sw}J

{ma} R ({pal KSw ) (C.7)
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Isothermal Model
For the isothermal model the governing equations are the following:

Liquid water conservation:
as

$Pw + ,div(w,) = -4 g (C.8)

Vapor water conservation:

Sa [pv(1 - Sw)] + div(w,) = tw_,g (C.9)

Dry air conservation:
$Ma a -Sw)]+ div(wa) = 0 (C. 10)

RO T[Pa(1S)l~ V a

Liquid-Vapor balance:
RO d(np)-1d[pg-p,(Sw)1 = 0 (C.11)

V, PW

and the flux equations are defined as follows:

Liquid water Flux:

Ww = -PW krl(Sw)grad[ - pc(sw)] (C. 12)

Vapor water flux:
Mv k M (P
M=- pk (Sw)grad(p)- dva f($> Sw)grad - (C.13)LVV R vT g RO Paf( g)

Dry air flux:
Ma k Ma (Pa

w -Ma kr (Sw )grad(pg) - dva f($Sw)grad-va RPag - g Pg (C.14
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Cartesian Coordinates

Liquid water conservation

$p~ a Sv + div(wvv) =-p_

Integration on volume K from (t", t"+1)

tn +I 7 W)dtdQ + f div(w,)dtdQ =

K K
t

Developing each term individually:

n+K

K

-f
t  ( _I g)dtdO

Kt

(asw) dtdQ

L, L,

= Opw [Sw(t" + ) -S (t")]dg = p f dy
K y= 0

= $P,(LyLz)m(K) {SW} n+1I { n

f
=C

dz [Sv(t ) _ S,(t")]dx
x

* div(w)dtd&
Kt

= At f (w " )dy = At
aK L N(K)eK

~pw -kri(Sw) [Pwk fx]dy
LE N(K)eKL

f{kr(Sw)} " + {kr(S)}I
= At P k K Lfa[wdd

Le N(K) Py- 2 ]eKL

{kri(Sw)} n +{krI(Sw) , n n L- I

= At(LLQ P k K 2 IL J[ IL d K

LE N(K) w X

(C.15)

(C. 16)

(C. 17)

(C.18)

(C. 19)

(C.20)

(C.2 1)

(C.22)

(C.23)
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K* (p _,)dtdQ
K

L, L,

= -At 4 gdQ = -At f dy f dzL pdx

K y= 0 z= 0 x

= -m(K)At(LyLz)f{t4 g} g>

(C.24)

(C.25)

Putting all terms into the equation we derive the liquid water mass conservation in carte-
sian coordinates for the isothermal model:

{MW} n+1 K Fnkri(Sw) n +{ kri(Sw)I n--

m(K)KAt L N(K)1W[ 2

PwI K = n+1

L K _M (K){p1 }2K

(C.26)
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Vapor water conservation

$ [p,(1 - Sw)] + div(wv) =p

Integration on volume K from (t, t 1 )

M n+1 a n+I
- t -[pv( 1- Sw)]dtdQ + div(_v)dtd =

K Kt

(C.27)

KdtdQ

K

Developing each term individually:

- $[+ p,(1 -Sv)]dtdQ
K

= n I({P,(I S )} - p ( S ) n)dQ2
K

L= f~ dy fJz fp Sj -{p,} {- SO})dx

TO Y V= KKO

f J~di(,dtd&2

At f (wJ- ndy = At I f(IV-, -n
aK LE N(K)eK,

L At
LE NK

ka
p v krgS - dva f ,xdydz

T1 axAPg

(C.28)

(C.29)

(C.30)

(C.31)

(C.32)

(C.33)
e fL

M kj K+{pV n Ikrg(Sw) n + {k(S)}} a
= VAt k- K 2- K px dydz

LeN(K) 2 2

f ${S }f) +f( ' {S}n)
+ dva 2 f~h~ pL)dydz

eKL

(C.34)

My' k I+ pvn n +{{vj, frgS)l+fk,.(s )} n K+ KplI -fg
-vAt(LL 22d

L E N (K) Ti dX

+ d wI1L)rP1 K
va 2 1"g n - gn TX

(C.35)

I
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The formation rate from liquid water to vapor has the same form as before. Therefore, the
discretized expression of the water vapor mass conservation equation for the isothermal model in
cartesian coordinates is:

{ M,}n+1 n-

m(K) K At K

nk + +{P}J { krg(Sw) 1 n+{krg(Sw) 1 n n+_

LE N(K) 1 79X

+ $ } + $,{Sw}InL) j n n ]+ dva 2Swl dPV IL 1'I
2 f~pg }n {pg }n d

w n+1

K

(C.36)
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Dry Air Conservation

S [Pa( - Sw)]+ div( a) = 0

Integration on volume K from (t", tn+")

Ma jtfaIPa(1 - Sv)]dtdQ + div((C.38)R~f ft atf~ djV()dtdgi 0 0C38
KK

Developing each term individually:

* $ L2 n j[Pa(I - Sw)IdtdQ
K

= *a({( -Sw)}n+I -{Pa(1 -Sw)n)dK (C.39)

K

= $ dy f dz({ Pa {-Sw n)dx (C.40)
y= 0 z= 0 X

Ma Fn,1_I-ln+ l n vnl
= (Lz)m(K) { w Pan (C.41)

* J tdiv(Wa)dtdQ
Kt

=Atf (a * L)dy = At f(a * n)dy (C.42)

aK LE N(K)eKL

M At p k xdydz (C.43)
- O fA Pa j 1 [ krg(Sw) ax (pg) - dva f (0, SO a ]Jex~dd

LE N(K)eKL g X Pg

In k nP, nk + p {k.(S,) n + {k,.g(Sw )
=- "At - f 2

L e N(K) T19 eK, L

X0$, { S } In + w $, {S }

+ dva 2(Xag
eK, L (

(C.44)

