
Evolution of Platform and User Interface in Infrastructure
Management System with Case Study of Arlington Pavement

Management System

BY
YATLUN CHOI

BACHELOR OF SCIENCE IN CIVIL ENGINEERING
MASSACHUSETTS INSTITUTE OF TECHNOLOGY, 2001

SUBMITTED TO THE DEPARTMENT OF CIVIL AND ENVIRONMENTAL

ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

Master of Engineering
IN CIVIL AND ENVIRONMENTAL ENGINEERING

AT THE

Massachusetts Institute of Technology
JUNE 2001

@2001 YATLUN CHOI. ALL RIGHTS RESERVED.

THE AUTHOR HEREBY GRANTS TO MIT PERMISSION TO REPRODUCE AND TO DISTRIBUTE

PUBLICLY PAPER AND ELECTRONIC COPIES OF THIS THESIS DOCUMENT IN WHOLE OR IN PART.

SIGNATURE OF AUTHOR:

DEPARTMENT OF CI L AND (*IRONMENTAL ENGINEERING
MAY 11, 2001

CERTIFIED BY:

'EORGE KOCUR

SENIOR LECTURER, CIVIL AND ENVIRONMENTAL ENGINEERING
THESIS SUPERVISOR

ACCEPTED BY:

CHAIRMAN, DEPARTMENTAL COMMITTEE 0 RADUATE STUDIES

MASSACHUSETTS INSTITUTE~
OF TECHNOLOGY

JUN 0 4 2001

LIBRARIES

p S 11) (-59



Evolution of Platform and User Interface in Infrastructure
Management System with Case Study of Arlington Pavement

Management System

By

YATLUN CHOI

SUBMITTED TO THE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING ON

MAY 11, 2001
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERING IN CIVIL AND ENVIRONMENTAL ENGINEERING

ABSTRACT

Infrastructure management systems have been used in public agencies for many years to
manage a wide variety of public facilities, of which pavement management systems are one
of the most commonly deployed. A well-designed pavement management system facilitates
the efficient strategic planning of pavement maintenance and lowers the cost required in the
long term.

There are many approaches to the formulation of pavement management processes and
design of pavement management systems. Advancement in computing technologies has
presented the Internet as a new choice of platform for pavement management systems. This
thesis aims to (1) provide the reader with an introduction to the pavement management
process and the algorithms involved in strategy selection, (2) examine the components
behind the evolution and development of Web technologies and application user interfaces,
and (3) study the implementation of Web technology on pavement management systems,
using the Arlington PMIS as a case study.

THESIS SUPERVISOR: GEORGE KOCUR

TITLE: SENIOR LECTURER, CIVIL AND ENVIRONMENTAL ENGINEERING



Acknowledgements

I would like to express my gratitude to the following people for this thesis:

* Dr. George Kocur for his guidance and assistance on the thesis as well as on the
M.Eng. Project throughout the year;

4 Mr. Ron Santosuosso of Department of Public Works, Arlington, MA for his help
on the M.Eng. Project, which is used as a case study in the thesis;

* my M.Eng. Project partners William Cheung, Warit Durongdej, and Wai Kei Yim for
turning what could have been the worst nightmare into an experience filled with fun,
and the class of 2001 M.Eng. students for making this an enjoyable year;

* my parents and my sister, for their love and encouragement, especially through these
five years when I am away from home;

4 all my friends in MIT, for helping me survive the three years of tough life here,
especially to Daniel Kwok, now an Assistant Professor at Univesity of Alberta, who
has been very supportive and truthful to me at all times and turned me into a much
more cheerful person, and Kenneth Yu, who as my roommate in Junior year had

given me tremendous support in adjusting my life from UCLA to MIT.

3



Table of Content
List of Figures ................................................................................................................ 6
List of Tables ................................................................................................................. 6
1 Introduction ....................................................................................................... 7
2 Pavem ent M anagem ent System s ........................................................................ 8

2.1 Background ................................................................................................... 8
2.2 Pavem ent M anagem ent Algorithm s .................................................................. 9
2.3 Pavem ent M anagem ent Process....................................................................... 11
2.4 Com puterized Pavem ent M anagem ent System s .............................................. 12

3 W eb Applications .............................................................................................. 13
3.1 W hat W eb Applications Are ........................................................................... 13
3.2 W eb Architecture ........................................................................................... 15

3.3 User Interfaces ............................................................................................... 17
3.3.1 Server D riven Ul....................................................................................... 17
3.3.2 Client D riven UI ......................................................................................... 18

3.4 Advantages of W eb Interface for Applications ............................................... 19
3.4.1 Ease of Version Control of D ata ................................................................ 19
3.4.2 Accessibility from Different Locations ........................................................... 20

3.4.3 Cost Saving ............................................................................................... 21
3.4.4 Platform Independence .................................................................................. 22

3.4.5 Abundance of Tools and Technologies ..................................................... 22

3.4.6 Ease of D istribution ................................................................................... 23
3.4.7 Use Across D ifferent Client Products........................................................ 23

3.5 D isadvantages of W eb Interface for Applications........................................... 23
3.5.1 Security...........................................................................................................23
3.5.2 Single Point of Failure ................................................................................. 24
3.5.3 Perform ance Problem s ............................................................................... 24

3.5.4 N etwork Costs ........................................................................................... 25
4 Technologies .................................................................................................... 26

4.1 H istory of W eb Applications ........................................................................... 26
4.1.1 CG I................................................................................................................26
4.1.2 Client-side Scripting.................................................................................... 27
4.1.3 FastCG I ......................................................................................................... 27
4.1.4 O ther Solutions ......................................................................................... 28

4.2 Netscape Communications Server/Netscape Commerce Server......................28
4.3 ASP....................................................................................................................29
4.4 Java Servlets/JSP............................................................................................ 30
4.5 O thers (such as PHP, Server-Side Includes) ................................................... 32
4.6 Structuring Web Applications: Case Study on Java Technologies..................... 32

4.6.1 The Structured Interactions M odel.............................................................. 32
4.6.2 Flow of Control.............................................................................................. 34
4.6.3 Com ponents of the Structured Interaction ................................................. 34

4.6.3.1 Servlets ............................................................................................. 34
4.6.3.2 JSP.................................................................................................... 35
4.6.3.3 Formatting Beans........................................35

4



4.6.3.4 Comm and Beans .............................................................................. 35
4.6.3.5 Business Logic ................................................................................... 36

4.6.4 Sum m ary of Case Study............................................................................... 36
5 Case Studies of Different Implementations of Platform..................................38

5.1 G eneral Features of Pavem ent M anagem ent System s ..................................... 38
5.1.1 Pavem ent N etwork D atabases .................................................................... 38
5.1.2 Inquiry Functions ....................................................................................... 39
5.1.3 Pavem ent Analysis..................................................................................... 39
5.1.4 Reporting ................................................................................................... 40

5.2 InfraStructure Management System at Arlington, MA .................... 40
5.2.1 Introduction ................................................................................................ 40

5.2.2 Features..........................................................................................................40
5.2.3 Interface ......................................................................................................... 41

5.2.4 Problem s with the D OS-based Text Interface ........................................... 42

5.3 Pavement Management and Inspection System (PMIS) at Arlington, MA ..... 44
5.3.1 Introduction ............................................................................................... 44
5.3.2 Features..........................................................................................................44
5.3.3 Interfaces........................................................................................................46

5.3.3.1 W eb Interface ..................................................................................... 47
5.3.3.2 Inspection System: Palm and GPS ........................................................ 48

5.3.4 Building the Pavem ent M anagement System ................................................ 49
5.3.4.1 Pavem ent Network Definition.......................................................... 49
5.3.4.2 Pavem ent Database .......................................................................... 49
5.3.4.3 Pavem ent System Class Diagram s ....................................................... 50
5.3.4.4 System Dem onstration ......................................................................... 55

5.3.4.4.1 Pavem ent N etwork D atabase ....................................................... 55
5.3.4.4.2 Pavem ent Condition Inspection ................................................... 58
5.3.4.4.3 Pavem ent Analysis ......................................................................... 59

6 Further D evelopm ents ..................................................................................... 65
6.1 System Level ................................................................................................. 65
6.2 Application Level - Arlington PM IS ............................................................. 65

7 References ....................................................................................................... 66

5



List of Figures
Figure 2-1 Conceptual illustration of a pavement condition life cycle .................................... 8
Figure 2-2 The Pavement Management Process ...................................................................... 11
Figure 3-1 Representation of a canonical Web architecture...................................................15
Figure 3-2 U ser Interface M odels.............................................................................................. 17
Figure 4-1 Structured Interactions.............................................................................................. 33
Figure 5-1 Class Diagram: User Authentication...................................................................... 51
Figure 5-2 A dm inistration ................................................................................................................. 51
Figure 5-3 Class Diagram: Pavement Condition Inspection...................................................52
Figure 5-4 Class Diagram: Pavement Analysis and Budget Scenarios .................................. 54
F igu re 5-5 R ep o rt...............................................................................................................................55
Figure 5-6 Arlington PMIS: Administration Page....................................................................56
Figure 5-7 Arlington PMIS: Street Data Summary page........................................................ 56
Figure 5-8 Arlington PMIS: Street section details page...........................................................57
Figure 5-9 Arlington PMIS: Street section detail modification page.....................................57
Figure 5-10 Arlington PMIS: Inspection file upload page......................................................58
Figure 5-11 Arlington PMIS: Inspection file management......................................................58
Figure 5-12 Arlington PMIS: Pavement analysis main page....................................................59
Figure 5-13 Arlington PMIS: Pavement analysis - scenario query and summary page...........60
Figure 5-14 Arlington PMIS: Pavement Action selection...................................................... 61
Figure 5-15 Arlington PMIS: Curb and Sidewalk maintenance action selection page........62
Figure 5-16 Arlington PMIS: Scenario Comparison summary page ..................................... 63
Figure 5-17 Arlington PMIS: Scenario Comparison details page ......................................... 64
Figure 5-18 Arlington PMIS: Scenario details exported to Excel spreadsheet ..................... 64

List of Tables
Table 2-1 Summary of 10 year costs and benefits for case study highway network using

IL L IN E T .................................................................................................................. 10
Table 5-1 Database structure of Arlington PMIS ........................................................... 50

6



1 Introduction
Millions or even billions of people commute by cars every day, and although often

overlooked, pavements in good conditions are essential in providing safe and enjoyable

riding experience as well as efficient traffic flow. Pavements need to be constantly

inspected and maintained so that any deteriorated pavements can be restored to acceptable

standard; this is especially true for pavements in areas with extreme weather conditions,

where deterioration tends to take place at a higher rate. Pavement Management Systems

provide a means for public agencies to efficiently monitor pavement conditions and

formulate maintenance strategies.

