
INVESTIGATING THE J2EE SOFTWARE ARCHITECTURE

FOR INFRASTRUCTURE MONITORING:
A WATER METERING CASE STUDY

By
MAMEET KHANOLKAR

Bachelor of Engineering, Chemical Engineering
University Of Mumbai, India (1998)

Submitted to the Department of Civil and Environmental Engineering in
Partial Fulfillment of the Requirements for the Degree of

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

MASTER OF ENGINEERING JUN 0 4 2001
In Civil and Environmental Engineering

LIBRARIES
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2001 BARKER

@2001 Mameet Khanolkar. All rights reserved.
The author hereby grants to MIT permission to reproduce and to distribute publicly paper

and electronic copies of this thesis document in whole or in part.

Signature of Author:

Department of Civil and Environmental Engineering
May 11, 2001

Certified by:
'-'George Kocur

Senior Lecturer, Civil and Environmental Engineering
Thesis Supervisor

Accepted by:
Cural Buyukozturk

Chairman, Departmental Committee 'on Graduate Studies

INVESTIGATING THE J2EE SOFTWARE ARCHITECTURE

FOR INFRASTRUCTURE MONITORING:

A WATER METERING CASE STUDY

By
MAMEET KHANOLKAR

Submitted to the Department of Civil and Environmental Engineering on May 1 1 ,h
2001 in Partial Fulfillment of the Requirements for the

Degree of

MASTER OF ENGINEERING
In Civil and Environmental Engineering

Abstract

Java 2 Enterprise Edition (J2EE) isn't a compiler or programming language. It is a

platform for mainframe-scale computing typical of a large enterprise. Infrastructure

applications like billing systems and monitoring systems are examples of enterprise

systems. J2EE was developed by Sun Microsystems and its associates as a Java-

centric platform for enterprise computing.

Distributed applications require access to a set of enterprise services. Typical services

include transaction processing, database access and messaging. The J2EE architecture

unifies access to such services in its enterprise service (Application programming

interfaces) API's. In J2EE the applications programs can access these API's via the web

container.

The Department of Public-Works of the town of Arlington, Massachusetts is installing a

new wireless meter reading system to read all of its water meters multiple times per day.

With the change in the system and also with the very large amount of data coming in

from the water meters daily, a water meter management was built which could perform

analysis on the data that is received through the wireless system and could guide

operational and planning decisions.

Thesis Supervisor: George Kocur
Title: Senior Lecturer in Civil & Environmental Engineering

Acknowledgement

The following are the people who I wish to thank for this thesis:

Prof: George Kocur, who was my graduate advisor and also my thesis advisor, for being

very supportive and understanding in what I was trying to achieve via this thesis.

Mr. Kent Larson of the Department of Public-Works of Arlington, Massachusetts for all

his help in the Master of Engineering (M.Eng) project, which is used as a case study in

this thesis.

Bradford Butler and Sebastian Bogershausen who were my project partners for the

M.Eng project at Arlington. Sincerest thanks to them for being very professional team

members and friends.

The M.Eng IT students (year 2000-2001) who have been a constant source of motivation

throughout this entire experience at MIT

My fianc6 Ms Rachna Jotwani for providing love and emotional support in my life.

My sister and brother-in-law, who live here in Boston, for additional family support during

my time at MIT.

Lastly, I am forever grateful to my parents back home in India for their support in my life

and for bringing me to where I am today.

Table of Contents

TABLE OF CONTENTS .. 4

TABLE OF FIGURES .. 8

INTRODUCTION.. 9

1 JAVA 2 PLATFORM, ENTERPRISE EDITION (J2EE) AN

INTRODUCTION ... 11

1.1 G EN ESIS ... 11

1.2 NEED FOR J2EE IN ENTERPRISE APPLICATION DEVELOPMENT 11

1.3 SYSTEM ARCHITECTURE ... 12

1.3.1 2-Tier Architecture.. 12

1.3.2 3-Tier Architecture.. 13

1.3.3 n-Tier Architecture.. 15

1.3.4 Enterprise Architecture... 16

1.4 JAVA LANGUAGE IN DEVELOPMENT OF ENTERPRISE APPLICATIONS 18

1.5 J2EE PLATFORM ... 18

1.5.1 J2EE Runtime ... 19

1.5.2 J2EE API's ... 19

1.6 J2EE ARCHITECTURE - CONTAINERS .. 20

1.7 CONTAINER ARCHITECTURE ... 22

1.7.1 Application Components .. 22

1.7.2 Deployment Descriptors... 22

1.8 J2EE TECHNOLOGIES... 23

1.8.1 The Component Technologies ... 23

1.8.2 Web Components.. 24

1.8.3 Enterprise Javabean Components... 24

1.9 SERVICE TECHNOLOGIES...25

1.9.1 JD B C 25

1.9.2 Java Transaction API.. 26

4

1.9.3 JNDI .. 26

1.10 COMMUNICATION TECHNOLOGIES ... 26

1.10.1 Internet protocols .. 26

1.10.2 H7TP 26

1.10.3 TCP/IP.. 27

1.10.4 SSL... 27

1.10.5 Remote Object Protocols... 27

1.10.6 JavaIDL .. 28

1.10.7 JM S... 28

1.10.8 JavaM ail.. 28

1.10.9 XM L... 28

2 DEVELOPING J2EE APPLICATIONS .. 30

2.1 APPLICATION COMPONENT DEVELOPMENT... 30

2.2 COMPOSITION OF APPLICATION COMPONENTS INTO MODULES 30

2.3 COMPOSITION OF MODULES INTO APPLICATIONS ... 31

2.4 APPLICATION DEPLOYMENT.. 31

2.5 J2EE APPLICATION DEVELOPMENT AND DEPLOYMENT ROLES 32

3 W ATER M ETERING CASE STUDY:...34

ARLINGTON W ATER PROJECT .. 34

3.1 INTRODUCTION.. 34

3.2 FUNCTIONALITIES .. 35

3.2.1 Bill Preparation... 35

3.2.2 Leak Detection... 35

3.2.3 Usage Analysis .. 36

3.2.4 Water Theft ... 36

3.2.5 M eter Watch ... 36

3.3 SYSTEM ARCHITECTURE AND J2EE.. 36

4 WATER METERING CASE STUDY: BASICS OF THE J2EE

TECHNOLOGIES USED IN THE PROJECT .. 38

5

4 .1 JSP B A SICS .. 38

4.1.1 W riting JSP 's... 38

4.2 USING JAVABEANS WITH JSP BASICS (REUSABILITY)....................................... 41

4.2.1 Javabean U se ... 42

4.3 JD B C B ASICS .. 44

4.3.1 D atabase D rivers .. 44

4.3.2 Loading a Database Driver and making a connection 45

4.3.3 Creating & Executing SQL statements..46

4.3.4 Using the ResultSet object...47

4.3.5 Closing the Connection...47

5 WATER METERING CASE STUDY: APPLYING J2EE TECHNOLOGY

DESIGN PRINCIPLES TO THE PROJECT .. 48

5.1 INTRODUCTION ... 48

5.2 JSP DESIGN (PAGE-CENTRIC).. 48

5.2.1 P age View .. 49

5.2.2 Page-View with Bean ... 50

5.3 BILL PREP FUNCTIONALITY - ABNORMAL INCREASE (BPAI)........................50

5.3.1 Explanation of the Functionality (BPAI) ... 50

5.4 JAVABEAN USAGE IN BPAI (MODULARITY) .. 52

5.5 DATABASE TABLE STRUCTURE ... 53

5.6 BPAI FUNCTIONALITY PROCESS & CODE EXPLANATION 53

5.7 CURRENT SYSTEM TRADE-OFFS ... 61

5.8 FUTURE EXTENSIONS & GUIDELINES FOR A DISTRIBUTED COMPUTING

E NV IRO N M E N T ... 62

6 ALTERNATIVE TO J2EE ... 63

6.1 INTR ODUCTION ... 63

6.2 COMPONENTS OF THE .NET PLATFORM.. 63

6.3 COMPARING .NET w iTH J2EE .. 64

6.3.1 Technical Component Level Comparison ... 64

6.3.2 Practical Implementation Differences (Critical differences)................ 66

6

6.4 CONCLUSION .. 69

7 REFEREN CES .. 71

8 APPEN D IX A .. 72

8.1 JAVABEAN CODE THAT WAS USED IN THE PROJECT TO RUN GENERAL TASKS WITH

THE DATABASE ... 72

8.1.1 D bBean.java... 72

8.2 CODE WHICH IMPLEMENTS THE ANALYSIS FOR BILL PREPARATION ABNORMAL

INCREASE ... 74

8.2.1 Run Analysis.jsp .. 75

8.2.2 BPIncrease.java .. 79

8.2.3 BillPrepResults.jsp .. 83

7

Table of Figures

Figure 1: 2-tier Architecture.. 13

Figure 2: 3-tier Architecture .. 14

Figure 3: n-tier Architecture..16

Figure 4: Enterprise Architecture ... 17

Figure 5: J2EE Architecture .. 20

Figure 6: Container Architecture... 22

Figure 7: J2EE Application Deployment.. 32

Figure 8: Pure Java JDBC Driver ... 45

Figure 9: Page View (JSP Design) ... 49

Figure 10: Page View with Bean (JSp Design).. 50

Figure 11: Case Study, Home Page (Screenshot)..54

Figure 12: Case Study, Report Configuration page (Screenshot) 55

Figure 13: Case Study, Home Page (2) (Screenshot)..57

Figure 14: Case Study, Intermediate Page (Screenshot).. 58

Figure 15: Case Study, Bill Prep Results page (Screenshot)...................................59

Figure 16: Case Study, Bill Prep Details Page, (Screenshot) 60

Figure 17: Case Study, BPAI Graph page (Screenshot).. 61

Figure 18: Architecture for J2EE & .NET ... 67

8

Introduction

This thesis discusses the Java 2, Enterprise Edition (J2EE) platform architecture and

investigates into how it can be applied to infrastructure monitoring applications.

Infrastructure applications could mean any kind of software application that is used to

control or implement infrastructure related activities like management, monitoring and

billing for electricity, water. These applications could be built for a small town or may be

for an entire city or country depending on the application.

In chapters 1 and 2 the thesis gives an overview of the J2EE platform and the

technologies involved in the specifications. These chapters give the definitions and some

basics of all the technologies involved and then provide some insight into the overall

framework required for deploying applications built on the J2EE platform.

For the case study the thesis will discuss the Arlington Water Project, which is an

ongoing Master of Engineering Project (2001) in the information systems group of the

Civil & Environmental Dept at MIT. The project is a collaborative effort between MIT and

the 'Department of Public-Works' (DPW) of the town of Arlington. The project involved

building a customized software application to help the DPW to manage its water supply

system and also do analysis on the data that is coming in very frequently from the new

wireless meter reading system that would be installed in the new future.

The thesis introduces the project briefly in chapter 3. Chapter 4 discusses the basic

J2EE technologies used in the project and also goes into the basics of using those

technologies in application development. Chapter 5 uses one of the functionalities

namely the Bill Preparation - Abnormal Increase (BPAI) to explain how the different

technologies under J2EE work together to implement it. This chapter explains the

functionality in 2 perspectives, the user perspective and the code perspective. The user

perspective is what the user sees when he runs the functionality on the system. The

code perspective is what happens at the back end in the system and how the code is

structured so that the system actually does the analysis corresponding to the

functionality. As a reader of the thesis it is important to note that all the other

functionalities in the project are implemented in exactly the same way or framework that

was used for the implementation of the BPAI functionality.

9

In chapter 6 the thesis looks at an alternative to using J2EE in Enterprise application

development ie. the .NET platform provided by Microsoft. This chapter is meant to give

the reader an overall perspective of the two leading platforms that are currently in the

competition for building enterprise-wide software applications. This chapter differentiates

between the two platforms and presents a conclusion on when it might be preferable to

use either of the two options.

10

1 JAVA 2 Platform, Enterprise Edition (J2EE)
An Introduction

1.1 Genesis

J2EE is a platform developed by Sun Microsystems and its associates for making Java a

platform for enterprise computing. J2EE is a platform for mainframe-scale computing

typical of a large enterprise.

In this chapter, the thesis gives a brief introduction of the J2EE architecture and the

various Java technologies that are part of its specification.

1.2 Need for J2EE in Enterprise Application Development

With the advent of the Internet and a gradual shift to an information economy, many

businesses are rethinking their basic business practices. One place these shifts in

business practices have been felt is at the application development level. The whole

revolution is driven by the rapidly changing technological and economic landscape,

which has created some new challenges for today's enterprise application developer.

