Evolution of Platform and User Interface in Infrastructure
Management System with Case Study of Arlington Pavement
Management System

By
YATLUN CHOI

BACHELOR OF SCIENCE IN CIVIL ENGINEERING
MASSACHUSETTS INSTITUTE OF TECHNOLOGY, 2001

SUBMITTED TO THE DEPARTMENT OF CIVIL AND ENVIRONMENTAL
ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF

Master of Engineering
IN CIVIL AND ENVIRONMENTAL ENGINEERING

AT THE

Massachusetts Institute of Technology
JUNE 2001

©2001 YATLUN CHOI. ALL RIGHTS RESERVED.
THE AUTHOR HEREBY GRANTS TO MIT PERMISSION TO REPRODUCE AND TO DISTRIBUTE
PUBLICLY PAPER AND ELECTRONIC COPIES OF THIS THESIS DOCUMENT IN WHOLE OR IN PART.

SIGNATURE OF AUTHOR:

DEPARTMENT OF CI¥IL AND (ENFIRONMENTAL ENGINEERING
g MAY 11, 2001

CERTIFIED BY: -_—

<GEORGE KOCUR

SENIOR LECTURER, CIVIL AND ENVIRONMENTAL ENGINEERING
THESIS SUPERVISOR
v

ACCEPTED BY:

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY i

JUN 0 4 79Mm

Ll
&
x

LIBRARIES "

Evolution of Platform and User Interface in Infrastructutre
Management System with Case Study of Arlington Pavement
Management System

By

YATLUN CHOI

SUBMITTED TO THE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING ON
MAY 11, 2001
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF ENGINEERING IN CIVIL AND ENVIRONMENTAL ENGINEERING

ABSTRACT

Infrastructure management systems have been used in public agencies for many years to
manage a wide variety of public facilities, of which pavement management systems ate one
of the most commonly deployed. A well-designed pavement management system facilitates
the efficient strategic planning of pavement maintenance and lowets the cost required in the
long term.

There are many approaches to the formulation of pavement management processes and
design of pavement management systems. Advancement in computing technologies has
presented the Internet as a new choice of platform for pavement management systems. This
thesis aims to (1) provide the reader with an introduction to the pavement management
process and the algorithms involved in strategy selection, (2) examine the components
behind the evolution and development of Web technologies and application user intetfaces,
and (3) study the implementation of Web technology on pavement management systems,
using the Arlington PMIS as a case study.

THESIS SUPERVISOR: GEORGE KOCUR
TITLE: SENIOR LECTURER, CIVIL AND ENVIRONMENTAL ENGINEERING

Acknowledgements
I would like to express my gratitude to the following people for this thesis:

% Dr. George Kocur for his guidance and assistance on the thesis as well as on the
M.Eng. Project throughout the year;

% Mr. Ron Santosuosso of Department of Public Works, Atlington, MA for his help
on the M.Eng. Project, which is used as a case study in the thesis;

% my M.Eng. Project partners William Cheung, Warit Durongdej, and Wai Kei Yim for
turning what could have been the wotst nightmare into an experience filled with fun,
and the class of 2001 M.Eng. students for making this an enjoyable year;

% my parents and my sister, for their love and encouragement, especially through these
five years when I am away from home;

% all my friends in MIT, for helping me survive the three years of tough life here,
especially to Daniel Kwok, now an Assistant Professor at Univesity of Alberta, who
has been very supportive and truthful to me at all times and turned me into a much
more cheerful person, and Kenneth Yu, who as my roommate in Junior year had
given me tremendous support in adjusting my life from UCLA to MIT.

Table of Content

List Of FiULES ccneeeireiireeeeeetecnctncntr ettt e ssas e s sanssesasasnsaneas 6
LisSt Of TaBLES cociceiiiiiiiiiiiiecriicieeteeccseeeeerecreeereeesesese s s ssssseteseesessensasassnsssnsnssnsnnsessnenssanases 6
T IDtrOdUCHOMN .ieiiiiirivrieeeeeeetitiieeeieeeeesier i ntnnnnare s sseessssessesassssassaraaeeeressansnnnnnsssassessaunts 7
2 Pavement Management SYStEIMSccuviireirrisiioriessrnestensnissesissinessinesssssnessssssores 8
21 Backgroundcoiiviiiiiniiii ittt e 8
2.2 Pavement Management Algorithmscccccevimiiiiiiiininiiiniis 9
2.3 Pavement Management Process........coceviiiiiniiiiiniiiiiiniisie e 11
24 Computerized Pavement Management Systems........ccoviiviiniiriniiiiiniciicnennen, 12

3 Webh APPLCAtIONS vereiririrerrrneiieieeiiesrerieessossnenesenssssssssssnsessnnseesesssssasessassasssssssravseses 13
31 What Web APPHCAtIONS ALE..c..ooiiirririeeriieiieienciniiie et seesae e 13
3.2 THED ALCRItECIULE 1vvvvviiverirrrieiereeriieeeeeinsinirnrrreeeseeesossenrnrtrseerseresssesssessemansesssnssees 15
33 USEL TNEEITACES cevieiieceiereeeeeceiiirerrccerererretseesesseressrereeseseeaessressssssnsnsnsanunsssassesenns 17
331 Server Driven Ul iiceccceeirieieiv et ssessssseseeesseassensesessssessssres 17
332 Client DHven Ul oottt eevereae e ensessesasaeasseseseses 18

34 Advantages of Web Interface for Applicationsccoevevvvvivviinnincvieencennen 19
3.4.1 Ease of Version Control 0f Data.......ceeeiiirieiiieiiiiieiiiiiiiiiiiieieiereeeeeereesseesesseess 19
3.42 Accessibility from Different Locationsccccoceivriiiiiiiiniiiniiinccnecienns 20
343 COSESAVING uviiiviiiiiiiiiiiiiiirese et sae et e 21
3.44 Platform Independence ...t 22
3.4.5 Abundance of Tools and Technologiesccocciiviiiiiiiiiiiiiiiiie, 22
3.4.6 Ease of DIstribUtioncovvviveieiioievrveeeeieesreisireeeireereseeesesisssinsssesssesresesseseesenes 23
3477 Use Across Different Client Products.....ceveeereveisieviierieereererereeereereevrsierssennnsnn 23

3.5 Disadvantages of Web Interface for Applications.......c.cceevvveirverminvenenernveneennen 23
351 SECULILY..civiiiiiiiiiern et 23
3.5.2 Single Point of Failureccovviviiiiiiiiiiiiicc e 24
3.5.3 Petformance Problemsoiiieeemeeieiiireeincieinseseereeeseeeeseeererrerrennesennnannnnne 24
3.5.4 INEEWOIK COSLS vivvireriereeieeieiiirreeeiessesareeerereeessrssssnessrrereresssreessseeessmnsssssssrenrneres 25

4 TeChNOIOZIES c..uuueireiieiiiniiitictecretsstecsseseseesesassssaessssessssesesssssssssssstssossssssssessnsssnes 26
4.1 History of Web Applicationsccccvivviiniiiiniiiiiiiiii s 26
AL GGl ee e eeer e e e e e bt s e e e e s eanbaaeeeeeabneeeseeeanraaesenns 26
4.1.2 Client-side SCHPHNG. ...couiviiiiiiiniiiicic e e 27
413 FaStOGT caeiiiiiierieieececteeeic ettt eecrrentrreree s eeaeere s s tessarasresaasasasaesssesnrernrarernes 27
414 Othetr SOIUHONS «.veiiveirrieieiieercireeeeeiesertrrerrereeeeeresissstrrrrrssserssiaseseeesseesemmsssrrees 28

42 Netscape Communications Server/Netscape Commerce SEtver......ccouvceveennenen. 28
4.3 ASP ettt e e et e e ee b e e e e e b et e e e e —attaaaesatrraeeesereraeeesonne 29
44 Java SetvIEts/JSP oo ottt st 30
4.5 Othets (such as PHP, Setver-Side Includes) ...c.occocievienieninevieneninrinesnneeeeens 32
4.6 Structuring Web Applications: Case Study on Java Technologies....................... 32
4.6.1 The Structured Interactions Model........cccoovviiiiiiiiiiiiiiiniiiieee e 32
4.6.2 FlOW Of CONOLuuiiiiiiiiiiiiiiiiiiiecrceeieieeesereeet e eeeeeeie e eeeeee e et sb vt raanaeseresseseeeereses 34
4.6.3 Components of the Structured INteractionccccovvvvviviiiicieieceneeseerneneene 34
4.6.3.1 SEIVIELS .oeivviiciieecieeeceee ettt e et ee e et a e s eeraeseareeeaas 34
4.6.3.2 TSP .. e e et tee e ee e e e ere et e neeeas 35
4.6.3.3 Formatting Beansccocviviiiiiniininiiiiicsccecreeeeeeeeve e 35

4.6.3.4 CommAand BEAMSccooiouvvrermreeeeereereeeeeeererssessssesssssessssssessssnsnsnsnsonsnnns 35

4.6.3.5 BUSINESS LOZIC ...eoveriiieciieieieienicrcerere ettt 36
4.6.4 Summary of Case Study......cccovivriviieininiiir e 36

5 Case Studies of Different Implementations of Platform.......cceccceeerrvrrrccncernncnnes 38
5.1 General Features of Pavement Management Systemscccceovevverennvenersenienenne 38
5.1.1 Pavement Network Databases ...coouvreviirrrreeieriinneeeiniirreeeeeciniieeesessssninessssennne 38
512 INnquiry FUNCHONS ..oovvieeieiie ettt e ebe s 39
5.1.3 Pavement ANalysis........oceviviioriiiniieineneeneee e 39
514 REPOILUNG .oviiviiniiiiiieiicte ettt ettt st se e st ee e saa st e sreebaesbenen 40
5.2 InfraStructure Management System at Atlington, MAccociiiiiniciieinicninenn. 40
5.2.1 INEOAUCHOMN ceiivieiictiiee ettt e s eeine e e s earbe e e e s essnasasseessesiaasseaasesnes 40
5.2.2 FAMULES ..ceviieiiciiiriievesscrrreee e srreree s e s es bbb rarrerere et eesessee s bbb tasrrsaebasaestanasesnn 40
5.2.3 I ACE it ittt it r et e e s s b et e s e s e e et s e et saasbasranbssesanataeesain 41
5.2.4 Problems with the DOS-based Text Intetfaceccooeeriviviivsinneerreiiiierieeeeninns 42
5.3 Pavement Management and Inspection System (PMIS) at Arlington, MA 44
5311 TtEOdUCHOM ittt vttt s et sessbaasaaraee st eeeasessssesssssesssssssssransesees 44

TN BN a7 1§ ¢ - T OO 44
o7 0 T £ 7 Vo - TR UUU OO T TR P SRR 46
5.33.1 Web INterface ..cccueiuieiieceieiee ettt 47
5.3.3.2 Inspection System: Palm and GPSccccoveiieivcininiceee e 48
5.3.4 Building the Pavement Management SyStem.......c..coccoverreeirnecreeueneeneenueneens 49
5.3.4.1 Pavement Network Definition.........c..ccoovvvermeevniiveeeeiereesee e 49
5.3.4.2 Pavement Databasecccovvevveireinieirienteiiecce ettt 49
5.3.4.3 Pavement System Class Diagramsc.ccoceeevevemereecneninenenennenns 50
5344 System Demonstrationcc.ccceceeievreerieieieeieseesseseeeesseeeesseeseessennens 55
5.3.4.4.1 TPavement Network Databasecoooveeeviieiiiiiiiiiiiiiiiieiceeeee e 55
5.3.4.4.2 Pavement Condition INspectioncccecviiiiiiiiiiiiiiinniiiniiiiieecnene 58
5.3.4.43 DPavement ANalysiS.....coieiriiririeriierienieceeteeneeenieesireser e st e seresraens 59

