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ABSTRACT

Haiti is the poorest nation in the western hemisphere and cannot afford conventional
means of water treatment. Consequently, waterborne disease causes great suffering and
death throughout the Haitian community. This research effort investigates using solar
disinfection or SODIS for point-of-use water treatment in Haiti, which can provide
disease-free water at the cost of a plastic bottle. The SODIS treatment process consists of
filling plastic bottles with water and exposing them to sunlight. SODIS operates on the
principle that sunlight-induced DNA alteration, photo-oxidative destruction, and thermal
effects will inactivate microorganisms. To achieve adequate disinfection, an area should
receive at least 500 W/m2 of radiation for 5 hours. Haiti and other developing countries
do not have sufficient meteorological data to assess if they meet this threshold. A
mathematical model is presented, calibrated, and used to simulate monthly average,
minimum, and maximum daily sunlight intensity profiles to estimate if Haiti would be
suitable for SODIS. This method is general in that it can be used to simulate sunshine
intensity profiles anywhere in the world per degree longitude and latitude. The sunshine
simulations suggest that SODIS would be applicable throughout Haiti year-round. Field
studies were conducted in Haiti during January 2001 to test SODIS. SODIS efficacy was
evaluated by the inactivation of total coliform, E. coli, and H2 S-producing bacteria under
different natural conditions. Exposure period proved critical. Under various sunshine
intensities, bottle water temperatures, and initial bacterial amounts, 1-day exposure
achieved complete bacterial inactivation 52 % of the time, while the 2-day exposure
period achieved 100 % microbial inactivation for every test. To maintain the beauty of
this technology, a practical way of providing people with cold water every morning that
has undergone a 2-day exposure period has been developed and termed a "SODIS
triangle." Essentially, it consists of three groups of bottles that are rotated every morning,
so two groups are out in the sun and one is being used for consumption. It is hoped that
this relatively new disinfection method will provide an economically feasible technology
to improve water quality and public health in Haiti.

Thesis Supervisors: Peter Shanahan and Martin Polz
Title: Lecturer and Assistant Professor
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Section I.: Overview ofDrinking Water in Haiti
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1 Introduction

Water is the most ubiquitous compound in living cells and it is imperative to all forms of

life. Haiti is the poorest nation in the western hemisphere and potentially faces

catastrophe from lack of this essential resource. Pastor Nathan Dieudonne, an outstanding

member of the Haitian community, commented on the current water situation in Haiti

during a recent interview for the Bethel Missions Church:

Interviewer: "What about the water in Haiti? Is the water safe to drink for the
general public?"

Pastor Nathan: "Bad water is [the] number one problem we have in Haiti. [In]
Haiti we don't have good water anywhere, even in the city. There
is no good water."

Interviewer: "Would you say then that'sprobably one of the main reasons for a
lot of the sickness and death in Haiti, because of the water?"

Pastor Nathan: "Yes, exactly "
(Bethel Missions of Haiti Vision 2000 New Medical Clinic, 2000)

Overpopulated, Haiti's resources are exhausted and trends of further deterioration are

readily apparent. Vast advancements in water resources are needed to improve the

livelihood for the warm and wonderful people of Haiti.

Haiti occupies the second largest island in the Caribbean at 180 to 200 N and 71' 45' to

740 34'W. It is located in the western third of Hispaniola surrounded by the Atlantic Sea

to the north, the Caribbean Sea to the west and south, and the Dominican Republic to the

east (Figure 1-1).
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Figure 1-1. Map of Haiti

Haitians are of approximately 95% African decent and some still practice traditional

voodoo despite the state religion of Catholicism. French is the official language, but 80%

of the population speaks Creole. In 1994, the United States forcibly tried to reinstate

democratically elected president Jean-Bertand Aristide who was removed by the army in

1991. Eventually, the U.S. forces were replaced by a U.N. military mission. The external

fighting and internal struggle for power amongst Aristide's successors has created chaos.

This has left Haiti without a functioning government since June 1997 and deprived the

country of 150 million dollars in foreign aid (Country Profile: Haiti., 2000). The resulting
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turmoil has adversely impacted Haiti's public health, particularly water related issues.

Haitian water is the focus of this study and will now be discussed in more detail.

1.1 Haitian Water Resources

Water in Haiti is generally available from precipitation, rivers and surface water, and

groundwater. All of these resources are intimately related in the hydrologic cycle, which

ultimately provides water for the Haitian community. The amount of water potentially

available from each resource will now be examined followed by the impacts of

deforestation.

1.1.1 Precipitation

Most precipitation is brought by the northeast trade winds with a slight contribution from

easterly winds. Extreme patterns including storms, hurricanes, droughts, and floods are

common. Rainfall can range from less than 30 mm in the northwest to more than 3000

mm in the mountains of the southwest. Orographic factors greatly influence site-specific

rainfall patterns creating the largest precipitation amounts in highly mountainous areas

(USAID, 1985). A rough characterization of rainfall for seven principal areas in Haiti is

(Library of Congress, 1979):

" Northern plain and mountains: More than 1270 mm, with as much as 2540 mm on
the higher mountains.

" Northwest: Semi-arid conditions prevail throughout the region, especially around
Mole St. Nicolas (508 mm) on the extreme western end of the northern peninsula;
Port-de-Paix has about 1524 mm in the mountainous areas.

* Western coast from Mole St. Nicolas to the Cul-de-Sac Plain at Port-au-Prince:
Very dry with 500 to 1000 mm of rain; a semi-arid area extending back from the
coast over the plain to the mountains covered xerophytic vegetation.

* The island of La Gonave: Similar cover and a rainfall of about 508 to 762 mm.

13



* Artibonite Valley: Lower portion of the valley is a semi-arid region, but rainfall
increases rapidly up the valley until it reaches a mean annual level of about 3000
mm; however, about 40 km away in the Cul-de-Sac plain, at about the same
altitude, the driest area receives about 500 to 750 mm.

" Eastern part of the mainland between the two peninsulas: The Central Plateau
receives about 1016 to 1524 mm of rain.

" Southern Peninsula: Well-watered, with 1524 mm of rain or more in all parts,
except the southern slope of the western and a small area near Anse-a-Pitre in the
Southeast.

The amount of rainfall that does not infiltrate the ground becomes present in the form of

rivers and surface water.

1.1.2 Rivers and Surface Water

Surface water is used by the majority of Haitians. Most of Haiti's rivers are short and

swiftly flowing with the exception of the Artibonite River. The broken and steep

landscape gives rise to numerous streams and rivers. However, most of these rivers only

flow during periods of rainfall and few rivers have permanent flow (USAID, 1985). The

principal rivers and corresponding catchment area size are provided by Table 1-1:

Table 1-1. Principal Catchment Areas of Haiti (Library of Congress, 1979)

Main River Average Runoff [m3/s] Length [km] Catchient Area [km2]

Aribnite 34 280 6,862
kiviere de la rande-As II

FRiviere de I'Estere - 19 NA 834
TLes TroisRivieres 12 102

Riviere de Cavillon 9 43 380
IGrande Riviere du Nordf1 7 - -70 32

FRie duLimbe 7 312

[ _Rav4inedu Sud_ _ 743.9 3 -.

SGrand Riviere du Cul-de-Sac- 3.3 NA F290
Riiee 'AulNA 36 NA

14



Although these flows are presented as averages, they are still highly irregular. The

amount of precipitation that does not contribute to surface water percolates into the soil

and is available as groundwater.

1.1.3 Groundwater

Groundwater is Haiti's second most important water resource and could become the

primary supply of freshwater in the future. Limestone underlies 80% of the nation

making groundwater readily accessible with well-drilling equipment. Water quality is

high, although hard and slightly saline in some cases. Groundwater is especially abundant

in the coastal plains and these aquifers can yield between 10 to 120 liters a second. Port-

au-Prince and domestic areas such as Cul-de-Sac, Leogane, Carrefour, St-Marc, Cabaret,

Grande-Riviere Du Nord, Limonade, Ouanaminthe, and Aquin widely use groundwater

for domestic purposes (Library of Congress, 1979). Some regions of Haiti contain ample

groundwater but they could be hard to develop as they contain a karstic substratum

(USAID, 1985). HARZA (1979) estimated the potential groundwater resources in 22

select areas summarized by Table 1-2.

Table 1-2. Groundwater Potentials for 22 selected areas (TARZA, 1979)

RegionNumber of Number of of Aquifers Water flow
I Project Areas Project Aquifers [/s]

NoWrthand Nortih Western[ 13 7 500-685

Southeast Coast 3 2 399-1114

FTouth Coast - 2 -7 530+

Tota 1 22 29- 12 114.14-
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The onset of any future development of this resource must be carefully evaluated. If

pumping rates exceed groundwater recharge rates, salinization of the freshwater could

occur. Additionally, to obtain optimal benefits from groundwater, as well as surface

water, the effects of deforestation must not only be considered but also remedied.

1.1.4 Impacts of Deforestation

Groundwater and surface water resources depend on the capacity of a watershed to store

water and then gradually release it into rivers and recharge water tables. The ability of a

watershed to retain water depends on its vegetative properties. Surface root structures,

small plants, and dead leaf matter increase overland friction to flow and this allows more

surface water to infiltrate. Deforestation causes a much larger portion of the water to

flow overland, which decreases groundwater base flow. This causes river levels to rise

and fall dramatically as a function of precipitation events. This type of river flow

provides a highly variable and ultimately unreliable source of water. Additionally, loss of

vegetative cover results in significant soil erosion, which degrades both upland and

downstream areas and causing high maintenance costs.

At the beginning of the 16t century, Haiti was covered with lush forests. As of today,

only about 7% of the land is forested. Twelve of the thirty major watersheds were

deforested by 1978. If the rate of deforestation continues, only one pine forest and its

corresponding watershed will remain by the year 2008 (USAID, 1985). The effect of

little vegetative cover on Haiti's River flows can be seen in Table 1-3.
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Table 1-3. Deforestation and River Discharges (OAS, 1972; HARZA, 1979; Sheladia Associates,
1983)

River Site of Cleared Land Year Mean F Mmi
[1900] [m 3/s] [m 3/s] [m 3 /s]

FTrois FPaulin Iacorne 65-67 13.1 527.0 2.65

Pont Gros Morne 2340; 62-47 6.95 1,500.0 .3

lasance 540; 62-67 .87 1930 01
Limbe -- [Roche al'Inde -22-40 14.29 f4580__f .3_

Grande Rier du N PontPai s 22-40t 7 94

Massacre Ouanaminthe 22-40 5.34 450.0 .05
________ - --- F-- r ~ f--

FBoyaha St. Raphael 22-40 3.41 9.4 - I
Guiyamnouc 26-nc31 25.52 [ 9000 .9

A ~ibnie 7~iebaai I 2-40 586 2

A-ionite tSonde 2 0,500.0 8.4[-R nt V-- 2 -40 101.4 85~00 11.1
ePont Estere 65-67 18.76 F953 1.85

7er h -a-Chedl IPonteteon 2331 5 7 73

Blanche La Gorge 22-40 1.97 200.0 65

rieAmti B~ass in 19-40 3.9
Pedernales AneaPte29-30 .46 __ 7 .06

2er.gt 28-30 42 790 - 07
De Jacmel Jacmel 2631 1 4.67 800.0 .12
Momance Amont Barrage 20-40 5.88 420.0 6

Cotes de Fer Cotes deFer 28-30 .27 1 7.5.0 0.0

Cavailon Cavaillon 22-4 9.42 1,035.0 .70
Islet Charntier 2331 25 5 0. .66

TTOre orbec 32.66 188.0 .39
aine du ap Prein 3--5 --. 88 3500 .28

Grande Anse Passe Ranja 25-31 26.85 60.0 .70
Voldrogue asse Laaque 8 52

Lime Pont risop 2-30 - .

Gallois rison rde 22-31 .44

FEstere - -Pont Benoit 22-31 -- 3.95 0.0
Bois Verrettes 24-31;3340 8

Thee -V~aseFine - - 23-31 - 4.76 1 >6 1
Monrous Pnt oussaint 2~4-30 1. 84 .1

Torcelle Messaye 22-41 1. 15--

ourJoi Bassin Proby 22-39 1.23 -F

FMatheux IVArcahaie -- F 2-61.50 F.
Islet Cayes 23-31 .42.68 [ 6

Acul Carr. Valere 83 3.7
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There is a 99% average difference between maximum and minimum flow for this data,

which means there are extreme periods of plentiful and deficient water. The goal is to

have a steady source of water available, which may not be possible with the current

amount of deforestation. Significant actions need to be taken to protect and restore the

vegetative cover, and thus the water resources of Haiti's watersheds. Although Haiti's

water resources are not known in detail, with the right care, they are believed to be

adequate to meet the needs of the Haitian people. One major task is harnessing these

resources and delivering them to the Haitian people.

1.2 Haitian Water Supply

Two government sections are responsible for managing and developing water resources

in Haiti. The Ministry of Agriculture, through the Services des Ressources en Eau, is in

charge of water resources studies, research, control, and protection. The Ministry of

Public Works provides drinking water through two organizations: Centrale Autonome

Metropolitaine d'Eau Potable (CAMEP) for the metropolitan area, and Service Nationale

d'Eau Potable (SNEP) for the remainder of the country. In reality, there is little control

over the use of water resources and several other government and non-government

organizations administer water supply programs (USAID, 1985).

In 1978, there were 40 domestic water supply systems in the country serving 700,000

people, or roughly 15 percent of the population (HARZA, 1979). The existing water

supply programs are the result of investments by government agencies, and bilateral and

multilateral cooperation organizations. In 1984, the government devoted 4 percent of the
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budget to potable water projects and this contribution was financed at 84 percent by

external assistance (USAID, 1984).

CAMEP serves Port-au-Prince, Petionville, Carrefour, and Delmas. CAMEP supplies its

customers from 17 springs and 3 wells from the Cul-de-Sac (USAID, 1985). The upkeep

of these structures and associated distribution pipes leave much to be desired. Water loss

from the pipes is estimated from between 50 and 70 percent (DATPE, 1984; Fass, 1982).

All of these sources, with the exception of Doco Spring, have disinfection units but they

are usually not operational. CAMEP nominally serves about 500,000 people through

40,000 connections and 80 functioning standpipes. In actuality, only about 80,000 people

utilize CAMEP as their legal source of water. Approximately 300,000 people obtain

water from private vendors, 100,000 share a connection with a subscriber, and about

40,000 illegally tap into CAMEP's pipes (USAID, 1985).

SNEP is responsible for the construction, operation, and maintenance of all water supply

systems outside the metropolitan area. SNEP's finances are severely limited it but has

received assistance from UNICEF, WHO, The World Bank, Inter American

Development Bank, German Foundation for Technical Assistance, and USAID (USAID,

1985). SNEP has 185 water supply systems in operation, serving a total population of

700,000. Most of these systems are capped springs. Community systems range from a

dug or bored well with a hand pump serving about 200 people, to house connections and

public fountains that serve about 60,000 (USAID, 1985). Several organizations helped

finance or physically participated in the construction of these systems: IDB, Organization
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pour le Development du Nord, and Department de la Sante Publique et de la Population

at the Ministry of Health. In addition, several non-governmental organizations made vital

contributions: CARE, World Church Service, Missionary Church Association, German

Foundation for Technical Assistance, and Canadian Agency for International

Development. A summary of water supply systems is given by Table 1-4.

Table 1-4. Water Supply Systems (HARZA, 1979; USAID, 1985)

Service Area 1978 1985 1991
Metropolitan Area 460,000 500,060 600,000
Balance of West Department 60,000 150,000 20,000

outeastDepartment 400 30,000 80,000
NorthDepartment 30,900 150,000 290,000

Nr as De arent 5,400 15,000 90,000

Fntibomte Department 51,000 160,000 360,000

ter etpartment 17,500 30,000 80,000

Soth Department 2,00 40,000 130,000

1 Grand' Anse Department 14,900 50,000 150,000

Total Served 715,000 1,200,00 2,300,000

Total Population 4,750,000 5,200,000 5,600,000
P rcent Served 15% 23% 41%

1985 Systems under POCHEP and UNICEF
SvicArea Sevd Sriee Population Served
Nort(18) 15,200 West (50 27,400

NeSouthwest ( 4,900
Artibomte (38) 34,100 South(18) 1 23,100

Center(4) 6,500 Grande Anse (8) 1, 9,500
Northwest (0) -0 Subtotal (139) 120,700

A major problem with these water supply systems is there is no presence of national

drinking water supply standards. The managers of CAMEP, SNEP, Public Hygiene

Division, and Sanitation Office indicate the main concern is bacteriological
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contamination. It is generally agreed that there is enough water for drinking purposes and

the real issue is to develop the quality of the resource (DATPE, 1984).