This thesis investigates the development of Pavement Management Systems as a Web

application and reasons for the trend to develop toward a Web interface.

Chapter 2 discusses the pavement management process and algorithms in pavement

management strategy selection. Chapter 3 investigates what Web applications are, its

architecture, the various Web application user interface models, and the advantages and

disadvantages of developing application on the Web interface. Chapter 4 covers the

common technologies deployed in development of Web applications. Chapter 5 studies

different implementations of platform and technology in pavement management systems.

Chapter 6 gives a summary of the study and also looks into possible future development of

pavement management systems.

7



2 Pavement Management Systems

2.1 Background
Maintenance of pavement systems can provide several benefits to both the public

authorities and commuters over long term. In the past, pavements were maintained but

not well managed. Experience of engineers used to dictate the maintenance decisions of

pavement, and there lacked a systematic approach to managing pavements. The process

lacked life cycle costing or prioritization given to streets that reap a higher cost-benefit

ratio. To maximize benefits and minimize costs, pavement networks need to be managed

in addition to being maintained.

Developments in computing technology as well as pavement management technology

have allowed the pavement management process to be carried out in a more economical

manner. Maintenance and rehabilitation (M & R) of pavements can be planned using

pavement management systems (PMSs) that use systematic methods for determining needs

and priorities. As illustrated in Figure 2-1, if M & R is performed during early stages of

deterioration before any sharp decline in pavement condition, more than 70% of

rehabilitation cost can be saved.

PAVEMENT CONDITION RATING Figure 2-1 Conceptual
EXCELLENT - illustration of a pavement

VERY GOOD ' condition life cycle

$1.00 FOR

GOOD - REHABILITATION
HERE

FAIR - SIGNIFICANT DROP

IN CONDITION WILL COST
POOR - $4.00 TO $5.00

VERY POOR - SMALL % OF
PAVEMENT LIFE

FAILED

TIME

M.Y. Shahin. Pavement Management for Airports, Roads, and Parking Lots. Figure 1-1 (p.2).

8



Apart from cost, PMSs can also help reduce the time needed for maintenance, as

closure of pavement for maintenance can be shortened with better street traffic

management.

2.2 Pavement Management Algorithms
There are many different algorithms in selecting M & R alternatives. Some of the

most common ones are described below:

Ad hoc method: A number of sections that have reached a significant level of

deterioration are grouped into a pool of prospective maintenance candidate. Pavement

sections are then selected randomly from within the pool until each yearly budget is

exhausted. Projects that are not funded in one year would be postponed to the subsequent

years when funding becomes available.

Ranking method: Pavement sections within the pavement network are ranked using

some index of pavement condition and selections are made based on a worst-first case

each year until the yearly budget is exhausted. Similar to the ad hoc method, projects not

funded in one year would be postponed.

Incremental Benefit Cost (IBC) method: The yearly benefit is optimized by selecting the

project based on a ranking of pavement sections from high IBC to low IBC. Pavement

sections with higher IBC are given priority in maintenance plans.

Linear Programming Optimization method: Linear programming optimization is used

to determine the priorities of different management plans. It also aims at optimizing the

yearly benefit within a yearly budget limit.

9



From research done by Mohseni, Darter, and Hall examining the effects of the four

different algorithms using ILLINET pavement management program developed for the

Illinois Department of Transportation, the following results were obtained:

Network Ad hoc Ranking Incremental Linear

parameter benefit-cost programming

optimization

Annual budget 7.5 7.5 7.5 7.5

(million $)

Percent VMT 15.0 3.5 6.1 6.2

on deteriorated

pavements

VMT on good 2.98 3.82 5.64 5.63

pavements

(billion miles)

VMT Benefit/ 40 52 77 79

Total Cost

(VMT: vehicle miles traveled)

Table 2-1 Summary of 10 year costs and benefits for case study highway network using ILLINET 2

Results show that the VMT on deteriorated roads dropped significantly from 15% to

3.5% - 6.2% when more systematic approaches such as ranking, IBC, or linear

programming, are adopted in place of ad hoc methods. An ideal pavement management

system should therefore not only provide the database and interface for maintaining

2 Mohseni, Darter, Hall. Benefits from Improved Management of Pavement Facilities; Infrastructure
Planning and Management. n.24.

10



pavements, but also implement a suitable algorithm for prioritizing pavement maintenance

decisions.

2.3 Pavement Management Process
Figure 2-2 shows the pavement management process:

Pavement Network
Definition

Database

Pavement Condition Pavement Condition
Prediction Inspection

Network Management
Budget Scenarios

Prioritized Project List

Construction &
Management

Figure 2-2 The Pavement Management Process

The first task of the pavement management process is the network definition, which

involves defining the set of pavement network(s) to be managed, such as roads, parking

lots, airfields and other types of facilities. Network definition would define the scope of

facilities to be considered as a separate network. Each separate network would be entered

into a single database in a PMS.

After building each network a PMS database, pavement condition measurement has to

be carried out to obtain data for pavement condition prediction. Depending on the

11



criteria for the determination of the pavement serviceability index (PSI), where higher PSI

indicates better pavement condition, different conditions of the streets are inspected. The

degree of pavement deterioration is a function of defect type, defect severity, and amount

or density of the defect. Inspection data are entered into the relevant database and PSIs

are calculated to quantify the pavement conditions.

PSI alone would not be enough for managers to determine maintenance strategies,

because some pavements with high PSIs may deteriorate faster than others in the future,

and so priority should not be given simply based on the PSI level. Therefore a pavement

management process should also include pavement condition prediction. Different PMS

would incorporate different techniques for developing prediction models to determine

future PSI, such as straight-line extrapolation, regression, or other algorithms.

From the quantified models of pavement conditions for the network, scenarios for

different maintenance plans are created and compared, based on criteria discussed in the

previous section (such as ad hoc, or ranking). A list of pavements that carry the highest

priorities for maintenance would then be compiled, and managers would make decisions

on construction and rehabilitation based on the budget limits. Upgrading of pavement

conditions resulting from M & R would then change the data in the database.

2.4 Computerized Pavement Management Systems
Pavement management systems have evolved from paper systems to information

systems that make use of the power of computers. With the advancement of technology,

pavement management systems are now getting increasingly network-based, as opposed to

packaged software that runs on a single computer. The following section investigates this

trend.

12



3 Web Applications

3.1 What Web Applications Are
Web applications have evolved from the exponential growth in adoption of the

Internet. Instead of executing code within desktop applications, Web applications are

executed in browsers. Web pages were first used to simply display static content and let

users navigate through that content. The ability to display static content for users to

navigate and exchange information remains one of the most important functions of Web

pages, but Web pages with the ability to display dynamic content, which in fact are Web

applications, have become a major propellant in the rapid penetration of the Internet and a

fuel for development of a new Internet-dependent economy.

Web applications can be broadly defined as Web pages that serve dynamic content,

which can range from document pages with simple keyword search forms, to complex

systems involving database transactions and interactions between users and servers. Web

applications vary in size, and can be deployed on the Internet, as well as on corporate

intranets and extranets. Web applications leverage Web servers, Web clients, standard

Internet protocols, and also existing applications and data from external non-Web services.

Web clients involved in Web applications span a diverse range of products from

information appliances such as cellular phones and personal digital assistants (PDAs), to

network computers and personal computers. While the capabilities of the Web clients vary

significantly, they are unified with the Web application server by their reliance upon a set

of Web-based technologies and protocols, such as Java, TCP/IP, HTTP, HTTPS, HTML,

etc.

A typical Web interaction begins when a user fills out an HTML based form and hits

the submit button. This produces an HTTP request that is sent to the Web server and the

13



HTTP request names the Web application element to be used to process the request with a

Universal Resource Identifier (URI). The HTTP request also carries information about

the client and the data that the user has entered into the form. The Web server sends the

request to the appropriate application element, which performs operations based on the

information in the request, often leveraging a database or external applications. The

application element then constructs a response, most often in the form of an HTML

document, which the Web server sends back to the Web browser where it is displayed to

the user. The interaction is completed.

Web applications are generally useful only if they can serve dynamic content, and

typically this is achieved through interactions with databases. The Web server obtains

input from the users and generates feedback through executing codes and queries and

using the inputs as parameters. There are different ways how code can be generated. For

example, a Web server can pass requests to an external program, which generates output

to be sent back to client as a static file. Alternatively, a Web server can handle requests by

separate threads within the Web server process, instead of having multiple processes to

handle separate requests; the server then serves the output content through the network

infrastructure, and users would be able to view the output and interact with the Web

applications through browsers sitting on their computers.

14



3.2 Web Architecture

15

Application
Page Server

Request

Web
- Server

External
Web Browser File System Systems

Figure 3-1 Representation of a canonical Web architecture

Figure 3-1 shows the representation of a canonical Web architecture. The elements on

the right - the file system, the application server, data, and external systems - are

essentially the same as found in traditional client and server systems. The elements on the

left - the browser, the Web server, and again the file system (in this case, a distributed

one) - are elements unique to the Web space.

From the perspective of the user experience, this otherwise physically distributed back-

end looks like traditional mainframe computing. However, there are significant

architectural differences between the two kinds of systems owing to the differences in

mechanisms that tie these elements together. For example, between the browser and the

Web server, communication is generally stateless, involving the request for, and then the

delivery of, a Web page. To retain information of the user in subsequent transactions

through the Web, a Web application needs to preserve the user's session state. There are a

number of alternatives to achieve this, of which cookies and URL rewriting are the most

common.

The placement of the application's business logic represents another architectural

challenge: it could live in the server; it could live in the client; or it could be spread out

overall. There are three layers of processing that involve a typical Web application: the



presentation layer (the user interface), the application layer (handles application-specific

processing), and the data management layer (which deals with the actual storage of data.)

Thin Client systems are systems in which the client only implements the presentation layer.

Fat client systems, on the other hand, have the client implement the presentation and

application layers so that there is also local processing on the client side. In the spectrum

of thin to fat client, each alternative has its own advantages and disadvantages.

Certain Web applications belong to the Fat Client systems where some of the

processing is at the client side. It introduces better server scalability and also less network

traffic. However, in such systems, the client is more complex, and it is difficult to port to

different platforms. Also, changes in server architecture are more likely to require changes

in client.

In thin client systems, it is easy to port the client to different architectures. The client

is decoupled from changes in the application so that an application upgrade is transparent

to the client. However, the server is responsible for all the operations, and it may easily get

saturated. The reliance on the server for all data processing also potentially lengthens the

network delays, adversely affecting the performance of the application. In Web

application development, changes are rapid and applications need to be constantly

updated; therefore most systems today tend to place business logic to the server.