6 Further DeveloPmentscuuiiieiiniiiniiiicniteinieeeenetererseeeseeeseeesesseesssssssesssnnens 65
6.1 Systemm Level ..ot 65
6.2 Application Level — Arlington PMISc.oiiiiiiiiniiiiiececeecee e 65
T REfCIENCES ioviierieririrrrrrrnnrriiesiirsrereeersrrnateteeeeessesssssssnssessssesassssssssssssasssssssssssnssssnnes 66

List of Figures

Figure 2-1 Conceptual illustration of a pavement condition life cyclecoocvevvrrrecerirerrnnveenne. 8
Figure 2-2 The Pavement Management PLOCESSc.orerererirereeecineeneinsiieiessessissessssssesessssens 11
Figure 3-1 Representation of a canonical Web architecture.........oocveveceeevecceriecreesee s 15
Figure 3-2 User INterface MOELS........cccvvierueierereriiieretiesesireseteeseessessie e cese s seese e eoseseeseeenens 17
Figure 4-1 Structured INtEractions........cvoevveieerenisserenssensiseesessessesssesessssssss s eeseeesteesenseesemnees 33
Figure 5-1 Class Diagram: Uset Authentication........cccovuvveevieereeerenreresisssetsssssse st essssnes 51
Figure 5-2 AdMINISEEAON. «....ceuiuriirreiniesni ettt ssae st se s res st st stss e nessseses 51
Figure 5-3 Class Diagram: Pavement Condition INSpectioncc..c.ccvceereenerscemceneeccrnenneenen. 52
Figure 5-4 Class Diagram: Pavement Analysis and Budget Scenatioscocovevcncuncirinrnncannes 54
FIGULE 5-5 REPOIT.ctiiiiiiiiiiiiiiiniiti ettt e bbbttt 55
Figure 5-6 Arlington PMIS: Administration Page........oceeeuererrireeeminerieieisnesneensssseessessessesssesens 56
Figure 5-7 Arlington PMIS: Street Data SUMMALY PAZE......ccuoceerrmicirerenireriinrireceneiseeeeesecsens 56
Figure 5-8 Arlington PMIS: Street section details Page.........cccueeueerrureereeecrnemreereesceeereesneeneennes 57
Figure 5-9 Arlington PMIS: Street section detail modification page......cococeeerereencuncercninincns 57
Figure 5-10 Arlington PMIS: Inspection file upload page........cccevriciremnerncenieninnencnienceenennens 58
Figure 5-11 Arlington PMIS: Inspection file management......cccocuvcvcuneeenencnecncceneesecnereneenne. 58
Figure 5-12 Arlington PMIS: Pavement analysis maifl PAge.......ccruerereereeruerinrieeiecmnesscnesncanens 59
Figure 5-13 Arlington PMIS: Pavement analysis — scenatio query and summary page........... 60
Figure 5-14 Arlington PMIS: Pavement Action SEleCtOmn.cuwerermivecrnieecrerneisecsneensesereneeenns 61
Figure 5-15 Arlington PMIS: Curb and Sidewalk maintenance action selection page............. 62
Figure 5-16 Arlington PMIS: Scenario Compatison SUMMALY PAZE ..covevecrrcrecrsnereeeimrsacrereranens 63
Figure 5-17 Arlington PMIS: Scenatio Compatison details pageccocvcervercrerercerernenercenennans 64
Figure 5-18 Arlington PMIS: Scenario details expotted to Excel spreadsheet.........coouveecenee. 64
List of Tables
Table 2-1 Summary of 10 year costs and benefits for case study highway network using
TLLIINET ittt ettt e et st e e st ee e eenbeesssenbeseesbeeeesanssessesensassnneen 10
Table 5-1 Database structure of Arlington PMISccoovivnerininininienieenieeseiee s 50

1 Introduction
Millions or even billions of people commute by cats every day, and although often

overlooked, pavements in good conditions are essential in providing safe and enjoyable
nding expetience as well as efficient traffic flow. Pavements need to be constantly
inspected and maintained so that any detetiorated pavements can be restored to acceptable
standard; this is especially true for pavements in areas with extreme weather conditions,
where deterioration tends to take place at a higher rate. Pavement Management Systems
provide a means for public agencies to efficiently monitor pavement conditions and
formulate maintenance strategies.

This thesis investigates the development of Pavement Management Systems as a Web
application and reasons for the trend to develop toward a Web interface.

Chapter 2 discusses the pavement management process and algorithms in pavement
management strategy selection. Chapter 3 investigates what Web applications are, its
architecture, the various Web application user interface models, and the advantages and
disadvantages of developing application on the Web interface. Chapter 4 covers the
common technologies deployed in development of Web applications. Chapter 5 studies
different implementations of platform and technology in pavement management systems.
Chapter 6 gives a summary of the study and also looks into possible future development of

pavement management systems.

2 Pavement Management Systems

2.1 Background

Maintenance of pavement systems can provide several benefits to both the public
authorities and commuters over long term. In the past, pavements were maintained but
not well managed. Experience of engineers used to dictate the maintenance decisions of
pavement, and there lacked a systematic approach to managing pavements. The process
lacked life cycle costing or prioritization given to streets that reap a higher cost-benefit
ratio. To maximize benefits and minimize costs, pavement networks need to be managed
1n addition to being maintained.

Developments in computing technology as well as pavement management technology
have allowed the pavement management process to be catried out in a2 more economical
manner. Maintenance and rehabilitation (M & R) of pavements can be planned using
pavement management systems (PMSs) that use systematic methods for determining needs
and priorities. As illustrated in Figure 2-1, if M & R is performed during eatly stages of
deterioration before any sharp decline in pavement condition, more than 70% of

rehabilitation cost can be saved.

PAVEMENT CONDITION RATING Figure 2-1 Conceptual

illustration of a pavement

EXCELLENT
. :)
condition life cycle
VERY GOOD -
$1.00 FOR
GOOD REHABILITATION
HERE
FAIR SIGNIFICANT DROP
IN CONDITION WILL COST
POOR - $4.00 TO $5.00
HERE
VERY POOR - SMALL % OF
PAVEMENT LIFE
FAILED 1 1 1 L] T T T T T T
TIME

'M.Y. Shahin. Pavement Management for Airports, Roads, and Parking Lots. Figure 1-1 (p.2).

Apart from cost, PMSs can also help reduce the time needed for maintenance, as
closure of pavement for maintenance can be shortened with better street traffic

management.

2.2 Pavement Management Algorithms
There are many different algorithms in selecting M & R alternatives. Some of the

most common ones are described below:

Ad hoc method: A number of sections that have reached a significant level of
detertoration are grouped into a pool of prospective maintenance candidate. Pavement
sections are then selected randomly from within the pool until each yeatly budget is
exhausted. Projects that are not funded in one year would be postponed to the subsequent
years when funding becomes available.

Ranking method: Pavement sections within the pavement netwotk are ranked using
some index of pavement condition and selections are made based on a worst-fitst case
each year until the yearly budget is exhausted. Similar to the ad hoc method, projects not
funded in one year would be postponed.

Incremental Benefit Cost (IBC) method: The yeatly benefit is optimized by selecting the
project based on a ranking of pavement sections from high IBC to low IBC. Pavement
sections with higher IBC are given priority in maintenance plans.

Linear Programming Optimization method: Linear programming optimization is used
to determine the priorities of different management plans. It also aims at optimizing the

yeatly benefit within a yeatly budget limit.

From research done by Mohseni, Darter, and Hall examining the effects of the four
different algorithms using ILLINET pavement management program developed for the

Ilinois Department of Transportation, the following results wete obtained:

Network Ad hoc Ranking Incremental Linear

parameter benefit-cost programming
optimization

Annual budget 7.5 7.5 7.5 7.5

(million $)

Percent VMT 15.0 35 6.1 6.2

on deteriorated

pavements

VMT on good 2.98 3.82 5.64 5.63
pavements

(billion miles)

VMT Benefit/ 40 52 77 79

Total Cost

(VMT: vehicle miles traveled)
Table 2-1 Summary of 10 year costs and benefits for case study highway network using ILLINET 2

Results show that the VMT on detetiorated roads dropped significantly from 15% to
3.5% - 6.2% when more systematic approaches such as ranking, IBC, or linear
programming, are adopted in place of ad hoc methods. An ideal pavement management

system should therefore not only provide the database and interface for maintaining

? Mohseni, Darter, Hall. Benefits from Improved Management of Pavement Facilities; Infrastructure
Planning and Management, p.24.

10

pavements, but also implement a suitable algorithm for prioritizing pavement maintenance

decisions.

2.3 Pavement Management Process

Figure 2-2 shows the pavement management process:

Pavement Network
Definition

Database

/ \

Pavement Condition | _ | Pavement Condition
Prediction - Inspection

Network Management
Budget Scenarios

[
\

Prioritized Project List

y

Construction &
Management

Figure 2-2 The Pavement Management Process

The first task of the pavement management process is the network definition, which
mvolves defining the set of pavement network(s) to be managed, such as roads, parking
lots, airfields and other types of facilities. Network definition would define the scope of
facilities to be considered as a separate network. Each separate network would be entered
into a single database in 2 PMS.

After building each network a PMS database, pavement condition measurement has to

be carried out to obtain data for pavement condition prediction. Depending on the

11

ctiteria for the determination of the pavement setviceability index (PSI), where higher PSI
indicates better pavement condition, diffetent conditions of the streets are mspected. The
degree of pavement deterioration is a function of defect type, defect severity, and amount
or density of the defect. Inspection data are entered into the relevant database and PSIs
are calculated to quantify the pavement conditions.

PSI alone would not be enough for managers to determine maintenance strategies,
because some pavements with high PSIs may deteriorate faster than others in the future,
and so priotity should not be given simply based on the PSI level. Therefore a pavement
management process should also include pavement condition prediction. Different PMS
would incorporate different techniques for developing prediction models to determine
future PSI, such as straight-line extrapolation, regression, or other algorithms.

From the quantified models of pavement conditions for the network, scenarios for
different maintenance plans are created and compared, based on criteria discussed in the
previous section (such as ad hoc, or ranking). A list of pavements that carry the highest
priorities for maintenance would then be compiled, and managers would make decisions
on construction and rehabilitation based on the budget limits. Upgrading of pavement

conditions resulting from M & R would then change the data in the database.

2.4 Computerized Pavement Management Systems

Pavement management systems have evolved from paper systems to information
systems that make use of the power of computers. With the advancement of technology,
pavement management systems are now getting increasingly network-based, as opposed to
packaged software that runs on a single computer. The following section investigates this

trend.

12

3 Web Applications

3.1 What Web Applications Are
Web applications have evolved from the exponential growth in adoption of the

Internet. Instead of executing code within desktop applications, Web applications are
executed in browsers. Web pages were first used to simply display static content and let
users navigate through that content. The ability to display static content for users to
navigate and exchange information remains one of the most important functions of Web
pages, but Web pages with the ability to display dynamic content, which in fact are Web
applications, have become a major propellant in the rapid penetration of the Internet and a
fuel for development of a new Internet-dependent economy.

Web applications can be broadly defined as Web pages that serve dynamic content,
which can range from document pages with simple keyword search forms, to complex
systems involving database transactions and interactions between usets and servers. Web
applications vary in size, and can be deployed on the Internet, as well as on corporate
intranets and extranets. Web applications leverage Web setvers, Web clients, standard
Internet protocols, and also existing applications and data from external non-Web setvices.

