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ABSTRACT

Prestress mechanism is an effective means to increase strength and control the deflection of a
structural member. In structures today, prestress mechanism is primarily associated with
concrete members and prestressed steel members are seldom used or even considered for
implementation. However, prestressed steel members have been effectively used in
rehabilitation or post-strengthening of bridge structures in the past.

Prestressing by tendons, whether it is made of high strength steel or other materials such as FRP
(Fiber Reinforced Polymer), is the most versatile system available and is used frequently in the
industry. There are other prestressing systems, however, such as prestressing by predeflection,
prestressing by bending, and redistribution of moments by support level manipulation. All these
are highly effective means to apply prestress on steel members.

Using the method of prestressing by tendons, feasibility of a bridge design with a unique
structural orientation was investigated. Due to its orientation, steel was used as a primary
structural member to reduce the stresses induced by the structure's own weight. The static
analysis of the design showed that the stresses created within such structures can be resolved
effectively using the prestressing mechanism described.

Thesis Advisor: Jerome J. Connor
Title: Professor of Civil and Environmental Engineering
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1 Introduction

During an engineering or design process, many challenges in problem solving

maybe encountered. Sometimes such challenges are resolved using conventional

approaches or means that have been tried before, simply for the sake of solving the

problem. On the other hand, many designers' that strive to implement creative and

innovative methods for those challenges. These methods may have never been tried and

tested, they maybe considered unconventional and seldom used, or they maybe new

applications or modifications to existing methods. Whether these new means are proven

to be successful or are completely inappropriate for those specific situations, they often

give new insights and contribute to technological advancements.

In this paper, it is the author's intention to consider an unconventional solution for

a specific problem encountered during an engineering design project. This method,

"prestressing," has been used in ways of trial and error long before the mathematical

tools in structural engineering were developed. Even today, the idea of prestressing is

widely used in many different industries utilizing variety of materials. Among these

materials, however, most common material for prestressing in structural engineering

today is concrete. Concrete, although versatile in nature and inexpensive in cost, cannot

be utilized in all aspects due to its heavy weight and relative strength. For this reason,

structural steel is more favorable in certain applications where weight reduction is a key

issue in making the structure work.

The idea of prestressing steel is not new. In fact, many studies have been done

that have shown considerable benefits in economy and strength capacity using

prestressed steel members. Mysteriously, however, prestressed steel never thrived like its

concrete counterpart. The method is seldom used and even in academic context it is

rarely studied.

In the process of researching information about prestressing means for steel

elements, it became evident that there were extensive studies that were carried out

regarding the subject up to about the 1970's. In fact, numerous international conventions

specifically addressing this topic were held around the world, with participants from well

known industrialized countries such as the USSR, England, Belgium, Germany, and the

US . However, such studies and researches related to the subject of prestressing steel

Massachusetts Institute of Technology 6
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became scarce around the 1970's and all the attention was focused on prestressed

concrete. Much of the existing information on this subject has only been available

through engineering journals and publications, most of them foreign.

Today, most popular use for prestressing mechanisms on steel structural members

is for rehabilitating or retrofitting of existing bridges, generally associated with older or

well-traveled highways and railroads. It is the author's understanding that new structures

extensively implementing the use of prestressed steel has not been built recently.

Massachusetts Institute of Technology 7
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2 Concept

The basic idea behind prestressing is not a difficult concept to grasp. It merely is

a form of providing additional strength and deflection control to a member to counter-act

the applied loading. In ideal cases, due to the static nature of the applied loading, the

prestressing mechanisms can be implemented in a customizable fashion to mimic the

applied loading pattern, and therefore, directly counter-acting the applied load.

Theoretically, the prestressing, then, could completely negate the applied loading, given

that the member is able to withstand the stresses induced as a byproduct of the

prestressing (i.e. compression). The figures below show a basic prestressing idea at

work.

Loading

Comnression Normal
113 lis Force

Friction

Figure 1: Basic Concept of Prestressing'

In this simple case, the friction induced by the compression force opposes the

loading in directly. If the loading increased, applying larger compression force can

increase the opposing force. Since the compression force and the normal force are equal

in magnitude, increasing the compression would increase the friction. This specific case

works because the books can withstand the compression forces applied by the person. In

other cases, buckling of the member due to the compression must be taken into account.

Massachusetts Institute of Technology 8
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2.1 Steel vs. Concrete

There are numerous advantages to using prestressing mechanism for steel rather

than its concrete counter part. Although steel has a higher material cost by weight

compared to concrete, the construction, in most cases, requires less labor and provides

faster erection time than that of concrete structures. Concrete structures require

formwork and layout of cumbersome reinforcements, entailing greater labor,

coordination, cost, and time. In addition, concrete also requires a specified period to

reach a workable strength - 28 days to achieve its full strength for normal concrete. Steel

is also stronger than concrete of equal weight and has compressive strength equal in

magnitude of its tensile strength, compared to concrete, which has virtually no tensile

capacity.

In concrete, due to its inability to take tension, prestressing is applied to achieve

distributed compression with little or no tension. On the other hand, because there exists

load capacity for both compression and tension, equivalent steel section can utilize a

greater cross-sectional area for stress distribution. This ability, therefore, provides steel

with economical advantage over concrete for resolving stresses within a member, as it is

more efficiently used.

There are also many disadvantages in using steel instead of concrete as a

structural material. Almost all steel sections are standardized and to deviate from the

standards requires additional cost related to fabrication. Also to provide the same support

conditions for prestressing in the concrete members, steel sections require additional

materials, such as anchorages and stiffeners. And, finally, concrete can be formed freely

to take just about any desired shape while it is extremely difficult and costly to achieve

the same effect using steel.