Some of the application development challenges are listed below:

* Responsiveness

Responding quickly to new directions and information is critical in establishing

and maintaining a competitive edge.

* Programming productivity

Direct adoption of new technologies is insufficient unless they are properly

utilized to their full potential and appropriately integrated with other relevant

technologies. Thus, the ability to develop and then deploy applications as

effectively and as quickly as possible is also important.

* Reliability & Availability

In the Internet economy downtime can be fatal to the success of a business. The

ability to get web-based operations up and running, and to keep them running is

critical to success. The application must also be able to guarantee the reliability

11

of business transactions so that they will be processed completely and

accurately.

* Security

The Internet has not only exponentially increased the number of potential users

but also the value of a company's information, thus the security of that

information has become a prime concern. As technologies become more

advanced, applications more sophisticated, and enterprises more complex, the

ability to implement an effective security model becomes increasingly difficult.

* Scalability

The ability for the application to grow to meet new demands both in its operation

and user base is important when an applications potential user base may be

millions of individual users through the Internet. To scale effectively requires not

only the ability to handle a large increase in the number of clients but also

effective use of system resources.

" Integration

Although information has grown to be a key business asset, much of this

information exists as data in old and outdated information systems. In order to

maximize the usefulness of this information, applications need to be able

integrate with the existing information systems. The ability to combine old and

new technologies is key to the success of developing for today's enterprises.

1.3 System Architecture

The thesis will now introduce the concept of n-tier architecture before discussing the

J2EE platform.

1.3.1 2-Tier Architecture

In a 2-Tiered architecture there is a clear separation between the data and the

presentation/business logic. The application exists entirely on the client machine while

the database server is deployed somewhere in the organization.

12

Application

DB

Figure 1: 2-tier Architecture

The processing load is given to the client PC while the database (DB) server simply acts

as a traffic controller between the application and the data. The application performance

tends to suffer due to the limited resources of the PC. When the entire application is

processed on a PC, the application is forced to make multiple requests for data before

even presenting anything to the user. These multiple database requests can heavily tax

the network.

Another problem of the 2-Tiered approach is with maintenance. Even the smallest of

changes to an application might involve a complete rollout of the entire user base. Even

if it is possible to automate the process, you still have to update every client installation.

1.3.2 3-Tier Architecture

Ina 3-Tier architecture the application is broken up into 3 separate logical layers, each

with a well-defined set of interfaces.

13

Figure 2: 3-tier Architecture

The first tier is referred to as the 'Presentation layer' and typically consists of a graphical

user interface of some kind. (eg. Browser).

The middle tier or business layer consists of the application or business logic.

The third tier - the data layer - contains the data that is needed for the application.

The middle tier is basically the code that the user calls upon through the presentation

layer to retrieve the desired data. The presentation layer receives data and formats it for

display on the presentation layer. This separation of application logic from the user

interface adds enormous flexibility to the design of the application. Multiple user-

interfaces can be built and deployed without ever changing the application logic,
provided the application logic presents a clearly defined interface to the presentation

layer.

14

Application
Logic

I
User Interface

XML
DocumentsDB L[

The third tier data can consist of any source of information, including an enterprise

database such as Oracle or Sybase, a set of XML (Ref: sec 1.10.9) documents or even

a directory service.

1.3.3 n-Tier Architecture

As the title suggests, there is no hard and fast way to define the application layers for an

n-tier system. In fact, an n-tier system can support a number of different configurations.

In an n-tier application, the application logic is divided by function rather than physically.

The n-tier architecture can be broken down into

* A user interface (UI) that handles the users interaction with the application. This

can be a web browser running through a firewall*, a heavier desktop application

or even a wireless device.

*A firewall is a set of related programs, located at a network gateway server that protects the resources of a

private network from users from other networks.

* Presentation logic that defines what the user interface displays and how a users

requests are handled. Depending on the different user interfaces that the

application supports you may have different versions of the presentation logic to

handle the client properly.

* Business Logic that models the applications business rules, often through the

interaction with the application's data.

" Infrastructure Services that provide additional functionality required by the

application components, such as messaging, transactional support etc

* The data layer where the enterprise data resides.

15

Browser

Frewall

Application Client

DB
XML

Documents 9

Figure 3: n-tier Architecture

1.3.4 Enterprise Architecture

In an Enterprise, there are many different applications -possibly with different
architectures and they all need to be able to communicate with each other.

The n-tier architecture described earlier was application specific. Rather than a change
in architecture - enterprise architecture is basically just n-tier - but with a change in
perception. To turn the n-tier system into an enterprise system, the middle tier is

16

Presentation Logic

Business Logic

{71-

extended to allow for multiple application objects rather than just a single application.

These applications each must have an interface that allows it to work together with the

others.

HTML Form
(Browser).

Java Applet
(Browser)

Any System Capable
of Presenting Data

Interface Interface Interface
Application Applicaion Applicaion

[Componen Component ComponentI Y pA4I.n

t

DB ~- -

DB

Remote System X L
Documents

Figure 4: Enterprise Architecture

An interface can be thought of as a contract. Each object states through its interface that

it will accept certain parameters and return a specific set of results. Application objects

communicate with each other using their interfaces.

17

[

I-
C3 (:Iz)u IVI! UII:M drt

In enterprise architecture, multiple applications use a common set of components across

an organization.

1.4 Java language in development of Enterprise applications

Platform Independence

An enterprise's information is spread disparately across many platforms and

applications. It is important therefore, to leverage a programming language that can work

equally well throughout the enterprise without having to resort to awkward, inefficient

translation mechanisms. Java's platform independence capability allows it to be

distributed throughout an enterprise on different kinds of platforms.

Reusability

Code reuse is essential to all programming. Segregating an application's business

requirements into component parts is one way to achieve reuse; using object-oriented

concepts to encapsulate shared functionality is another. Java uses both. Java is an

object oriented programming language and as such, provides mechanisms for reuse.

Modularity

When developing a complete server side application, programs can get large and

complex very quickly. It is always best to break down an application into discreet

modules that are each responsible for a specific task. 'Java Servlets', 'Java Server

Pages' and 'Enterprise Java Beans' provide ways to modularize an application -
breaking your application into tiers and tasks.

The goal behind the J2EE platform is to provide a simple, unified standard for

distributed applications through a computer based application model.

1.5 J2EE Platform

The J2EE platform is essentially a distributed application server development - a Java
environment that provides the following -

" A runtime infrastructure for hosting applications

" A set of Java API's to build applications

18

1.5.1 J2EE Runtime

The J2EE bundles together API's that have been in existence in one form or another for

quite some time. The most significant aspect of J2EE is its abstraction of the runtime

infrastructure. The J2EE specification does not specify how a J2EE runtime should/could

be built. Instead, the J2EE specifies roles and interfaces for applications, and the

runtime onto which applications could be deployed. This results in a clear demarcation

between applications and the runtime infrastructure. This demarcation allows the runtime

to abstract most of the infrastructure services that enterprise developers traditionally

build up on their own.

As a result, using J2EE, a developer focuses on the application logic and related

services, while leveraging the runtime for all infrastructure related services.

Apart from specifying a set of standard API's, the J2EE architecture provides a uniform

means of accessing these services via its runtime environment.

As mentioned earlier J2EE does not specify the nature and structure of the runtime.

Instead, it introduces what is called a container, and via the J2EE API's specifies a

contract between containers and applications.

1.5.2 J2EE API's

Distributed applications require access to a set of enterprise services. Typical services

include transaction processing, database access, messaging etc. The J2EE architecture

unifies access to such services in its enterprise service API's. In J2EE the applications

programs can access these API's via the container.

The specification of the J2EE platform defines a set of Java standard extensions that

each J2EE platform must support.

* Java Database Connectivity (JDBC) 2.0 Extension

* Remote Method Invocation over the Inter-ORB Protocol (RMI-IIOP) 1.0

* Enterprise Java Beans (EJB) 1.1

" Java Servlets 2.2

* Javaserver Pages (JSP) 1.1

19

" Java Message Service (JMS) 1.0

" Java Naming and Directory Interface (JNDI) 1.2

" Java Transaction API 1.0

* Java Mail 1.1

All the above API's are specifications, independent of implementation. One should be

able to access services provided by these API's in a standard way, irrespective of how

they are implemented.

1.6 J2EE Architecture - Containers

A typical commercial J2EE platform includes one or more containers. A J2EE container

is a runtime to manage applications components and to provide access to the J2EE

API's. Beyond the identity associated with the runtime, J2EE does not specify any

identity for the containers.

The following figure shows the architecture of J2EE:

Figure 5: J2EE Architecture

The architecture shows two containers:

1. A web container for hosting Java serviets and JSP pages.

2. An EJB container for hosting enterprise javabean components

20

Note: Apart from the 2 containers mentioned above, J2EE also specifies 2 more

containers - an applet container to run applets, and an application client container for

running standard Java application clients. This thesis's focus is limited to web and EJB

containers only.

In the figure above, the vertical blocks at the bottom of each container represent the

J2EE API's. Apart from access to the infrastructure-level-API's, each container also

implements the respective container- specific API (Java servlet API for the web

container and the EJB API for the EJB container)

The stacks of rectangles (servlets, JSP pages, and EJB's) in the figure are the programs

that a developer writes and hosts in these containers. In the J2EE parlance, these

programs are called application components.

So, a container is a Java 1.2(Java 2 Standard Edition 1.2) runtime for application

components.

In this architecture, there are primarily 2 types of clients

* Web clients

Web clients normally run in web browsers. The user interface is generated on the

server side as HTML or XML, and is downloaded and then rendered by the

browsers. These clients use HTTP to communicate with web containers.

Application components in web containers include Java servlets & Java server

pages. These components implement the functionality required for the web

clients. Web containers are responsible for accepting the requests from the

clients, and generating responses with the help of the application components.

* EJB clients

EJB clients are applications that access EJB components in EJB containers.

There are 2 possible EJB clients. The first category is application clients.

Application clients are stand-alone applications accessing the EJB components

using the RMI-IIOP protocol (Ref to sec 1.10.5.0). The second category, are the

components of the web container. Java servlets and JSP pages can also access

21

the EJB components via the RMI-IIOP protocol

application clients.

In either case, clients access the application components via the respective container.

Web clients access the servlets and JSP pages via the web container, and EJB clients

access the EJB components via the EJB container.

1.7 Container Architecture

Application I
Components

Deployment
Descriptor Application

Components

Deployment
Application Descriptor

Components

Deployment
Descriptor

I0
uonrasner~serviceAi

Figure 6: Container Architecture

In this architecture, you provide the following as a developer

1.7.1 Application Components

Application components include the servlets, JSP's, EJB's etc. In J2EE the components

can be packaged into archive files.

1.7.2 Deployment Descriptors

22

in the same way as the

A deployment descriptor is an XML file (Ref sec 1.10.9) that describes the application

components. It also includes additional information required by containers for effectively

managing application components.

The rest of the figure forms the container. The architecture of a container can be divided

into 4 parts.

1. Component Contract:

A set of API's, specified by the container that the application components are

required to extend or implement.

2. Container Service APIs

Additional services provided by the container, which are commonly required for

all applications in the container.

3. Declarative Services

Services that the container interposes on your application, based on the

deployment description for each of the application component.

4. Other Container Services

Runtime services related to component lifecycle, resource pooling, garbage

collection etc.

1.8 J2EE Technologies

These are the collection of technologies (Java API'S and Associated technologies) that

provide the mechanics needed for building large, distributed enterprise applications.

The large collection of quite disparate technologies can be divided according to use:

1.8.1 The Component Technologies

These technologies are used to hold the most important part of the application - the

business logic. The J2EE platform provides three technologies for developing

components. (The J2EE platform does not specify that an application need make use of

all 3 types).

1) Servlets

2) Java Server Pages (JSP)

23

3) Enterprise Java Beans (EJB)

1.8.2 Web Components

These can be categorized as any component that responds to an HTTP request. A

further distinction that can be drawn is on the hosting container for the application

components.

1) Servlets

Servlets are server side programs that allow application logic to be embedded in

the HTTP request-response process. Servlets provide a means to extend

functionality of the web server to enable dynamic content in HTML, XML or other

web languages.

2) Javaserver pages (JSP)

Javaserver pages (JSP) provide a way to embed components in a page, and to

have them do their work to generate the page that is eventually sent to the client.