79Appendix B



80 Thesis

Using the expressions for each term in the conservation equation, we obtain the dry air
mass conservation equation in cartesian coordinates for the isothermal model:

mal n+1 - In-

m(K) K At K

Ma k fj PaK + {PanIL jk,.(S,)}I + {k(Sw)} jJ j{Pp}!K+ }K

R0L E N(K) T1x

'f($, {Sw}n + f($,){S+ } nfPa} LPa}IK
+ da2d ~ 0dva 2 {Pg} {Pgn dxn

(C.45)



Liquid-Vapor Water Equilibrium
ROd (np,)- d[p,-p,(S,)] = 0 (C.46)

pww
Integration on volume K from (t', t"'l)

ROfft n+Id,(np)dtd- fftn d[pg-pc(S,)Idtd92 0 (.7

V Q P

Developing each term individually:

- "+ d,(Inp,)dtdg

L, Lz
= f dy fdz f I[{ln(pv)}n+ - IIn"(pv)}f]dx (C.48)

Vy= 0 z= 0 X

= {(K)(L Lz) Iln(p,)} n+ -ln(pv)] (C.49)

1n+
S- tJ" d[pg-p(Sw)]dtdQ

PL, Q
LY LZ

= f dy f dz J[{pl}n-+{P1}nIdx (C.50)
Py= 0 z= 0 X

=m(K (L YLz) 1PO In1 IPIIn] (C.5 1)

Simplification finally leads us to the following discretized version of the liquid-vapor
water equilibrium in cartesian coordinates for the isothermal model:

I n+1 
R 0 ~ -[(Pv)ln + I-

{p1I 1 n]= In Kn (C.52)

-K
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Summary of Discretized Equations for the One-Dimension Isothermal Model in Car-
tesian Coordinates

Liquid water conservation:

{m}I n+1 In {k,(SW)} n + { k,.l(Sw)} {pw} _ -p,} n+1
m(K) K K_ k K L LI = -m(K){Vw}IK (C.53)

LE N(K) x

Water vapor conservation:

{I K1 + - tvMlk ItnvMI, n.+ tPv ,,n n LngLwM~ tIIgkIw f I n~j - fPg 1 n.
m } K+ n M I k . P}K + {pk} n rg K + I{krgSw n K+1 K

At RO LEN(K)[19 2 2 d

d ' ){S} +f( $,{S"}II n nn+

+ v JL)P}IL P j - m(K){pw}IK
dx 2 fgIn Pgn K

(C.54)

Dry air conservation:

{ma1 In+1 -{Imal In k Pal n +{IPa ,-Jkg(Awl ),n +{Jkr(SW )} l n nK+ KplI
m(K) [ K K a k KLR0 J K+ 2Kd

At RO LENK T1 2d

f $,{S'v}n +f$,S inPal PaII,
+ d -L1%1 0va 2 LIJl{In ng} I FKJ d=

(C.55)

Liquid-vapor balance:

(P,)In 
+I

p }n+1 n = In Kn (C.56)

L K -
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Cylindrical Coordinates

Liquid water conservation

$py S + div(vw,) = -pw (C.57)

Integration on volume K from (t", t" )

n+I a"+1 "+I

Opw fftndtdQ + 4 div(w)dtd = - 1 _ dtdQ (C.58)
K K K

Developing each term individually:

n+ asw
* Pwf dtd&

K

= Q S(" ) ,t)d (C.59)

2n Lz

= Pw dP3 dzJ [ S(t" + )-S(t")]rdr (C.60)

p= 0 z= o r

= 4Pw(2TlLz)m(K) {SW} In+, _ {~w}In1 (C.61)

* fftdiv(w)dtdg

K

= At (w -n)rdpdz = At f (_V, -n)dy (C.62)
Le N(K)eKL Le N(K)eKL

= At pf [(-P, -krl(Sw) [Pwr) jrrddz (C.63)
Le N(K)eKL

{fk,.(S,)} "n +{Ikri(Sw) II

= P k K 2 f [pIrddz (C.64)
LE N(K) L

{ krl(sw) I n +{Ik,.sw I } n-I W In j jn- 2n L,

Atp (r) K L Ld K d f dz (C.65){ fWLE N(K) rz= 0

{krl(Sw) I + {kr(Sw) }} I}
=At(2TcLz)pw *kY L)K L _wjn]
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n+ I

- L. gdtdg2
Kt

= -A t pt_gdQ (C.67)
K

271 L,

= -At f dB f dzf ptw grdr (C.68)
$=0 z= 0 r

n+1

= -m(K)At(2nLz)W Ing } I (C.69)

Putting all terms in the conservation equation plus simplification of terms, we obtain the
one-dimensional discretized version of the liquid water mass conservation in cylindrical coordi-
nates for the isothermal model:

{j1 | - } (jI krl(sw)}|" +I k,.(s) }|n+"
m(K) K K r {Kr 1  n n = -m(K){}m() At I, 'r J 2 ]11L 1-gKlWLe N(K)

(C.70)



Vapor water conservation

m~ a
v j[Pv(1 - S)] + div(1vv) = 41wg (C-71)

Integration on volume K from (,", n"+1)

M t +I I a + I n+1
- t [pV(1 - SV) ]dtdQ +  d iv(lvv)dtdQ = _ dtdg2 (C.72)
K Kt K

Developing each term individually:

MVrrt.+I a
0* $ [p,( - -S)]dtdQ

K

=M$ (P(1 - S n) n+1 n (C.73)

M 2n Lzf( vn+III n+I- vn I S n
= $v f J dzJ({P}n+1- n+, -fP} 1Sw} )rdr (C.74)

P= 0 z= 0 X

= (2nLz)m(K) n+ (C.75)

f f +' div(w,)dtd&i
K

=At f( *-n)dy = At ( -nLdy (C.76)
aK LE N(K)eKL

L E NK eKL P k .g -. dva k'' Wa P)J_ ddz (C.77)

M nk K+{V In {k-g(Sw n +{k. (S I)}1 n

~ 1- f- (p g)rddz (C.78)
Le N(K) 1 eK L

Sk Pv} n +{P} j {k,.(S )} n + {k rg(Sw)} n
= At(27tLe (K) K L gSw IK fg K+n K gIn