Although prestressed concrete is far more popular in structures than steel, it is the

author's belief that prestressed concrete cannot possibly be utilized in every situation due

to its weight. As it will be discussed later, a conceptual project has used prestressed steel

pylon for cable-stay bridge instead of prestressed concrete due to the strength and the

weight reduction required.

Massachusetts Institute of Technology 9
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2.2 Challenges

As simple as this concept may seem, the challenges of prestressing occur when

other variables come in to play. For example, in many situations, the applied loading is

not static but dynamic in nature. This poses difficulty in trying to match the prestressing

pattern to counter the applied loading since the location or the magnitude of the applied

loading is not constant.

Perhaps, one of the most challenging aspects of the prestressing mechanism is the

fact that the problems are statically indeterminate in nature. Although the analysis for

prestressing, concrete or steel, are often done using statically determinate formulations,

they do not always yield the most accurate solutions. At the same time geometrically

nonlinear behavior is observed due to P-8 effect when extreme prestressing with tendons
16is installed before the total design load is applied . In such cases, prestressing and the

design load must be applied incrementally to reduce the effects of the axial compression.

One must keep in mind, though, that in general, linear approximation of prestressing

mechanisms, in addition to the code limitations and added safety factors, provide

sufficient approximations for practicality.

Massachusetts Institute of Technology 10
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3 History

As mentioned above, the idea behind prestressing is far from being new. Even

before the term "prestressing" was invented the principle was used effectively in different

applications. The oldest known application of prestressing in structures was in Egyptian

shipbuilding, around 2700 B.C. They had used wire ropes and turnbuckles to hold the
14sides of the ship together (Fig. 2) . Other applications include wheels, barrels and

cannons where iron rings or wires were drawn out and tightly wound to give added

stiffness and strength. For example, cartwheels were assembled using heated iron rings

that wrapped the rim of the wheel. As the heated metal cooled, the ring contracted,

inducing compressive force in the spokes and tightening the joints (Fig. 3). Another

example of prestressing, which is still in use today mainly in the wine industry, is the

method of barrel making. Wooden barrel sides are held in place tightly by forcing a

metal hoops, smaller in diameter, around the barrel, creating a watertight seal between the

staves (Fig. 3)11.

bis 60m

Fi .e2:Petes. gUsd....b.n

Figure 2: Prestressing Used in Shipbuilding'14
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Figure 3: Prestressing Used for Barrels and Wheels"

It wasn't until the middle of 1800's when the prestressing schemes were

employed in bridge structures. In U.S., Howe trusses, utilizing timber chord members

and cast iron diagonal and vertical ties, were patented in 1840. From 1847 to 1850, H.

Rider designed prestressed trusses, consisting of cast iron chords and wrought iron

diagonals, which were prestressed in similar manner as the Howe trusses, by tightening

of nuts at both ends.1 4

Ur
MR

Figure 4: Rider's Prestressed Trusses14
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One of the more famous prestressed steel structures is the Britannia Bridge over

the Menai Straits. Designed and built in 1850 by Robert Stephenson, this 1380 ft bridge,

with two 460 ft main spans and two 230 ft side spans, utilizes rectangular tube girders to

carry the railway tracks within the girders 7. The Britannia Bridge used a form of

prestressing method called the "pre-deflection" method, which forces a deflection in the
14direction that will produce a moment countering the applied loading . Details of this

prestressing method will be discussed in the later chapters.

Figure 5: Britannia Bridge over Menai Straits5

Many other bridges incorporating the method of prestressing steel were built in

the early 19 th century but nearly all of them have either been destroyed or replaced. At

the same time with the onset of the prestressed concrete developments, structures using

prestressed steel members diminished rapidly. However, this development did not

completely eliminate the use of prestressing mechanisms for steel members in structures.

Prestressing of steel members is, and has been, continuously utilized for rehabilitating or

strengthening of existing highway bridges. As an example, recently, two continuous-

span steel stringer bridges were strengthened in Iowa, using post-tensioning mechanisms.

The bridges in discussion were overstressed in both positive and negative moment

regions when service live loads were applied. After, the installations of the prestressing

mechanisms, the procedures were determined to be viable, economical strengthening

Massachusetts Institute of Technology 13
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techniques that should significantly extend the useful life of a given bridge'5 . The

following figure illustrates the mechanism that was installed (Fig. 6).

Strut / Tendon

Bracket _
Pier

Figure 6: Bridge Rehabilitation Using Prestressing15

In 1996, some of the most spectacular structures, which some consider would

have been impossible in the previous years, were engineered in Madrid, Spain, by Leslie

E. Robertson Associates. The building structures known as "Puerta de Europa", or

"Torres Kio," was one of the break-through structures that surpassed the barriers of rigid,

verticality of high-rise buildings. The two 26 floor buildings lean 15' from the vertical

relying on the lateral support provided by a combination of prestressing mechanisms,

post-tensioned in this case, that are implemented on concrete core elements and steel

framing elements (Fig. 7)13. The prestressing elements in this case provided the

necessary deflection control, counter-balance moment, and increased stiffness for the

overall system.

F. 7: Puer.a de urpa,1

Figure 7: Puerta de Eurpa3 1
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Leslie E. Robertson Associates is currently involved in engineering of several leaning

high-rise buildings, a total of five, the Puerta de Europa being one of them, and the other

currently in construction is the new Domino's Pizza World Headquarters in Ann Arbor,

Michigan (Fig. 8). These examples distinctively rely on the prestressing mechanisms for

stability and strengthening of the structures. With further developments in this field, the

possibilities for future structures could be limitless.