Connection to the application's persistent data, which may be bound in legacy systems,

also involves many architectural challenges. First, the system tries to give the illusion of

objects to the user while data continues to live in relational tables. Second, the developer

has to consider how the connection from the system's business logic to its data should be

manifested. For example, a coupling via JDBC (ava Database Connectivity) is more direct

but requires that the application developer have intimate knowledge of the form of the

16



data. Alternatively, a messaging architecture is less direct but is used when direct interfaces

are not possible or volumes are low and performance requirements are not high.

3.3 User Interfaces
There are two options for choosing a model for the user interface (LI) of a Web

application. From the client's point of view, the user interface can be driven from either

the client or the Web application server. This leads to the two programming models:

Server Driven UI and Client Driven UI, and the choice of model to use depends on a

number of factors including Web technology available or expected to be available on the

client, client and server capacity, and network bandwidth.

Server Driven User Interface

HTTP R uest

Web ServIet
Browser

HTML
U1 L gic

Webtop, User Commands -omman
arowwe, Interface Server
Java app. Logic (ObjectI

HTTP, 11OP ssrvie0

mX

Business
Logic

Web Server

Client Driven User Interface
Figure 3-2 User Interface Models

3.3.1 Server Driven UI
The Server Driven UI model is more frequently used in Web applications. In this

model, the UI to be displayed on the client is generated by the Web application that

executes on the Web server. The Web server responds to every request from the client

with an entirely new HTML page. The new page can be a static or dynamically generated

HTML page, or it could contain Java applets, JavaScript, or Dynamic HTML (DHTML).

17

0



The Web server specifies the format that the data is to be displayed on the client. When

new information is to be displayed on the client, the Web server generates a new HTML

page and sends it to the client.

The Server Driven UI model has several advantages that make it the most common

model used:

* Web applications are easier to install and maintain because the Web server

determines what should be displayed.

* Web applications based upon HTTP and HTML can be displayed on any browser.

" The client part of the Web application is small and can be downloaded quickly.

" The server can tailor the content returned to the client based upon user attributes.

The Server Drive UI model, however, has one main disadvantage. Because the server

defines the UI, generation of UI for each client consumes more processor resources on

the application server such as extra clock cycles, or file and database accesses required to

obtain and perform formatting of the data.

3.3.2 Client Driven UI
In the Client Driven UI model, the UI to be displayed on the client is generated by the

part of the Web application that executes on the client. In response to a request from the

client, a Web server returns data, which is interpreted by the client and displayed on the

browser. The server does not return a new HTML page.

The most significant difference from the Server Driven UI model is the use of a

command server that acts as a message dispatcher between the client and the business

logic running on the Web server in the Client Driven UI model. The command server

receives an interaction request from the client and interfaces with the same business logic

components as the Server Driven UI model. Instead of returning HTML to the client, the

18



command server returns raw data. The UI part of the Web application running on the

client then interprets this data and formats it so that it can be displayed in a desired format

to the user. A unique command server can be implemented for each interaction or a

general command server can be implemented to handle many different interactions.

The Client Driven UI model has the following advantages:

" Web application developers with a traditional client/server background would find

this programming model familiar.

" Applications can be made to look more like standard windows applications.

" The computational load on the Web server is reduced because instead of the server,

the client now is responsible for generating the UI.

The model also has some disadvantages:

" It is tricky to correctly partition the client application events from the raw data

generation events, so that display updates can occur with the least number of remote

method calls.

" The client code (for example, Java applets or JavaScripts) tends to be large and

requires more time to download and initialize. Over a slow Internet connection, this

could introduce significant delay before the start of an application.

3.4 Advantages of Web Interface for Applications

3.4.1 Ease of Version Control of Data
With desktop-based applications, data input and output are archived on local

machines. For example, salespeople for a company may need to enter the amount of sales

made in each month, and the manager has to make sure the sales team has been updating

the sales log sequentially in order to make sure no data is overwritten or corrupted. This

19



can be done in many different ways. For example, data files are contained on removable

storage media (such as floppy disk or Zip disk) that are passed along by the team members,

which leads to significant delay for completion of data updates. Another example would

be having a data administrator to take care of all the data manipulations, but the workload

of the administrator would become unbearable if there were a large amount of data. There

can also be a shared directory where team members can all access the same files and carry

out their updates; this practice is typically seen in corporate intranets.

Web applications typically involve one central database or several distributed

databases. Users all carry out their data updates and manipulations through the Web

interface and access the same database. This can assure that each person's actions on the

data are accounted for. This is similar to a shared directory on corporate intranets except

that Web applications do not necessarily need to be restricted to corporate intranets and

thus provide greater flexibility. Desktop applications that communicate to a database

server - that is quite similar to the Web model and is the most common system

architecture today - solve the problem of version control but demands more

computational power on the desktops.

3.4.2 Accessibility from Different Locations
Web applications can be deployed on a single computer, an intranet within an

organization, virtual private networking (VPN), or on the Internet. This greatly reduces

the geographical restrictions of access to the applications. A user can have access to the

functionalities and data of the application as long as it is within the scope of deployment of

the Web application, so that it is not necessary to work on a specific computer or

workstation. This flexibility gives users the appealing options of telecommuting and

20



working from home, and allows them to have access to useful and urgent data from

different geographic locations.

3.4.3 Cost Saving
There is high cost associated with the purchase of desktop-based applications. Such

software often has a high price, and companies that need to purchase software for use

among several users would need to pay for the cost of not just one copy of the software

but for the number of users using the software, and upgrading of existing software to a

newer version also requires capital investment. Some desktop applications have "floating

licenses" that can be purchased to have just enough licenses for the active users at one

time but this does not eliminate the cost of installation on terminals as well as the need for

more computational powers on the desktops.

Web applications can help solve the cost problem because companies can purchase

subscriptions based on the number of logins needed. Expensive systems such as

accounting and project management software are good candidates for deployment as Web

applications. Subscriptions fees tend to be lower than purchase of software, and there are

incentives for the application service providers to improve the quality of the software to

raise their competitiveness in the market, and subscribers can enjoy the benefits of the

regular updates without having to worry about incurring additional costs.

In addition, the application elements, including the content that is sent to the client to

drive the application, all reside on the server. This allows all management of the

application to be done on the server. The application leverages the Internet infrastructure

for client/server communication and is dependent only on standard software (the Web

browser) in the client. Therefore, connectivity and client management costs are virtually

eliminated on a per application basis.

21



3.4.4 Platform Independence
Desktop-based software is platform dependent, and it will not run properly on

platforms it is not intended for. This introduces difficulties when companies consider

upgrades or migration of their operating systems. Software developers would also need to

develop the same software for different platforms. Many applications, such as the popular

Office suite, have a Windows version as well as Macintosh version. Exchange of data

across platforms using the same software would also have problems with regard to the file

format; for example, documents generated on Macintosh platform may not be fully

compatible with the Windows operating system. Companies that use more than one

operating system would need to find ways to convert their files from one format to

another.

Web applications are run on browsers, which are often included in operating system

packages or can be downloaded from the Internet at virtually no cost. Application service

providers only have to think about what kind of server to be used and do not need to

worry about the operating system on the machines of end users. Companies with multiple

operating systems can also benefit because they do not need to obtain different copies of

the software for each platform or worry about file formats across platforms.

3.4.5 Abundance of Tools and Technologies
There are many different tools and technologies for development of Web applications

and developers have great flexibility in combining the use of several tools and

technologies. Developers can also choose among them the technology that suits their

development needs the best.

22



3.4.6 Ease of Distribution
The use of Web applications saves users the time and trouble of installation of

software. The Internet being a very broad and effective channel of distribution makes the

introduction and adoption of a Web application much faster and easier than the traditional

software. The need for bug fixes would also be greatly reduced because the application

resides on the server and the application service providers can remove most bugs internally

without notice of the end users.

3.4.7 Use Across Different Client Products
Clients support industry standard communication protocols such as TCP/IP and

HTTP. Thus, the simplest information appliance potentially has access to the same Web

application that a Web browser running on a computer does. This enables both users of

wireless PDAs and PCs to access their e-mails, spreadsheets, etc. in the same way.

3.5 Disadvantages of Web Interface for Applications

3.5.1 Security
A Web server can be placed on an intranet or on the Internet, where it is accessible to

anyone with a computer and a browser. Security measures need to be taken to protect

server's data from being seen, changed, or damaged, and protecting the server from

malicious attacks.

Web applications often involve access to sensitive data or company information.

Servers for electronic commerce, for example, would hold credit card information and data

related to customer privacy such as address and shopping patterns. The server has to

provide different access levels to the data, protecting information from being accessible to

the general public.

23



Web servers are open to the possibility of attacks by crackers who want to change the

contents of the server, interfere with the normal operation of the server (denial of service),

or even crash the server. Servers with Web applications have programs and scripts that

would be executed on request, and they can be a security hole that opens the server to

attack.

Web applications often identify users by a username and password. More robust

forms of authentication (such as certificates and encryptions) can make remote access to

the Web applications more secure. After the user has connected and logged in, the

amount of access should be limited to the minimum needed to get the job done.

Administrators that log in remotely would have the same access to the server as if he

were physically present in front of the computer, and it is another security concern if the

administrator's account is compromised.

3.5.2 Single Point of Failure

Centralized network suffers from the risk of single point of failure. If the Web server

or database server is down, users cannot use the Web applications. In traditional desktop-

based software, if one workstation is down, users can go to another workstation in the

company if the software is also installed on that computer, given that the data needed is

available. The availability of the Web applications is dependent upon the availability of the

servers as well as the network traffic condition. Multiple servers running as backup Web

servers and database servers would help solve this problem.

3.5.3 Performance Problems

A key difference between Web applications and desktop applications is that Web

applications deliver slower performance as compared with desktop-based software because

24



performance depends heavily on network traffic condition, as well as the time needed for

data to flow back and forth between the server and the client.

3.5.4 Network Costs

A company utilizing Web applications would also incur a cost in maintaining the server

as well as paying for the network usage. This can accumulate to a significant amount of

cost and offset the cost saving from purchase of only one copy of the software.

25



4 Technologies

4.1 History of Web Applications

4.1.1 CGI
One of the first practical techniques for extension of static content to dynamic content

is the development of Common Gateway Interface (CGI). CGI was first developed to

define a standard method for an information server to talk with external applications. The

method enables a Web browser to send a request to the server for execution of a program.

The output of the program is converted and formatted to a form that is readable by the

browser and displayed in the client as if it is a static HTML page. With this capability, it is

possible to implement a large variety of functionalities in Web pages by developing

corresponding programs on the server side, and the CGI quickly became a popular

method to include dynamic content on Web pages. It also transformed the Internet from

a place to share information to a platform for information processing. Although CGI

programs can be written in many different languages, Perl has become the most popular

choice because of its advanced text-processing capabilities and its semblance of platform

independence, but each request would need to start a separate Perl interpreter and that

would take more processor time and resources.

