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ABSTRACT

Stochastic theories of flow and transport in aquifers have relied on the linear perturbation

approach that is accurate for flow fields with log-conductivity variance Y2 less than

unity. Several studies have found that the linear perturbation ignores terms that have
significant effects on the spectra of the hydraulic gradient VH and specific discharge q

when G2 exceeds unity. In this thesis we study flow and transport when the hydraulic

conductivity K is an isotropic lognormal multifractal field. Unlike the perturbation
approach, results obtained are nonlinear even though several simplifying assumptions are

made. The spectral density of F = ln (K) for this type of field is SF (0 0 -D where D

is the space dimension. It is found that under this condition, the hydraulic gradient VH

and specific discharge q are also multifractal; whose renormalization properties under

space contraction involve random scaling and random rotation of the fields. Analytical
expressions that are functions of D and the codimension parameter of F, CK are obtained

for the renormalization properties and marginal distributions of VH and q . Because of

the boundary conditions, the fields VH and q are anisotropic at large scales but become

isotropic at very small scales. The mean specific flow decreases as the scaling range of F

increases, at a rate that is dependent on D and CK. Flow simulations on a plane validate

the analytical results.

The multifractal properties of VH and q are used to derive their spectral density tensors,

the macrodispersivities, and the effective conductivity of the medium. The spectra
obtained account for the random rotation of the VH and q at smaller scales. Spectra for

VH and q are anisotropic at large scales but become isotropic at small scales. The scale

of isotropy depends on D and CK. The linear perturbation approach does not capture this

important feature and further gives incorrect amplitudes and power decays of the spectral
density tensors. Using the spectra of q the macrodispersivities are computed and

compared with results from the linear perturbation approach. Reflecting the properties of
the spectral density of q, the macrodispersivities for the nonlinear theory are isotropic at

small travel distances and are anisotropic at large travel distances.
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In the ergodic case when the spatial averages of all fields of interest are close to their

ensemble averages, it is found that our expression for effective conductivity K,,
corresponds to a formula conjectured by Matheron [1967].

Using the scaling properties of the inverse of the velocity field (also known as slowness),
we derive expressions for the first passage time distribution FPTD and mean plume
concentration for transport in a multifractal K field. The theoretical results of FPTD for
the nonlinear theory are fitted by regression methods to data from field experiments and
from numerical simulations and compared with results from the continuous time random
walk CTRW and two-phase transport model. Results of the nonlinear theory are found to
be more suitable for predicting non-Fickian transport. The CTRW model is more suited
for transport in statistically inhomogeneous media. Both the CTRW and two-phase
models are suitable for modeling Fickian transport.

Since most subsurface flow occurs in anisotropic K fields, the conditions of isotropy are
relaxed to consider flow in anisotropic multifractal K fields. Unlike the isotropic case,
closed form results for the hydraulic gradient VH and specific discharge q fields are not

obtained. However, an expression that can be evaluated numerically for the statistical
properties of the hydraulic gradient VH is obtained. The scaling properties of flow in
geometrically anisotropic fields are also considered and the renormalization properties of
VH are obtained.

Thesis Supervisor: Daniele Veneziano
Title: Professor of Civil and Environmental Engineering
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CHAPTER 1: INTRODUCTION

1.1 Review of flow theories and motivation for the present work

The flow of water through a saturated porous medium is governed by Darcy's law [Bear,

1972; Gelhar, 1993]

q = -K.VH (-1.1)

where q (x)is the specific discharge vector, K (x_)is the hydraulic conductivity, and

H (x_)is the hydraulic head. For a zero-divergence flow field, the hydraulic head H and

the log hydraulic conductivity F =In K must satisfy

V2H + VF.VH =0 (1.2)

Over the past three decades, there has been much interest in the statistical properties of

the hydraulic gradient VH and the flow q that result from Eqs. (1.1) and (1.2) when K in

the domain of interest is a random field. Part of the interest stems from the growing

concern over contamination of groundwater sources that culminated in the passage of the

Comprehensive Environmental Response, Compensation and Liability Act (CERCLA),

by the US Congress in 1980. Gelhar and co-workers (Gelhar and Axness, 1983; Gelhar

et al., 1984; Gelhar 1987; Ababou and Gelhar, 1990) developed the first-order spectral

theory that led to closed form relations between the power spectrum of F and the spectral
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density tensors of VH and q . The spectral density tensor of q has been used to explain

how a plume spreads with travel time or distance. Variants of this approach have been

developed by Dagan (1985), Koch and Brady (1988), Dagan and Neuman (1991), Glimm

et al. (1993), Zhan and Wheatcraft (1996) and Neuman (1996).

First-order analysis simplifies the problem by replacing Eq. (1.2) with linear

approximations in the fluctuations f = F - E [F] and h=H-E [H] and Eq. (1.1) with

approximations in the fluctuation q'= q-E q and writing K = exp (f + E [F]). The

spectral density tensors of the head h and flow q' fluctuations are obtained in Fourier

space by assuming that the log conductivity variances are far less than unity, so that

higher order terms in f and h can be ignored. This approach leads to exact results, as the

variance of the log-conductivity field tends to zero. However, there has been an interest

in examining the effects of the higher order terms of f on the power spectra of VH and q

when flow occurs in a medium with highly fluctuating hydraulic conductivity field K.

Using mainly perturbation methods, several authors have examined the effects of higher-

order terms in f and h on the power spectra of VH and q ; see Dagan (1985), Deng and

Cushman (1995, 1998), Hsu et al. (1996), Hsu and Neuman (1997) and Lent and

Kitanidis (1996), among others. In general, these studies found that the inclusion of

second-order terms has significant effects on the spectra of VH and q when the variance

of F = InK exceeds unity. The theoretical approaches by Dagan (1985), Deng and

Cushman (1998) and Hsu and Neuman (1997) are limited by the fact that the

mathematical expressions obtained by considering higher order terms in f and h become

very complex and limit the extent to which higher-order exponents can be incorporated
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into the analysis. The numerical solutions, for example that of Lent and Kitanidis do not

provide any predictive tools in studying flow behavior in high contrast K fields, although

they reveal the deficiencies of the first-order solution. Moreover, for large-conductivity

variances, Ababou et al. (1988) have found that the higher order theories are not

necessarily more accurate than first-order solutions. Hence, it is desirable to devise

alternatives to the perturbation approach that can deal directly with the nonlinearities of

the problem and avoid the computational limitations encountered when one relies on say

the exponential expansion of terms in the perturbation approach. The work presented in

this thesis is one such alternative. Results are obtained by assuming that the flow occurs

in a saturated porous medium with an isotropic lognormal multifractal hydraulic

conductivity K. For-a scalar quantity like K, multifractality means that the average

values K(S)in regions S of RD are statistically invariant under isotropic space

contraction by any given factor r >1 and multiplication by a non-negative random

variable A, , i.e.

d -

K(S)=Ar .K (rS)

d

where = denotes equality of all finite dimensional distributions and A, has a lognormal

distribution [Veneziano, 1999]. We exploit the scaling properties of the hydraulic

conductivity K to derive the properties of the hydraulic gradient VH and specific flow

q. The application of a multifractal K field allows one to obtain interesting results about

the properties of the flow field that cannot otherwise be obtained. Moreover, assuming
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that K is an isotropic multifractal field allows one to obtain results whose applications

extend beyond the field of hydrology and can be applied in the study of random electrical

networks. The study of random electrical networks is analogous to that of flow through

heterogeneous K fields. In fact, both problems are mathematically the same, with K

being analogous to random resistors, the hydraulic gradient VH similar to the voltage

across the resistors, and the specific discharge q analogous to the current. What makes

both problems interesting is the inherent randomness of the hydraulic conductivity or the

resistance. Some models used in representing the heterogeneity of K fields are discussed

next.

1.2 Field Heterogeneity

Heterogeneity of porous media, as expressed through a mathematical model of K or F,

has been recognized as a difficult problem in groundwater hydrology. Various models,

for example geostatistical models [Journel and Huijbregts, 1978; Isaaks and Srivastava,

1989] and spatial point process models by Ripley (1981) have been used in modeling K

fields. During the past decade, there has been growing emphasis on the case when the

hydraulic conductivity is a broad-band field with some type of scale invariance (Arya et

al., 1988; Wheatcraft and Tyler, 1988; Ababou and Gelhar, 1990; Neuman, 1990; Dagan,

1994; Rajaram and Gelhar, 1995; Zhan and Wheatcraft, 1996; Di Federico and Neuman,

1997). These representations of the hydraulic conductivity field were mostly spurred by

the need to explain the observed scale-dependence of macrodispersivities [Gelhar et al.,
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1985 and 1992; Neuman, 1990] shown in Figure 1.1. In these analyses it is typically

assumed that F=lnK is a homogeneous Gaussian field with spectral density SFthat decays

like a power law along any given direction in Fourier space. In the isotropic case, this

means that SF(h) oc k-, where k is the length of k and cc is a constant. For example,

when c is between D+1 and D+3 the log-conductivity F(x)is a fractional Brownian

surface (fBs), but values of a close to D have also been reported, for example Ababou

and Gelhar (1990) and the analysis of Goggin (1988) data presented in Chapter 3 of this

thesis.

Several authors have explained the observed data in Figure 1.1 with fractal

models, with perhaps the most comprehensive contributions by Glimm and coworkers

(Glimm and Jaffe, 1985; Glimm and Sharpe, 1991), Furtado et al. (1990, 1991), Zhang

(1992) and a summarizing article by Glimm et al. (1993). These fractal models represent

the scale-invariance of the log-conductivity fields F as deterministically self-similar that

satisfy
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Figure 1.1 - Dispersivities measured at different sites - compiled by Pickens and Grisak
(1981) and Lallemand-Barres et al (1978).
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F(x)=r-F(rx) (1.3)

where H is some real number and r >1, or as processes with a weaker form of self-

similarity when only its increments are self similar and satisfy,

F(xi)-F(x2 )=r-H [F(rxi)-F(rx2), XIX2 e R (1.4)

Neuman (1990) assumed that the hydraulic conductivity field was of the type expressed

in Eq. (1.4), and using a regression analysis on Fig. 1.1, obtained H = 0.25. He assumed

a universal relationship for the self-similar hydraulic conductivity in Eq. (1.4), which

means that all aquifers at a given scale should have the same degree of heterogeneity.

Data from the Borden site by Sudicky (1986) and the spectral analysis of the data by

Robin et al. (1991) contradict the resultsof Neuman (1990). Neuman's notion of a

universal model ignores the fact that different aquifers have varying degrees of

heterogeneity at different scales. Moreover, Neuman's result depends on the reliability of

the data shown in Fig. 1.1. Some of the data has been shown to be unreliable by Gelhar

(1986). Hence, a model based on inaccurate data leads one to question the correctness of

the results.

The model of hydraulic conductivity K proposed in this thesis presents a more realistic

picture of aquifer heterogeneity. We model the K field as an isotropic lognormal

multifractal. This model generalizes the notion of self-similarity to account for the

randomness one would expect in aquifers. The real world application of this model may
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be limited because one would expect aquifers to have anisotropic hydraulic

conductivities. Moreover, the scales over which one would find multifractality of K may

be limited. Yet, the application of a multifractal K field allows one to obtain a solution of

the zero divergence Darcy equation that is entirely different in approach from the

perturbation method and provides interesting results for the properties of the hydraulic

gradient VH and specific discharge q. The method of analysis is presented below.

1.3 Flow analysis when K is an isotropic lognormal multifractal field.

This thesis obtains a solution for zero divergence flow equation (Eq. 1.2) under

the assumption that the hydraulic conductivity K is an isotropic lognormal multifractal

field. Thus, the log hydraulic conductivity F = In (K)is a Gaussian random field with

spectral density

--2CKk -D o! k!ro
SFD '* (1.5)

0 otherwise

where k = kj is the length of the wavenumber vector, SD is the area of the unit D-

dimensional sphere, CK is the codimension parameter of K, k. is the minimum

wavenumber and r is the resolution to which the K field is developed. It is assumed that

Eq. (1.5) holds for k. >1 and CK <.

22



To study the possible multifractality of VH and q , we consider a cascade of

hydraulic gradient and flow fields at different resolutions r >1. The VH and q fields at

resolution r are obtained by considering flow through a log-conductivity field Fr in which

all Fourier components with wavenumbers k > rk. have been filtered out. Using

subscript r to denote quantities derived under F = Fr, the hydraulic gradient VH, and

specific flow q, satisfy Darcy and no-divergence conditions

qr = -KrVH(16

SV2H,+VF.VH, =0

The random fields VHr and qr for different r are compared using Eq. 1.6 under two

assumptions, that through simulation have been found to be accurate:

1. In spaces of dimension D > 1, high frequency, zero-mean fluctuations of the head

and flow along the boundary of Q affect the hydraulic gradient and flow only in a

narrow region near the boundary.

2. Consider a sub-region Q' of Q and split F into a low-frequency component FLF

and a high frequency component FH.. Inside 0 ' the low frequency component

FLF may be considered constant. It is assumed that hydraulic gradient inside Q '

can be obtained accurately by replacing F with FHF while subjecting W ' to a

large-scale hydraulic gradient equal to VHLF.

23



Details of the analysis are presented in Chapter 4. The main results of these analyses are

that the hydraulic gradient fields and specific discharge fields are also multifractal. In

addition, the distributional properties of these parameters are provided in Chapter 4 and

the accompanying numerical validation for the two-dimensional case is provided in

Chapter 6.

1.4 Thesis Organization'

This dissertation consists of nine chapters, including this introductory chapter.

Chapter 2 contains a brief review of the first- and second-order perturbation theories and

how these theories have been used in deriving the spectral density tensors of the

hydraulic gradient VH and the specific flows q. The spectral density tensor of q is

used in computing the macrodispersivities [Rajaram and Gelhar, 1995]. In addition, the

perturbation method has been used in computing the effective hydraulic conductivity of

both isotropic and anisotropic heterogeneous media. For media with log-conductivity

variances exceeding unity, the second-order theories have studied the effect of the higher-

order terms on the spectra of VH and q. These theories are also reviewed in Chapter 2.

Chapter 2 also contains a brief review of fractal and self-similar models that have been

used in characterizing the heterogeneity of aquifers.

Chapter 3 discusses the properties of multifractal measures. The properties of scalar and

vector multifractal fields are presented in addition to the justifications for modeling
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hydraulic conductivity fields as multifractals. Chapter 4 obtains the nonlinear solution of

flow under the condition that the hydraulic conductivity field is an isotropic multifractal

field. Properties of the hydraulic gradient and specific discharge field are obtained

theoretically. Using the scaling results in Chapter 4, the spectral density properties of the

hydraulic gradient and specific discharge field are obtained in Chapter 5.

The theoretical results presented in Chapter 4 are validated through numerical

simulations and presented in Chapter 6. Results from the numerical simulations show

that in spite of the numerikal errors one expects in flow computations, the theoretical

results of Chapter 4 accurately predict the behavior of flow in isotropic lognormal

multifractal media.

The results of Chapters 4 and 5 are restricted to flow in fields with isotropic multifractal

hydraulic conductivity K. Chapter 7 extends the results to include flow in anisotropic

lognormal multifractal K fields. Unlike the isotropic K fields, the anisotropic multifractal

K fields scale differently in the horizontal and vertical directions. The marginal

distributions of the hydraulic gradient fields for anisotropic multifractal K fields are

derived in Chapter 7.

Chapter 8 discusses issues related to the transport of solutes in isotropic multifractal K

fields. The first passage time distribution, mean plume concentration and

macrodispersivity of a solute in a multifractal flow field are presented.
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The results of this thesis and their significance are discussed in Chapter 9. In addition,

recommendations for future research that will help in understanding flow and transport in

highly heterogeneous media are presented.
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CHAPTER 2 -REVIEW OF FIRST-ORDER AND HIGHER-ORDER

APPROACHES

Introduction

A compilation of over 130 dispersivity values from various sources at scales ranging

from 10cm to 100km shown in Figure 1.1 [Arya, 1988; Gelhar et al., 1985, 1992] indicate

an increase of the dispersivity with scale. Regarding these data as valid for single

formations is debatable [Neuman 1993a, b; Gelhar 1993] and has cast doubt on certain

theories based on the analysis of the data. At any rate, based on a regression analysis,

Neuman [1990] suggested a power-law dependence of the longitudinal dispersivity

AL with the scale (or travel distance) L

AL 0CL (2.1)

where f 1.5. Several authors have explained the scale-dependent behavior in Figure

1.1 with fractal models [J. Glimm et al.; 1990, 1991, Zhang, 1992; Zhan and Wheatcraft,

1996; Rajaram and Gelhar, 1995; Ababou and Gelhar, 1990]. These fractal models

represent log-conductivity field F as non-stationary self-similar processes with stationary

increments that have spectra of the form

SF (k)"o ka (2.2)
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where k is the length of k and a is some constant. For example, when a is between

D+1 and D+3, where D is the spatial dimension, the log-conductivity Fis a fractional

Brownian surface (fBs). The spectrum of F = In K is related to the velocity field via the

linear perturbation results of Gelhar and Axness (1983). The results of Gelhar and

Axness simplify the solution of the zero-divergence Darcy equation by substituting the

flow variables head H, log-conductivity F and specific discharge q with linear

approximations in the fluctuations f = F - E [F], h = H - E [H] and q'= q - E [q].

Spectral densities of the hydraulic gradient VH and specific discharge q are obtained by

assuming that the variance of F <1. This assumption allows the higher-order terms in h

and f to be discarded. Several authors have examined the effects of the higher-order

terms in f and h on the spectra of VH and q when the variance of F exceeds unity. And

have found that including the higher-order terms have significant effects on the spectra of

VH and q . For large variances of F, the second-order solutions may not necessarily be

more accurate than the first-order solutions [Ababou et al., 1988]. Hence, for highly

heterogeneous media, alternate methods are needed that will avoid the expansions

involved in the perturbation approach and deal directly with the nonlinearities.

This chapter reviews the first and higher-order theories and presents in detail the

shortcomings of these approaches. An understanding of these theories will give a context

for the goals and approaches of this research, which studies the properties of the

hydraulic gradient and flow fields when the hydraulic conductivity is an isotropic

lognormal multifractal field. Instead of the perturbation approach, a renormalization

approach, that exploits the scaling properties of the hydraulic conductivity field will be

28



used in deriving the distributions of the hydraulic gradient and specific discharge fields.

The theories reviewed in this chapter, especially results of the first-order theory, will be

compared and contrasted with the results of the nonlinear theory.

This chapter is organized as follows. Section 2.1 reviews the linear perturbation

approach, followed in section 2.2 with a review of higher-order theories and numerical

solutions used in studying the effects of higher-order terms. Section 2.3 reviews

approaches used in computing the effective permeability. In section 2.4

macrodispersivity theories used in explaining how solutes spread are reviewed.

Section 2.5 reviews the fractal and self-similar models that have been used in

characterizing the heterogeneity of aquifers. The relevance of the results presented in this

thesis extends beyond applications in hydrology and has applications in electrical

engineering. Hence, section 2.6 contains a review of work done on multifractal

conductor networks, which is a mathematical analogue to the problem of flow through

heterogeneous K fields.

2.1 First-order solution of spectral perturbation equations

There are many types of geological or natural earth materials through which water can

flow. This thesis studies the flow through non-fractured porous media. A sedimentary

aquifer is an example of such a medium. An important characteristic of porous media is

the porosity. The total porosity expresses the total averaging volume represented by

interstices. A more significant measure for fluid flow is the connected porosity n, in
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which only those voids that provide connections among averaging volumes are

considered. In this thesis, the term "porosity" refers to the connected porosity and

materials with a finite amount of porosity are described as permeable. The effects of

porosity variations have been considered and found secondary relative to the effects of

the hydraulic conductivity [Warren and Skiba, 1964; Naff, 1978]. Therefore, the porosity

is treated as constant in this thesis.

The classical description of flow in permeable materials is based on a continuum

representation of mass and momentum balances applied at a scale that averages over a

large number of flow passages to produce a continuous description of flows and

concentrations. This averaging is done over a so-called representative elementary

volume (REV), which is large compared to the fine-scale variability and small compared

to overall scale of the problem.

The conservation of momentum corresponding to Newton's law is the Darcy

equation [Bear, 1972; Gelhar, 1993]

qj =-K- i = 1, 2,3 (2.3)
ax,

where qj= specific flow vector [L/T]

K = hydraulic conductivity tensor [L/T]

H = piezometric head [L]

Each of the variables in Eq. (2.3) represents an average over an REV that can be viewed

as a point in space. The Darcy equation strictly applies to relatively slow flows (or flows

with a small Reynolds number) that do not change rapidly over time [Gelhar, 1993].
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Flows in many naturally occurring aquifers are expected to satisfy this condition with a

few exceptions such as flow in karstic limestone, basalt or coarse gravel.

For saturated groundwater flow, the conservation of mass of a non-reactive

species is [Bear, 1972; Gelhar, 1993]

n ac+V(qc)= V(nDc) (2.4)

where D = dispersion coefficient tensor [L2 /T]

c = concentration of the species [M/L]

For a zero-divergence flow field, Eq. 2.3 is written as

VKVH+KV2H =0 (2.5)

Dividing through Eq. (2.5) by K and expressing it in terms of F = InK gives

V2 H +VFVH =0 (2.6)

The hydraulic conductivity K is a stationary random function with a lognormal

distribution. Justification for the lognormal representation of the K fields has been

presented by Hufschmied (1985) and Sudicky (1986) who analyzed extensive data of

conductivities and found the lognormal distribution to an accurate representation.
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Gelhar and Axness (1983) obtain the first-order solution to Eq. (2.6) by assuming

that small random perturbations about the mean occur in the specific discharge, log

hydraulic conductivity and head, so that

F=F+f

qj= q +qj

H=H+h

E [f ] =0

E[q;] =0

E [h] =0

i = 1, 2, 3 (2.7)

where the bar indicates the mean of these quantities. Substituting Eq. (2.7) into Eq. (2.6)

and expanding terms gives

V2 H+V 2 h +VFVH+VVh +VfVH+VfVh =0 (2.8)

Taking the ensemble average of the above equation we obtain

V 2 H+VEVH+ E [VfVh]=0 (2.9)

Subtracting Eq. (2.9) from Eq. (2.8) gives

V2h +VFVh +VfV= -{VfVh -E (VfVh)} (2.10)

Assuming the mean log-conductivity F is constant, Eqs (2.9) and (2.10) become

respectively,
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(i) V2 H+E[VfVh]=O

(ii) V2h +VfVH= -{VfVh -E (VfVh)}

(mean eq.)

(perturbation eq.)

Since the perturbations are assumed small the products of the perturbed terms

{VfVh - E (VfVh)}is dropped. Moreover, the mean hydraulic gradient in the

longitudinal direction is assumed constant such that J = -VH, then Eq (2.11) can be

written as

af
V2 h = J3 1 -a

i=1 xi

In addition, Eq. (2.3) is expressed in terms of the perturbations as follows:

qj +q' =-K. exp (f )(VH+Vh)

2.