Web clients involved in Web applications span a diverse range of products from
information appliances such as cellular phones and personal digital assistants (PDAs), to
network computers and personal computers. While the capabilities of the Web clients vary
significantly, they are unified with the Web application setver by their reliance upon a set
of Web-based technologies and protocols, such as Java, TCP/IP, HTTP, HTTPS, HTML,
etc.

A typical Web interaction begins when a user fills out an HTML based form and hits

the submit button. This produces an HTTP request that is sent to the Web server and the

13

HTTP request names the Web application element to be used to process the request with a
Universal Resource Identifier (URI). The HTTP request also carties information about
the client and the data that the user has entered into the form. The Web server sends the
request to the appropriate application element, which petforms operations based on the
information in the request, often leveraging a database or external applications. The
application element then constructs a response, most often in the form of an HITML
document, which the Web server sends back to the Web browser where it is displayed to
the user. The interaction is completed.

Web applications are generally useful only if they can serve dynamic content, and
typically this is achieved through interactions with databases. The Web setver obtains
mput from the users and generates feedback through executing codes and queries and
using the inputs as parameters. There are different ways how code can be generated. For
example, 2 Web server can pass requests to an external program, which generates output
to be sent back to client as a static file. Alternatively, a Web server can handle requests by
separate threads within the Web server process, instead of having multiple processes to
handle separate requests; the server then serves the output content through the network
infrastructure, and users would be able to view the output and interact with the Web

applications through browsers sitting on their computers.

14

3.2 Web Architecture

Application
Page =) Server
Request o
) (b I \
: Server| | .- |
= » External
Web Browser < e System | Systems

Figure 3-1 Representation of a canonical Web architecture

Figure 3-1 shows the representation of a canonical Web architecture. The elements on
the right — the file system, the application setver, data, and external systems — are
essentially the same as found in traditional client and server systems. The elements on the
left — the browser, the Web server, and again the file system (in this case, a distributed
one) — are elements unique to the Web space.

From the perspective of the user experience, this otherwise physically distributed back-
end looks like traditional mainframe computing. However, there are significant
architectural differences between the two kinds of systems owing to the differences in
mechanisms that tie these elements together. For example, between the browser and the
Web server, communication is generally stateless, involving the request for, and then the
delivery of, a Web page. To retain information of the user in subsequent transactions
through the Web, a Web application needs to preserve the user's session state. There are a
number of alternatives to achieve this, of which cookies and URL rewriting are the most
common.

The placement of the application's business logic represents another architectural
challenge: it could live in the server; it could live in the client; or it could be spread out

overall. There are three layers of processing that involve a typical Web application: the

15

presentation layer (the user intetface), the application layer (handles application-specific
processing), and the data management layer (which deals with the actual storage of data.)
Thin Client systems are systems in which the client only implements the presentation layer.
Fat client systems, on the other hand, have the client implement the presentation and
application layers so that there is also local processing on the client side. In the spectrum
of thin to fat client, each alternative has its own advantages and disadvantages.

Certain Web applications belong to the Fat Client systems where some of the
processing is at the client side. It introduces better server scalability and also less network
traffic. However, in such systems, the client is more complex, and it 1s difficult to port to
different platforms. Also, changes in server architecture are more likely to require changes
in client.

In thin client systems, it is easy to port the client to different architectures. The client
is decoupled from changes in the application so that an application upgrade is transparent
to the client. However, the setver is responsible for all the operations, and it may easily get
saturated. The reliance on the server for all data processing also potentially lengthens the
network delays, adversely affecting the performance of the application. In Web
application development, changes are rapid and applications need to be constantly
updated; therefore most systems today tend to place business logic to the server.

Connection to the application's persistent data, which may be bound in legacy systems,
also involves many architectural challenges. First, the system tries to give the illusion of
objects to the user while data continues to live in relational tables. Second, the developer
has to consider how the connection from the system's business logic to its data should be
manifested. For example, a coupling via JDBC (Java Database Connectivity) is more direct

but requires that the application developer have intimate knowledge of the form of the

16

data. Alternatively, a messaging architecture is less direct but is used when direct interfaces

are not possible or volumes are low and performance requirements are not high.

3.3 User Interfaces
There are two options for choosing a model for the user interface (UI) of a Web

application. From the client’s point of view, the user interface can be driven from either
the client or the Web application server. This leads to the two programming models:
Server Driven UI and Client Driven Ul, and the choice of model to use depends on a
number of factors including Web technology available or expected to be available on the

client, client and server capacity, and network bandwidth.

Server Driven User Interface

. Serviet

T

: (2]

~ o Y

HTML 3]

Ul Lpgic 5 °

o S

a L~

P s w

/| = 3

Y User Commands | Fommang §

r, Interface - A Ser_ver o
. Logic {Object/
HTTP, [IOP Servlel)

Web Server

Client Driven User Interface
Figure 3-2 User Interface Models

3.3.1 Server Driven Ul
The Server Driven Ul model is more frequently used in Web applications. In this

model, the UI to be displayed on the client is generated by the Web application that
executes on the Web server. The Web server responds to every request from the client
with an entirely new HTML page. The new page can be a static or dynamically generated

HTML page, or it could contain Java applets, JavaSctipt, or Dynamic HTML (DHTML).

17

The Web setver specifies the format that the data is to be displayed on the client. When
new information is to be displayed on the client, the Web server generates a new HTML
page and sends it to the client.
The Setver Driven Ul model has several advantages that make it the most common
model used:
e Web applications ate easier to install and maintain because the Web server
determines what should be displayed.
e Web applications based upon HTTP and HTML can be displayed on any browser.
¢ The client part of the Web application is small and can be downloaded quickly.
e The setver can tailor the content returned to the client based upon user attributes.
The Setver Drive UI model, howevet, has one main disadvantage. Because the server
defines the UI, generation of UI for each client consumes more processor resources on
the application server such as extra clock cycles, or file and database accesses required to

obtain and perform formatting of the data.

3.3.2 Client Driven Ul
In the Client Dtiven UI model, the UI to be displayed on the client is generated by the

patt of the Web application that executes on the client. In response to a request from the
client, a Web server returns data, which is interpreted by the client and displayed on the
browser. The server does not return a new HTML page.

The most significant difference from the Server Driven Ul model is the use of a
command server that acts as a message dispatcher between the client and the business
logic running on the Web setrver in the Client Driven UI model. The command server
receives an interaction request from the client and interfaces with the same business logic

components as the Server Dtiven UI model. Instead of returning HTML to the client, the

18

command server returns raw data. The UI part of the Web application running on the
client then interprets this data and formats it so that it can be displayed in a desired format
to the user. A unique command server can be mmplemented for each interaction or a
general command server can be implemented to handle many different interactions.

The Client Driven UI model has the following advantages:

® Web application developers with a traditional client/setver background would find
this programming model familiar.

e Applications can be made to look more like standard windows applications.

e The computational load on the Web server is reduced because instead of the setver,
the client now is responsible for generating the Ul

The model also has some disadvantages:

e It is tricky to correctly partition the client application events from the raw data
generation events, so that display updates can occur with the least number of remote
method calls.

¢ The client code (for example, Java applets or JavaScripts) tends to be large and
requires more time to download and initialize. Over a slow Internet connection, this

could introduce significant delay before the start of an application.

3.4 Advantages of Web Interface for Applications

3.4.1 Ease of Version Control of Data
With desktop-based applications, data input and output are atchived on local

machines. For example, salespeople for a company may need to enter the amount of sales
made in each month, and the manager has to make sure the sales team has been updating

the sales log sequentially in order to make sure no data is overwritten or corrupted. This

19

can be done in many different ways. For example, data files are contained on removable
storage media (such as floppy disk or Zip disk) that are passed along by the team members,
which leads to significant delay for completion of data updates. Another example would
be having a data administrator to take cate of all the data manipulations, but the workload
of the administrator would become unbearable if there were a large amount of data. There
can also be a shared directory where team members can all access the same files and carry
out their updates; this practice is typically seen in corporate intranets.

Web applications typically involve one central database or several distributed
databases. Users all carry out their data updates and manipulations through the Web
interface and access the same database. This can assure that each person’s actions on the
data are accounted for. This is similar to a shared directory on corporate intranets except
that Web applications do not necessarily need to be restricted to corporate intranets and
thus provide greater flexibility. Desktop applications that communicate to a database
server — that i1s quite similar to the Web model and is the most common system
architecture today — solve the problem of version control but demands more

computational power on the desktops.

3.4.2 Accessibility from Different Locations

Web applications can be deployed on a single computer, an intranet within an
organization, virtual private networking (VPN), or on the Internet. This greatly reduces
the geographical restrictions of access to the applications. A user can have access to the
functionalities and data of the application as long as it is within the scope of deployment of
the Web application, so that it is not necessaty to work on a specific computer ot

workstation. This flexibility gives users the appealing options of telecommuting and

20

working from home, and allows them to have access to useful and urgent data from

different geographic locations.

3.4.3 Cost Saving
There is high cost associated with the purchase of desktop-based applications. Such

software often has a high price, and companies that need to purchase software for use
among several users would need to pay for the cost of not just one copy of the software
but for the number of users using the software, and upgrading of existing software to a
newer version also requites capital investment. Some desktop applications have “floating
licenses” that can be purchased to have just enough licenses for the active users at one
time but this does not eliminate the cost of installation on terminals as well as the need for
more computational powers on the desktops.

Web applications can help solve the cost problem because companies can purchase
subscriptions based on the number of logins needed. Expensive systems such as
accounting and project management softwate are good candidates for deployment as Web
applications. Subscriptions fees tend to be lower than purchase of software, and there are
mcentives for the application service providers to improve the quality of the software to
raise their competitiveness in the market, and subscribers can enjoy the benefits of the
regular updates without having to wotry about incutring additional costs.

In addition, the application elements, including the content that is sent to the client to
drive the application, all reside on the server. This allows all management of the
application to be done on the server. The application leverages the Internet infrastructure
for client/server communication and is dependent only on standatrd software (the Web
browser) in the client. Therefore, connectivity and client management costs are vittually

eliminated on a per application basis.

21

3.4.4 Platform Independence
Desktop-based software 1s platform dependent, and it will not run propetly on

platforms 1t is not intended for. This introduces difficulties when companies consider
upgrades or migration of their operating systems. Software developers would also need to
develop the same software for different platforms. Many applications, such as the popular
Office suite, have a Windows version as well as Macintosh version. Exchange of data
across platforms using the same software would also have problems with regard to the file
format; for example, documents generated on Macintosh platform may not be fully
compatible with the Windows operating system. Companies that use more than one
operating system would need to find ways to convert their files from one format to
another.

Web applications are run on browsers, which are often included in operating system
packages or can be downloaded from the Internet at virtually no cost. Application service
providers only have to think about what kind of server to be used and do not need to
worry about the operating system on the machines of end users. Companies with multiple
operating systems can also benefit because they do not need to obtain different copies of

the software for each platform or worry about file formats across platforms.

3.4.5 Abundance of Tools and Technologies
There are many different tools and technologies for development of Web applications

and developers have great flexibility in combining the use of several tools and
technologies. Developers can also choose among them the technology that suits their

development needs the best.

22

3.4.6 Ease of Distribution
The use of Web applications saves users the time and trouble of installation of

software. The Internet being a very broad and effective channel of distribution makes the
introduction and adoption of 2 Web application much faster and easier than the traditional
software. The need for bug fixes would also be greatly reduced because the application
resides on the server and the application setvice providers can remove most bugs internally

without notice of the end users.

3.4.7 Use Across Different Client Products
Clients support industry standard communication protocols such as TCP/IP and

HTTP. Thus, the simplest information appliance potentially has access to the same Web
application that a Web browser running on a computer does. This enables both users of

wireless PDAs and PCs to access their e-mails, spreadsheets, etc. in the same way.