When a request is sent from the client to the server to execute a CGI program, the

server creates a new process to run the CGI program. The server then passes to the

process the variables, user inputs, and other information that would be necessary to

execute any computations and generate response. Creation of process for every request

requires server resources, and therefore limits the number of requests the server can

handle simultaneously and also affects the performance speed. To help improve

26



performance, there had been the creation of client-side scripting solutions that enable the

client's browser to process some of the tasks before sending request.

Another problem with CGI is that CGI programs cannot interact with Web server or

take advantage of the server's running processes because CGI programs run in separate

processes.

4.1.2 Client-side Scripting
HTML does not allow for interactivity for Web applications, and so Netscape

Communications developed along with Sun Microsystems a solution called LiveScript that

allowed limited programming instructions to appear in Web pages and had the instructions

being processed when the pages were viewed using Netscape Navigator. LiveScript was

later renamed to JavaScript because of the popularity and attention around Java. However,

it is not a subset of the Java language; only its syntax is similar to that of Java. JavaScript

was made to interact with limited capacity with the client machine and over the time it

slowly evolves to be more secure and safe.

Microsoft also created a scripting language called Visual Basic, Scripting Edition, or

VBScript. VBScript is a subset of Visual Basic for Applications (VBA) language and its

syntax is exactly the same as VBA. Microsoft also created Jscript, which is similar but not

identical to JavaScript. Its browser would support all these different scripting languages.

4.1.3 FastCGI
FastCGI was developed by Open Market and it works just like CGI. The big

difference between CGI and FastCGI is that instead of having a new process for each

request, FastCGI creates a single persistent process for each FastCGI program. FastCGI,

however, still has problems with process proliferation. It needs a pool of processes to

handle concurrent requests, which can be slow.

27



4.1.4 Other Solutions
CGI has the advantage of being largely platform independent. Companies have

developed some other more efficient solutions on specific platforms.

Several companies developed proprietary server extension Application Programming

Interfaces (APIs) for the Web servers to more efficiently carry out Web requests. The

APIs utilize server extensions to handle requests. After the Web server gets the first

request for a particular application, that server extension is loaded in the same memory

space on the Web server on subsequent requests for the application. The server extension

stays in memory and answer requests until it is explicitly released from memory. Therefore

there is no need to instantiate a new application every time a request is made. This

arrangement has the advantages of being more memory efficient and faster.

The server extensions commonly use linked C or C++ code. These plug-ins, as well as

CGI programs, operate with relatively unregulated access to the server on which they are

executed, introducing big security issues.

4.2 Netscape Communications Server/Netscape Commerce Server
Netscape came up with Netscape Communications Server and Netscape Commerce

Server. The Commerce Server is essentially identical to the Communications Server except

that it adds Secure Sockets Layer (SSL) security to the mix, for performing secure

transactions over the Internet, as well as other advanced security features such as server

authentication, data encryption, data integrity, and user authorization.

Netscape delivers HTML documents and dynamically generated output over the

Internet and other TCP/IP networks using HTTP with its Web server and CGI

extensions.

28



Netscape Commerce Server's API (NSAPI) allows dynamic extension of server

functionality and easy integration of add-on applications and systems. Process manager

allows the creation of a configurable number of processes that reside in memory, waiting

to fulfill HTTP requests. This eliminates unnecessary overhead of creating and deleting

processes to fulfill every HTTP request. The dynamic process management algorithm

increases the number of server processes within configuration limits to efficiently handle

periods of peak demand. Netscape claims that it would be able to deliver several times

greater throughput by this algorithm. It also dramatically reduces system load and

increases system reliability. This efficiently leaves additional CPU resources available for

running other applications. The NSAPI also provides significantly higher performance

than CGI because a new process needs not be created to run the external function or

application.

4.3 ASP
Microsoft came up with an alternative to CGI, called the Internet Server Application

Programming Interface, or ISAPI. ISAPI applications are normally faster than CGI

programs that perform equivalent tasks because it utilizes the server extensions concept.

The ISAPI also allows for development of customized dynamic link libraries (DLL) that

sits in the same memory space as the Web server and would be called by Web server in

response to every HTTP request. Such DLLs are called ISAPI filters. There can be many

examples of possible ISAPI filters, such as a security layer between the Web server and the

client, an interpretation layer that presents a stream of information from server in a

different format than would the original Web server, and a mapping function that can

redirect a client's request to a different physical location on the server (such as a mirror

site) when the Web site experiences high traffic.

29



In Microsoft's development of Internet Information Server (IIS) 2.0, a technology

known as Denali was beta tested. Denali later evolved to the Active Server Pages (ASP)

and has become an important factor in IIS strategy. ASP technology is encapsulated in a

small ASP.DLL file that is an ISAPI filter in itself. When a browser sends a request for a

file with extension of .ASP, IIS passes the requested document to ASP.DLL. ASP then

loads the required scripting language interpreter DLLs into the server's memory, executes

the code, and passed the interpreted result back to IIS. IIS then inserts the results into the

HTML text stream and sends it to the client.

4.4 Java Servlets/JSP
Servlets are programs running on a Web server and serve as an intermediate layer

between the clients' requests and the databases or applications on the server. They can be

loaded dynamically into the Java Virtual Machine (JVM) on the server to expand the

server's functionalities. Servlets can not only serve Web applications and handle HTTP

requests, they can also extend any sort of server such as an FTP server or a mail server.

Unlike the traditional CGI that utilizes multiple processes to handle programs and

requests, servlets are handled by separate threads within the Web server's main process.

Because servlets run within the Web server, they can interact closely with the server, which

was impossible with CGI scripts, at least not without using a server-specific API.

Communication with Web server eases the translation of relative URLs into concrete path

names. Multiple servlets can also share data among each other, making it easy to

implement database connection pooling and optimize resource sharing.

Servlets work by first reading data submitted through requests by the user, which can

be in the form of form data, Java applet, or a custom HTTP client program. The requests

also contain other information that may be needed for processing the requests, such as

30



information stored on cookies, the IP address of the client machine, etc. Using the user

input and parameters, the servlets would generate the results, which can include exchange

of information with databases or direct computation by the Java servlets. In most cases,

the output from the process would be embedded using HTML code, and the servlets

would set the appropriate HTTP parameters, such as document type, and then send back

the document to the client. The document can be in a variety of formats, such as text

format as HTML file, binary format as GIF images, an Excel spreadsheet, or some other

formats.

Servlets are run inside the JVM, which stays running and handles each request using a

lightweight Java thread., so multiple requests would not require programs to be loaded into

memory multiple times. CGI programs also have the disadvantage of being difficult to

cache computations, keep database connections open, and perform other optimizations

that rely on persistent data. On the other hand, the servlet classes remain in memory even

after they complete a response and make it straightforward to store complex data between

requests.

Servlets are written in the Java language and the standard APIs, and so they are

portable across different platforms that run the JVM. Servlets are supported either directly

or by a plug-in on virtually every major Web server.

The cost of Web servers for serving servlets is also relatively inexpensive. There are a

number of Web servers available good for personal or small business use that are free or

inexpensive. Adding servlet support to Web server without servlet capability costs little.

This represents a much higher cost saving when compared with CGI alternatives or IIS.

Many dynamic pages that utilize servlets are largely static in content, with a few

locations where dynamic contents need to be fed. Servlets generate the entire page via

31



programs even though most of it is always the same. A technology similar to ASP, the

JavaServer Pages JSP) technology was therefore developed to enable mixing of regular,

static HTML with dynamically generated content from servlets. JSP can in principle

accomplish any capability as servlets. But it has a major advantage over servlet that it

allows separate development of the two parts, so that the tasks of Web design and

programming can be distributed and better make use of various developers' abilities.

4.5 Others (such as PHP, Server-Side Includes)
PHP is a free, open-source HTML-embedded scripting language similar to ASP and

JSP. It is a particular choice for use in combination with Linux platform, Apache server

with PHP module, and MySQL database because of the apparently zero costs of these

packages. PHP also has a large number of advocates in the open-source community and

developers in PHP are able to seek answers and helps within the community's many

message boards.

4.6 Structuring Web Applications: Case Study on Java Technologies

4.6.1 The Structured Interactions Model
This section illustrates structured interactions as a structure for Web applications. It

helps produce maintainable applications that can be efficiently developed.

32



Structured Web Interactions:
Components

Client

BeanVAlltrllrMoe

Comnd

anevnesirbe If adii ahcmoeti aal fdigMretais

0

k"' ~Business /
Logic0

View Controller Model
Figure 4-1 Structured Interactions

Figure 4-1 shows the major elements of a structured interaction and their relationships.

In an ideal environment the components indicated allow a perfect separation of skills and

roles; however, most projects will find that some blurring of the lines will be acceptable

and even desirable. In addition, each component is capable of doing more than its

assigned role within this structure.

In structured interactions model, the interaction is divided into a number of

components that closely follow the classical model-view-controller structure for

applications. This structure allows different skills and tools to be used for different

elements of the application and for the development sequence of the various parts to be

largely decoupled.

33



4.6.2 Flow of Control
The normal flow of control that occurs in the processing of an HTTP request with a

structured interaction is:

* The HTTP request arrives and is dispatched to the appropriate servlet. This is done

based on configuration rules provided when the application is installed.

* The servlet makes calls on one or more command beans to perform logic of the

request.

" The beans implement the business logic and may leverage relational database access,

connectors, or the Web application infrastructure to perform the computations.

* Based on the results of the computation, the servlet either selects and invokes a JSP

or does an HTTP redirection to another structured interaction. In the first case, the

servlet will need to post some of the results of the computations to the execution

context for use by the JSP before calling it. In the second case, the servlet will

usually need to place some of the results of the computation into the session context

so that it can be picked up by the next interaction.

" The dynamic content on the selected page is filled in from the request and session

context and the page is sent back to the client. This may leverage formatting beans,

other JSP pages, and static content components.

4.6.3 Components of the Structured Interaction

4.6.3.1 Servlets

Servlets provide the coordination between the programming elements and the content

elements of an application. Servlets are generally implemented as beans with a set of

customizable properties that are adjustable for different application configurations.

34



Examples of such properties include JSP names to invoke for specific interaction

outcomes, or database names and connections to be passed to the command beans.

4.6.3.2 JSP
The role of JSP page is to make the final decision about the format and content of the

response to a request. Each JSP page is associated with one or more outcomes of one or

more servlets and this association defines the primary role of the particular page.

JSP pages are intended to focus on presentation rather than business logic. Therefore,

it is important that JSP development does not require advanced programming skills in

normal cases. However, sometimes presentation can be complex, and so the model also

includes the use of formatting beans.