Figure 8: Domino's Pizza World Headquarters2

Massachusetts Institute of Technology 15
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4 Prestressing Methods

There are many variations of applying prestress to steel members. These

variations can be grouped into two distinct categories. One category is considered the

most versatile method of prestressing mechanism and can be applied to range of

structural systems. This particular method utilizes what is known as tendons to induce

the necessary prestressing. Because the mechanisms can be installed externally after the

member has been constructed, it is often used for rehabilitation or post-strengthening of

existing structures. The tendons are generally made of high-strength steel, but other

materials such as FRPs (Fiber Reinforced Polymers) are currently being used in the

industry.

The other category of prestressing mechanism includes all other means of

inducing prestress in the member. These mechanisms include bending of rolled sections

reinforced with cover plates, predeflection technique, and redistribution of bending

moments using differential support level regulations.

4.1 Prestressing by Tendons

Its simple concept and ease of installation, perhaps, made the use of tendons a

popular method of applying prestress to both steel and concrete structural members. In

steel members, prestressing with tendons provide a specific advantages in that they can

be applied after the structural system is in place, or in many cases, even after the design

loads have been applied to the system. This specific advantage makes the tendon

prestressing mechanism ideal for post-strengthening of structures that have deteriorated

or are in need of rehabilitation. Often this mechanism is used in older highway

structures, such as overpasses and bridges, to increase the life span of the structures.

There are a few different orientation of prestressing with tendons that can be

applied to the structure depending on the desired stress distribution in the member. One

of these orientations requires little effort in installation and provides an excellent result

for a member with constant distributed load as its applied loading. In this case, the

prestressing tendon is placed under the bottom flange of a beam (i.e. wide flange steel

section) and a eccentric stress is induced in the cross section of the member (Fig. 9).

Massachusetts Institute of Technology 16
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N.A.

X X

Figure 9: Eccentric Tendon Placement14

Since the tendon is placed eccentrically with a distance, e, from the neutral axis of the

member, the stress induced will be consisted of an axial compression and bending. If X is

the amount of prestressing force in the tendon, the total stress induced in the member due

to pressing, f, is

X Xec

J A I

where e is the eccentricity, c is the distance to the exterior edge of the flange from the

neutral axis, and I is the moment of inertia for a given section. 4

If the member is subjected to a loading that generated moment M, then the total
stress in the member is given by'4

X Xec _ Mc
fotal +-

A I I

X Xec Mc
A I I

Figure 10: Stress Distribution for a Symmetric Member 4

Massachusetts Institute of Technology
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In this case, the prestressing reduces the tensile stress in the bottom flange while

increasing the compressive stress in the upper flange. The added compressive stress

results in decrease of tensile area and therefore increase the overall capacity of the beam.

Another variation of the prestressing mechanism using tendons is the draped

orientation of the prestressing cable. This method is preferred in specific situations

where the applied loading is a constant distributed loading or point loads of equal

magnitudes spaced evenly along the length of the member, and the benefits of using the

prestressing will be optimal. The benefits of the draped tendon system draw from the fact

that the prestressing is able to provide similar but opposite distribution of stress to those

induced by the applied loading 4 . For example, if the prestressing tendons are draped in a

predetermined polygonal shape with tensile force of P, as shown in Fig. 11,

L

e

bL bL

AL

N N

Figure 11: Polygonal Shape Tendon Placement12

the resulting vertical components of the tensile force in the tendon will be in the exact

opposite direction as the applied loading with a magnitude of'2

Pe

bL

Massachusetts Institute of Technology 18
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A similar concept can be applied to account for a constant distributed loading.

If the prestressing cable is draped in a parabolic shape, it provides a counter stress

distribution that is similar but in opposite direction of the distributed loading (Fig. 12).

The magnitude of the equivalent loading, w, due to the parabolic draping of the tendon

will be' 2

8Pe
W =E

L

e

w

Figure 12: Parabolic Shape Tendon Placement12

This particular draping method, however, is not easily implemented on a steel structural

member since it requires extra support materials to provide the needed shape of the

draping. In prestressed concrete members, the formed concrete can provide the support

for the parabolic shape of draping.

In theory, given that the compressive stress induced by the prestressing tendon

can be resolved to avoid buckling or compressive yielding, specific cases of applied

loading can be completely negated by the use of prestressing mechanism. However, the

cost saved by negating the applied loading generally does not compensate for the cost

Massachusetts Institute of Technology 19
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generated by additional materials to support the compressive stress (i.e. increased

member size, added web stiffeners, reinforced anchoring for tendons, etc.). Therefore,

costs and benefits of prestressing must be investigated before simply applying the

prestress to negate the total loading.

So far, the stress formulation has been based on the statically determinate

formulations of the system. However, these formulations must be modified for

indeterminacies and nonlinear behaviors in specific situations. For example, the modulus

of elasticity for the prestressing tendon changes nonlinearly according to the change in
16the tension.

E = E
eff AEEwL

1+AE ( )2
T T

where

Eeff = modified modulus of elasticity (effective modulus)

A = cross-sectional area of the prestressing tendon

E = original modulus of elasticity

T = tension in the tendon

L = unsupported length of the tendon

W = vertical component of the weight per unit length of the tendon

It can be seen in the above equation that the nonlinear material behavior of the cable

often does not play a significant role in prestressing systems unless the weight and the

length of the tendons are significantly large. Such is the case in cable-stay bridges where

the cables' unsupported lengths and the weight of the cables have large affect on the

engineering of the structure.