1.3 Haitian Water Quality

Water-related diseases run rampant in Haiti. CAMEP and SNEP water is theoretically

disinfected before distribution. However, treatment is very erratic due to breakdowns and

lack of backup supplies. Surface water and groundwater from uncapped springs is

considered unsafe due to the high risk of contamination. Water from private vendors can

pose a risk of disease because it is not disinfected and the sources are unprotected. Even

bottled water cannot be guaranteed, as there is potential contamination during the

shipping process. Essentially, there is no controlled potable water in Haiti and every

source could contain pathogens (DATPE, 1984).

Waterborne pathogens are capable of causing illness depending on the dose and physical

condition of the exposed individual. Infectious organisms found in water may be

discharged by human beings who are carriers of a disease. Pathogenic organisms include

bacteria, viruses, protozoa, and helminthes, which can all cause a wide array of diseases.

Table 1-5 depicts common perilous organisms found in water and their corresponding

disease.
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Table 1-5. Infectious Agents Present in Raw Domestic Wastewater (Metcalf & Eddy, 1991)

Frganism [Riseas Remarks

Bacteria
Eseherichia cob 7 astroenist T Diarrhea

Legionella pneumophila Legionellosis Acute respiratory illness

, eptospira leptospirosis Jaundice, fever (Weil's disease)

Slmonellai I Typhifever -Higifever, diarrhea, ulceration
[ Salmonella [moneiosR T ood poisoning

1Shigella -Shigellosis __ Bacillary Dysentery
Vibrio cholierae - Coe -Extremely heavy diarrhea, dehydration
Yersniaenteroliica Yersinosis Diarrhea

Yiru s
Adenovirus (1tpes) Resirator dsease

fEnteroviruses (67 Gastroenteritis, heart
types) anomalies, meningitis

Hpiti Infectious hepatitis Jaundice, fever

Norisalagent Gastroenteritis Vomiting

RevrsGastroenteritis~ ~7

Protozoa IFr-----
Balantidiui coli Balanticliasis I Diarrhea, dente

I[Cryptosporidium_ _ Cryptosporidiosis Dare_ ~--
Eanitoeba iyica -Amebiasis (anoebic dysentery) Prolonged diarrhea with bleeding, abscesses

of the liver and small intestine

Giardia lamblia Gardiasis Mild to severe diarrhea, nausea, indigestion

Helminths

Ascaris lunibricoides aria Roundworm infestation

Ente i as veris T t7 oi s Pinworm
Fasciola hepatica F asioiis [ Sheep liver fluke

7ymenolepis nana Hymenolepiasis Dwarf tapeworm

Taenia saginata Taeniasis Beef tapeworm

Taena soliin- T ntiis okFi-tapeworm
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These infectious organisms can have highly deleterious impacts on community members.

Table 1-6 shows there were several thousand cases of water related diseases reported in

1980 (CONADEPA, 1984).

Table 1-6. Some Reported Cases of Water Related Diseases in 1980 (CONADEPA, 1984)

Area Population Diarrhea Intestinal Infections Typhoid
Cases,-/1000~ Cases /1000- Cases 1/1000

Pr-uPn 650,000 6608 10.2 F 4694 7.2 r 460 .
Gonaives ar 33,000 225 77otd167 51 1 .3

I es a n 1ne y 4 5 30.3 2171 145 114 7.6
Hinche pro ,000 694 7469.4f-07bir74 10s 10.0
St. Marc 23,000 851 37.0 314 13 .7 266 116

hPetitGoave 7,60 294s42.0 1357 194 2 - .3
Belladere 7 2,500 875 1350.0 272 109 68 27.2-
Jacml 13,000o 3Y2W 2.6 152 11. 8f7 6.7-

j~rhet. 5000 155.6 F 689 12.2 141 .3

South Dept. 500,000 1 1909 3.8 2380 4.8 462 .

The actual numbers of diarrhea and intestinal infections are much higher as many

occurrences are never reported. In 1979, diarrhea alone caused the death of 9% of the

babies less than one year of age (USAID, 1984). A study from 1994 to 1995 found nearly

one-half of all deaths occurred within the first five years of life. Additional statistics

indicate, approximately 74 out of 1,000 births die before one year of age and 131 never

reach five years of age (PAHO, 1999). The National Health Survey conducted a survey

from 1987-1994 and found that the incidence of diarrhea was about 47.7% in

6-to-i 1I-month-old infants. Diarrheal diseases are the leading cause of illness and death in

children under five years of age, and are often associated with malnutrition and acute

respiratory infections (PAHO, 1999). These daunting statistics make water quality the

biggest water resource issue in Haiti. If correctly managed, there is an ample amount of
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water to meet the needs of the Haitians but they need an easy and economical way to

destroy waterborne pathogens.

1.4 Point-of-Use Water Treatment

In developed countries, pathogens are typically destroyed by elaborate centralized water

treatment plants. Unfortunately, it is not financially possible to upgrade to conventional

water treatment technologies in Haiti. As a more plausible alternative, low-cost

point-of-use disinfection technologies can treat water and are more economically

realistic. The choice of a point-of-use water technique should fulfill the following criteria

(Lehr et al., 1980; Shultz et al., 1984):

1. Effective on many types and large numbers of pathogens
2. Should perform regardless of water fluctuations
3. Must operate in appropriate pH and temperature range
4. Should not make the water toxic or unpalatable
5. Should be safe and easy to handle
6. Any chemical concentrations should be minor
7. Must provide residual protection against possible recontamination
8. Units must be affordable to all
9. Should be adaptable to local conditions and variations
10. Specialized equipment should be produced locally
11. Must be accepted by local traditions, customs, and cultural standards
12. Must comply with national sanitation and pollution policies

Common point-of-use disinfection techniques such as chlorination, boiling, and filtration

can be successful but have associated problems. Chlorine is the most widespread

disinfection method and will be discussed in the most detail.

Chlorine's most important attributes are its germicidal potency and persistence in water

distribution systems. Chlorination uses chlorine gas, Cl2; sodium hypochlorite, NaOCl; or
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calcium hypochlorite, Ca(OCl)2 . These forms of chlorine act as powerful oxidizing

agents that damage vital cell structures. The key reaction of the dissolution of chlorine

gas in water is as follows:

Cl2 +H20K HOCl+ H++Cl-

HO01 ' H+ +OCE~

The hypochlorous acid formed, HOCi, is the prime disinfection agent. The protonation of

hypochlorous acid depends on pH and yields the less effective hypochlorite, OCi

Together the HOCi and OC- make up the free available chlorine, which is most useful

for disinfection. In addition, chlorine based compounds can form long lasting residual

compounds to provide continual disinfection (Metcalf and Eddy, 1991).

Chlorination has been controversial for decades, as consumers do not like the associated

odor and taste. Chlorine also reacts with natural aquatic substances to produce

disinfection byproducts such as trihalomethanes (Gibbons and Laha, 1999). Animal and

epidemiological studies suggest these byproducts can cause adverse health affects, are

possibly carcinogenic, and are linked to an increased risk of birth defects (Trussell 1999;

Per Magnus et al., 1999). Furthermore, chlorine poses additional problems such as

reliable supply, timely distribution, and correct dosage (Wegelin et al., 1994).

Other household disinfection mechanisms include boiling the water and filtering. In

Haiti, boiling water uses energy in the form of firewood, which is no longer possible due

to extensive deforestation. Filtration is often unaffordable and is subject to frequent

25



clogging and leaking. In addition, filtering typically requires additional disinfection steps.

These problems call for the development of an alternative disinfection technology that is

effective, practical, and simple enough to be applied by individuals at the household

level. Under the right conditions, solar water disinfection, or SODIS, may be that

alternative.
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Section I SODIS for Point of Use Water
Treatment
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2 SODIS: Solar Water Disinfection

2.1 SODIS Introduction and Development

SODIS uses the sun's energy to provide an economically feasible means of providing

safe drinking water. This treatment process produces disease-free water by filling

transparent containers and exposing them to sunlight:

Inactivation of micro-
Removal of solids organisms by UV radiation
by sedimentation and thermal treatment

Figure 2-1. SODIS Overview

The science behind SODIS will be discussed after a little background. This technology

was pioneered in the late 1970s by Acra et aL. at the American University of Beirut,

Lebanon, to find an inexpensive disinfection method for oral rehydration solutions (Acra

et aL., 1984). Their exciting results gave birth to a new disinfection technique.
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Consequently, a workshop on SODIS was held in Montreal in 1988 (Lawand et al.,

1988), and SANDEC/EAWAG (Swiss Federal Institute for Environmental Science and

Technology) started to investigate the SODIS process in 1991. Their findings were

encouraging and field-tests where launched to include several countries: Columbia,

Bolivia, Burkina Faso, Togo, Indonesia, Thailand, and China (EAWAG/SANDEC,

1998). The most alluring aspect of this technology is the low investment costs of plastic

bottles and the disinfection energy that is provided free of charge by the sun.

2.2 Solar Radiation and Disinfection

SODIS uses the destructive power of different bands of the electromagnetic spectrum to

destroy pathogens. Photodynamic inactivation of microorganisms was first demonstrated

by Raab in 1900. The sun emits energy in the form of electromagnetic radiation that

covers the ultraviolet, visible, and infrared range. The most important bandwidths for

SODIS are the UV-A, red, and infrared, which are shown in relation to the electromagnet

spectrum by Figure 2-2.

rRed and Infared
travioletLightLight

UV-C UV-B UV-A Red Infrared
100-280 1m280-315 n=n315-400 nm 622-780 nm 780 nm-1 mm

Figure 2-2. Important Components of the Electromagnetic Spectrum (Solomon, 1996)
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Recent studies have shown that UV-A light is the main bandwidth involved in the

eradication of microorganisms (Acra et al, 1984; Acra et al., 1990; Reed et al., 1997;

McGuigan et al., 1998). UV-A has direct effects on DNA and forms highly destructive

oxygen species as a secondary product. In addition, water strongly absorbs red and

infrared light creating heat, which results in pasteurization. Figure 2-3 shows the

combined effects of UV-A and water temperature on coliform bacteria.

E -- -- - - - - -50 5

- 2-- 440

Water3

Temp-rature E0 FC,

S10

--- -------- 

----

020 40 60 90 10CA

UV-A Doels [Wm2J

Figure 2-3. 1W-A and Temperature Effect on Fecal Coliform (EAWAG/SANDEC, Technical Notes).

Microbial inactivation is contingent on the disinfection mechanisms of DNA alteration,

photo-oxidative destruction, and thermal pasteurization damaging cellular defenses. This

concept for each process will now be discussed further.

2.3 DNA Alteration by UV

To assure pathogenic organisms are eradicated, DNA must be damaged faster than

microbes can repair it. DNA has a maximum UV absorbance at around 260 nm that

causes mutagenesis and results in cellular death (Raven and Johnson, 1996). Absorbed

UV light causes adjacent thymine bases to covalently bond together, forming thymine

dimers:
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Figure 2-4. Formation of Thymine Dimers (Raven and Johnson, 1996; Mathews and Van Holde,
1996)

When this damaged DNA replicates, nucleotides do not complementary base pair with

the thymine dimers and this terminates replication. Organisms may also replace thymine

dimers with faulty base pairs, which causes mutations, leads to faulty protein synthesis,

and may result in death.

The effect of thymine dimer formation may be reversed to some extent by exposure to

visible light in a process called photoreactivation. Visible light can activate the enzyme

DNA photolyase that breaks the bond joining the thymine bases. DNA can also be

repaired by excision, where DNA polymerase and DNA ligase cut out damaged DNA and

replace it with a stretch of error-free DNA (Mathews and Van Holde, 1996).

When DNA damage is too extensive for photoreactivation and excision mechanisms, the

cell coordinates the expression of a large number of unlinked genes, which enhance

capacity for DNA repair and inhibit cell division. This orchestrated activation of diverse
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metabolic functions to repair damaged DNA damage has been called the SOS response

(Mathews and Van Holde, 1996). The manifestation of the SOS response eventually leads

to DNA repair and returns the cell to its normal growth cycle.

Extreme UV-resistance of some bacteria is a result of efficient DNA repair machinery

along with powerful scavenging activity of cells toward various reactive oxygen species

generated by UV irradiation (reactive oxygen species are discussed in the next section).

To ensure UV-A radiation overpowers pathogenic cellular defense mechanisms, a

sunlight intensity of 500 W/m2 should be applied for 3 to 5 hours to induce lethal effects

(SODIS News No. 1, 1998). UV-A also creates highly reactive oxygen species as a

secondary disinfection product in a process called photo-oxidative disinfection.

2.4 Photo-Oxidative Disinfection

UV-induced reactive oxygen species can be lethal if they are present in numbers higher

than the organism is capable of attenuating. Natural dissolved organic matter can absorb

ultraviolet radiation to induce photochemical reactions (Miller, 1998). The energy

transfer of a high-energy photon to absorbing molecule produces highly reactive species

such as superoxides (01), hydrogen peroxides (H202), and hydroxyl radicals (OH-)

(Stumm and Morgan, 1995; Miller 1998). These highly reactive species in turn oxidize

microbial cellular components such as nucleic acids, enzymes, and membrane lipids,

which kill the microorganisms (McGuigan et al., 1999; Reed 1996; Reed 1997).
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In their defense, microorganisms have evolved powerful scavenging activity toward

various reactive oxygen species. (Yun et al., 2000; Fridovich, 1988; Halliwell, and

Gutteridge, 1999). A common defense against superoxide is carried out by a group of

enzymes called superoxide dismutase. Superoxide dismutase catalyzes the following

reaction, which decreases the lifetime of superoxide by a factor of 10 9 (Fridovich, 1998):

02-+02-+2H+ , ' H202+02

Microbes cope with hydrogen peroxides using two groups of enzymes called catalases

and peroxidases. Catalases eliminate hydrogen peroxide by:

2H 20 2 N '02+2H20

while peroxidases uses the reducing power of NADH:

H 20 2 + 2NADH '= 2NAD* + 2H 20

In addition to superoxide dismutases, catalases, and peroxidase, there is an additional

orchestrated defense observed in E. coli involving the SoxRS and OxyR regulons. When

activated, these regulons express several genes to provide additional defense (Fridovich,

1998).

Superoxide and hydrogen peroxide are not themselves dramatically devastating, but they

can produce hydroxyl radicals, which form a juggernaut of oxidative power, in two ways:

1. H2O +e-+H ' H 20± OH.

2a.M3 ±+02- M2+ +02

2b. M 2 ++ H 20 2  ' OH± +M 3 +OH.

where M is a metal
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After the hydroxyl radical if formed, it reacts extremely fast with almost every type of

molecule found in living cells causing tremendous damage.

For photo-oxidative disinfection to occur, sufficient levels of oxygen need to be initially

present. This was demonstrated by Reed in 1997 by comparing aerobic and anaerobic

inactivation rates E. coli and Ent. faecalis using solar disinfection.

7- 7-

6 6

5- E

35 3t
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Fig. I ctmivtion of rcponcniial phas (a) Ei(as 06 ad
(b) 1 uatgafse, either in Woi sunlight vsdr avbic

(C) of Namabir (C) oqowdau or in dthkam ukr arobic
(0) or awr (E)moiditiow

Figure 2-5. Aerobic vs. Anaerobic Microbial Inactivation (Reed, 1997).

The aerobic rates of disinfection (circles) are much faster than the anaerobic rates

(squares), indicating that the presence of oxygen is essential for the rapid solar

destruction of E. coli and Ent. faecalis.
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Reed's experiments demonstrated the importance of oxygen to SODIS. This desired

aeration can be achieved on a practical level by vigorously shaking the SODIS containers

before sunlight exposure. This is especially important for stagnant water sources where

the levels of dissolved oxygen are questionable (EAWAG/SANDEC, Technical Notes).

2.5 Thermal Inactivation

Thermal effects can act synergistically in the disinfection process if they can overcome

microbial heat resistance. As temperatures rise past the maximum growth value, it

becomes difficult for proteins to form their proper structures and it causes already formed

proteins to unfold. Denatured proteins do not function properly and may eventually kill

the organism (Brock, 2000).

Microorganisms have special chaperone proteins that are especially suited for elevated

temperatures due to better hydrogen bonding, superior hydrophobic packing, and

enhanced secondary structure. These heat shock proteins are present in low

concentrations under normal conditions, but are expressed at high levels when exposed to

a sudden increase in temperature. These proteins help keep other proteins functional and

can cause heat resistance (Brock, 2000). The efficacy of these heat-shock proteins

determines how much temperature an organism can withstand before heat inactivation.