4.6.3.3 Formatting Beans

Formatting beans are Java beans that format various types of dynamic content for use

in JSPs. These help to simplify JSPs so that they can generally be constructed without

requiring programming skills. They also provide a single point of change for formatting

decisions that span the entire application.

4.6.3.4 Command Beans

Command beans are beans that each implements one basic business logic step. It is

common for a servlet to invoke several command beans to accomplish one application

step as seen by the end user. Command beans are used in the following style:

" Create an instance of the bean

" Set some or all of its input properties (which may have some preconfigured values)

* Call its perform method

35



* Extract values from some or all of its output properties (which may also have a set of

preconfigured values)

The command beans should be given any information they need from the HTTP

request explicitly (by setting appropriate input properties) so that they are isolated from the

form and details of the HTTP request.

4.6.3.5 Business Logic

The business logic refers to Java codes that implement the computational functions.

There are two categories of programming logic within this model:

* General programming logic: It refers to anything that can be written in Java.

General programming logic may leverage transactions in external resource managers

such as relational databases, but it may not directly participate (with recoverable

resources) in the transactions or initiate transactions that span multiple resource

managers.

* Enterprise Java Bean (EJB) based programming logic: It is constructed according to

the conventions and requirements of the EJB specification and leveraging EJB

containers, EJB enabled relational database access, and/or EJB enabled connectors.

EJB-based logic can initiate transactions, participate in transactions, and leverage

transactions that span multiple resource managers.

4.6.4 Summary of Case Study
The structured interaction model allows the servlet to act as a contract between the

computational logic and the dynamic content that constitutes the application. The servlet

bean's interface can be specified by content designer and then inspected to determine what

computation must be provided. This supports the HTML first model of development.

The servlet can also be inspected to tell content developers which pages need to be

36



produced and what dynamic information is available to include in those pages. This

supports the logic first model of development. Once constructed, this decomposition

provides the basis for rapid customization of dynamic pages thus supporting the

customization model of development.

37



5 Case Studies of Different Implementations of Platform

5.1 General Features ofPavement Management Systems

5.1.1 Pavement Network Databases
Each pavement management system contains a defined set of pavements for

maintenance, and the set of pavements forms a pavement network within the scope of the

PMS. Data from different pavement networks would enter into separate databases for

easier management.

The Network Definition database is mandatory for any addition of street sections.

The Network Definition database contains the pavement and section ID numbers, which

are the keys that connect different databases together. The Network definition data also

contains data of each section such as the facility type, district, surface type, functional

classification, etc.

The Pavement Condition Survey database contains detailed condition information

about pavements within the Network. After inspection of street conditions, the inspector

inputs the ratings for conditions such as raveling, corrugations, flushing, transverse and

longitudinal cracking, rideability, etc. The Pavement management system would then use

the data inside this database to calculate pavement serviceability indices (PSIs) and

maintenance strategies.

A Construction and Maintenance History Database holds information of street

sections after repair work is performed. The system would need inputs from both this

database and the pavement condition survey database to determine pavement serviceability

indices for pavements that have undergone repair work.

Pavement management systems may also have Traffic Survey Data, such as the

estimated average daily traffic, number of single and multiple axle commercial vehicles,

38



guardrail and sidewalk types and conditions and median type. Managers can take the data

into account when planning for maintenance and repair strategies, so that the strategies

would create the least amount of disturbance to the normal traffic.

An optional Drainage Survey Database contains information about drainage conditions

of sections within the network, such as culvert functions and conditions, headwall, ditch,

side slope drainage and cross slopes, and utility and curb information. This helps manager

take into account of the drainage system underneath the road surface when planning on

pavement maintenance strategies.

5.1.2 Inquiry Functions
The pavement management system should provide user with the ability to locate and

view information about different pavement sections in the Network. The user should be

able to carry out inquiries based on criteria including network definition, pavement defect,

pavement serviceability index, pavement type, and others.

5.1.3 Pavement Analysis
The pavement management system should be able to carry out basic analysis of

pavement conditions, such as calculating the pavement serviceability indices after each

inspection, and also make predictions of future deterioration as well as improvement on

pavement condition after different kinds of maintenance actions. The user can create

custom plan and then carries out the budgeting for the customized work plans. The

system should be able to roughly estimate the cost of maintenance strategies, and calculate

the estimated benefit ratio for different M & R plans, so that the manager can optimize the

benefit achieved with the funding available. Inflation and change in costs should also be

taken into account for budget analysis.

39



5.1.4 Reporting
Reports of the pavement conditions as well as for maintenance plans would be useful

for record and planning purposes. The pavement management system should be able to

produce reports and graphs based on different criteria set by the users.

5.2 InfraStructure Management System at Arlington, MA

5.2.1 Introduction
Arlington's Department of Public Works (DPW) uses the Infrastructure Management

System (IMS) II version 1.2 software developed by Public Works Software Inc. in 1987.

IMS implements most of the features that meets the needs of Arlington DPW. IMS II

also has the ability to determine the optimum strategy. There are four methods IMS uses

to calculate the optimum strategy:

* Public Works Software algorithm which attempts to keep the PSI of the road

at a user selected PSI level over the length of the plan (5 - 20 years), while at

the same time analyzing the tradeoff between the first year cost and the total

project cost.

" The highest benefit cost ratio of a strategy.

* The lowest overall cost.

" The lowest initial first year cost.

5.2.2 Features

IMS features the following functions:

* Database for record of maintenance data: The database holds the Network

Definition Data, Flexible Condition Survey Data, Construction and

Maintenance History Data, Drainage Survey Data, and Traffic Survey Data.

The database at the back end is dBase III, developed by Ashton-Tate, Inc.

40



* Calculations: IMS calculates the maintenance strategies based on the survey

data. The user inputs the number of year he wants IMS to calculate the

strategy, as well as the inflation rate to determine the distribution of

maintenance plan costs over the span of the inputted years.

" Graphs: IMS has the ability to present the results from calculations in the form

of graphs, including the PSI frequency bar graphs by different criteria such as

facility type or district, distributed PSI graph of current and future condition,

and projected pavement life cycle graph.

* Inquiry: The users can carry out inquiry on the collection of streets using the

inquiry function in IMS.

* Maintenance and Repair Plan/Budget- The users can look at the various

maintenance plans and budgets and the details. IMS also would recommend

an optimum maintenance and repair plan for each pavement section based on a

criterion entered by the user, such ash benefit-to-cost ratio.

" Reports: IMS creates reports on the databases, PSI calculations, as well as

maintenance strategies. The user can print out reports for record.

5.2.3 Interface
IMS is a DOS-based program and navigation is done by keyboard inputs. The user

carries out inspection using the paper inspection forms that are included with the software

package, and inputs the inspection data by hand to the IMS.

IMS has an interface where the user navigates through the function menus by pressing

function keys.

F2 - Primary Databases

F3 - Calcuations

41



F4 - Graphs

IMS can present the PSI values using three different graph types:

* PSI Frequency Bar Graphs: These are graphs of current and estimated

condition based on facility type, district, surface type, functional class, zone,

and responsibility codes for each of the pavement sections.

* Distributed PSI Graphs: IMS shows the percentages of occurrences for each

PSI within the network of pavement sections.

* Project Life Cycle Graphs: IMS calculates the possible future condition of a

section if a particular action is selected and displays the respective graph.

F5 - Inquiry

F6 - Maintenance and Repair Plan and Budget

F7 - Reports

IMS can create roughly 100 combinations of standard printed reports for various groups

of pavement sections, including reports of the network, survey data, PSI values, and

maintenance plans.

F8 - Database Support

5.2.4 Problems with the DOS-based Text Interface
There are several disadvantages of this interface:

* Expense and Complexifor Inspection: The DOS-based interface makes it very time

consuming to collect and update inspection data.

* Securi: The program does not have a log in session and unauthorized personnel

can have access to the data and make modifications.

* Difficul in Navigation: The functionalities of the program are separated into 8

categories, each provoked by pressing a Function key. Although each individual

42



functional category can be accessed easily, a user cannot link different

functionalities together. For example, when a user enters the inspection into the

Flexible Condition Survey Database or performs a maintenance plan comparison

on a specific pavement section, he cannot view the details of that pavement

without having to quit the function he is working on.

" Difficuly in Distribution ofSoftware: The software is a DOS-based program and can

be accessed only by the local terminal. If different users want to work on IMS,

they have to work on the same workstation so that the data would not be

corrupted.

* Excessive Functions: IMS is a commercial product that is developed to meet the

requirements of many different municipalities including Arlington DPW. The

IMS contains more functionality than needed by Arlington DPW, therefore

making the use of the software unnecessarily harder.

" Slow Calculations: IMS recalculates maintenance plan and budget for either one

section or the entire network. If the user wants to recalculates the budget for

only a group of pavement sections based on a certain criteria, he would have to

wait for IMS to complete calculations of all sections, which can take an extended

period of time. The fact that different data are placed in separate databases

rather than different tables in one database also slows down the calculation

process.

43



5.3 Pavement Management and Inspection System (PMIS) at Arlington,
MA

5.3.1 Introduction
PMIS for Arlington was developed to replace the existing pavement management

system and to provide software that meets the needs of Arlington DPW. PMIS is built to

address the general pavement management needs of municipalities, and we hope that it

will be used by other communities. PMIS implemented a pavement inspection module, a

series of pavement condition, deterioration, improvement and cost models, and an overall

management framework within which specific maintenance projects can be selected and

programmed.

5.3.2 Features

PMIS implements the common features present in essentially all Infrastructure

Management Systems.

" Record of inspection data: Surveys of pavement conditions are taken, and the data is

downloaded into the database system.

" Assessment of current pavement conditions: Data obtained from inspection of the street

defects is used to calculate PSI, which reflects the conditions of the street sections

and the need for remedial actions.

" Estimation of deterioration: Street conditions deteriorate without maintenance actions.

PMIS estimates the rate of deterioration over time based on traffic, weather, and

other street activities.

* Estimation ofpavement maintenance cost- Different pavement actions have different unit

costs; total costs also depend on the dimensions of the street sections where the

44



actions are applied. PMIS estimates the cost of application of various pavement

actions, as well as maintenance costs of sidewalks and curbs.

* Estimation ofpavement maintenance benefit: The benefit of a pavement maintenance action

depends not only on the increase in PSI after application of action but also on the

sustainability of the increase in PSI. PMIS estimates the total benefit from different

actions using the deterioration models.

In addition, PMIS has several features that are not always present in infrastructure

maintenance models, which allow the creation and use of scenarios to help more

effectively allocate resources across different maintenance plans.

" Creation of scenarios: Scenarios hold collections of streets specified by the user to have

met some criteria, such as being within a particular PSI range, district (precinct), a

specific (usually major) street. Users can apply different actions to different street

sections and PMIS returns the estimated benefits as well as costs in carrying out the

actions. Different scenarios can be created for different goals in mind, and users can

compare the final benefits and costs of various scenarios to determine the action

plan.