+df n {S} + f( $,{Sw,} n

(d LK
va2 IlIn j~jn

(C.79)
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We finally obtain the one-dimensional discretized version of the water vapor mass conser-
vation equation for the isothermal model in cylindrical coordinates:

m(K) K A K

Pv| (vr\F(i~,)|+{,.(

- k (1, K L kr( )1K + r(I L In 1 n
'TLe N(K) Ur - L91IL1+1 I Pjf }K

f${S}n) + f$, {S",} In ~ ~~I nP}~j

va 2 Jl ( KP){p_ K

(C.80)



Dry Air Conservation
Ma a C.1

$ {[Pa( - Sw)]+ div(Wa) = 0 (C.81)

Integration on volume K from (t", tn+ I)

Ma .+I a nn+ I

O U[Pa(I - Sw)]dtdQ + div(wa)dtdL = 0 (C.82)
K K

Developing each term individually:

* $M Pa( -Sw)Idtd&2
K

= M a n+ Pa Sw),n)dQ (C.83)
K

M2 L rn+, n+I n n

= 7 f dB f dz ({Pa - SO -Pa} -Sw})rdr (C.84)
= 0 z= 0 r

= $(27Lz)m(K)[{pa n+1 n+1- Paf I -w (C.85)

- Jf div( y )dtdQ
K

=At (Ia * L)dy = At ( a * n)dy (C.86)
aK LE N(K)eKL

- At Pakrg(Sw)-(Pg)- dva f($> Sw) ,. erdodz (C.87)IO f' [ Pg ar wa v s pg2J
LE N(K)eK,L

+ {Pa}" '{k,.g(S)} n +{k (Sw) }

- - A t K g-~ ;2  2 Pg rd pdz
L E N(K) T1 K

f(O$,{SwI })' + $,{S } nd
+ dva 2 deKdL z

(C.88)

M ( fPaln +{n Pa]{kr(S)}In +_{kr(S)}
= O -d k K LK2 1L K+1- IKLE N(K)

+ df {S} +f(, {SL}j[Pa Pa K
2 In gn

(C.89)
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Using the previous expressions in the conservation equation, we obtain the one-dimen-
sional discretized version of the dry air mass conservation equation in cylindrical coordinates for
the isothermal model:

S nma}|n+1 -(ma

m(K) At

Ma k

L (- N(K) 1

Pan { Pafn' .'{kg(Sw)}I n + {kg(S,)} n

K2 LK L K+Pg} I KPgI)

K) $,{I f$ S} Pa In IPaln

+ dva 2 nIfI n =,

(C.90)
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Liquid-Vapor Water Equilibrium

-d(lnp,)-- d[pg-p,(S,)] = 0 (C.9 1)

Integration on volume K from (t", t"')

Sff' nd,(Inp,)dtdQ - I f', d[pg -pe(Sw)]dtdQ = 0 (C.92)

Developing each term individually:

ff'+ d,(np,)dtdQ
vnt

2ft L,

= RO f 4 f d f[{n(p,)}n+1 -{n(p,)}n]dr (C.93)
vl=O z=O r

= M(K)(2nLz) {ln(p,) n+1- In(p,)} "] (C.94)

df' d[pg-pc(S,)]dtdQ

2n L,

df dz [ 1 [pII_ ]dr (C.95)
$= 0 z= o r

m (K)( 2 L1){PIn+1 IP IIn (C.96)

Simplification finally leads us to the following one-dimensional discretized version of the
liquid-vapor water equilibrium in cylindrical coordinates for the isothermal model:

- P)n+l-
{p}n+1 n= 0n In (C.97)P, K KI (PV) In
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Summary of the Discretized Equations for the One-Dimension Isothermal Model in
Cylindrical Coordinates

Liquid water conservation:

{mW }w 1 -{PmW} n .k(Sr)}IK+XkrI(Sw)}I 1 " ] } I ln.1
m(K) KW K L Lrn -m(K){p }

IW LE N(K) 2]IW

(C.98)

Water vapor conservation:

[{m}"K+1 -{mV}1 nm(K) At

jPV In+ jV.I ,

M v r. + { K } n' ' k , (S , ) } " + {fk rg (S w ) } I nL _ , P nnKO Ldr KL K+1 K
Le N(K) 2

fd ,{S}j) +f $,P'{Sl} IL J( ,} Il _ n+1
___ __ __ __ ___ ___ In _Snnn

a 2 PgIn Pgn K

(C.99)

Dry air conservation:

[{m a}l + - {m a nm(K) K At

m {Pa} +{ } j 'jkr,(Sw)}In + { krg(Sw)} J
- - K LK Ln f 1n)

L E N(K) 9

K( {S )} " + f(O {S } Pa} l {Pa}In
+ d - = 0

va 2 IL)[{Pn I Pg 1 n

(C. 100)

Liquid-vapor balance:

n+1 - }i i (Pv) In+I-

PwLLWK Ki = [ (Pv~)n
K-
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Non-isothermal Model With Dehydration Effects
This model does not account for temperature changes in the mass conservation equations

because we assume the mass density of the different phases not to depend on temperature. Tem-
perature changes are only included in the entropy and flux calculations.