The complication of nonlinear analysis becomes significant when the magnitude

of the prestressing becomes large and P-8 effect cannot be ignored. Since the

prestressing tendons induce a large component of its stress through compression, the

member could buckle if the desired prestressing is applied all at once in a single step

without the design load countering the stress. Increasing the member size to

Massachusetts Institute of Technology 20
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accommodate for the prestressing can prevent this buckling but this would defeat the

purpose of installing the prestressing mechanism to begin with. A better solution is to

incrementally apply the prestressing and the design loading, so that the member will only

see a fraction of either the prestressing or the design loading (Fig. 13) at each increment.

OCP
a)

ON
uxP ----

b)

20N
2axP

c)

N
P

d)

a = a fraction of the total prestressing

0 = a fraction of the applied loading

Figure 13: Incremental Prestressing

Incremental prestressing is often desired not just to reduce the P-8 effect or to

reduce the member size, but also for reasons of constructability, where single step

installation of the prestressing mechanism would be limited due to the length and the

support condition of the member. However, if the prestressing is done incrementally, the

resolution of stresses become statically indeterminate and an additional equation must be

established.14 This is also the case where the prestressed member is subjected to a live

load and an additional deflection is induced to the system. Under such conditions, the

Massachusetts Institute of Technology 21
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length of the tendon is increased by an increment of length, AS, and accordingly the force

in the tendon, X, is also increased by AX. To determine AX, three equations of

YM=0 JV=0 EH=0

equilibrium, are not sufficient and an additional equation is needed.

An additional equation for the above case can be derived from the compatibility

criteria when the cable is cut vertically. Here, the horizontal displacement in the cable

due to live load (Sip) and the force increment AX must equal 0.14

SSia
L

Figure 14: Indeterminacy Due to Stretching of Tendon 4

Therefore,

S
AX= "5j

511

or

where S1 1 is equal to the displacement due to unit prestressing force.14
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Solving the equations utilizing the virtual work method, the displacements are:

(. = Mxmdx
ipJ 0 EI

on = dx + +-
EI EA EA

and therefore,

AX 2 EI

Sdx+ +-
EI EA EA

where14

M = the bending moment due to external loading

M = the bending moment due to unit load

A = cross-sectional area of the beam

At= cross-sectional area of the tendon

E = modulus of elasticity of the beam

Et= modulus of elasticity of the tendon

I = moment of inertial of the beam

L = length of the tendon

As was mentioned earlier, in theory, with the addition of necessary supports for

compression, the prestressing limitation would only be bounded by the tensile strength of

the tendons, which can increase with addition of extra tendons. Implication of this theory

is that with proper engineering, relatively thin, slender structures, generally

architecturally more pleasing, can be built using prestressing mechanisms to negate the

applied loading. However, installations of prestressing mechanisms are generally

associated with cost reduction, and using these mechanisms may not be the most

economical means to construct slender structures.
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4.2 Prestressing by Bending

Steel members can be prestressed also by bending the members using jacks and

then fixing their positions by means of welding (Fig. 15). The prestress created will have

a uniform distribution throughout the cross-section of the beam in the opposite direction

to that of the stresses induced by the applied loading. Since the final cross-section of the

prestressed member will be symmetric, the magnitudes of the compressive stress in the

bottom flange will be equal to that of the tensile stress in top flange. This ensures that the

negating bending stress will be equally distributed between the top and the bottom

flanges, effectively utilizing the material.1 4

Two Senarate Sections

a) Initial Stage

4 Jacking Forces
Weld

eldingb) Jacking and V

Jacking Forces

c) Final Stage

Figure 15: Prestressing by Bending 4

4.2.1 Combining Two Symmetrical Members

The stresses in one symmetric member at the exterior edges of the flanges due to

bending will be

SMoc -+M

IJ so
Massachusetts Institute of Technology
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Where1 4

M = the bending moment of one member

Io = the moment of inertia of one member

So = the section modulus of one member

c = distance to the exterior edge of the flange from the neutral axis

After the two members are welded and the jacks are released, the prestressing moment in

the combined member will be equal to 2Mo. Therefore the stresses in the extreme edges

of the top and bottom flanges of the combined member are

I ± 2M 0 2 S
(TOI =+ = + 00

SW SW

where Sw is the section modulus of the combined member.14

Finally, the stresses induced in the combined member due the applied loading will

be

I =+ MA
UA _.

SW

Therefore, the total resulting stresses in the combined member will be

1+ MO 2 o MA

so Sw Sw

As it can be seen, the magnitude of the stresses in the top and the bottom flange of the

combined member are equal in magnitude.14
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Bending and welding Forces are
of the Iwo components. removed.

or p

Bending under
the load.

Figure 16: Stress Distribution for Combined Member14

4.2.2 Combining Two Asymmetrical Members

In general, if two asymmetric sections are combined to form the prestressed

member, two T-sections or two halves of the wide flange sections are used to form a

symmetric prestressed I-beam (Fig. 17). The resulting member prestress distribution is

similar to that of the prestressed member using two symmetrical members.

I hT No

h

hN
No

0 -MO 2M MA
St SW SW

Figure 17: Two Asymmetrical Sections Combined14

where St is the sectional modulus of a single asymmetric member. 14

4.3 Prestressing by Predeflection

Also known as Preflex, the predeflection technique was first developed by Lipski

in 1949, utilizing both high strength steel members and high strength concrete.14 Unlike

prestressed concrete members, the high strength concrete in this case is used to maintain

the prestressing in the structural steel member. Although the method is seldom used in

Massachusetts Institute of Technology
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US today, it is a popular method for construction of bridges and railroad structures in

certain Asian and European countries.