(2.12)

(2.13)

where K. = exp (F) and the dots represent the higher-order terms. Under the condition

that the perturbations f and h are small so that higher-order terms may be neglected, the

mean value of qj is E [q1]= -K0 VH and the mean-corrected specific discharges

q' = qj - E [q] are given by
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'= -K0 Jf -f ah% 3xi

By using the Fourier- Stieltjes representations for f, h and q' as shown below:

f(x)= feikdZf (k)

h (x)=fffeidZh (k)

q, ()= e qdZ ())

Eq. (2.12) can be written as

3

(ik)2 dZ, = 2J (ikj )dZ,
j=1

3 iJ k.
=+dZh=2;- 12 dZf

j=1 k

Also, from Eq. (2.14)

dZ =K J -Jkki dz,

(2.14)

(2.15)

(2.16)
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With q2 = q3 =0 and a statistically isotropic InK field, the transverse mean hydraulic

gradients J 2 = =0 , the spectrum of the specific discharge becomes

=J 2 K 2  - k 8- j k- S11 (2.17)qiqj 1 0'j k 2  kj k2 (.7

where the indices vary from 1 to D (the dimension of space). This is a second-rank

symmetric tensor. Also from Eq. (2.15) the power spectral density of the hydraulic head

fluctuation h is

S= 2 fJ S (2.18)

The first-order perturbation approach presented above has the advantage of

producing closed form results. However, a key assumption is that the variance of the log-

conductivity field is small such that second and higher order terms in the log-conductivity

fluctuations can be neglected. A question that has been much researched deals with the

effects of the neglected higher order terms on the spectral solution of the head, hydraulic

gradient and specific discharge.

35



2.2 Higher-order approaches

Dagan (1985) developed a higher order perturbation expansion to examine the

effects of the discarded higher order terms on the spectrum of the head fluctuations. Hsu

and Neuman (1997) followed an approach similar to Dagan's but instead of an

exponential covariance function, modeled the log-conductivity field F with a Gaussian

autocovariance function. In addition whereas Dagan's derivation is based on Fourier

transforms, Hsu and Neuman obtain their results in physical space. The focal point of

Hsu and Neuman's analysis is the velocity covariance function, unlike the covariance

functions for head and log-conductivity as was in the case of Dagan. In fact, the analysis

of Hsu and Neuman is similar to that of Deng and Cushman (1995) but differs in details.

Deng and Cushman's derivation was done in Fourier space and evaluates the velocity

covariance terms numerically, whereas Hsu and Neuman evaluate terms that are first-

order in hydraulic head analytically and higher-order terms numerically. Moreover,

Deng and Cushman model the log-conductivity field with an exponential covariance

function while Hsu and Neuman use a Gaussian covariance function.

Lent and Kitanidis (1996) and Bellin et al. (1992) applied numerical techniques to

investigate the range of validity of the small perturbation approximation for head and

specific discharge in finite two-dimensional domains. Lent and Kitanidis perform the

flow simulations in Fourier space, while Bellin et al. simulate the flow and transport

processes in physical space. Lent and Kitanidis investigate the range of validity of the

linear perturbation for the head and specific discharge moments in 2D finite domains

whereas Bellin et al. investigate the accuracy of the linear perturbation for both flow
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(specific discharge moments) and transport (longitudinal and transverse displacement

variances) variables. While Lent and Kitanidis perform their computations on a regular

grid, Bellin et al. apply a finite element approach in which the grid is subdivided into

triangles. Results of the various higher-order approaches are presented below.

Dagan (1985) begins by using VH = -J + Vh, VF=Vf and V2H = V2h in Eq.

(2.6) to obtain

V2h +Vf.Vh =J.Vf (2.19)

By taking the Fourier transform (FT) of Eq. (2.19), using the FT of derivatives and

products below,

FT[Vu(x)1=-i k2 u(k)

(2.20)

FTu 1 (x)u2 (x)] =(2n )12 f (k, iU2 (k-k')dk

where u (k) =(2 u (X)e -dx and D is the space dimension, Dagan obtained

-k 2 h (k)+ (27)u/2 k1.(k -_k)i (kF )(k -_ )dk(
(2.21)

i(Jk_)(_k)
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where k is the amplitude of the wavenumber vector k.

obtained in recursive form as

i(=i ? (j)

(2.22)

where (kjk2)=-(27) h *(h2 2 - . The first-order approximation
ki

hi is the same

as the solution obtained in Eq. (2.18). Substituting hi into the recursive Eq. (2.22) and so

on for further approximations and summing up the results, Dagan obtains for h up to

third-order terms

h (k)=hi +h2+h 3

k
=iJ. 7CF(k)

+ Bt~,k)F(k-ki)dk1
k 2 )1Fh

)F(i -k 2 )

.r(k -kni)dadk2

The cross-spectrum of h and f is obtained by multiplying h (k2)by F (1j) and averaging
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The solution of Eq. (2.21) is

k 2
hn(h) f 1 P (&, k - (ji - k, ) h.-i ( j ) dk,



Sfh(k2)= ^(kl)h

(2.24)

. ()k2)F(kl -)2)(k2 -_ki)F(_k))dkldk2

To simplify Eq. (2.24) Dagan replaces the second- and fourth-order moments of F with

their expanded expressions (see Eq. 18 in Dagan, 1985), integration over k2 is performed,

and terms that cancel out by symmetry are dropped. The detailed calculations are given

in the Appendix of Dagan, 1985. The final result is

lb 2 .J= 2) 1 + L(k)Sf! 2

(2.25)

where L (k2 )= - (2,n 2

Using a method similar to the one described above Dagan obtains the spectrum of the

head fluctuations as

(2.26)
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The function L is the second-order correction. If one leaves out L in Eqs. (2.25) and

(2.26) the first-order approximation by Gelhar and Axness is obtained. Hence, the

validity of the first-order approximation depends on the smallness of L compared to

unity. To grasp the magnitude of the second-order correction, Dagan analyzes the

spectra for a log-conductivity field with an exponential covariance and found the

maximum value of -L/af to be 0.08 and concluded that the first-order spectra Sf and Shh

are quite accurate for values of 2 ag large as unity. In fact, Dagan found that the

inclusion of the second-order terms had little effect on the spectra St and Shh for log-

conductivity variance f2 on the order of unity. This indicates that the head variance is

relatively unaffected by high order interactions. To understand the effects of the second-

order correction in F=lnK fields with spectra of the type SF(h) cc k' where c is a

constant, the behavior of the integral in L (Eq.2.25) is examined near the origin and at

infinity, by setting k = ke and k, = ke , where e and e, are unit vectors. Then L (k)can

be written as

)k/2 (k 2k)k )(kdk +(ke)](2.e)
(k2 )= -(2n)D r (12) - 1[+ 2(k (k(e ) -- f (k,)dk

k1  1(2.27)

(2)~ 2  k 2 ( +(e.e) (e.e) 1+( (e.21 ) (k)dk

For isotropic K fields Sif (h, )is polarly symmetric. Therefore, what matters in Eq.

(2.25) is the average of the term in Eq. (2.27) for el a vector on the unit spherical surface
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in RD . Terms in (e.2 )" with n odd do not contribute to this average. Neglecting these

terms, Eq. (2.27) reduces to

L(k 2)= -(27L)Dl 2 f2 2 (e.e1 
2Sff (k, )dkj

kI +k
(2.28)

Notice that (_. )2 = (cos C)2 where c is the angle between e and el. The expected

value of (cos (x) 2 is l/D. Hence Eq. (2.28) can be written as

(2.29)L (k2 )= -(27c) _2  2 k1 2 k2  (kj)dk,
Dk+k

As (k, /k) -oo,the ratio k /(k +k2) - 1, implying divergence of L (k 2 ) for

Sff (k) m k~ with a D . Notice that a = D which corresponds to a lognormal

multifractal K field is included in this condition. The case a < D corresponds to

fractional Gaussian noise (fGn) representations of InK.

For (k /k)-- 0 , the ratio k2 / (k2 + k2 ) behaves like k2. Therefore the low-

frequency divergence of L (k 2) occurs only for c D +2 which does not include

multifractal conductivity cases. Thus for multifractal hydraulic conductivity K the

second-order correction factors to Sf and Sh have high frequency divergence. It is worth

noting that k, /(k + k2 )0. Therefore, in the pre-multifractal case when the scaling

range extends to a large but finite wavenumber, L is large negative and the second-order
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spectrum Sh is large negative. Thus, the second-order analysis is not applicable to

multifractal hydraulic conductivity fields.

A second order correction for the velocity covariance has been obtained by Hsu

and Neuman [1996] and Deng and Cushman [1995, 1998]. The starting point for Hsu

and Neuman's analysis is Eq. (2.13). Velocity covariance expressions are obtained for

the expansion with terms up to the second-order in f. Hsu and Neuman found that the

velocity variances are larger when approximated to second-order in f than to the first-

order. And that the ratio between the first- and second-order variance approximations is

larger in three than in two dimensions. Deng and Cushman [1995] took an approach

similar to that of Hsu and Neuman. They initially obtained erroneous results but

corTected their results in Deng and Cushman (1998). Their 1998 results agreed with

those of Hsu and Neuman.

Numerical Approaches

Lent and Kitanidis (1996) compare results of Monte Carlo simulations to the linear

perturbation approximation for head and specific discharge spectra. The discrete Fourier

transforms of the head h and log-conductivity fluctuations are expressed as

h (x)= i (k)exp (i2mk.x)
allk

(2.30)

f (x_)= F()exp (i2Ek.x)
allk
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Using Eq. (2.30) in Eq. (2.19) the zero-divergence Darcy equation can be written in

discrete form as

(2.31)

where i = -r i, k is a wavenumber vector composed of integers, 'I is the wave space

matrix defined such that fft~1 (')fft (F(k)) is equivalent to the physical space operation

af /ax [Lent and Kitandis, 1996], and the * operator denotes a convolution sum defined

as

G1(k)*G2 (k)= (2.32)I G, ()G2(_

The spectral formulation of Eq. (2.31) is approximated by truncating the wavenumber

domain k with cutoff wavenumbers. This is equivalent to limiting the spatial scales of

variability that are included in the calculation. Eq. (2.31) then becomes a system of

simultaneous, linear algebraic equations. This procedure is known as the numerical

spectral method.

The Monte Carlo simulations begin by generating random realizations of the

Fourier transform (FT) of the log-conductivity fluctuations F(_k). Realizations of F(k)

are then used to solve for the FT of the head fluctuations h (k) using Eq. (2.31). The

spectrum of the head is then estimated by
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N *
Sh, (k)= 1 I (_k)N ik_) (2.33)

N j=1

where the subscript j refers to the h (k) obtained from the jth realization of F (k) and N

is the number of Monte Carlo realizations. The specific discharge in direction j is

calculated using [see Lent and Kitanidis, 1996 for details]

q= -Kofft [exp(fft-1 (F))(-Jj +fft 1 ( f (2.34)

where fft is the Fast Fourier transform. The spectrum of the specific discharge is then

estimated from

N
Sqjqj ( q ( (k) (2.35)

where q, is the lth realization of the FT of the qj component. An important

consideration in any numerical approach is the assurance of numerical accuracy and

appropriate convergence conditions. Methods used in ensuring numerical accuracy and

convergence are explained in Lent and Kitanidis (1996) and follow methodologies of

Bellin et al. (1992).

Lent and Kitanidis (1996) compared the head and specific discharge spectra

computed from the linear perturbation theory and the spectra obtained through numerical
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simulations (performed on a 512 x 512 grid) using the log-conductivity covariance by

Mizell et al. [1992]. Figure 2.1 compares the Monte Carlo simulation results at two

values of X /L , where X is the correlation distance and L is the size of the domain, to the

linear perturbation approximation and the second-order correction of Dagan (1985).

Decreasing X is equivalent to increasing the domain size. And one can see from Fig. 2.1

that decreasing X has the effect of significantly increasing the head variance. Another

interesting feature of the head variance simulations is that the head fluctuations do not

appear to be ergodic. Figure 2.2 shows the calculated head variances for two different

values of X. In Ababou et al.'s [1988, 1989] investigation, the spatial moments are used

to approximate the ensemble moments, implicitly assuming ergodic behavior. Lent and

Kitanidis' results show that for the head fluctuations at least, increasing the domain size

relative to the log-conductivity correlation length will not necessarily insure that

ensemble moments will equal the spatial moments. Figure 2.1 suggests that the linear

perturbation approach tends to underpredict the head variances as the domain size

becomes large. Figure 2.3 shows that the small wavenumber (large spatial scale)

components of head variance are significantly larger than the predictions of the linear

perturbation approach. Moreover, the small wavenumber components increase with

increasing log-conductivity variance, which in turn results in the apparent non-ergodicity

of head fluctuations.

The dependence of the head variance on the size of the domain can be also seen

from the variograms. Figure 2.4 shows the effects of increased log-conductivity variance

on the head variogram for the case when X = 0.02. The estimates provided by the Monte

Carlo simulations tend to much higher sills, indicating a higher overall variance.
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Another interesting observation is that the hole effect, a requirement that the head

variance should be finite in an infinite 2D domain, disappears as the log-conductivity

variance grows.

The analysis of Lent and Kitanidis (1996) shows that the specific discharge

variances tend to be ergodic, and tend to decrease as the size of the domain increases.

This is true of both the longitudinal and transverse components. Apparently, taking the

derivative of the head fluctuations was sufficiently dampens the large-scale effects

contributing to the nonergodicity observed in the head [Lent and Kitanidis, 1996]. Lent

and Kitanidis find the linear perturbation approach to be a very robust predictor of the

covariance of the longitudinal component of the specific discharge vector. However, the

perturbation approach tends to under predict the variance of the transverse component of

the specific discharge. These results are shown in Figure 2.5. Interestingly, this latter

result has been confirmed by Hsu and Neuman (1996) and Deng and Cushman (1998).

Bellin et al. (1992) arrive at a similar conclusion as the above authors. They find

the linear perturbation to be robust in predicting the longitudinal specific discharge

spectrum but unreliable in predicting the transverse specific discharge spectrum. The

unreliability of the transverse velocity spectrum prediction from the small perturbation

approach increases with increasing log-conductivity variance. Unlike Lent and Kitanidis,

Bellin et al. do not examine the head spectrum. However, they compare predictions of

the second-moments of a plume from the small-perturbation approach and from

numerical simulations. They find that for a' ranging from 0.2 to 1.6 the linear theory

overestimates the longitudinal second moment of the plume. Their results do not include

an examination of the transverse second moment of the plume, however Hsu et al. (1996)
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examine the second-order correction of the transverse second moment and find the linear

perturbation to under predict the magnitude of the second moment of the plume. Issues

related to the spread of solutes in heterogeneous media are discussed in Section 2.4.

In summary, the second-order and numerical approaches expose the limitations of

the first-order approach. The analytical solutions of the second-order corrections are

complex and limit the extent to which higher-order exponents can be incorporated into

the analysis. Moreover, the second-order theories do not provide information on flow

distribution properties other than the second moments. Furthermore, the second-order

results find that first-order approach to underpredict the variance of the transverse

component of the specific discharge. The second-order approaches also expose the

limitations of the perturbation approach. The exponential expansions present

mathematical difficulties in trying to obtain second-order covariance terms in the

hydraulic head and specific discharge.

The numerical results are illuminating, however they do not provide predictive

tools that can be used to characterize flow in highly heterogeneous media. The

numerical results of Lent and Kitanidis (1996) and Bellin et al. (1992) reveal the

robustness of the first-order theory in predicting the longitudinal second moment of a

plume's dispersion. Despite their lack of predictive capability, the numerical results

show that the first-order theory tends to under estimate the covariance of the transverse

component of the plume and confirm theoretical second-order corrections of Hsu and

Neuman (1996) and Deng and Cushman (1998). The second-order theories and the

numerical results clearly suggest that the furtherance of knowledge in flow theories for

fields with highly variable hydraulic conductivity needs to be pursued with alternate
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methods. Theoretical approaches that seek to address the effects of higher-order terms

have to incorporate approaches that sidetrack the complications of the exponential

expansions involved in the perturbation approach. In effect, these alternate approaches

have to embrace a new theoretical framework, such as the current renormalization

approaches of Sposito (2000), Christakos et al. (1999) or apply a novel approach as that

applied in this thesis. All these approaches do not arrive at an exact solution for the

nonlinear zero-divergence flow problem. However, the approach in this thesis for

example, presents new results for spectral densities of head, hydraulic gradient and

specific discharge which were not found using the linear perturbation approach.

2.3 Effective hydraulic conductivity expressions for isotropic media

(first- and second-order models)

Effective hydraulic conductivity, more commonly known as effective

permeability, is a term used for a medium that is statistically homogeneous on a large

scale. In a stochastic context, it is defined through a form of the mean Darcy equation,

such that the effective hydraulic conductivity in a D-dimensional region S is a scalar

quantity K, (S) such that, when an average hydraulic gradient VH = -J is applied to S,

the mean specific discharge E [q(S)] is given by
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E[q(S)]= -Keff (S)J

When the hydraulic conductivity is a random field, both Ke and E[q(S)] are random

variables. However, for infinitely large domains and ergodic K, E[q (S)] does not

depend on the realization and Kff becomes a deterministic quantity.

Gelhar and Axness (1983) obtain expressions for Keff by taking the expectation of

Eq. (2.13).

E[qi]=-K.E 1

let VH= -Ji and Vh=

E[qi] KO J

f 2

+ f+- +
2

....... VH+Vh)

ah=- then Eq. (2.37) becomes

1+ - ' ah L -
2) axi

In Eq. (2.38), terms up to the second order in the perturbations have been retained. The

expected value of the product of the perturbations in the head gradient and in log-

conductivity is an important term that reflects the relationship between the conductivity
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variation and the head perturbation that it produces.
(ah

This term, E ax
( xi

f) is evaluated as

follows:

E ah f
ax ]lk

ik E[dZdZ]

from Eq. (2.15)
iJ k

dZh = 2 dZ
j=1 k

hence Eq. (2.39) becomes

E f ikE - dZfdZ
ax 1 k L k 1=

J kikisff (k)
f k2 dk

k

(2.40)

= FjJj

kikiSff (k)
where R k2 dk

Obtaining expressions for Fij is pivotal in deriving Keff expressions for the small

perturbation approach. For example, for 1D flow with a constant mean hydraulic

gradient, Fij is,

F= f LS(k)dk = o:2 (2.41)
-0012
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It is worth noting that the evaluation of the integral is not dependent of the form of the

spectrum, because variance is simply the integral of the spectrum over wave number.

The effective conductivity for 1D flow, then, is

e22 (2.42)

Equation (2.42) is approximate because higher-order terms were discarded in equation

(2.38).

The exact effective permeability for a ID flow system can be obtained as follows:

Darcy's equation can be written as J = qK-1 , where J is the mean hydraulic gradient

=> J = qE[K-1]

q = J/E[K~] = KeffJ

where Keff ={E[K' ]} is the harmonic mean of K. If the InK process is normal, then

the harmonic mean is
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Keff = K exp -

It is clear that equation (2.42) cannot be correct for G2 >2 because it predicts a

physically impossible negative hydraulic conductivity under those conditions.

For multidimensional flow in isotropic log-conductivity fields, Fij is

k 2  2

112 i ff / hd y 22 =33
(2.46)

where D = 2 or 3 is the space dimension. Hence the Kff for two and three dimensions is

(i) Keff = K

(ii) Keff =KO 1+-I-]
16

for 2D

for 3D
(2.47)

Equation (2.47)i agrees with Matheron's (1967) conjecture that Keff in an isotropic and

stationary porous medium is given by

Keff - (E[K])(D-)ID (E[K1 ]) /D (2.48)
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2
In the case of log-normal conductivity distribution with mean 1 and variance a ,

E[K]=exp I+ C , hence Keff in Eq. (2.48) becomes:

Keff =E[K]exp, - Yaf =Koexp Ga - (2.49)

Several arguments support Eq. (2.49) in the case of isotropic lognormal

conductivity. One used by Matheron (1967) and later by King (1989) is that Eq.(2.49)

reproduces the exact results for D = 1 and D =2. Additional support comes from the fact

that the first-order linear perturbation results of Gelhar and Axness (1983), Gutjahr et

al.(1978) and the second-order results of Dagan (1993) can be seen as the first- and

second-order terms of Taylor's series expansions of the exponential in Eq. (2.49). King

(1989) and later Noetinger (1994) by elaborate developments of higher-order in a2 and

through certain approximations obtain Eq. (2.49). Dykaar and Kitanidis (1992) found a

deviation of only 4% between calculations made with the spectral numerical method and

Matheron's conjecture (see Figure 2.6). However, all these procedures are underlain by

some approximations and proving equation (2.49) exactly has defied attempts in the past

[Dagan, 1993]. Kozlov (1993) using results from random homogenization theory for

multiscaled media shows that Matheron's conjecture is asymptotically accurate as the

length scales of the media tend to infinity. Abramovich and Indelman (1995) and De Wit

(1995) using perturbation expansions show that for correlated isotropic media,

Matheron's conjecture is inaccurate.
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Kozlov relies on homogenization theory for random media (for details on

homogenization theory see Kozlov, 1989, Zhykov et al., 1993). The permeability field K

is modeled as an isotropic lognormal multiscale field with a certain number of scales N,

so that as N -+00 the log permeability field converges to a normal distribution:

KN oexp FN (x) FN (X) fk(X)
VN k=1

where F = In (K) and the independent, statistically-homogeneous fields are assumed to

have correlation lengths k -+ oo, k -+ o in such a way that the ratio k+1' kalso

converges to a finite value. Kozlov's work relies on a result from random

homogenization theory that allows a random tensor to be related to a constant matrix

whose elements can be expressed in exponential form (see Eqs. 2.2 and 2.9 in Kozlov,

1993). Upper and lower bounds can be obtained for the constant matrix. More

importantly, the arithmetic mean serves as the upper bound and the harmonic mean

serves as the lower bound of the constant matrix and consequently the random matrix.

Using these results from random homogenization theory Kozlov shows that the

random log-permeability can be represented as a random tensor that for N-+ 00 its mean

equates to Matheron's expression. He shows that the upper and lower limits of the

homogenized permeability field converge to the same value that is Matheron's

expression.
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2.4 Macrodispersivity

The subject of how solutes are transported in groundwater has been studied with

great interest for the past thirty years. Descriptors of how a solute spreads with travel

time or distance from the point of injection are expressed respectively through two

parameters: dispersion coefficient Di and macrodispersivity, Ai . The dispersion

coefficient expresses the growth rate of the second spatial moment of the concentration

M with respect to time, whereas macrodispersivity quantifies the growth of the second

moment of concentration with respect to mean travel distance. In general, when the

growth rate of M with respect to either time or distance is constant, the nature of the

dispersion is described as Fickian.