A Javaserver page can contain HTML, Java code and javabean components.

Javaserver pages are infact an extension of the servlet programming model.

When a user requests a JSP page, the web server compiles the JSP page into a

servlet. The web server then invokes the servlet and returns the resulting content

to the web browser.

Compared to servlets, which are pure Java code, javaserver pages are merely

text-based documents until the web server compiles them into the corresponding

servlets. This allows a clearer separation of application logic from presentation

logic; this allows application developers to concentrate on business matter and

web designers to concentrate on presentation.

1.8.3 Enterprise Javabean Components

The EJB architecture is a distributed component model for developing secure, scalable,

transactional and multi-user components. They are reusable software units containing

business logic. Just as JSP's allow the separation of application and presentation logic,

EJB's allow the separation of application logic from system level services, thus allowing

24

developers to concentrate on the business domain issues and not system programming.

These enterprise beans business objects take 2 basic forms

1) Session Beans

2) Entity Beans

Session Beans

Session beans are of 2 types. A stateful session bean is a transient object to represent

a client's requests in the application, accessing a database etc. When client operations

are completed it is destroyed. The session bean exists for the length of the client

session. An example of this is an online shopping cart. Alternatively a stateless session

bean maintains no state between client requests. Generally, this type of session bean is

used to implement a specific service that does not require client state, for instance, a

simple database update.

Entity Beans

An entity bean on the other hand is a persistent object that models the data held within

the data store. It acts as a object wrapper for the data. Compared to session beans,

which can be used by any client, entity beans can be accessed concurrently by many

clients but must a unique identity through a primary key. In the J2EE container

architecture you can elect whether to have the persistent state of the entity bean

managed automatically by the container or whether to implement this manually in the

bean itself.

1.9 Service Technologies

Some of the J2EE services for the application components are managed by the

containers, so that the developers can concentrate on the business logic. The developer

can also programmatically invoke these services when needed.

1.9.1 JDBC

The Java Database connectivity (JDBC) API provides the developer with the ability to

connect to relational database systems. J2EE adds an extension to the core JDBC API

that comes with the Java 2 Standard edition to add features such as connection pooling

and distributed transactions.

25

1.9.2 Java Transaction API

The Java Transaction API (JTA) is a means for working with transaction, especially

distributed transactions independent of the transaction manager's implementation (the

Java transaction service (JTS)). In the J2EE platform distributed transactions are

considered to be container controlled. However, the J2EE transaction model is

somewhat limited so it may be necessary for the developer to implement it.

1.9.3 JNDI

The 'Java Naming and Directory Interface' (JNDI) API in the J2EE platform has two

usages

1. It provides the means to perform standard operations with a directory service

resource such as LDAP, Novell Directory services or Netscape directory

services.

2. J2EE utilizes JNDI to look up interfaces used to create among other things,

EJB's and JDBC connections.

1.10 Communication Technologies

The final technology grouping is those technologies that provide the means for the

various components and services within a J2EE application to communicate with each

other. A distributed application would be pretty ineffectual if these technologies didn't

provide the connectivity to hold it all together.

1.10.1 Internet protocols

In n-tier applications, the client will often be a web browser. A client's requests and the

servers responses are communicated over 3 main protocols.

1.10.2 HTTP

HTTP or Hypertext Transfer Protocol is a generic, stateless, application-level protocol. It

works on a request/response basis - a client sends a request to the server in the form of

a request method, URI (Uniform Resource Identifier) and protocol version followed by a

MIME message containing request modifiers, client information and possible body

content over a connection with a server. The server in turn responds with a status line

26

followed by a MIME like message containing server information, entity meta-information,

and possible entity-body content.

1.10.3 TCP/IP

TCP (Transmission Control Protocol) over IP (Internet Protocol) are actually two

separate protocols, but are typically combined into a single entity. IP is the protocol that

takes care of making sure that data is received at both endpoints in communication over

the Internet. When you type the address of a web site into the browser, IP ensures that

your requests and the fulfillment of those requests make it to the proper destinations. For

efficiency, the data being sent between the client and a web server is broken into several

pieces, or packets. All of these packets do not have to take the same route between the

client and the web server. TCP is the protocol that keeps track of all the packets and

makes sure that they are assembled in the same order that they were dispatched and

are error free. Therefore TCP and IP work together to move the data around on the

Internet. For this reason you will see these two protocols combined into TCP/IP.

1.10.4 SSL

Secure Socket Layer (SSL) uses cryptography to encrypt the flow of information

between the client and the server. This also provides a means for both parties to

authenticate each other. Secure HTTP (HTTPS) is usually distinguished from regular

unencrypted HTTP by being served on a different port number, 443, by default.

1.10.5 Remote Object Protocols

In applications where the components are often distributed across many tiers and

servers, some mechanism for using the components remotely is required - preferably in

a way that client isn't aware that the component is not local to itself.

1.10.5.1 RMI and RMI-IIOP

Remote Method Invocation (RMI) is one of the primary mechanisms in distributed

object applications. It allows the use of interfaces to define remote objects. Methods are

then called on these remote objects as if they were local. The exact wire-level

transportation mechanism is implementation specific.

27

RMI HOP is an extension of RMI but over HOP (Inter -ORB Protocol), which allows you

to define a remote interface to any remote object that can be implemented in any

language that supports OMG mapping and ORB.

1.10.6 JavalDL

Through the use of JavalDL, a Java client can invoke method calls on a CORBA objects.

These CORBA objects need not be written in Java but merely need to implement an

IDL- defined interface. This is done in conjunction with RMI-IIOP.

1.10.7 JMS

In the enterprise environment, the various distributed components may not always be in

constant contact with each other. The Java message provides the mechanism for

sending data asynchronously between components. It provides the functionality to send

and receive messages through the use of message-oriented middleware (MOM).

1.10.8 JavaMail

An alternative asynchronous process to messaging is JavaMail. JavaMail also allows the

sending and receiving of messages; however it is oriented towards the user than parts of

an application. JavaMail supports the most widely used Internet protocols like IMAP4,

POP#, and SMTP, but compared to JMS its is slower and less reliable.

1.10.9 XML

XML (Extensible Markup Language) influences the way we view, process, transport

and manage data. The data description mechanisms in XML mean it is a great way to

share information because:

" It is open: XML can be used to exchange data with other users and programs in

a platform independent manner.

* It is self-describing which makes it an effective choice for business to business

and extranet solutions.

* It allows the sharing of data between programs without prior co-ordination.

XML plays a significant role in the construction of J2EE applications

28

* The J2EE architecture provides the means for a container to provide services at

runtime through the declarative mechanism defined in a deployment descriptor.

This deployment descriptor is an XML file.

* XML can be used to integrate a J2EE application with legacy systems.

* Application data can be returned in XML instead of HTML for displaying to the

client.

29

2 Developing J2EE Applications

This chapter will discuss how all the Java technologies introduced in chapter 1 can be

packaged together to build enterprise applications.

The J2EE specification specifies the following steps in the application and deployment

process.

2.1 Application Component Development

During this step, business rules are modeled in the form of application

components. This step ideally could involve using UML to model business logic

of the application using class diagrams, Use cases, sequence diagrams, Activity

diagrams etc. The next step would involve writing the code for the business

model in Java and also with the help of the various JAVA API's for JSP, servlets,

JDBC etc.

2.2 Composition of Application components into modules

In this step, the application components are packaged into modules. This phase

involves providing deployment descriptors for each module.

A module is used to package one or more related application components of the

same type. Apart from the application components, each module also includes a

deployment descriptor describing the structure of the module. There are 3 types

of modules in J2EE

* Web Modules

A web module is a deployable unit consisting of Java servlets, JSP

pages, JSP tag libraries, library JAR files, HTMUXML documents, and

other public resources such as images, applet class files, etc. A web

module is packaged into a web archive file, also called WAR file. A WAR

file is similar to a JAR file, except that a WAR file contains a WEB-INF

directory with the deployment description contained a 'web.xml' file.

* EJB Modules

30

An EJB module is a deployable unit consisting of EJB's and associated

library JAR files, and resources etc. EJB modules are packaged into JAR

files and resources etc. EJB modules are packaged into JAR files, with a

deployment descriptor (ejb-jar.xml) in the META-INF directory of the JAR

files.

* Java Modules

A Java module is a group of Java client classes packaged into JAR files.

The deployment descriptor for a Java module is an application-client.xml

file.

2.3 Composition of modules into applications

This step integrates multiple modules into J2EE applications. This requires

assembling one or more modules into J2EE applications, and supplying it with

descriptor files.

The highest level of packaging is in the form of applications. A J2EE application

consist of one or more modules composed into an 'Enterprise Archive' (EAR) file.

An EAR file is similar to a JAR file, except that it contains an 'application.xml' file

located (located in the META-INF directory) describing the application.

The 'application.xml' is a means of specifying which modules make up the

application. The advantage of this structure is that it allows reuse of the various

components at different levels. Application components can be reused across

multiple web modules. Similarly modules can be reused across multiple

applications.

2.4 Application Deployment

In the final step the packaged application is actually deployed and installed on

the J2EE platform application server.

This process involves 2 steps

* To prepare the application for installing on to a J2EE application server.

This involves copying the EAR files onto the application server,

31

generating additional implementation classes with the help

container, and finally installing the application onto the server.

of the

* To configure the application with application server specific information

Figure 7: J2EE Application Deployment

2.5 J2EE Application Development and Deployment Roles

Apart from the process, the J2EE specification also defines a number of roles in the

development of J2EE applications.

* J2EE product providers

The J2EE product provider provides the base J2EE platform upon which the

application is developed - this will be the relevant server vendor who implements

the container architecture and the J2EE API's defined by the J2EE specification.

" Application component Provider.

The application component provider is the application developer who creates the

application functionality, although this role could be further divided into specific

areas of expertise such as web-developer, EJB developer, etc.

32

" Application Assembler

The application assembler takes the application components and packages them

together through the series of modules and descriptor files so that they can be

deployed to the production servers.

* Deployer

The deployer installs the packaged application, and configures it for the operating

environment on which the application will be running.

* System Administrator

Responsible for maintaining and administering the application once it is deployed

* Tool Provider

Provides tools that are of use in the development and deployment of application

components.

33

3 Water Metering Case Study:
Arlington Water Project

3.1 Introduction

The case study for this thesis is a Master of Engineering (M.Eng) project at MIT for the

Department of Public Works (DPW) of the town of Arlington, Massachusetts. It involved

building a software system for their 'Water Supply Management' division after a new

wireless system for reading the water meters would be installed sometime in 2001 or

2001. For further details on the functionalities of the system please refer the project

report titled 'Water supply management system for the Department of Public Works for

the town of Arlington, Massachusetts" (M.eng, Year 2001) *. (See References)
*For further reference please refer to the project report and 2 more thesis documents listed in the references

This thesis will concentrate on the technical challenges in terms of the software system

that was built to do analysis on the readings obtained from the wireless system in the

town. In particular, one of the functionalities namely 'Bill Prep - Abnormal Increase'

(BPAI) would be used to explain the how the J2EE technologies were used to build it.

The project at Arlington will continue for the next year (2001 -2002). Presently the

system being built at Arlington is not a distributed system and the thesis will discuss how

the J2EE framework could be applied to this project on a distributed computing

environment.

The town has an existing system that allows them to bill their customers. The town takes

the meter readings (the meter are physically read by personnel) twice a year and

consequently the customers are billed twice a year for their water in the town. There are

approximately 12,200 water meters in the town.

The new wireless system that will be installed sometime in the near future, will allow the

DPW to get readings from the water meters as frequently as every 10 minutes. Even if

the town decided to read the meters twice a day, the system would have to deal with

approx 24,400 readings on a daily basis as opposed to dealing with approx 24,400

readings every year as per the current system.

34

The project scope was to build a software system that satisfies the following criteria:

* The system should be able to interface with the wireless system to get the

readings when requested

* The system should be able to perform all the functions of the old system

* The system should be able to perform pre-defined analysis (functionalities, see

section 3.2) on the data that comes in from the wireless units.

* The system should be user friendly

* The system would be web enabled so that results could be viewed on the web

3.2 Functionalities

With the frequency of readings now on a daily basis, there was pre-defined functionality

built into the system that would do some useful analysis on the reading data. For details

on each of the functionality please refer to the project report. However, for the purpose

of this thesis, a brief description of each is given here.