The predeflection technique requires a rolled beam pre-cambered to a specified

design shape with shear connectors to transfer forces between the steel member and the

concrete encasing (Fig. 18a). The pre-cambered member is prestressed using jacking

forces similar to the process used for the prestressing by bending (Fig. 18b). With the

jacking forces still in place, the flange in tension is encased in high strength concrete

(Fig. 18c). The concrete encasing can be reinforced for additional stiffness and ductility.

After the concrete sets and desired strength is reached, the jacking forces are removed

and the prestressing forces are maintained by the compression in the concrete encasing

(Fig. d). Loss of prestress is expected due to the shrinkage and creep of the concrete.

a)F 8P e b e c

b)

P P

P P

Figure 18: Prestressing by Predeflection 4
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4.4 Prestressing by Moment Redistribution

The concept of prestressing by moment redistribution arises from the

manipulation of the support levels to induce bending stress within the members. This

type of stress is generally seen in unequal support settlement where the difference in the

support settlement results in stresses in the member due to bending. Utilizing this idea,

predetermined settlement, or deliberate displacement, can be applied to the structure,

producing desired moment in the system. The direction and the magnitude of the support

displacements can be manipulated to achieve desired moment distribution.1 4

L L L L

AL
2 M

M1 M

Massachusetts Institute of Technology 28



Structural Applications and Feasibility of Prestressed Steel Members

5 Economic Benefits and Feasibility

When prestressing mechanism is designed and engineered for a new structure, the

goal is to achieve stronger system with smaller deflection using least material possible.

In concrete, the benefits of prestressing are two fold. One benefit is the obvious increase

in the load capacity and the other is that prestressing by tendon primarily increases axial

compression, which can help to prevent formation of tensile cracks.

The benefits of prestressing for steel is similar in that less steel can be utilized to

provide the needed load capacity or even greater capacity than the member without

prestressing. Savings in material due to prestressing mechanism has been estimated to
14range between 10 and 30 percent . Since the cost of steel is greater than concrete by

weight, benefits of material reduction due to prestressing will be even more favorable

than that of the concrete. However, there are two cost aspects that must be considered

before realizing the economical benefits of prestressing steel members. First, installation

of prestressing mechanism requires additional equipment and labor, which is not

necessary in steel construction without prestressing. Second, the extent of the

economical benefit is limited by the cost associated with additional material needed for

anchorage and increase in member size to prevent compression failures. If extreme

magnitude of prestressing is desired, for example to negate the entire design loading, the

compression stress applied by prestressing can become significant. In such case, the cost

to accommodate the additional increase in axial stress, to reinforce against compression

failures, must also be considered.

Even with these factors in mind, the designer may wish to apply the necessary

prestressing solely for the aesthetic benefits in constructing slender structures. In terms

of architectural popularity, slender structures have become increasingly desirable in the

past. Since the prestressing mechanism for steel can be applied on just about any

structural system, it could be utilized to construct significantly more slender structures.

For example, depth of a steel girder could be reduced up to 30 percent if prestressing

using tendon was applied. Such reduction, given that the deflection criteria have been

met, would impose a significant visual impact in an aesthetical sense.

In new structures, prestressing would be ideal for specific members that require

both reduced section size and increased capacity. Application of the prestressing
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mechanism for repetitive members throughout the structure is not recommended since the

construction time required for application of prestressing will rapidly decrease in its

efficiency. However, such structures as bridge deck segments that can be fabricated at a

plant, using template like setup, prestressing of repetitive members is highly feasible.
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6 Case Study

While working on a cable-stayed bridge design, a problem was encountered due

to the unique orientation of the main structural element, the masts. The design of the

bridge consisted of two masts, on both sides of river, which held up the decks using

cables. What made this bridge unique was that the masts lack the forces that counteract

the weight and the forces on the decks (Fig. 20).

Figure 20: Proposed Bridge Design

In general, the masts on cable-stayed bridges have what they call "back spans,"

spans which provide balancing forces to the main span of the bridge. In this particular

bridge there are no back spans and to make the matters worst, the masts lean in towards

the main span approximately 550 from the horizontal. This means that the self-weights of

the masts also add to the loading. One of the great architects, Santiago Calatrava, used

the similar but opposite principles in his acclaimed El Alamillo Bridge of Seville, Spain.
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It also does not have back spans but rather uses the weight of the massive mast made of

concrete to counter balance the deck loading (Fig. 21).

Figure 21: Calatrava's Alamillo Bridge8

Therefore, the masts on this design act as large cantilever beams that have

concentrated loading near the tip. The larger mast has a length of 140 ft and the shorter

one of 95 ft. According to the preliminary calculations that were carried out, required

concrete section to withstand the stress would be enormous, and near impossible within

the design restriction. At the same time, adding more concrete area to bear the stress

would only increase the weight and therefore would increase the induced stress.

Composite sections were also considered but in the end it was concluded that the use of

steel for the primary structural member would be the optimal solution for this design.

Simply replacing the concrete with steel, however, did not solve the main problem

in hand. The structure still lacked the necessary back span or other counteracting forces.

Analyzing only in terms of structural strength, the bridge can be built to withstand the

design loads. This means that the bridge will not collapse if it was built. The governing

factor in this design, though it seemed at first, was not the issue of strength but rather was

an issue of stiffness.

A cantilever mast with a length of 140 ft would deflect significantly, even to the

point of discomfort for those traveling on the bridge. Again, in a conventional cable-

stayed bridge, the combination of the main span loading and back span loading creates a
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large axial load in the mast, stiffening up the structure. Without the back span, a large

moment is induced causing tension on one side and compression on the other. It is this

large moment that must be equalized in the structure (Fig. 22).