The governing equations for the model are:

Liquid Water Conservation

$p, S+ div(iy) = - pg -m bj (C.102)

Vapor Water Conservation

$ (1- S) + div(wL) = pl +g (C.103)

Dry Air Conservation

$ (1 - S )- + div(w ) = 0 (C. 104)

Liquid-Vapor Balance

RO In PWPW0 + 0 - 00)+ (C; - CV) 0 -001n (C.105)PI I= 0 (0)-)C.05
R_ PVJ 01 pv0

Entropy Balance

$ SS+ 2 m s + s ! = -div(q) (C.106)
i = w,v, a wV,

and the fluxes are defined by:

Liquid water flux:

yw = -Pw kkr(S)grad(Pw) (C. 107)

Vapor water flux:
M P M k

= -f$, S)m-2 dva(0)grad - -p -k,.g(S,)grad(pg) (C.108)
WRO va p,) R 9l~

Dry air flux:
M a(pa Ma k

-a = -f(OSw)T dva(O)grad -pa - akrg(Sw)grad(pg) (C.109)
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Cartesian Coordinates

Liquid Water Conservation:

$p, SI + div(,) =-_g -m 

First we proceed to integrate over the volume K from (t, tn + 1)

(C.110)

fJ OWt -+I( WIdtdg + f f.div~w)dtdK2 = f4f
Q tQ tQ

t
(-L 4)dtdQ + f(_m b a'dtdQ

Q t 1 t

We will now develop each term individually:

- ffn+I(OP aS" dtdQ

L, L,

= OP, f[Sv(t+I)-S (tn)]d& = p f dy f dzf [Sv(tn+ )-Sw(tn)]dx
K y= 0 z= 0 r

= (LyL z)Opwm(K)({Sw} n+1 K W1jI)

* + div(w,)dtd&2

=At f (!wI)dy=At f J (w-n)dydz

aK L E N(K)eKL

= At f [(P, k,.kr(Sw) a[Pw]f -,]dydz
L e N(K)eKL

[{kri(Sw)}|I + { kr(S)}
At I PN k K L ae
LE N(K) T 2IK F

At k F
T1w Le N(K)

{k 1(SW)} 1 n + { k,.(S)} {P } n In
K L L K

I L L

f dy f dz
Y=0 Z=0

L L {k,.(S)} I|I + {kr(Sw)1 In
A pW - 2 L~PW L (K KL

(C.111)

(C. 112)

(C. 113)

(C.114)

(C. 115)

(C. 116)

(C. 17)

(C. 118)
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* (-p _)dtd9
t

L, L, n+1

-At p rdW = -At f d1 f dzf (jw )dx = At(LYLz)m(K){pi } K
K y=O z=0 r

* -yl (m 'dtdC

=-m dd -m [f{tn+1)-C(tn)]dQ = m' dy dzL~ n1){t)d (C.120)

fm~jjddi f 1dy f-4 Kz~n1-t)

KK y=0 z=0 K

= -m(,zmK({ n -+1 ng) (C. 121)

= -m (LkLz{m(K) 00))({ }m5 +{ n1 ~0 0)J (C.122)

=-m (LyLz)m(K)[1 - { 0 9} n + 1 +k- m + 0 K km (CI3

= -m '(LLz)m(K -O {n|K+ 0} n b (L Lz)(K) l0j[{o} n+1 n] (C.124)

Which leads to the following discretized version of the liquid water mass conservation in
cartesian coordinates for the non-isothermal model with dehydration effects:

n+1

m(K) K K At K2 LSw}~ L K

n+1 L m( L /z

= m( )p___}K + __ k s n+1 ] ( 2

= -mK)M4ig 0 kiYZ~(K 1( km0 SI K-{0}IOIK 0)](C. 122)

b~~~~k I O,,oJ+IOool
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Vapor Water Conservation:

$ (_-) +d v) = p _(C.126)

Ignoring temperature effects we can rewrite the equation in the following way:

$ (( - SW)pV) + div(wv) = s _ g(C. 127)

First we proceed to integrate over the volume K from (t, t+ 1)

vf a( 1 - S,)pvdtd& + f fdiv(wv)dtdQ = fJfp, dtdQ (C. 128)
Qt Qt Qt

Developing each term individually:

M a
* $J(1-Sw)p dtdQ

Q t

= $ V ({P(1 -S)} - {pV(1- Sw)} n)dQ (C. 129)
K

= v f dy j dz({ppl { -S}n)dx (C.130)
y= 0 z= 0 x

= (LLz)m(K) { } n+I , n+I n ,I n (C.131)

* f div(WL)dtdQ
2t

= A t f(wV, - n)dy = A t f(wV - n)dy (C. 132)
aK Le N(K)eKL

[ P k aPg 9a Pv
M p T9v krg(Sw)F + dva f w(01 SO a P)= -At e -0F e, dydz (C. 133)

LE NK eKL

+2 n +{ pv}"In, '{krg(SW)}" + {kg(S)}
= -At v 2 k K 2 LKf(pg)dydz

L c N(K)( 111 K+{10}1 L g1 eK,

+ dva 2 dydz

(C.134)
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My v n +{ p,}l {k,,(S,)} In + {k,.g(S1)} In ,jg n + g, K
=- -At(L LLz) P11
R YL E N(K) 1011K +101 { g 2 }A

d 0 'IS"} "n + f($, {S"} In I

+ dva K P1L 1P1Kj
AX 2 n n

(C.135)

Which leads us to the discretized version of the water vapor conservation in cartesian
coordinates for the non-isothermal model with dehydration effects:

m(K) KAt K
-J 1 n+1 -IM

2 
+ P( {,}, n n { ( S } L,' n 

-

I MV 2 k l"K+ L]0 n rg(S,)J n +{krg W) nnI
AxRLEK) K + {y}11 fn g 2 2 fl K+1 fPg K)

LE__________ Pv}L KP}K) +n01

f $, {S,}~ +f $, {S,}~ In-

+ dva 2 - = m(K){p 1 wg} }

{p }n {p }Kn- K

(C.136)
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Dry Air Conservation:

$ (1-S,)Pa + div(wa) = 0

Ignoring temperature effects we can rewrite the equation in the following way:

Ma a
$ ((1-S,)Pa)+div(La) = 0

First we proceed to integrate over the volume K from (t, tn + 1)

$ (1 - Sv)Padtdg + div( a)dtdK2 = 0
a t Q t

Developing each term individually:

M ;a
* $J( 1 -Sw)PadtdQ

Q t

= $ ({Paf Sw)}n+ -( - S)}I)d&2
K

= $ dy f dzJ({Pa} S - f Pa , Sw n)dx

y= 0 z= 0 x
=Ma n (+1 n+- n

(C.137)

(C.138)

(C.139)

(C. 140)

(C.141)