The dominant mechanism of dispersion of solutes is attributed to the variability of

the flow velocities that are in turn associated primarily with the spatial variations in the

hydraulic conductivity. Most stochastic theories of dispersion describe transport across

an ensemble of aquifers, and the measures of dispersion relate to the ensemble mean

concentration. The ensemble theories are assumed valid under ergodic conditions, that is

for large contaminant sources or for plumes that travel over large distances. These

ensemble theories cannot be applied in predicting the evolution of small plumes in a

single realization. Rajaram and Gelhar [1993, 1995] presented a theory that predicts the

growth of a plume of a given size. The formula that is presented for the rate of growth of

the plumes second moment involves two scales: the plume displacement and the plume

size. Figure 2.7 illustrates the difference between the ensemble average concentration of
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a plume, and the ensemble average of a plume relative to the center of mass position. If

C (x, t )denotes the concentration field in a single realization, the spatial moments of the

concentration field in a single realization are given by

i=1, 2, 3

(2.50)

S i (t)= n (xi -xi (t))(x - x j (t))C(x, t)dx
m_

i,j = 1, 2, 3

xi (t) refers to the i - coordinate location of the center of mass at time t.

n = porosity of the medium, assumed constant

Sij (t) = second moment tensor that quantifies the dispersion about the center of mass

xi (t).

For non-reactive tracers the concentration field in a single realization of steady flow

satisfies the advective dispersion equation (ADE) (Eq. (2.4)). The ensemble-mean

concentration is obtained by taking spatial averages of the ADE and assuming uniform

flow in the xi direction so that the ADE becomes

ad a~ ac
a qji -= 0

axi axi axi
i,j = 1, 2, 3a +

at
(2.51)
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where C (x, t) = E [C (x, t)] = ensemble average concentration

q,= uniform mean flow

A = macrodispersivity tensor

Also, the second moment of the ensemble average of the concentration is

i,j =1,2,3

and xi (t)= x (x, t)dx= .
m n

A.g is related to M as follows

n dM.. 1dM.

2q, dt 2 dx1

(2.53)

Aij quantifies the dispersion of the ensemble mean concentration about the ensemble-

mean center position. The second moment Mj is not the same as the ensemble average

of the single realization tensor Ii . The difference between these two quantities is

illustrated in Fig. 2.7. Mij and I are related by [Rajaram 1992; Rajaram and Gelhar,

1995]

(2.54)
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where 1,, (t) = E[Sij (t)] is the ensemble average of the second moment tensor in any

realization.

is the ensemble average of the product of the

derivations of the center of mass in a realization in the i and j directions from the

ensemble mean center of mass locations in the same direction.

The ensemble theories are first reviewed and followed by a review of the single-

realization theory. Recently renormalization group methods have been applied to derive

the ensemble macrodispersivity results. These theories are also reviewed.

Ensemble Theories

For uniform mean flow aligned in the x, direction in a heterogeneous porous

medium, the growth rate of Mij with mean displacement xi can be described by the

following expression, which has been presented in equivalent forms by Dagan (1984,

1988), Gelhar (1983, 1987, 1993, 1995), Neuman (1987) and Koch and Brady (1988)

A d 2 (k)dkd
2dxi q

(2.55)

where

cx is the pore scale dispersion coefficient and

Sqjqj (k) is the velocity spectrum
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Dagan (1988) presents the derivation of the above equation from the theory of turbulent-

diffusion.

d(2M i) (t) 2 ( i X'
Aii (t)= t = (,yffE[j u(k_)ui (ke

(2.56)

.exp (ik'.ht - ak'k't)dkdk' i,j = 1, 2, 3

where X' is the residual of the displacement of a particle defined by
dX'
-- = U (X,) where
dt

Xt is the total particle displacement and u is the residual of the convective fluid velocity.

The superscripts A and * denote the Fourier transform and conjugate respectively. In

fact Dagan shows how various macrodispersivity expressions obtained by Mercado

(1967) as well as results obtained by Dagan (1982, 1984), Gelhar and Axness (1983) and

Neuman et al. (1987) are particular cases of Eq. (2.56).

Gelhar and Axness (1983) obtain an expression for macrodispersivity in the far-field

from the linear perturbation approach by substituting the perturbed terms for C (

C = C + C) and q in Eq. (2.4) so that its steady state form is

a2  _
+c) = ExC

+c) (2.57)

Expanding and taking the mean produces the mean equation
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=E 2C

axiax.
(2.58)

Subtracting Eq. (2.58) from the steady state version of Eq. (2.4) produces

- - I2C

-- (4ic + qj c + qic - E [q'c]) = Eij axa
(2.59)

Assuming the primed quantities are small, the second order term q'c - E[qc] is

neglected; hence, the first-order approximation describing the concentration perturbation

is

a - 2c
a(q'c + qic) = Ej a

axi Aix

(2.60)

For convenience, the mean flow direction is aligned in the x1 direction so that

q, = q # 0 and q2 = q3 = 0. The local dispersion tensor Eij may be approximated in the

form [Naff, 1978]

aL[ 0 0

1Eig 0 agg 0
0 0 agq_,

(2.61)
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where aL and XT are respectively the longitudinal and transverse dispersivities.

Expanding the left term of Eq. (2.60) and utilizing the properties of a zero divergence

flow and Eq. (2.61), Eq. (2.60) reduces to

q ac ac a2c a2c a2c
q -+q--=q aX 2-r 2

ax, ax ax 1ax2 ax2
(2.62)

Eq. (2.62) is the approximate stochastic partial differential equation describing the

concentration perturbation c produced as a result of specific discharge perturbations q'.

The macrodispersivity expression is obtained by considering the spectral

representations for the perturbed quantities and noting that

c =f e'('-!dZc (k)
%~3

Making use of the above spectral representation and writing G = -aC/ axi, Eq. (2.58)

can be expressed in Fourier space as

ik + L + (k+k)]qdZ =GdZ =GdZ (2.63)
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Multiplying both sides by the complex conjugate Fourier amplitude dZ* and taking the

expectation of both sides of the equation gives

ik + (Lk2 + (k2 + 2 )] qSegq (_) = GS (k) (2.64)

where S is the cross-spectrum of c and qi, and S is the cross-spectrum of the j and i

components of the specific discharge.

Eq. (2.64) relates the spectra of flow variation with that of dispersive flux. The mean

dispersive flux is evaluated by integrating its spectrum so that

00 w qG Sqq (Lc)dk
(i) E =j Sq, (k)dk = d qA G

where

() S (_k)dk
(ii ) A iif.Pkq

(2.65)

and (k_)= ik + cLk2 + a (k2 + k' 2

Eq. (2.65)ii is the macrodispersivity tensor, which depends on the covariance function

used to describe the heterogeneity of the medium via the velocity spectrum Sq q.

The general development of the macrodispersivity expression (Eq. (2.65)ii) involves two

major assumptions:
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1. That the mean concentration gradient G = -aC / axi can be treated as constant,

i.e. the mean concentration is a linear function of the spatial coordinates. This

assumption will be strictly valid when the concentration field is relatively

smooth. In other words, this assumption will be valid only after the plume has

traversed a substantial displacement distance. Consequently, the

macrodispersivity Eq. 2.65ii is not expected to valid near solute sources where

large concentration gradients and sharp curvature will occur.

2. A second assumption involves the spectral relationship used for the covariance

between the concentration fluctuations c and the fluctuations of the specific

discharge components q' (Eq. (2.65)i). This relation holds when c and qi are

stationary fields, so that their measures have orthogonal increments. In the

above derivation, whereas qi is stationary, c is not and Eq. (2.65)i should be

replaced with

C ov [c,qj]= E E[dZ (ki)dZi (k 2 )]

where the cross terms are also included. It is not clear what effect these cross-terms

may have on the covariance. However, these cross terms are not taken into

consideration in evaluating the macrodispersivity.

Returning to the generalized form of macrodispersivity (Eq. (2.56)), Dagan (1987) shows

that Gelhar and Axness' expression in addition to those of Dagan (1982) and the
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macrodispersivity for a stratified medium by Matheron and Marsily (1980) are all

specialized forms of Eq. (2.56).

Gelhar and Axness' expression for macrodispersivity (Eq. (2.65)ii) can be obtained from

Eq. (2.56) by integrating over distance to yield

=e k 2  qj (k)dk
q -- i -

(2.66)

In the limit as x -+ oo the exponential term in Eq. (2.66) can be neglected and thus leads

to Gelhar and Axness' expression.

For flow in a stratified medium shown in Figure 2.8, where the aquifer exhibits

perfect stratification (i.e. the hydraulic conductivity varies in only the z direction), the

following relations can be obtained for the flow variables:

The displacement of a particle is

(2.67)

Assuming the porosity variations to be less than the hydraulic conductivity variations, the

mean particle displacement is given by

Jt _

x = E [x]=-E [K]= -t
n ; n

(2.68)
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And the variance of the displacement is given by

(2.69)

Also

-2

aq2 (z)= q (a (z)
K

(2.70)

Dagan obtains Matheron and Marsily's asymptotic results by integrating Eq.

(2.56) over distance to obtain

(2.71)A3=-q _ e _k 2 3qiqj (k)dk
q .. 1k -

Ignoring the odd terms Eq. (2.71) becomes

A. n2 -- eak2 ,

Ai = 2 , (k)dk
q 2 o k

(2.72)
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For small travel times, the exponential in Eq. (2.72) can be expanded to obtain

Ai- _71 [ Sqiqj (kdpk = 2XI02 (2.73)
2 -2

2 q t
K

Eq. (2.73) is the well-known Taylor short-time limit in which the dispersivity grows

linearly with time.

The asymptotic long time limit of Eq. (2.72) is obtained by letting k -+ 0, i.e.

n2 - S (0)(1-ek-xk2)
A- 2  dk
q - ak

n2 a2 X
2

= -2 A
aK

where X is the correlation length of the hydraulic conductivity. Note that, because of the

k-2 power in the integrand, the conductivity spectrum must be of the type

37t (1 + X2k2

if the macrodispersivity is to approach a constant for large mean displacement [Gelhar,

1993].

The asymptotic behavior for macrodispersivity has been explored by various

researchers including Dagan [1984], Rajaram and Gelhar [1995], Neuman [1990],
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Neuman and Zhang [1990], Ababou and Gelhar [1990], Zhan and Wheatcraft [1996],

Glimm and Sharp [1991] and Glimm et al. [1993]. With slight variations in the spectrum

of the hydraulic conductivity, all these researchers relied on the velocity spectrum of the

linear perturbation theory and have arrived at similar conclusions; that at short travel

times or distances, the longitudinal and transverse macrodispersivities are anisotropic and

that this anisotropy is maintained at long travel distances. For example, Dagan found that

for a medium with an exponential covariance function of log-conductivity, the following

are the asymptotic results for the 2D case:

3 a2 1 -2

(8 AF-+aq t; A22-+- q t for t< 1
8 8

(ii) A 1 -+2a Xqt 1- 3In q/X)
11 F 2 (tq / X)

A22 -> y X2 In (tq /X)+0.933] for t >1

This display in anisotropy at both small travel times and distances between the

longitudinal and transverse dispersivities is a marked feature resulting from the

linearization of the zero divergence Darcy's law. The validity of these results will be

determined when results for nonlinear solution of Darcy's equation are presented.

Plume-scale dependent macrodispersion
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Rajaram and Gelhar (1993, 1995) obtained an expression for computing the

ensemble average of the second moment I . They used the so-called "two-particle"

approach to derive a formula for Ii , given by

2Ax( =et 11 -(k,x 1 )}S,, (k)dkd

where F(k,xi) = Fourier transform of the ensemble average separation distribution

function. Various expressions are given for f in Rajaram (1992) for plumes with

different configurations. For a plume with an initial Gaussian distribution

F (k, xi ) = exp (kik xj ). The derivation of Eq. (2.75) is non-trivial and is presented in

detail by Rajaram (1992) and involves the following steps:

1. The derivation begins with a definition of Z, which is then expressed in terms of

2 **

the separation function F(p, t) = n 2 f C(x, t)C(x+ p)ix.

2. Results of the probability density of the separation distribution function of

particles (from turbulent diffusion) are applied in relating the dispersion

coefficient Dj (p, t) to the correlation function of the particle velocities.

3. The velocity correlation function is related to the velocity spectrum via the

Fourier transform. Finally, the mean flow is assumed to be aligned in the x,
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direction so that mean velocities in the x2 and x3 directions are assumed to be.

zero. These assumptions are used in arriving at Eq. (2.75).

Eq. (2.75) represents a system of differential equations that must be solved numerically to

determine the second moment tensor and consequently the relative macrodispersivity A .

The portion of the integrand in Eq. (2.75) in curly brackets is essentially a low

wavenumber filter which is related to the size of the plume as reflected in the second

moment term. At large times, as the plume becomes very large, the dispersivity

approaches the ensemble result but when the plume is smaller, the relative dispersivity is

reduced. Physically, Ar represents the fact that, when the plume is small, it is dispersed

by only the high frequencies or the high wavenumber fluctuations in the velocity field,

but as the plume grows it is progressively dispersed by lower frequencies or wavenumber

fluctuations.

Several researchers (Koch and Brady; 1988, Neuman, 1990; Glimm and Sharp, 1991;

Kemblowski and Wen; 1993) have evaluated the ensemble macrodispersivities for fGn

models and find that the macrodispersivity tends to grow as a power of the mean

displacement. When the influence of the plume size is included Eq. (2.75) much smaller

macrodispersivities are predicted and simple power law dependence on the displacement

is not found (Rajaram and GeIhar, 1995). This result of Rajaram and Gelhar is confirmed

in this thesis. However, there are significant differences in macrodispersive behavior

when the velocity spectrum from the nonlinear theory in this thesis is compared to that of

the linear theory.
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Two-phase model

An approach that has been widely used to treat solute transport in heterogeneous

porous media is one in which the medium is assumed to consist of different materials, or

regions with drastically different velocities. It is then assumed that the convective

transport in the low-velocity region is negligible, and that transfer of the solute between

the immobile fluid region and the flowing fluid is via molecular diffusion. In this model,

it is assumed that there are regions that are poorly connected to the main flow. However,

the geometry of these regions is not specified. In this so-called "dead end pore" model

(Coats and Smith, 1964) an attempt is made to account for the tailing or asymmetry

observed in laboratory coticentration profiles by modifying the ADE to include diffusion

or mass transfer into stagnant volume. The rate mass increase is decomposed into two

components to account for transfer in the mobile and immobile phases. If the ADE (Eq.

(2.4)) is augmented by terms accounting for stagnant volume, the result is,

ac ac* a2 C ac
(i) f-+(1-f)-=E v--at at ax2  ax
and (2.76)

aC*
(ii) (1-f ) a K (C -C*)

where f is the fraction of pore space occupied by mobile fluid [LJL], C* is the

concentration in the stagnant fluid [M/L3], and K is rate constant or first-order mass

transfer coefficient [T-] and Eq. (2.76)ii presupposes a first-order mass transfer

process. In Appendix C, Coats and Smith (1964) obtain the solution of Eq. 2.76
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J exp 1-S PCos

C - fa2 a) [a 1 cos(ZJ-w)+a 2 sin(ZJ-w)]dZ (2.77)
C 0  a1 +a 2

where

J= I/f and I is the pore volumes injected, vt/L

af
a=KL/v Z=-(J-y)

1-f

= tan-' (v /u)

4 ba+a(1+Z
u=1+- 1+

(1+b) 2 +Z2

4Z ab
V=-1+ 2

Y I (1+b)2+Z2

p= u2 +V2 b=af/(1-f)

ai =1+NF cos Z- Zsin
2 2

a2 =Z 1+VIcosf) +v'sin

W = Fpsin
2 2

In laboratory experiments, where the configuration and properties of the immobile

regions are constructed in a known fashion (Rao et al., 1980; Gillham et al., 1984), it

has been confirmed that predictions from dual-media models fit the observed

breakthrough curves. However, in field situations, the geometry and properties of the
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immobile zones are not known, and there are no established procedures for

determining these [Gelhar, 1993]. As a result, the additional parameters are usually

extracted by curve fitting breakthrough curves. Such curve-fitting procedures are not

desirable, especially in the case where, because of the similarity of the shapes of

breakthrough curves produced by different conceptual models, one would question

the uniqueness of such parameters [Gelhar, 1993]. The more fundamental difficulty

with the dual-media model is the assumption that the velocity field can be

approximated by the extreme condition assumed in these models: that is, a mobile

region with a uniform velocity and an immobile region with zero velocity. Naturally

occurring heterogeneous media are more likely to exhibit a wide range of fluid

velocities. In that case, it is likely'that diffusional transport will be overwhelmed by

convective effects, so that the overall transport is no longer diffusionally controlled.

Moreover, the two-phase model applies the Fickian assumption and does not account

for the variation of the dispersion coefficient with scale. Hence, the two-phase model

will be inappropriate for modeling transport in highly heterogeneous media. In spite

of these criticisms of the dual-model, it offers insights into the physical mechanisms

that may explain the tail behavior of the breakthrough curves.

72



Renormalization Group Methods for Obtaining Ensemble Macrodispersivity Expressions

Recently results from quantum mechanics have been applied in studying flow and

transport in porous media (for example, Christakos, G. et al. 1995; Glimm, J. 1999 and

Sposito G, 2001). The renormalization group method (RNG) was developed for dealing

with problems in turbulence in fluids. The major difficulty is the simultaneous existence

of many different space and time scales of equal importance at high Reynolds number. In

broad terms, the RNG is a procedure for integrating small length scales which leads to

divergent solutions, so that the remaining unknowns describe the large length scales of

the system that lead to convergent solutions [Glimm, J. 1999].

Sposito [2001] applies a key result from quantum field theory (QIFT), the Dyson

equation, to derive the ensemble macrodispersivity in Eq. 2.55. He concludes that the

sophisticated approach of the QFT does not provide any better results than can be

obtained through the linear perturbation approach. Although the QF' can provide

improved accuracy, this comes at a significant physical cost, which from Sposito's point

of view is not justifiable.

Christakos et al. [1995] use the so-called diagrammatic approach to solve the

stochastic flow equations. Instead of the symbols used in the flow equations, diagrams

are used to represent terms. Christakos et al. show how this approach can be used to

solve flow equations. In fact, a comparison of the solution obtained from the

diagrammatic approach for the ID case shows that it performs worse than the second-

order perturbation result (see Figs. 2 and 3 in Christakos et al. 1995).
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2.5 Fractals and Self-Similar Models

Over the past twenty years, there has been an increasing application of scale-

invariant models to study the heterogeneity and flow through porous media. This

discussion is prefaced with a review of self-similar models and how they differ from

multifractal models. The classical notion of self-similarity for a random process X(t) in

91 is that there exists a sequence of positive real numbers ar such that, for any r > 0,

X(t)=d arX(rt) t e 91 (2.78)

where =d denotes equality of all finite-dimensional distributions . Eq. (2.78) is a

statement of invariance of X(t) under the group of positive affine transformations { X -+

arX, t -> rt; ar > 0 }. Since ar satisfies a r 2 = a ar2 for any ri, r2 > 0 and a, = 1, ar must

have the form r-H for some real H and Eq. (2.78) may be stated more explicitly as

[Veneziano, 1999]

X(t) =d r-HX(rt), t e 91 (2.79)

Random processes that satisfy Eq. 2.79 are said to be self-similar (ss) or more specifically

H-ss.

A process can have a weaker form of self-similarity when only its increments are

self-similar. That is,
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d.

[X(tl)-X(t 2)]= r-H[X(rt1)-X(rt2 )], t1 , t2 e91 (2.80)

for some real H and any r > 0.

One may further constrain the self-similar and self-similar increment processes in

Eqs. (2.79) and (2.80) to have stationary increments. Such processes satisfy the condition

[X(to + r) - X(to)] = rH [X(t + rr) - X(to)] (2.81)

for any given to e 91 and r > 0 [Veneziano, 1999]. The types of invariance expressed by

Eqs. (2.79), (2.80) and (2.81) are illustrated in Figure 2.9.

A multifractal process can be considered a more general form of a self-similar

process and is obtained by replacing the deterministic scaling factors ar = r-H in Eqs.

(2.78) and (2.79) with real non-negative random variables Ar, independent of the process

X(rt). Then Eq. (2.78) becomes

d
X(t) = A; X(rt) t e 91' (2.82)

where * denotes the product of independent quantities and =d denotes equality of all

finite-dimensional distributions.
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The interest in and application of self-similar or fractal concepts in hydrology has

been motivated by a desire to explain the behavior of increasing dispersivity with scale

(see Fig. 1.1).

Philip (1986) applied Taylor's (1921) result for dispersion

D = = 2 f R, (t)dT (2.83)
2 dt n o

where Rq is the velocity correlation function. Philip suggested that a correlation

function of the form

Rq (T)= 1+ 0 <,c < 1 (2.84)

where T is a constant and represents the minimum time scale, will explain the scale

dependent dispersivity in Fig. 1.1. Philip also suggested that any Rq with a similar

power-law behavior at large time will yield an asymptotic power-law growth of the

dispersion coefficient. This approach by Philip cannot be used to predict dispersivities

because the velocity covariance function is not expressed as a function of the hydraulic

conductivity field.
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Neuman [1990] and Di Federico and Neuman [1998] used fractal models in

explaining Figure 1.1. Neuman begins by modeling the log-conductivity field as a

superposition of separate contributions of log-conductivity at different scales. So that

F'(x)= F (x) (2.85)
j=0

where F' is the log-conductivity at a particular resolution, and Fj are the log-conductivity

contributions at resolutions finer than i. Each of the contributing log-conductivity

fluctuations Fj has a distinct variance U-2 and tensor of integral scales Lj. Spatial

increments of the contributions are mutually uncorrelated so that the semivariogram of

F'(x), y'(s) where s is a displacement vector, becomes simply the sum of

semivariograms contributing by F (x),

~(s) = rFs) (2.86)
j=0

If each distinct scale has an exponential covariance

= X 2 2 21
R U2x =oexpL- I + X2 +.-j (2.87)RF(X)= F L2V3'
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where L1, L2 and L3 are the integral scales in the principal directions of anisotropy x1,

X2 and X3, then the semivariogram that corresponds to Eq. (2.86) is

YF(s, L )= C (L 1-exp (- rJ]

where L, is the directional integral scale and associated variance c.2,(L,).

Eq. (2.88) over all possible integral scales L, yields

YF(5) = -(m)(1 e-ms)dm
0

(2.88)

Integrating

(2.89)

where m is defined as m = is a wave number representing the
L,

spatial frequency of

log-conductivity fluctuations in the direction v. In the special case where

F m 1+2w O< 2c < 1

and C is a positive constant, then the integral in Eq. (2.89) becomes

YF = 2a,

(2.90)

(2.91)
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where CO and o are positive constants. In other words, the semivariogram of log-

conductivity grows as a power of the distance s. Next, Neuman relates Eq. (2.91) to

the asymptotic values of macrodispersivity derived in Neuman and Zhang [1990]

from the macrodispersivity expression, Eq. (2.55). For long travel times Neuman

and Zhang obtained

AL(S) = c S(t)or (2.92)

where s(t) is the mean travel distance. Next Neuman relates Eq. (2.92) to results of

the linear regression performed on the data in Figure 1.1. His fitted lines are shown

in Figure 2.10 and he obtains a relation between macrodispersivity and travel distance

of the form,

AL =0.0175L8
5  (2.93)

with a regression coefficient R2 = 0.74 and 95% confidence intervals [0.0113, 0.0272]

about the coefficient 0.0175 and [1.30, 1.61] about the exponent 1.5. Neuman

explains Eq. (2.1) by relating C2 in Eq. (2.92) to Eq. (2.93). And further explains

the dependence of U2 on travel distance L via the variogram in Eq. (2.91). The

variance C2 is given by the semivariogram in Eq. (2.91). Finally Neuman obtains the

w as 0.75 and regards it as "universal."