" Comparison of scenarios: Users can make decisions by looking at individual scenario, and

can also make use of the "Compare Scenario" feature to have a quick overall view of

scenarios by comparing the overall average benefit as well as overall costs.

* Recommendation ofpavement actions: In creating scenarios, PMIS calculates the benefit-to-

cost ratios of different actions and recommends the optimal action. It uses a simple

optimization method called the "greedy knapsack" method to compute the optimal

actions.

45



" Added security: PMIS requires the user to log in before accessing the system. Different

levels of access rights can be assigned to different users so that important data are

not overwritten or deleted by unauthorized personnel.

* Reporting PMIS generates reports of scenarios as well as of street sections, in the form

of Microsoft Excel spreadsheets that would allow easy storage as well as formatting.

* Improved inspection process: The original Arlington system required the inspector to use a

complex paper form for recording inspection data; then the data was manually

entered into IMS. This made the inspection process slow and error-prone. The new

PMIS system integrated the abilities of the Global Positioning System and Personal

Digital Assistants and made the inspection process much faster and reliable. The

inspector clicks on the PDA when he comes across different defects and the PDA

program automatically generates reports, using data from the connected GPS

(Global Positioning System) to determine the locations of data being taken. The

data is then be uploaded to a computer and through a Web interface to PMIS.

Under this system, the inspection process is electronic and data is more easily

processed and stored.

The key benefits of the pavement management system are that, when properly

designed and implemented, PMIS is highly effective in improving pavement maintenance,

as well as sharply reducing the cost of frequent data collection.

5.3.3 Interfaces

The key elements of the user interface are:

* Administration. There are key tables that contain most street and pavement

information. Each of these tables has a set of administration Web pages that allow

Arlington staff to display, search, add, delete and modify data and parameters for the

46



system in the tables, including Street Data, Pavement Action, Curb Action, Sidewalk

Action, Pavement Type, Facility Type, Functional Classification, Precinct, User

Information, and Parameters.

* Pavement analysis. This allows the Arlington staff to create pavement management

plans (scenarios) for a set of streets, usually for a single construction season. The

system allows a user to select the set of streets to examine, to estimate the benefits

and costs of alternative pavement maintenance actions on these streets, to select

actions to be performed, and to summarize the effectiveness of the scenario.

* Inspection. This allows Arlington staff to download inspection results from the field,

which were collected using Palm and GPS units. Field data may be displayed,

searched and modified, and data may be added or deleted if necessary.

" Reports. The system generates a set of on-screen reports, and also allows the export

of data to Excel for further analysis.

5.3.3. 1 Web Inteface

The main user interface in the system was implemented as a Web interface. The use of

a Web interface in PMIS allows multiple users to have access to the same database and be

able to work on data, such as uploading inspection data on one terminal and creating

scenarios on another, at different physical locations. The Town of Arlington uses

machines running on Windows 98, but all PMIS needs is a Web browser; it is not

restricted to Windows 98. It makes future transitions much easier if the Town decides to

shift to another operating system on some other platforms. The use of a Web application

also reduced the need of an IT support staff that would help supervise the installation of

the application on all machines.

47



The dynamic contents are served by the Tomcat server with Java Server Pages (JSP)

technology. JSP were used to process user inputs and pass the parameters to Java Beans as

well as output results returned from the Beans. The database being used was MySQL and

JDBC provides the connection for database transactions invoked by the Beans.

The choice of combining Linux platform, Apache/Tomcat server, JSP and other Java

technologies, and MySQL database was made because of cost and performance. This set

of products was all freely available on the Web and could be downloaded without cost,

with performance comparable to most commercial products. They might not have the full

range of functions as some commercial products, but the capabilities were sufficient to

serve the purpose of pavement management for Arlington.

5.3.3.2 Inspection System: Palm and GPS
The Palm and GPS units are used to inspect streets. The Palm unit has an application

program that allows the inspector to click on defects with a stylus as a vehicle is driven

along the street. Each click registers the date and time of the observation. In parallel, the

GPS receiver is automatically registering (if possible) the location of the vehicle

approximately every 50 feet and also registering the date and time. The Palm and GPS

files are then downloaded and synchronized on a PC, and this becomes the inspection data

used by the pavement management system.

The Palm has two major user interface screens:

* An inspection screen with icons of each defect type to be inspected. When these

icons were selected, a default amount of defect is recorded. The icons might

represent, for example, cracks of length 10, 20 and 40 feet. The inspector selects the

closest icon, as many times as necessary, to record the pavement conditions.

48



* A summary screen. When pausing the vehicle after inspecting a street segment, the

inspector switches to the summary screen, which will:

" Total the defects for the segment,

" Show the results of the previous inspection,

" Compute and display the PSI for the segment.

" Allow editing of the inspection data in the Palm, while still in the field, rather

than waiting until the data was processed at the office.

Additionally, it has a startup screen to choose the pavement application from the main

menu.

5.3.4 Building the Pavement Management System

5.3.4.1 Pavement Network Definition

The first task of the pavement management system is the network definition. In

developing Arlington's PMIS, the network definition is the set of pavement sections within

the maintenance scope of Arlington DPW. Since the scope of the pavement network is

small, a single database is sufficient to hold the data. The list of pavements included in the

pavement network definition includes public roads, parking lot, private roads, and other

pavement types. The Arlington DPW is responsible for maintaining streets with pavement

type of public roads only.

5.3.4.2 Pavement Database

Pavement database contains the data required for maintaining the street sections. The

database contains the following tables:

49



Table Name Description

Action Description of various pavement actions and their unit costs

ActionEffect Effect of different actions on different defects

ConstructionHistory Construction and maintenance history on the street sections

CurbAction Available curb actions and their costs

CurbDetails Details of a curb action on a street section in a scenario

DefectData Defects of the street sections based on the data from inspection and construction

Deterioration Deterioration model defined by maintenance actions and functional types

DefectValidation Number of manholes and gates, and the other drainage data

DrainageData Number of manholes and gates, and the other drainage data

FacilityType Types and ownerships of the street sections or facilities

FuncClass Functional type of street sections

InspectData Defect data from road inspection

Login Details of sign-up user

PavementType Construction material of the street sections

Precinct Precinct information of Arlington

ScenarioDetails The actions and details on street sections associated with a scenario

ScenarioHeader The details of scenarios created

SidewalkDetails Details of sidewalk actions on a street section in a scenario

SidewalkAction Available sidewalk actions and their costs

StreetData Primary details of all street sections

StreetName All streets in Arlington

Tiger Details of geographic information of the streets in Arlington from Tiger data

Table 5-1 Database structure of Arlington PMIS 3

5.3.4.3 Pavement System Class Diagrams 4

Figure 5-1 shows the class diagram of the database connection and user verification.

DbBean provides the connection string and JDBC driver, and ArchiDbBean extends the

DbBean class to provide additional customized methods for the Pavement system.

3 Refer to Data Modeling in a Pavement Management System by Yim for details on the database structure.
' Refer to Evaluation of Infrastructure Monitoring System Using PDA and GPS Technologies by Cheung
for more details on class structure of the inspection module on Palm PDA.

50



Authenticate bean verifies the user information and also helps maintain session information

after the user logs in. User bean has access to the user information in the database and it is

used for verification of username and password as well as for creating new users.

Arch!DbBean

Db~ean extends
DbBean

-dbCon : Connection implements
-dbURL: String
-dbDriver : String
+setDbURLO outilityo
+getDbURL() Authenticate
+getDbDriver()
+setDbDriver() -dc : ArchiDbBean
+connecto -password: String
+execSQLQuert() -loginCondition : ir+execSQLUpdate 

+setUsernameo+closeoH

Figure 5-1 Class Diagram:

AdminDisplay

-db: ArchiDbBean
+setDcO
+getDcO
+getNumRowo
+getData()
+updateActionTableo
+updateTypeTable()
+insertTypeTable()

Figure 5-2 Administration

+geV se1.11amej

+setPasswordo
+getPassword()
+setConditiono
+getConditiono
+setDcO
+getDcO
+checko
+addUsero

User Authentication

User

-lastname : string
-firstname : string
-department : string
-position : string
-email : string
+checkUsernameo
+saveUsero

* avePassword()implements-

Figure 5-2 shows the class diagram for the administration display

function. Tables such as street inventory, construction and

maintenance, pavement type, etc. are viewed and modified using

this function. AdminDisplay bean provides a way to view and edit

different kinds of table using one business logic.

Figure 5-3 shows the classes used for Pavement Condition Inspection.

InspectionDataUploadSerlet is used to upload the inspection file (obtained from the Palm

51

t



inspection system) from the PC to the server by instantiating the MultpartRequest

object. InspectionFile handles the data after the upload such as importing into the

database. InipectionFileBackup controls and organizes the uploaded files in the Web server, in

specific directories according to the upload time.

Serviet

InspectionDataUploadServlet

-dirName : String
+doPosto

extends

Figure 5-3 Class Diagram: Pavement Condition Inspection

Figure 5-4 shows the class diagram for the Network Management Budget Scenarios

and Pavement Condition Prediction modules. The modules include 8 classes:

52

MultipartRequest

-debug : PrintWriter
-htParameters : Hashtable
-htFiles : Hashtable
-strBoundary : String
-fileOutPutDirectory: File
-intContentLength : long
-intTotalRead : long
-max read-bytes : int
-read -line-block: int
-blockOf Bytes[]: byte
-contentjtype : int
-size: int
+getParameter()
+getPararameterNames()
+getFileParameterNames(
+getContentType()
+getFile()
+getFileSystemName()
+getFileSize()
+parseo
+read Parameter()
+readAndWriteFileO
+getLengthMinusEnding()
+getCharArray()
+readLine()
+getBasename()
+trimQuoteso
+getValue()
+getStrName()
+getCustomFileName()
+getCustomContentType()
+getCustomFileSize()
+getHtmlTable()
+debug()

InspectionFileBackup

-rootDir : string
-webDir: string
-fileName : string
-dirNames[] : string
+IoadFileso
+addTableCell()
+removeFiles()
+generateHTMLResults(

InspectionFile

-fileLocation : String
-fileName : string
-contentType : string
-fileSize: long
-removeRecords : vector
-validation : boolean
-dc : ArchiDbBean
-readRequestCounter: int
-exist : int
+emptyVNewRecords(
+emptyV()
+checkFileo
+readRequesto
+readNewRecordinit()
+readNewRecordo
+readInspectionFile()
+insertNewRecords()
+addTableCell()
+updateRemove()
+cancelUpload()
+finishUpload(
+convertDefectlndexo
+removeFileo



" ScenName: The user chooses a scenario to be loaded or creates a new scenario, and

this class handles the initial switching of user options. It also stores the scenario

name, scenario ID and year to pass to the subsequent pages.