3.2.1 Bill Preparation

The bill preparation functionality allows the user to review account information for

suspect meters before sending billing data to the ICS. The bill prep analysis reports

suspect meters with missing readings, estimated readings, abnormal increase in usage,

and abnormal decrease in usage. Each of these is separate sub functionality within Bill

Prep. Once the user decides all meter information is correct and accurate, he/she can

aggregate the daily readings into a monthly value for each meter. The monthly meter

information is then sent to the ICS for billing purposes. The following list briefly

describes the calculations performed in the bill prep functionality.

3.2.2 Leak Detection

There are two types of analysis used for leak detection.

* The individual leak analysis attempts to identify leaks on the customer side of the

meter. The system will analyze individual meter readings to find suspect activity,

35

which may be the results of a leak. The suspect activity includes sudden increases

in use, an average increase in use above a threshold, and constant night use.

* The MWRA comparison analyzes the relationship between the flow of water into the

Arlington network, via the MWRA meters, and the consumption of water by the

Arlington meters.

3.2.3 Usage Analysis

The usage analysis allows the user to create an aggregate profile for a group of meters.

The user will define the group by checking the appropriate parameter check boxes. If a

box is checked, the group will include meters with the checked attribute. The aggregate

profile will give the user insight on typical historical usage for groups of meters. The

usage profile for the group will only span the time period specified by the user.

3.2.4 Water Theft

The water theft analysis attempts to find meters in Arlington with suspicious activity. The

analysis looks for four types of suspicious behavior; continuous zero usage, negative

usage, broken seals, and loss of physical connection. Meters exhibiting one of the four

types of suspicious behavior will be written to the results table when the analysis is run.

The user may then take appropriate action for each meter. The available actions include

editing information in the database and placing meters on watch.

3.2.5 Meter Watch

The meter watch functionality allows the user to monitor a specific meter. The user must

first place a meter on watch using the meter watch configuration page. Next, the user

must make sure the meter watch check box is checked before the analysis is run. After

the analysis is run, the user may view a report for each meter placed on watch. The

report will include a usage profile for each meter.

3.3 System Architecture and J2EE

The entire system for the town was developed at MIT. The system is a web-based

system and uses the browser as the UI. The system will reside on the intranet of the

DPW and is not accessible to users from outside of the intranet framework.

36

The technologies used for the various components are as follows

* Server - Apache/Tomcat

* Database: MySQL (Open Source Database)

* Programming Language: JAVA 2, Javabeans (J2EE)

* Client-side scripting: Javascript

" Server side scripting: JSP & Servlets (J2EE)

* Web Design: HTML, FrontPage

As the project was an academic project and also had a limited timeframe, there were

some trade-offs made with respect to the system being distributed and also the use of a

open source database like MySQL that does not have the functionality that an ORACLE

database would have. But, by working around the specific problems the system works

efficiently in the current setup.

37

4 Water Metering Case Study: Basics of the
J2EE technologies used in the project

This chapter discusses the basic fundamentals of the various Java technologies used in

the case study project. Please note that the explanation given here is only sufficient for

the reader to understand the code and design framework used in the case study project

only. For a more comprehensive understanding of the technologies, please refer to a

book on each of the technologies.

4.1 JSP Basics

Before going into the details of the code and the framework, an understanding of the

basics of Java Server Pages (JSP) is necessary.

The goal of JSP is to simplify the creation and management of dynamic web pages by

separating content and presentation. JSP's are basically files that combine standard

HTML(or XML) and new scripting tags. The objective is that the HTML (or XML) should

relate to the presentation (look and feel) of the content on a web page. The content itself

could be generated dynamically using the scripting elements.

A JSP page therefore looks somewhat similar to HTML, but it gets translated into a

servlet (Refer to sec 1.8.2) the first time it is invoked by a client. Serviets are programs

that run on a web server acting as a middle layer between a request coming from the

web browser or other HTTP clients and databases or applications on the web server.

The resulting servlet from the JSP is a combination of the HTML from the JSP file and

embedded dynamic content specified by the new tags.

4.1.1 Writing JSP's

The structure of a JSP page is cross between a servlet and an HTML page, with java

code enclosed between the constructs <% and %> and other XML like tags

interspersed.

JSP tags fall into 3 categories

38

4.1.1.1 Directives:

These affect the overall structure of the servlet that results from translation. JSP

directives serve as messages sent to the JSP container from the JSP. They are used to

set global values such as class declarations, methods to be implemented, output content

type etc, and do not produce any out to the client. Directives have scope for the entire

JSP file; in other words, a directive affects the whole JSP file but only that file.

Directives start with <%@ and end with %>; the general syntax is:

<%@ directivename attribute ="value" atrribute = "value" %>

For example, if you wanted import the rmi package for the purpose of the JSP page you

are writing you would write a directive statement as below

<%@ page import= "java.rmL.*" %>

4.1.1.2 Scripting elements

These let you insert Java code into the JSP page (and hence into the resulting servlet).

Java code could be variable or method declarations, scriptlets and expressions.

* Declarations

A declaration is a block of java code in a JSP that is used to define class wide

variables and methods in the generated servlet. Declarations are initialized when the

JSP is initialized and have 'class' scope in the generated servlet, so that anything

defined in a declaration available throughout the JSP to other declarations,
expressions and code.

A declaration block is enclosed between <%! and %> and does not write anything to

the output stream

The syntax is:

<% Java variable and method declaration(s) %>

Example:

39

This declares an integer variable called num and a welcomeMessage(method that
greets the requested person.

Scriptlets

A scriptlet is a block of java code that is executed during the request processing time
and is enclosed between <% and %> tags. What the scriptlet does depends on the
code itself and can be used for producing output to the client. Multiple scriptlets on a
JSP are combined in the generated servlet class in the order they appear in the JSP.

The syntax for the scriptlet is:

<%Valid Java Code %>

Example: scriptiet.jsp

In the JSP above a scriptiet executes a loop 10 times and prints out "Hello World" ten
times to the output stream.

40

0 Expressions

An expression is shorthand for a scriptlet that sends the value of a java expression
back to the client. The expression is evaluated at HTTP request processing time, and
the result is converted to a String and displayed.

An expression is enclosed in the <%= and the %> tags. If the result of the expression
is an object, the conversion is done by using the objects toStringo method. The
syntax is:

<%= Java expression to be evaluated %>

Example: expression.jsp

4.2 Using Javabeans with JSP Basics (Reusability)

Instead of putting all the java code in a JSP file an alternative is to put all the business
logic code in javabeans and just call the various methods etc in the JSP page. The
design concept behind using javabeans with JSP is explained in Ch 5, Section 5.2.
javabean is an effective way to separate content from presentation in a JSP. Also, an
important concept of reusability is accomplished using javabeans and saves repetition of
code.

41

To discuss the entire javabeans concept in Java is beyond the scope of this thesis. The
basics needed to implement them in JSP are discussed here.

A javabean is simple class that you write in Java. A javabean has 3 simple
characteristics:

1.

2.

3.

A bean must have a zero-argument (empty) constructor

A bean class should have no public instance variables

Persistent values should be accessed through method getXxx and setXxx.
(where xxx is the persistent value being accessed)

4.2.1 Javabean Use

The jsp: useBean action lets you load a bean to be used in the JSP page. The simplest
syntax for specifying that a bean should be used in a JSP is:

<jsp: usebean id= "name" class = "package.CIass" />

Example:

Once the bean is instantiated, you can access its properties with jsp: getProperty which
takes a name attribute that should match the id given in jsp:usebean and a property
attribute that names the property of interest. Alternatively, you cold use a JSP
expression that explicitly calls a method on the object.

The syntax for accessing the properties of a bean is:

<]SO; 00%PrQPrtx name= "ban id" brobertv= "oronertv namp" ho

Example:

42

To modify a bean property, we can use jsp: setProperty. The syntax is identical to the
usage of the jsp:getProperty action. The syntax for setting a bean property is:

<jsp: setProperty name= "bean id" property= "property name" value = "value" />

Example:

If you need to run a method named 'connect(' in the DbBean class in your JSP you
could execute it within a scriptlet block

Example:

43

4.3 JDBC Basics

JDBC is essentially an API for executing SQL statements, and extracting the results.

Using this API we can write JSPs that connect to a relational database, execute SQL
queries, and process the results extracted.

4.3.1 Database Drivers

A database vendor typically provides a set of API's for accessing data managed by the

database server. The 'Java Virtual Machine' uses the JDBC driver to translate the

generalized JDBC calls into vendor-specific database calls that the database
understands.

The database driver is a piece of software that knows how to talk to the actual database
server.

There are several approaches for connecting from an application to database server via
a database driver. We will consider the one that was used for the case study project.

Pure Java Driver

These drivers convert the JDBC API calls to direct network calls using vendor-specific

networking protocols by making direct socket connections with the database. The figure
below shows the process

44

Java
application Data Source

JDBC JDBC DriverAPI

Figure 8: Pure Java JDBC Driver

4.3.2 Loading a Database Driver and making a connection

In the case study project the database used is the MySQL database, which is a freely

available open source database. Following are the steps involved in loading and creating

a connection to the MySQL database.

* To the load the driver, you have to load the appropriate class; a static block in the

class itself automatically makes a driver instance and registers it with the JDBC
driver manager. This is done by using the 'Class.forName' method. This method

takes a string representing a fully qualified class name (i.e., one that includes

package names) and loads the corresponding class. This call could throw a
ClassNotFoundException, so it should be inside a try/catch block.

Example:

45

" Once you have loaded the JDBC driver, you need to specify the location of the
database server. URLs referring to databases use the jdbc: protocol and have
the server host, port, and the database name embedded within the URL. The
exact format is defined in the documentation that comes with the particular driver.
Below is the format for MySQL

String dbDriver = " org.gjt.mm.mysql. Driver";

String dbURL = "Jd bc: mysql:/loch-ost/test.wateruser=&password="

* To make the actual network connection, pass the URL, the database username,
and the password to the getConnection method of the Driver-Manager. Below is
the format for MySQL

Connection dbCon;

dbCon = D riverM an ager.getCon necti on(th is. get DbURL());

4.3.3 Creating & Executing SQL statements

* Once a connection has been established, we need to create a statement object.
A statement object is used to send the queries and the commands to the
database and is created from the connection as follows.

0trnlnene "I;:4t~tPM*# nrte$Kpggmqnt(o

* Once a statement object has been created, you can use it to send SQL queries
by using the executeQuery method, which returns an object of type Resultset
(ref sec 4.3.4)

46

For example:

String sql="SELECT f rom Meker~ead ";

Results rs =statem1entexecuteuery(sl);

To modify the database, we can use execUpdate instead of executeQuery and

supply a string that uses UPDATE, INSERT or DELETE.

4.3.4 Using the ResultSet object

The simplest way to handle results from the database is to process them one row
at a time, using the resultSets next method to move through the table a row at a
time. Within a row, Resultset provides various getXxx methods that take a
column name as an argument and return the value as a variety of different Java

types.

Below is an example that prints the values of the first 2 columns in all rows in a
resultSet.

While(resultSet.next()

System.out~println(results.getString(1) +"

results.getstring(2));

4.3.5 Closing the Connection

To close the connection to the database explicitly, you would do the following

Connection.closeo

You should postpone this step if you expect to perform additional database
operations, since the overhead of opening a connection is usually large.

47

5 Water Metering Case Study: Applying
J2EE Technology Design Principles to the

Project
5.1 Introduction

Chapter 3 gave a brief introduction to the case study project. It also discussed the

functionalities in brief. Chapter 4 discussed the fundamentals of the Java technologies

that are used to run the functionalities (eg: Bill Preparation) in the project. This chapter

will discuss how the various Java technologies interact with each other how they were

used to implement the functionality in software system that was built for the case study

project. It will also explain the design concept (framework) behind the system for the

project.

In this chapter, the thesis will attempt to explain the application of the Java technologies

by explaining one of the functionalities in the project namely the 'Bill Preparation-

Abnormal Increase' (BPAI). It should be noted that all other functionalities in the project

follow the same design principles and code structure in implementing them.

5.2 JSP design (Page-Centric)

There are 2 main approaches in JSP design:

1. Page Centric or Client-Server designs. In these designs, requests are made

directly to the JSP page that produces the response.

2. Dispatcher or n-tier designs, in which the request is originally made to a JSP or

a servlet that acts as a mediator or controller- dispatching the requests to JSP
pages and javabeans as appropriate.