(C. 142)

f f div(Wva)dtdQ
Qt

= At f
aK Le N(K)eKL

[ k aPg
M XPa krg(Sw)x + dva

-At j N e 9
RL E= NK eKL0

C 2 _k[PaIIn + {Pa}I n
=-At "a 2 k K L

RL(= N(K)( 1011 K 1 1n) g 2

Pa", w

Pg 
dydzj

(C. 143)

(C. 144)

[krg(Sw)} I + {krg(Sw)}

2 If (Pg)dydz
9 eK, L

'f $,{S,} n +f $,{Sv }L'

+ da K)2a a dydza 2 eK, L

(C. 145)
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(wvV, -n)dy = At



Ma 
2  k IPK paln .(S,)} + {k .(S)

=- (LLz)LE(K) (f KI+ {K}L Wk 2 2 Ax

+ 'va {fC4 S"} +fQO {SW}2nJ rPa}2 n I
4 aL KI

(C. 146)

Which leads us to the discretized version of the dry air conservation equation for the non-
isothermal model with dehydration effects in cartesian coordinates:

(an+1 -{ ma}IK
m(K) K At K

Ma 2 {krPaK +{Paj rg(Swl I + {krg(Sw) n

R Ax) n + ) 2 2 j IPg K + 1K
L E N(K) 10 1K + {0}

K $, {S)} ) + f($' {SL}) n Pa In fPal iJ -
+ d 140

va 2 fpln gn

(C. 147)
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Liquid - Vapor Balance:

RO PPV" - PPw 0 l (M-In + (0- 00)+(C,, - C,,)0 - 00 - OIni
V e PVoe) Pw 00 tevfO))

First we proceed to integrate over the volume K from (t, tn + 1)

(C. 148)

fl OIn dtdi = PW - P + t(0 - 00) + (C, 1 C, ) 0 -00 -0In( dtd92

Developing each term individually:

ff In dtdQ

R f f lin dtdQ
v Vot (PVO)

= AtR On dMn
v V

=At- f dy f dzJ0In 2dx
Y=O 0 =0X ( PVO

At R (LLz)m(K){0}J In - At (L Lz)m(K){0} In n1MYKL Pv)J Y IKfV n- I
K K

*J P + 1(0-00) +(CP 1 C - -l dtd

L, LZ PwPwOh
= At f dy d + (0 -00)+(C;-CPV)[0-00 -0n ] dx

y= 0 z=x0 X

= At(LLZ)m(K) Pw + -0 )+(C - C,,)[0-0o-O1n K

n

= At(LYLz)m(K) WW + (

K

IPwl n n- I n n-1-

= At(L Lz)m(K) K K +I0 n1K +( - C v 1 nK n1 {o}|7 ~U

-1 ~{}In n -0j
-1 n ni

0 0}IK K J-jj

(C.156)

Then the liquid-vapor balance equation for the non-isothermal model reduces to:

K1 _PV nK IKKI In(_ PC,{n}-I{Olln _O}InlrrI
R n +1 nn-1 n Il

TV{ PV}g K K K +f n- +(CP-C01n1n-1 PKPV [K K K

K K I F'KJ

(C.157)

(C. 149)

(T n

K

(C.150)

(C. 151)

(C.152)

(C.153)

(C.154)

(C.155)-0) + C1 - CPV)[0 - 00 - -n

K K/
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Entropy Balance:

1 SS+ ms + = v = -div(q)

First we proceed to integrate over the volume K from (t, t+ 1)

S + M in s + s w dtdQ = ff[-div(q )]dtdQ
Q t i = w, v, a ij i = W, v, a t

Developing each term individually:

f a SS+ mis + 1 sw1]dtdQ
Q t i =w,v, a i =w,v, a

= fJ SS+ E misi dtd& + J4 Y sjw dtdQ
t i =w,v,a Qt i=w,v,a

= S + as - Ss+

L L

= f dy fdz{ SS
y= 0 Z= 0 x

= OL Lzm(K) SS

is } dQ+At(o I vsw dQ
Q i wv, a

n+1_ S n) L, L,

+ vmis - I S+ mis dx+oAt fdy f dzJ(
= w, v,a =w,v,a y=0 z=0 x

+ +

+ =~ m s ii=w,v,a K
K

- Ss = , vms 

siLdx
i=w,v,a

+ A t S v s

K K

n + n+n

LynLzm(K) {S +} n - {S } + = am s ,Msr At S vsK Yz(K{S} K I._ _ I la= w, v,a i{ , v, }}

K K K

= $LyLzm(K) {{S}In + I {S+ In) n + I{s} +1 - {m wsw}n +nms + - -{ms} n) ( {masal n+1

(C. 164)

{nasa}

-At {~w }n +{ w~~ } In +{)d
-At({ j + {Svi Iv} K + f{Sa-a}j(.) }

(C. 165)

=LyLzm(K) {SS} n+1

{m}n+1{Sv} n+ -{m} { - {mal n+1{sa} -{nal n Sa

K K K { + }
(C.166)

(C.158)

(C.159)

(C.160)

(C.161)

(C.162)

(C. 163)
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with,

{SS}f4 = {Sn}f"K+ {Sc} n

Smn = CsIn( + m s 5 (0)

K K sK

Pc
-c

S C = -$ a '(0)

n

+M s I O = Csln 1__NK
So So K (0 0 )

/Y(0) -

0 S(x)dx
0J

y(O) = y(0 0)[1 - c0 (O - 00 )]

1 + =) I + p-n
[1- c,(O -00) aj

then the integral can be solved numerically using Gaussian Quadrature:
1 n

f f(t)dt ~i l s(ti)
-1 i= 1

The entropy for the different phases is given by:

{S}n s=s + CPwIn( n = s Wo + CPwin 111n

K K M

Inn R nvR I
{s} so + C, in( - MIn(7 Kso + CPv In n-1 Ml n - I

{Sa} = sao + Cpan( 9;
n

R (nPa IM a (Pv0)j
K

= s + Cpa In I n-
ao pa

R -In L K

The mass for the different phases is given by (C.5), (C.6) and (C.7)

km({ K
0 0)