" CreateScenarioSummay: This class creates a summary table of pavement sections that

meet the query criteria entered by the user. It also handles addition and removal of

street sections in the scenario as well as deletion of test scenario.

* PavementAction: After a user selects a set of streets that are potential candidates for

maintenance, he can apply different actions to the street sections within the system

and look at the predicted benefit of the actions. The user can also looks at the

predicted PSI deterioration after the action is applied.

* CurbSidewalk: Apart from pavement action, curb and sidewalk maintenance actions

can be applied to the street sections. Although they do not directly affect the PSI,

they are essential for a pavement to be usable. This Java bean lets the user specifies

different curb and sidewalk actions and also the costs for the actions.

" CompleteScenario: After a scenario has been put to action and the maintenance actions

are carried out to the pavement, the user can enter the actual maintenance costs and

other information about the construction and maintenance of the pavement, and the

operations are handled by this Java bean.

* CompareScen: This class handles the comparison of all scenarios planned for a specific

year. It creates summary that displays a weighted average PSI for each scenario, as

well as details of each scenario. The user can alternatively choose to export the

scenario details to spreadsheets for further data analysis.

53



* StreetCondition: The StreetCondition class is responsible for getting the various defect

values and coefficients that are related to a specific street section for the calculation

of PSI values.

* PavementModel: This is the class that contains the model for calculation of PSI from

defect data, calculation of PSI after various pavement actions, and prediction of

future PSI with deterioration model.

ScenName

-scenarioname : string
-year : int
-comment: string
-scenYears : string
-scenByYear: string
-condition : int
-scenlD : int
-completed: boolean
-dc : ArchiDbBean
+setScenlDO
+check)
+add()
+getScenarioYears()
+getCompletionStatus()
+updateCompletionStatuso
+getScenariosByYear()
+queryCommentByScenario()

extends

CompareScen

-compareYear: string
-numScenario: int
-numSection[] : int
-scenarioD[] : int
-scenanoName: string
-sectionlD[][] : int
-lengthf]] : double
-PSIbefore[][] : double
-PSlafter[][] : double
-dc : ArchiDbBean
+setInfoTable(
+showDetails()

-extends-

Pavement Model StreetCondition

-secID: int -applysection : int
-initCon StreetCondition extends -numDef: int
-stCon[] StreetCondition -actioniD: int
-maxDV[]: double -defVal[] double
-coeffDVO : double -defDensity[] : double
-length : double -unitcost : double
-width : double -PSI : double
-detRate: double -futurePS[] : double
+calDensities() -benefit: double
+setDVCoeffMaxo -dRate : double
+originalPSl() +setDefectDensities()
+modOrgPSI() +setCostDRate()
+applyAction() +setBCRatioO
+calCostStreet() +setFuturePSI()
+calBenefito +calDuration()
+calBCRatioO
+estFuturePSl()

extends

CurbSidewalk extends

PavementAction
-scenName: string
-year: int -scenName : string
-secID : int -year: int
-scenID : int -a-secID : int
-streetName : string xtends -scenID : int
-startTerminus : string -streetName : string
-endTerminus : string -startTerminus : string
+getCurbSidewalkHeader() -endTerminus : string
+makeCurbTable() -dc: ArchiDbBean
+makeSidewalkTable() +getPavementActionHeadero
+updateSidewalk() +getCurrentPSI()
+deleteCurbAction() CompleteScenarlo +getFuturePSl()
+-addCurbAction() +makeActionTableo
+getCurrentPSl() -scenID : int +ApplyActionToStreet()
+-getFuturePSI() -completed : boolean

-dc : ArchiDbBean
+makeCostTableo
+updateCostTableo

Figure 5-4 Class Diagram: Pavement Analysis and Budget Scenarios

54

CreateScenarloSummary

-PSImin : double
-PSImax: double
-streetName : string
-lastMaintenanceYear: int
-precinct : int
-query : String
-today: Date
-htmIcode : String
-seclD[] : int
-numSections : int
-scenlD : int
-dc : ArchiDbBean
+makeQuery()
+getExistingOuery()
+addStreetsToScenaro()
+ removeStreetFromScenario()
+removeScenario()



The Report class contains methods to display reports based on
Report

-year __: _____ different criteria selected by the user. For example, there are
-year : int

-PSbo e[]: intdouble reports containing distribution of PSI values based on different

-PSlafter[] : double
-dc : ArchiDbBean criteria as well as defect data grouped by different functionalities
+disPSI()
+sumPSI() of the pavement. The user can alternatively export the reports
+getLatestinspectYearo
+sumDefecto
+sumDateo as spreadsheet files for further manipulation of data.
+costHistory()
Figure 5-5 Report

5.3.4.4 System Demonstration 5

5.3.4.4.1 Pavement Network Database
Authorized users can log into the Arlington PMIS using their username and password

pair. People who wish to obtain access to the system can apply for an account with the

administrator and wait for approval. After logging into the system, a user can have access

to the data in the pavement network database. Figure 5-6 shows the administration page,

where the user can list the data within the database and also modify any data that they

think are inaccurate or not up-to-date. The user can view and modify data in the following

pavement data tables: Street Data, Pavement Action, Curb Action, Sidewalk Action,

Pavement Type, Facility Type, Functional Classification, and Precinct. There is an

additional table for User Information where the administrator can change login user

information. The user can click on the links to view details of the corresponding tables.

5 Refer to Software Development Process: Web-based Pavement Management System as Case Study by
Durongdej for details on the Arlington PMIS application development.

55



ARLINGTON D PA TMENT OP P-L5RLXC WORKS
Pavement Manmfeent and Imspectlsn Swstem

ADMINISTRATION

Street Data
Pavement Action

Curb Action
Sidewalk Action
Pavement Tyoe

Facility Type
Functional Classification

Precinct
User Information

Back

?lTiontw 2001 Town of Arlington Department of Public Works. All rights reserved For questions or comments, please end e-mail to
webmaster~own.arlinaton.ma us

Figure 5-6 Arlington PMIS: Administration Page

ARLINGTON DEPARTMENT OF PUBLIC WORKs

PaVeMent ManageMeut Mid INSPOWtOn smistnu

STREET DATA

lirk 1,putionli) to Vvi 11trvet legr ment Dptail,:

Soction Street Name Start Ternminus EndTermnus

M !ABERDEEN ROAD TANAGER STREET DUNDEE ROAD

!2 ACADEMY FOREST E#22 RT RyING STREET

BACADEMY STREET 734 MASSACHUSETTS AVENUE HOUSE #22

-- ----- 'ACO0,RN PA R ' 30 CONCORD TURNPIKE '100' SOUTH

1ACTON STREET 21 APPLETON STREET APPLETON PLACE

r Z ADSSTEET 319 MASSACHUSETTS AVENUE f216 BROADWAY

D N STRET iLos PLEASANT EET MER00 END

IEILSTREET _ 169 375 ES N TET 135

~2 ARIAL STREET .AFOETSRT 37N __

Iii AERIA'L STREET ------ CAR ROAD 288 WASHINGTON STREET

1A~LBERMARLE STREET 1WALN~UiT RET MUNT VERNON STREET

[ALFEDRD STREE 'PRINCETON ROAD

Ufa.ALLE N STREET. . . .3-9MA SSACHUSE T'TSAVENUE 170 WARREN STREET

U ALIN SRET-BOSU STREET !SUMMER STREET

U ALPINE STREET 300'S OF BRANCH AVENUE BLOSSUM STREET

Figure 5-7 Arlington PMIS: Street Data Summary page

Figure 5-7 shows the Street Data summary page after the user clicks on the Street Data

option in the administration page. The page shows a list of pavement sections sorted

alphabetically with the start and end termini indicated. Other pavement data summary pages

have similar layouts. The user can click on a specific street section and look at the details, as

56



shown in Figure 5-8. If the user wants to update any data for that street section, he can click

on the "Edit" link and make the modifications and send to the database for update, as

shown in Figure 5-9. The user can navigate into other tables through the administration

page and carry out similar viewing and modification activities.

ARLINGTON DEPARTMEN-T OF PUSLXC WORKS

Pavement Management and Inspecdeon Ss

STREET DATA

Edit / Update Street Segment and Drainage Details

------ .. ........ ------ Street -Segm en't-Details --------

Street Namrn: ABERDEEN ROAD

Staxt Terminus: TANAGER STREET
End Terminus DUNDEE ROAD

Facility Type PUBC ROAD

Functonal Classificatlon: Local
Pavement Type: CHIP SEAL, CONVENTIONAL

Length (feet): 791
............._ i ----

- - .----

ndar Address (Qeft): 20

Sak deiss (tight)
End Address (rig ht 9 9

Figure 5-8 Arlington PMIS: Street section details page

ARL IN GTO N D E PARTIENT OF POJW..IC'WORK3
Pavement Mianagement and Inspeeftin Svstem

STREET DATA

Street Segment Details

*street Nat" (ful. [BERDEEN ROAD

*Sar____tts TANAGER STREET

*End orniinus DUNDEE ROAD

*Prucinct: 2

*Fac~ltyType: PUBUC ROAD

--------.----------.
*Pavernont Type; CH-P SEAL CONVENTIONAL

*L.ength (foolt):h 9

*Width (feet): 125

Start Address (left Me
End Address (1108

Figure 5-9 Arlington PMIS: Street section detail modification page

57



5.3.4.4.2 Pavement Condition Inspection

[ ARLINGTON DEPARTMENT OF PIUBLIC WORK5Pavement Manaement and Inspeuon SystM

INSPECTION

UplodFil

@ 2001 Town of Arlington Department of Public Works. All rights reserved. For questions or comments, please send e-mail to
webmasterptown.arlinoton.ma.us

Figure 5-10 Arlington PMIS: Inspection file upload page

I n7 ecti r DB Baku o#1 FtMay OS 00:38.48 EDT 2001

02001 Town of Arlington Department of Public Works. All rights reserved. For questions or comments, please send e-mail to
webmasterptownarinoton.ma.us

Figure 5-11 Arlington PMIS: Inspection file management

Figure 5-10 and Figure 5-11 show two of the functions in the Inspection module.

After pavement inspection is done on the Palm device, the inspection file can be

downloaded to a personal computer and uploaded to the pavement management system

through the inspection data upload page. The system also allows the user to edit inspection

58

ARWIN GT ON DE P ART WE -N-T O U ,v ust. NSPE IPavement Management "nd Insaeclon ""amin

INSPECTION



data after uploading the file so that any defect data inputted by mistake can be corrected

before the data is updated into the database. The system also provides a log of inspection

data files so that the user can download and view the details of inspection carried out on a

specific date.