3.5 Disadvantages of Web Interface for Applications

3.5.1 Security

A Web server can be placed on an intranet or on the Internet, where it is accessible to
anyone with a computer and a browser. Security measures need to be taken to protect
server’s data from being seen, changed, or damaged, and protecting the server from
malicious attacks.

Web applications often involve access to sensitive data or company information.
Servers for electronic commertce, for example, would hold credit card information and data
related to customer privacy such as address and shopping patterns. The setver has to
provide different access levels to the data, protecting information from being accessible to

the general public.

23

Web servers are open to the possibility of attacks by crackers who want to change the
contents of the server, interfere with the normal operation of the setver (denial of setvice),
or even crash the server. Servers with Web applications have programs and scripts that
would be executed on request, and they can be a security hole that opens the setver to
attack.

Web applications often identify users by a username and password. More robust
forms of authentication (such as cettificates and encryptions) can make remote access to
the Web applications more secure. After the user has connected and logged in, the
amount of access should be limited to the minimum needed to get the job done.

Administrators that log in remotely would have the same access to the setver as if he
were physically present in front of the computer, and it is another security concern if the

administrator’s account is compromised.

3.5.2 Single Point of Failure
Centralized network suffers from the risk of single point of failure. If the Web setver

or database server is down, users cannot use the Web applications. In traditional desktop-
based software, if one workstation is down, users can go to another wotkstation in the
company if the software is also installed on that computet, given that the data needed is
available. The availability of the Web applications is dependent upon the availability of the
servers as well as the network traffic condition. Multiple servers running as backup Web

servers and database servers would help solve this problem.

3.5.3 Performance Problems
A key difference between Web applications and desktop applications is that Web

applications deliver slower performance as compared with desktop-based software because

24

performance depends heavily on network traffic condition, as well as the time needed for

data to flow back and forth between the setver and the client.

3.5.4 Network Costs
A company utilizing Web applications would also incur a cost in maintaining the server

as well as paying for the network usage. This can accumulate to a significant amount of

cost and offset the cost saving from purchase of only one copy of the software.

25

4 Technologies
4.1 History of Web Applications

411 CGI

One of the first practical techniques for extension of static content to dynamic content
is the development of Common Gateway Interface (CGI). CGI was first developed to
define a standard method for an information server to talk with external applications. The
method enables a2 Web browser to send a request to the setver for execution of a program.
The output of the program is converted and formatted to a form that is readable by the
browser and displayed in the client as if it is a static HTML page. With this capability, it is
possible to implement a large variety of functionalities in Web pages by developing
cotresponding programs on the server side, and the CGI quickly became a popular
method to include dynamic content on Web pages. It also transformed the Internet from
a place to share information to a platform for information processing. Although CGI
programs can be written in many different languages, Perl has become the most populat
choice because of its advanced text-processing capabilities and its semblance of platform
independence, but each request would need to start a separate Petl intetpreter and that
would take more processor time and resoutrces.

When a request is sent from the client to the setver to execute a CGI program, the
server creates a new process to run the CGI program. The server then passes to the
process the variables, user inputs, and other information that would be necessary to
execute any computations and generate response. Creation of process for every request
requites server resources, and therefore limits the number of requests the server can

handle simultaneously and also affects the performance speed. To help improve

26

petformance, there had been the creation of client-side scripting solutions that enable the
client’s browser to process some of the tasks before sending request.

Another problem with CGI 1s that CGI programs cannot interact with Web server ot
take advantage of the server’s running processes because CGI programs run in sepatrate

pIOCCSSCS.

4.1.2 Client-side Scripting
HTML does not allow for imteractivity for Web applications, and so Netscape

Communications developed along with Sun Microsystems a solution called LiveScript that
allowed limited programming instructions to appear in Web pages and had the instructions
being processed when the pages were viewed using Netscape Navigator. LiveScript was
latet renamed to JavaScript because of the popularity and attention around Java. However,
it is not a subset of the Java language; only its syntax is similar to that of Java. JavaScript
was made to interact with limited capacity with the client machine and over the time it
slowly evolves to be more secure and safe.

Microsoft also created a scripting language called Visual Basic, Scripting Edition, or
VBScript. VBScript is a subset of Visual Basic for Applications (VBA) language and its
syntax is exactly the same as VBA. Microsoft also created Jscript, which is similar but not

identical to JavaScript. Its browser would support all these different scripting languages.

4.1.3 FastCGI
FastCGI was developed by Open Market and it works just like CGI. The big

difference between CGI and FastCGI is that instead of having a new process for each
request, FastCGI creates a single persistent process for each FastCGI program. FastCGI,
however, still has problems with process proliferation. It needs a pool of processes to

handle concurrent requests, which can be slow.

27

4.1.4 Other Solutions
CGI has the advantage of being largely platform independent. Companies have

developed some other mote efficient solutions on specific platforms.

Several companies developed proprietary server extension Application Programming
Interfaces (APIs) for the Web setvers to more efficiently carty out Web requests. The
APIs utilize server extensions to handle requests. After the Web server gets the first
request for a particular application, that server extension is loaded in the same memory
space on the Web server on subsequent requests for the application. The server extension
stays in memoty and answer requests until it is explicitly teleased from memory. Therefore
there is no need to instantiate a new application every time a request is made. This
arrangement has the advantages of being more memory efficient and faster.

The server extensions commonly use linked C or C++ code. These plug-ins, as well as
CGI programs, operate with relatively unregulated access to the server on which they are

executed, introducing big security issues.

4.2 Netscape Communications Server/Netscape Commerce Server

Netscape came up with Netscape Communications Server and Netscape Commerce
Server. The Commerce Server is essentially identical to the Communications Server except
that it adds Secure Sockets Layer (SSL) security to the mix, for performing secure
transactions over the Internet, as well as other advanced security features such as server
authentication, data encryption, data integrity, and user authorization.

Netscape delivers HTML documents and dynamically generated output over the
Internet and other TCP/IP netwotks using HTTP with its Web server and CGI

extensions.

28

Netscape Commerce Server’s API (NSAPI) allows dynamic extension of server
functionality and easy integration of add-on applications and systems. Process manager
allows the creation of a configurable number of processes that reside in memory, waiting
to fulfill HTTP requests. This eliminates unnecessary overhead of creating and deleting
processes to fulfill every HTTP request. The dynamic process management algorithm
increases the number of server processes within configuration limits to efficiently handle
periods of peak demand. Netscape claims that it would be able to deliver several times
greater throughput by this algorithm. It also dramatically reduces system load and
increases system reliability. This efficiently leaves additional CPU resources available for
running other applications. The NSAPI also provides significantly higher performance
than CGI because a new process needs not be created to run the external function or
application.

43 ASP

Microsoft came up with an alternative to CGI, called the Internet Server Application
Programming Interface, or ISAPI. ISAPI applications are normally faster than CGI
programs that perform equivalent tasks because it utilizes the server extensions concept.
The ISAPI also allows for development of customized dynamic link libraries (DLL) that
sits 1n the same memory space as the Web server and would be called by Web server in
response to every HTTP request. Such DLLs are called ISAPI filters. Thete can be many
examples of possible ISAPI filters, such as a security layer between the Web server and the
client, an interpretation layer that presents a stream of information from setver in a
different format than would the otiginal Web server, and a mapping function that can
redirect a client’s request to a different physical location on the setver (such as a mitror

site) when the Web site expetiences high traffic.

29

In Microsoft’s development of Internet Information Server (IIS) 2.0, a technology
known as Denali was beta tested. Denali later evolved to the Active Server Pages (ASD)
and has become an important factor in IIS strategy. ASP technology is encapsulated in a
small ASP.DLL file that is an ISAPI filter in itself. When a browser sends a request for a
file with extension of .ASP, IIS passes the requested document to ASP.DLL. ASP then
loads the required scripting language interpreter DLLs into the server’s memory, executes
the code, and passed the interpreted result back to IIS. IIS then inserts the results into the

HTML text stream and sends it to the client.

4.4 Java Serviets/JSP

Servlets are programs running on a Web server and serve as an intermediate layer
between the clients’ requests and the databases or applications on the server. They can be
loaded dynamically into the Java Virtual Machine (JVM) on the server to expand the
server’s functionalities. Servlets can not only serve Web applications and handle HTTP
requests, they can also extend any sort of server such as an FTP server or a mail setver.

Unlike the traditional CGI that utilizes multiple processes to handle programs and
requests, servlets are handled by separate threads within the Web server’s main process.
Because servlets run within the Web server, they can interact closely with the setver, which
was impossible with CGI scripts, at least not without using a server-specific APL
Communication with Web server eases the translation of relative URLs into concrete path
names. Multiple servlets can also share data among each other, making it easy to
implement database connection pooling and optimize resource sharing.

Servlets work by first reading data submitted through requests by the user, which can
be in the form of form data, Java applet, or a custom HTTP client program. The requests

also contain other information that may be needed for processing the requests, such as

30

information stored on cookies, the IP address of the client machine, etc. Using the user
input and parameters, the servlets would generate the results, which can include exchange
of information with databases or direct computation by the Java servlets. In most cases,
the output from the process would be embedded using HTML code, and the servlets
would set the appropriate HTTP parameters, such as document type, and then send back
the document to the client. The document can be in a variety of formats, such as text
format as HTML file, binaty format as GIF images, an Excel spreadsheet, or some other
formats.

Setvlets are run inside the JVM, which stays running and handles each request using a
lightweight Java thread., so multiple requests would not require programs to be loaded into
memory multiple times. CGI programs also have the disadvantage of being difficult to
cache computations, keep database connections open, and petform other optimizations
that rely on persistent data. On the other hand, the servlet classes temain in memoty even
after they complete a response and make it straightforwatd to store complex data between
requests.

Setvlets are written in the Java language and the standard APIs, and so they are
pottable across different platforms that run the fJVM. Servlets are supported either directly
ot by a plug-in on virtually every major Web server.

The cost of Web servers for serving setvlets is also relatively inexpensive. There are a
number of Web servers available good for personal or small business use that are free or
inexpensive. Adding servlet support to Web server without servlet capability costs little.
This represents a much higher cost saving when compared with CGI alternatives or IIS.

Many dynamic pages that utilize setvlets are largely static in content, with a few

locations where dynamic contents need to be fed. Setvlets generate the entire page via

31

programs even though most of it is always the same. A technology similar to ASP, the
JavaServer Pages (JSP) technology was therefore developed to enable mixing of regular,
static HTML with dynamically generated content from servlets. JSP can in principle
accomplish any capability as servlets. But it has a majot advantage over servlet that it
allows separate development of the two patts, so that the tasks of Web design and

programming can be distributed and better make use of vatious developets’ abilities.

4.5 Others (such as PHP, Server-Side Includes)
PHP 1s a free, open-source HTML-embedded scripting language similar to ASP and

JSP. It is a particular choice for use in combination with Linux platform, Apache setver
with PHP module, and MySQL database because of the apparently zero costs of these
packages. PHP also has a large number of advocates in the open-source community and
developers in PHP are able to seek answers and helps within the community’s many

message boards.

4.6 Structuring Web Applications: Case Study on Java Technologies

4.6.1 The Structured Interactions Model
This section illustrates structured interactions as a structure for Web applications. It

helps produce maintainable applications that can be efficiently developed.

32

Structured Web Interactions:
Components

Client
AN

~N

N

Serviet

Formatting ‘ l

Bean

View

Controller

Business
Logic

AN

N

$92IN0S9Y |eula)xX]

Model

Figure 4-1 Structured Interactions

Figure 4-1 shows the major elements of a structured interaction and their relationships.
In an ideal environment, the components indicated allow a perfect separation of skills and

roles; however, most projects will find that some blurring of the lines will be acceptable

and even desirable.

assigned role within this structure.