(C. 167)

(C.168)

(C. 169)

(C.170)

(C.171)

(C.172)

(C.173)

(C.174)

(C.175)

(C.176)
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And the flux expressions in each control volume are expressed as:

{W,}" = mKftiw dx = f(Pw fkrl(Sw)grad[pw] dx (C.177)

1 k { + 2{k,(Sw)}" +{k (S,)}n

- IK)Pw + K+ ]jJaw) dx (C. 178)

1 k {k,.(Sw)} +{kr(sw) +{ }_OK

-mW(-K) E N 2 2 (C.179)VIwLE N(K)

{,} I P krg(Sw)grad(pg) - dva (t, Sw)grad dx (C.180)

1 M [k v {Pv} + {Pv}I {krg(Sw)} n + {krg(Sw)} n K + 1 K

m(K)RLe(K) 2 2

+ dvaf(' Ks}~) + L~P {S}fl]1PI PvfKJdpg nIn ,{ ng, -
4 vaL K

(C.181)

n I__ r Ma k Ma (P aY\d

{a m(KJadx = -(J Rf Pa krg(Sw)grad(pg) - dva f (Sw)grad-))dx (C.182)
g Pg)

1 Ma [k K L] 'k K (S L K+1
m(K)RO 2J22 J

Le N(K) lg

d }" f( Swn)+f($,{SW}nL)][{Pa}L IPA}j
+ va L K

2 2 fgIn j~jn

(C.183)

f f[-div(q)]dtdQ
Q t

= At [-div(q)]dQ = -At (q -n)dy = -At f (q -n)dy (C.184)
Q aK LE N(K)eKL

= At f [Xgrad(O)- Ldy = AtX e J e ]dy (C.185)
Le N(K)eKL Le N(K)eL

= At R f (a) dydz = At X(LLz)m(K) K K+ (C.186)
LE N(K)eKL Le N(K)( J
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The previous terms allow us to write the discretized version of the entropy balance equa-
tion in cartesian coordinates for the non-isothermal model including dehydration effects:

$ {S}" -{S, + {nnI {sW} -m,} "{S}

+ {,}"*{s} {m,}I"{sv} -majK *{sa} -al"1-{n {+ } " s { ,} {s +{ n{
K K K+

(A{I! }Vsw IK + K ?IK { } K K K }K

K Ax (C. 187)
L E ()



Summary of the Discretized Equations for the One-Dimension Non-Isothermal
Model in Cartesian Coordinates

Liquid water conservation:

{m( } n+1 { n -{kr(S)} n + {k.r(Sw)} - n[
m(K) K AtK Kn L KJIKYWLE N(K)

W n+1 m ,m(K) 1/00[e j+ _~ j]CI8

= -M(K){pt_,,}1K + "At k-ms[{}n-SO) K

Vapor water conservation:

{m n+1 n-

m(K) K At K

N( k)[ 1 ng + {Pv} n 1 {k,.(Sw)} n+ Prfn 1 {k,.g(S)}

AxRO d 2 2si) + f(4l 1 K+1{w) 1 Pi IK

K$ ) + L $, { n n+1

+ dva 2= m(K){p _

2fa~~ L Ll In ~ jPgjIn _{Pg>9 K

L K

(C.189)

Dry air conservation:

{ma}quid 

-vma 
nc

m(K) K At K

Ma k In +{fPa} { k,.(S1)}In +{fk,.g(SW)}

n- +10g KK { }-K In 1 in)

R x2 2 L K+ IKL N(K)

f ~ $,S}I+ ,S}n Pa ,n pg,,
+ dL K,

(C. 190)

Liquid-vapor balance:

RPV n I IIn_ wjn-1 1 1n 1 }n-1 n

R 11n In n K K K +10 K ..- K + (CP -Cp 1)11n j n- I n 101
v pv1 K K 1K

(C.191)
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Entropy balance:

$ s,}"K+1 sn { } 1 rIn}n

+K {m }r"+1{svK n+1 n+
1  Kn

- A l {I } Kn + v n v n) ( I n + 1 Ia n + a i I nInn

K {aI K a}

-At{Iw}, {sw + {V+ {iva}IK{Sa} l

Kt K K+

x (C 192)
L e N(K)( A
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Cylindrical Coordinates

Mass Conservation of Liquid Water

OP S + div(lm,) = - ba- (C.193)

First we proceed to integrate over the volume K from (t, tn + 1)

Jt  jtp I dtd9+ div(ww)dtdQ = f (- , _)dtd&+ -m dtd& (C.194)
QQIQ t t

We will now develop each term individually:

* ffl+1(aS dtd

Q

2tt L

= Pf [S(t n)-s(tn)]di = pf dP f dZ [S(tn+1)-S (t")]rdr (C.195)
K p= 0 z= 0 r

= (21ELz)pvwm(K) {SW}In + - "sWn) (C.196)

*fn'div(ww)dtdg2

= Atf (w, )dy =At f f (wV , -)rdpdz (C.197)
aK LE N(K)eKL

= At f [(-Pw krI(Sw) [Pw]r) -Crddz (C.198)
Le N(K)eKL

{krl(Sw),I + {kr(Sw)}
= At P kpS K Llfa[pv]rdpdz (C. 199)

L e N(K) ILW eKL

F{krl(Sw)l In + {kri(Sw)In 1PwI I-Pw}IK" 2n L
= Atp k (r) K fL Ld d3 f dz (C.200)

flw L E N(K) L 2 r 1P= 0 z= 0

{kr1(sW)1|"n + { krl(sw) I|I
= (2nLz)Atpw - I dKL 2 j }" (C.20 1)