In this project, the page-centric approach was used, as the number of users is very
limited and it is not on a distributed level right now. If the system has to scale to a
distributed system with a large number of users executing various transactions
simultaneously affecting the database, then probably the Dispatcher or n-tier design
would be more appropriate.

48

In the Page-centric approach, JSP's or serviets access the enterprise resources (a

database, for example) directly or through a javabean and generate the response

themselves. The advantage of such an approach is that it is simple to program and

allows the page author to generate dynamic content easily, based on the request and

the state of the resources.

There are two main variants here: the Page-View and Page-View with a Bean. Both

these approaches are used in the case study project as and when appropriate.

5.2.1 Page View

This design approach involves direct request invocations to a JSP page with embedded

Java code, and markup tags that dynamically generate output for substitution within the
HTML.

Request

Business
RSpoJSP Processing

Figure 9: Page View (JSP Design)

This approach has many advantages.

* It is easy and is a low overhead approach from a development standpoint
* All the Java code is embedded within the HTML and so changes are confined to

a smaller area, reducing complexity

The main disadvantages are:

" As the scale of the system grows, problems arise such as including too much

business logic in the page.

" Differentiation of presentation & content is not really achieved if there is large

amount of Java code in the HTML.

49

5.2.2 Page-View with Bean

This design approach is used when the page-view approach starts embedding large

amounts of business logic and data access related code into the JSP. The design

becomes more sophisticated as shown in the figure below

Request

~ ~ Business
JSP Worker bean Processing

Response - -

Figure 10: Page View with Bean (JSp Design)

The Java code representing the business logic and simple data storage implementation

is put into the javabean and the JSP page accesses all this code through Bean

instantiation and method calls. This segregation of business logic code in the javabean

leaves the JSP page with minimal code.

The main advantage of this approach is that a distinction can be made in the JSP

between the HTML and the Java Code. The functionality of the bean can be owned

wholly by the software developer and does not have to worry about it interfering with the

design code (HTML), which is handled by the web developer.

This design approach does not scale up to larger distributed systems where you have to

tackle issues like authentication, sessions and database connection pooling, load-

sharing etc.

5.3 Bill Prep Functionality - Abnormal Increase (BPAI)

The thesis will now discuss the 'Bill Prep Abnormal Increase' (BPAI) functionality in

detail to explain how some of the J2EE technologies were used to implement this

functionality in the MIT system, that was built for the DPW of Arlington.

5.3.1 Explanation of the Functionality (BPAI)

50

The BPAI functionality basically is used to figure out which meters had an abnormal

increase in usage in the time period specified. Keep in mind that the software runs via

the web browser, which is the UI. All the time periods are in 'days'.

The user inputs all the parameters on a web page called the 'Report Configuration'

page of the system. The configuration page is common for all the functionalities in the

system. The user views the results for the BPAI by browsing to the 'Bill Prep Results'

section on the Homepage. Each of the functionalities in the project has a separate

results page where the user could view the results independently.

The BPAI functionality uses 4 parameters as input from the user namely

Report Date (End Date): This is the date on which the user runs all the analyses. The

user defines the end date of the analysis at the top of the Report Configuration page.

All the Analyses in the system take this date as the end date for the respective analysis.

Current Time Period: The current time variable defines the first of two time periods

needed for the calculations. The system defines the start date of the time period by
subtracting the current time value from the end date of the analysis.

Past Time Period: The past time variable defines the second of the two time periods.

The past time variable defines the start and end date of the past time period. The end of

the past time period will be the day before the start of the current time period. The

system will then calculate the start date of the past time period by subtracting the past

time variable from the start date of the past time period.

Percent Increase: The percent increase parameter allows the analysis to flag suspect

meters when the percent increase between average daily use in the current time period
and the average daily use in the past time period is greater or equal to the percent

increase parameter. Only flagged meters will appear in the results report.

51

5.4 Javabean Usage in BPAI (Modularity)

In every software system there are certain tasks or functions that will be performed

repetitively and it is implicit that you should not have to rewrite the code for them

wherever you use them. For eg. Opening a database connection, writing database query

output into a table in HTML etc.

In the case study project there were certain classes that were coded so that they take

care of these repetitive functions or tasks. For the entire class diagram please refer to

the Master of Engineering thesis titled 'Architecture of Near Real-Time Monitoring

Systems for Water Distribution Systems' by Sebastian Bogerhausen, year 2001

(Reference no. 9). This thesis will discuss only the methodology and class hierarchy

required to implement the BPAI functionality.

The BPAI functionality uses the Page View with Bean design approach. The javabean,

which is specific to the BPAI functionality is the BPincrease bean. The functionality also

uses other general-purpose beans that are used throughout the project code for

repetitive tasks. These are the DbBean and ReportBean. For detailed explanation of

these javabeans, please refer to the above-mentioned thesis (Reference no. 9). In brief

these beans do the following:

BPncrease bean:

This bean contains the business logic for the BPAI functionality in it. It has a setParam

method, which is called when you want to set the parameters for this functionality. It also

has a run method, which actually does all the calculations and writes the results to a

table in the database.

DbBean bean:

This bean is a general-purpose bean, which is used for all database activities. These

activities include connecting, querying, deleting, updating and disconnecting form a

database.

ReportBean:

52

This bean is used for taking all the parameters on the Report Configuration page and

writing them to a table in the database. All the functionalities including BPAI use this

bean to store the parameters that were set for the analysis in the respective table in the

database.

5.5 Database Table Structure

For all the functionalities including BPAI, the tables in the database have a logical

structure. Basically, all the functionalities have a table for storing the parameters that are

set on the Report Configuration page of the system. All the functionalities and sub

functionalities have a 'results' table, which stores the results of the analysis that was

carried out on the data in the respective functionality. For more details on the database

design and the data model please refer the Master of Engineering thesis titled "The

Business Transformation Effects of Information Technology'; by Bradford Butler, year

2001.

The following tables were used for the BPAI functionality.

Config :

The Config table stores all the parameters for all the functionalities that are set for the

various analyses to run.

BPlncResults:

The BPincResults stores all the results of the BPAI analysis in it. This table is used to

extract the results of the analysis and display it to the user.

5.6 BPAI Functionality Process & Code Explanation

The thesis will now discuss the BPAI working step-by-step giving the user perspective

(what the user does and sees) along with the code perspective (what happens behind

the scene in the system). All the web pages that are referred below are JSP pages. For

the entire code for all pages and javabeans, refer Appendix A

Step 0

53

The user is at the home page of the system and clicks on the Report Configuration
link.

The screenshot of the system below shows the Home page at the beginning of Step 0

UP ,Iwr~.cr~ iff *GJ

Water Management System Home

Ad strative Confi ain Results/Actions
. Accounts
. ICS Bill Report
. Meter Analysis Last Ran: 1/15/01
. Meter Read
. Meter Size
. Meter Type * Report
. Property Type ConfLiuration . BiJ1 Prep end date 1/15/01
- Seal Actions . Watch . Leak Detection end date 1/15/01
. Seal Activity Type Conflauration . Meter Accuracy end date 1/15/01
e Seal Type . Meter Watch end date 1/15/01
- MWRA Meters . Theft end date 1/15/01
. MWRA Meter Read . Usage Pattern end date 1/1/01
. Type of Read
. Zones

RunAmayis I

Figure 11: Case Study, Home Page (Screenshot)

Step 1

User Perspective

The user has to input 4 parameters (explained above) to run this analysis. All
parameters that have to be entered for any of the analysis have to be entered on the
Report Configuration page of the system.

Code Perspective

The user inputs the parameters into a HTML form on the Report Configuration page.

54

zi

The screenshot of the system below shows the configuration page at the beginning of
Step 1

ruzp nme (eponx-oring)sp

H Tm 0 7I A dm s rationbF ''SLI C W0-F'

Report Configuration

Sett mR r P Nava=B

Please Enter the End Date for the entire Analysis: 12000-12-01
(use YYYY: MM: DD format) 20-20

Time Period 3 days

Time Period r25 days

Current Time 130 days

Current Time 110 days

Missing Interval: 124 hours

Past Time 1

Past Time 100

days Pct Increase |55.055 %

days Pct Decrease25.000 %

LEAK DET E T N

Figure 12: Case Study, Report Configuration page (Screenshot)

Step 2

User Perspective

The user submits the configuration page parameters by pressing the submit button on
the Report Configuration page. On pressing the submit button the user is taken back to
the home page.

Code Perspective

When the user presses the submit button on the Report Configuration page, all the
parameters are passed to the ReportBean which in turn writes the parameters to the
Config table in the database via the use of the DbBean bean. The system then forwards
the user to the home page.

55

BILL PREP

T P r Missing
Estimated

"bora

Step 3

User Perspective

To run the analysis the user has to press the Run Analysis page on the home page. On

pressing the 'Run Analysis' button the system brings up an intermediate page, which

shows the user the various analyses (functionalities) that were selected for processing.

The system runs the analysis when a 'Continue' button is pressed on this intermediate

page. After some processing, the user is forwarded to the home page where he can

view the results.

In this analysis, the system compares the average daily use in the current time period to

the average daily use in the past time period. If the percent increase in water usage for a

meter is greater than or equal to Percent Increase parameter then the system will keep

track of it and write it to the results.

Code Perspective

When the user presses 'Run Analysis' button on the table the system accesses the

Config table in the database for the analyses that were selected. It then shows the user

via an intermediate page the analyses that will be run. When the user presses the

'Continue' button on the intermediate page, the system instantiates the BPlncrease

bean and passes the parameters that were set for the analysis to the bean via the

setParam method in it. Once the bean has all the parameters, the run method is called

which contains the business logic that runs the analysis. The run method also writes the

results to the BPlncResults table in the database using the DbBean bean. After all the

analyses are run, the user is forwarded by the system to the homepage.

The screenshot of the system below shows the Home page at the beginning of Step 3

56

Water Management System Home

adn! ive r feut/cin
.Accounts

. ICS Bill Report
Meter Analysis Last Ran: 1/15/01

-Meter Read
. Meter Size
. Meter Type . Report
* Property Type Conflouration . Bill Prep end date 1/15/01
. Seal Actions . Watch . Leak Detection end date 1/15/01
. Seal Activity Type ConfIluratlon . Meter Accuracy end date 1/15/01
. Seal Type . Meter Watch end date 1/15/01
- MWRA Meters * Theft end date 1/15/01
. MWRA Meter Read . Usage Pattern end date 1/1/01. Type of Read
. Zones

RuniAnaysi

W S jIJ 11 9EdorP-L Et!u~ t*-- 5OO.. . AD.. 44 1
Figure 13: Case Study, Home Page (2) (Screenshot)

The Intermediate page is shown below:

57

rtp WpWOMao~

Water Management System

The following are the analysis scheduled to run

Bill Prep

Abnormal Increase

Cononua

jj IJ ff J ... , -IF#I - I0. ~

Figure 14: Case Study, Intermediate Page (Screenshot)

Step 4

User Perspective

The user can view the results by browsing to the Bill Prep results link on the home page.
When the user clicks on the link the BillPrepResults page showing the result is
displayed.

Code Perspective

When the user clicks on the 'BillPrepResults' link on the home page, the system queries
for the BPIncResults table in the database via the DbBean bean. Again with the use of
the DbBean bean the system displays the results of the query in HTML on the browser
on the BillPrepResults page.

The BillPrepResults page is shown below:

58

Following Analysis Is based on: 2000-12-01 00:00:00

Bill Prep: Abnormal Increase

Threshold Set for Percent Increase:50 %
Past Time Period set: 100 days
Current Time Period set:30 days

- Sut ffjx NAvgP-ast-JU -e [Avdfrr s-a ge O5erce-nin--l'- 15eiails
FAKE221850000 Z 7.70 12.67 64.5455 VL5 Dtalis
FAk 3 z 5.80 _4.33 34 _Vew Details
[FAKE2242600 16 65 [25.o0 [50.1502 Ve eal

FAK2375600 6180 130.83 11.69 View talls
FAKE296337000z 9.50 20.67......[117.5789 ... iL
FAKE428847000 z 11.05 31.67 186.6063 Mew Details
FAKE462657000 z 24.95 50.17 101.0822 Vew Dtail
FAKE519742000z 44.70 88.67 98.3669 VLewDtai1s
FAKE699096000 z 13.20 32.33 f144.9242 D
FAKE793020007z 18.60 34.83 87. 2581 D
FAKE709350ISO0 z fi65 .33 5F772654 FView Detail

[RAE7094560O0 7 [b.8 __ di 7566 iewDtans
FAKE709505000 [iew Details,

Figure 15: Case Study, Bill Prep Results page (Screenshot)

Step 6

User Perspective
If the user wishes to see details of a particular meter, he can click on the 'View Details'
link (shown above) in the results table. The readings for the meter in the specified time
period would be then brought up in Excel on the browser, which he can manually graph
with minimal effort.