In structured interactions model, the interaction is divided into a number of

components that closely follow the classical model-view-controller structure for

applications.

elements of the application and for the development sequence of the various parts to be

largely decoupled.

33

In addition, each component is capable of doing more than its

This structure allows different skills and tools to be used for different

4.6.2 Flow of Control

The notmal flow of control that occurs in the processing of an HTTP request with a

structured interaction is:

The HTTP request arrives and is dispatched to the appropriate servlet. This is done
based on configuration rules provided when the application is installed.
e The servlet makes calls on one or more command beans to petform logic of the

request.

e The beans implement the business logic and may leverage relational database access,

connectors, or the Web application infrastructure to perform the computations.

¢ Based on the results of the computation, the servlet either selects and invokes a JSP
or does an HTTP redirection to another structured interaction. In the first case, the
servlet will need to post some of the results of the computations to the execution
context for use by the JSP before calling it. In the second case, the servlet will
usually need to place some of the results of the computation into the session context
so that it can be picked up by the next interaction.

e The dynamic content on the selected page is filled in from the request and session
context and the page is sent back to the client. This may leverage formatting beans,

other JSP pages, and static content components.

4.6.3 Components of the Structured Interaction

4.6.3.1 Serviets

Servlets provide the coordination between the programming elements and the content
elements of an application. Setvlets are generally implemented as beans with a set of

customizable properties that are adjustable for different application configurations.

34

Examples of such properties include JSP names to invoke for specific interaction

outcomes, or database names and connections to be passed to the command beans.

4.6.3.2 |JSP
The role of JSP page is to make the final decision about the format and content of the

tesponse to a request. Each JSP page is associated with one or more outcomes of one or
more servlets and this association defines the primary role of the particular page.

JSP pages are intended to focus on presentation rather than business logic. Therefore,
it is important that JSP development does not requite advanced programming skills in
normal cases. However, sometimes ptesentation can be complex, and so the model also
mncludes the use of formatting beans.

4.6.3.3 Formatting Beans

Formatting beans are Java beans that format various types of dynamic content for use
in JSPs. These help to simplify JSPs so that they can generally be constructed without
requiring programming skills. They also provide a single point of change for formatting
decisions that span the entire application.

4.6.3.4 Command Beans

Command beans are beans that each implements one basic business logic step. It is
common for a servlet to invoke several command beans to accomplish one application
step as seen by the end user. Command beans are used in the following style:

® Create an instance of the bean
® Set some or all of its input properties (which may have some preconfigured values)

¢ Callits perform method

35

e Extract values from some ot all of its output propetties (which may also have a set of
preconfigured values)

The command beans should be given any information they need from the HTTP

request explicitly (by setting appropriate input properties) so that they are isolated from the

form and details of the HT TP request.

4.6.3.5 Business Logic

The business logic refets to Java codes that implement the computational functions.
There are two categories of programming logic within this model:
¢ General programming logic: It refers to anything that can be written in Java.
General programming logic may leverage transactions in external resource managers
such as relational databases, but it may not directly participate (with recoverable
resources) in the transactions or initiate transactions that span multiple resource
managers.
¢ Enterprise Java Bean (EJB) based programming logic: It is constructed according to
the conventions and requirements of the EJB specification and leveraging EJB
containers, EJB enabled relational database access, and/or EJB enabled connectors.
EJB-based logic can initiate transactions, participate in transactions, and leverage

transactions that span multiple resource managers.

4.6.4 Summary of Case Study

The structured interaction model allows the servlet to act as a contract between the
computational logic and the dynamic content that constitutes the application. The servlet
bean’s interface can be specified by content designer and then inspected to determine what
computation must be provided. This supports the HTML first model of development.

The servlet can also be mspected to tell content developers which pages need to be

36

ptoduced and what dynamic information is available to include in those pages. This
supports the logic first model of development. Once constructed, this decomposition
provides the basis for rapid customization of dynamic pages thus supporting the

customization model of development.

37

5 Case Studies of Different Implementations of Platform

5.1 General Features of Pavement Management Systems

5.1.1 Pavement Network Databases

Each pavement management system contains a defined set of pavements for
maintenance, and the set of pavements forms a pavement network within the scope of the
PMS. Data from different pavement networks would enter into separate databases for
easler management.

The Network Definition database is mandatory for any addition of street sections.
The Network Definition database contains the pavement and section ID numbets, which
are the keys that connect different databases together. The Network definition data also
contains data of each section such as the facility type, district, surface type, functional
classification, etc.

The Pavement Condition Survey database contains detailed condition information
about pavements within the Network. After inspection of street conditions, the inspector
mputs the ratings for conditions such as raveling, corrugations, flushing, transvetse and
longitudinal cracking, rideability, etc. The Pavement management system would then use
the data inside this database to calculate pavement setviceability indices (PSIs) and
maintenance strategies.

A Construction and Maintenance History Database holds information of street
sections after repair work is performed. The system would need inputs from both this
database and the pavement condition survey database to determine pavement serviceability
indices for pavements that have undergone repair work.

Pavement management systems may also have Traffic Sutvey Data, such as the

estimated average daily traffic, number of single and multiple axle commercial vehicles,

38

guardrail and sidewalk types and conditions and median type. Managets can take the data
into account when planning for maintenance and repair strategies, so that the strategies
would create the least amount of disturbance to the normal traffic.

An optional Drainage Survey Database contains information about drainage conditions
of sections within the network, such as culvert functions and conditions, headwall, ditch,
side slope drainage and cross slopes, and utility and curb information. This helps manager
take into account of the drainage system underneath the road surface when planning on

pavement maintenance strategies.

5.1.2 Inquiry Functions

The pavement management system should provide user with the ability to locate and
view information about different pavement sections in the Network. The user should be
able to carry out inquiries based on criteria including network definition, pavement defect,

pavement serviceability index, pavement type, and othets.

5.1.3 Pavement Analysis

The pavement management system should be able to catry out basic analysis of
pavement conditions, such as calculating the pavement serviceability indices after each
inspection, and also make predictions of future deterioration as well as improvement on
pavement condition after different kinds of maintenance actions. The user can create
custom plan and then carries out the budgeting for the customized work plans. The
system should be able to roughly estimate the cost of maintenance strategies, and calculate
the estimated benefit ratio for different M & R plans, so that the manager can optimize the
benefit achieved with the funding available. Inflation and change in costs should also be

taken into account for budget analysis.

39

5.1.4 Reporting

Repotts of the pavement conditions as well as for maintenance plans would be useful
for record and planning purposes. The pavement management system should be able to

produce reports and graphs based on diffetent criteria set by the users.

5.2 InfraStructure Management System at Arlington, MA

5.2.1 Introduction
Arlington’s Department of Public Works (DPW) uses the Infrastructure Management

System (IMS) II version 1.2 software developed by Public Works Software Inc. in 1987.
IMS implements most of the features that meets the needs of Arlington DPW. IMS II
also has the ability to determine the optimum strategy. There are four methods IMS uses
to calculate the optimum strategy:
¢ Public Works Software algorithm which attempts to keep the PSI of the road
at a user selected PSI level over the length of the plan (5 — 20 years), while at
the same time analyzing the tradeoff between the first year cost and the total
project cost.
e The highest benefit cost ratio of a strategy.

® The lowest overall cost.
® The lowest initial first year cost.
5.2.2 Features
IMS features the following functions:

® Database for record of maintenance datz: The database holds the Network
Definition Data, Flexible Condition Sutvey Data, Construction and
Maintenance History Data, Drainage Survey Data, and Traffic Survey Data.

The database at the back end is dBase III, developed by Ashton-Tate, Inc.

40

o Calculations: IMS calculates the maintenance strategies based on the survey
data. The user inputs the number of year he wants IMS to calculate the
strategy, as well as the inflaion rate to determine the distribution of
maintenance plan costs over the span of the inputted years.

e Graphs: IMS has the ability to present the results from calculations in the form
of graphs, including the PSI frequency bar graphs by different criteria such as
facility type or district, distributed PSI graph of current and future condition,
and projected pavement life cycle graph.

e Inguiry: The users can carry out inquiry on the collection of streets using the
mquiry function in IMS.

o Maintenance and Repair Plan/Budger. The users can look at the various
maintenance plans and budgets and the details. IMS also would recommend
an optimum maintenance and repair plan for each pavement section based on a
criterion entered by the user, such ash benefit-to-cost ratio.

e Reports: IMS creates reports on the databases, PSI calculations, as well as

maintenance strategies. The user can print out reports for record.

5.2.3 Interface
IMS is a DOS-based program and navigation is done by keyboard inputs. The user

carries out Inspection using the paper inspection forms that are included with the software
package, and inputs the inspection data by hand to the IMS.

IMS has an interface whete the user navigates through the function menus by pressing
function keys.

F2 - Primary Databases

F3 — Calenations

41

F4 — Graphs
IMS can present the PSI values using three different graph types:

e DPSI Frequency Bar Graphs: These ate graphs of current and estimated
condition based on facility type, district, surface type, functional class, zone,
and responsibility codes for each of the pavement sections.

e Distributed PSI Graphs: IMS shows the percentages of occutrences for each
PSI within the network of pavement sections.

e Project Life Cycle Graphs: IMS calculates the possible future condition of a
section if a particular action is selected and displays the respective graph.

F5 — Inguiry
F6 — Maintenance and Repair Plan and Budget
F7 — Reports
IMS can create roughly 100 combinations of standard printed reports for various groups
of pavement sections, including reports of the netwotk, sutvey data, PSI values, and
maintenance plans.
F8 — Database Support
5.2.4 Problems with the DOS-based Text Interface
There are several disadvantages of this interface:
o Expense and Complexity for Inspection: The DOS-based interface makes it very time
consuming to collect and update inspection data.
e Securty: The program does not have a log in session and unauthorized personnel
can have access to the data and make modifications.
o Difficulty in Navigation: The functionalities of the program are separated into 8

categories, each provoked by pressing a Function key. Although each individual

42

functional category can be accessed easily, a user cannot link different
functionalities together. For example, when a user enters the inspection into the
Flexible Condition Survey Database or performs a maintenance plan comparison
on a specific pavement section, he cannot view the details of that pavement
without having to quit the function he is working on.

Difficulty in Distribution of Software: The software is a DOS-based program and can
be accessed only by the local terminal. If different users want to work on IMS,
they have to wotk on the same workstation so that the data would not be
corrupted.

Excessive Functions: IMS is a commercial product that is developed to meet the
requirements of many different municipalities including Arlington DPW. The
IMS contains more functionality than needed by Arlington DPW, therefore
making the use of the software unnecessarily harder.

Slow Caleulations: IMS recalculates maintenance plan and budget for either one
section or the entire network. If the user wants to recalculates the budget for
only a group of pavement sections based on a certain critetia, he would have to
wait for IMS to complete calculations of all sections, which can take an extended
period of time. The fact that different data are placed in separate databases
rather than different tables in one database also slows down the calculation

process.

43

5.3 Pavement Management and Inspection System (PMIS) at Arlington,
MA

5.3.1 Introduction
PMIS for Arlington was developed to replace the existing pavement management

system and to provide software that meets the needs of Arlington DPW. PMIS is built to
address the general pavement management needs of municipalities, and we hope that 1t
will be used by other communities. PMIS implemented a pavement inspection module, a
series of pavement condition, deterioration, improvement and cost models, and an overall
management framework within which specific maintenance projects can be selected and

programmed.

5.3.2 Features

PMIS implements the common features present in essentially all Infrastructure
Management Systems.