Needed
Resisting
Moment

Cable Tension
Applied

Self-Weight Moment

Figure 22: Balancing of torces

Application of prestressing to this structure, therefore, may help to reduce the

effect of induced moment and stiffen up the structure as a whole.

6.1 Prestressing Considerations

As discussed, there are a variety of prestressing methods possible for steel

members. However, for this specific case, only one of the options was considered, which

utilize the steel cables for prestressing. For the length and the scale of prestressing

needed for this project, only prestress using tendons deemed feasible. Although both

draping and eccentric tendon orientations were considered, in the end, eccentric

orientation was chosen for the structure due to the structure's constructability.

Since applying the dead loads of the full length of the deck in a single increment

would not be feasible, the prestressing system was divided up into segments, each set of

two prestressing tendons corresponding to a deck section. The design connected nine

deck segments to the taller mast and, therefore, nine incremental applications of the

prestressing tendons were considered. Simply, two prestressing tendons will counter-

balance each deck section.

The eccentric tendon orientation would provide a type of resisting load and

stiffening mechanism for the structure. Two schemes were considered for installing the

prestressing system for the structure using eccentric system (Fig. 23). In the end,

Massachusetts Institute of Technology 33



Structural Applications and Feasibility of Prestressed Steel Members

installation of the tendons within the core of the mast was selected for architectural

reasons.

or

Figure 23: Prestressing Orientation Options

Both of these orientation are sometimes referred to as an outrigger system in building

structures, and it uses forces and moment arms to provide the necessary resistance (Fig.

24).

It

S E3/E1SIVA

Figure 24: Outriggers in Building Structures 9
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The prestressing tendons will be stressed incrementally to minimize the stress and

deflection imposed on the mast section during the construction. Each prestressing

increments will correspond to an installation of one deck section. The stresses in the

strands will be gradually increased accordingly as the cables supporting the decks are

gradually loaded. This method of installation will ensure that the mast section will only

experience a maximum moment when the last set of prestressing strands is installed.

During the installation of the preceding sets of prestressing strands and the decks, the

moments applied to the structure will be less than that of the last set.

It is clear that the magnitude of prestressing is mainly determined by the load on

the mast, which is directly related to the dead load of the deck. To reduce the need of

applying extreme prestressing loads on the mast, prestress was also considered for the

transverse girders in the deck for deck weigh reduction. The transverse girders were

designed to carry the four-point loads transferred from the intermediate stringers. If

prestressing cables are to be installed for size reduction, the layout and positioning of the

cables must be such that the forces induced by prestressing will directly counter the point

loads for the optimal benefit. To do so, the cables should be draped and the anchors

placed at calculated points. For this case where the point loads are applied

symmetrically, equidistance from each other by L/5, two anchors should be placed at 2/3

the depth of the draping in line with the point loads and two at the depth of the draping

also in line with the loads for the optimal configuration (Fig. 25).

L/5 L/5 L15 L/5 L/5

2e/3 J
e = depth of the draping L = length of the beam

Figure 25: Prestressing Scheme for Transverse Girders

The prestressing of the transverse girders weren't included in the final design of

the structure due to uncertainties associated with the weight reduction in the deck. Since
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the deck will be subjected to a lateral wind loading, significant weight reduction may

have lead to unexpected circumstances such as loss of rigidity to resist vortex shedding of

wind from the adjacent bridge.

6.2 Design and Analysis

The design and analysis of the masts in discussion were carried out as a part of

semester bridge project as required in Master of Engineering program at MIT. For the

purpose of this report, only the calculations pertaining to the taller mast, 140 ft in length,

will be presented. For numerical reference and procedure, refer to the appendix at the

end of the report.

The design of the bridge requires that the taller mast carry the load of nine bridge

deck sections, transferred through sets of cables attached within the top sixty feet of the

mast (Fig. 26). A set of two cables will carry the load of each deck, which will be

counter-balanced by a set of two prestressing cables attached on the opposite side of the

mast. Corresponding to nine deck sections, therefore, nine pairs of prestressing cables,

eighteen in total will be installed. The prestressing cables will be installed within the

core of the mast, which will be constructed of steel box girders for reasons of weight

reduction (Fig. 26).

P-irotalI

Figure 26: Prestressing Placement

As discussed earlier in the section, the prestressing tendons will be loaded

incrementally, a set at a time, as each deck sections are hung from the cables. According
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to the calculations, the maximum stress that a prestressed tendon will experience will be

9365 kips. Depending on the strength of the tendons used, the number of strands and

cross-sectional area required to withstand the force will vary. For example, using 270 ksi

steel tendons , approximately 7" prestressing tendon diameter will be required. Since this

corresponds to the maximum tensile value that the prestressing tendon will experience,

all other sets of prestressing will be of smaller diameter.

To calculate the stresses developed at the base of the mast, where the stresses will

be highest due to the total moment and axial forces created, moment arm distances, cable

angles, and the varying eccentricity of the prestressing tendons were considered. Again,

since the prestressing and the deck loading will be applied incrementally, only the

maximum moment induced per increment was considered for the design. However, when

considering the stress development due to the axial forces, total axial stress was used

since axial stress in each increment will be additive.

For the project, the indeterminacy related to the incremental prestressing method

was not considered. When the usage of prestressing was considered to resolve the back-

span issue, the goal of the project became a challenge simply to see if the structure would

be feasible rather than to produce a detailed, working set of calculations. When it was

shown that the strength capacity and load demands could be met using static, dead and

live load analysis, detailed calculations involving energy methods became unnecessary.