Code Perspective
If the user clicks on the 'View Details' link the system sends information of that particular
meter to the BpAbincGraph page, which basically retrieves all the information from the
BPIncResults in the database. The table of readings is actually output in HTML. But, if

59

the content type for the particular JSP page (BpAbIncGraph) is set to an Excel format

then, since Excel 2000 is able to read HTML tables, the entire page opens up in Excel.

The user can then use Excel functionality to graph the readings.

Both screens are shown below:

The Excel spreadsheet

Figure 16: Case Study, Bill Prep Details Page, (Screenshot)

The Excel graph for the above readings is shown below:

60

Figure 17: Case Study, BPAI Graph page (Screenshot)

5.7 Current System Trade-Offs

The system is currently is multi-user, but it does not keep track of sessions etc of the
people using it. Because of time limitations and scope of project, security issues were
not really resolved. Currently, the system could be accessed by anyone in the DPW on
the intranet.

It is not designed for distributed computing. For example, if there are 2 users using the
same functionality and both users add a new 'Account' to the database via the system,
the system cannot track who added the record.

Because of the limitations of the MySQL database, which does not support referential
integrity, deleting certain records does not guarantee a cascading delete.

61

60

50

40

30 30 -Seriesi

10

5.8 Future Extensions & Guidelines for a Distributed Computing
Environment

* Security functionalities using Login/Password etc would help restricted
access.

" Migrating to a better database system other than MySQL because of
certain limitations or use of newer versions of MySQL when they are
released.

* Use of distributed computing techniques using RMI API etc if the number of
users rises drastically.

" The 'Dispatcher' JSP design approach would probably have to be used for

Distributed computing using RMI.

62

6 Alternative to J2EE
.NET vs J2EE

A Technical Comparison
6.1 Introduction

Sun unveiled the J2EE (Java 2 platform Enterprise edition) for developing multi - tiered

enterprise applications. Microsoft not to be left behind came out with the .NET

framework. Conceptually, both platforms (or frameworks) are the same: the only

difference being that .NET is built around Microsoft platforms and brings in a tight

integration amongst them. Having discussed the J2EE platform and its component-

based architecture it is appropriate to investigate the components of the .NET platform

and compare the two frameworks.

6.2 Components of the .NET platform
Note: * At the time this thesis was written, the .NET framework was at an early stage in its lifecycle and the deep

details were still being eked out by the Microsoft team. So most of the "tense" in the paragraphs is futuristic.

The five pillars for the .NET platform are:

* NET Framework and Microsoft Visual Studio.NET developer tools

This will provide the development environments for the applications to be

written.

* Windows and the Microsoft .NET Enterprise Servers

Severs that will connect the applications and the development environment to

the Internet.

* NET Foundation Services

This will provide basic services to the users and developers like identity. The

coherent identity across services will allow applications from exchanging

meaningful data relevant to users and developers.

* Device software

This layer would be to create the platform independence capability that java has.

The .NET framework should ideally work on any device provided it is connected

to the Internet.

63

These four together will form the .NET platform. But, what Microsoft believes will

provide it the advantage is the Microsoft compatible applications.

NET - compatible applications

This will consist of a set of applications that will run on top of the .NET platform

like Microsoft's existing products, the MSN network and office tools etc. Suppose

an enterprise application built using .NET platform needs data analysis, then this

can be done using Microsoft Excel.

6.3 Comparing .NET with J2EE

The two technologies can be compared at the technical component level (item-by-item)

and at the practical implementation level.

6.3.1 Technical Component Level Comparison

Programming
Language Based on

language
C# programming Based on

programming language
Java

Pre-written NET common components Java core API (application
codes program interface)
Internet Active Server Pages+ Java ServerPages (JSP)
Applications (ASP+)

Java Virtual Machine and
Common CORBA (common object
language Internal Language (IL) ORB architecture), IDL
for runtime (interface definition

language) and ORB (object
request broker)

User interface Win Forms and Web
component Forms JavaSwing
framework

JDBC (Java database
ADO (Activex data object) connectivity), EJB enterprise

Database and SOAP (simple object java beans), JMS (Java
connectivity access protocol) -based message service) and Java

Web Services XML Libraries (XML4J,
JAXP)

64

Table 1: Technical Component Level Difference between .NET & J2EE

Key differences between the components described above:

Programming Language: C# and Java both derive from C and C++. Most significant

features (e.g. garbage collection, hierarchical namespaces) are present in both. Java

runs on any platform with a Java VM. C# runs only on Windows in the foreseeable

future.

C# code always runs natively. Java code typically runs as interpreted bytecodes, and

can run natively. C# is either compiled entirely to native code, or it is compiled into the

common language runtime bytecodes and then just-in-time compiled to native code

during execution. Java code, on the other hand, typically runs as runtime-interpreted

bytecodes (from which its cross-platform abilities spring), and can also run in a just-in-

time compiled context. Some Java native-code compilers also exist (Jove, BulletTrain,

JET, etc.).

Internet Applications: ASP+ will use Visual Basic, C#, and possibly other languages for

code snippets. All get compiled into native code through the 'Common Language

Runtime' (CLR, see below) as opposed to being interpreted each time, like ASPs. JSPs

use Java code (snippets or Javabean references), compiled into Java bytecodes.

Common language for runtime: .NET 'Common Language Runtime' (CLR) allows

code in multiple languages to use a shared set of components, on Windows. Code and

objects written in one language can, ostensibly, be compiled into the IL runtime, once an

IL compiler is developed for the language. The CLR underlies nearly all of .NET

framework (common components, ASP+, etc.). Java's Virtual Machine spec allows Java

bytecodes to run on any platform with a compliant JVM.

User interface Component framework: Win Forms and Web Forms RAD development

is supported through the MS Visual Studio IDE (Integrated Development Environment) -
no other IDE support announced presently*. Swing support available in many Java IDEs
and tools.

65

Database connectivity: ADO+ is built on the premise of XML data interchange

(between remote data objects and layers of multi-tier apps) on top of HTTP (AKA,

SOAP). .NET's web services in general assume SOAP messaging models. EJB, JDBC,

etc. leave the data interchange protocol at the developer's discretion, and operate on top

of either HTTP, RMI or IIOP.

6.3.2 Practical Implementation Differences (Critical differences)

There are critical differences between the two frameworks at a number of levels.

Dot-NET and J2EE both stand on a foundation of programming languages, object

models and virtual machines. The most striking difference between the two frameworks

is the design goals of their runtime environment and how these support very different

programming and deployment schemes. The cliche developing in the development

community around this point is that "Java is language-specific and platform-independent,

and dot-NET is language-independent and platform-specific." This clich6 is in many

ways an oversimplification since numerous J2EE implementations aren't entirely cross-

platform. Microsoft has made some preliminary attempts to make dot-NET cross-

platform, such as providing the CLR specification and the C# language as well as

announcing versions of the CLR for a variety of non-PC devices, including the Linux

platform. The cliche remains fairly accurate, though, because the J2EE specification is

fundamentally cross-platform and the full dot-NET story incorporates Windows as a

central piece.

J2EE is a framework that evolved out of the core Java environment, which is founded on

the Java language, the Java Virtual Machine (JVM) and the Java core APIs. The Java

programming model calls for class descriptions written in Java to be compiled into

platform-independent bytecodes as defined by the 'Java Virtual Machine' specification

(see figure below).

66

PSsOILJava

WOO"Deploy

ftoda op
De loy

Compayaa

JavW/i2EE Development Model

Microsoft.NET Development Model

Perum IL F Dep y...
code

C"P i Delo

Figure 18: J2EE vs .NET Architecture

67

I/

These bytecodes are then interpreted and executed by an implementation of the JVM

targeted for the particular platform at hand-Solaris, Windows, Linux and so on. The

JVM defines and provides a standard runtime environment that provides

memory management and security. Alternatively, Java code (or the resulting Java

bytecodes) can be compiled to a native executable for a specific platform, or runtime

compiled to native code by a just-in-time (JIT) compiler. So, development in J2EE is

meant to be done in Java, resulting in class bytecodes that can be run on any platform

with a JVM or a Java-to-native compiler. Access to objects and components written in

other languages is possible, using the Java Native Interface (JNI) and CORBA, but

these are largely ancillary to the core development and runtime model. In both cases,

these are also rather complicated APIs, which in part hinders their broad adoption.

Microsoft's dot-NET framework is based on its 'Common Language Runtime' (CLR),
which is composed of a specification for language-independent intermediate language

(IL) code and a runtime that provides memory management, security and so on. This

may seem analogous to the Java runtime architecture, but the difference is that code

targeted for the dot-NET framework can be written in any language that supports the

CLR's core component model. A compiler must be developed which compiles the code

into IL-once there, the objects and components can run side-by-side and interact with

components written in other languages and compiled into the CLR. Blocks of IL code are

JIT-compiled into native Windows code, or your whole application and assembly can be

compiled once into a native Windows DLL or EXE as shown in Figure 1.

The interesting thing about this difference in the two frameworks, and the reason it's a

critical differentiator, is that this relatively low-level design feature strikes right at each

framework's strategic direction. Java is designed to be a 'unified programming model'

that is platform- independent. Dot-NET, on the other hand, is a 'unified platform'

(Windows) that is language independent and deeply XML-enabled.

The language and platform distinction is critical.

Java's true potential is realized by a development team and its surrounding organization,

only when a critical mass of development (or all of it) is done in Java. If, for some reason

(legacy system, third-party requirements, component availability), a subset of a given

68

system falls outside of the Java environment, things get complicated, and you have to

turn to CORBA or JNI or other ways to bridge the gap.

This language-centric approach is also limiting strategically. It's easy to imagine some

powerful improvements to the Java core environment that would be best accomplished

by making changes to the syntax of the Java language, and these changes are very

difficult to make because there is a vertical dependence, from the JVM to the J2EE

application services, on the fact that everything happens in Java bytecodes.

Microsoft dot-NET, on the other hand, realizes its true potential only if it is necessary and

prudent to create and manage components developed in multiple languages, and do it

all on Windows. On the face of it, being able to use the language of your choice (from

the set that supports MSIL compilation, that is) seems like a valuable possibility-if I

don't know C# or C++ or Java, I can stay productive and write code in what I know,

instead of starting a new learning curve. This is appealing for both developers and

managers alike, but the CLR achieves somewhat less than this in reality.

You can't write standard, ANSI-compliant C++ or standard COBOL and make it work in

the CLR sandbox. To make your code accessible to other CLR components, you have to

write your code in Managed Extensions to C++ or COBOL#, which are syntactic variants

of the original languages that they share names with. These variants include syntax

extensions that are required in order to provide all of the component meta-data that the

CLR requires, which can't be supported by the standard language. This means two

things: there is still a learning curve to be climbed (although probably not a large one) in

order to program to dot-NET's CLR, and the code that you write for dot-NET won't be

understood by the standard compilers or interpreters for these languages.

6.4 Conclusion

At the highest level, it is logical to perceive that Microsoft is fixing its Web application

environment, making it a peer (at the very least) to J2EE, so when dot-NET arrives we'll

have two very capable development frameworks to choose from.

One has to decide which framework to adopt. Given all the technology issues we

discussed, the path to a decision is fairly simple. In any significant development effort,

69

whether you're a consultant on a custom development engagement, an internal

developer of Application Service Provider (ASP) offerings, or building the internal

enterprise infrastructure for an organization, you need to decide who your target

customers are (today and in the future), what platforms you need to support from a

strategic level (today and in the future), and what framework provider you want to

partner with to push forward (today and in the future).

If an organization has the luxury of only supporting the Windows platform (with respect

to both customers and internal development needs), and if it feels Microsoft is the right

partner (for development tools, servers, administrative systems and so on) for the

organization, then you have an easy decision indeed. Alternatively, if you have the

luxury of defining a Web development practice based on a single language, and can't

say with finality that Microsoft and Windows can be your sole vendor and platform then,

you have an equally easy decision to make.

Conversely, if you face the strategic need to support (or standardize on) Unix and other

non-Windows servers, or if you want to leave your options open in other areas (tool

vendors, application servers, component vendors and so on), then J2EE is an

appropriate choice. Alternatively, if supporting development in multiple languages is a

strategic need of yours, and you can live with a single platform and tool vendor, then dot-

NET might be a better choice.