79



Neuman's methodology and derivation suffers from a number of setbacks and is

critiqued by Gelhar et al. [1993]. The highlights of the critique are:

1. Neuman's derivation depends heavily on the reliability of the data shown in

Figure 1.1. Some of the data have been shown to be unreliable by Gelhar [1986].

Hence, a model derived a priori on assumptions of the reliability of the data leads

one to question the correctness of the results.

2. Secondly, Neuman's notion of a universal model ignores the fact that different

aquifers have degrees of heterogeneity at a given scale [Gelhar, 1993].

3. Neuman's results are based on an asymptotic approximation of the

macrodispersivity equation (2.55), which in a sense is equivalent to a

linearization scheme. Hence may not apply to the small travel times or the

intermediate range of travel.

Zhan and Wheatcraft [1996] represent the F = lnK as a fractional Brownian surface (fBs),

so that increments of the F field have the form

FOF(xl)-F(x2)2 ] X2-xf 0<cc<2 (2.94)

Moreover, F = InK has a spectral density of the form

SF (k)= so(2.95)
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where So is a constant, B= + D , D is the space dimension, k is the magnitude of the

wavenumber vector k. Eq. (2.95) shows that as k ->0, SF -> oo, so k = 0 is the

singular point of the spectral density function. Since k = T, where I is the wavelength

or the scale of the medium, when k -+0, 1 -+ w which implies that the porous medium is

infinitely large. However, in nature, the aquifer boundaries will determine the limit of

heterogeneity. Therefore, there is always a maximum 1, L. and thus a minimum

wavenumber k0 . The introduction of Lmax with no flow boundaries will introduce a low

27c
limit cutoff ko = 2 . The issue of incorporating finite-size effects of the flow domain

Lmax

in the spectrum of log-conductivity has been discussed by Ababou and Gelhar [1990]. In

addition to the low wavenumber cutoff, they suggest-a high wavenumber cutoff k. that

represents the spacing of conductivity measurements or the scale of conductivity

measurements. Using the general result in Eq. (2.55) Zhan and Wheatcraft show that a

spectrum of the type (Eq. (2.95)) leads to a scale-dependent ensemble macrodispersivity.

Rajaram and Gelhar (1995) also show that representing the log-conductivity field

as fBs and using Eq. (2.55) leads a scale-dependent ensemble macrodispersivity.

However, when the plume-scale dependent macrodispersion is computed with fBs

representation of the log-conductivity field much smaller macrodispersivities are

predicted and a simple power law dependence on displacement is not found.
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Ababou and Gelhar [1990] obtained the 1D spectra of log-conductivity data

obtained from the Mount Simon aquifer. The domain size was Lmna = 303 ft and the

measurement spacing Lmi, = 1 ft. The log-spectral density was plotted against log-

frequency, and the spectrum of the log-conductivity was suggested to behave as Eq.

(2.95). Ababou and Gelhar [1990] suggested the data to have = D , and for their case D

= 1. This spectrum where P = D coincides with that of a field with a multifractal

conductivity. However, a close examination of the spectra by Ababou and Gelhar [1990]

indicates that the fitted slope of 1 is not necessarily accurate. In the low frequency range,

the spectra exhibit a distinct curvature, and the high frequency range clearly departs from

a slope of one. In fact, the slope of one fits a very small portion of the empirically

obtained spectra. This lack of fit of the spectra with a slope of one has been commented

on in a note by Tyler and Wheatcraft [1992]. Using this multifractal spectrum of the

conductivity field and spectral density of the specific discharge from the linear theory in

the ensemble macrodispersivity expression (Eq. (2.55)) Ababou and Gelhar obtain the

following expression for the longitudinal macrodispersivity

A- a2 (La - La ) (2.96)

where a is the same as S0 in Eq. (2.95). Eq. (2.96) applies in the far-field and suggests

that in the pre-asymptotic regime the macrodispersivity of a plume grows linearly with

the size of the 'plume and should increase in time approximately as:

A11 (t)~ L (t) (2.97)
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In fact, all the research work done in area of fractal representations of the conductivity

field have closely followed the approaches discussed above. The work of Glimm and

Sharp (1990) and Glimm et al. (1993) follow the same approach as that of Zhan and

Wheatcraft and presenting the details will be redundant.

Questions about the validity of these fBs representations of the log-conductivity

field remain. For example, Hewett (1986) analyzed a series of over 2100 values of

porosity data from geophysical logs sampled at intervals of 0.16 meters. He found a $

value of 2.72. However, it is difficult to judge the reliability of this value since no

confidence interval was provided [Gelhar, 1993]. Moreover, these fractal models

represent the hydraulic conductivity as nonstationary processes. The representation of

conductivity fields as nonstationary processes contradicts the empirical findings of

Hufschmied (1985) and Sudicky (1986) who found that hydraulic conductivity fields can

be accurately modeled as stationary processes with a lognormal distribution.

This thesis models the hydraulic conductivity field as a stationary lognormal

multifractal field. Instead of relying on spectra obtained through the linear perturbation

approach, a new approach exploits the scaling properties of the hydraulic conductivity

field to derive the distributions of the hydraulic gradient and specific discharge fields.

The results will be compared with those of the linear theory in subsequent chapters.
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2.6 Multifractal characterization of random resistor and random

superconductor networks

The flow of a liquid through a field with a random hydraulic conductivity K distribution,

to which a unit hydraulic gradient is applied in the main direction of flow is analogous to

problem of defining the voltage distribution on an electrical network with random

resistors to which a unit voltage drop is applied. If a unit voltage drop is applied across

opposing faces of the network, the total current that will flow It, is analogous to the

effective conductivity Kff. Ito is known as the conductance of the electrical network

and this is analogous to the notion of Kff in hydrology.

Several researchers [de Arcangelis et al., 1985; Amitrano et al., 1986; Bin Lin et

al., 1991 and Bershadski. A, 1997] have studied the characterization of random resistor

networks. These authors (with the exception of Bershadski, who simply presented a

summarizing report) have studied the voltage distribution in a discrete cascade of

electrical networks on a square lattice with random resistors to which a unit voltage is

applied. The electrical network is visualized as a random resistor network on a square

lattice of size L x L. Each bond in the network is either a conductor carrying a unit

resistance with probability p or an insulator with probability 1 - p.

The moments of the voltage distribution M (q) are given by [de Archangelis et

al., 1986]

M(q)= Y, n Vq ~ L~ (2.98)
all V
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where K (q) is the moment scaling function, nv is the number of bonds with a voltage

drop V. It is assumed that nv and V have the following scaling properties

(W nV = B (q)L!q
(2.99)

(ii) V(q)= A(q )L~~q

where A and B are slowing varying functions of q. Substituting Eq. (2.99) into Eq. (2.98)

and comparing the exponents of the left and right hand sides, one obtains

K(q)=-gq(q)-f (q) (2.100)

Bin et al. (1991) extend the hierarchical model of Archangelis et al shown in Fig 2.11.

This model has two key parameters: the number of horizontal bonds hb and the number of

vertical bonds vb. This lattice is referred to as the (hb, vb ) lattice. Fig. 2.11 shows an

(hb, vb ) =(2,1) model. For a lattice with a unit potential applied across it, Bin et al.

obtain the following results for the voltage distribution:

V (j)= h )N b
(2hb +vb)

j =0, 1,.,N (2.101)
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where j is the level to which the model has been developed. When j =0 corresponds to

the minimum voltage V,,,j and j = N corresponds to the maximum voltage V.,.

The number of bonds with voltage V is given by

nVs = (hbv
N

j ),
j= 0, 1,.,N (2.102)

The moment M (q) for the general (hb, vb ) lattice is

2hq +hbv NM (q) - b

S(2hb + Vs b
(2.103)

And the moment scaling function is obtained as

K(q)= q- kn 1+ V _ V /n2K~q=ql+ ~n 2h I 2h q-~ /n (2.104)

Using the formulation above, Bin et al. (1991) examine the scaling properties of a

superconductor network, in which the configuration of the random resistor network is

transposed so that the number of horizontal and vertical number of bonds in the random
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resistor network is a transpose of the number of horizontal and vertical bonds in the

superconductor network. This dual of the lattice (hb, Vb), represented by (hbVb)' is

shown in Fig.2.12. The random superconductor network in Fig. 2.12 has bonds of

infinite conductivity with probability p- (just below the percolation threshold) and unit

conductance bonds with probability 1-p -(Bin et al., 1991). The same boundary

condition AV =1 is imposed across this network and because of duality, the voltage

distribution on the dual (or transposed) lattice Vi' is equal to the current distribution Ii

on the original lattice under the boundary condition Itot =1. The duality principle can

be understood by considering the series and parallel resistor network in Fig. 2.13. If a

voltage difference of V is applied across the resistors R, and R2 in series, and the

corresponding voltages across the resistors are V and V2 , then from Ohm's law the

following Eqs. hold for the series configuration

V= (RI +R2) (2.105)

Also,

V1 +V 2 =V (2.106)

where V = RI, and V2 =1 2R 2 , thus I, = 2= I. For the parallel configuration one

obtains

I= 1 +12 (2.107)
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Again applying Ohm's law, one obtains

V V, V2

R R R 2

where V=V1 =V 2 . Thus, the summation of voltages in series is replaced by summation

of current in the parallel configuration. Also, the equality of currents in the series

configuration is replaced by equality of voltages in the parallel configuration. This is a

simplified explanation of duality. Bin et al. apply the duality principle for the transposed

circuit configuration and obtain the following results for the current distribution

vi (2v+h)N i-N (218
Ii = = vi- = ,,:, (2.108)

vN (2v+h)N

where v and h are the vertical and horizontal number of nodes respectively. Also, the

number of nodes with voltage V in the transposed circuit ny, is the same as the number

of nodes in the original circuit n v, and the scaling moments of the current is obtained as

E[I] =G~q n Vq (2.109)
V

where 0 is the total conductance of the circuit and is given by
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N

G = 2+-v (2.110)
h)

Bin et al. point out that this duality representation may not be accurate because it

contradicts prior results of Keller (1964) and Straley (1977), who found that for a random

two-phase square lattice with conductance a, and a 2 , the following relations hold:

G(p,a;1-p,a 2)G p,-;1-p,- 1=1 (2.111)

G(p,a,;1-p,a,)= - (2.112)
G2 61 ,

where G is the total conductance of the system. Letting p = pc , al =1, and 2 =0, then

Eq. (2.109) represents a random resistor network of unit conductance bonds with

probability p and zero conductance bonds with probability 1- p. Eq (2.112) relates the

conductance in a random resistor network and the random superconductor network.

However Eq. (2.110) contradicts the dual relationship calculated by Bin et al. Thus, a

random resistor network modeled with a lattice of dimensions (h, Vb ) may not give a

good description of the random superconductor network modeled with (hb, vb )T . Bin et

al. argue that a dual lattice of the random superconductor network can be approximated

by adjusting the values of hb and vb.
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CHAPTER 3: MULTIFRACTAL SCALING OF HYDRAULIC CONDUCTIVITY

Introduction

Properties of multifractal measures are discussed in this chapter. Section 3.1

contains a review of multifractal theory. Section 3.1.1 presents a discussion on isotropic

multifractal measures. These multifractal measures are generally scalars and do not

contain the more general features of vectors which in addition to the scaling properties of

their magnitudes possess scaling properties associated with their direction. Vectors that

possess multifractal properties are presented in section 3.1.2. In addition to the

distinction between scalars and vectors, multifractal measures can be grouped into

conservative and non-conservative measures or described as a "bare" or "partially

dressed measure". When a multiplicative process is terminated at a finite resolution r, the

resulting measure V, is called a "bare" measure. When the multiplicative process is

continued to infinity, the limiting measure within a region S, V (S) is said to be

"dressed" [Lovejoy and Schertzer, 1996]. A multifractal measure is said to be

conservative if the bare mean E [V,] is also the mean of the dressed measure V = lim V.

In the non-conservative case, E [V] varies as a power function of r and either vanishes

or diverges as r -+ oo . Properties of conservative and non-conservative measures as well

as bare and dressed measures are presented in section 3.1.3. Bare measures

Section 3.2 presents empirical and theoretical justifications for modeling

hydraulic conductivity fields as multifractals.
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3.1 A review of multifractal theory for subsurface flow

There is a vast literature on the subject of multifractals. Multifractal phenomena

were first explicitly found in the analysis of nonlinear dynamical systems (see for

example Grassberger, 1983; Hentschel and Procacia, 1983) but had been used implicitly

in the study of turbulent flows (Mandelbrot, 1974). Multifractals have been used in

characterizing turbulent flows (see for example Frisch and Parisi, 1985; Jensen et al.,

1985 and Meneveau and Sreenivasan, 1987). They have also been used in characterizing

various geophysical phenomena such as rainfall (e.g. Schertzer and Lovejoy, 1987; Davis

et al., 1994; Wilson et al., 1991), topography (e.g. Veneziano and Iacobellis, 2000)

permeability (e.g. McCauley et al., 1990) and in the characterization of mineral deposits

(e.g. Quiming, 1995). The notations and terminology used vary depending on the field of

application. Hence this chapter provides a background on multifractal theory, and

explains the symbols and concepts used in this thesis. Most of the properties mentioned

here are in physical space. Properties in Fourier space are also presented.

All considerations are for a homogeneous vector field V in D-dimensional space.

The number of components of V is not necessarily equal to the spatial dimension D;

hence, the special case of one-component vectors corresponds to scalar fields such as the

hydraulic conductivity K. Homogeneous multifractal fields do not have point values, i.e.

at any given location x the value of V(x) is not defined. However, the measure V(S) of a

region S of RD is typically non-degenerate. This is why random measures V(S) rather

than ordinary fields V(x) are considered.

A vector measure V(S) is said to be multifractal if it is statistically invariant under a

group of random transformations of the space and the field V itself [Veneziano, 1999].
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The simplest group of transformations, which is sufficient to describe the symmetries of

the hydraulic conductivity model, is isotropic contraction of the support and

multiplication of the measure by an independent random variable. Invariance under this

group of transformations is called isotropic multifractality and is described shortly.

Invariance under more complex space and field transformations is often referred to as

generalized scale invariance (GSI; see Lovejoy and Schertzer, 1985, and Schertzer and

Lovejoy, 1996) and is reviewed in section 3.1.2.

3.1.1 Isotropic Multifractality

A homogeneous random measure V(S) in RD is isotropically multifractal if there

exists a sequence of non-negative random variables { Ar, r 1} independent of V such

that the measure density v(S)= V (S)/ SI is statistically invariant under the scale

transformations {x_-+ x / r, v -> Ary} i.e. if

d

v (S)= A, v (rS) r 1 (3.1)

d

where = denotes equality of all finite dimensional distributions [Veneziano, 1999]. If V

has finite nonzero mean, then the expected measure density Eyv(S)] is constant for all S

and E[Ar] = 1. Eq. (3.1) relates the statistical properties of a larger region of the field to

the properties of the field within a smaller region S. Thus, the field in the smaller region

v (S) is obtained by isotropically contracting the field in the larger region v (rS) and
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multiplying it by the non-negative random variable Ar . A field that satisfies Eq. (3.1) is

also described as a contractive stochastic self-similar field (c-sss). The random variables

A, in Eq. 3.1 are defined only in terms of their marginal distributions [ Veneziano, 1999]

From repeated application of Eq. 3.1, first with r = r1 and then with r = r2, one finds that

the variables Ar must satisfy the group property

d

Ar 2 =ArIA r2  for any ri, r2  1 (3.2)

where the factors Art and Ar2 on the right hand side are independent. Moreover, from Eq.

(3.2), it must be A1 = 1. In the special case when Ar is deterministic, Eq. (3.2) implies

Ar = r-H for some real H and Eq. (3.1) becomes the classic condition of self-similarity.

Eq. 3.2 is a fundamental consistency relation, with many implications on the random

variables Ar and the field V (see Veneziano, 1999). Two of them are mentioned below:

1. Distribution of Ar: Eq. (3.2) implies that for any natural n, log (Ar) satisfies

d

log(A,) = I log (A,,, 9 where the variables A, ., are independent copies of
i=1,n

A , n. Therefore, log (A,) must have infinitely divisible distribution

[Veneziano, 1999]. For example, the lognormal distribution is an admissible

distribution for Ar.

2. Moment Scaling Function: It follows from Eq. (3.2) that the moments of Ar

must scale with r as E [As] = rW(S) where W(s) is a convex moment scaling
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function and is called the moment function W (s) = log, {E [As }: see for

example Kahane and Peyriere (1976), Schertzer and Lovejoy (1987), and

Gupta and Waymire (1993). In the multifractal literature, the function W(s) is

usually denoted by K(s). This notation is changed to avoid confusion with the

hydraulic conductivity. The function W(s) is of great theoretical and practical

importance, since it characterizes the distribution of Ar and hence the scaling

properties of V. Also, W(s) can be inferred from the moments of v(S), where

v is the amplitude of v, because from Eq. (3.1),

E [vs (S)] = rw()E[vs (rS)] (3.3)

The function W(s) can therefore be obtained as the slope of the plot of the log E [vs (rS)]

against log (r).

An important special case of Eq. (3.1) is when Ar has lognormal distribution. Since E[Ar]

= 1, in the lognormal case ln(Ar) must have normal distribution with mean value

-CK ln (r) and variance 2CK ln (r), where CK= Var ,)] is a constant. The

associated moment scaling function W(s) can be found from the moments of the

lognormal distribution (see for example Johnson and Kotz, 1970, Chapter 14) and is

given by
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E[As =exp{-sCK ln r +s2 C In r}

= exp {inr-sCK +in r,2CK I= rcK (s 2_s) rW(s)

W(s)=CK (s2 -s) (3.4)

This lognormal multifractal is used in section 3.2 to represent the hydraulic conductivity

field.

If v (S) denotes the average measure density of v (S), then v (S) has the following

Fourier representation

v (S)=F Is (_kv(dk)
S|, f sk

(3.5)

where ISI is the volume of S, is (k) is the D-dimensional Fourier transform of the

indicator function S, and v (dk) is a complex measure in Fourier space. Properties of

v (dk) are given in Yaglom (1986). Since rs (k) = rEDIs (rk) and the volume of rS is

rD ISI, substitution of Eq. (3.5) into Eq. (3.1), a condition satisfied by v (S)gives
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Is (rk)v(dk)Is (k)v(dk)=rr D1 A, f
IS R r ISI R D

(3.6)
=A, f Is(k')v(dk'r)

RD

where k'= r'k. Eq. (3.6) holds for any S, hence the spectral measure v (dk) must

satisfy

d
v (dk)=A~~v (dklr) r>1 (3.7)

Eq. (3.7) is dual property in Fourier space of the renormalization property in Eq. (3.1)

[Veneziano, 1999]. There are two main differences between Eqs. (3.1) and (3.7):

1. v is multifractal under contraction, whereas v is multifractal under dilation.

2. v is homogeneous, while v is non-homogeneous.

E [v(dk)12
Suppose the spectral density S, (k) = dk exists. Then from Eq. (3.7)

(3.8)S E ( = E-DqE A S, (k /r)

Substituting E A r into Eq. (3.8) produces

S, (k) = rDW() v, (k/r) (3.9)
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Replacing 1 = r', 0 < r'< 1 and in Eq. (3.9), one obtains
r

S, (rk) = rD+W(2)Sv (k) (3.10)

In the lognormal case, W (2) = 2 CK = Var [log, (Ar)].

To determine the spectral density of Inv, the wavenumber components outside the range

ko k rko are eliminated, so that a field with point values v, (x) is obtained. The

average value of v, (x) in a region S is denoted by Vr (x).

Suppose now that v (S)=lim v, (S)satisfies Eq. 3.1, then at least for large r, and

any r >1,

d
v, (x)=Av, (rx)

or taking the logs of both sides of Eq. (3.11) gives

In (V,, (x_)In (A,)+in (V,, (rx)

(3.11)

(3.12)
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It follows that the spectral densities of In (v )and In (v, )must satisfy

S9() (k)= rDS() (k /r). If as j -+ oo, the S y converges to a finite limit S ,(v then

this implies

Sn(v (k)oc k~ D (3.13)

which can also be written as

S n(v)(rk) = r-DS.(v) (k) (3.14)

In the isotropic case, Eq. (3.13) gives

S (v) (k) = ck-D (3.15)

for some c and k =1kl. Since A, and v, (rx) are independent, then from Eq. (3.12),

Var [In (v, ())] = Var[ln (A, )]+Var [in (v, (rx))] (3.16)

The spectral density of v, is the same as Sp(inv)i Eq. (3.15) in the interval k_ 5 k <rk

and is zero otherwise. Therefore using Eq. (3.16),
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Var [In (Ar)] = Var [In (vr, (x))] -Var [In (v, (rx))]

= c
r CkSD lnrr),

=cSD ln (r)

where SD is the surface area of the unit ball in RD , hence S, = 2, S2 = 27r, S3 = 4n. From

1 Var[ln (Ar)]Eq. (3.17) c =- I . From the review of multifractal fields above,
SD n)

Var [In (Ar )]In (r = Var [In (Ae)] is independent of r. Moreover, for
ln (r)

mean value 1, Var[ln (A.)]=lnE[A,]= W(2)= 2CK. Hence c

(3.15) becomes

S (k)= kD
D

Ae lognormal with

=2CK/SD and Eq.

(3.18)

3.1.2 Generalized Multifractality (Generalized Scale Invariance GSI)

Lovejoy and Schertzer(1985) have extended the notions of scale invariance under

isotropic contractions/dilations to include scale invariant transformations of a more

general type {x -+ T,,x v -> Tfrv}where Tr and Tfr are the space and field scale-change
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operators respectively indexed by the scale change factor r. Tr and Tfr can be linear or

nonlinear, deterministic or stochastic. Lovejoy and Schertzer call this extended property

generalized scale invariance or GSI. In the discussion that follows the space and field

subscripts (s and f ) will be ignored and the transformation will only be indexed by r.