It has been observed that water temperatures between 20 and 40 0 C do not affect the

inactivation of E.coli by sunlight (Wegelin et al., 1994). However, synergistic effects are

observed at a water temperature of 45 0 C (McGuigan et al., 1998). Compared to lower
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water temperatures, only one-third of the UV-A fluence was required to inactivate E. coli

at synergistic threshold of 50 0 C (Wegelin et al., 1994). SODIS technical notes show the

synergistic relationship between UV-A and thermal disinfection depicted in Figure 2-7.

0_3

02

01

Figure 2-6. Synergistic effects of UV and Temperature (EAWAG/SANDEC, Technical Notes)

To increase thermal effects, bottles are painted black at the bottom. Black by definition is

the absence of color and therefore it absorbs many wavelengths from the electromagnetic

spectrum, which converts light energy into heat. The half-blackened SODIS bottles

increase the temperature by approximately 5 0 C. Additionally, placing the bottles on

dark surfaces will also help heat the water and produce thermal effects

(EAWAG/SANDEC, 1998).

The combined effects of sunlight-induced DNA alteration, photo-oxidative destruction,

and thermal inactivation are responsible for the inactivation of microorganisms, which is

well documented.
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2.6 Inactivation of Indicator Organisms and Pathogens

SODIS efficacy is usually established through the inactivation of indicator organisms, but

effects on actual pathogens have also been investigated. A brief overview of indicator

organisms will be given, as they are the most commonly used gauges of SODIS success.

This will be followed by a tabulation of microorganisms that are inactivated by SODIS

and a table of the heat sensitivities of some pathogens will also be provided, as thermal

effects are an important aspect of the SODIS process.

2.6.1 Indicator Organisms

A person discharges billions of organisms per day and most of the pathogenic fraction of

these organisms is difficult to isolate and identify. Consequently, the presence of easily

identifiable organisms is used to suggest the existence of pathogenic ones. The

characteristics of an ideal indicator organism are shown in Table 2-1.

Table 2-1. Criteria for an Ideal Indicator Organism (Maier et aL, 2000)

Used for all types of water

Present whenever enteric pathogens are present

Should have a reasonably longer survival rate than pathogens

IShould not grow in water

Testing method should be easy to perform

Density should allude to extent of fecal pollution

Should be a member of the microflora of warm-blooded animals

Unfortunately, no single group of organism meets all of the above criteria. Consequently,

multiple indicator organism groups are often used. The two most common ones are total

and fecal coliform.
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2.6.1.1 Total Coliform

Coliform bacteria include the genera Escherichia, Enterobactor, and Klebsiella and are

characteristically facultatively anaerobic, gram-negative, non-spore-forming, rod-shaped

bacteria that can ferment lactose to produces gas (Maier et al., 2000). Traditionally,

coliform quantity has served as the standard to gauge water quality with respect to

pathogens.

Experience has shown that the absence of coliform bacteria in 100 ml of drinking water

will prevent enteric diseases. Two realizations have been made to support this

observation. First, relatively few individuals excrete pathogens while the entire

population contributes coliform to the waste stream. Therefore, the number of coliform

should far exceed the number of pathogens as shown for infectious viruses by Table 2-2.

Table 2-2.Virus-Coliform Ratios for Sewage and Polluted Surface Waters (Masters, 1997)

Virus i Colifrmj Virus/Coliform Ratio

Sewage _ 500/100 ml 46*1_/1o0 m 1:92,000
Polluted Surface Water 1/500 m_5*0410_l_:5_10

Second, the survival rate of pathogens outside of the host is much lower than the survival

rate of coliform bacteria. The combination of these two factors statistically suggests that

it is extremely unlikely to have water containing pathogens without numerous coliform.

However, coliform bacteria have characteristics that make them less than an ideal

indicator organism: regrowth in tropical waters, suppression of numbers by background
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bacterial growth, some eukaryotic organisms like Giardia can survive considerably

longer outside their host, and not all coliform are of fecal origin.

2.6.1.2 Fecal Coliform and E. coli

To help eliminate possible false positives, coliform of only fecal origin can be used.

These organisms consist of the Escherichi and Klebsiella genera. These coliforms can

ferment lactose to produce both acid and gas at 44.5 0 C within 24 hours (Maier et al.,

2000). It has been suggested that E. coli be used as an indicator organism as it can readily

be distinguished from other members of the coliform group. However, E. coli cannot be

differentiated between human and animal origin. Despite these limitations, fecal coliform

bacteria have proven invaluable in assessing drinking water quality as shown by Table

2-3:

Table 2-3. Indicator Organisms Used in Establishing Performance Criteria for Various Water Use
(Metcalf and Eddy, 1991)

Water Use Indicator Organisms

Drinking Water [Total coliform

Freshwater Recreation Fecal coliform, E. coli, Enterococci

Saltwater Recreation Fecal coliform, total coliform, Enterococc

Shellfish GrowingAreas Tota coliform, fecal coliform

Agriculturalirtgation T ol(for recaimed water)

Wastewater effluent disinfection Total coliform, fecal coliform

In 1984, Acra demonstrated that E. coli serves as good indicator organism for SODIS as

it is more resistant to the lethal effects of sunlight than other bacteria. Coliform bacteria

have become the general standard in assessing microbial water quality but many other

organisms have been put to the SODIS test.
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Inactivation of Specific Microorganisms and Heat Sensitivity

Table 2-4 is a list of microorganisms that have been inactivated by the SODIS process. It

is not comprehensive and the references for coliform bacteria are far more extensive.

However, it demonstrates that many different microorganisms are sensitive to the SODIS

method.

Table 2-4. SODIS Inactivation of Microorganisms

Microorganism

E. coli

Fecal Coliform

Vibrio Cholera

Vibrio Cholera

P. aerugenosa

S. flexneri

S. typh i

S. enteritidis

S. paratyphi

Reference:

Wegelinetal, 1994

Sommr, 1997

Sommer, 1997
New Scientist Magazine, 2000

Acra etal 1 1984

FAcr ae-tat, 1984

AKra et al., 1984

F7Acra et aL., 1984
fAcra etal, 1984

Aspergillus niger Acra et al., 1984

Aspergiusfiavus IFAc-ra ett.,a 1984

Candida [Ara , 1984

Str. Faecalis 7Wegelin et at., 1994

Penicinium

Polio Virus

Acra et al., 1984

Cubbage eta., 1979

Bacteriophage MS2 kascinski and Mitchell,- 1982

Enterocci F Wegelin eta., 1994

Bacteriophage a [---Wegelin et at., 1994

Encephalornyocarditis virus [Wegelin etat., 1994

Rotavirus Wegelin et a., 1994

Cryptosporidium Bukhari et at, 1999; Clancy et a., 1998

Cryptosporidium New Scientist Magazine, 2000

Giardi Muris* [Craik et a, 2000

ound under a UV lamp measured in the UV-C range. Although UV-C is not found in
sunlight, it suggests these organisms would be sensitive to the UV-A portion of sunlight.
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While this list does not address all of the important pathogens, there is active research to

investigate important pathogens such as Giardia (SODIS Conference Synthesis, 1999).

Some additional insight to other microorganisms could be gained by examining their

thermal sensitivities, as thermal inactivation of microorganisms is a very important

process in SODIS. Table 2-5 shows the heat sensitivities of several infectious organisms.

Table 2-5. Thermal Destruction of Microorganisms (Feachem et al., 1983)

Time and Temperature for 100% destruction

Microorganism 1 min 6 min 60 min

Enteroviruses F - -- 62 0 C

Rotaviruses 63 *C for 30 m n

Salmonellae 62 C 58C

Shigella 61 0C 54 0C

Vibrio Cholera F 45 O

Entamoeba Histolytica cysts F-57 OC 54 *C F 50 0C

Giardia Cysts 57 *C 54 0 C 50 C

Hookworm eggs and larvae 62 0 C 51 C

Asc eggs / 62CC 57 OC
F - ----- F

Schistosomas eggs - 60 cC 1 55 OC 50 0C

Taeniaeggs 65C *57C 51 0 C

The inactivation of microorganisms by the SODIS process is fairly well established.

However, there has been some concern of secondary UV effects enhancing bacterial

growth and the possible regrowth of enteric pathogens. These issues will now be

examined.
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2.7 UV-Enhanced Bacterial Growth and Bacterial Regrowth

Studies have shown that exposures of UV radiation can actually increase indigenous

concentrations of bacteria (Moran and Zepp, 1997; Bertilsson et aL., 1999; Lindell et al.,

1995). Solar UV radiation may alter the chemistry of dissolved humic substances in water

to produce lower molecular weight organic compounds, which serve as substrate for

microorganisms (Mopper and Stahovec, 1986; Kieber et aL., 1989). Additionally,

photochemical reactions can generate free ammonium in humic and natural waters

(Bushaw et aL., 1996; Gao and Zepp, 1998). These effects of liberated food and nutrients

can enhance bacterial growth. Furthermore, studies have shown that E. coli can regrow

after UV-C inactivation (Mechsner and Fleischmann, 1990; Mechsner et aL., 1991;

Mechsner and Fleischmann, 1992). These various factors suggest that it may be possible

for pathogens to be present after short-term storage if given enough time to regenerate.

Wegelin et al. (1994) examined various aspects of microbial regrowth to show that

sunlight and UV-C do not fully kill bacteria mixtures beyond regrowth, and E. coli could

regenerate from UV-C radiation. However, there was no revival observed for E. coli

inactivated by the SODIS process (Figure 2-7).
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Figure 2-7. Bacterial Regrowth (Wegelin et aL, 1994)

Wegelin et al. state that the difference in E. coli regrowth can be attributed to the

relatively longer exposure time required to inactivate the cells with solar radiation when

compared to the UV-C fluence. For the study conducted by Wegelin et al. (1994), the

regrowth of natural bacteria from sunlight was attributed to the resistant saprophytic

bacteria and their spores.

An interesting question for further research is, in general, why can indigenous microbial

populations regenerate from the SODIS process while enteric pathogens are permanently

inactivated? One can speculate that the indigenous aquatic microorganisms have much

more developed DNA repair and reactive oxygen species defense mechanisms (as

previously described). Evolution in an environment that has frequent exposure to UV and

reactive oxygen species would cause the microorganisms that are most resistant to these
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adverse effects to be most successful. This would cause microbial populations indigenous

to aquatic systems to have greater UV and reactive oxygen species resistance. However,

enteric pathogens have evolved in the dark anaerobic human gut and, consequently, there

would be no selective pressure to produce such developed repair mechanisms against UV

and reactive oxygen species. Consequently, when enteric pathogens are exposed to the

SODIS process, they are inactivated while the indigenous populations can revive. Despite

any bacterial revival, the aim of SODIS is to produce a pathogen-free source of water and

not a sterile solution, which the study conducted by Wegelin et al. (1994) demonstrated.

The science behind SODIS has been discussed. However, SODIS efficacy is highly

dependent on site-specific conditions. These conditions along with some practical aspects

must be considered before applying SODIS.
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3 Important SODIS Variables

SODIS operates on the principle that sunlight-induced DNA alteration, photo-oxidative

destruction, and thermal effects will inactivate microorganisms. For these parameters to

be effective, the environment must be sunny and hot enough, the water must be clear

enough to allow the light to penetrate, and the type of bottle being used must not

substantially hinder these processes. In addition, for this technology to become a reality,

people must be able to afford it, and they must believe in it, or it would never be applied.

Haiti's climate as it relates to SODIS will be discussed, including an approach to simulate

sunshine intensities. This will be followed by a discussion of the social acceptance

observed in different parts of the world along with economic considerations.

3.1 Haitian Climate

Assuming there is adequate oxygen to mix into the water, the two most influential

variables affecting SODIS efficacy are sunshine and temperature. These two parameters

are a function of seasonal and geographical climate variation. To assess these factors,

Haiti is discretized into seven sections that correspond to the degree latitude and

longitude data obtained from NASA Langley Atmospheric Sciences Data Center (Figure

3-1).

45



...... 2.....

...... .... ...... .....

Figure 3-1. Discretization of Haiti (NASA Langley Research Center Atmospheric Sciences Data
Center, 2001)

Based on this discretization, seasonal Haitian sunshine and temperature will be examined

followed by influences of topography.

3.1.1 Haitian Sunshine

The sun is a giant fusion reactor that destroys matter to yield energy in the form of

electromagnetic radiation. The earth is partially shielded from solar radiation by

absorption, scattering, and reflection in the stratosphere and troposphere (Brooks and

Miller, 1963; McVeigh, 1977; Sabins, 1978; Michaels, 1979; WHO, 1979).

Stratospheric ozone strongly absorbs shorter wavelength radiation while its affinity

decreases rapidly with higher wavelengths. This high-energy absorption blocks the earth

46



from UV-C and only allows a fraction of UV-B and UV-A to reach ground level (Acra,

1990). Solar attenuation in the troposphere is primarily caused by clouds, dust, smoke,

haze, smog, and various gases. Tropospheric scattering highly depends on particle size

and produces both selective and nonselective scattering. Selective scattering is caused by

smoke, fumes, haze, and gas molecules that are smaller than or equal to the incident

radiation wavelength. This type of scattering affects shorter wavelengths and is more

severe for polluted atmospheres. Nonselective scattering is caused by dust, fog, and cloud

particles with sizes more than 10 times the wavelength of the incident radiation. In

addition, thin clouds may reflect less than 20% of the incident solar radiation, while thick

clouds may reflect over 80% of all radiation (Acra, 1990).

Atmospheric attenuation causes the amount of solar radiation that reaches the earth's

surface to be highly dependent on the path length through the atmosphere. This path

length is a function of the earth's tilt, rotation, and slightly elliptical orbit. As the earth

rotates around the sun, its axis is tilted constantly at 23.47'. During summer, the

hemisphere tilts towards the sun, which causes the radiation to be more perpendicular and

of greater duration. In winter, the hemisphere tilts away from the sun creating a longer

atmospheric path and shorter days. A gradual transition occurs between these two

extremes, giving seasonal changes. NASA Langley Atmospheric Sciences Data Center

provides visualization for Haiti of a 10-year average monthly value of total daily

radiation (Figure 3-2).
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Figure 3-2. Average Monthly Value of Total Daily Radiation (NASA Langley Research Center
Atmospheric Sciences Data Center, 2001)

The monthly amount of total surface radiation provides important information for

assessing SODIS. However, recommendations for SODIS are based on a threshold of
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sunlight intensities rather than the total amount of energy received. Fortunately, these two

entities are intimately related and can be sufficiently described by mathematical models.

3.1.2 Mathematical Development of Sunshine Simulation

SODIS efficacy depends on an adequate duration of sunshine radiation. It has been

deduced that an intensity of 500 W/m2 should be available for 3 to 5 hours for effective

disinfection (SODIS News No. 1, 1998). A value of at least 5 hours of sunshine above

500 W/m2 will be used as a conservative threshold. Many areas of the world in need of

SODIS are developing countries, and consequently, do not have meteorological data on

sunshine intensity profiles. However, NASA Langley Atmospheric Sciences Data Center

provides web accessible data on the 10-year average, minimum, and maximum amount of

total energy received for a representative day of each month. This data has a spatial

resolution of one-degree latitude and longitude for the entire world. Quantitative

knowledge of the total amount of daily energy received, allows for the simulation of daily

sunshine intensity profile. This information can then be used to calculate the average,

minimum, and maximum intensity for the peak five hours of sunshine to get a first

approximation of whether SODIS would be applicable for any given month. This

technique will be applied to simulate Haitian sunshine but could be easily extended to

simulate monthly sunshine values for anywhere in the world.

The general approach is to calculate the day length based on location and time of the

year, which involves the earth's declination angle and sunrise angle. Next, the sun's hour

angle relative to the location is obtained. This combined information is then used to

determine what fraction of the total radiation is received at a given hour, ultimately
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generating daily sunshine profile. The meanings and calculations for each necessary

parameter will now be discussed.

The declination, Wd , is the angular distance at solar noon between the sun and the

equator, referenced as north positive. Declination changes with date and is independent of

location. It has maximum absolute value of 23.45 degrees during the summer and winter

solstice and 0 degrees on the equinoxes. It can be approximated for a specific Julian day

from the equation given by Cooper (1969).

(360(284+ nd)
Dd = 23.45 sin Jdy

365

where: (1.1)
(Dd = declination angle [0]

nd, = julian day (number of days after January 1)

For practical purposes, Duffie and Beckman (1980) provide a table with declination

angles that are representative of each month:

Table 3-1. Recommended average day for each month (Duffie and Beckman, 1980)

Month Date Julian Day Declination, Wd, [01

January 17 17 9

rJebruary [ 16 47- -13.0 -

16 - 5-2.4-

15 135 b 1.8

[June 117162 F 23.1

F-~y17- 198 21.2

505

FSeptember 7i V-5- F 258F.
Fbtobe [is 288 F -.