In addition, the limitations imposed on the bridge design was mainly based on the

requirements to meet the deflection criteria, which led to an over-design of the structure

assuring that the failure of the bridge will not be due to its load capacity.
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7 Conclusion

Prestressed steel mechanism has been recommended in the past as one of the

more effective means to increase the capacity of a structural member and to economically

benefit from the reduction in material used. It has also been proven effective when the

method was used for retrofitting of highway bridges and structural elements in

rehabilitation of buildings. Unlike its concrete counterpart, however, prestressed steel

mechanisms have not been deeply rooted in the industry as expected. Rather, the method

is rarely used and seldom even suggested as a viable solution.

Speculation to this trend would be that the prestressed steel mechanism might be

just too good for its own sake. The mechanism improves the system's strength capacity

and reduces the amount of material needed for the structure. For the engineering

industry, this would be a practical solution for majority of steel structures. From a

commercial point of view, however, this wouldn't be a favorable option for the steel

industry. Unlike prestressed concrete, the usage of steel prestressing tendons does not

promote the usage of more steel, but rather reduces it.

Another aspect of prestressed steel that may seem to be a disadvantage is that all

steel structural elements must be protected and maintained to prevent corrosion.

Corrosion drastically decreases the effectiveness and the service life of prestressing

tendons, especially. Specifically to prevent this, tendons are generally encased in a water

proof tubes or sleeves to isolate them from the external environment.

Whether the prestressing steel is favorable commercially or not, the mechanism

remains as one of the most valuable means to strengthen and add stiffness to an existing

steel structure. The effect cannot be ignored due to its ease of installation and cost

benefits that can result from its use. It is the author's belief that the prestressing

mechanism, in the future, will be implemented in the areas where the concrete

counterpart currently dominate the industry; Cable-stayed bridges, structural beams and

girders, and even foundations. As recent designs have shown, with careful engineering

and design process utilizing prestressing systems could push structures beyond their

conventional boundaries.
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Appendix
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Cable Angles

TL :=5.37-105

Geometric angles formed between the cables and the horizontal axis

0 i := 16.2 0 6:=38.4

0 2 18.4 0 7 :=50.5

0 3:= 21.27 0 8 :=68.71

0 4:=25.11 0 9 :=92.65

o 5 :=30.5

Geometric angles formed between the vertical axis and the cables

1 := 73.8 *6 := 51.6

2 :=71.6 7 :=39.5

3 :=68.73 * 8 := 21.29

4 :=64.89 *9 :=2.65

05 := 59.5

Tension in Cables

TI TL

sin 0 -
180/

T2 := TL

sin 0 2
180'2

T3 TL

sin 1 0 3 -
1801

T4 TL

sin 0 4.
180

T5 TL

sin 5' -1

TI = 1.925-10 6

T2 = 1.701-106

T3 = 1.48-106

T4 = 1.265.106

T6: TL

sin 0 6-
180,

T7: TL

180/

TbT8 TL

sin 08 E
180!

TL
T9 :0

s180'9

T5 = 1.058.106

T6 = 8.645-105

T7 = 6.959.105

T8 = 5.763-105

T9 = 5.376-105



Cable Design

Max. Tension in Cable, T max := TI

Using 150 ksi strands,

Ti = 12.832 in 2

150000

Area required,

A req := 2-12.831 --> 25.662

Using 1/2" 0 strands

25.662
=130.695 =>

(0.5)
4

For tension, Safety Factor = 2.0

132 strands/deck = 66 strands/side

Pylon Design

Axial forces at the base of the cantilever due to the loading

F TI si + 35 - 90 --
1000 1801

T2 71F 2 -. sin[ +35- 90-
1000 2  180]

F 3  T3sin 3+35- 9 0 -1
1000 180]

T4 .
F 4 = -si # 4 +35 -90 ---

1000 1801

T5.
F 5 -- sin (05 +35 -90'-

1000 1801

T6 1
F6 si (0 6 +35-90) --

1000 180]

T7 39
F :=- .sin 7+35S-90 I

1000 1801

T8
F8 :=-.sin 48+ 35- 90'----]

1000 180]

T9 71
F .: -si (0 9 + 35 - 90.-

1000 1801

F I = 620.295

F 2 = 486.029

F 3 = 351.345

F 4 = 217.349

F 5 = 83.013

F 6 = - 51.272

F 7 = - 185.98

F 8 = - 319.858

F 9 = - 425.629 K

K

K

K

K

K

K

K

K



Shear forces at the base of the cantilever due to the loading

TI
V I :=--c .C + 35 -

1000

V 2=T 2+35-V 2 1=0

V 3:= -00Cosi

T4
V4 :=--cos

1000

V 5 :=-
1000

44+35-90'

45+35- 90"

90.
180]

90 -
180J

3 +35 -190]

180]

180]

T6 I
V 6 --. cos (0 6 + 35 - 90 -

1000 L 180

T7{
V 7 _: - -_ s

V 8 :7 10 0 0 Co{

T8
*81000 Co

T9
*91000 Co

7+ 35 - 90

8 + 35 - 90

49 + 35 - 90'

R

180]

180]

]1801

V = 1.822.10

V 2  1.63.10 3

V 3 =1.438-10 3

V 4  1.247-103

V 5 = 1.055-10 3

V 6 = 863.007

V 7 = 670.623

V8 = 479.426

V 9 = 328.37

Moment forces at the base of the cantilever due to the loading

MI := V 1 .(140-6)]

M2:= V2 .(140- 12)]

M3 := V3 .(140- 18)]

M4 := V 4-(140 - 24)

M5 := V 5'(140 - 30)]

M6 :=[ V 6 (140 - 36)]

M7 := V 7 .(140- 42)]

M8 := V 8 .(140-48)]

M9 := V 9 .( 140 - 54)]

M1 = 2.442-10 5

M2 = 2.087-10 5

M3 = 1.754-105

M4 = 1.446-105

M5 = 1.16-10 5

M6 = 8.975-10 4

M7 = 6.572-10 4

M8 = 4.411 -10 4

M9 = 2.824-10 4 K

K

K

K

K

K

K

K

K

K

K

K

K

K

K

K

K

K



Prestressing cable eccentricity

el :=5- 6 + 7.5+ 0.5

142

e2 :=5.-. +7.+ .5
140/

12e4:= 5 -_ +75+0.5
140!