Of course, very few groups or organizations find themselves in any of these neat

compartments, but the final decision lies with assessing what are the needs of the

software application in terms of its architecture and also the purpose for which it is being

built in the first place.

70

7 References:

1. Marty Hall, Core Servlets and Java Server Pages, Sun Microsystems Press, A
prentice Hall Title

2. Professional Java Server Programming, J2EE Edition, Wrox Press Ltd. ®

3. B.Butler, S.Bogershausen, M.Khanolkar, Master of Engineering Project Report,
Arlington Water Project, MIT ®

4. Jim Farley, Online Article: Microsoft .NET vs. J2EE: How Do They Stack Up?,
March 2001, www.oreilly.com,

5. Jim Farley, Online Article: Picking a Winner: .NET vs. J2EE, March 2001,
Software Development magazine online, www.smagazine.com

6. Equitymaster.com, Online Article: World war III: .NET vs J2EE, Feb 2001,
www.yahoo.com

7. Naughton Schildt, The Complete Reference, Java 2, 3 rd edition, McGraw Hill

8. Bradford Butler, The Business Transformation Effects of Information
Technolog, Massachusetts Institute of Technology, Master of Engineering Thesis,
2001

9. Sebastian Bogershausen, Architecture of Near Real-Time Monitoring Systems
for Water Distribution Systems, Massachusetts Institute of Technology, Master
of Engineering Thesis, 2001

71

8 Appendix A

This Appendix contains the code for the various components that help implement BPAI.

The code that is highlighted in bold is the more useful from the reader's perspective. The

code, which implements the BPAI is given here in the Appendix. This piece of code is

after the configuration parameters are set in the Report Configuration page

8.1 Javabean code that was used in the project to run general tasks with
the database

8.1.1 DbBean.java

This is the javabean that is used for all database actions like connecting to the database,
querying, throwing out results from the database in HTML, closing the database

connection etc.

package Water;

import java.io.*;
import java.sql.*;

public class DbBean
{

Connection dbCon;
String dbURL =

"jdbc:mysql: / /localhost /testwater?user=&password="
String dbDriver = "org.gjt.mm.mysql.Driver";

public boolean connect() throws ClassNotFoundException,
SQLException

Class. forName (this .getDbDriver ();
dbCon = DriverManager.getConnection(this.getDbURL());
return true;

}

public Connection getDbBeanConnection()
{

return dbCon;
}

public void close() throws SQLException
{

dbCon.close);
}

public void execAdd(String sql) throws SQLException

72

{
Statement st = dbCon.createStatemento;
st . executeUpdate (sql);

public void execUpdate(String sql) throws SQLException
{

Statement st = dbCon.createStatemento;
st .executeUpdate (sql);

}

public void execDelete(String sql) throws SQLException
{

Statement st = dbCon.createStatemento();
st .executeUpdate (sql);

}

public DBResults getQueryResults(String query,
boolean close)

{

try

DatabaseMetaData dbMetaData =
dbCon. getMetaData (;

String productName =
dbMetaData . getDatabaseProductName (;

String productVersion =
dbMetaData.getDatabaseProductVersion(;

Statement statement = dbCon.createStatement);
ResultSet resultSet =

statement .executeQuery(query);
ResultSetMetaData resultsMetaData =

resultSet .getMetaData (;
int columnCount =

result sMetaData .getColumnCount (;
String[] columnNames = new String[columnCount];
// Column index starts at 1 (a la SQL) not 0 (a

la Java).

for(int i=1; i<columnCount+l; i++)

columnNames[i-1] =
resultsMetaData .getColumnName (i) .trimo;
)
DBResults dbResults = new DBResults(dbCon,

productName, productVersion,

columnCount, columnNames);
while (resultSet .next ()

String[] row = new String[columnCount];
// Again, ResultSet index starts at 1, not 0.

for(int i=l; i<columnCount+1; i++)

String entry = resultSet.getString(i);
if (entry != null)

73

entry = entry.trim();
}
row[i-1J = entry;

}
dbResults.addRow(row);

}
if (close)
{

dbCon.close();
}
return(dbResults);

}
catch (SQLException sqle)
{

System.err.println("Error connecting: " +
sqle);

return (null) ;
}
}

public ResultSet execResults(String sql) throws SQLException
{

Statement st = dbCon.createStatement);
ResultSet rs = st.executeQuery(sql);
return (rs==null) ? null : rs;

}

public String getDbDriver()

{
return this.dbDriver;

}

public void setDbDriver(String newValue)
{

this.dbDriver = newValue;
}

public String getDbURL()

{
return this.dbURL;

}

public void setDbURL(String newValue)

this.dbURL = newValue;

8.2 Code which implements the Analysis for Bill Preparation Abnormal

Increase

74

8.2.1 Run Analysis.jsp

This page actually initiates the analysis after the 'continue' button is pressed on the

intermediate page that show which analyses are scheduled to run.

<%@ page language="java" import= "java.sql.*, java.lang.*, Water.*"%>
<html>

<head>
<title>Run Analysis</title>

<link rel="stylesheet" type="text/css"
href="arlington-style-sheet.css">
</head>

<body>
<div align="center">
<center>
<table border="O" cellspacing="4" cellpadding="2" width="722">

<tr>
<td colspan="3" width="708">

<p align="center"><img border="O" src="bannerwater.gif"
width="708" height="49"></td>

</tr>

<tr>

<td bgcolor=" #000080" align="center" width="240 "><font face="Verdana" size="2"
color=" #FFFFFF">Home</ font></td>

<td bgcolor="#000080" align="center" width="240"><font face="Verdana" size="2"
color=" #FFFFFF" >Report

Config</td>

<td bgcolor="#000080" align="center" width="241"><font face="Verdana" size="2"
color=" #FFFFFF" >MeterWatch

Config</td>
</tr>

</table>
</center>

</div>
<div align="center">

<table border=" 1" width="722" bgcolor="#FFFFFF">
<tr>

<td width="100%">
<div align="center">
<center>
<table border=" 0" width="650">

<tr>

<td>

<p align="center"><img border=" 0" src="drop.gif"
width=" 57 " height="71"></p>

</ td>
<td>

75

<p align="center"><font face="Verdana" color="#000080"
size=" 5">Water

Management System</td>
<td>

<p align= "center"><img border="O" src="drop.gif"
width="57" height=" 71"></p>

</td>
</tr>

</table>
</center>

</div>
</td>

</tr>

</table>
</div>
<div align="center">
<center>

<table border="1" width="722" bgcolor="#800000">
<tr>
<td width="100%">

<p align="center"><font color="#FFFFFF" face="Verdana"
size="2">Running Analysis</td>

</tr>

</table>
</center>

</div>
<p align="center">Processing ... </p
<hr>

//check which analyses are scheduled to run by querying the
Config table

ResultSet rs;
String sql = "SELECT

EndDate, BoolBpMiss, BoolBpEst, BoolBpAbInc, BoolBpAbDec, BoolUsgMtSz, "+

" BoolUsgAcctTyp, BoolMtWatch, BpMissDays, "+

" BpMissInterval, BpEstDays, BpIncCurrDays, BpIncPastDays, " +

" BpAbInc Pc t, BpDecCurrDays, BpDec PastDays, BpAbDec Pc t FROM Conf ig";
String result;
String BgColor = "#COCOC0";
String BPMiss, BPEst, BPInc, BPDec, UsgMtSz, UsgAcct,

MtWatch, EndDate;
String

BpMissDays, BpMissInterval, BpEstDays, BpIncCurrDays, BpIncPastDays;
String BpAbIncPct, BpDecCurrDays, BpDecPastDays, BpAbDecPct;

Water.DbBean db = new Water.DbBean(;
Water.MyCalendar calendar = new MyCalendar(;

String date = calendar.getDateMySQL(;

try

{

76

db.connect);
}
catch(Exception e)
{

String message = "Database Connection failure";
message += e;
System. err.println ("Caught Exception: "+message);

rs = db.execResults(sql);
rs.next();

try

db.close);

catch(Exception e)

String message = "Database Connection failure";
message += e;
System. err.println ("Caught Exception: "+message);

if (rs.first() == false)

{
out.println("There are no Functionalities Scheduled to

Run.");
out.println("
Please update the Report Configuration

page as necessary.");

else

BPMiss rs.getString("BoolBpMiss ");
BPEst = rs.getString("BoolBpEst");
BPInc = rs.getString("BoolBpAbInc");
BPDec = rs.getString("BoolBpAbDec");
UsgMtSz = rs.getString("BoolUsgMtSz");
UsgAcct = rs.getString("BoolUsgAcctTyp ");
MtWatch = rs.getString("BoolMtWatch");
EndDate = rs.getString("EndDate");
BpMissDays = rs.getString("BpMissDays ");
BpMissInterval = rs.getString("BpMissInterval");
BpEstDays = rs.getString("BpEstDays");
BpIncCurrDays = rs.getString("BpIncCurrDays");
BpIncPastDays = rs.getString("BpIncPastDays ");
BpAbIncPct = rs.getString("BpAbIncPct ");
BpDecCurrDays = rs . getString ("BpDecCurrDays ");
BpDecPastDays = rs .getString ("BpDecPastDays ");
BpAbDecPct = rs.getString("BpAbDecPct");

if (BPMiss.equals("true"))
{

Water.BPMiss bpMiss = new Water.BPMiss);
bpMiss.setParam();

77

bpMiss.run(;

}

if (UsgMtSz.equals("true") UsgAcct.equals("true"))

{
Water.UsagePattern usage = new UsagePattern();
usage. setParam(0;
usage . run (;

}

if (BPMiss.equals("true") jjBPEst.equals("true")
BPInc.equals("true") || BPDec.equals ("true"))

{
String sqll = "UPDATE BPConfig SET SysDate =

"+date+" ' ,EndDate = '"+EndDate+" ' ,BPMiss = '"+BPMiss+"', "+

" BPEst = '"+BPEst+" ',BPInc = '"+BPInc+"' , "+

"BPDec = '"+BPDec+"' ,"+
"BpMissInterval =

"+BpMissInterval+" ',BpMissDays = '"+BpMissDays+"', "+
"BpEstDays =

'"+BpEstDays+" ' ,BpIncCurrDays = '"+BpIncCurrDays+"', "+

"BpIncPastDays =
'"+BpIncPastDays+" ',BpAbIncPct = '"+BpAbIncPct+" ', "+

"BpDecCurrDays =
'"+BpDecCurrDays+" ' ,BpDecPastDays = '"+BpDecPastDays+"', "+

"BpAbDecPct =
'"+BpAbDecPct+"' " ;

Water.DbBean dbl = new Water.DbBean();

try

{
dbl.connect);
dbl .execUpdate (sqil);
dbl.close(;

}
catch(Exception e)

{
String message = "Database Connection failure";
message += e;
}

}

if (BPEst.equals("true "))
{

Water.BPEst bpEst = new Water.BPEst(;
bpEst . setParam(;
bpEst.run();

if (BPInc.equals("true"))

Water.BPIncrease bpIncrease = new Water.BPIncrease(;

78

bplncrease .setParam);
bplncrease.runo;

}

if (BPDec.equals("true"))

{
Water.BPDecrease bpDecrease = new Water.BPDecrease(;
bpDecrease.setParam();
bpDecrease. run ();

}

if (MtWatch.equals("true"))

{
Water.MeterWatch mtrWatch = new Water.MeterWatch);
mtrWatch.setParam();
mtrWatch.run(;

}

}

<jsp: forward page= "home.jsp" />

</body>

</html>

8.2.2 BPIncrease.java

This is the javabean that contains the business logic for the BPAI functionality and which
does all the processing with the data.

package Water;

import java.sql.*;
import java.util.*;

public class BPIncrease
p
private int avgPaUse;
private int avgCuUse;
private String acctNo;
private String suffix;
private String bpAbIncPct;
private String bpIncCurrDays;
private String bpIncPastDays;
private String endDate;
private DbBean db;
private String BgColor = "#COCOCOn;

public BPIncrease()
(}

79

public void setParam()
(

String sqlParam = "SELECT
EndDate, BpIncCurrDays, BplncPastDays, BpAblncPct FROM Config";

ResultSet rs=null;

DbBean dbl = new DbBean (;

try
f

dbl.connect);
rs = dbl.execResults(sqlParam);
rs.next);