14 31 - -8.

December 110 334 -23.0
*Values do not account for leap year; correct by adding 1 to
months from March onward. Declination will also change slightly
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The hour-angle, w, is the angular displacement of the sun east or west of the local

meridian due to rotation of the earth at 150 per hour. The hour-angle can be calculated

from the following equation (Brock, 1980).

co, = (t - 12)15

where: (1.2)
w, = hour-angle []
t = time from midnight [hr]

The sunset or sunrise hour-angle, w, is the hour-angle when the sun's center reaches the

horizon and can be computed if the location's latitude, L, and current declination, d, are

known (Milankovitch, 1930).

c = Cos' (-tan (L)tan(wd))

where: (1.3)
ws = sunrise or sunset angle [0]

L = latitude [0]

From the sunset angle, the day length, Dl, can be calculated:

DI = 2 "s
15D jS (1.4)

where:
DI = day length [hr]

The total daily average solar radiation, Id, can be obtained from NASA's website by

degree latitude and longitude for everywhere on earth (NASA Langley Research Center

Atmospheric Sciences Data Center, 2001). The hourly averages can be calculated by

determining the ratio, r, of hourly amount radiation to the daily total (Duffie and

Beckman, 1980):
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r (+bcoj Cos W' - Cos Wsr~ =i(a+bcosw,) COWCSW
24 sin w, -( 2 cco, / 360)cos w,

where: (1.5)
r ratio of hourly to daily sunshine
a = coefficient
b = coefficient

The coefficients a and b are:

a .409+.5016sin(w,, -60)
b=.6609 -. 4767 sin(w, -6 (0)

With this ratio known, the average hourly value can be calculated:

It, = rIda

where:
I,, = average hourly radiation [W/m 2  (1.7)
Ida= average daily radiation [Wh im2]
r, = ratio of hourly to daily radiaiton

This information was used to create a computer code, provided in the Appendix, to

simulate diurnal sunshine profiles. The model is essentially a Fourier series that uses the

amount of total sunshine and the day length to produce correct amplitude and

wavelengths of the period function that simulates diurnal sunshine. The algorithm

produces the following shape for 74 hours (Figure 3-3).
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Fourier Series used to simulate Diurnal Sunshine
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Figure 3-3. Fourier Series of Sunshine Intensity for 3 days Starting and Ending at Midnight

For the specific parameters used to generate this profile, the sun rises around 6 A.M. and

sets around 6 P.M. The model assumes that solar noon is exactly at noon, the time at

which the solar angle is 0 as calculated by equation 1.2. This can cause the model to be

slightly out of phase with observed data. Solar time can differ from standard time for two

reasons. First, there is a constant correction for the difference in longitude between the

reference location and the meridian on which the local standard time is based. Second,

there are perturbations in the earth's rate of rotation, which are taken into account by the

equation of time. The overall adjustment from solar time to standard time is given by

equation 1.8 (Duffie and Beckman, 1980).
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solar time = standard time +4(L,, - Lu) + E

where:
solar time = time [minutes]
standard time = time [minutes]
L,, = standard local meridian [0]
LIC = local longitude [0 ]
E = equation of time [minutes]

Time adjustments can also be interpolated from Table 3-2.

Table 3-2. Adjustment for Daily Time (Wunderlich, 1972)

Adjustment amount [minutes]
for corresponding day of the month

January 3.58 -7.98 -11.38

February -13.68 -1435 -13.75

arch 1238 -10.17 r -7.32

April 1 -3.98 [ -i +1.28

__May + 2.95 3.72 +3.57
F June -F+2.38 F 0.±0 1 -1.52

July -6.23-K ~7~

7KAugu 7 F-6.22 1 5.01 1-3.12
-September -003 ±3.30 F ±6.85
FOctober V+10.23__1+13.17__ +15.28

[November +16.33 +1.9 +14. 12

I-_V ±0.98" F +6.78 [±1.95

Adjusting for solar time is only important when trying to match observed data and not for

simulating peak five-hour intensities. The aforementioned approach of using daily total

energy to generate intensity profiles will now be used to validate the model and then

simulate Haitian sunshine.
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3.1.3 Simulation of Haitian Sunshine

The average, minimum, and maximum peak 5-hour sunlight intensities will be simulated

throughout the year after the mathematical model has been verified. Model validation

will be made by comparing simulated intensity values to both measured intensities and

intensity values obtained from NASA Langley Atmospheric Sciences Data Center.

Sunlight intensity profiles were measured with a Kipp and Zonen Solrad kit (Section III,

4.1) from January 12' to January 2lt 2001. Integration of an average intensity profile

yields the average total amount of energy observed in Haiti, which was 5394 Wh/m 2.

This value is then plugged into the model to simulate an intensity profile, and this

simulated profile is then compared to the average measured intensity profile to validate

the model (Figure 3-4).
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Validation of Sunshine Intensity
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Figure 3-4. Model Validation of Simulated versus Observed Sunshine Intensity Profile

The model accuracy is demonstrated by its agreement within 99% of the measured

values. A second validation is made using NASA Langley Atmospheric Sciences Data

Center values for the average top three hours of sunshine intensity for each month of the

year. Average monthly values of total energy are used to generate monthly intensity

profiles as shown for Area 1 by Figure 3-5.
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Simulated Monthly Intensity Profiles
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Figure 3-5. Simulated Intensity Profile for Each Month in Area 1 (NASA Langley Research Center
Atmospheric Sciences Data Center, 2001)

From these monthly profiles, the peak three hours around noon are averaged for the first

six areas used to discretize Haiti. These averaged values are then compared to the NASA

data for each month of the year (Figure 3-6).
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Figure 3-6. Comparison of Simulated to Observed Average Peak Three-Hour Average Intensities
(NASA Langley Research Center Atmospheric Sciences Data Center, 2001)

Each area has an average correlation coefficient of .97 with a range of .98 to .95 between

the predicted and the NASA data. The simulated versus the observed values for each area

disagree by about 7.2% with a range of 6.2% to 8.1%. This span of error is well within

the uncertainty on the NASA data of 14.2% (NASA Langley Research Center

Atmospheric Sciences Data Center, 2001). Much of this difference can be attributed to

the fact that the observed values are based on a 4-year intensity average, while the total

energy used for the simulation is derived from a 10-year average.

With the model validated, the average peak five hours from the monthly intensity profiles

are compared to the SODIS threshold of 500 W/m2 (SODIS News No. 1, 1998). This
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approach is applied to each of the seven areas used to discretize Haiti to assess potential

SODIS application throughout the year (Figure 3-7).
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Figure 3-7. Yearly Five-Hour Average Intensity Profile of Haiti (NASA Langley Research Center
Atmospheric Sciences Data Center, 2001)

These results show that Haitian sunshine is on average above the suggested disinfection

threshold, which means that SODIS would be effective in Haiti for an average day

throughout the year. However, Haitians still need to drink water during periods when

there is not average sunshine. NASA Langley Research Center Atmospheric Sciences

Data Center also provides data on the 10-year average monthly minimum and maximum

total energy received. These values can be used to simulate minimum and maximum
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5-hour intensity values using the previously described approach. Figure 3-8 shows the

simulated results for the minimum expected 5-hr intensity profile.

Simulated Average 5-hr Intensity Average Derived from Minimum Monthly Energy
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Figure 3-8. Yearly Five-Hour Minimum Intensity Profile of Haiti (NASA Langley Research Center
Atmospheric Sciences Data Center, 2001)

Figure 3-8 shows that based on the 10-year average minimum values, SODIS should still

be applicable. The large decrease in sunshine intensity during May coincides with Haiti's

primary rainy season. This is reinforced by examining the yearly profile of daytime cloud

cover for each area of Haiti (Figure 3-9).
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Figure 3-9. Average Percent Day Time Cloud Cover (NASA Langley Research Center Atmospheric
Sciences Data Center, 2001)

As expected, there is an increase in percent cloudiness during May corresponding to

Haiti's rainy season.

To establish expected upper bounds for the 5-hour intensity average for each month, the

maximum total energies observed are used to generate intensity profiles as depicted by

Figure 3-10.
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Simulated Average 5-hr Intensity Average Derived from Maximum Monthly Energy

800 -

750-

--- Threshold
Area 1

650 ----- Area 2
-- Area 3
-- Area 4

N\
E

550-

500 .----.-....-.--.---------------------------------------------.------------------------

450 ' ' ' ' ' '
Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

Figure 3-10. Yearly Five-Hour Maximum Intensity Profile of Haiti (NASA Langley Research Center
Atmospheric Sciences Data Center, 2001)

These values are well above the SODIS threshold implying SODIS in Haiti should be

extremely effective for sunny days.

A general sunshine intensity envelope for Haiti is obtained by examining the spatial

averages across Haiti of the average, minimum, and maximum intensity values (Figure

3-11).

62

--- Area 5
--- Area 6
-- Area 7



Simulated 5-hr Intensity Average Derived from Monthly Energy for All of Haiti
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Figure 3-11. Yearly Five-Hour Average, Maximum, and Minimum Intensity Profile of Haiti (NASA
Langley Research Center Atmospheric Sciences Data Center, 2001)

Figure 3-11 shows Haitian sunshine is on average above the recommend 5-hr average

disinfection threshold and SODIS should be effective year-round in Haiti. However, it is

important to note that these results are based on the discretization shown in Figure 3-1.

The total energy values used to generate the intensity profiles are an average for each one

of the grids and there could be substantial spatial variation within the spatial resolution of

the model (which will be discussed further in section 3.1.5). This method of sunshine

simulation is considered a good first approximation to assess the possible application of

SODIS throughout the year in Haiti. The other important variable in the SODIS process

that warrants investigation is temperature.
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3.1.4 Haitian Temperature

To have synergistic sunlight and thermal effects in the SODIS process, water

temperatures should reach at least 45 'C (McGuigan et al., 1998). Bottle temperature

mainly depends on the amount of sunlight received and ambient temperature conditions.

Section 3.1.3 shows that there is sufficient sunlight for the SODIS process, so ambient

temperature conditions will be examined. Haiti has a warm tropical climate with average

temperatures ranging from 24 *C in the winter to 28 *C in the summer. The average

yearly temperature profile for the seven areas that compose Haiti is given by Figure 3-12.

Average Temperature Profile
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Figure 3-12. Average Temperature Profile (NASA Langley Atmospheric Sciences Data Center, 2001)
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Figure 3-12 shows the temperature in Haiti is consistently warm throughout the year. In

fact, the average annual temperature ranges are often below the daily temperature span.

The breadths of the average daily temperature fluctuations for a given area are provided

by Table 3-3.

Table 3-3. Average Monthly Temperature Range *C for Each Area (NASA Langley Atmospheric
Sciences Data Center, 2001)

Area Jan Feb Mar Apr May June July I Aug lSept Oct Nov Dec Average

1 265 2.72 .87 2.76 2.40 2.29 2.21 2.13 2.00 22.17 2.24 2.42 2.41

2 3.36 3.44 3.64 3.54 3.10 3.01 2.89 2.77 12.56 2.74 2.83 3.05 3.08

3 257 2.65 2.78 2.68 2.33 .21 2.12 204 1.95 2.12 221 3 2 342.75--r .84 2.34!.8 i2501

4 302 288 2.50 2.42 2.39 2.27 2.09 2.21 2.33 2.52 2.52

5 476 488 518 507 4.43 4.36 430 407 3.64 3.79 3.96 4.30 4.40

6 76 6.91 7.35 7.25 6.35 6.29 621 5.86 518 537 560 6.08 627

7 4.62 4.75 5.03 F4.94 4.30 4.19 4.11 13.90 3.53 3.71 3.87 4.19 4.26

The high amount of sunshine Haiti receives and Haiti's consistent warmth, suggests that

bottle temperatures should usually reach above the synergistic threshold. However,

topographical effects can have strong influences on both local sunshine and temperature.

3.1.5 Haitian Topography

The Native American Indian inhabitants called the island Ayti, meaning "Mountainous

Land." Approximately 63% of all land in Haiti have slopes greater than 20% and only

29% have slopes of less than 10% (USAID, 1985). Haiti's heterogeneous terrains create

highly variable microclimates with a large range of sunshine, temperature, and rainfall.

Haiti's major regions consist of mountains, plateaus, and plains (Figure 3-13).
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HAITI
REGIONS PHYSIOGRAPHIQUES

PLAINES PLATEAUX [ MOrTAGNES

P"W-V SY WVILCOX ASSOMtATES

Figure 3-13. Physiographical regions of Haiti (USAID, 1985)

The Massif de la Hotte and the Massif de la Selle, are home to the country's highest peak

of 2,684 meters above sea level and run west to east in southern Haiti. The Central

Plateau contains smaller mountains extending northwest along the peninsula (USAID,

1985). A more general contour map of Haitian elevation is given by Figure 3-14.
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Figure 3-14. Haitian Topographical Map (Generated by GEOVU, Matlab, and TECPLOT using
NOAA data)

Haiti's extreme topography in proximity to the ocean causes heavy cloud cover in the

mountainous areas due to orographic lifting. Essentially, this is where the mountains

physically force air to rapidly rise and cool. When the air cools enough to reach the dew

point, clouds and precipitation occur. This phenomenon is verified by the increase of

precipitation in the mountainous areas (Section 1.1.1). However, higher altitude can

increase the amount of UV radiation incident to the surface by decreasing the

atmospheric path (Acra, 1990). It will be assumed that any enhanced UV radiation due to

altitude will be dwarfed by orographic lifting effects on average. Furthermore,

temperatures can decrease greatly with altitude. For example, the village of Kenscoff at

an elevation of 1,432 meters has an average temperature of 16 *C, while Port-au-Prince,

at sea level, has an average temperature of 26 *C. These observations suggest that SODIS
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could have limited effectiveness in the mountainous regions of Haiti but would need

further research. Aside from how Haitian climate affects the water, the physical

properties of the water, namely turbidity, are extremely important.

3.2 Turbidity

Turbidity measures the optical properties of liquids. Suspended particles can absorb and

scatter light as it passes through. Consequently, highly turbid solutions can severely limit

the amount of light penetration, thus reducing the efficiency of the SODIS process. For

effective solar disinfection, waters should be less then 30 NTU (Nephelometric Turbidity

Units) to ensure safe drinking water (SODIS News No. 3, August 1998). A practical

method has been developed to assess water turbidity as it applies to SODIS. In the shade,

the bottle is placed on top of the SODIS logo, and one looks from top to bottom. A

legible logo means the water is less then 30 NTUs and an illegible logo means that the

water is not initially suitable for solar disinfection (Figure 3-15).

SODIS
Place Logo Under Bottle Place Bottle in Sun Must Filter First

(<30 NTUS) (>30 NTUS)

Figure 3-15. Turbidity Assessment (EAWAG/SANDEC, Technical Notes)

When the water turbidity is higher than 30 NTUs, it must be treated by allowing coarse

solids to settle for one day, inducing flocculation/sedimentation, or filtering.
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3.3 SODIS Bottle Characteristics

PET (polyethylene terephthalate) bottles have emerged as the best SODIS container for

several reasons, which will now be discussed.

3.3.1 PET Bottles

Plastic mineral water and soft drink bottles are gradually replacing glass. Plastic bottles

are made of either PET or PVC (polyvinyl chloride). Both types of plastics contain UV-

stabilizers to protect the material from UV radiation and oxidation. There is some

concern, which needs further research, that some of these stabilizers may be a potential

health risk. These additives are used much less in PET compared to PVC making PET the

preferred SODIS material. PET is also a good transmitter of light in the UV and visible

range. Simple comparison methods have been developed to determine whether a plastic

material is PVC or PET. PVC has a distinct bluish gleam, which is especially noticeable

around the edges. Additionally, PVC smells caustic when burned, whereas PET smells

sweet (SODIS Technical Notes).

3.3.2 Water Depth

Another important characteristic of the PET bottles is they have an appropriate depth to

make the SODIS process effective. Sommer et al. (1997) demonstrated that UV radiation

is dramatically decreased by water depth. At a depth of 10 cm and a moderate turbidity

level of 26 NTUs, UV-A radiation was decreased by 50%. The black bottom of the

SODIS bottles induces a temperature gradient, which increases circulation. However, the
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water depth should be less than 10 cm to ensure efficient disinfection, which is why

bottles of less than 2 liters are typically used.