5.3.4.4.3 Pavement Analysis

After inspection, the user can carry out pavement analysis on the street sections to

obtain PSI values of the pavements and also determine maintenance and repair strategies.

A RLIN GT ON D EP A RTIME NT O F PU BLITC WO RK S
Pavement Managment ad Inspecuin System

PAVEMENT ANALYSIS

I Select YearF2000:1

Loadsconxio ISelectYearF2000
Copare I a io SelectYear 2000j

lack

2001 Town of Arlington Department of Public Works. Al rghts reserved. For questions or comments, please send e-mail to
webmaster~town ,art noton.ma.us

Figure 5-12 Arlington PMIS: Pavement analysis main page

Figure 5-12 shows the main page in pavement analysis, where the user have the option

to create a scenario, load a scenario, or compare scenarios for a specific year. A scenario

contains a set of street sections where M & R actions are planned for future

implementation.

59



Fill in at least one of the following criteria for query:

Scenario Name: mas and

Year: 2MPcn Any

Comment: Any a years

Scenario Completed?N Submit change in competion stWs

APPLETON PLACE 416 2 APP TON QUINCY No Actin 
APPLETON PLC 1 1ST

PLTN 298 ~MASSACHUSET TS PARK AVENUE Nac nNAtin5.0 5.0F
STRETVEE _ ET

APPLETON 
WACHUSETTI _____VEUES0 .0 __ _

TE 299 PARK AVENUE AEUE o action No Action 5.0 .0

APPLETON 300 WACHUSETT HOUSE #425 fNo action N Action 5.0 S. 1

Figure 5-13 Arlington PMIS: Pavement analysis - scenario query and summary page

Figure 5-13 shows the page after a user creates or loads a scenario. The top frame is

an area where the user can specify the criteria to add streets to the scenario, such as PSI

range, precinct, last maintenance date, and street name. In the diagram, the user wants to

look at the conditions of Appleton Place and so he enters the keyword "Appleton" in the

Street Name field and leaves the other fields unchanged. The bottom frame then shows a

list of streets that match the inputted query criteria. Selected details of the street sections

are displayed, including the start and end termini, the selected Pavement Action and

Sidewalk Action in the current scenario, the present PSI level and the predicted PSI

improvement with the selected action, as well as any cost considerations. Since the user

only wants to look at Appleton Place, he can check the "Remove from Scenario" buttons

next to all the other street sections and remove them from the scenario.

60



%I

Pavement Detail

Streetn PPLETON PLACE 2 APPLETON STREET End Tom-nus: QUINCY STREET

Current PSI: 5.0
Predicted PSI: for Year fo2 Et

!No action so 0.0 sjo 4
Crack Seal 5.0 $0.3 0. 30

Chip Seal 5.0 $1.35 $1 .35 0 r

Crack and Chip Sea 5.0 $1.35 1900 3
....... . ................

5. 3.06 013.0rfoverlay __________

i~raePatch 5.0 $1.53 d11.53 0.0___

15.0 $2id2 0.0 r

IFull Depth Patch _ __ I5.0 $6.12 $16.12 0.0________

J:Ruber Sea 5.0 $2.85 I$|2 8s 0.0

ineconstruction 4 6.11 6.11 - -- -.-- 0 r

Apply Acion to Street Cancwl GahI Street Deaiels I

Figure 5-14 Arlington PMIS: Pavement Action selection

The user then decides to look at the various pavement action possibilities for Appleton

Place. He clicks on the section number, and the system displays the pavement action

selection page, as shown in Figure 5-14. The page shows the street name as well as the

start and end termini, so that the user can make sure he has selected the desired street

section. The action table shows a list of pavement actions, along with the predicted PSI of

the pavement section after each action, the estimated costs for carrying out the action, and

the benefit of that action into the future after taking into account of deterioration. The

user can evaluate the benefits and costs of the array of action options and choose the one

that fits his budget. After choosing the action, the user can save the selected action and go

back to the Scenario Summary page and carry out more maintenance strategy planning.

61



Granite curb for straight sections $19.0 0.0 $r

Granite curb for curved sections $25.0 10.0 s~ _ r
Curb removed and reset $7.5 10.0 r0
Adjustment of existing curb $3.0 10.0 $00 r
Gravel borrow $0.0 10.0 $j0 r
G-r anite c urb --fo r -curved sections - -1$25.0 10.

81dowalk:

it ilon d P (t fSd v l cu lC~
!Si pwolk Act ion 11 1,1i Co . I ( ikt) u lCo t S l

oncrete sidewalk at drveways (6 $22 0
inch slab) $ F.______
No Action $'0'0 ......... slr

Figure 5-15 Arlington PMIS: Curb and Sidewalk maintenance action selection page

Apart from pavement actions, the user can also apply curb and sidewalk maintenance

actions to the pavement sections. The user can go back to the Scenario Summary page

and click on the Sidewalk action link to access the Curb and Sidewalk maintenance action

selection page, which is shown in Figure 5-15. The page contains action tables for curb

and sidewalk actions respectively. The system allows the user to plan out strategies and

preview the cost needed, so that the user can make budget analysis based on different

strategies. After the user select the desired curb and sidewalk actions, he can save the

selection to the database and the summary page would automatically update with the latest

selections.

62



A RL-IN GTO N D E PARIT MIENT, O F PUJBLIC W OR KSal

PaVement ManageMent ad JUSPen Swum

(c)2001 Town of Arlington Department of Public Works. All rights reserved. For questions or comments, please send e--mail
to webmasterptown.arlinoton.ma.us

Figure 5-16 Arlington PMIS: Scenario Comparison summary page

A user can create various scenarios based on different criteria and at the end, he would

want to look at all the scenarios created and decide on which scenario would actually be

put into real action. The user can select among the scenarios created for a specific year in

the pavement analysis main page and use the "Compare Scenario" to make a direct

comparison across different scenarios based on overall PSI improvements as well as the

total costs required, as shown in Figure 5-16. All the scenarios created for a specific year

are shown, and the user can select one or more of the scenarios to look at the details of the

scenarios by checking the boxes next to the desired scenarios. As shown in Figure 5-17,

the scenario details page shows the details of the selected scenario, grouped by the street

sections and listing the selected actions, estimated costs, and benefits. If the user wants to

carry out further data manipulation, he can click on the "Export" button and export the

scenario to an Excel spreadsheet, as in Figure 5-18.

63



IExport

Scenario: testing

tA 1 1 IionE

MASSACHUSETTS 2

MASSACHUSETTS
AVENUE 3

MASSACHUSETTS 1
AVENUE

AVENUE 

MASSACHUSETTS

PARK E PINE COURT
AVENUE I

PINE COURT IROAD
COLEMAN JASON
ROAD LSTREET

JASON FRANKLIN
STREET STREET

FRANKLIN !HARLOW

No action 10.0

No action 0.0

No action 0.0

No action 0.0

12345.0 0.0 5.0 5.

0.0 0.0 4.22 4.

0.0 0.0 3.77 3.

0. 0 0 .0 5.0 S.

0 12345.

22 0.0

77 0.0

6. o ac on . . 0AVENUE STREET STREET
MAEHUSETTS ARLOW TR E No action 0.0 0.0 0.0 4.44 4.44 0.0

AVNESTREET ISTREET ____ ~ ~
MASSACHUSET TS a THORNOiKE BOULEVARD No action I0.0 0.0 0.0 SO 50 00
AVENUE ! STREET ROAD .

..... ............. ........... .......-... . ...-. ... .. . I.......... ........ .. ......

Figure 5-17 Arlington PMIS: Scenario Comparison details page

Al Scenario: testing

A B C D E

-1 Scnario: testirtg

4 MASSACHUSETTS AVENUE 2 PARK AVENUE PINE COURT No action
5 MASSACHUSETTS AVENUE 3 PINE COURT COLEMAN ROAD No action
6 MASSACHUSETTS AVENUE 4 COLEMAN ROAD JASON STREET No action
7 MASSACHUSETTS AVENUE 5 JASON STREET FRANKLIN STREET No action
8 MASSACHUSETTS AVENUE 6 FRANKLIN STREET HARLOW STREET No action
9 MASSACHUSETTS AVENUE 7 HARLOW STREET ITHORNDIKE STREET No action

10 MASSACHUSETTS AVENUE 8 THORNDIKE STREET BOULEVARD ROAD No action

1112
13
14
15

11
19

20

Figure 5-18 Arlington PMIS: Scenario details exported to Excel spreadsheet

64

.- - I. -

i
1 aaQk

41



6 Further Developments

6.1 System Level
At system level, there is an increased trend to integrate maintenance management with

other departmental management functions, and to explore potential applications of new

management capabilities and technology. The PMS should be integrated more with other

high-level decisions related to capital improvements and operations. It should also be able

to have adjustable work plans and schedules to reflect changing conditions, for example, in

composition and funding of maintenance program, and federal legislation.

6.2 Application Level - Arlington PMIS
At the application level, the following developments are some of the features that can

be integrated in the future to improve the functionality of Arlington PMIS:

* Graphing function that shows the deterioration of pavement sections.

* Implementation of more realistic deterioration models for different pavement

sections based on the usage pattern.

* Automated budget optimization based on the IBC method.

* Project scheduling tool for monitoring construction and maintenance activities.

65



7 References
Cheung, W. (2001). Evaluation of Infrastructure Monitoring System Using PDA and GPS

Technologies.

Durongdej, W. (2001). Software Development Process: Web-based Pavement Management
System as Case Study.

Haas, R., & Ronald Hudson, W. (1978). Pavement Management Systems. McGraw-Hill.

Hall, M. (2000). Core Servlets and JavaServer Pages. Prentice Hall.

Hunter, J., & Crawford, W. (1998). lava Servlet Programming. O'Reilly.

Loyaerts, Y. (1997). Analysis of Road Database Management Structure. In Advanced
Vehicle and Infrastructure Systems: Computer Application, Control and Automation
(pp.371 - 390). John Wiley & Sons.

Markow, M.J. (1993). Highway Maintenance and Integrated Management Systems. In
Infrastructure Planning and Management (pp.127 - 131). American Society of Civil
Engineers.

Mohseni, A., Darter, M.I., & Hall, J.P. (1993). Benefits from Improved Management of
Pavement Facilities. In Infrastructure Planning and Management (pp.21 - 25).
American Society of Civil Engineers.

Shahin, M.Y. (1994). Pavement Management for Airports, Roads, and Parking Lots.
Chapman & Hall.

Yim, W.K. (2001). Data Modeling in a Pavement Management System.

IBM Application Framework for e-business: Web Application Client Programming Model.
<http://www-4.ibm.com/software/ebusiness/cientwp.html> (cited 1 May 2001).

IBM Application Framework for e-business: The Web Application Programming Model.
<http://www-4.ibm.com/software/ebusiness/pm.html> (cited 1 May 2001).

66