GSI requires both T, and a unit scale to be defined, as well as a definition of how

the unit scale can be measured. For simplicity, Lovejoy and Schertzer define the unit

scale as a unit ball Bi that defines all the unit vectors. The unit ball is defined implicitly

as

B1 ={x:f (x)<1} (.9Bi f ( ) < 11(3.19)
aB, ={x: f, (x)<1}

where {x: condition} denotes the set x for which the condition is true, f, is a function of

position, and aB, is the so-called "frontier" of the unit ball. The transformations are

considered for closed balls. By denoting points in RD by x= (x, .. , xn) and

y = (yI, y2 ,..., y ), the closed ball of center x and radius r is defined by

B, (x)={y: y - x r} (3.20)

Thus, the closed ball contains its bounding sphere. In R 2 a ball B, is a disc and in R' a

ball is an interval [Falconer, 1995].

T, transforms the scale of a vector by a scale ratio r, and has the following

properties. If and only if rir 2 = r, then
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(3.21)Br = T Br2 = Tr2Br

Hence Tr has the group properties

TrT2Br, = Br = TrTr2B,
(3.22)

= T, = r-

where the matrix G is called the generator of the group. The negative sign shows

reductions by a factor r. The inverse operator (which will be magnifications by a factor r)

T-1 = Ti only exists when G is a matrix [Lovejoy and Schertzer, 1985]. When G is an

nxn matrix and x is an n-dimensional vector, then

-1 G
r- =exp (-G In (r))=1- G In (r)+-G In 2 (r)-...= (in r) (3.23)

and the GSI is described as linear. Moreover, the eigenvalues of G must have positive

real parts [Lovejoy and Schertzer, 1985]. An ordinary process v (S) in RD with the

property that

d ivelIrS(2
v(S)= A, .v (e-"'a) (3.24)
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is said to be (G, Ae) stochastically self-similar. Specifically, for any r 1, the process is

said to be (G, Ae) contractive stochastically self-similar process (c-sss). And for

0 < r 1 the process is described as (G, Ae) dilative stochastically self-similar (d-sss)

[Veneziano, 1999]. When the matrix G is an identity or unit matrix so that G = I, then

exp{Iln r}= rI and for any G , Veneziano (1999) proves that there is a one-to-one

correspondence between (G, A, ) -sss and (I, A,) -sss processes. This result is very

important because it allows one to extend the characterizations of isotropic stochastic

self-similar processes in Sec. 3.1.1 to the GSI case.

Nonlinear and Random GSI

When G is a nonlinear function and no longer a matrix, the GSI process is described as

nonlinear [Lovejoy and Schertzer, 1985]. Similarly, when G is random, the GSI process

corresponds to a stochastic one. When the GSI is nonlinear, T, must be transformed into

a differential equation before a solution for T, can be obtained. T, = r-2 is written as:

dT -GT (3.25)
du

where u = In (r). Indexing with u rather than r, and using Tu+ = TuTd, Td = TuduT_

and T. =1, Lovejoy and Schertzer obtain:
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TU+du =TU+TdU =* TdU =1-Gdu,

(3.26)

xu + dxu =(1-Gdu)x&

dT
so that the coefficient 1- Gdu =1 + -u- increases the logarithm of the scale of a vector by

~- TU

the constant amount du independent of the scale of the vector. In other words, if the

vector is at scale X, it is increased by the factor 1 +--

X

In this thesis, we are interested in linear GSI processes. Specifically we are interested in

the special case of GSI in which the space and field scale-change operators T,, and Tr

respectively satisfy

1
T, x = -R, x

r
(3.27)

Tfrv = ArR V

where r > 1 is the space-contraction factor, Ar is a random scaling factor for the field V,

R is a random orthogonal (rotation) matrix, and Ar and _R are independent. Notice that

the transformations in Eq. (3.27) rotate the space and field by the same amounts and

contract the space isotropically. Although GSI further allows differential rotation

between the space and field and different scaling along various directions (affinity

transformations), these features are not needed to describe the multifractality of the
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vector fields VH and q . Under Eq. (3.27), the measure density v and its amplitude v

have the following statistical invariance properties:

d (R1 )(i) V (S)=ArRrv(Rr (rS)

(3.28)

where RI (rS) x: _Rr x e
r

S is a randomly rotated and scaled version of S. In

the case without rotation, R = I and Eq. (3.28) reduces to the isotropic

multifractality condition in Eq. (3.1). If V has a nonzero mean, then E[y(S)] is

constant independent of S and Eq. (3.28)i reduces to the isotropic multifractality

condition in Eq. (3.1) and E[y(S)] is constant independent of S and Eq. (3.28)

gives

E [ArRr ] = E [Ar ]E [Rr]= I (3.29)

In the general case with nonzero rotation (Rr # I), Eq. (3.29) implies E[Ar] > 1;

hence in this case the expected value of v(S) in Eq. (3.28) changes with the size of

S.
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3.1.3 Bare/dressed and Conservative/non-conservative Measures

This review of multifractal measures is concluded by mentioning the notions of

bare/dressed and conservative/non-conservative measures. Homogeneous multifractal

measures are generally the result of multiplicative cascade process in which independent

rescaled copies of a non-negative homogeneous random field are multiplied; see for

example Kahane and Peyriere (1976), Schertzer and Lovejoy (1987), Mandelbrot (1989),

and Gupta and Waymire (1993).

When the multiplicative process is terminated at a finite resolution r, the resulting

measure VY is sometimes called the "bare" measure at resolution r. When the

multiplicative process is continued to infinity, the limiting measure V(S) is said to be

"dressed"; see for example Schertzer and Lovejoy (1996). A multifractal measure is said

to be conservative if the bare mean E [V,] is also the mean value of the dressed measure

_V = lmV,. In the non-conservative case, E [V,] varies as a power function of r and

either vanishes or diverges as r -+ oo. In the previous review of multifractal theory, we

have assumed that the dressed measure V has finite nonzero mean. Therefore, the above

holds for conservative measures. In the analysis of flow through media with

multifractal hydraulic conductivity, we find that the hydraulic gradient VH is a

conservative field, but the specific discharge _q is not. This means that for the hydraulic

gradient field VH, the condition in Eq. 3.32 E [ArRr]= I is satisfied, whereas for the

specific discharge field Eq. 3.32 becomes E [A,Rr 'I, where c is a positive constant.

Thus as resolution to which the flow field is developed r tends to infinity, the mean of the
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specific discharge will vanish. In contrast, the mean of the hydraulic gradient field

remains constant regardless of the resolution to which the flow field is developed.

It is worth noting that in the non-conservative case, one needs to work with finite-

resolution measures like Yr rather than the fully developed measure V, since the latter

either diverges or vanishes with probability 1. In practice, this degeneracy is of no great

concern since physical processes always have a small-scale cutoff, i.e. they are always of

the Vr type.

3.2 Multifractal Measures - Empirical Evidence

In this section we present an analysis of hydraulic conductivity data K originally

presented by Ababou and Gelhar (1990) and Goggin et al.(1988). The purpose of the

analysis is to show that in some cases one can reasonably model the K field as a

multifractal.

The hydraulic conductivity data K by Ababou and Gelhar (1990) was obtained from

vertical boreholes in the sandstone formation of Mount Simon aquifer in Illinois

One-dimensional spectra of the log-conductivity F = InK reproduced from Ababou and

Gelhar (1990) for the three vertical boreholes are shown in Figs. 3.1a, 3.1b and 3.1c. The

log spectral density is plotted against log frequency. In each of the figures, a straight line

line with a self-similar spectrum of the form:
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Sff (k)= (3.30)

where a =1 and So is the vertical axis intercept is superimposed on the spectral plots.

The solid lines in the figures represent the computed spectra of the F = lnK data and the

dashed lines represent the 80% confidence interval of the computed spectra. The

spectral curves seem to deviate from the a =1 at both the low and high frequencies. For

example between frequencies of 0.02 and 0.15 in Fig. 3.1a, the spectral curve has a slope

of 0.22 and between frequencies of 0.2 -0.6 has a slope of 0.28. For Fig. 3.lb the

spectral curve between frequencies of 0.03 - 0.15 has a slope of 0.7 and has a zero slope

in the high frequency range of 0.2 - 0.5. For the spectral plot in Fig. 3.1c, the low

frequency range of 0.05 - 0.15 has a slope of 0.97 while the high frequency range of 0.15

- 0.5 has a slope of 0.15.
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Figure 3.1 a - Measured one-dimensional spectrum of log-conductivity at a borehole
(circles) in the Mount Simon aquifer, from Bakr (1976). The straight line
corresponds to a self-similar spectrum with exponent c =1.
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Figure 3.1b - Same as Figure 3.a for another set of data. The straight line
corresponds to a self-similar spectrum with exponent a =1.
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Figure 3.1c - Same as Figures 3.a and 3.1b for another set of data. The straight
line corresponds to a self-similar spectrum with exponent a =1.
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The hydraulic conductivity data K by Goggin (1988) is shown in Fig. 3.2. The K

data was obtained from an eolian sandstone deposit in northern Arizona with an air

minipermeameter. The data in Fig. 3.2 are measurements from two vertical transects

obtained at intervals of 0.0125m and labeled Transl and Trans2. The data was collected

along the vertical transects because it was assumed that variation of the K data in the

horizontal direction was insignificant compared to the variance of K in the vertical

direction. Boufadel et al. (2000) presented an analysis of this data. The goal of their

analysis was to show that the K field could be adequately modeled with a log-levy

distribution. They used a double trace method (DTM) to calculate the scaling exponents

of the K field can be modeled as a log-levy distribution and that K is non-Gaussian.

In contrast to the analysis of Boufadel et al. (2000), the present analysis is

performed on F = InK instead of K. Moreover, instead of DTM, the spectrum of F = InK

is computed to determine the range of possible exponents cc from Eq. 3.30 that can be

used to model the data. One can observe from the hydraulic conductivity in Fig. 3.2 that

there are some impermeable regions that are clay lenses. Because of the presence of

these impermeable regions, one cannot plot the F =lnK profile for Trans 1 and Trans2.

Consequently, the spectra are computed for various sections of the transects. The

spectral plots for Trans 1 and Trans2 are shown in Figs. 3.3 and 3.4 respectively. The

slopes of the log spectral density versus the log frequency for spectral plots are reported

in Table 3.1. The slopes of the spectral curves were obtained by performing a linear

regression of the log spectral density versus log frequency. The regression lines are

superimposed on the wavy spectral plots.
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Figure 3.2 - Profiles of hydraulic conductivity data obtained from vertical
boreholes in an eolian sandstone formation in Arizona (from Goggin, 1988).
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Figure 3.3a - One-dimensional spectral density of measured log-conductivity for
the vertical transect (Transl) for section 0 - 8.5m (from Goggin, 1988)
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Figure 3.3b - One-dimensional spectral density of measured log-conductivity for
the vertical transect (Transi) for section 8.5 - 18 m (from Goggin, 1988)
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Figure 3.3c - One-dimensional spectral density of measured log-conductivity for
the vertical transect (Trans1) for section 22 - 35m (from Goggin, 1988)
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Figure 3.3d - One-dimensional spectral density of measured log-conductivity for
the vertical transect (Transi) for section 35 - 40m (from Goggin, 1988)
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Figure 3.4a - One-dimensional spectral density of measured log-conductivity for
the vertical transect (Trans2) for section 0 - 20m (from Goggin, 1988)
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Figure 3.4b - One-dimensional spectral density of measured log-conductivity for
the vertical transect (Trans2) for section 22 - 35m (from Goggin, 1988)
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Figure 3.4c - One-dimensional spectral density of measured log-conductivity for
the vertical transect (Trans2) for section 36.6 - 40m (from Goggin, 1988)
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Table 3.1 - Results of regression analysis of the log spectral density versus log
frequency for various sections of the vertical transects Trans 1 and Trans2 from Goggin
(1988)

Results for vertical section Transl shown in Figs. 3.3a - 3.3d

Vertical Section Frequency Range Slope of log
spectral density
versus log frequency

0 - 8.5m 10- 100 -0.88

100-500 -1.03

8.5 - 18m 1-100 -1.98

100-500 -1.21

22 - 35m 1-10 0.03

10-100 -2.20

100-500 -1.29

35 - 40m 1-100 -1.94

100-500 -1.43

Results for vertical section Trans2 shown in Figs. 3.4a - 3.4c

0 - 20m 0.3-10 -2.14

10-50 -1.79

50-500 -1.20

22 - 35m 1-30 -2.36

30-100 -2.15

100-500 -1.04

36.6 - 40m 3-60 -2.19

60-500 -1.01
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From Figs. 3.3 - 3.4 we see that the low frequency ranges of the spectra have

slopes with values ranging from 0 - -2.40, the mid-frequencies of 50 - 100 have slopes

with values between -1.79 and -2.20, and the high frequencies have slopes that range

between -1 and -1.43.

The data presented above shows that the spectral density of log conductivity

F = In K , decays like a power-law SF(k) k- , where a is some constant. From the

spectral plots in Figs. 3.3 and 3.4 we find that (x (which is the negative slope of

log (SF )versus log (k)) has values between D +1 and D +3 where D is the space

dimension, in some cases and for the high-frequency range X ~ D. The case (X = D

corresponds to hydraulic conductivity fields that are multifractal. For the Goggin data

set, we find that this condition of multifractality is satisfied within some range of

frequencies. One can argue that modeling the hydraulic conductivity as multifractal is

not outside the range of what one may observe in nature. Although, the existence of

multifractal hydraulic conductivity may be limited to certain geologic media, the

application of this model provides a new way to deal with the nonlinearities of the flow

equations. In fact, assuming the hydraulic conductivity to be multifractal allows one to

derive the distributional properties of the flow parameters such as the hydraulic gradient

VH and the specific discharge q. Moreover, the application of the results of this

research extends beyond hydrology and can be applied to the analogous problem of

electrical networks with random resistors. This problem is mathematically similar to that

of flow through media with highly fluctuating hydraulic conductivity. For these reasons,

we model the hydraulic conductivity field K as a multifractal.
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CHAPTER 4 - SCALING OF THE HYDRAULIC GRADIENT AND THE
SPECIFIC DISCHARGE FIELDS.

Introduction

This chapter presents a novel approach in solving the zero divergence Darcy's equation

when the flow occurs in a heterogeneous medium with an isotropic lognormal

multifractal hydraulic conductivity field K. The analysis presented exploits the scale-

dependent properties of a multifractal K field to obtain the distributions of the hydraulic

gradient VH and specific discharge q fields. For a scalar field like K that is multifractal,

its average value K within a region S satisfies the scale-invariance property [Veneziano,

1999]

.- d -

K (S)= Ar.K (rS) (4.1)

d

where = denotes equality of all finite dimensional distributions, K(S) is the average of

K within a region S, r > 1, so that K(rS) is the mean value of K within the larger region

rS, Ar is non-negative lognormal random variable that is independent of K (rS). Eq.

(4.1) describes how the statistical properties of a larger region (rS) in a scalar field such

as K relate to the statistical properties of the smaller region of K. When the support of a

large-scale value of K, K (rS) is contracted by a factor r, then the statistical properties of
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the scalar quantity on the smaller scale are identical to those on the large scale, if the

large scale values are multiplied by a random variable Ar. When K is a multifractal field

described by Eq. (4.1), then the log hydraulic conductivity F =ln K is a Gaussian random

field with spectral density

2 -
-C k~ k ik: mak

SF - D (4.2)

0 otherwise

where k is the amplitude of the wavenumber vector k, SD is the surface area of the unit

D-dimensional sphere so that S, =2, S2 =2n and S3 - 4n, C is the so-called

codimension parameter of the K field that determines the level of the spectrum of F and

k0 and k define the limits of the multifractal scaling of K. The spectrum of F is

k
shown in Fig. 4.1, the ratio r = "m is called resolution, and the value CK determines the

ko

level of the spectrum SF . The notion of resolution is key in understanding the approach

used in this thesis and can be better understood if one considers a K field generated over

a discrete square grid of size say, 512 x 512. If the maximum size of this grid is 1, so that

ko =1 and km =512, then the resolution r =512 refers to the number of pixels over

which the K data is generated. As the number of pixels over which the K field is

generated is increased, one can gain a more detailed image of the K field. Conversely,

when the number of pixels or grid size over which K is generated is reduced, then one

observes the large-scale features or a coarser image of the field. How large the K field is
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and to what resolution it is developed depend on the spectral cutoffs k. and k., which

have a physical significance. First, these limits are introduced to ensure that the variance

of F = InK is finite, so that the K field is stationary. Secondly, these limits k. and

km show that the flow is being considered over a region with defined boundaries and

that the flow is being considered over a range of scales. All aquifers in the world have a

maximum extent that can be represented by k., and the minimum scale at which the flow

is considered can be represented by k. Defining this minimum scale in terms of the

physical features of the aquifer is more difficult. For example, the Darcy equation is

derived by averaging the flow over several pores, which is called a representative

elementary volume (REV). It is difficult to define what constitutes a REV for a

heterogeneous medium over which the average properties of the K field change rapidly

from one location to the other over the flow domain [Dagan, 1986]. In spite of these

complications, the minimum scale of flow kx for a homogeneous medium can be

defined, at least mathematically. The isotropic lognormal multifractal K field just

described is used to obtain solutions of the hydraulic gradient VH and flow q

q = -KVH 
(4.3)

{V2H+VF.VH =0

where H is the hydraulic head. We seek a solution to Eq. (4.3) under the condition that F

= InK is a Gaussian random field whose properties have been described. The scheme
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Figure 4.1 - An illustration of the spectrum of an isotropic lognormal multifractal K field.
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used in obtaining the solution can be better understood if one considers Figs. 4.1 and 4.2.

The analysis begins with a field developed to r (see Fig. 4.1). We denote quantities in

this field with a subscript r so that VH,,q and F are the hydraulic gradient, specific

discharge and log-conductivity of the field respectively. A hydraulic gradient J, is

applied in the x, direction and this is denoted as VHLF = 0 ,where the subscript LF

denotes low-frequency. The accompanying log-conductivity is FL is shown in Fig. 4.2.

For the K field developed to resolution r, the parameters of the flow field are

{E[K]=1,F = FLF, VH =VHLF, q= J. Next, we increase the resolution of the K field

by an infinitesimal amount E (0 < E < 1), so that we have a new K field that is slightly

more random than the K field at resolution r. Because K is multifractal, one can obtain

its statistical properties when one moves from a coarser resolution r to a finer resolution

r = r (1+ E). Specifically, we are interested in how the distribution of the hydraulic

gradient varies as one moves from r --> ri . At r the large-scale hydraulic gradient VHLF

is also incremented by a random quantity Vh,,r,, a result of the addition of high

wavenumber components to the K field so that the large scale VFLF is incremented by

VF,,r. In other words, VFr directly accounts for the increment in the large-scale

hydraulic gradient. At the finer scale rt, the large-scale component of the hydraulic

gradient VHLF and VFLF can be considered constant within the flow domain so that

Vh, (shown in Fig. 4.2 as VHH, where the subscript HF connotes high frequency)

defines the hydraulic gradient. Thus, it is assumed that the hydraulic gradient VHH can
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Figure 4.2 - An illustration of quantities as one moves from a coarse resolution r in

domain Q to a finer resolution in a contracted region Q / r
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be obtained by replacing F with Fn while subjecting the field at resolution r2 (denoted

as Q / r in Fig. 4.2) to a large-scale hydraulic gradient VHg. At this stage, one can write

Eq. 4.3 for the r field. Having obtained an expression for the flow at scale r1, we

consider the flow field at a resolution r2 = r(1+ E) 2 . For this finer resolution r2 field, we

consider how the gradient of the F field VF and the hydraulic gradient VH fields change

as one moves from resolution r to this finer scale r2 . At this finer scale r2 , one can

obtain an expression for the hydraulic gradient field by taking into consideration that

when higher frequency data is introduced into the K field, the hydraulic gradient field at

r2 VHrr will be inclined in a direction not necessarily aligned in the x, direction when

we considered the flow at resolution r . Thus, to obtain values of VH and VF that will

satisfy Eq. (4.3) at r2 , the hydraulic gradient field VHrr, has to be rotated and aligned in

the direction of the VH at resolution r. Just as was done in the case of ri, an expression
I

for VHrr, is obtained by assuming it to be a sum of the large-scale hydraulic gradient

VHa and a component Vh rr that accounts for the added higher frequency components

in the F field as one moves from r -+ r2 . Furthermore, this addition to the large-scale

hydraulic gradient Vhrr2 can be decomposed into two terms: the first component being

Vh and a second component Vh . Similarly one can obtain expressions VFr and

hence the zero divergence Darcy equation for flow at r2. Having obtained the zero

divergence expressions for flow at r and r2 , one can compare these expressions to obtain

the scaling relation for hydraulic gradient field as one moves from a coarser to a finer

resolution.
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This is the general approach used in obtaining the distributions of the hydraulic gradient

and the specific discharge when the flow occurs in an isotropic lognormal K field. The

solutions are obtained as one considers infinitesimal increments in the resolution field

and how these increments affect the VF and VH fields.

The details of the flow analysis are prefaced in Sec. 4.1.1 with a discussion of the key

assumptions used in the analysis. The distributions of the hydraulic gradient VH and its

amplitude J= IVHI are presented in Sec. 4.1.2. In Sec. 4.1.3 the distribution of the

scaling parameters of the hydraulic gradient fields and its rotation angles are presented.

Sec. 4.2 investigates the scaling of the specific flow field q. The multifractality of q

and its amplitude q are presented in Sec. 4.2.1. The scaling parameters of the flow field

are presented in Sec. 4.2.2. The marginal distributions of bare flows is presented in Sec.

4.2.3 and is followed in Sec. 4.2.4 with a discussion on the moment scaling function of

flow amplitudes. Sec. 4.3.1 presents the problem formulation and solutions of effective

hydraulic conductivity Keff from exact one-dimensional analysis and from first-order

second moment analysis. A comparison of the results in Sec. 4.3.1 with Kff in the case

of finite-resolution multifractal K is presented in Sec. 4.3.2. The final section presents a

brief comparison of the results of this chapter with the results of random electrical

conductivity networks by Bin Lin et al. (1991) and Archangelis et al. (1985). Results of

these authors were reviewed in Chapter 2. Sec. 4.4 presents a brief comparison in their

approaches and the one used in this thesis.
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4.1.1 Assumptions made in the flow analysis

We study the properties of Darcian flow through a saturated aquifer under the following

assumptions:

1. It is assumed that the hydraulic conductivity K is an isotropic lognormal

multifractal whose properties have been described in the introduction.

2. It is assumed that in spaces of dimension D > 1, the zero mean high-frequency

fluctuations of the head and flow along the boundary of the flow field Q do

not significantly affect the hydraulic gradient and flow away from a narrow

region along the boundary of Q. Neglecting boundary conditions is an

assumption that has been made implicitly in the flow analysis of Gelhar and

Axness (1983), Ababou and Gelhar (1990) and Dagan (1995). This

assumption has been shown to be quite reasonable through results of flow

simulations presented in Chapter 6.