}
catch(Exception e)

String message = "Database Connection failure";
message += e;
System.err.println("Caught Exception: "+message);

}

try

f
dbl.close);

bpIncCurrDays = rs.getString("BpIncCurrDays");
bpIncPastDays = rs.getString("BpIncPastDays");
bpAblncPct = rs.getString("BpAbIncPct ");
endDate = rs.getString("EndDate");

}
catch(Exception e)
{

String message = "Database Connection
message += e;
System.err.println("Caught Exception:

failure";

"+message);
}

}

public void run()

String
String
String
String

String
String
String
String

sqlPastDates;
sqlPastMin;
sqlPastMax;
sqlPastAvg;

sqlCurrDates;
sqlCurrMin;
sqlCurrMax;
sqlCurrAvg;

String sqlDropCurrDates;

80

String sqlDropCurrMin;
String sqlDropCurrMax;
String sqlDropCurrAvg;

String sqlDropPastDates;
String sqlDropPastMin;
String sqlDropPastMax;
String sqlDropPastAvg;

String sqllnc;

String sqlAddCol;
String sqlUpdateConfig;
String sqlDropResult;

sqlPastDates = "CREATE TABLE BPPastDates AS "+

"SELECT AcctNo, Suffix,Max(ReadDate)
max,Min(ReadDate) min "+

"FROM MeterRead "+

"WHERE to days (DATESUB ('"+endDate+"',
INTERVAL "+bplncCurrDays+" DAY)) - todays (ReadDate) <=
"+bplncPastDays+" "+

"AND todays (DATE SUB ("I+endDate+"',
INTERVAL "+bplncCurrDays+" DAY)) - to-days(Readate) >= 0 "+

"AND AcctNo like'FAKE%' "+

"AND Reading > 0 "+
"GROUP BY AcctNo, Suffix";

sqlPastMin = "CREATE TABLE BPPastMin AS "+
"SELECT m.AcctNo

AcctNo,m.Suffix,m. Reading minRead,d.min minDate "+

"FROM MeterRead m,BPPastDates d "+

"WHERE d.min = m.ReadDate";

sqlPastMax = "CREATE TABLE BPPastMax AS "+

"SELECT m.AcctNo
AcctNo,m.Suffix,m.Reading maxRead,d.max maxDate "+

"FROM MeterRead m,BPPastDates d "+

"WHERE d.max = m.ReadDate";

sqlPastAvg = "CREATE TABLE BPPastAvg "+

"SELECT

min.AcctNo,min.Suffix, (max.maxRead - min.minRead) / (todays (max.maxDate)
- to-days(min.minDate)) AvgPastUsage 1+

"FROM BPPastMin min,BPPastMax max "+

"WHERE min.AcctNo = max.AcctNo "+
"AND min.Suffix = max.Suffix";

sqlCurrDates = "CREATE TABLE BPCurrDates AS "+
"SELECT AcctNo, Suffix,Max(ReadDate)

max,Min(ReadDate) min "+

"FROM MeterRead "+

"WHERE to-days('"+endDate+"') -
to-days (ReadDate) <= "+bplncCurrDays+" "+

"AND todays('"+endDate+"') -

to-days(ReadDate) >= 0 "+

"AND AcctNo like'FAKE%6' "+

81

"AND Reading > 0 "+
"GROUP BY AcctNo,Suffix";

sqlCurrMin = "CREATE TABLE BPCurrMin AS "+

"SELECT m.AcctNo AcctNo,m.Suffix,m.Reading
minRead,d.min minDate "+

"FROM MeterRead m,BPCurrDates d "+

"WHERE d.min = m.ReadDate ";

sqlCurrMax = "CREATE TABLE BPCurrMax AS "+

"SELECT m.AcctNo
AcctNo,m. Suffix,m.Reading maxRead,d.max maxDate "+

"FROM MeterRead m,BPCurrDates d "+

"WHERE d.max = m.ReadDate";

sqlCurrAvg = "CREATE TABLE BPCurrAvg AS "+

"SELECT min.AcctNo,min. Suffix, (max.maxRead
- min.minRead) / (todays (max.maxDate) - todays (min.minDate))
AvgCurrUsage "+

"FROM BPCurrMin min,BPCurrMax max "+

"WHERE min.AcctNo = max.AcctNo "+

"AND min.Suffix = max.Suffix";

sqlInc = "CREATE TABLE BPIncResults AS "+

"SELECT p.AcctNo
Account,p. Suffix,p.AvgPastUsage, c.AvgCurrUsage, ((c .AvgCurrUsage -
p.AvgPastUsage)/p.AvgPastUsage * 100) PercentInc "+

"FROM BPPastAvg p,BPCurrAvg c "+
"WHERE p.AcctNo = c.AcctNo "+

"AND p.Suffix = c.Suffix "+

"HAVING PercentInc > '"+bpAbIncPct+"' ";

sqlDropCurrDates = "DROP TABLE BPCurrDates ";
sqlDropCurrMin = "DROP TABLE BPCurrMin ";
sqlDropCurrMax = "DROP TABLE BPCurrMax ";

sqlDropCurrAvg = "DROP TABLE BPCurrAvg ";

sqlDropPastDates = "DROP TABLE BPPastDates ";
sqlDropPastMin = "DROP TABLE BPPastMin ";
sqlDropPastMax = "DROP TABLE BPPastMax ";

sqlDropPastAvg = "DROP TABLE BPPastAvg ";

sqlDropResult = "DROP TABLE BPIncResults";

sqlAddCol = "ALTER TABLE BPIncResults ADD SysDate
datetime,ADD EndDate datetime ,ADD ConfigPercent int,ADD CurrDays
int,ADD PastDays int";

sqlUpdateConfig = "UPDATE BPlncResults SET SysDate = '"+
new java.util.Date)+"', "+

"EndDate = ' "+endDate+"',"+

"ConfigPercent = '"+bpAbIncPct+"', "+

82

"CurrDays =

"Pastdays =

'"+bpIncCurrDays+"',"I+

'"+bpIncPastDays+"'";

db = new DbBeano;

DBResults dbResult;

try
{

db.connecto;
db.execUpdate(sqlDropResult);

db. execUpdate (sqlPastDates);
db. execUpdate (sqlPastMin);
db. execUpdate (sqlPastMax);
db. execUpdate (sqlPastAvg);

db. execUpdate (sqlCurrDates);
db. execUpdate (sqlCurrMin);
db. execUpdate (sqlCurrMax);
db. execUpdate (sqlCurrAvg);

db. execUpdate (sqllnc);

db. execUpdate (sqlDropCurrDates);
db. execUpdate (sqlDropCurrMin);
db. execUpdate (sqlDropCurrMax);
db.execUpdate(sqlDropCurrAvg);

db. execUpdate (sqlDropPastDates);
db. execUpdate (sqlDropPastMin);
db. execUpdate (sqlDropPastMax);
db. execUpdate (sqlDropPastAvg);

db. execUpdate (sqlAddCol);
db.execUpdate (sqlUpdateConfig);
db.close();

}

catch(Exception e)
{

String message = "Database Connection failure";
message += e;

}

}
)

8.2.3 BillPrepResults.jsp

83

This is the JSP page, which is called when you wish to view the Bill Preparation results.

<html>

<head>
<title>Summary of Results</title>

</head>
<link rel="stylesheet" type="text/css"
href=". . /arlington_style-sheet.css">

<body>

<%@ page language="java" import= "java.sql.*, java.lang.*, Water.*" %>

<% ResultSet rs;
String sql = "SELECT EndDate, SysDate,BPMiss, BPEst, BPInc, BPDec

FROM BPConfig";
String BgColor = "#COCC0";
String BPMiss, BPEst, BPInc, BPDec,EndDate, SysDate;

Water.DbBean db = new Water.DbBean);

try

db.connect();

}
catch(Exception e)
{

String message = "Database Connection failure";
message += e;
System.err.println("Caught Exception: "+message);

}

rs = db.execResults(sql);
rs.nexto;

try

(
db.closeo;

catch(Exception e)
{

String message = "Database Connection failure";
message += e;
System.err.println("Caught Exception: "+message);

BPMiss = rs.getString("BPMiss");
BPEst = rs.getString("BPEst");
BPInc = rs.getString("BPInc");
BPDec = rs.getString("BPDec");
EndDate = rs.getString("EndDate");
SysDate = rs.getString("SysDate");

84

<div align="center">
<center>
<table border="O " cellspacing="4" cellpadding="2 ">

<tr>
<td colspan="3">

<p align="center "><img border="O0" src=". ./bannerwater.gif"
width="708" height="49"></td>

</tr>
<tr>

<td bgcolor="#000080" align="center"><font color="#FFFFFF"
face="Verdana" size="2I">Pavement

System</td>
<td bgcolor="#000080" align="center"><font color="#FFFFFF"

face="Verdana" size="2I">Permits
System</td>

<td align="center" style="font-family: Verdana; font-size: 10pt;
font-weight: bold" bgcolor="#000080">Arlington

Home</td>
</tr>

</table>
</center>

</div>
<div align="center">

<table border="1" width="722" bgcolor="#FFFFFF">
<tr>
<td width="100%">
<div align="center">

<center>
<table border="O" width="650">

<tr>
<td>

<p align="center"><img border=" O " src=". ./drop.gif"
width="57" height="71"></p>

</td>
<td>

<p align="center"><font face="Verdana" color="#000080"
size="5" >Water

Management System Results</td>
<td>

<p align="center"><img border="O" src="../drop.gif"
width="57" height="71"></p>

</td>
</tr>

</table>
</center>

</div>
</td>

</tr>
</table>

</div>
<div align="center">
<center>

<table border="1" width="722" bgcolor="#800000">
<tr>

<td width="100%">
<p align="center"><font color="#FFFFFF" face="Verdana"

85

size="2">Bill
Prep Results</td>

</tr>

</table>
</center>

</div>
<p align="center">Current Date:<%= SysDate %></p>
<p align="center"> Following Analysis is based on:
<%= EndDate %> </p>

<h3 align="center"> </h3>
<hr>

<% }

if (BPInc.equals("true"))

<h3 align="center">Bill Prep: Abnormal Increase</h3>

String sqlIncHeader = "SELECT
SysDate,EndDate, BpAblncPct,BpIncCurrDays,BpIncPastDays from BPConfig";

String sqlIncTable = "SELECT
Account,Suffix,AvgPastUsage,AvgCurrUsage,Percentlnc FROM BPlncResults";

String IncBgColor = "#COCOC0";
Water.DbBean dbInc = new Water.DbBean(;
Water.DBResults dbIncResult;
String urlInc = "BpAbIncGraph.jsp";
ResultSet rsInc;

try
t dbInc.connecto;

catch(Exception e)
{

String message = "Database Connection failure";
message += e;

}

rsInc = dblnc.execResults(sqllncHeader);
rsInc.nexto;

if(rsInc.first()== true)
{

String sysDatelnc = rslnc .getString ("SysDate");
String endDateInc = rsInc.getString ("EndDate");
String configPercent = rsInc .getString ("BpAbIncPct");
String currDaysInc = rslnc.getString("BpIncCurrDays");
String pastDaysInc = rslnc.getString("BpIncPastDays");

String htmlIncHeader = "<div align=\"center\"> <center> "+
"<table border=\"O\"

86

width=\"490\">"+
" <tr> <td width=\"25\"></td><td

width=\"449\">Threshold Set for Percent Increase:"+ configPercent +" %
</td> </tr>"+

" <tr> <td width=\"25\"></td>
<td width=\"449\">Past Time Period set: "+pastDaysInc+" days</td>
</tr>"+

"<tr> <td width=\"25\"></td> <td
width=\ n4 4 9 \ ">Current Time Period set:"+currDaysInc+" days</td></tr>"+

" <tr> <td width=\"25\"></td><td
width=\"449\"></td> </tr>"+

" </table> ";

dbIncResult = dblnc .getQueryResults (sqllncTable,true);
String htmlIncTable =

dbIncRe sult .toLinkHTMLTable (IncBgColor, urlInc);

out .println(htmlIncHeader);

if(dblncResult.getRowCount() < 1)

{
out.println("No Records Found ");

}
else
{

out .println(htmlIncTable);

}

}

else

out.println("No records Found ");
}

<h3 align="center"> </h3>
<hr>

<form method="GET" action="BillPrepICS.htm">
<p align="center"><input type="submit" value="Create Monthly

Report" name=" B1i"></p>
</form>
<p align="center"> </p>

87