3.3.3 Transmittance Loss and Household Preference

SODIS bottles that are used daily and over long periods get scratched. This scratching

leads to a reduction of UV transmittance and can decrease disinfection effectiveness over

time. For these reasons, SODIS containers eventually have to be replaced. Consequently,

PET bottles make the best choice as SODIS containers because they are usually the most

locally available and are relatively inexpensive. The cost of PET bottles will be given

more attention in the next section. Furthermore, field studies have shown the majority of

people like the PET bottles because they are easy to handle, sturdy, and durable (SODIS

News No. 3, 1998). In summary, PET Bottles have the following advantages and

disadvantages (Table 3-4).

Table 3-4. Advantages and Disadvantages of PET Bottles

Advantages Disadvantages
Inexpensive Scratches and Aging Effects

Readily iale Limited Heat Resistance (Slight deformation above 65 C)

CemicallyStable I

FTraspire t

IMost people like the
bottles

LoWeight

FYTate-neutral
[Relatively Unbreakable I

One of the most important aspects of any point of use technology is cost.
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3.4 Economic Considerations

Willingness to pay is essentially demand driven and depends on the level of income and

costs of the service provided. Access to good quality water in respect to its bacterial

quality may not necessarily be considered an important need by every culture. Several

severe diarrhea incidences per year may be regarded as "normal." Thus, people may have

a low desire to pay for water quality improvement.

Cost can be divided into initial capital, operation, and maintenance cost. Solar energy is

free but bottles may have to be replaced due to aging and scratching. Replacement and

initial investment in PET bottles may vary from country to country but usually amount to

less than .5 US dollars per bottle. Typical Bottle costs are provided in Table 3-5.

Table 3-5. PET Bottle Cost in Different Countries (EAWAG/SANDEC, Technical Notes)

Co ry Cost equivalent in US dollars
China .14

Thiand 7 .3
IColumbia .4-.6

[Indonesia -07

The annual costs for a 5-person household would amount to about 3 US dollars. The full

costs for SODIS should be borne by the user in order to achieve economic stability

(Yayasan, 1997). This again brings up the most alluring aspect of this technology: the

ability to produce disease free water at the household level for the cost of a plastic bottle.

The social acceptance of this technology is extremely important, or it will never be

applied.
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3.5 Acceptance of SODIS

SODIS demonstration projects were carried out in seven countries by local intuitions to

assess the socio-cultural acceptance of SODIS. The participating countries include:

Columbia, Bolivia, Burkina Faso, Togo, Indonesia, Thailand, and China. A survey was

then conducted to see how people felt about using SODIS to treat their water. The results

are summarized by Table 3-6.

Table 3-6. Results of world SODIS survey (Environmental Concern, 1997)

I will Continue to use SODIS Survey

Country Certainly Maybe Probably Not Definitely Not

Columbia r98 1 8 0 2
Bolivia 93 0 0__ 7

Burkina Faso F 706 30 1 0F 0
Togo FO93 7 6 0
Indonesia - F 90 - 3 -F - 5 r -2

Thailand 97 F 0 7 0 - 3

China 5014

Average F 84 -- 12.6 .4

This survey revealed that 84% of the users would definitely use SODIS in the future

while 12.6% said they might use it in the future. When asked, villagers said the main

reasons they would continue to use SODIS include:

* Easy and practical
* It provides good and clean drinking water
* Less work involved: (Not having to collect firewood for boiling etc.)
* No pathogens anymore, less sickness, less diarrhea, no stomachaches
* Save costs (fuel for boiling)
* Saves time
* Improves over quality of life
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China and Burkina Faso had very high numbers answering maybe. Interviewees from

China stated they would still drink water even though they are aware it is of low

quality. Only 3% of the people said they would definitely not use SODIS again for

the following reasons:

" No trust that bacteria could be killed by sunlight
" Time between preparation and consumption was too long
" Water taste like plastic (from the SODIS bags, not the PET bottles)
" Lack of materials

Overall, the results appear very positive with the majority of the villagers welcoming the

SODIS technology.

The background for SODIS has been presented. The next section involves the materials

and methods that were used to see if SODIS would work in Haiti.
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Section III: Materials and Methods
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4 Field Tests

To test the efficacy of SODIS in Haiti, the following measurements were made: sunlight

intensity, bottle water temperature, and turbidity. These disinfection parameters were

then coupled to microbial analysis, which consisted of presence-absence testing for total

coliform, E. coli, and H2S-producing bacteria.

4.1 Sunlight Intensity

Sunlight intensity was measured with the Kipp and Zonen Solrad kit (Figure 4-1).

Figure 4-1. Kipp and Zonen Solrad kit

This kit operates on the principle of converting light energy to heat, and heat into a

quantifiable electric current. The effects of ambient temperature are automatically

minimized and the measurements are considered independent of local climate. The

protective glass dome filters in radiation between 350 - 1500 nm with a sensitivity of

± 5%. The field instrument was calibrated to ensure that the electrical current is
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proportional to the watts per square meter incident to the ground. All of the user

instructions were followed to guarantee the most accurate measurements possible.

4.2 Temperature

Water temperature measurements were made with three Enviro-Safe* thermometers.

These thermometers contain a mixture of biodegradable citrus oil, and a green non-toxic

dye, monoazo-anthroquinone. They are considered accurate to ± 10 C.

4.3 Turbidity

Turbidity measurements were made with a Hach Pocket Turbidimeter* (Figure 4-2).

Figure 4-2. Hach Pocket Turbidimeter*

This field instrument operates on the principle of the Nephelometric turbidity units

(NTUs). The optical system includes an infrared light emitting diode (LED) and a

detector to monitor scattered light. The LED emits light at 880 + 20 nm, which is

received by the light detector at 90' to the source of scattered light. The instruction

manual was followed and the instrument was calibrated each day for quality control.
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4.4 Microbial Presence Absence Tests

Presence absence tests do not quantify the amount of amount of bacteria. Instead, they

answer the simple question of whether the target organisms are present or not. While it

would have been useful to enumerate the amount of bacteria present, the most important

question is: are there harmful bacteria present, and if so, can SODIS destroy all of them.

For this reason, in addition to more simplistic testing procedures, presence absence test

were run in parallel for total coliform, E. coli, and H2S-producing bacteria.

4.4.1 Total Coliform and E. coli

Total coliform and E. coli were chosen as the main target organisms because of their

accepted use to screen for pathogens (as described in section 2.6). Additionally, Acra et

al. (1984) found that E. coli serve as a good indicator organisms for SODIS because they

are more resistant to SODIS process when compared to other bacteria such as P.

aerugenosa, S. flexner, S. typh, and S. enteritidis. Furthermore, Wegelin et al. (1994)

found that E. coli maybe used as indicator organisms for SODIS and that the survival

curves of different microorganisms are similar when exposed to sunlight. This implies

that pathogens would die at close to the same rate as E. coli.

Total coliform and E. coli were simultaneously screened with Hach's Presence-Absence

Broth, which contains bromcesol purple (BCP) for total coliform and

methylumbelliferone glucuronide (MUG) for E. coli. BCP detects acid formation during

the fermentation of lactose by coliform bacteria. The BCP reacts with the acid during 48
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hours of incubation to turn the solution yellow, indicating the presence of coliform

bacteria (Figure 4-3).

Figure 4-3. Negative (left) and Positive (right) results of total coliform BCP Test

E. coli is the only coliform to contain the enzyme / -glucuronidase which cleaves MUG,

(Figure 4-4), to produce florescent byproducts.

H
H
OH H

H OH

Figure 4-4. MUG (4-methylumbelliferyl-$ -diblucuromide) (Maier et aL, 2000)

After 48 hrs of incubation, a long-wave ultraviolet lamp will cause bottles containing the

cleaved MUG to fluoresce, indicating the presence of E. coli (Figure 4-4).
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Figure 4-5. Negative (left) and Positive (right) results of E. coil MUG Test

The MUG medium is readily available from Hach and has been successfully used to

analyze food and water for E. coli (Modberg, 1985; Feng and Hartman, 1982). However,

Fujioka et al. (1988) and Hazen (1988) demonstrated that E. coli might be naturally

present in waters that are without fecal contamination. Consequently, an additional test

for microbial pathogens will also be used.

4.4.2 HACH PathoScreenTM

Manja et al. (1982) observed that the presence of coliform bacteria is consistently

associated with H2S-producing bacteria. This indicates that H2S-producing bacteria could

be used to screen for fecal pathogens, which is advantageous in tropical regions because

E. coli does not typically produce H2S. Hach's PathoScreenTM detects the presence of

H2S-producing bacteria including Salmonella, Citrobacter, Proteus, Edwardsiella, some

species Klebsiella, and other H2S-producing bacteria. A more extensive list of H2 S
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positive bacteria can be found in Farmer et al. (1985) and Brenner (1984). H2 S is first

produced by the microorganism and it then complexes with iron in the PathoScreenTm

medium to produce a black solution as shown by Figure 4-6.

Figure 4-6. Negative (left) and Positive (right) results of 112S PathoScreeni" Test

There has been very good agreement in the literature between coliform and H2S tests.

Kasper et al. (1992) reported an 83% agreement between fecal coliform and H2S tests,

and a 96% agreement with total coliform. Martins et al. (1989) found no significant

difference between hydrogen sulfide and coliform results. Additionally, Grant and Ziel

(1996) found there to be as strong agreement between H2S and coliforms tests. Finally,

Kromoredjo & Fujioka (1991) concluded the H2S test to be at least comparable if not

superior to total coliform and E. coli test. Another major advantage of this test is it has a

highly variable incubation temperature between 22 and 37 ' C while producing consistent

results (Kasper et al., 1992). This makes it possible to perform these tests without

incubators in tropical regions. The composite testing for total coliform, E. coli, and

80



H2S-producing bacteria should reveal the efficacy of SODIS in Haiti under various

conditions. The precise experimental setup and procedure for making these

measurements will now be described.

5 Experimental Setup and Procedure

5.1 Experimental Setup

Field Measurements were made on January 121 and 131in Dumay, and from January 15t

to the 21 in Santo. Nine 1.5 liter PET bottles were collected from a home, local

garbage, and a local store. PET bottles were readily available in Santo. Black paint was

applied to the bottom horizontal half of each of the bottle to enhance thermal effects.

Several coats were required to ensure an opaque finish. During January 12* and 13', six

bottles were used. Three bottles were placed in the dark to serve as controls and three

were left out in the sun for one day. From January 16 to the 210, nine bottles were used

to assess the effects of both one and two-day exposure. This bottle arrangement was

divided into three groups with three bottles per group: 1-Day, 2-Day, and 2-Day2. The

temporal exposure arrangement of the nine bottles is given by Table 5-1.
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Table 5-1. Bottle Exposure Arrangement for January 16' to 21"

nmber 1-D 2-Day 1 2-Day"

1 1I-DayA

1-DayB
I1-Dayc

2 1-DayA

1-DayB
1-Dayc

3 1-DayA

1-DayB
1-Dayc

4 1-DayA
1-DayB
1-Dayc

F--

2-Dayl.A

2-Dayl-B

2-Dayi-c

2-Dayi-A

2-Day.B

2-Dayi-c

2-Day..A

2-Dayl-B

2-Dayi-c

2-Day-A

2-Day-B

2-Dayi-C
mu ~u

5 1-DayA

1-DayB
. .I -Dayc

2-Day1..A

2-Dayl-B

2-Dayi-c I

2-Day2-A

2-Day2-B

2-Day2-c

2-Day2-A

2-Day2-B

2-Day2-c

2-Day2-A

2-Day2-B

2-Day2-.c

2-Day2-A

2-Day2-B

2-Day2-c

*The area of the encompassed by the dark brackets
indicates exposure duration before microbial analysis.

This type of staggered arrangement allowed for the effects of both one and two day

exposure to be measured every day. For example on Day 2, the 1-Day and 2-Day1 groups

are analyzed, while 1-Day and 2-Day2 groups are tested the following day. The procedure

for the actual measurements taken will now be discussed.

5.2 Experimental Procedure

Water was collected from various sources in the early morning using the SODIS bottles.

Bottles were initially filled up about two-thirds and shaken vigorously for 30 seconds to

provide aeration for photo-oxidative disinfection. They were then completely filled.
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Additional samples were taken for raw water turbidity and microbial analysis. The

Turbidimeter* was calibrated each day and every bottle was measured (six or nine bottles

per day) at the beginning of each experiment. Total coliform, E. coli, and H2S-producing

bacteria tests were run in triplicate both before and after setting the bottles out in the sun.

A blank was used for each type of test and every time a batch was run. All of the

microbial samples were incubated in a cooler for two days prior to analysis. The

incubation temperature was kept constant at 35 0 C using different proportions of hot and

cold water. The 100 ml and 20 ml glass vials used for Hach's Presence-Absence Broth

and PathoScreenm respectively, were sterilized in boiling water for reuse.

The bottles were placed on a dark surface on top of a roof and where hourly sunlight

intensity and bottle water temperature measurements where made (Figure 5-1).

Figure 5-1. A Typical Roof Top Experiment

Sunlight intensity measurements were taken so that the hourly averages are representative

for each chronological hour. Hourly temperature measurements were simultaneously
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made on three bottles and the thermometers were allowed to equilibrate with the bottle

water temperature before readings were made. Most of the nights were spent completing

the microbial analysis for the daily group of designated bottles. The results of these

experiments will now be examined.
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Section IV. Results and Discussion
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6 Daily Results and Discussion

Field Measurements were made in Dumay on January 12' and 13t, and in Santo from

January 15t" to the 2 I, 2001. Both Dumay and Santo are in Area 6 from Figure 3-1. For

each day, the water source, turbidity measurement, sunlight intensity profile, temperature

profile, and the corresponding microbial analysis will be presented and discussed.

6.1 Results for Water Collected on 01/12101

Experiments were conducted on the roof of a building at the Dumay Mission for January

12 and 13h. On January 12t, water was collected from a heavily utilized local point

source (Figure 6-1).

Figure 6-1. Water Source for 01/12/01
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This water was very clear with an average turbidity of 1.3 ± .8 NTUs. The weather was

warm and sunny with a few scattered clouds. It was 40 *C in the sun at noon and became

slightly hazy towards the afternoon. Three bottles were placed in the dark for the duration

of the experiment to serve as controls and three were placed in the sun at 10 A.M. The

sunlight intensity profile, bottle water temperature profile, and corresponding thresholds

are shown by Figure 6-2.

SODIS Profile for 01/12/01

55

50

40

35- -- 4-Average SODIS Temperature
- - - Synergistic Temperature Threshold

30 Sunlight Intensity
Sunlight Intensity Disinfection Threshold

25
10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM

Time [hr]

Figure 6-2. Sunlight Intensity, Average SODIS Bottle Temperature, and Corresponding Disinfection
Thresholds for 01/12/01

The 5-hour average peak solar intensity was 715 W/m2 , which is well above the

recommended disinfection threshold of 500 W/m2 for 5 hours. The total amount of energy

received from 10:00 A.M. to 5:00 P.M. was 4013 Wh/m 2. Bottle water temperatures

surpassed the threshold of 45' C for 5 hours, indicating there would be synergistic

thermal effects. These results suggest that conditions should be excellent for SODIS. The
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corresponding microbial analysis for the raw, dark, and SODIS water is given by Table

6-1.

Table 6-1. Results of Microbial Analysis for Raw, Dark, and SODIS Water Collected on 01/12/01

Total Coliform F E. coi PathoScreenrm

Sample Sample F MW
Type Number

Raw Raw 4
Raw2 ~~
Raw3 I

Dark D

2D

3D

Light IL
F~~72L -4 FF4 F

The raw water tested positive for total coliform, E. coil, and H2S-producing bacteria and

the dark bottles had no distinguishable difference. However, the bottles that were exposed

to the SODIS process tested negative for total coliform, E. coli, and H2S-producing

bacteria, indicating that all of the target organisms were completely inactivated by the

SODIS process. This suggests that for these types of conditions, SODIS was extremely

effective, producing a 100% kill rate for three different indicator organisms. Given the

sunlight and temperature profile, these results are consistent with the literature. To test

for possible bacterial regrowth, three 100 ml water samples were taken from the bottles

exposed to the SODIS process to be reanalyzed on the final day.
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6.2 Results for Water Collected on 01/13101

Water was collected from an on-site spring well in Dumay (Figure 6-3).