3. The third assumption deals with the behavior of flow parameters as one

considers flow through a cascade of K fields each of which is developed to a

different resolution ri = r (1+ ) for j = 1, 2,...etc., 0 < , <1, r2 = rr, where

r 1 and r2  r 21. At the large scale, we denote the log-conductivity as FLF

and the hydraulic gradient as VHLF where the subscript LF is an abbreviation
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for low frequency (see Fig. 4.2). The K field at ri = r (1 + E) is obtained by

shifting kmax to the right of its initial position at resolution r (see Fig. 4.1).

This shift in kx adds higher wavenumber components to the K field so that

the F field at ri consists of two components: the large-scale component FL.

and a new added component F- where the subscript HF denotes high-

frequency (see Fig. 4.2), and FB is a direct result of the added higher

wavenumber components added to the K field when the K field at r was

created. Also, the hydraulic gradient VH in r, consists of VHL, and VHB,

where VH, is a direct consequence of the higher frequencies added to the F

field FB. We assume that the large-scale component of log-conductivity F.

is constant within this new flow field of resolution r1. And the head field in r

can be accurately obtained by replacing F with FB while subjecting the flow

domain 9 to the large-scale hydraulic gradient VHLF.

4. The final assumption made in the flow analysis through aquifers with

multifractal K deals with the contribution of the term VF.Vh in the

incremental flow equation as one moves from resolution rj -> r,. At

resolution r, the zero-divergence Darcy equation is written as

V2 Hr + VF.VHr = 0 (4.4)
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where an average hydraulic gradient -J. is applied in the x, direction, and without

loss of generality one can set E [K] =1 and J = e = [1,0,..., 0] the unit vector along

the xi axis. For the K field developed to resolution ri the flow equation inside 91 is

obtained by writing VHrI = -e + Vhr , where Vh, is the increment in the hydraulic

gradient when higher frequencies are added to the K field in the transition from

r -+ r1. Then Eq. (4.4) becomes

aF
V 2 hr, +VFrl.Vh, =

ax1
(4.5)

We assume that the variance of the term VF .Vh r is far less than the variance of

V2h, and hence neglect the term VF .Vhr, in the derivation of the distributions of the

hydraulic gradient and specific discharge fields. The conditions under which this

assumption holds are found by writing Eq. (4.5) in Fourier space as

(i) -k 2h, + ihrl .(k.VF, =ik, Fr

(4.6)

-ikiFr
(ii) h, =2k2 - ik.VF

The variance of the term (VF.,.Vhr, ) will be much less than the variance of

(V2hr, )can be neglected if the variance of IVFJ in the denominator of Eq. (4.6) is
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much less than k2 . From Eq. (4.2) we can write the spectrum of the magnitude of

the log-conductivity IVF as

SIV, (k)= SD
0

k <k!knm

otherwise

Hence the variance of IVF is obtained as

Var[IVF)] =
k,. =rk,

k.

SF (k)k=SD
rk0 2

-Ckdk = C k (r2
k. D

Thus the term (VF .Vh,, ) can be ignored in the flow analysis if

(i) Var[IVFI]<r 2k2

(ii) > CK (r 2 <)r2k2 (4.8)

(i)CK << 22k (r2-1)

Since r >1, then from Eq. (4.8)iii we can ignore VFr.Vh,, for ko >1 and CK <1.

From the numerical simulations presented in Table 4.1, we find that the numerical

results agree with the theoretical assumptions at least for fields with
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From Table 4.1, we observe that the variance of V2h, is

significantly larger than the variance of VF, .Vhr, , especially for CK= 0.1 and 0.3.

This can be explained by the fact that VF, is much less than Vhr, . Hence, the

variance of VF.Vh,, becomes much smaller than the variance of V2hr
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Table 4.1 - Comparison of the variances of V2h and Vf.Vh computed from numerical
simulations on a grid size of 512 x 512.
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CK E[V2h] E[Vh.Vf] var[V2h] var[Vh.Vf] var[V2h]

var [Vh.Vf]

0.1 1.08 0.0020 0.242 0.006 40

0.3 0.88 0.0013 1.709 0.052 32.86

0.8 0.92 0.00062 1.980 0.82 2.4



In deriving the distribution of the hydraulic gradient VH and specific discharge q fields

we study the flow through a series of isotropic lognormal multifractal K fields each of

which has been developed to a different resolution rj = (1+ E) for j = 1, 2, 4 etc. and

0 < <1. For any r >1, we let 9, c 9 be a ball such that, inside ar,, fluctuations with

wavenumbers kI < rk. may be considered constant and let x be any point of 9,. In

particular, 9, is a ball inside which fluctuations with wavenumbers Iki <k. may be

considered constant. With these definitions and assumptions, we now consider the

derivation of the scale-invariant properties of VH and q when the flow occurs in an

isotropic lognormal multifractal K field.

4.1.2 Multifractality of VH and J= IVHJ

The derivation of the distributions of VH and its amplitude J = IVHI begins by denoting

with a subscript r quantities derived for the log-conductivity F = F. and other flow

parameters at a particular resolution, so that the hydraulic gradient VHr and specific flow

q, satisfying the zero-divergence Darcy equations are written as

(i) V 2Hr+VF.VHr=0
(4.9)

(ii) qr = -KrVHr
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As explained in the introduction, we obtain the distributions of the hydraulic gradient by

considering flow through a cascade of K fields each of which is developed to a different

resolution. The development of the K fields begin at resolution r, and by progressively

adding high frequency to the K field, we obtain fields with resolutions rj = r (1+ 

where 0 < 8 < 1. At resolution r we have a flow problem where a large-scale hydraulic

gradient of magnitude IVHI = J = e = [1,0,..., 0] is imposed on the flow domain and

oriented along the x, -axis and we lose no generality by setting K = E [K] =1, F = Fr.

Next, we consider flow through a K field with resolution r that is obtained by adding

high wavenumber components to the K field at r. This is achieved by shifting k. from

its original position (see Fig. 4.1) by an amount of korE to the right. At resolution r, the

flow equation inside Q, is given by Eq. 4.1 ii, writing VHr1 as

VHr = -e + Vh, (4.10)

where Vhr, is the fluctuation in the hydraulic gradient around its mean value -e, due to

the added variability in the log conductivity F, . Also, as a consequence of the spectral

density of the log-conductivity, their increments F,, = Fr. - F,. and their gradients satisfy
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(i)F,,(x_$F,(rx)
(4.11)

d

(ii) VFr (x_)=r.VF (rx)

Substituting Eq. (4.10) and Eq. (4.11) into V2 H, +VF.VHr =0 gives

aF
V2hr, +VF,.Vhr = (4.12)

Next, we consider a K field at resolution r2 = kor (1 + E)2 whose spectrum is obtained by

shifting k.x to the right of r k. by a lag of ker6 (2 + E)in Fig. 4.1. Thus, higher

frequencies are added to the K field at resolution r and we obtain a slightly more variable

field than was obtained for the K field with resolution r1. The hydraulic gradient in this

field VHr2 is the sum of the hydraulic gradient when at resolution r plus an additional

term Vh r2 that is a result of the added fluctuations in the F field Fr . We can then write

expressions for the hydraulic gradient and the gradient of the log-conductivity for the

field at resolution r2 = rr as

VHrr =VHr +Vhr (4.13)

VFn =VFr+VF,
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where Vhr is the fluctuation in the hydraulic gradient due the added component in the

log conductivity field F,,., . And the flow equation for the K field at resolution r2 = rris

V2H +VF .VH, =0 (4.14)

Substitution of VH, and VF from Eq. 4.15 into Eq. (4.14) gives

V 2 Hr +V 2 hr-4xT, + (VHr + Vhr,, )(VF + VFI )=0 (4.15)

Expanding the terms in the above equation

V2 Hr +V 2 hr, + VF.VH, +VF ,.VHr+VF.Vhr,, +VF .Vhr, = 0 (4.16)

At resolution r, the flow equation is given by

V 2 Hr+VF.VHr =0 (4.17)

Subtracting term-by-term Eq. (4.17) from Eq. (4.16) gives

V2h r +VFr .VHr + Vhr,, (VF + VFr,, ) =0, in r (4.18)
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The fourth assumption in the previous section showed that for k >> 1 and CK «1, the

term Vhr- ,VF is small relative to V 2 h-rT and may therefore be neglected. Since Vhr

may be considered constant in a/r, one can rotate the coordinate axes inside Q/r such

that the new xi coordinate axis is in the direction of the negative hydraulic gradient

-VH . In this rotated reference, -VHR = J, where the superscript R is used to identify

quantities in the rotated reference. Eq. (4.12) becomes

VU R = _eVR
Rr r +Vhr-4

VFR = VFR FIT1 rff

(4.19)

And the flow equation (4.18) may be written as

V2h +VF .(-J e+Vh R,)=0, in Qr-441T, + VF- r--)r
(4.20)

Expanding terms and using VFr, (x)=r.VF (rx) from Eq. (4.1 1)ii in the above

equation, one obtains

V2hR +VhR VFR = R/ r
- rr r-rr r r) "" ,r in Q,hr-TTI+ V r-+ri VF "Iax,

(4.21)
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Due to the isotropy of the log-conductivity field, one may remove the superscript R from

d

the F terms. Also, from Eq. (4.1 1)ii VF,, (x)= r.VF, (rx), therefore a field statistically

identical to h R in Eq. (4.21) is obtained as the solution of

V2h( 1 (x)+r.VhR, (x).VF, (rx)= (rJr
ai (rx)_

aX Ix, AXeir

Recall that for the field at resolution r1 we obtained the flow equation (Eq. (4.12))

aF
V2 hr, +VF .Vhr, =

Ix
(4.23)

Comparing Eq. (4.23) and (4.22) shows that the solutions of Eq. (4.22) satisfies

Vh (x)= J,.Vh, (rx) (4.24)X E Qr

Finally substituting Eq. (4.24) into VHR1 = -JR e+ hk(which is Eq. (4.19)) gives

VH, (Jr e+Vh, (rx)] (4.25)

At resolution r1 we obtained VHrI = -e + Vh,, which compared to the above equation

gives
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VH, (x)J,[-2+Vh, (rx)]
(4.26)

= Jr.VH, (rx)

The above equation is fundamental to the analysis in this thesis. It says that a random

field in Q / r identical in distribution to VH, (x) is obtained from VHri (x) in Q by

isotropically contracting the space by r, rotating the coordinate axes by a random amount

such that the new x, axis is aligned with J,, and scaling the field VH, (x) by a random

factor J, = Jr. Eq. (4.26) can also be stated as

VHf (x)(JR).VH (rRf x) (4.27)

where R. is an orthogonal random matrix with first column equal to er, and the matrix

(JrRr) is independent of the field VHr . For D = 1, there is no rotation and for D = 2 ,

cos(Cr )Rr L si (' r
-sin (Ur)' , where ur is the random rotation angle with symmetric
cos (Cr)I

distribution about zero and (J1 cos o+ J2 sin (x)is the first component of R J and thus

Fcoso 1
the matrix Rr is completely by its first column er =C . ]. For D > 2, R,

sin or
includes

D (D -1)
arbitrary components of rotation and R has free parameters of which only D

2

- 1 are determined by e . These arbitrary components of rotation do not affect the
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statistical properties of the right hand side of Eq. (4.27) and may be left unspecified. Eq.

(4.27) implies an analogous scaling relation for the hydraulic gradient amplitude fields

J, (x)=IVH, (x)I, which is

dT

j (x)J.J,, (rR X) (4.28)

As r -> oo , VH, (x) does not converge to an ordinary random field VH (x), because in

the limit, the point values of VH do not exist. However, the average of VHr (x) inside

the set S, VH (S) which due to Eq. (4.27) satisfies

dTS

VH(S)=(JRr ).VH(rR) (4.29)

The above derivation embodies the essence of scaling analysis that in effect matches the

solution of the flow problem at resolution r to the solution as one goes to finer resolutions

rr1. This solution technique is also known as the renormalization method and allows one

to obtain an approximate nonlinear solution of the flow equation under conditions that

have been presented above.
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4.1.3 Distribution of the Scaling Parameters Jr and e,

To complete the multifractal characterization of VH and J, one needs the joint

distribution of Jr and e or equivalently the marginal distribution of the hydraulic

gradient. The vector J = -VH, is first considered for resolutions r infinitesimally higher

than 1. The distribution of J is obtained by first characterizing the random field

VHr (x). From this the marginal distribution of VH, is obtained, which is also the

aF
distribution of -J. The flow equation V2h + VF .Vhr = -' for Vh, (obtained by

ax,

replacing r1 with r in Eq. (4.12)) may be simplified to

V2h =- (4.30)
ax,

because, for r infinitesimally close to 1, the term VF,.Vhr is of higher order. In Fourier

space, Eq. (4.30) is written as

k
hr (dk)= -i' F, (dk) (4.31)

k2

where hr and R are the spectral measures of hr and Fr. Hence the spectral measure of the

hydraulic gradient satisfies
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Vir (dk)=(k'k'I)Fr (dk)

where k'= k / k is the unit vector in the direction of k and k'1 is its first component. Eq.

(4.32) is approximate because the random function hr (x) with spectral measure in Eq.

(4.31) does not satisfy the boundary conditions. For example, in one dimension, Eq.

(4.30) determines hr (x) up to a linear function A + Bx, where A and B are random

variables that depend on the random function Fr(x), such that the boundary conditions

hr(O) = hr(1)= 0 are satisfied. The corresponding one-dimensional hydraulic gradient

Vhr (x) should contain an extra additive term B that contributes a spectral mass at k = 0.

In this analysis, the boundary effects are ignored and the reasons are provided in Sec.

4.1.1. From simulation results presented in Chapter 6 it is found that for D = 2 the

neglected terms have negligible effects on the statistics of interest.

Using Eq. (4.32) and the spectral density of F in Eq. (4.2), the spectral density

tensor of Vhr is

k'k 'T)k '2 C k~ -D for ke 5 k ! rk
(k),1(k_)= 0 0D(4.33)

0 otherwise

where k '= k /k . Since hr is a homogeneous Gaussian field, its gradient Vhr is

homogeneous Gaussian with zero mean and is completely characterized by the spectral
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tensor in Eq. (4.33). Consequently, the vector Jr = e - Vhr has joint normal distribution

with mean vector e and the same covariance matrix as Vhr. The covariance matrix is

obtained through integration of Svh (k) in Eq. (4.33), which gives:

Cov J,,J,] =Cov[Vh,,Vh,] =2E[e2e ej CK In (r) (4.34)

whereE [e2e ej] is the expected value of (e2e e) when e is a random vector with

uniform distribution on the surface of the unit sphere in 9 1D . The expected values of

e2 e e, can be obtained as follows.

Let eD = [el,e 2,.--,eD]be the unit random vector with uniform orientation in RD

In deriving the scaling properties of the hydraulic gradient and specific flow, one needs to

calculate the expected values E e'], E[e4] for any D and E [e2e] for D > 1, where
DI D IDI

the subscript D reminds one that these quantities depend on the space dimension D. Here

these moments are obtained using results from distribution theory.

First, we observe that the vector of squared components e 2 =[e2, e2,..., e,] has

the same joint distribution as the vector X / X, j=1....,Dj, where the variables X
i=l,n

are independent with chi-square distribution and 1 degree of freedom. Consequently,

2 1
e2 has Dirichlet distribution with parameters Ct = 2= =aD = - (Johnson and Kotz,

2
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1972, Chapter 40). Let a = a = , then using the results for the moments of the
i=1,D 2

Dirichlet distribution (Johnson and Kotz, 1972; Wilks, 1962), one obtains

E[efl.~

E e =] al (U.1 +0) 3

D I ] (c+ 1) D(D+2)

E e 2e2= 2 L1C 2 - 1
D L 1 2 (cc+1) D(D+2)

(4.35)

Using Eq. (4.35), the following relations are obtained for the variances and covariances in

Eq. (4.34):

VarJ VarFVh= 6 
Lriir~iD (D + 2)

Var J Var rVh = 2 
CvJJ hD (D +2)

Cov[1J; J,] Cov [Vh, Vhrj, 0

CKln (r)

CKln (r)

for i = 1

for i #1

for i # j

(4.36)

The factor Jr in Eqs. (4.25) - (4.29) is the length of J, which satisfies

Jr=le-VhJ= (1-Vh,) + (Vh,) (4.37)
i=2,D

For r infinitesimally close to 1, Vh, is infinitesimal and Eq. (4.37) simplifies to
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Jr =1-Vhr, + (Vh,
2i=2,D

) 2 (4.38)

with the first two moments (neglecting higher order terms)

(i) E [J,]='+ 1
2i=2,D

Var[Vh, =1+ D-1 CKIn (r)
D (D+2)

(4.39)

(ii) Var [Jr]= Var [Vh, = 6 +CKK
D (D+2)

The quadratic term had to be included in Eq. (4.38), since that term has a first-order

effect (in lnr) on the mean of Jr. The same term makes only a higher-order contribution

to the variance of Jr. Since the variability of Jr comes exclusively from the term Vh , in

Eq. (4.38) and that term has normal distribution, one concludes that also Jr has normal

distribution. However, Jr has positive mean value and infinitesimal coefficient of

variation (because ln (r) is infinitesimal). Therefore, Jr may also be considered to have

lognormal distribution. Using expressions for the moments of a lognormal variable in

terms of its mean and variance (e.g. Johnson and Kotz, 1970, p. 115) and considering that

(E [Jr ] -1) and Var [Jr] are both infinitesimal, one obtains the s' moment from Eq.

(4.39) as
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E[Jr]=exp sm+2 a } (4.40)

where m = E [ln (Jr)] and a2 = Var [ln (Jr)]. Substituting expressions for the mean and

the variance of Jr into Eq. (4.40) one obtains

E[J] =exp {+)C in(r) s+ { ( +)CK (4.41)

where

I
D-4

E [In(J,)] = .CK
D(D+2)

Var[ln(Jr)] = 6 CK
D(D+2)

(4.42)

D is the space dimension and CK is the parameter that controls the level of the spectral

density of log-conductivity F in Eq. (4.2). Moreover, Eq. (4.41) can be rewritten as

E[Js,]= rw(s) (4.43)

where the moment scaling function Wj (s) is given by
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W, (s)= C [D + D 2(s] (
D(D+2) +D(D+2)

Equation (4.44) has several interesting features. First, one notices that Wj (s)is

proportional to the codimension parameter CK of the hydraulic conductivity. The

D -l
coefficient s in Eq. (4.44), CK D , measures the expected increase of the hydraulic

D (D + 2)'

gradient amplitude Jr as the hydraulic conductivity is developed to higher resolution

levels. That is, for two fields developed to resolutions ri and r2 where r2 > r1 , the

following relationship holds:

E J 1 CK D-1
=r2  D(D+2)

E[Jr]

Eq. (4.45) shows that the expected hydraulic gradient amplitude diverges as the

resolution r -> oo. Therefore, the hydraulic gradient amplitude is non-conservative.

Since the mean hydraulic gradient E [VH,] is constant and equal to -e for all r, the

increase of E [J,] with r is due to the random rotation of the hydraulic gradient VH, as

the resolution r increases. In one dimension, there is no rotation, J is conservative and the

1
coefficient of s is zero. For D = 2, the coefficient is -CK and for D = 3 it has a value of

8
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2
5CK * Thus the hydraulic gradient amplitude is less conservative for D = 3 than for D =

15

2.

The coefficient of (s2 -s) in Eq. (4.44), CK characterizes the increase
D(D+2)

in the variability of log [J, (x)] as r increases. Its value depends on the space dimension

D. For D = 1, it equals CK because in one-dimension the hydraulic gradient VH is

proportional to the hydraulic conductivity K and the variability of log [IVHr (x]

increase with resolution r in a similar fashion as the variability of log [K, (x)]. When

D > 1, the variability of log [IVHr (x)I] increases with resolution at a smaller rate than

the variability of log [Kr (x)]; this is why the coefficient of (s2 -s) is smaller than CK.
I

Rotation of the hydraulic gradient VH

To obtain the distributional properties of e, consider a resolution r infinitesimally greater

than 1. Denote by e the unit vector in the direction of the positive x1 - axis and by e the

unit vector in the direction of the gradient VH, at any given point x of the aquifer. Since

the difference e - e is infinitesimal, this difference may be considered orthogonal to e

and described by the coordinates in the sub-space spanned by the x 2 ,--. XD axes. These

coordinates have values Vhr2 , ... , VhrD and, from Eq. (4.36) are iid normal with mean zero
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2
and variance _C In (r). For D = 1, there is no rotation; hence eg =1. For D > 1,

D (D+2)

the unit vector er has the distribution of Brownian motion (Bm) on the surface of the D-

dimensional unit sphere with log-resolution r' = In (r) as the time parameter. An

important feature of Brownian motion on the sphere is that it asymptotically approaches

the uniform distribution, where all directions are equally likely. Moreover the increments

in the rotation angle have been found through numerical simulations to be independent

(see Chapter 6). The Brownian motion e, starts at eo = e, the point on the unit sphere on

the positive x1 axis, and evolves with independent increments er+ - er,. For Ar'

infinitesimal, the increments belong to the hyperplane tangent to the unit sphere at er. In

a local reference on such tangent hyperplanes, these infinitesimal increments are

distributed like

- -1/2

2 C ZD-1 (4.46)
[D(D+2) ~

where ZD- is the standard normal vector with D - 1 components.

The Brownian motion distribution of e, on the unit sphere has rotational

symmetry around the point e = [1,0...., 0] . Therefore, an important characteristic of e,

is the co-latitude, i.e. the angle a,, between e and the xl-axis. Figure 4.3 illustrates the

co-latitude and shows a hypothetical Brownian motion path on the 3D sphere. For D = 2,

ar, has wrapped normal distribution, with mean zero and variance (before wrapping)
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Var ICr ,] CKr (4.47)
4

------------- '---- ------- X
rX 2

Figure 4.3 - Illustration of a hypothetical Brownian motion path on a 3D sphere
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On the wrapped distribution, see Mardia (1972), sec. 3.4.8. The variance of x,. is a

measure of the change in local flow direction when the components in the wavenumber

range [k, er'k], k is any wavenumber larger than ko, are added to the log hydraulic

conductivity F.

For D > 3, the distribution of Brownian motion on the sphere does not have a

simple analytical form (e.g. see Perrin, 1928, for the case D =3), but can be accurately

approximated by D-dimensional Fisher distributions (Roberts and Ursell, 1960; Mardia,

1972, 1975). A good approximation to the distribution of the angle Xr, may be obtained

from these Fisher distributions. When Var [ ar'] << 1, an even simpler approximation

based on Eq. (4.46), is

-1/2L CDr ' ZD- D > 1 (4.48)
-D (D + 2)

where XDI is the chi variable with D - 1 degrees of freedom. Since E X = D -1, the

second moment of the distribution in Eq. (4.48) is

[CC2,](= Cr' (4.49)
D(D+2)
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Eq. 4.51 is approximate, but for D = 2 it reproduces the exact result in Eq. (4.48).

Equation (4.49) further shows that E[a ] vanishes for D = 1 and D -0oo and is

4I 1

maximum with value -- C r' for D =3. In two dimensions, E[a = -Cr', which is
15 4

only slightly smaller than in three dimensions.