® Record of inspection data: Surveys of pavement conditions are taken, and the data 1s
downloaded into the database system.

o Assessment of current pavement conditions: Data obtained from inspection of the street
defects is used to calculate PSI, which reflects the conditions of the street sections
and the need for remedial actions.

o Estimation of deterioration: Street conditions deteriorate without maintenance actions.
PMIS estimates the rate of deterioration over time based on traffic, weather, and
other street activities.

o Estimation of pavement maintenance cost: Different pavement actions have different unit

costs; total costs also depend on the dimensions of the street sections where the

44

actions are applied. PMIS estimates the cost of application of vatrious pavement
actions, as well as maintenance costs of sidewalks and curbs.

® Estimation of pavement maintenance benefit. 'The benefit of a pavement maintenance action
depends not only on the increase in PSI after application of action but also on the
sustainability of the increase in PSI. PMIS estimates the total benefit from different

actions using the detetioration models.

In addition, PMIS has several features that are not always present in infrastructure
maintenance models, which allow the creation and use of scenatios to help more
effectively allocate resources across different maintenance plans.

® Creation of scenarios: Scenarios hold collections of streets specified by the user to have
met some criteria, such as being within a particular PSI range, district (precinct), a
specific (usually major) street. Users can apply different actions to different street
sections and PMIS returns the estimated benefits as well as costs in cartying out the
actions. Different scenarios can be created for different goals in mind, and users can
compare the final benefits and costs of various scenarios to determine the action
plan.

 Comparison of scenarios: Users can make decisions by looking at individual scenario, and
can also make use of the “Compare Scenario” feature to have a quick overall view of
scenarios by comparing the overall average benefit as well as overall costs.

® Recommendation of pavement actions: In creating scenarios, PMIS calculates the benefit-to-
cost ratios of different actions and recommends the optimal action. It uses a simple
optimization method called the “greedy knapsack” method to compute the optimal

actions.

45

o Added secursity: PMIS requires the user to log in before accessing the system. Different
levels of access rights can be assigned to different users so that important data are

not overwritten or deleted by unauthorized personnel.

® Reporting. PMIS generates reports of scenarios as well as of street sections, in the form
of Microsoft Excel spreadsheets that would allow easy storage as well as formatting.

o Improved inspection process: The original Arlington system required the inspector to use a
complex paper form for recording inspection data; then the data was manually
entered into IMS. This made the inspection process slow and error-prone. The new
PMIS system integrated the abilities of the Global Positioning System and Personal
Digital Assistants and made the inspection process much faster and reliable. The
mnspector clicks on the PDA when he comes across different defects and the PDA
program automatically generates reports, using data from the connected GPS
(Global Positioning System) to determine the locations of data being taken. The
data 1s then be uploaded to a computer and through a Web interface to PMIS.
Under this system, the inspection process is electronic and data is more easily
processed and stored.

The key benefits of the pavement management system are that, when propetly
designed and implemented, PMIS is highly effective in improving pavement maintenance,
as well as sharply reducing the cost of frequent data collection.

5.3.3 Interfaces
The key elements of the user interface are:

® Administration. Thete are key tables that contain most street and pavement
information. Fach of these tables has a set of administration Web pages that allow

Arlington staff to display, search, add, delete and modify data and patameters for the

46

system in the tables, including Street Data, Pavement Action, Cutb Action, Sidewalk
Action, Pavement Type, Facility Type, Functional Classification, Precinct, User
Information, and Parameters.

o Paverent analysis. 'This allows the Arlington staff to create pavement management
plans (scenarios) for a set of streets, usually for a single construction season. The
system allows a user to select the set of streets to examine, to estimate the benefits
and costs of alternative pavement maintenance actions on these streets, to select
actions to be performed, and to summarize the effectiveness of the scenatio.

o Inspection. This allows Arlington staff to download inspection results from the field,
which were collected using Palm and GPS units. Field data may be displayed,
searched and modified, and data may be added or deleted if necessatry.

® Reports. The system generates a set of on-scteen repotts, and also allows the export

of data to Excel for further analysis.

5.3.3.1 Web Interface

The main user interface in the systetn was implemented as a Web intetface. The use of
a Web mterface m PMIS allows multiple users to have access to the same database and be
able to work on data, such as uploading inspection data on one terminal and creating
scenarios on another, at different physical locations. The Town of Arlington uses
machines running on Windows 98, but all PMIS needs is a Web browset; it is not
restricted to Windows 98. It makes future transitions much easier if the Town decides to
shift to another operating system on some other platforms. The use of a Web application
also reduced the need of an IT support staff that would help supervise the installation of

the application on all machines.

47

The dynamic contents are served by the Tomcat server with Java Server Pages (JSP)
technology. JSP were used to process uset inputs and pass the parameters to Java Beans as
well as output results returned from the Beans. The database being used was MySQL and
JDBC provides the connection for database transactions invoked by the Beans.

The choice of combining Linux platform, Apache/Tomcat server, JSP and other Java
technologies, and MySQL database was made because of cost and performance. This set
of products was all freely available on the Web and could be downloaded without cost,
with performance comparable to most commercial products. They might not have the full
range of functions as some commercial products, but the capabilities were sufficient to

serve the purpose of pavement management for Arlington.

5.3.3.2 Inspection System: Palm and GPS
The Palm and GPS units are used to inspect streets. The Palm unit has an application

program that allows the inspector to click on defects with a stylus as a vehicle is driven
along the street. Each click registers the date and time of the observation. In parallel, the
GPS recetver is automatically registering (if possible) the location of the vehicle
approximately every 50 feet and also registeting the date and time. The Palm and GPS
files are then downloaded and synchronized on a PC, and this becomes the inspection data

used by the pavement management system.

The Palm has two major user interface screens:
® An inspection screen with icons of each defect type to be inspected. When these
icons were selected, a default amount of defect is recorded. The icons might
represent, for example, cracks of length 10, 20 and 40 feet. The inspector selects the

closest icon, as many times as necessaty, to recotd the pavement conditions.

48

® A summary screen. When pausing the vehicle after inspecting a street segment, the
inspector switches to the summaty screen, which will:
® Total the defects for the segment,
® Show the results of the previous inspection,
® Compute and display the PSI for the segment.
* Allow editing of the inspection data in the Palm, while still in the field, rather
than waiting until the data was processed at the office.
Additionally, it has a startup screen to choose the pavement application from the main

menu.

5.3.4 Building the Pavement Management System

5.3.4.1 Pavement Network Definition

The first task of the pavement management system is the network definition. In
developing Arlington’s PMIS, the network definition is the set of pavement sections within
the maintenance scope of Arlington DPW. Since the scope of the pavement network is
small, a single database is sufficient to hold the data. The list of pavements included in the
pavement network definition includes public roads, parking lot, private roads, and other
pavement types. The Arlington DPW is responsible for maintaining stteets with pavement

type of public roads only.

5.3.4.2 Pavement Database

Pavement database contains the data required for maintaining the street sections. The

database contains the following tables:

49

Table Name Description

Action Description of various pavement actions and their unit costs
ActionEffect Effect of different actions on different defects

ConstructionHistory |Construction and maintenance history on the street sections

CurbAction Awvailable curb actions and their costs

CutbDetails Details of a cutb action on a street section in a scenario

DefectData Defects of the street sections based on the data from inspection and consttuction|
Deterioration Deterioration model defined by maintenance actions and functional types
DefectValidation Number of manholes and gates, and the other drainage data
DrainageData Number of manholes and gates, and the other drainage data

FacilityType Types and ownerships of the street sections or facilities

FuncClass Functional type of street sections

InspectData Defect data from road inspection

Login Details of sign-up user

PavementType Consttruction material of the street sections

Precinct Precinct information of Arlington

ScenarioDetails The actions and details on street sections associated with a scenatio
ScenarioHeader The details of scenatios created

SidewalkDetails Details of sidewalk actions on a street section in a scenario
SidewalkAction Available sidewalk actions and their costs

StreetData Primary details of all street sections

StreetName All streets in Arlington

Tiger Details of geographic information of the streets in Arlington from Tiger data

Table 5-1 Database structure of Arlington PMIS 3

5.3.4.3 Pavement System Class Diagrams #

Figure 5-1 shows the class diagram of the database connection and user verification.

DbBean provides the connection stting and JDBC driver, and ArnhiDbBean extends the

DbBean class to provide additional customized methods for the Pavement system.

} Refer to Data Modeling in 2 Pavement Management System by Yim for details on the database structure.

* Refer to Evaluation of Infrastructure Monitoring System Using PDA and GPS Technologies by Cheung

for more details on class structure of the inspection module on Palm PDA.

50

Authenticate bean verifies the user information and also helps maintain session information

after the user logs in. User bean has access to the uset information in the database and it is

used for verification of username and password as well as for creating new users.

DbBean

-dbCon : Connection
-dbURL : String
-dbDriver : String

+setDbURL()
+getDbURLY()
+getDbDriver()
+setDbDriver()
+connect()
+execSQLQuery()
+execSQLUpdate()
+close()

ArchiDbBean

—

extends
implements User
I -lastname : string
«utility» -firstname : string
Authenticate -department : string
-position : string
-dc : ArchiDbBean -email : string
-password : String +checkUsername()
-loginCondition : int +saveUser()
+setUsername() implemen'téavePassword()
+getUsername() | 7 7
+setPassword()
+getPassword()
+setCondition()
+getCondition()
+setDc()
+getDc()
+check()
+addUser()

Figure 5-1 Class Diagram: User Authentication

FH
<Oty >

AdminDisplay

-db : ArchiDbBean

+setDc()

+getDe()
+getNumRow()
+getData()
+updateActionTable()
+updateTypeTable()
+insertTypeTable()

Figure 5-2 shows the class diagram for the administration display
function. Tables such as street inventoty, construction and
maintenance, pavement type, etc. are viewed and modified using
this function. AdminDisplay bean provides a way to view and edit

different kinds of table using one business logic.

Figure 5-2 Administration

Figure 5-3

shows the classes wused for Pavement Condition Inspection.

InspectionDataUploadServiet is used to upload the inspection file (obtained from the Palm

51

inspection system) from the PC to the server by instantiating the MultipartRequest

object. InspectionFile handles the data after the upload such as importing into the

database. InspectionFileBackup controls and otganizes the uploaded files in the Web server, in

specific directories according to the upload time.

MultipartRequest

-debug : PrintWriter
-htParameters : Hashtable
-htFiles : Hashtable
-strBoundary : String
-fileOutPutDirectory : File
-intContentLength : long
-intfTotalRead : long
-max_read_bytes : int
-read_line_block : int
-blockOfBytes{] : byte
-content_type : int

-size : int

+getParameter()
+getPararameterNames()
+getFileParameterNames()
+getContentType()
+getFile()
+getFileSystemName()
+getFileSize()

+parse()
+readParameter()

+read AndW riteFile()
+getLengthMinusEnding()
+getCharArray()
+readLine()
+getBasename()
+trimQuotes()
+getValue()
+getStrName()
+getCustomFileName()
+getCustomContentType()
+getCustomFileSize()
+getHtmITable()

+debug()

| I
InspectionDataUploadServiet

-dirName : String

+doPost()

extends InspectionFile

-fileLocation : String
-fileName : string
-contentType : string
-fileSize : long
-removeRecords : vector

-validation : boolean

-dc : ArchiDbBean
-readRequestCounter : int]
-exist : int

InspectionFileBackup

-rootDir : string
-webDir : string

+emptyVNewRecords()
+emptyV()
+checkFile()
+readRequest()
+readNewRecordinit()
+readNewRecord()
+readinspectionFile()
+insertNewRecords()
+addTableCell()
+updateRemove()
+cancelUpload()
+finishUpload()
+convertDefectindex()
+removeFile()

fileName : string
-dirNames]] : string

+loadFiles()
+addTableCell()
+removeFiles()

+generateHTMLResults()

Figure 5-3 Class Diagram: Pavement Condition Inspection

Figure 5-4 shows the class diagram for the Network Management Budget Scenarios

and Pavement Condition Prediction modules. The modules include 8 classes:

52

ScenName: The user chooses a scenario to be loaded or creates a new scenario, and
this class handles the initial switching of user options. It also stores the scenario
name, scenario ID and year to pass to the subsequent pages.