- -J _ )dtdGi

2n L= n+1

-At J1igd&2= -At d dzf(p g)rdr At(27Lz)m(K){~t_,} K
K p=o z=o r

* -~mj dtdG
+



~~~27c L, C 2 3= -b d =_ - f [m (tn+1)-t)]d = m f d dz [(t+ - (C.203)
K =O z= 0 K

- -b (2-Lz)m(K)({I} +1 n,) (C.204)

=-m '(21rLz)m(K)ft1 - ({0}fn+ 0 0) (C205b - 1 0j l k+ 5 I _ 0) ji /00 n~ _ 0) (C.205)-m,( n~~ mK)F km 0OIK - mSk10m 0)

-m (27tLz)m(K) _ L_ } ++1 - K ] (C.206)

L 0 SO S0 1/

-m (2rLz)m(K) - 0 n+1+ 0}n = m b(2nLz)m(K) 0[{0}1"+ I (C.207)

Which leads to the following discretized version of the liquid water mass conservation in
cylindrical coordinates for the non-isothermal model including dehydration effects:

{mw}n+l 
n

m(K) K At K

k ~{k,(Sw )}|" + k-I(S )}I "

- I d,- K 2 n n{ LE N(K)

n+1 M m(K) 1/0
= + At kT 0 n+1_ n

(C.208)
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Mass Conservation of Water Vapor
M P

R at (I -SO)0 ) +div(lvv) = 
1 1

1-4g

Assuming the temperature does not affect the mass density of the liquid water we can
rewrite the equation in the following way:

$ ((l - SW)pv) + div(ivv) = p_,

First we proceed to integrate over the volume K from (t, tn + 1)

(C.2 10)

(C.209)

MV a
0 1 - Sw)pvdtdQ +

Q t

ffdiv(_v,)dtdQ = f fJJLj-gdtdQ
Q t 92t

Developing each term individually:

* $f (I -Sw)pvdtdg2

Q t

Mn+
= V f({P (1 - S )}n +1 P( S ) n)dj

K

2n L,
0M I~ ~~ +1 n+1 _j~nj Sl

= $ dB f dz({P } {1-S,} -} {1 -S}")rdr

P= 0 z= 0 X

=4$ (2nLz)m(K) {p n+1 n 1 n+ Pj{n 1 n

fdiv(lvv)dtd&2
t

= Atf (w -n)dy = At
3K

(C.215)f (N -n)dy
LE= N(K) eKL

=-At v
Le NK eKL

k aPg
PVf ,kg(Sw)-g~ + ava w 1

0 w Pge,

M 2 nj +{ krg(Sw)I I +{Ikrg(Sw IIn

=o l -+ Oli 2 2
Lr= N(K) 0 K +{}L)

J a (p)rddz
ar

eK, L

+ dva e) 2a rdPdz

eK, L

(C.217)

(C.21 1)

*f
Q

(C.212)

(C.213)

(C.214)

.errddz (C.216)
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11 2(2Knk K + kn{ p I (S n + {k,.(S,)} nj

=- L = N(K) (}K + ) {T n d 19 +

+ dva 2 ] K

(C.218)

Which leads to the following discretized version of the vapor water mass conservation in
cylindrical coordinates for the non-isothermal model including dehydration effects:

{mr } n+1 -_JM In

m(K) At

M n +{pK}n J{krn(Sw) + {krg(Sw n1

-Le E(K) K )0 +{10}1n K K+ K

(f O, {S,}n +f ,{S(}O} 1 f n n n+1

dva 2 -PgIn Pg} -( )p }

(C.219)
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Mass Conservation of Dry air:

$Ma (-SO) + div(jv (C.220)

Ignoring temperature effects we can rewrite the equation in the following way:

Ma ((l - Sv)pa) + div(ia) = 0 (C.221)

First we proceed to integrate over the volume K from (t, t+ 1)

Ma - Sw)padtdQ + f fdiv(Wa)dtdQ = 0 (C.222)
St Qt

Developing each term individually:

* $a f Paf -Sw)]dtdQ

= $ +({(1Sw l Pa(I -Sw)}")d2 (C.223)

=- $ (2Pza(K {p -Sw) n+IP (C.223)

K

= dt ( dy = a (J( -{Pa n{1 d yPaI Sv}nrdr (C.224)

K L N(2(KLZ)m(K)[tPa} {1 - S 1PaIK
1 j- (C.225)

,M a In k+ . In] {p -daf('S

f JJ div(lv)tdi
Kt

=At r(Wa-ldY=At f (rdda Ody (C.226)
SE N(K)eKL[ k 4aaa

Ma Pa krg(S)(pg) - dva f (4n S+{ ar Pg,. }"+{ w

- ft 0 rd erd d ( .2 7
LE N(K)eK+ {

-~a 2n k ({ a} P a}l In) {k rg(S w ) } K n+ { krg(sw )} L " In',gr~
Le(){}M+0f) 2 k)K2LK ,L

R $,), +f $,{S }

+ dva I eJ L2a- rddzva 2 f -ar Pg
e 

(C2L

(C.228)



M 2(2Lz) [k {PaO|nK+{9Pa([|n 2 j{kr(S,)}" + {kr(S,)} 1

~gLe N(K)( (9|K+} L d, (]22# +

K)(~ +S' +f(P { Ij[Pall K)].
+ dva 2 +$ }

(C.229)

Which leads to the following discretized version of the dry air mass conservation in cylin-
drical coordinates for the non-isothermal model including dehydration effects:

fmal In+1 -{ImalI

m(K) K At

M n + {Pa}IjJ f{kr(S)} + {k,r(S)} (

I )E()( +9 dr g K+1 gK

f $(, {S}n +f $, { )[}PaIIL {Pa}K
va 2 n n

(C.230)
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Liquid - Vapor Balance:

RO (P W _ Pww 10In + L(O-0) + (CP- CPV)(o-0o- in)

First we proceed to integrate over the volume K from (t, tn+1)

In dtdQ = ff + _(O - 00) + (C,- C,, 0 - 00 - Oln(2 dtdQJffin PV i' PW 0l1 O

Developing each term individually:

*f f In PV dtdg2

12 t Pv 0)

Ri Oln P-idtd&i
-M f~ fP 0

At R0In dL

(C.23 1)

(C.232)

(C.233)

(C.234)

(C.235)

2nt L, (T n
__1R 11

= At-f dB dzJOln rdr = At-(27Lz)m(K) Oln
V= 0 z= 0 X FPVO) M Kt))

K

K)0I~n ~Pv Ri n -i 1= At R (27TLz)m(K){} n jnv_ At4(2nLz)m(K){0}In
MV~ K v) { MV1 pvjjK

K {P}K/

( ) + ( - 0)+(C 1 - C) 10 - 00 - 1nI dtdQ
f( Pw 0 PVL

2n Lz 10
= At f d f dzJ { o + ( - 0) + (C, 1 - C,,)[0 -00- 01n]rdr

$=0 z= 0 X
n

=At(27cLz)m(K) FPW W + 510( 0)+ (Cr 1 - CV[ 0-On _1 ~ (00~+ UOUllI~)jJK

=At(27ELz)m(K)H PW1 IPWO +{LO (0
K

(C.236)

(C.237)

(C.238)00) + (C 1 - C,) 0 -00 - Oln( U

= At(27rLz)m(K) K K +10 K n -1PK + (C - C n _011n-1
W{ 6jjn1 }PV)

K n-1
1N 

0
11K J

(C.239)

Then the liquid-vapor balance equation for the non-isothermal model reduces to:

n {Pv} n {P n {n} -{}[ {} n-
R { } 1n =I ' K K +1 0--1 K + (C - C v) {0 1n -10} 1n I _1 K

v{p}K K K )I

(C.240)
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Entropy Balance:

S += _m s + >i= s;_ = -div(q)

First we proceed to integrate over the volume K from (t, tn 1)

S+ 2 mis + siiry]dtdQ = f[-div(q)]dtdQ
Qt i=w,v,a i=w,v,a Qt

Developing each term individually:

* ,(S + MPS + s wdtdQ
Q i=w, v, a a =w,v, a

= f~ Oas + mjsi)dtd& +f EJ sjjdiv i
Q t w, v,a Ut i=w,v,a dtL

=f SS+ nmis 1 - {SS+ I mis
12( i~,a J i =w, v, a

2n Lz

= f dP f dzf { SS
P=0 z=0 x

I) dQ +Atf ( = Ys>_ V dQ
Q iwv, a

n+i n) 2 L,

+ M mns S + I mis rdr+oAt f dP f dzf(
i=w,v,Ja a=w,v,a P=0 z=0 x

n +I n n

= 0(2TLz)m(K) Ss + 2 i s - SS + vmisi + At s w K

i=w,v,a wK Kv,a K =w,v,a

{Ss~ ' -=s + {i= v n+1 = w,v,a s -At = w v,a
K K KJ

=0(2nLz)m(K) {{Ss n+1
K

n) +({mnsw} n+ - s + ({mvsvI n - { ns} n) {Masa} n+1-

-At {s W } + {SvIv}In +

= 0(27ELz)m(K) ( {Ss In+1 IS,}I + {Inl In+1 n+1 -{m } In { }
KS} LIK) -JK K K K

n[ 1 n+1 n ) _(fM In+1 n+1
+ n+ j vIK K K v1K 

{Sa K

-{ma In {Sa} n)~n 1

-At {w} In{sw} + {wv} {sv} + {W }

(C.24 1)

(C.242)

(C.243)

(C.244)

(C.245)

(C.246)

(C.247)

s w, rdr
i= wv,a

masa 
nK)

{sai'a}I)I

(C.248)

n{Sa} I
(C.249)
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The terms involved in this last expression are the same as those derived for the cartesian
coordinates one. The only changes are taken into account by the m(K) term.

f [-div(q)]dtd92
Qt

= AtJ [-div(q)1d9i = -At f (q -n)dy = -At (q -n)dy (C.250)
SaK Le N(K)eKL

= At f [Xgrad(O)-Lnfdy = AtX E f [Oe,.rr]dy (C.25 1)
L e N(K)eKL L E N(K)eKL

At Le (K)eKL rdPdz = At(2L,)(r)m(K) K + r K (C.252)

The previous terms allow us to write the discretized version of the entropy balance equa-
tion in cartesian coordinates for the non-isothermal model including dehydration effects:

{ n{s}"+1 Is' n + (M } n+1 n 1 In

{mv} n+1{s } n+1 - }{ { n+sa K+ )a
+ 1V K K vla}1 K K K

-At {w }l n {sw} + I} n Is K +al n Sa

= AtX (1({}" I -{}"K)(C.253)
Le N(K)



Summary of the Discretized Equations for the One-Dimension Non-Isothermal
Model in Cylindrical Coordinates

Liquid water conservation:

{mw} ln+1 -{m~ In

m(K) K At K

f{kri(Sw)} I + {k,.(S1)}
- W k,- K L In In{ wLE N(K)

n+i m 'm(K) 1/0O
-Kp K + At kms +K K

(C.254)

Water vapor conservation:

{m,} n+1 n

m(K) At

{k (S )} + {krg(S,)} I

2 K+ I

m 2 k} [ I } + {P}l n1

RL e N(K) (9 K + ) {_}n 2

n )} '+ f(O' IS" IQ][{;}' {In }
dva 2S" I f lL__f vll

2 f~~p }1 {n }P

n+1

-M(K){pw}

(C.255)

Dry air conservation:

m n+ -{ma}I n]
m(K) K At K

a 2 k P}" { Pa} { krg(Sw)n +{krg(S)}

- Le E(K) 0 nK { } . T L K L ({Pg},n {Pg1In)

f ,{S} +f$,{S} n Pal IL {Pa7] -
dva 2 KIn

(C.256)
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Liquid-vapor balance

RI K n

TV K fPy1 n_

-Pl FP, n 0 } I n -
K K +1 0 n 1K + (C -C ) {0}n n _111n1 nIn

Pw0 {o}-I K

Entropy balance:

{(fssn+'I_ {ss}Inl n++ I n+1 ISn

Kv K -{mv) n KSa K -K

-At I L "K SvIn +{I 1,,} n I In +{Val In ISal n

= I 2 ({r} K 101n)(C.258)
Le N(K)

n

(2 i..

(C.257)
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