For D > 1, an important feature of Brownian motion on the sphere is that it

asymptotically approaches the uniform distribution, where all directions are equally

likely. This means that the hydraulic gradient VH,, which is anisotropic at large scales

due to boundary conditions, becomes locally isotropic as r -* oo. As this happens, the

mean amplitude E [J] diverges in such a way that E [-VH, ]remains constant and equal

to the unit vector e along the xr-axis.

4.2 Multifractal Scaling of bare q and q

This section investigates the scaling of the specific flow _q by comparing the fields

q in q = -KVH, (Eq. (4.9)) when the log conductivity F =ln (K) is developed to

different resolutions r. The flow in a K field developed to a resolution r is called a bare

field in the multifractal literature. Following the presentation in section 4.1, the

multifractality of _q and its amplitude is first established, followed by a derivation of the

scaling parameters. Finally, the marginal distributions of the bare quantities q and q are

obtained.
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4.2.1 Multifractality of _q and q

From Eq. 4.12 the specific discharge field q can be written as

q =-K VHrI =K (e-Vh r)

Using Eq. (4.13)
VH = VHr + Vhr-

VFr = VFr +VF
the specific discharge field at the finer

resolution r2 = rr can be written in the rotated framework as

RR .VR
q =-Krr.VH

= (KKrr r)(JrSe-Vhr--rri)

VhR
= (JKR e h-4

r r-- l - r

where, in the above equation

(i) JrK, is independent of K

(ii) [K R

VhR X

VhR
e -4r

ld -K(rx)

~fJr.Vh R (rxj

(4.50)

(4.51)

(4.52)

156



Property (i) follows from the independence of hydraulic conductivity fields Kr and

Kr+,, and property (ii) follows from the isotropy of the hydraulic conductivity field (see

Eqs. (4.11) and (4.24)). Using these properties, Eq. (4.51) gives

~ ( d
qRff (x)= (JrKr ).K, (rx).(eVh1 (rx))

(4.53)
d

(JrK,).q (rx)

where JrKr is independent of q_ (rx). Let R, be the orthogonal matrix in Eq. (4.29)

with e, the unit random vector in the direction of -VH, (x) at any given point in the

d

aquifer. If we denote by Br a random variable such that B, e- Kr (x)VHr ()= qr (2).

Then for any r, r1 > 1, the specific flows q satisfy the scaling relation

d

q (x=(Br r).q r,(rRr -) X e , U (4.54)

A direct implication of Eq. (4.54) is that the flow amplitudes qr scale as

qIj (x)=Br,.qr (rRrx) xc E , (4.55)
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Equations (4.54) and (4.55) have the form of the generalized scale invariance relations,

with random scaling parameters Br and e. The distribution of these parameters is

presented in the next section.

4.2.2 Distribution of the Scaling Parameters Br and er

The distribution of e has already been discussed in Sec. 4.1.2 and Br has the same

distribution as K, (x_)J, (x) at a generic point of the aquifer. To derive the joint

distribution of the log conductivity F, and the log hydraulic gradient amplitude In (Jr) the

variance of Fr is first obtained by integrating the spectral density function of F (xx) given

in Eq. 4.2. This gives

Var [F,]=- CK
SD

rk.

k -Ddk = 2CKSD
SD

rk.

k.

k-'dk = 2CK In (r)

Since Fr has normal distribution and E [e]= E [Kr]=1, it must be

1
E [F ]= -- Var [Fr]= -CK In (r). The mean and variance of In (J,) have been previously

2

derived and presented in Eq. (4.42) as
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E[in (J,)]= D-4 CK
D(D+2)

Var[ln (J,)]= 6 C)Kn (r)
D (D +2)

What remains to be calculated is the covariance between Fr and In (Jr). From Eq. (4.38)

and the fact that the terms Vhr in that equation are infinitesimal, one concludes that the

variability of In (Jr) is the same as the variability of -Vhr . Using

Vhr (dk) = (k 'k'I )Fr (dk) (see Eq. (4.32)), the spectral measure

where k ' is the first component of the vector k/k. Therefore,

Cov[F,ln (J,)] = 2 K -D

D k.

=-2 e C in(r)=- C I n(r)

where el is the first component of a random vector with uniform distribution on the D-

dimensional unit sphere and the expectation E e 2]= 1 from Section 4.1.2.

The joint normality of Fr and In (J,) follows from the fact that Fr is normally

distributed and In IVHI is linearly related to Fr. Hence Fr and In IVHrI have bivariate

normal distribution with parameters

of -Vh, is -k F $r (dk)

(4.57)
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E [F= -C In (r)

E[ln (J,)] = D CIn (r)
D (D +2)K nr

Var [Fr]= 2CKIn (r) (4.58)

Var[In (Jr )] = D(D+2)CIn (r)

Cov[F,,In (Jr)] = CIn (r)

Hence, Br has lognormal distribution with parameters

E[ln (Br)] = E[F+E[ln (Jr)]= D - _2 )C In(r)

Var [in (B,)]= Var [F ]+ Var [In (J, )] + 2Cov [F.,ln (Jr)] (4.59)

2(D2 _1)

D (D +2) CK in (r)

and initial moments

E[B']=exp E[ln(B,)]s+Var[ln(B,)]2 =rob(s)

CK ~__P+5 s+ D2) s s2

= r __ 2 (4.60)

For s = 1, Eq. (4.60) gives

160



D+5 CK
D(D+2)E [Br]= r (4.61)

From Eq. (4.61) one observes that E[Br] < 1 and h E [B,] =0 for any finite D. Also,r--+-

im E [B,] =1 for any given r > 1. The fact that h E [Br] =0 is especially important: it

implies that the expected flow amplitude vanishes asymptotically as the hydraulic

conductivity is developed to infinite resolution. This behavior of q, can be understood

by examining the relation between the log-conductivity F. (x)and the log hydraulic

gradient amplitude In [J, (x)] at any given point x. If we denote p as the correlation

coefficient between Fr and In (Jr ) then

cov[F.,In(J)] 
-

Var [F. ]Var [In (Jr)]

-(2/D)C. in (r)

2CK in (r)(6/D (D + 2))CK In (r)

D+2

3D

The negative correlation between F (x) and in [J, (x)] explains why the expected flow

amplitude vanishes asymptotically as the hydraulic conductivity is developed to infinite

resolution. From Eq. (4.62) one observes that p does not depend on the resolution r but

varies with the space dimension D. In particular, p = -1, -0.817 and -0.745 for D = 1, 2

and 3 respectively. The value p = -1 for D = 1 corresponds to the fact that the hydraulic

gradient J must balance the hydraulic conductivity K to ensure constant flow. In two and
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three dimensions, the correlation between F. (x) and in [Jr (x)] is smaller because the

fluid can follow alternative paths and can avoid regions of low conductivity. It is

interesting to note that p does not vanish as D -> oo; rather it asymptotically approaches

the value -1/r= -0.577. For numerical validation in two dimensions, p has been

calculated for K fields with CK = 0.1 and 0.3 as well as for bare and partially dressed

fields at lower resolutions r. The results are presented in Chapter 6 and show a very good

agreement between the numerical and theoretical results.

4.2.3 Marginal distributions of bare flows

The distributions of Br and e derived in Sec. 4.2.2 can be used to find the

marginal distribution of the bare flow qr and its amplitude qr at any finite resolution r.

dT

For the flow amplitudes q. , q,, (x_)B,.qr (rx) (Eq. (4.32) ) is written in the marginal

form

md

qrr, (x)=Br.q1 (2) (4.63)

md s

where = stands for equality of the marginal distributions and (rRr x)
on the right hand

side of Eq. 4.34 has been replaced with x because qr, (_) is a statistically homogeneous

field.
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From Eq. (4.63) and the fact that q, (x) 1, where q, (x) is the specific flow

amplitude for r =1, that corresponds to a constant hydraulic conductivity

K1 (x) E [K] =1, one can conclude that the marginal distribution of q, (x) is the same

as the distribution of Br, i.e. is lognormal with the moments

E[ln (B,)]= E [F+ E[ln (Jr.)] D 2 )CKIn (r)

Var [ln (Br)]= Var [F]+ Var [In (Jr )]+ 2Cov[F,n (Jr)]

2(D 2 _i)

D(D+2)K (r)

which have been given in Eq. (4.59). The marginal distribution of the flow vector q, (x)

can be obtained through a similar argument. Due to the boundary conditions the specific

discharge field q is anisotropic at large scales and becomes locally isotropic as the

resolution r -+ oo.

d m
The marginal form of q,, (x)=Br q r ( XKis written as

md

qrr (x) =(Br R,)'aq (X) (4.64)

It is worth noting that for K, (x) = 1, q (x) = e where e is the unit vector along the x1 -

axis; these boundary conditions cause the flow field to be anisotropic at the large scale

and locally isotropic as r -+ oo. Consequently, for any r >1, the marginal distribution of
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q, (x) is the same as the distribution of Be,, where e is the first column of the random

matrix R,. From Eq. (4.59), Br has lognormal distribution and from Eq. (4.46) e has the

Brownian motion distribution on the unit D-dimensional sphere. A simple analytical

expression for the marginal distribution of Sr (x) cannot be obtained because the

Brownian motion distribution of er does not have a simple explicit form. However, an

explicit expression can be obtained for the mean value of qr (x), which is directly related

to the effective hydraulic conductivity. Since Br and e are independent,

E (_x)] = E [Br]E [er] where E [B,] is given by Eq. (4.60). Relying on the fact that

vector J has mean value e, the unit vector in the direction of x1, J can be written as Jr =

Jr . e, where Jr and e are independent. Taking the expectation of the left and right hand

sides of J = Jr . er one obtains

E [Ir 1= E [Jr ].E [er] = e (4.65)

From Eq. (4.43)

D-1 CK

E [Jr] = r D(D+ 2 ) (4.66)

Substituting Eq. (4.66) into (4.65) one can obtain an expression for E [er] as

D-1

E[e]= r D(D+2) e (4.67)
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The expression for E [q (x)] = E [Br ]E [2r] is obtained by substituting the expression for

E [Br] from Eq. (4.61) and E [er] from Eq. (4.67) so that E q, (x)] is given by

J D+5 , D-1 CK -C

E [q, (x)] = r LD(+ D(D+2) e=r K e (4.68)

and its length is

E[qr (x)]
2 

=r DC (4.69)

The above equation shows that the mean flow amplitude decreases as the resolution of

the conductivity field r increases. In fact, the flow is non-conservative and vanishes

a2sw
asymptotically as r -* oo. The mean flow amplitude r D may be interpreted as the

effective conductivity of the medium. It is worth noting that the expected value of the

D+5

flow amplitude, E [qr (_)] = E [q (x)1] (which is the same as E [Br]= r D(D+2) K in Eq.

(4.61)) and the amplitude of the expected flow vector E [q (_)] in Eq. (4.69) scale

differently with the resolution r and that, for D >1, the latter quantity has a larger

negative decay exponent. For D = 1, the two quantities coincide and

E[qr (x)] = E [q (xl = E[ (A)] = r 2CK
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4.2.4 Moment Scaling Function of q

In this section, the moment scaling function of the flow amplitude fields q, (_) is

derived. In this derivation one must account for the non-conservative nature of the flow

vector _q, that is, the average flow E [q (x)] vanishes asymptotically as r --- x>.

Consequently, the bare and partially dressed flows have different moment scaling

properties and different moment scaling functions, which are denoted by

W,,b (s) and Wqd (s), respectively.

We begin with the bare moments, which are moments of the flow fields q, (x)

developed to different resolutions r. From Eq. (4.60) we have

D+5
- s

D(D+2)
(4.70)

D2_12) 
CK

+D(D +2)

The interpretation of Wq,b(s) in Eq. (4.70) is similar to that of W, (s) in Eq. (4.44).

However, the coefficients of s and (s2 -s) in the two equations are different. For

example the coefficient in Eq. (4.70) is negative because E [q, ]decreases with increasing

r, whereas the same coefficient in Eq. (4.44) is positive because E [Jr ]increases with r.
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The moment scaling function in Eq. (4.70) is non-observable, since it refers to

flow fields at different resolutions. What one can observe is the field q (x) at some

fixed resolution r., from which partially dressed flow fields at lower resolutions can be

obtained through spatial averaging.

Next, we consider the scaling of partially dressed flow fields. These fields are

obtained by taking a bare flow field q (x) at some fixed resolution r. and spatially

averaging it to obtain fields of lower resolution. The variability and orientation of the

bare field q (x) and the partially dressed fields are similar. However, main difference

between the two is that the for bare flows the average flow depends on the resolution to

which the field is developed (see Eq. (4.68)), and as the resolution r --+ oo the mean flow

tends to zero. The dependence of the mean flow on the resolution is described as a non-

conservative property of the bare flow field. The mean flow for the partially dressed flow

field depends on the resolution r. of the bare field from which lower resolution flow

fields will be obtained. These lower resolution fields are obtained by spatially averaging

the original bare flow field and have the same mean value. Thus, the partially dressed

flow field is conservative because the mean flow does not change as the higher resolution

field is spatially averaged to obtain lower resolution flow fields. Therefore a good

approximation to the moment scaling function for the partially dressed flow amplitudes,

2CK

Wq, (s), results from dividing Br by the non-conservative factor r D in Eq. (4.69).

This corresponds to changing E [ln (B,)] in Eq. (4.59) to
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D-4_ 2D-1
D -2 1+2 CIn (r)= - CIn (r) (4.71)

D(D+2) D -D+2

In particular Eq. (4.59) becomes

E [In (Br )]=- D+2 CKln(r)

I 2(D2 _1) 
(4.72)

[Var[ln (B,)]= C(D )K()
D (D + 2) n(r

where y is a factor that measures the variance of the partially dressed field when r = 1. It

has been found through numerical simulations that y ~1+ 2 CK. The introduction of the

factor y does not allow one to obtain an explicit expression for moment scaling function

of partially dressed flow fields W,,d (s).

A numerical validation of the theoretical results for the scaling of bare and dressed flow

fields is presented in Chapter 6, where the empirical and partially dressed moment scaling

functions of q are obtained for two-dimensional flow simulations for C Kvalues of 0.1

and 0.3 and compared with the theoretical results in this section. The results show a good

agreement between the simulation and theoretical results.

2

Next, we consider in detail Eq. (4.69), E [(x) = r which is the effective hydraulic

conductivity. The problem of determining the effective hydraulic conductivity is

fundamental to the efficient numerical analysis of flow through heterogeneous media. In
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the case of isotropic K, the effective hydraulic conductivity in a D-dimensional region S

is a scalar quantity K, (S) such that, when an average hydraulic gradient VH = -J is

applied to S, the mean specific flow q(S) is given by

q(S)= Ke, (S)J (4.73)

It has long been recognized that Keff (S) differs from the mean conductivity K = E [K]

and has been extensively researched (see reviews by Sanchez-Vila et al. (1995); Wen and

Gomez-Hernandez (1996), and Renard and de Marsily (1997)). In the next section

classic solutions of Keff (S) from exact 1D analysis and from first-order second moment

analysis (FOSM) will be presented. These results will be compared with the Kff(S) in

the case of finite resolution multifractal K in section 4.3.2.

4.3.1 Problem Formulation and solutions from exact ID analysis and from FOSM

For a one-dimensional flow system, for example the flow through a saturated porous

column, the zero-divergence Darcy equation is written as

(4.74)d dH=0
dx (dx
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If it assumed that the specific discharge q through the column is known exactly from

independent measurements, Eq. (4.74) can be integrated once, and after dividing through

by the nonzero hydraulic conductivity:

dH
dx

(4.75)

The goal is to find the solution for the head, H, when the hydraulic conductivity, or in this

case its inverse, the hydraulic resistivity, varies in an irregular fashion of x, the distance

along the column. Therefore, the hydraulic resistivity, Y , will be regarded as a spatial

stochastic process. Eq. (4.75) then becomes a stochastic differential equation in which

the solution H will also be a random process. The random processes H and 1 are

written in terms of their expected value, or mean, plus a zero-mean perturbation, as

follows:

H=H+h

1/K=P+p

H=E[H] E[h]=0

E[1/K]=P E[p]=O

When the decompositions are substituted in Eq. (4.75), and we take the expected value of

that equation,

dH~ d -E - -J=qE I = -qP
dx _ dxL

(4.77)

where J is the mean hydraulic gradient. Eq. (4.77) can be written in the form
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q=J/E[K1]=KffJ; Kff ={E[K-1] (4.78)

The above equation provides the classic solution for Keff for the 1D case [Gelhar, 1993].

For D >1 a form of the mean Darcy equation that applies to large-scale flow in

heterogeneous porous media can be found by taking the expected value of the Darcy

equation in the following form:

E[qi]=-E K jH -eFE ef -+--J
axi xi x

= -KOE 2 f + f 2 /2+...(4+79)

1_G ah

= KO ( + + 
2 aax.

where hydraulic conductivity has been expressed in terms of the mean and perturbation

forms of InK:

InK=F+f; E[lnK]=F= lnK; E[f]=O

and the exponential function expanded in the Taylor series [Gelhar, 1993]. The expected

value of the product of the perturbations in the head gradient and InK reflects the

relationship between the conductivity variation and the head perturbation that it produces.

This term can be evaluated using the spectral representation as follows:
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Eah
E-f I

ax,
= ikiE[C'dZ = Jj 2 -i _S f(k)dk
kk -AJk

(4.80)

where A and J are regarded as slowly varying functions of space that are treated as being

locally constant [Gelhar, 1993]. The mean Darcy equation then can be written in the

form

E [q] KOJ j + C /2)8ij-F = J (4.81)

k k.
where F, = 2ik - (_k)dk, and the effective

k - ik

hydraulic conductivity tensor K eff

For a given flow situation, Keff is determined by evaluating the Fij integral.

For two-dimensional flow,

Fig =a /2;ij~ =f , 2 8ij =1 for i = j and 0 for i # j

and the corresponding result is

K-f =K08ii; i, j = 1, 2

(4.82)

(4.83)
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which shows that the effective conductivity is simply the geometric mean in the two-

dimensional case.

4.3.2 Comparison with Keff in the case of finite-resolution multifractal K

Suppose that the hydraulic conductivity K is lognormal multifractal field developed to

resolution R beyond the scale of the region S. If the average value of K in S is denoted

by K(S), then In [K (x)] has normal marginal distribution,

(4.84)

where CK = 1!Var [ln (Ge)] and Ge is the multifractal scaling factor Ar in Eq. (4.1) for r

= e. In this case Eq. (4.78) becomes

Keff {E[K-1 =1/exp{ -InKRCK +lnR CK -KR~2CK

And Eq. (4.83) can be written as

Keff = exp (In K - CKInR ) KRC

(4.85)

(4.86)
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Eqs. (4.85) and (4.86) are clearly different in the dependence on R. Eq. (4.85) is exact

for flow in one dimension but not for flow in higher dimensions.

An alternate approach that exploits the scaling properties of K field can be

obtained when K is an isotropic multifractal field. From the scaling analysis presented in

section 4.2 (see in particular Eq. (4.69)), q(S) = K (S)R~(2/D)CK J. Therefore the

expression for the effective hydraulic conductivity is

2

Keff(S)= K (S)R D (4.87)

For D = 1, Eq. (4.87) reproduces Eq. (4.85), which for this case is known to be exact.

For D = 2, Eq. (4.87) reproduces (4.86). Eq. (4.87) provides an expression for Keff that

shows its dependence on the space dimension D, the erraticity of the field CK and the

resolution to which the K field is developed R. It is interesting to note that Eq.

(4.87) is a restatement of Matheron's (1967) conjecture that the effective conductivity of

a D-dimensional flow system is

Keff (S) = K0 exp [ = e2D (4.88)
2 D_

where mF = E [In K] = KO

174



A validation of Eq. (4.87) for two-dimensional flow in K fields with

CK =0.1 and 0.3 is provided in Chapter 6.

4.4 Comparison of the current approach with the results of random electrical
conductivity networks by Bin Lin et al. (1991) and Archangelis et al. (1985)

In the derivation of the distribution of the hydraulic gradient VH and specific discharge

q fields we assumed that the hydraulic conductivity field K to be an isotropic lognormal

multifractal field. The K field served as the input into the zero divergence Darcy

equation. The distributions of the hydraulic gradient VH and specific discharge q fields

were obtained through a formal analysis using the renormalization approach. The results

of Bin Lin et al. (1991) and Archangelis et al. (1985) for random electrical networks also

assumes that the random resistors have a multifractal distribution. Next, they assume that

voltage drops (which is analogous to VH) across the network also have a multifractal

distribution. Thus, the current distribution across the electrical network is also shown to

have a multifractal distribution. The two parameter hierarchical model used in studying

the multifractal properties of random resistor networks is found to be in good agreement

with simulation data.

Another notable difference between this work and that of Bin Lin et al. (1991) and

Archangelis et al. (1985) is that whereas we specify a continuous probability distribution

for the hydraulic conductivity field and obtain the distributions of VH and q, Bin Lin et

al. (1991) and Archangelis et al. (1985) model the random resistor with a discrete
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probability distribution. Specifically, they model the random resistor network with a

binomial distribution.

Finally, in deriving the properties of the hydraulic gradient VH and specific discharge

q fields, we took into account their random rotations. The rotation of the vector

quantities such as voltage is not considered in the work of Bin Lin et al. (1991) and

Archangelis et al. (1985).
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CHAPTER 5- SPECTRAL ANALYSIS OF THE HYDRAULIC GRADIENT AND
SPECIFIC DISCHARGE FIELDS

Introduction

Spectral densities play an important role in the characterization of hydraulic

conductivity and the analysis of subsurface flow. In chapter 2, we reviewed the linear

perturbation method that relies heavily on spectral methods in deriving the statistical

properties of the hydraulic gradient and specific discharge fields. Results of the linear

perturbation method are quite robust for media with low variance of the log-conductivity

field. In chapter 4, the flow characteristics were studied for a highly fluctuating field.

The analysis was limited to a field with an isotropic lognormal multifractal hydraulic

conductivity. Hence, this chapter begins in section 5.1 with a derivation of the spectral

density tensors of scalar random measures and their logarithms under isotropic

multifractality. These conditions are satisfied by the hydraulic conductivity field K. The

spectral density tensors of homogeneous random vector measures under generalized scale

invariance conditions are then analyzed in section 5.2. Results from section 5.2 will be

used in section 5.3 to derive the spectral density tensors of the hydraulic gradient and

specific discharge fields.

The findings in this chapter differ from results of the first-order perturbation analysis in

several significant ways:

1. The linear perturbation analysis produces homogeneous hydraulic gradient VH

and specific discharge q fields with scale-invariant anisotropy. For example, the

first-order spectral density tensors of VH and q scale in exactly the same way

along any straight line from the origin; hence these tensors have the same
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anisotropy at both small and high wavenumbers. By constrast, we obtain spectral

tensors that are anisotropic at low wavenumbers (large scale) and gradually

become isotropic at high wavenumbers (small scales). The current analysis

accounts for the effects of the rotation angles of the VH and q vectors. As one

moves from low to high wavenumbers in the flow domain, the dispersion of these

rotation angles increase and become locally isotropic. It is the effect of these

rotation angles that produce scale-dependent anisotropy in the spectral density

tensors of VH and q. The effects of these rotation angles are not accounted for

in the first-order analysis.