CreateScenarioSummary. This class creates a summary table of pavement sections that
meet the query criteria entered by the user. It also handles addition and removal of
street sections in the scenario as well as deletion of test scenatio.

PavementAction: After a user selects a set of streets that are potential candidates for
maintenance, he can apply different actions to the street sections within the system
and look at the predicted benefit of the actions. The user can also looks at the
predicted PSI deterioration after the action is applied.

CurbSidewalk: Apart from pavement action, cutb and sidewalk maintenance actions
can be applied to the street sections. Although they do not directly affect the PSI,
they are essential for a pavement to be usable. This Java bean lets the user specifies
different curb and sidewalk actions and also the costs for the actions.

CompleteS cenario: After a scenario has been put to action and the maintenance actions
are carried out to the pavement, the user can enter the actual maintenance costs and
other information about the construction and maintenance of the pavement, and the
operations ate handled by this Java bean. |
CompareScen: This class handles the comparison of all scenarios planned for a specific
yeat. It creates summary that displays a weighted average PSI for each scenatio, as
well as details of each scenario. The user can alternatively choose to expott the

scenario details to spreadsheets for further data analysis.

53

o StreetCondition: The StreetCondition class is responsible for getting the various defect
values and coefficients that are related to a specific street section for the calculation
of PSI values.

o PavementMode/: This is the class that contains the model for calculation of PSI from
defect data, calculation of PSI after various pavement actions, and prediction of

future PSI with deterioration model.

ScenName CreateScenarioSummary Pavement Model StreetCondition
-scenarioname : string -PSImin : double -seciD : int -applysection : int
-year : int -PSImax : double -initCon : StreetCondition extends -numDef : int
-comment : string -streetName : string -stCon[] : StreetCondition, -actionlD : int
-scenYears : string -lastMaintenanceYear : int -maxDV[] : double -defVal(] : double
-scenByYear : string -precinct ; int -coeffDV(] : double -defDensity(] : double
-condition : int -query : String -length : double -unitcost : double
-sceniD : int - exten ds__-today : Date -width : double -PSI : double
-completed : boolean -htmicode : String -detRate : double -futurePSI[) : double
-dc : ArchiDbBean -seclD[] : int +calDensities() -benefit . double
+setScenID() -numSections : int +setDVCoeffMax() -dRate : double
+check() -sceniD : int +originalPSK) +setDefectDensities()
+add() -dc : ArchiDbBean +modOrgPSI() +setCostDRate()
+getScenarioYears() +makeQuery() +applyAction() +setBCRatio()
+getCompletionStatus() +getExistingQuery() +calCostStreet() +setFuturePSI()
+updateCompletionStatus() +addStreetsToScenario() +calBenefit() +calDuration()
+getScenariosByYear() +removeStreetFromScenario() +calBCRatio()
+queryCommentByScenario(), +removeScenariof) +estFuturePSI()

L +_% I
extends -1
dends
CurbSidewalk extends
PavementAction
CompareScen -scenName : string
-year : int -scenName : string
-compareYear : string -seciD : int -year : int
-numScenario : int -scenlD : int xtond -secID : int
-numSection(] : int -streetName : string ends -sceniD : int
-scenariolDI] : int -startTerminus : string -streetName : string
-scenarioName : string -endTerminus : string -startTerminus : string B
-sectionlD[]]] : int getCurbSidewalkHeader() -endTerminus : string
-length{][] : double +makeCurbTable() -dc : ArchiDbBean
-PSIbefore[](] : double +makeSidewalkTable() +getPavementActionHeader()
-PSlafter]]] : double +updateSidewalk() +getCurrentPSI()
-dc : ArchiDbBean +deleteCurbAction() CompleteScenario | | qotruturepsi()
+setinfoTable() +addCurbAction() +makeActionTable()
+showDetails() +getCurrentPSI() -sceniD : int +ApplyActionToStreet()

+getFuturePSI()

-completed : boolean|

-dc : ArchiDbBean
+makeCostTable()

+updateCostTable()

Figure 5-4 Class Diagram: Pavement Analysis and Budget Scenarios

54

Report

-year : int

-condition : int
-PSlbefore]] : double
-PSlafter[] : double
-dc : ArchiDbBean

+disPSI()

+sumPSI()
+getLatestinspectYear()
+sumDefect()
+sumbDate()
+costHistory()

Figure 5-5 Report

The Report class contains methods to display reports based on
different criteria selected by the user. For example, there are
reports containing distribution of PSI values based on different
criteria as well as defect data grouped by different functionalities
of the pavement. The user can alternatively export the reports

as spreadsheet files for further manipulation of data.

5.3.4.4 Systern Demonstration ®

5.3.4.4.1 Pavemenr Network Database

Authorized users can log into the Arlington PMIS using their username and password

pair. People who wish to obtain access to the system can apply for an account with the

administrator and wait for approval. After logging into the system, a user can have access

to the data in the pavement network database. Figure 5-6 shows the administration page,

where the user can list the data within the database and also modify any data that they

think are inaccurate or not up-to-date. The user can view and modify data in the following

pavement data tables: Street Data, Pavement Action, Curb Action, Sidewalk Action,

Pavement Type, Facility Type, Functional Classification, and Precinct. There is an

additional table for User Information where the administrator can change login user

information. The user can click on the links to view details of the corresponding tables.

3 Refer to Software Development Process: Web-based Pavement Management System as Case Study by
Durongdej for details on the Atlington PMIS application development.

55

‘B Administration - Microsoft Internet Explorer

| e Edt Vew Fgvorkes Jook Heb

ARLINGTON

PARTMENT

Pavement I\!a!ianemm and IllSllOGﬂilIl SISlOIII

ADMINISTRATION

Mant> 2001 Town of Arlingtan Department of Public Works. All rights reserved. For questions or comments, please sen|

‘webmas| gfg! wr.arlington.ma.us

Figure 5-6 Arlington PMIS: Administration Page

2 Administration: Street Summary - Microsolt Internet Explorer

| Ble Edt Vew Favortes ook e

ARLINGTON

DEPARTMENT OF PUBLIC WOR

Pavement Management and Inspection S!Stom

m

Administration

STREET DATA

| :
393 |ABERDEEN ROAD " [TANAGER STREET IpunDEE
"533 |ACADEMY STREET HOUSE #22 “lIRVING ST
"534 |[ACADEMY STREET (734 MASSACHUSETTS AVENUE HOUSE #22
735 [ACORN PARK 30 CONCORD TURNPIKE [100"S0UTH
"T415 |ACTON STREET 21 APPLETON STREET [APPLETON PLAC
637 |ADAMS STREET [319 MASSACHUSETTS AVENUE [216 BROADWAY
544 |ADDISON STREET [106 PLEASANT STREET |800' END
20 [AERIAL STREET [169 FOREST STREET [F7s'N
30 [AERIAL STREET [375'N
31 |AERIAL STREET [carLROAD 288 WASHINGTON STREET
455 |ALBERMARLE STREET WALNUT STREET [MOUNT VERNON STREET
' 7 [o7 LAKE STREET " [PRINCETON ROAD
“"g38 IAUEN STREET 7 |339 MASSACHUSETTS AVENUE |70 WARREN STREET
57 |ALPINE STREET ‘ IBLossuM STREET [SUMMER STREET

"[ALPINE STREET

|3UDS OF BRANCH AVENUE

BLOSSUM

Figure 5-7 Arlington PMIS: Street Data Summary page

Figure 5-7 shows the Street Data summary page after the user clicks on the Street Data

option in the administration page.

The page shows a list of pavement sections sorted

alphabetically with the start and end termini indicated. Other pavement data summaty pages

have similar layouts. The user can click on a specific street section and look at the details, as

56

shown in Figure 5-8. If the user wants to update any data for that street section, he can click
on the “Edit” link and make the modifications and send to the database for update, as
shown in Figure 5-9. The user can navigate into other tables through the administration

page and carry out similar viewing and modification activities.

/7 Street Data Details - Microsoft Tnternet Explorey

| Hle Edk Yew Favortes Joos Heb

ARLINGTON | T OF PUBLIC WORKS

Pavement Ilanauomom alul inspection Srshm

R rmmraton Joueny]
STREET DATA

[Street Segment Details

ABERDEEN ROAD
TANAGER STREET
DUNDEE ROAD
20

|PUBLIC ROAD

=l
T} Edit Street Data Details - Microsoft Internet Explorer A x|
|| o Edt Yew Favortes ook teb il .ﬁ
GTON DEPARTMEN" 7 3 Tl
Pavement Management and I Insnoeﬂnn 8vstnm
Administration
| STREET DATA [
| |
———w”mi
| Street Segment Details
|
|
]
i
| k|

Figure 5-9 Arlington PMIS: Street section detail modification page

57

5.3.4.4.2 Pavement Condition Inspection

3 Upload Inspection Data - Microsoft Internet Explorer

ARLINGTON DEPARTMENT OF PUBLIC WO|

Pavement I\lauaunmnll aml inspection System

INSPECTION

[Browse..

Upload File

© 2001 Town of Arlington Department of Public Works. All rights reserved. For questions or comments, please send e-mail to |
webmaster@town.arlington.ma.us

Figure 5-10 Arlington PMIS: Inspection file upload page

A upload Inspection Data - Microsoft Internet Explorer

LI;B6 e e et Db he

ARLINGTON DEPAR E

Pavement Management and Insmctlnn SVSIOIII

[ain Jinspection}
‘ INSPECTION

[Saz May 05 00: 3é 49 EDT 2001

| @ 2001 Town of Arlington Department of Public Works. All rights reserved. For questions or comments, please send e-mail to
webmaster@town.arlington.ma.us

Figure 5-11 Arlington PMIS: Inspection file management
Figure 5-10 and Figure 5-11 show two of the functions in the Inspection module.

After pavement inspection is done on the Palm device, the inspection file can be
downloaded to a personal computer and uploaded to the pavement management system

through the inspection data upload page. The system also allows the user to edit inspection

58

data after uploading the file so that any defect data inputted by mistake can be corrected
before the data is updated into the database. The system also provides a log of inspection
data files so that the user can download and view the details of inspection carried out on a

specific date.

5.3.4.4.3 Pavement Analysis

After inspection, the user can carry out pavement analysis on the street sections to

obtain PSI values of the pavements and also determine maintenance and repair strategies.

T} ravement Analysis - Microsoft Internet Explorer

ARLINGTON DEPART) NT OF PUBLIC WORKS

Pavement l\lananomom and inspection System

i PAVEMENT ANALYSIS

__ Crsnewsconario | select vear [Z000 3]
Load scenario Select Year [2000 7]
Compare scenario selact vear [2000 7]

2001 Town of Arlington Department of Public Works. All rights reserved. For questions or comments, please send e-mail to
webmaster@town.arlington.ma.us

Figure 5-12 Arlington PMIS: Pavement analysis main page

Figure 5-12 shows the main page in pavement analysis, where the user have the option
to create a scenario, load a scenario, or compare scenarios for a specific year. A scenario
contains a set of street sections where M & R actions are planned for future

implementation.