30'
e5 := 5 ---- + 7.5+ 0.5

140)

el = 8.214 ft

e2 = 8.429 ft

e3 = 8.643 ft

e6:= 5. 36 + 7.5+ 0.5
140

42
e7:= 5-- + 7.51+ 0.5

1401

48'e8:= 5. + 7.5+ 0.5
140/

e4 = 8.857 ft 54"
e9:= 5. - +7.5+ 0.5

140

e6 = 9.286 ft

e7 = 9.5 ft

e8 = 9.714 ft

e9 = 9.929 ft

e5 = 9.071 ft

Forces in prestressing cables

PI := MI

eI+ (0.036-134)]

P2 := M2

2 e2 + (0.036.128)]

P3 :=M3
3 e3 + (0.036.122)]

P4 := M4

P e4+ (0.036-116)]

P5 E M5
Ie5 + (0.036-110)]

P1 = 1.873-10 4

P2 = 1.601-10 4

P3 = 1.346-10 4

P4 = 1.11 .10 4

P5 = 8.904.10 3

P6:= M6
e6 + (0.036-104)]

P7:= M7
Ie7 + (0.036-98)

P8:= M8

e8+ (0.036-92)]

P9:= M9
Ie9+ (0.036-86)

P6 = 6.888-103

P7 = 5.045-103

P8 = 3.386-103

P9 = 2.168-103

Moment at the base of the cantilever due to prestressing

Mpl :=P1-(el+(0.036-134))

Mp2 :=P2.(e2+ (0.036-128))

Mp3 :=P3.(e3+ (0.036-122))

Mp4 :=P4.(e4+ (0.036-116))

Mp5 :=P5.(e5+ (0.036.110))

Mp6 :=P6 -(e6 + (0.036.104))

Mp7 :=P7.(e7 + (0.036-98))

Mp8 =P8.(e8+ (0.036-92))

Mp9 :=P9.(e9 + (0.036-86))

Mpl = 2.442-10 5

Mp2 = 2.087-10 5

Mp3 = 1.754-105

Mp4 = 1.446.10 5

Mp5 = 1.16-10 5

Mp6 = 8.975-10 4

Mp7 = 6.572-10 4

Mp8 = 4.411-10 4

Kft <== Maximum

Kft

Kft

Kft

Kft

Kft

Kft

Kft

Mp9 = 2.824.10 4 Kft



*Note: The mast should be designed for the maximum shear, maximum axial, and
maximum moment that will be present only during construction; Maximum moment
induced is when the last pre-stressing cable (cable 1) is installed. After the
construction, the stresses induced by the prestressing will be counter-balanced by the
dead and live load of the deck.

Axial forces at the base of the cantilever due to prestressing and the loading

FbI :=PI - F i

Fb2 :=P2- F 2

Fb3 :=P3- F 3

F b4 :=P4 - F 4

F b5 :=P5 - F 5

Fb6 :=P6- F 6

Fb 7 :=P7- F 7

Fb8 :=P8- F 8

Fb 9 :=P9- F 9

FbI = 1.8I11104

Fb2= 1.552-104

F b3 = 1.311104

F b4 = 1.088.104

F b5 = 8.821-103

F b6 = 6.94.103

Fb 7 = 5.231-103

F b8 = 3.706.103

F b9 = 2.594.103

F btot:= F bI + F b2+ F b3+ F b4+ F b5 + F b6+ F b7+ F b8 + F b9

F btot = 8.4 9.104 K

try 15' W x 25' D x 6" thk tapered box girder

A :=( 15-12-25-12) - (14-12-24-12)

I . [(1512)(25-12)3_ (14.12).(24-12)3]
12

A= 5.616-103 in2

I = 7.057-10

*Note: Cantilever is overdesigned to account for the deflection criteria for the deck. The full
span of the deck must also meet the criteria of L/1000 = 750'/1000 = 9 in.

Self-weight

((20-15-140) - (14-19-140)).0.49 = 2.332.103 K

Moment sw = 1.632.105 Kft

. 4
in

Moment sw := 2332-70



Total stresses

F btot
eaxial -- M (o1A

6 omn := Mpl + Moment sw) (1.12[oment 
SW) xx

total =6 axial+ 6 moment

8 axial = 15.118 ksi

8 moment = 0.866 ksi

6 total = 15.984 ksi << 0.5-36 ksi

Checking for the worst case condition deflection (i.e. cantilever w/o back-span)

Vtot :=V i+V2+V3+ V4+ V5+ V6+ V7+ V 8 1+V 9
V tot = 9.533-10 3

Cantilever deflection,

:-Vtot (110-12)2 *(3-140-12 - 110.12)
6 .2 90 0 0 .Ixx

u sw :=(2332)-(70-12)2 (3-140.12 - 70-12)

6-29000 -I 12

L = 5.032 in

sw = 0.563

1 tot = 5.595 in

Checking for [/300 for cantilever deflection criteria (AASHTO)

L 12
- = 140.. = 5.6 in = 5.595 in ok
300 300

K

in

1) tot :=u +1 sw
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