Figure 6-3. On-Site water source for 01/13/01

This water had a low turbidity of 1.2 ± .6 NTUs. Three bottles were placed in the dark

and three in the sun at 8 A.M. The morning was overcast with some haze, and black

thunderclouds moved in around 11:30. The temperature was 280 C at noon and the sky

cleared around 1:00 P.M. for an hour. Afterwards, it became cloudy again to produce a

fluctuating sunshine and temperature profile shown by Figure 6-4.
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SODIS Profile for 01/13/01
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Sunlight Disinfection Threshold

25
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Figure 6-4. Sunlight Intensity, Average SODIS Bottle Temperature, and Corresponding Disinfection
Thresholds for 01/13/01

The 5-hour average peak intensity was 530 W/m2, and the total amount of energy

measured from 8:00 A.M. to 5:00 P.M. was 3250 Wh/m 2. However, the 5-hour average

peak intensity was largely raised because of the break through of sunshine around 1:00

P.M., and there were only 2 hours of sunlight intensity in excess of 500 W/m2 . The bottle

water temperature never reached the synergistic threshold and these conditions are not

considered favorable for SODIS. The resulting microbial analysis is given by Table 6-2.
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Table 6-2. Results of Microbial Analysis for 01/13/01

Totall olifom E. coli PathoScreen

Sample Sample
Type Numberz

[Raw Raw

F __Raw 2

[-IRaw3 rF 4 _r

Dark ID4 7 [ - 4 7

3D

I Light 1L4 F[ 47
i2L IF4~
f3L4 [4 4

Every sample tested positive for all target organisms. The sunlight intensity never

reached 500 W/m2 for duration of 5 hours and the water temperature stayed below

synergistic temperature threshold. Therefore, not all of the indicator organisms were

inactivated for the bottles subjected to 1-day of the SODIS process. This implies that two

consecutive days of exposure may be required for complete disinfection. Based on these

results, the experimental methodology was shifted to incorporate the effects of 2-day

exposure (as described in section 5-1). Dark bottle controls again agreed with the raw

samples. Wegelin et al. (1994) found that the population of bacteria did not decrease in

dark bottles during the course of the experiment. Consequently, these bottles, with an

additional three, were used to investigate 2-day exposure. Furthermore, SODIS bottles

were then placed on black plastic and tire pieces to help enhance thermal effects.
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6.3 Results for Water Collected on 01115101

The previous day was spent packing lab equipment and moving to Santo. The tap water at

this location was rumored to be undrinkable because of microbial contamination and was

therefore put to the SODIS test. Turbidity was very low at 1.7 ± .6 NTUs. This water was

extremely hard and produced a large amount of precipitate when boiled. The sky was

covered with heavy black thunderclouds for almost the entire day, with a special guest

appearance of the sun at around 11:00 A.M. When asked if this level of sunlight was

typical, a Haitian villager responded, "No, never this dark" (Personal communication,

01/05/01). It was 27 *C at noon, and the following sunlight and temperature profile was

observed (Figure 6-5).

SODIS Profile for 01/16/01

50

40-

. 35
E

--- +-Average SODIS Temperature

30 - - - Synergistic Temperature Threshold
Sunlight Intensity
Sunlight Disinfection Threshold

25

8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM

Time [hr]

Figure 6-5. Sunlight Intensity, Average SODIS Bottle Temperature, and Corresponding Disinfection

Thresholds for 01/15/01
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The 5-hour average peak intensity was 383 W/m2, and the total amount of energy

measured from 8:00 A.M. to 5:00 P.M. was 2666 Wh/m 2. The bottle water temperature

never reached the synergistic temperature and these conditions are poor for SODIS. The

microbial analysis is given by Table 6-3. The results of the 2-day exposure are given with

the results for the following day, as that day's sunlight and temperature conditions have

an important influence on the outcome.

Table 6-3. Results of Microbial Analysis for 1-Day Exposure of Water Collected on 01/15/01

Total Coliform E coli PathoScreenrm

Sample Sample
Type Number

Raw Raw FV
Raw 2 F -4 VV___
Raw 3 V - F _VV

1-Day 1
- F2 V_

The raw water samples had relatively low bacterial concentrations. This was qualitatively

deduced by observing that it took almost two full days of incubation to produce a small

color change, and that two of the raw samples were negative for E. coli. This source was

not be used again because of its low level of contamination. Regardless, the SODIS

process was not 100% effective in destroying all of the tested organisms. This is in

agreement with the results for 1/13/01, which had similar sunshine and temperature

conditions. I suspect that if the raw water had higher bacterial concentrations, all of the

samples would have tested positive because of the low sunshine and temperature levels.
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6.4 Results for Water Collected on 01116/01

Water was collected from a local spring well in Santo very similar to Figure 6-3. The

water had a low turbidity of 1.1 ± .4 NTUs. The weather was hot and sunny with a few

scattered clouds, and the noontime temperature was 40* C in the sun. The observed

sunshine and temperature profile is given by Figure 6-6.

SODIS Profile for 01/16/01
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Figure 6-6. Sunlight Intensity, Average SODIS Bottle Temperature, and Corresponding Disinfection
Thresholds for 01/16/01

The 5-hour average peak intensity was 710 W/m2, and the total amount of energy

received from 8:00 A.M. to 5:00 P.M. was 4920 Wh/m 2. The bottle water temperature

surpassed the synergistic temperature for 4 hours and these conditions are considered

very favorable for SODIS. The microbial analysis is given by Table 6-4.
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Table 6-4. Results of Microbial Analysis for 1-Day Exposure of Water Collected on 01/16/01 and
2-Day Exposure of Water Collected on 01/15/01

TotalCoiform E coi PathoScreen
Sample I Sam plF ~

Type Number

1 F aw 7Raw 1I[4 Tf 4_

Raw 34 4

-Day- F1-

3 2 [ 4.. F F

2-Day 1-A
(01/15/01) FI-B F ------- 4F

I-C I

The disinfection parameters were met and all of the target organisms were inactivated by

the SODIS process. Conclusions on the effects of 2-day exposure could not be made as

1-day exposure for 01/15/01 could have inactivated all of the organisms. However, 2-day

exposure did have 100% inactivation as expected.

6.5 Results for Water Collected on 01/17/01

To simulate scenarios when Haitians would not have access to a designated potable water

source, water with high bacterial concentrations was sought out. A puddle found by the

side of the road was chosen and named "the festering pit" (Figure 6-7). Personal

communication revealed that Haitians would never directly use a source such as "the

festering pit" for potable water. However, I was told situations could arise when they

would take water of this quality and try to filter it. A Gift of Water Filter, (Figure 6-8),
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was used without chlorine to reduce the turbidity from 153 ±6 NTUs to 23 ± 1.3 NTUs

before being put to the SODIS test. For more information of the Gift of Water Filter, refer

to Lantagne, 2001 and van Zyl, 2001.

Figure 6-7. "The Festering Pit" water source for 01/17/01

Figure 6-8. Gift of Water Filter
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Raw water samples were taken after "the festering pit" water had passed through the filter

to ensure no residual chlorine in the filter bucket would kill the bacteria. The day was hot

and sunny with a noontime temperature of 380 C. Figure 6-9 shows the daily sunshine

and temperature profile.

SODIS Profile for 01/17/01
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Figure 6-9. Sunlight Intensity, Average SODIS Bottle Temperature, and
Thresholds for 01/17/01

Corresponding Disinfection

The 5-hour average peak intensity was 765 W/m2, and the total amount of energy

received from 9:00 A.M. to 5:00 P.M. was 4851 Wh/m 2. The bottle water temperature

reached the synergistic threshold for 5 hours producing favorable SODIS conditions. The

coupled microbial analysis is given by Table 6-5.
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Table 6-5. Results of Microbial Analysis for 1-Day Exposure of Water Collected on 01/17/01 and
2-Day Exposure of Water Collected on 01/16/01

Total Coliform E. coli PathoScreen

Sample Sample
Type Number

Raw Raw 17 4 _ _ 4
IRaw 2 F 4 4- ...... 4 -

Raw 3

1-Day 1 4 _ 4

__ __2 I_ F4 4- F -4

2-Day 2-A -- [ F_4 4 7
-(0 1/16/01)'F2-B _[7 4 -[

2-C 4 F- -1--4 F 7 4

Contrary to expectation, the raw water results turned positive at comparable rates to

previous water sources and produced similar color intensities. This suggests that the

bacterial concentrations were not as high as hoped. The sunlight and temperature

disinfection criteria was met and all the target organisms where inactivated. The effects

of 2-day exposure could not be firmly concluded because all of the organisms could have

been inactivated on 01/17/01, but the 2-day exposure still produced 100% disinfection.

6.6 Results for Water Collected on 01118/01

After the disappointing bacterial concentrations produced by "the festering pit," a search

was undertaken for an even stronger source. Two goats, one cow, and a little boy were

observed defecating in an irrigation stream, which was then selected for the SODIS test.

Personal communication revealed that since the installment of local spring wells, this

type of source was thankfully no longer required. The motivation for testing this type of
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source is if SODIS can work on water with large numbers of bacteria and high turbidity,

it will certainly work on clearer water with lower microbial concentrations. The part of

the irrigation stream sampled is shown by Figure 6-10.

Figure 6-10. Local Stream water source for 01/18/01

The stream was not as clear as the more realistic water sources previously sampled, and

had a turbidity of 26 ±3 NTUs. It had rained heavily for a brief period during the night,

and runoff could have affected the stream's turbidity. The day was very sunny with a few

clouds in the afternoon, and was slightly windier than past days. The noontime

temperature in the sun was 370 C, and the corresponding sunlight and temperature profile

is shown by Figure 6-11.
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SODIS Profile for 01/18/01
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Figure 6-11. Sunlight Intensity, Average SODIS Bottle Temperature, and Corresponding
Disinfection Thresholds for 01/18/01

The 5-hour average peak intensity was 768 W/m2, and the total amount of energy

received from 8:00 A.M. to 5:00 P.M. was 5265 Wh/m2 . The bottle water temperature

was over the synergistic threshold for 3 hours, providing favorable SODIS conditions.

The microbial analysis for 01/18/01 is given by Table 6-6.
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Table 6-6. Results of Microbial Analysis for 1-Day Exposure of Water Collected on 01/18/01 and
2-Day Exposure of Water Collected on 01/17/01

__ _-Total Coliform. E COl PathoScren~

Sample Sample
Type Number

RawRaw -

Raw 2 F_4

IV_ _ _

F -_ -__________1-Day 1 -A ___ V

F ~- _ _ - F-- - -

(01/17/01) 1-B 4
F -C

The raw water samples produced extremely strong positives in approximately 4 hours.

The H2S test turned so black, that the black ink labels on the bottle where no longer

legible without first emptying the contents of the bottle. Furthermore, the coliform

bacteria built up enough pressure by gas production, that the 100 ml bottles exploded

almost their entire contents when opened. After my first shower, the remaining bottles

were opened inside a garbage bag. This confirmed that the irrigation stream indeed had

high bacterial concentrations. In fact, despite the favorable SODIS conditions of over 7

hours of sunshine in excess of 500 W/m 2, a 5-hour average peak intensity was 768 W/m2

and 3 hours above the synergistic temperature, almost all of the 1-day samples still gave

weak positive results. This result is attributed to the high initial amount of bacteria

present. The 2-day samples from 01/17/01 were all negative but the microbes could have

easily been completely inactivated on either day. It was also observed that the water

temperatures seemed slightly low, given the amount of sunshine received. This could be
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because the initial temperature was slightly colder than normal at 23 'C compared to the

typical 26 *C. Additionally, the slight increase in wind could have caused some

convective cooling effects.

6.7 Results for Water Collected on 01119/01

Water was again collected from the irrigation stream because of its high bacterial

concentrations. The turbidity was much lower than the previous day at 7 ±.8 NTUs,

which could be explained by the lack of rain. The day was mostly sunny with a few

scattered clouds and it was very windy. A noontime air temperature of 38 *C was

observed, and the day's sunshine and temperature profile is given by Figure 6-12.

SODIS Profile for 01/18/01
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Figure 6-12. Sunlight Intensity, Average SODIS Bottle Temperature, and Corresponding
Disinfection Thresholds for 01/19/01
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The 5-hour average peak intensity was 761 W/m2, and the total amount of energy

received from 8:00 A.M. to 5:00 P.M. was 5330 Wh/m 2. The bottle water temperature

never surpassed the synergistic threshold despite the large amount of sunshine and fairly

warm ambient temperatures. The microbial analysis is given by Table 6-4.

Table 6-7. Results of Microbial Analysis for 1-Day Exposure of Water Collected on 01/19/01 and
2-Day Exposure of Water Collected on 01/18/01

Total Coliform E. coli PathoScreenr

Sample Sample A I

Type Number

Raw Raw I

___ Raw 2 4 _ _ __ 1_ 1 ___ 4_
F _ 1Raw 3 1 F- F 4

1-Day I 1 4

2-Day 2-A

F(01/18/01) 2-Bh 4 77 ~ __ 4
2-C 4' 74 1 7 4

The raw water samples again exhibited the same strong positives as they did on 01/18/01.

This day received 7 hours of sunshine over the recommended threshold and had a

relatively high 5-hour average peak intensity. However, two-thirds of the samples tested

weakly positive for all of the target organisms. This is most likely a result of the high

initial amount of bacteria and the fact that the bottles never reached the synergistic

temperature threshold. Bottle temperatures were probably suppressed by the convective

cooling effects of this day's strong wind. An important result is that the 2-day samples all

103



tested negative, while the samples from 1-day exposure for both days still had target

bacteria present. This clearly shows that 2 days of exposure produce superior bacterial

inactivation when compared to 1 day of the SODIS process.

6.8 Results for Water Collected on 01120101

Water was collected for the last time at the irrigation stream. The water had a turbidity of

13.2 ± 3.8 NTUs. The day was partly cloudy and the temperature in the sun was 38 0C at

noon. High winds were again observed. This time a board was placed near the bottles to

shelter them from any convective cooling effects, but not so close that it would cast a

shadow on the bottles. The sunlight and temperature profile is shown by Figure 6-13.

SODIS Profile for 01/20101

50

2402

CL 35

30-

25
8:00

AArage SODIS Temperature

- - - - -Syneristic Temperature Threshold

SurNight Intensity

Sunlight Disinbction Threshold

AM 9-00AM 1-OQAM 11:00AM 1200PM 1:00PM 2:00PM

Tine [hr]

3:00 PM 4:00 PM 5:00 PM

Figure 6-13. Sunlight Intensity, Average SODIS Bottle Temperature, and Corresponding
Disinfection Thresholds for 01120/01
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The 5-hour average peak intensity was 729 W/m2 , and the total amount of energy

received from 8:00 A.M. to 5:00 P.M. was 4742 Wh/m 2. The bottle water temperature

surpassed the synergistic temperature for 4 hours. An important observation is that the

bottle temperatures did reach the synergistic temperature threshold for over 4 hours

despite having strong winds similar to the previous day. Furthermore, this day had a

lower 5-hour average peak intensity, 729 W/m2, than on 01/19/01, 761 W/m2.

Comparatively between these two days, the ambient temperatures were about the same,

01/20/01 received less sunshine, and 0 1/20/01 had higher bottle water temperatures

because of the difference in wind. This suggests that blocking convective cooling may be

an important aspect of SODIS in windy conditions. The microbial analysis for 01/20/01 is

given by Table 6-8.

Table 6-8. Results of Microbial Analysis for 1-Day Exposure of Water Collected on 01/20/01 and
2-Day Exposure of Water Collected on 01/19/01

TotalColiform E. coi PathoScreenTm

Sample 1 Sample 41.
Type Number

Raw 2

- FRawy K
7Raw 3__ ~ 4_I - F 4

2 I -

I2-Day 1A_ 4I 4_

S(0i11 _9/O1) -1-B --

F.[ ~I-c 14[
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The raw water had the same high concentrations of bacteria as described on 01/18/01.

Favorable conditions were once again dwarfed by the high initial concentrations of

bacteria and two-thirds of the 1-day samples tested weakly positive for all the target

organisms. The 2-day exposure again had a 100% kill rate while the 1-day exposures

achieved only 66% inactivation.

6.9 Results for 01/21101

The 2-day bottles from 01/20/01 were placed outside again on 01/21/01. The day started

out very sunny but heavy clouds appeared for an hour around 1:00 P.M. The noontime

temperature was 38 *C in the sun. The following sunlight and temperature profile was

produced (Figure 6-14).

SODIS Profile for 01/21/01
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Figure 6-14. Sunlight Intensity, Average SODIS Bottle Temperature, and Corresponding
Disinfection Thresholds for 01/21/01
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The 5-hour average peak intensity was 664 W/m 2, and the total amount of energy

received from 8:00 A.M. to 5:00 P.M. was 4509 Wh/m 2. The bottle water temperature

reached the synergistic temperature for 2-nonconsecutive hours. The microbial analysis

of the bottles testing for bacterial regrowth from 01/12/01 is also given by Table 6-9.