59

3 Load Scenario - Microsolt Internet Explorer
T 1 &
[PAVEMENT ANALYSIS =
!Bcanarln Name: mass
|
|Yaur: 2002
|comment:
|
| =
=
=
Scenario Completed? [N] Submit change in completion status |
Sea—t
StrostRanie Sectionfe, o inus |END Pavement|Sidewalk|Current Im;-r SoetlRraark ":"‘
PRCREE R D | |Terminus [Action Action |PSI :\‘ tien Ll " st
— - - . L at W \dbuacd - — P e
2 APPLETON QUINCY y |
APPL.ETOP\.I PLACE |416 STREET STREET INo_actign |No Action|5.0 5.0 F
1192 |
;s:;EE:.ON 298 MASSACHUSETTS|PARK AVENUE [No action |No Action|5.0 5.0 =
PPLET! I : i
gmﬁf’" 299 [PARK AVENUE |:V$E%TJUESETT Mo action |No Action|s.0 5.0
APPLET ! . ¢
JAERLETON 300 [WACHUSETT liouse #425 |No action |No Actions.0 [s.0 r]ﬂ
P |»

Figure 5-13 Arlington PMIS: Pavement analysis — scenario query and summary page

Figure 5-13 shows the page after a user creates or loads a scenario. The top frame is
an area where the user can specify the criteria to add streets to the scenario, such as PSI
range, precinct, last maintenance date, and street name. In the diagram, the user wants to
look at the conditions of Appleton Place and so he enters the keyword “Appleton” in the
Street Name field and leaves the other fields unchanged. The bottom frame then shows a
list of streets that match the inputted query criteria. Selected details of the street sections
are displayed, including the start and end termini, the selected Pavement Action and
Sidewalk Action in the current scenatio, the present PSI level and the predicted PSI
improvement with the selected action, as well as any cost considerations. Since the user
only wants to look at Appleton Place, he can check the “Remove from Scenario” buttons

next to all the other street sections and remove them from the scenario.

60

2 Load Scenario - Microsoft Internet Explorer

| Elo Edt Yew Favorkes Jods Heb

i PAVEMENT ANALYSIS

Pavement Detail

stﬂéﬁp&mi;lnpmmor« PLACE

M%ggk APPLETON STREET

Predicted PSI:

Action

Current PSI: 5.0

for Vaari?m]? Entar l

| Estimated Unit

| Cost

Planned Cost

R — — - , :
Crack Seal 5.0 $0.3 |so3 0.0 c
chip Seal 5.0 $1.35 |¢fT35 0.0 c
Crack and Chip Seal 5.0 $1.35 [ef35 0.0 c
Overlay 5.0 $3.06 5f3.06 0.0 s
|Surface Patch 5.0 $1.53 4]1.53 0.0 c
Grind/Mill T 5.0 $2 sf2 0.0 o
FulDeptn Patch 5.0 $6.12 of6.12 0.0 s
lrubber Seal 5.0 $2.85 4[2.85 0.0 s 1]
‘R,s:unstm:tiun 5.0 $6.11 611 0.0 Loy
ApplyActiontoStest | Cancel | Groph| StestDetais |

Figure 5-14 Arlington PMIS: Pavement Action selection

The user then decides to look at the various pavement action possibilities for Appleton
Place. He clicks on the section numbet, and the system displays the pavement action
selection page, as shown in Figure 5-14. The page shows the street name as well as the
start and end termini, so that the user can make sure he has selected the desired street
section. The action table shows a list of pavement actions, along with the predicted PSI of
the pavement section after each action, the estimated costs for carrying out the action, and
the benefit of that action into the future after taking into account of deterioration. The
user can evaluate the benefits and costs of the array of action options and choose the one
that fits his budget. After choosing the action, the user can save the selected action and go

back to the Scenario Summary page and carry out more maintenance strategy planning.

61

J Load Scenario - Microsoft Internet Explover

|

T -
{ PAVEMENT ANALYSIS | =
Curb; 2
. . . :::'::"{_‘I':L',;f":')"" }l.lumnm_v R0 [Pranned cast }s.-lm.r
Granite curb for straight sections $19.0 I
Granite curb for curved sections $25.0 [Iﬂ 0 $]0.0 I
Curb remaved and resat [s7.5 m |¢fn I
Adjustment of existing curb s3.0 [oo |s|00 r
Gravel borrow $9.0 ‘Il] 0 igoo [
Granite curb for curved sactions i$25.0 oo l¢fo.0 =4
,,,,,,,,,,,, okl e} ! i T L
Sidewalk;
Estimated lianE
Sidewalk Action Unit Cost :Hw ll"
: B P [(per ft) | 4
erDncrata sidewalk (4 i lab) $18.0
[Concrete sidewalk at driveways (6
inch slab) $22.0
INo Action $0.0 -
Submit Changes to Scenario | sl

Figure 5-15 Arlington PMIS: Curb and Sidewalk maintenance action selection page

Apatt from pavement actions, the user can also apply curb and sidewalk maintenance
actions to the pavement sections. The user can go back to the Scenario Summary page
and click on the Sidewalk action link to access the Curb and Sidewalk maintenance action
selection page, which is shown in Figure 5-15. The page contains action tables for curb
and sidewalk actions respectively. The system allows the user to plan out strategies and
preview the cost needed, so that the user can make budget analysis based on different
strategies. After the user select the desired curb and sidewalk actions, he can save the
selection to the database and the summary page would automatically update with the latest

selections.

62

3 Compare Scenario - Microsoft Internet Explorer

| e g Vow FovoRes Tods tep

ARLINGTON DEPARTMENT OF PUBLIC WORKS
Pavement “aﬂ'mmﬂn‘ a“d |ﬂ$m0n System

i PAVEMENT ANALYSIS =

PSI After
Action

Scenario
Name

| Ps1 Before

tal C ‘ Det:
Action Total Cost etails

| ftesting las las T liaso [z

) (c)2001 Town of Arlington Department of Public Works. All rights reserved. For questions or comments, please send e-mail |
to 1

Figure 5-16 Arlington PMIS: Scenario Comparison summary page

A user can create various scenarios based on different criteria and at the end, he would
want to look at all the scenarios created and decide on which scenario would actually be
put into real action. The user can select among the scenarios created for a specific year in
the pavement analysis main page and use the “Compare Scenario” to make a direct
comparison across different scenarios based on overall PSI improvements as well as the
total costs required, as shown in Figure 5-16. All the scenarios created for a specific year
are shown, and the user can select one or more of the scenarios to look at the details of the
scenarios by checking the boxes next to the desired scenarios. As shown in Figure 5-17,
the scenario details page shows the details of the selected scenario, grouped by the street
sections and listing the selected actions, estimated costs, and benefits. If the user wants to
carty out further data manipulation, he can click on the “Export” button and export the

scenario to an Excel spreadsheet, as in Figure 5-18.

63

q Pavement Analysis: Compare Scenano - Microsoft Internet Explorer

| B E® Wew Favorkes Tods Heb

TSAWIN STREET Pau IS‘I’REET |E'EL'E|'REET"]N‘D acron 0.0 'Iu.u ay laAu l‘S‘u]U‘IJ_‘E
= ! | |

|SAWIN STREET 659 |TEEL STREET __ |200' WLY _ |No action [0.0 [0 oo [s.0 [s.0 Jo.o

! Export

|Scenario: testing

pavement |Pavement [Curb |Sidewalk [PSI Sum

2y = Action l".'u:.t _|Cost ICost
!T:;SJ;HUSE"S PR g PINE COURT [No action (0.0 12345.0 0.0 o Jso 12345,
JASSACRUSETTS: s pine courT [SOLEMAN s action 0.0 00 0.0 l4.22 |+22 |00
TCESJEHUSETTS 4 COLEMAN 2asON Mo action 0.0 00 0.0 ?3.77 3.77 [o.0
MO SCACHUSETTS g SON_ ERANKLIN o action (0.0 00 0.0 50 50 [0.0
r:gs:;nussﬂs 6 FRANKUN HaRLOY [No action 0.0 0.0 0.0 50 [s0 |0
r:::SECHUSETTS 7 g?;gr" ;ﬁgggglke No action 0.0 o0 oo }rq.« 44 0o
TCESEJEH”%TTS 8 ';:2:2?'“ ggilasvmo No action 0.0 00 0.0 ;s.u 50 0.0

_Exor|

‘!E.as:t | _r_lﬂ

Figure 5-17 Arlington PMIS: Scenario Comparison details page

T http:/ farlingtonb.mit.edu:B080/archi/pavement _analysis/convert_excel.jsp?scenl}=6 - Micrasofl Internet x

|| He Edt vew Inset Fomet Tods Data GoTo Fovorkes Hep - ﬁ
Al :J = Scenario: testing

A EEE ¢ D I E [=

Scenario: testi

MASSACHUSETTS AVENUE 2|PARK AVENUE PINE COURT No action
MASSACHUSETTS AVENUE 3|PINE COURT COLEMAN ROAD —lyo action
MASSACHUSETTS AVENUE 4|/COLEMAN ROAD JASON STREET No action
MASSACHUSETTS AVENUE S5|JASON STREET FRANKLIN STREET No action
MASSACHUSETTS AVENUE 6|FRANKLIN STREET HARLOW STREET No action
MASSACHUSETTS AVENUE 7|HARLOW STREET THORNDIKE STREET _[No aclion
10 |MASSACHUSETTS AVENUE 8|THORNDIKE STREET |BOULEVARD ROAD _ |No action

{741 W\ convert cxcel snscmiDef / 141 : R la

Figure 5-18 Arlington PMIS: Scenario details exported to Excel spreadsheet

64

6 Further Developments

6.1 System Level

At system level, there 1s an increased trend to integrate maintenance management with
other departmental management functions, and to explore potential applications of new
management capabilities and technology. The PMS should be integrated more with other
high-level decisions related to capital improvements and operations. It should also be able
to have adjustable work plans and schedules to reflect changing conditions, for example, in

composition and funding of maintenance program, and federal legislation.

6.2 Application Level — Arlington PMIS

At the application level, the following developments are some of the features that can

be integrated in the future to improve the functionality of Atlington PMIS:
® Graphing function that shows the deterioration of pavement sections.

¢ Implementation of more realistic deterioration models for different pavement

sections based on the usage pattern.
® Automated budget optimization based on the IBC method.

¢ Project scheduling tool for monitoring construction and maintenance activities.

65

7 References

Cheung, W. (2001). Evaluation of Infrastructure Monitoring System Using PDA and GPS
Technologies.

Durongdej, W. (2001). Software Development Process: Web-based Pavement Management
System as Case Study.

Haas, R., & Ronald Hudson, W. (1978). Pavement Management Systems. McGraw-Hill.

Hall, M. (2000). Core Servlets and JavaServer Pages. Prentice Hall.

Hunter, J., & Crawford, W. (1998). Java Servlet Programming. O’Reilly.

Loyaerts, Y. (1997). Analysis of Road Database Management Structure. In Advanced

Vehicle and Infrastructure Systems: Computer Application, Control and Automation
(pp-371 — 390). John Wiley & Sons.

Markow, M.J. (1993). Highway Maintenance and Integrated Management Systems. In

Infrastructure Planning and Management (pp.127 — 131). American Society of Civil
Engineers.

Mohseni, A., Darter, M., & Hall, J.P. (1993). Benefits from Improved Management of

Pavement Facilities. In Infrastructure Planning and Management (pp.21 — 25).
American Society of Civil Engineers.

Shahin, M.Y. (1994). Pavement Management for Airports, Roads, and Parking Lots.
Chapman & Hall.

Yim, W.K. (2001). Data Modeling in a Pavement Management System.

IBM Application Framework for e-business: Web Application Client Programming Model.
<http:/ /www-4.ibm.com/software/ebusiness/clientwp.htm!> (cited 1 May 2001).

IBM Application Framework for e-business: The Web Application Programming Model.
<http://www-4.ibm.com/software/ebusiness/pm.html> (cited 1 May 2001).

66