Table 6-9. Results of Microbial Analysis 2-Day Exposure of Water Collected on 01/19/01 and for
Bacterial Regrowth from water on 01/12/01

Total Coliform E. coi PathoScreen

FSample Sample 7law- 7
Type ~Number~

2-Day -2-A NA NA

(01/20/01) 2-B

(0 1/12/-01) 2 F 44_

Consistent with previous 2-day exposures, 100% inactivation was achieved. Sample

2-Day2-A for the H2S-producing bacteria was disregarded, as the cap for the 20 ml vial

was broken. No bacterial regrowth was observed for any of the target organisms, which is

consistent with the results found by Wegelin (1994).

7 Summary of Results and Discussion

The general results for turbidity, sunlight intensity, how the measured and modeled

sunlight intensity compared, and the overall microbial analysis will be presented. These

results and what they imply for SODIS in Haiti will then be discussed.
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7.1 Summary of Results

7.1.1 Turbidity

All realistic water sources were very clear with an average turbidity of 1.3 ±.6 NTUs.

This is consistent with Lantagne (2001), who found an average turbidity of .88 ±.84

NTUs collected from several other places in Haiti.

7.1.2 Sunshine and Temperature

The average sunshine intensity and temperature profile for all days, January 12th through

January 21 , 2001 is given by Figure 7-1.

Overall Average Sunlight and Temperature Profiles

55

50-

4A5 - --

40 -
CL4

E 35
---- Average SODIS Temperature
- - - Synergistic Temperature Threshold

Sunlight Intensity
Sunlight Disinfection Threshold

8:00 AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM

Time [hours]

Figure 7-1. Average Sunlight and Bottle Water Temperature observed in Haiti during January
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The 5-hour average peak intensity was 651 W/m2, and the average total amount of daily

energy received was 4537 Wh/m 2. On average, the bottle water temperature hovered

around the synergistic temperature for about 3 hours.

Two of the nine days were under the cover of thunderclouds and had sunlight and

temperature profile shown by Figure 7-2.
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Figure 7-2. Average Stormy Day Profile Observed for the 13"h and 15 'h of January (2 of 9 days)

For these two stormy days, the 5-hour average peak intensity was 445 W/m2, and the total

amount of energy received was 2958 Wh/m 2. The bottle water temperature never reached

the synergistic threshold.
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Subtracting these two stormy days from the rest paints a better picture of a typical day of

Haitian sunshine and bottle water temperature. This can be seen in Figure 7-3 by the

decrease in the size of the error bars when compared to Figures 7-1 and 7-2.
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Figure 7-3. Average Non-Stormy Day Profile for Partly Cloudy to Mostly Sunny days (7 of 9).

For the average of the non-stormy days, the 5-hour average peak intensity was 735 W/m2,

and the total amount of energy received was 506 1Wh/m 2. The bottle water temperature

rose past the synergistic threshold for 4 hours.

7.1.3 Measured Intensity Comparison to Model Prediction

The sunlight intensity measurements were made in Area 6 from Figure 3-1. The

measured average, minimum, and maximum 5-hour peak intensity values will be

compared to the simulated values in January for Area 6 (Table 7-1).
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Table 7-1. Comparison between Simulated and Observed Average, Minimum, and Maximum 5-hour
Average Peak Intensity Values.

-Simulated (Wfm Observed rW/m Perent Agreement
iag641 651 98.5%verage T5

Minimum 615 383 62.3%
Maximum I660 768 - -86.0%

The simulated and measured average values are in excellent agreement. However, the

maximum and minimum are significantly different. The reason for this disagreement

becomes apparent when looking at the measured minimum and maximum daily total

energies compared to the 10-year average values obtained from NASA. The measured

minimum day had a measured total energy value of 2666 Wh/m 2. This value was roughly

adjusted to 2800 Wh/m 2 to compensate for the period between 6:00 A.M. and 8:00 A.M

when there was sunshine but no measurements. Similarly, the maximum intensity was

adjusted from 5265 Wh/m 2 to 5600 Wh/m 2 to compensate for the missed sunlight

between 6:00 A.M. to 8:00 A.M. A comparison of percent agreement between the two

total energy values along with the intensity values is given by Table 7-2.

Table 7-2. Percent Agreement between Simulated and Observed Intensity Values, and Observed and
NASA 10-year Average Total Energy Values for the Maximum and Minimum Energy in January

I iuae Observed Intensity 1Observed Total Energy - Total Energy
(W/m2) (W/m) Percent Total Energy Provided by Percent

Agreement (Wh/m2) NASA (Wh/m2) Agreement
IMinimum 615 f 383 62.3% 2800 - 4062.4 %
1Maximum 60- -768 86.0% 5600 -4960 88.6 %

The difference in total energy adequately explains the difference in intensity because they

are so intimately related. To verify this, the observed minimum total energy value is

plugged into the model and it produces a 5-hour average peak intensity value of 385
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W/m2 . This minimum average intensity is in over 99% agreement with the observed

value of 383 W/m2. The maximum observed value produces a 5-hour average peak

intensity of 770 W/m2, which is in over 99% agreement with the observed maximum

value of 768 W/m2 . It then follows that the discrepancy between the simulated and

observed minimum and maximum results can be explained by the total energy values

provided by NASA. The reported minimum and maximum NASA total energies are

likely different from the measured values because they are representative of a 10-year

average for a degree latitude and longitude quantity. However, the measured amounts are

at a much smaller scale within that averaged area making them more susceptible to local

fluctuations.

7.1.4 Overall Microbial Analysis

Microbial testing was conducted using total coliform, E. coli, and H2S-producing bacteria

to assess how SODIS performed under various conditions. The total results for the raw

water, 1-day exposure, and 2-day exposure are given by Table 7-3.

Table 7-3. Overall Microbial Analysis

Initial Raw Contamination 1-Day Kill 2-Day Kill
%, (Positive/Sampled) %, (Negative/Sampled) %, (Negative/Sampled)

97.2%, (70/7) F 5 2 .8 %, (38/7) 100%, (53/53)

The three types of microbial tests showed good agreement between one another for both

positive and negative results for all tests made (Table 7-4).
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Table 7-4. Percent Agreement between Different Microbial Tests

ype of Agreement Total Coliform and Total Colifo nd col and
E. co/i H2 S Bacteria H2 S Bacteria

Positive 9. 97.4%

I7 egaive - 1.2% F- 96.9% f T- 94.1%

The different tests were in strong agreement indicating the raw water had all of the target

organisms present and that the SODIS process had roughly the same effect on the

different types of indicator bacteria.

7.2 Discussion

Every point source that people used for potable water in Dumay and Santo had very low

turbidity. Lantagne (2001) sampled several other locations in Haiti to find that they all

had minimal turbidity. Based on the measurements made in January, it would be

reasonable to say that most places would not need a prefiltration step and SODIS could

be directly applied. However, to make a broader conclusion, additional samples would

have to be taken in the rainy seasons (around October and May) to investigate how

increased runoff would affect turbidity.

The intense Haitian sunshine and warm climate appear to provide conditions suitable for

effective SODIS. This research was conducted during Haiti's winter, implying shorter

and colder days compared to most of the year. However, "the rainy months like October

and May, could receive less sunshine, but you could easily count the days on your fingers

in Haiti that receive no sunshine because they are so few" (Nathan Dieudonne, personal

communication, 1/14/01). It would be important to conduct further SODIS testing around
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October when there is less sunshine and increased cloudiness. The highly heterogeneous

nature of Haiti's climate makes general conclusions difficult to formulate. At higher

altitudes, the orographic enhanced cloud cover and the colder temperatures could

compromise the effectiveness of SODIS. If the mountainous regions are too cold to

realistically incorporate synergistic thermal effects, the bottles should not be painted

black and could be placed in solar reflectors. This would have the SODIS process rely

solely on optical inactivation, which could be very effective given there is more UV

radiation at higher altitudes. If this technique were ineffective, an alternative disinfection

method would have to be used in the mountainous regions.

The mathematical sunshine model proved to be very accurate in predicting the 5-hour

average peak sunshine intensity for a given total energy value. However, caution should

be used when applying the NASA values obtained for the 10-year average of the average,

minimum, and maximum total daily energy. The average monthly values are regarded as

more accurate because they sample around 30 or 31 days per month, and that average is

then averaged over the span of 10 years. However, measurements for the minimum and

maximum energies are a single value for each month, and their average comes from a

much smaller sample population. More importantly, the NASA values are assumed

accurate for what they represent, but their spatial resolution does not capture the presence

of microclimates within a degree longitude and latitude. This can cause inaccurate

predictions for specific locations within highly heterogeneous areas smaller than a degree

longitude and latitude. However, simulated values would likely be much more accurate

for specific locations in a homogeneous site. The mathematical model that was presented

is a valuable tool to obtain a first approximation if SODIS would be applicable for Haiti
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throughout the year. This method of sunshine simulation could easily be applied to

estimate the year-round SODIS effectiveness anywhere else in the world. One would

only need to obtain the locations latitude and total energy values from a source such as

NASA. If the sunlight intensities appear adequate for a location, then physical tests

should be conducted to evaluate the success of SODIS.

SODIS efficacy was evaluated by the inactivation of total coliform, E. coli, and

H2S-producing bacteria. The results verify that Haiti does have water problems with

microbial contamination as 97% of the samples tested positive for all indicator

organisms. Impacts of exposure duration varied significantly between 1-day and 2-day

periods. Under various sunshine intensities, bottle water temperatures, and initial

bacterial concentrations, 1-day exposure completely inactivated all of the bacteria half of

the time, while the 2-day exposure period achieved 100% inactivation for all conditions

experienced. A major drawback of this study is two consecutive stormy days such as on

01/15/01 were not observed and SODIS efficacy for these conditions in Haiti is unknown.

Guidelines that differentiate between 1-day and 2-day exposure have been suggested in

the literature. However, it is considered more practical to have every bottle exposed for a

2-day duration. It was observed that 100% bacteriological inactivation is mainly a

function on sunlight, temperature, and initial microbial concentration (the effects of

turbidity and wind are considered less important for Haiti). These parameters are highly

variable and the right conditions for 100% inactivation with 1-day exposure were only

met half of the time. To ask a villager to gauge how much sunshine a specific day has
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received takes away from the simplistic beauty of this technology. First, it is distracting

for villagers to have to constantly think about how much sunshine a bottle is receiving.

Second, this judgment is prone to large errors (I met a man who told me he was 177 years

old), which could ultimately cause illness or death. If the 2-day exposure results that were

observed in January hold true, leaving every bottle out in the sun for 2-day exposure

would take the guess work out of this technology and would always lean towards the

conservative side of disinfection. A practical way of providing people with cold water

every morning that has undergone a 2-day exposure period can be termed "a SODIS

triangle." Essentially, it consists of three groups of bottles that are rotated every morning,

so two groups are out in the sun and one is being used for consumption. This process is

illustrated in detail in the next section. From the experiences and the results produced in

Haiti, a set of practical application guidelines has been constructed.
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Section V Practical Application Guidelines
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The SODIS disinfection process is simple to apply but would require training at the

community level to ensure optimal benefits. These guidelines are a product of what was

experienced in Haiti along with some adaptations from the SODIS Technical Notes

(EAWAG/SANDEC), and should be applied to those areas deemed suitable for SODIS.

8 Practical SODIS Procedure

8.1 Bottles

Collect Clear PET bottles from home or local market of 1-2 liters. Enough
should be obtained to sustain a household level of consumption. PET
bottles can be easily identified as they will say PET on the bottom or they
main contain the following symbol: A

Make sure the bottles are not to scratched up so light can easily penetrate.

Make sure the bottles do not leak and have caps that seal watertight.

All labels should be removed and both the inside and outside of the bottles
should be washed to ensure optimal light transmittance.

Paint half of the bottles black (if paint is available):
" The side with any residual label glue should be painted. This

eliminates the hassle of trying to remove it and prevents future dirt
build up, which would reduce light transmittance.

* Use as many paint coats as necessary to create an opaque finish.
" Hold the bottle up to light and make sure light does not come through

the bottom.
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8.2 Water

Water should be obtained from a common village
pond, reservoir, etc.

supply: well, stream,(A

sODIs
Place logo under a bottle Put in sun (<30 NTUs) Have to filter or let settle

until logo is legible (>30 NTUs)

If the logo is legible, then turbidity is low enough for SODIS. If not, the
water must be left to settle or processed with a filter if available.

When collecting water, rinse the outside of the bottle to remove any
buildup that would block sunlight transmission

Fill the SODIS bottles about two-thirds full and screw on the cap. Shake
the bottles vigorously for about 20 seconds to ensure the water is
sufficiently oxygenated. The bottles are now ready for exposure.
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8.3 Exposure

An area must be chosen that receives sunshine throughout the entire day.

Place bottles on dark surfaces to enhance thermal inactivation such as
black plastic or tire pieces, which appear to be ubiquitous in Haitian
garbage. Corrugated metal rooftops reach high temperatures and they
would be excellent SODIS areas if they receive full sunshine during the
day.

Bottles should be sheltered from high winds, if the occasion calls for it, to
decrease thermal depletion by convection (wind blowing the heat away
from the bottles). Make sure that any objects use to shelter wind do not
shelter sunshine.

To make things simple, routine, and conservative, groups of bottles should
be set out for two days, regardless of the weather conditions. This takes
out the guesswork as to the whether conditions are right for SODIS. A
practical approach to this exposure guideline would be to set up a "SODIS
Triangle." This involves three groups of bottles: A, B, and C; and two
designated SODIS areas: SODIS Area 1 and SODIS Area 2. The two areas
could simply be adjacent spots on a roof The SODIS Triangle is set up as
follows:

Morning of Day 1:

* Collect water with group A
* Place bottle group A in

SODIS Area 1
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Morning of Day 2:

* Collect water with group B
* Place group B in SODIS

Area 1
" Move group A from Area 1

to Area 2

Morning of Day 3:

" Collect water with group C
" Place group C in SODIS

Area 1
" Move group B from Area I

to Area 2
" Bring group A home from

Area 2 to drink
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Morning of Day 4:

* Collect water with group A
* Place group A in SODIS

Area 1
* Move group C from Area 1

to Area 2
* Bring group B home from

Area 2 to drink

This now establishes an indefinite loop where a person goes out in the
morning to fill up a group of bottles and returns the same morning with a
group of bottles that have undergone two days of SODIS treatment. This
has the added advantage that the bottles have been allowed to cool over
night.

8.4 Anticipated Mistakes

Some bottles are placed in sunny areas in the morning but the areas
become shady after a few hours.

Many people like to place their bottles on chairs, but the chair backs shade
bottles after a few hours.

Some users expose the bottle with the black side on top.

Users don't plan well, become impatient, drink the water prematurely, and
get sick.
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Section VI: Summary and Conclusions
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9 Summary and Conclusions

SODIS is a simple technology that operates on the principle that sunlight-induced DNA

alteration, photo-oxidative destruction, and thermal effects will inactivate

microorganisms. The treatment process consists of filling plastic bottles with water and

exposing them to sunlight. Using this technique, 100% inactivation of total coliform, E.

coli, and H2S-producing bacteria was achieved after a 2-day exposure period under a

variety of conditions. Based on these results in January, it is recommended that a "SODIS

triangle" be applied to ensure every bottle receives 2 days of the SODIS process.

Mathematical sunshine simulations suggest that SODIS would be applicable, on average,

throughout Haiti year-round. However, this model does not take into account

microclimates and mountainous areas may have limited success due to lower sunshine

and temperature. This aspect needs further research. Overall, the results are encouraging

and it is strongly recommended that SODIS be further investigated for at least some parts

of Haiti. It is hoped that this extremely affordable point-of-use treatment technology can

help alleviate the water quality problems that currently plague Haiti. To evaluate SODIS

as a point-of-use treatment technology, it will be compared to the point-of-use water

treatment criteria established in section 1.4 and summarized in Table 9-1.
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Table 9-1. Point-of-Use Water Treatment Compliance Criteria (Lehr et aL, 1980; Shultz et aL, 1984)

Criteria Compliance

V Effective on many types anna numbe rsofpat-hogens Xt

Should perform regardless of water fluctuations

Must operate in appropnate pH and temperature range

Should not make the water toxic or unpalatable

Shul be safe and easy to handle _

Any chemical concentrations should be minor

Must provide residual protection against possibl recontamination

[Uismust be affordable to all 4
Sobld be adaptable to locaI candition andvaiatiois

Specialized equipment should be produced locally

Must be e by local traditions, customs, andcultural standas

Must comply with national sanitation and pollution policies

Although SODIS has been effective on large number of pathogens, there is still no data for many
organisms
: Indirectly provides some protection against recontamination because the disinfected bottle stays closed
until consumption

EAWAG/SANDEC is currently studying the effects on other pathogens and the issue of

providing residual protection is easily offset by the low cost of this technology. Every

point-of-use treatment technology has it strong points and setbacks. SODIS would have

the following advantages and disadvantages in Haiti.

Advantages:
* Inactivates or destroys pathogenic organisms
* Requires plastic bottles which are inexpensive, easy to handle, transport, and store
* Extremely low cost technology since its investment costs are low and its running

costs are negligible
* Has simple application which is ideal for the household level
* Does not require chemical addition, which could be carcinogenic, have

questionable availability, or change water taste and smell
e Makes use of locally available resources
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Disadvantages:
* Does not improve the chemical water quality
" Requires favorable climate conditions: 5 hours of radiation above 500 W/m2 and

warm ambient temperatures, which may not be available in mountainous regions
" Should not be applied to raw water of turbidity higher than 30 NTUs
* Offers limited production capacity

Along with good point-of-use treatment methods, the population needs to be educated

about water problems and potential solutions. Community health will not improve just

because they have point-of-use technologies available to them; they must use them.

SODIS would most likely only be applied if the target population were convinced it

works. To stay healthy, and benefit from SODIS, users would need to become aware of

the bacteriological routes of water borne diseases and how to avoid them. One of the

biggest problems I witnessed is most people, especially children, don't know or care that

their water contains pathogens. Even at locations with water purification systems,

children were constantly drinking from contaminated sources. These types of action

negate the effects of any water treatment technology.

Figure 9-1. Water in the Haitian Community
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Ultimately, this point-of-use treatment option is very attractive as it could provide a safe

source of water at the cost of a plastic bottle. It is hoped that this relatively new

disinfection method will produce an economically feasible technology to improve water

quality and public health in Haiti.
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Appendix: Code Used for Sunlight Simulation

Numerical Model of Daily Sunlight Profile

Peter Oates
* 2/24/01

MIT

,clear;

clf;

Data for total Energy obtained from NASA

Set Trip = 1,2,3 for average, minimum, maximum, or 4 year

respectively
trip=1;

Set cal=1 if you want to run calibration plots for noon data

note: have to change the length of the n vector to average over the

appropriate time

cal=l;

noon time calibration data
noondatl=[0.64 0.72 0.76 0.78

0.561*1000;
noondat2=[0.62 0.70 0.75 0.76
0.561*1000;
noondat3=[0.61 0.69 0.74 0.75

0.54]*1000;
noondat4=[0.68 0.75 0.80 0.80
0.61]*1000;
noondat5=[0.65 0.73 0.77 0.77

0.57]*1000;
noondat6=[0.63 0.70 0.75 0.75

0.56]*1000;

My data for calibration
dat=[0.0000 120.0000 340.7500

0.73 0.72 0.73 0.74 0.71 0.64 0.59

0.71 0.69 0.70 0.72 0.68 0.61 0.56

0.70 0.67 0.68 0.69 0.66 0.66 0.62

0.76 0.74 0.74 0.75 0.72 0.66 0.62

0.72 0.70 0.71 0.72 0.69 0.63 0.59

0.69 0.66 0.67 0.69 0.66 0.60 0.56

519.0000 666.8333 793.6667 814.0000

749.6667 650.1667 461.3333 203.3333 65.33334 0.0000];

if trip==1
eAverage Data Kw/m2/day

E=[4.68 5.32 5.99 6.30 6.16
4.59 5.23 5.89 6.16 6.03

4.51 5.16 5.86 6.13 5.98

4.90 5.52 6.21 6.47 6.26
4.79 5.38 6.03 6.22 6.04
4.68 5.25 5.89 6.04 5.86
4.55 5.15 5.82 5.99 5.79

end

5.99 5.96 5.86 5.61 4.95
5.80 5.79 5.70 5.46 4.84

5.69 5.68 5.58 5.36 4.76
6.09 6.01 5.91 5.72 5.08
5.80 5.75 5.68 5.49 4.91
5.54 5.52 5.47 5.29 4.76
5.40 5.37 5.31 5.15 4.66

4.50 4.28 Area 1
4.42 4.21 :Area 2

4.36 4.13 Area 3
4.66 4.51 -Area 4
4.54 4.40 SArea 5
4.44 4.30 'Area 6
4.36 4.21]; -Area

if trip==2
,Minimum Data

E=[4.40 5.05 5.67 5.62 5.39 5.55 5.78
4.36 4.96 5.56 5.58 5.35 5.42 5.59

5.45 5.00 4.38 3.99 3.91 -Area 1

5.32 4.88 4.29 3.92 3.79 -Area 2
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4.34 4.87 5.52 5.54 5.31 5.36 5.48 5.23 4.91 4.13 3.90 3.70 Area 3

4.66 5.27 5.99 5.80 5.30 5.64 5.80 5.41 5.07 4.48 3.94 4.18 -Area 4

4.57 5.14 5.80 5.73 5.21 5.39 5.58 5.23 4.80 4.36 3.88 4.01 -Area 5

4.49 5.01 5.62 5.64 5.14 5.18 5.34 5.04 4.62 4.24 3.85 3.86 'Area 6

4.41 4.90 5.55 5.60 5.14 5.07 5.23 4.91 4.63 4.08 3.87 3.74]; Area

-7

end

if trip==3
Maximum Data

E=[4.99 5.58 6.22 6.56 6.82 6.35 6.24 6.10 5.89 5.28 4.82 4.50 "Area 1

4.90 5.46 6.10 6.40 6.69 6.12 6.05 5.95 5.75 5.15 4.75 4.43 Area 2

4.79 5.40 6.10 6.47 6.61 6.01 5.98 5.86 5.75 5.13 4.73 4.36 -Area 3

5.16 5.80 6.49 6.70 6.93 6.45 6.28 6.15 6.09 5.46 5.04 4.67 Area 4

5.07 5.62 6.33 6.50 6.75 6.11 5.98 5.92 5.81 5.23 4.90 4.58 Area 5

4.96 5.46 6.18 6.37 6.59 5.83 5.73 5.75 5.60 5.04 4.79 4.49 'Area 6

4.82 5.39 6.07 6.41 6.49 5.78 5.62 5.69 5.58 5.05 4.74 4.42]; Area

7
end
My_dat=[120 340.75 519 666.8333333 793.6666667 814 749.6666667

650.1666667 461.3333333 203.3333333 65.33333333];

T_dat=[7 8 9 10 11 12 13 14 15 16 17];

E=E*1000; -Transforms kW=W
E=5394; -my value

T=[6:1; Increment by .5 for calibration

T=[6.25:.5:18.25]; increment by .5 for calibration

lsm=-.1533;
Tad=T+lsm;
Tm=[1:12];Tm=Tm'; Time in months

base=zeros(1,1ength(T));
-T=[10];

IH=[];
FIHRAVE=[];
MASTERAVE=[];
Seas=[];
Latitude

Lat=[19.5 19.5 19.5 18.5 18.5 18.5 18.5]; Latitudes Area 1-7

Monthly Declination

dec=[-20.9 -13 -2.4 9.4 18.8 23.1 21.2 13.5 2.2 -9.6 -18.9 -23.0];

for j=1:7
for i=1:length(dec)

for k=1:length(T)
hsa=acos(-

(tan(Lat(j)*pi/180))*tan(dec(i)*pi/180));hsa=hsa*180/pi; sunset angle

.Matlab works in radians

ha=(T(k)-12)*360/24; 'hour angle

a=.409+.5016*(sin(hsa*pi/180-60*pi/180)); -coefficients

b=.6609-.4767*(sin(hsa*pi/180-60*pi/180)); coefficients

A=(pi/24)*(a+b*cos(ha*pi/180));
B=cos(ha*pi/180)-cos(hsa*pi/180);
C=sin(hsa*pi/180)-(2*pi*hsa/360)*cos(hsa*pi/180);
R=A*B/C; -t ratio
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Ih=R*E(j,i); intensity at the hour

,Ih=R*E; dinensity at the hour

IH=[IH
Ih]; 'vector that builds daily profile

end
:daylength=hsa/ 15*2
Seas=[Seas IH];

.fihrave=(IH(5,i)+IH(6,l)IH(7,1)+IH(8,i)+IH(9,))/5; "five hour

average correct

afihrave=(IH(,) +IH(1,1) +IH(12, 1) +TH(13, 1) +IH(14, 1) +IH(15, 1+IH(

7,1))/7; 'three hour increment, must change T by .5

fihrave=(IH(10,1)+IH(11,1)+IH(12,1)+IH(13,1)+IH(14,1)+IH(15,1))/
6 ;

'three hour increment, must change center weighted

ethree hour increment, must change center weighted

IH=[];
FIHRAVE=[FIHRAVE

fihrave];
end
MASTERAVE= [MASTERAVE FIHRAVE];

FIHRAVE=[];
end

supavel=mean (MASTERAVE')

if cal==1
figure(1);

pIot(T,SI(:,1),T,SI(:,2),T,SI(:,3),TSI(:,4),TSI(:,5),TSI(,6),TSI(
,7) ,T, SI (:,8),T, SI (:,9) ,T, I (:,1O) ,T, SI(K: ,ii),T, SI(: ,12));

subplot(3,2,1);plot(Tm,MASTERAVE(:,1),'-
',Tm,noondatl,'*','LineWidth',1.5,'MarkerSize',11);

axis([1 12 500 950]);
set(gca,'XTick',1:1:12)
set(gca,'XTickLabel',{'Jan','Feb','Mar','Apr','May','June','July','Aug'

,'Sept','Oct','Nov','Dec'})
ylabel ('W/m^2');
title('Area 1');

subplot(3,2,2);plot(Tm,MASTERAVE(:,2),'-
',Tm,noondat2,'*','LineWidth',1.5,'MarkerSize',11);
axis([1 12 500 950]);
set(gca,'XTick',1:1:12)
set(gca,'XTickLabel',{'Jan','Feb','Mar','Apr','May','June','July','Aug'

,'Sept','Oct','Nov','Dec'})
ylabel('W/m^2');
title('Area 2');

subplot(3,2,3);plot(Tm,MASTERAVE(:,3),'-
',Tmnoondat3,'*','LineWidth',1.5,'MarkerSize',11);

axis([1 12 500 950]);

set(gca,'XTick',1:1:12)
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set(gca,'XTickLabel',{'Jan','Feb','Mar','Apr','May','June','July','Aug'

,'Sept','Oct','Nov','Dec'})
ylabel('W/m^2');
title('Area 3');

subplot(3,2,4);plot(Tm,MASTERAVE(:,4),'-
',Tm,noondat4,'*','LineWidth',1.5,'MarkerSize',11);

axis([1 12 500 950));

set(gca,'XTick',1:1:12)
set(gca,'XTickLabel',{'Jan','Feb','Mar','Apr','May','June','July','Aug'

,'Sept','Oct','Nov','Dec'})
ylabel('W/m^2');
title('Area 4');

subplot(3,2,5);plot(Tm,MASTER AVE(:,5),'-

',Tm,noondat5,'*','LineWidth',1.5,'MarkerSize',11);
axis([1 12 500 950]);
set(gca,'XTick',1:1:12)
set(gca,'XTickLabel',{'Jan','Feb','Mar','Apr','May','June','July','Aug'

,'Sept','Oct','Nov','Dec'})
ylabel('W/m^2');
title('Area 5');

subplot(3,2,6);plot(Tm,MASTERAVE(:,6),'-
',Tm,noondat6,'*','LineWidth',1.5,'MarkerSize',11);
axis([1 12 500 950]);
set (gca, 'XTick',1:1:12)
set(gca,'XTickLabel',{'Jan','Feb','Mar','Apr', 'May', 'June','July', 'Aug'

,'Sept','Oct','Nov','Dec'})
ylabel( 'W/mA 2');
title('Area 6');
legend('Simulated','Observed')
end

Cloudy=[38.6 40.7 44.6 50.6 57.0 50.8 49.4 47.6 51.2 49.3 46.2 39.8

Area 1
39.9 42.1 45.5 52.0 58.1 50.7 48.8 47.3 50.9 49.3 46.3 39.9

Area 2
42.6 44.1 45.2 52.1 59.2 52.7 50.6 49.0 51.8 50.2 48.1 42.5

Area 3
35.7 39.0 40.7 47.4 56.0 51.0 51.7 49.9 51.7 49.7 45.8 38.1

Area 4
37.2 40.5 43.1 50.2 57.5 50.9 49.8 48.2 51.3 49.3 45.3 37.4

Area 5
38.9 42.5 44.8 52.0 58.6 51.0 49.5 48.1 51.7 49.3 45.3 37.5

Area 6
42.3 45.2 45.2 52.0 59.8 53.8 52.3 50.7 53.4 50.4 47.4 40.9];

Area 7

Rain=[3.03 3.03 3.18 3.32 3.71 3.82 3.84 4.05 4.20 4.25 3.85 3.32 Area 1
3.01 3.02 3.17 3.32 3.69 3.78 3.81 4.01 4.17 4.25 3.84 3.30 Area 2

3.00 3.02 3.17 3.32 3.67 3.76 3.78 3.95 4.12 4.23 3.85 3.27 Area 3
3.10 3.11 3.25 3.48 3.81 3.90 3.86 4.13 4.28 4.33 3.91 3.41 Area 4

3.09 3.09 3.24 3.48 3.81 3.85 3.84 4.09 4.25 4.33 3.89 3.40 Area 5

3.07 3.08 3.24 3.48 3.80 3.82 3.83 4.07 4.21 4.32 3.88 3.39 Area 6

3.06 3.09 3.24 3.47 3.80 3.81 3.80 4.00 4.13 4.29 3.88
3.35]; Ar ea 7
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Heat=[25.5 25.2 25.4 26.0 26.5 27.5 27.7 27.8 27.8 27.6 27.0 26.0 Area 1

25.1 24.9 25.2 25.8 26.3 27.2 27.4 27.5 27.5 27.3 26.6 25.7 Area 2

25.2 24.9 25.1 25.7 26.3 27.2 27.4 27.6 27.6 27.4 26.7 25.8 Area 3

25.9 25.6 25.9 26.5 26.9 27.7 27.9 28.0 27.9 27.7 27.2 26.4 Area 4

25.2 25.1 25.5 26.2 26.5 27.2 27.3 27.4 27.2 27.1 26.5 25.6 Area 5

24.5 24.5 25.1 25.9 26.1 26.7 26.7 26.8 26.5 26.5 25.8 24.9

Area 6
24.9 24.7 25.1 25.8 26.2 26.9 27.0 27.1 27.0 26.9 26.3

25.4); Area 7

MASTERAVE=Cloudy';

Thresh=500*ones(l,length(Tm));Thresh=Thresh'; "disinfection threshold

figure(2)
vplot (T, Seas)
Splot (Tm, Thresh, 'k: ', Tm,MASTER AVE (:, 1) ,'y-

x' ,Tm,MASTER AVE(:,2),':m',Tm,MASTERAVE(:,3),'-

+0',Tm, MASTER AVE (:, 4) , '-*r', Tm,MASTERAVE (:, 5)

g',Tm,MASTER AVE(:, 6) ,'b-.',Tm,MASTERAVE(:,7),'k-

', 'LineWidth',2, 'MarkerSize', 8)

plot(Tm,MASTERAVE(:,1),'y-
x',Tm,MASTERAVE(:,2),':m',Tm,MASTERAVE(:,3),'-
.+c',Tm,MASTERAVE (: ,4), '-*r', Tm,MASTERAVE (: , 5),'--

g',Tm,MASTERAVE(:,6),'b-.',Tm,MASTERAVE(:,7) ,'k-

, 'LineWidth',2,'MarkerSize',8);

-plot(Tad,IH,'-',T _dat,My dat,'o','Markersize',8,'.LineWidth',2)

plot(T, IH,T,base)
plot (T, IH,

set(gca,'XTick',1:1:12)
set(gca,'XTickLabel',{'Jan','Feb','Mar','Apr', 'May','June','July', 'Aug'

,'Sept','Oct','Nov','Dec'})
set(gca,'XTick',5:1:19)
xlabel('Hours from Midnight')

ylabel('Percent Daytime Cloud Cover');

title('Average Percent Daytime Cloud Cover');

title('Average Temperature Profile')

ylabel('Temperature [0C ');

ylabel ( 'W/mA2'
axis([l 12 24 28.5]);

axis([1 12 35 651);
.title('Simulated Average 5-hr Intensity Average Derived from Monthly

Energy for all areas of Haiti');

.title('Simulated Average 5-hr Intensity Average Derived from Monthly

Energy');
eeend( 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'June', 'July', 'Aug', 'Sept', 'Got',

'Nov', 'Dec');
legend('Threshold','Area l','Area 2','Area 3','Area 4','Area 5','Area

6','Area 7');
legend('Area 1','Area 2','Area 3','Area 4','Area 5','Area 6','Area 7');

.axis([l 12 450 850]);
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