2. The spectral density tensors of the hydraulic conductivity K, log-conductivity F,

hydraulic gradient VH and specific discharge q obtained from the first-order

analysis decay as k-D along any given direction from the origin; k is the

wavenumber vector amplitude and D is the space dimension. The analysis

presented in this chapter produces different results:

- We find different decay exponents for the spectra of K and F, when the

hydraulic conductivity field is a lognormal multifractal field.

- The behavior of the spectral density tensors of VH and q is more

complex: in the small to medium wavenumber range, the tensors do not

behave as power functions of k. This is due to the effect of the rotation

matrices discussed above. At sufficiently high wavenumbers, the fields

VH and q become isotropic and the tensors decay as power laws of k,

with exponents that differ from those of F and K.
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5.1 Spectral Analysis of VH and q : First-order and Second-Order Analyses

In the linear perturbation analyses (e.g. Gelhar and Axness, 1983) reviewed in

Chapter 2, the log-conductivity F = ln(K) and the hydraulic head H are expressed as

F=F+f and H=H+h, where F=E[F], H=E[H]

fluctuations from the mean values.

and f and h are zero mean

Darcy's equation is then expressed in terms of the

perturbation terms as

q = -KVH

= -exp (F+f )V (H+h) (5.1)

=KO 1+f + ... (J -Vh)

Under the condition that the perturbations f and h are small so that the higher-order terms

may be neglected, the mean value of q is

E [q]= KJ

where K0 = exp () and -VH(x) = Jo. It is also assumed that J0

unit vector in the x1 direction.

= J0e 1 where e is the

Since H(x) and q are proportional to Jo and _q is
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proportional to E[K], one may further put J. =1 and K = E [K] = 1.

corrected specific discharge q'= q -E[q] is given by

q'. 1+f ........ ( -Vh)-KoVh

0 ( f h

=K, (Lf - Vh) = K.(eif - Vh)

(5.2)

Also the flow equation, V2H + VF.VH =0, may be expressed in terms of F, H and the

perturbation terms f and h. When the higher order terms in f and h are ignored, this gives

V 2 h = eI.Vf
af
ax,

(5.3)

Gelhar and Axness (1983) used Eqs. (5.2) and (5.3) to derive the power spectra of various

quantities from the power spectrum of the log hydraulic conductivity F = In(K). They

found

(5.4)

(i) S' (k)=K 2F

(ii) S' (_) e 2k-2F

(i)SVH li = F2(

(iv) S'(k)=K ( e e )(. - e ) (F
iij=1...,D ~k
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where k is length of k , e = k/k is the unit vector in the direction of k, and the primed sign

denotes first-order approximation. There is some controversy as to the form of the

prefactor K' in Eq. (5.4)iv; see Dagan (1984), Ababou (1988) and Gelhar (1995). The

small perturbation approach has been applied extensively to the study of flow through

heterogeneous formations. A general outline for this methodology was first presented by

Beran (1968) and extensions were later provided by several authors, e.g. Schwydler,

1962; Matheron, 1967; Bakr et al, 1978; Sagar, 1978, Gutjahr et al, 1978; Dettinger and

Wilson, 1981 and later by Gelhar and Axness, 1983 and coworkers (Gelhar et al., 1984;

Gelhar, 1987).

In the case of a flow field with multifractal hydraulic conductivity K, the variance

of K diverges and the geometric mean K. -+0. Therefore, the spectral densities in Eq.

(5.4)i and (5.4)iv are nonzero only if one limits the scaling range of K. In Sec. 5.3, we

find that the vanishing behavior of the spectrum of q is qualitatively correct, but that of

K is not.

Another problem with the first-order analysis is that all the spectral densities in

Eq. (5.4) have incorrect power-law exponents. This is quite clear in Eq. (5.4)i because

when K is an isotropic lognormal multifractal field in RD the exact spectral densities of f

and K have the form S, (k) c k~D and SK ( -) Dc k+ 2C , respectively (these equations

will be discussed in detail in the next section). The term 2CK in the expression for

SK (k) is a positive constant, which in practice might range between 0.2 and 0.8

depending on the erraticity of the K field. Therefore, the error in the decay exponent of
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the first-order spectrum S' may be substantial. The exponents in Eqs. (5.4)i-iv contain

similar errors.

Another problem with the first-order spectra of VH and q is that they have scale-

invariant anisotropy. By contrast, sections 5.4 and 5.5 will discuss how the actual

spectral tensors are anisotropic for small k and gradually become isotropic for large k.

A second-order spectral analysis of the hydraulic head fluctuation h has been

made by Dagan (1985) and presented in Chapter 2. His results are shown in Chapter 2

for the case when the log-hydraulic conductivity has a spectral density of the type

Sf (k)x k~". It is found that, in the case of multifractal K (when a= D), the second-

order correction to S' (k) diverges and is therefore not useful.

A case that is pertinent to the present analysis and for which first-order theory is

exact is when the hydraulic conductivity equals K, (x), the first term is the sequence of

hydraulic conductivities K (x) is used to analyze scaling issues. This case is important

because the first-order theory is exact when the resolution to which the hydraulic

conductivity field is developed r is close to 1; this means that the K field is almost

deterministic and contains a low content of high frequency data. In this case, the

fluctuations f and h are infinitesimal and the geometric mean K. satisfies K. = K =1.

2 -
Further using the spectrum of F for isotropic lognormal K fields, SF (ko ) = Kk-D

one obtains from Eqs. (5.4)iii and (5.4)iv that, for k = k,
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(1) Sh C Kko 
(.5

(ii) _(h)= -eje )(8j - eje
SD ~i,j= .... D

where the prime signs have been omitted because these results are nonlinear. Because

the first-order theory was obtained for K fields with mildly varying heterogeneities, the

spectral results obtained for a deterministic field, where k has been set to ko, as done in

Eq. (5.5), produces exact results. The results in Eq. (5.5) serve as the starting point for

deriving the spectral density tensors for VH and q in multifractal K fields. For this

analysis, one needs to know how the spectral density tensors of VH and q change under

rotation and isotropic contraction of the support. These transformations are presented in

Sec 5.2.

5.2 Isotropically Multifractal Measures and their logarithms

An isotropic multifractal measure K(S), S c R with an associated measure

density K (S)= K (S)/SI satisfies the scale invariance condition

- d -

K(S)= AK(rS) (5.6)
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where = denotes the equality of all finite dimensional distributions and Ar is a random

variable independent of K(rS). The function WK (s) = log,(E[A ])is called

moment scaling function of K. If K is a lognormal multifractal measure, then Ar also has

a lognormal distribution and

WK (s)= CK (s2 -s) (5.7)

where CK = Var[ln (A,)] is a parameter with values between 0 and D.

In addition, the average measure density K(S) has Fourier representation

(Yaglom, 1987)

K(S)= I As (k)K(dk)
= S D

(5.8)

where ISI is the volume of S, Is (k)is the D-dimensional Fourier transform of the

indicator function of S, and K(dk)is a complex measure in Fourier space.

I,s (k)= rIs (rk) and the volume of rS is rDIS I, substitution of Eq. 5.8 into Eq. 5.6 gives

SAs (k)K(dk)=rD
PD

dl

IS'

rD 1 Ar f
(5.9)

Ar (k')IK(dk'/r)
R D
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where k'= rDk. Eq. (5.9) must hold for S, hence, the spectral measure K (dk) must

satisfy

K(dk)=ArK(dk/r) r >1 (5.10)

Eq. (5.10) is a dual property of Eq. (5.6), K(S)=ArK(rS) in Fourier space. An

important difference between the two scaling conditions is that K is multifractal under

contraction, whereas K is multifractal under dilation. In addition, K is homogeneous,

whereas K is non-homogeneous.

B[I A (i)12]
E K dk

If the spectral density SK (k) = dk exists, then from Eq. (5.10)

SK ( rDE[A]SK (k /r) (5.11)

Since E [A] = rW( 2), then Eq. (5.11) can be written as

SK (ke)= kD+WK( 2)SK (e) (5.12)

where e is any given unit vector.

In order to derive the spectral density of the logarithm of K, the sequence of low-

passed fields Kj (x) obtained by eliminating all Fourier components of ln (K) with
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wavenumbers Jkj > rik. is considered. In other words, we consider a cascade of "bare" K

fields with resolutions rj = (1 +E) , where j = 1, 2, etc and 0<E < 1. With the high-

wavenumber components eliminated, the point values Kj (x)exist. The average value

of Kj (x)in S is denoted by K3 (S).

If K (S)= limK (S) satisfies Eq.
j->)w (5.6), then at least for large j,

d -

Kj+1 (x)= A, Kj(x)

and

d

In (K +1 (x ))= in (A, )+ in (K (rx)

It follows that the spectral densities of In (Kj+1) and ln (Kj ) must satisfy

S11 (K) (k) = rDS (K) (k/r) (5.15)

If as j -+ oo, S converges to a finite limit S then this implies
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or (5.16)

(ii) S (ke) = k-DS n(K) (-)

Eqs. (5.12) and (5.16) show that both SK and SIn(K) have a power law behavior along any

direction in Fourier space, but have different decay exponents. In practice, the parameter

CK is expected to have values between 0.1 and 0.4 depending on how erratic the K field

is, thus the two exponents might differ by 0.2 to 0.8. For Goggin's (1988) data analyzed

in Chapter 3, we find CK = 0.25, for which the two exponents in Eqs. (5.12) and (5.16)

will differ by 0.5. This is an important result because according to first-order

perturbation analysis the decay exponents are equal to D.

To determine the spectral density of F = InK, one considers the sequence of low-

passed fields K, (x) obtained by eliminating all Fourier components of In(K) outside the

range ko 5 _k kma, where ko is some positive constant. Having eliminated the high-

wavenumber components, the point values K, (x) exist. The average value of K, (x) in

Q is denoted by K, (Q).

. d -

Suppose that K() =limK,(0)satisfies K(Q)=G,K(rQ). Then, at least for

large r1 and any r >1,

d

K, (x)=GKr (rx) (5.17)

or
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n (K,, (x))=In (G,)+ in (K, (rx))

It follows that the spectral densities of In (K ) and in (K, ) must satisfy

Sln(K) (k_)=rDSln(K (k_/r). If as r -+-oo S(K) converges to a finite limit SnK , then this

implies

I SIfK(ke)oc k-D

In the isotropic case Eq. (5.19) gives

Sn (k) = ck D

for some c and k=kl. Since Gr and Kr (rx) are independent, then from Eq. (5.18),

Var [In (K,,, (x_))] = Var [In (Gr )] + Var [In (K, (rx))] (5.21)

The spectral density of Kr1 is the same as SI. in Eq. (5.20) in the interval k. <k rk0

and is zero otherwise. Therefore using Eq. (5.21),

Var [In (G,)] = Var [ln (K, (x))] - Var [In (Kr, (rx))]
(5.22)

= c k-Ddk = cS ln (r)
rjk( k rrjk,
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where SD is the surface area of a unit ball in RD; hence S1 = 2, S2 = 2r,

1 Var[ln(Gr)]
C =-- , where for Ge lognormal

SD I r

Var [In (Ge)]= In E [G2] = WK (2)

with mean

= 2 CK. Hence c= 2 CK/SD, and hence

2
SnK (k)=2CKk~-D (5.23)

SD

5.3 Spectral Energy Tensors under Generalized Scale Invariance

In order to derive the spectral tensors of the hydraulic gradient VH and specific

discharge q fields we consider a cascade of these quantities associated with the sequence

of low-passed Kj fields obtained by eliminating all Fourier components of In (K) with

wavenumbers kj > rik.; where the K fields have a resolutions r = (1 +E,)j, j =1, 2, etc.

and , <1. The analysis of the hydraulic gradient VH and specific discharge q requires

knowledge of the renormalization properties of the spectral density tensors

homogeneous vector fields Vi (x) that satisfy a multifractal relation of the type

_j+i ()Ar R, Yj (rRT x)]

of

(5.24)
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where Ar is a random variable and R is a random rotation matrix, independent of Ar. In

Eq (5.24), the expression in brackets is a transformed version of Vi (x), obtained by

spatially contracting by a factor r and rotating the field by Rr . Denoting this transformed

vector field by V' (x) = RVj (rRx), for any given rotation matrix R,, the spectral

density of V., S, (k) can be obtained from the spectral density tensor of Vj as

(5.25)SV (k)=r-

If the rotation matrix R is random, then the expectation on the right hand side of Eq.

(5.25) must be taken with respect to R . This gives

Sv (k) = rD E [ R TkR] (5.26)

Finally, using Eq. (5.24) and E Al 2= r W(2), the spectral density tensors S, and S are

related as

(k) = r~D+W(2) _ [rSVi 1R Tk RT
~r -r- j (5.27)
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Having discussed the above properties of spectral tensors, a discussion on the nonlinear

spectral analysis of VH and q follows.

5.4 Nonlinear Spectral Analysis of VH

The spectral analysis of the hydraulic gradient field VH and specific discharge field q is

based on the multifractal scaling of these two parameters, which was derived in Chapter

4. Scaling relations obtained for VHj and q. at different resolution levels are

dT

(i ) VH,(x_)=ARVHj rR X)

(5.28)

(ii) j,+ (x)=B,R.q rR x)

It follows from Eqs. (5.28)i and (5.27) and the independence of Ar and Rr that

(5.29)x Dr2 )RT

As j -+ oo, VHj tends to a non-degenerate random measure VH and SVHJ (k) converges

to a spectral tensor Sv (k) that satisfies

-D+2K~
~V~)r D EIrH

,-Ir L H
(5.30)
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where EIArjr =r D (for s = 2) has been substituted into Eq. (5.26).

using the relation SVH () = (kkT h (k), the term in the brackets in Eq. (5.30) may be

written as

SVH ( k/r ) T
kk Sh(RTk /r)
r r

On the right hand side of Eq. (5.31), all rotation matrices R. except the one in the

argument of Sb 'have disappeared. This simplification came from the fact that VH is a

potential field, that is, VH is the gradient of a scalar field. Substitution of Eq. (5.31) into

Eq. (5.30) gives

VH ( -D+2 E h (_k/r
r r )R r (5.32)

Equation (5.32) relates the spectral tensor of VH at wavenumber k to Sh at some smaller

rotated smaller wavenumber RT k/r .

_ cos~xr)
R LSi(C~r

-~sin(cc,)

For example, in 2D the rotation matrix

- sin (c )1
si (r) , where xr is a random angle with symmetric distribution

Cos (X, )

about zero.
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In order to obtain an explicit expression for SVH from Eq. (5.32), it is assumed

that, for k = k (at the low-wavenumber end of the scaling range), the spectral density of

h is evaluated correctly by Eq. (5.5)i. Then, setting k = rk , Eq. (5.32) becomes

-D+ CK

&VH(rjS.O)r D

(k; CK)r~1+cK for D = 1 (5.33)

jk 2 CK r-K [bre1 +(1-br)e ) for D = 2

where e is the ith component of the unit vector e =_k0 / k, e,, is the first component of

e and b, = E cos2( )]. From Chapter 4, it is known that for D = 2, the angle u.,

2
has normal distribution with zero mean and variance 2 C In (r) and that for D =

D(D+2)

3, the distribution of cc, does not have a simple analytical form but can be accurately

approximated by D-dimensional Fisher distributions.

The spectral density of h = H - H follows directly from Eq. (5.33) and is given by
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_h (rk ) -= D--2+ 2 CKk; -D-2 e

kO'CK )r-3+CK for D = 1 (5.34)

k4C r4CK e +(b)2 for D = 2

The spectral results in Eqs. (5.33) and (5.34) have some interesting features:

1. The exponents of r in the two equations give the asymptotic high-frequency decay

of the spectral densities. They differ from the first-order exponents, which are -D

2
for VH and -(D+2) for h (see Eqs. (5.22)ii and (5.4)), due to the term -- CKD

This term depends on the space dimension D and the erraticity of the K field

through the parameter CK. In order for h to exist, CK must be between 0 and D;

see Kahane and Peyriere (1976) and Schertzer and Lovejoy (1996). Hence the

exponent in r of Eq. (5.28) is between -D and -(D+2), which is the range of

spectral exponents for fractional Brownian surfaces.

2. The terms in the square brackets for D = 2 and D = 3 are anisotropy factors. For

example in the D = 2 case, for r = 1 (at low frequencies), c, =0 and br =1; hence

the term in square brackets equals e2 as in first-order theory. For r -+ o (at very

high frequencies), the variance of c, diverges, br -+ 0.5, and the term in square

brackets -+1. Hence, at very high frequencies the h andVH have isotropic

fluctuations. This transition of h andVH from anisotropy to isotropy as one goes
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from low to high frequencies is not predicted by first-order theory, according to

which the fluctuations of H andVH have anisotropy at all scales (see Eq. 5.4)

3. The prefactor terms in Eqs. (5.33) and (5.34) differ from the prefactor terms in the

first-order theory. Equations (5.33) and (5.34) express the prefactor in terms of

the low-wavenumber cutoff ko and CK, a parameter that depends on the erraticity

of the hydraulic conductivity field. The prefactor in the first-order theory KO is

obtained from the Taylor's series expansion of the F=lnK field whereas the

prefactors in Eqs. (5.33) and (5.34) were obtained in an exact manner by

introducing lower and upper bounds for the spectrum of the F=lnK field.

For D = 2 and CK = 0.1 and 0.3, contour plots of Sh (rko) are shown in Figures 5.1 and

5.2 respectively. Due to the power-law behavior of the function, the spectra and its

argument have been transformed logarithmically, so that the contours represent

k
log10 (Sh (rk)) and the axes represent logio j. The plots in Fig. 5.1 are for the

spectral density tensors

Sh(rk,) CK -4+CK [b e2 + (1-b,)e2] Nonlinear Theory

h (rko = 1{k4C r~4 e2 Linear Theory
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kk
The spectra are computed as follows. We write e, = ' and e 2 = -2 and let k = e10k'.

k k

Then for k1 , k2 =0 (±O.0156) ±4, the spectra Sh(k')= log0 Sh (k = e'1') is calculated

and contoured. Contour plots for the head spectra shown in Fig. 5.1 have a log spacing of

-4. The innermost contours have a log-spectral value of -4 and decreases radially with a

value of -4, so that the outermost contour has a value of -20.

From Figure 5.1 the following interesting features can be observed:

1. The spectral density from linear theory decays at a faster rate than the spectra

from the nonlinear theory. The decay exponent is -4 for the linear spectra and

-4+C Kfor the nonlinear spectia, and

2. The contour lines for the spectral density from linear theory have the same non-

circular shape at all scales, whereas those from nonlinear theory exhibit

anisotropy at large scales and isotropy at small scales. The transition from

anisotropy to isotropy is faster for larger values of CK.
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Figure 5.1 - Spectral contour of the head field for the linear and nonlinear theory
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5.5 Nonlinear Spectral Analysis of Specific Discharge _

The spectral analysis of the specific flow q follows closely that of the hydraulic gradient

field VH with two main differences:

1. The hydraulic gradient field VH is conservative, i.e. its mean value does not

depend on the resolution r = k. / k. to which the conductivity field K is

developed. The specific discharge q, is however non-conservative, i.e. its

mean value depends on r and approaches zero as r -> oo. Also, the spectral

density of q vanishes as r -+ oo ; hence the spectral density tensors obtained

here for Q are for finite r.

2. The second difference is that VH is a potential field (it is the gradient of H),

whereas g is a solenoidal field (due to the conservation of flow, g has zero

divergence). The fact that g is not a potential field introduces some algebraic

complications in the spectral analysis.

We begin by relating the spectral densities of q and q . From Eq. (5.28)ii we

know that the scaling of q is

d

q (x)=BrRrq (rRx) (5.35)

where Br is a random variable and R, is a random rotation matrix. Also, from Eq. (5.25)

we obtain
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(5.36)

w h e r ED - r 4 K

where E[Br rD r D . Eq. (5.36) is analogous to Eq. (5.29) for VH. The factor

r D in the expression of E [BrI is the square of 1E [q = r K and results from the

non-conservatism of q. This factor is also responsible for the vanishing behavior of S_ as

r -+ oo. To obtain a non-degenerate limit, we define conservative normalized flows as

q (x)= r 2 CK /D q (X). The spectral density tensors of the modified flows are given by

q (k) = r4 CK/Dq (k) and from Eq. (5.36) satisfy

SI (k)=r+2 C D E[R S (5.37)

It follows that Sq ,(k) =limSq' (k) renormalizes as
r----> Ur

-D 2CK- F / T \ T 1
r D EIRr qRrk/r)Rr

RrL
(5.38)

At the low-wavenumber end of the scaling range (for k = ko with amplitude k), we

assume that S (ko )is given by Eq. (5.5)ii, which is obtained from first-order theory that
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is asymptotically exact, as the variability of the K field tends to zero. When the

resolution of the K field is unity or close to it, we can assume that Eq. (5.5)ii is exact;

hence, we anchor the results to the exact form of the spectra given Eq. (5.5). Then for

k = rk. , Eq. (5.38) gives

-D+2 !CK

S,(rkoe)= C k;-D r- D

E {D K( 0e )) - (5.39)

x ER, (8ii -e e )(8j,- e er RT

i,j=l,....,.D_

where er is the ith component of the vector e = R Te and e is the unit vector in the

direction of ko. If K is multifractal down to resolution rmax and no further (meaning that

the spectral density of F =ln(K) is zero beyond rmaxko), the spectral density tensor of _q is

Sq (k_)= ricK /DSq,(k) for k<r., <kO and S (k) =0 otherwise. This behavior of S is

a direct consequence of the spectrum of the log-conductivity F given in Eq. (5.23). The

spectrum of F is constrained because as the resolution tends to infinity, the variance of

the K field diverges and becomes non-conductive.

To obtain a more explicit form of Sq',()) one must evaluate the expectation term

Rr (ix --eheri)(ji -e er R (5.40)
Rr=,..,
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in Eq. (5.39), where R, is the random rotation matrix, e, is the ith component of the

vector er = RT e, and e is the unit vector in the direction of k, The following is the

derivation of an analytical expression for the matrix in Eq. (5.40) for the D = 2 case and a

more manageable but not completely explicit expression for D = 3.

Two-dimensional case

Let A j= (8i-e er )(8j -erge)]

for i=1 j=1

A =(1-e 2 =1-2e2 +e'

for i=1 j=2

A12 =(1-e 2)(-ee)= -ee +e e
fr2 1 r2  re r2

for i=2 j=1

A21 =(0-ee r)(I-ege )=O-e e +e 3er r ;r 1 r2 r1 r2

for i =2j =2

A2 2 =( -ee,)(0-ee, )=O-O+e 2e
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Thus in matrix form

-ee )= [~1 0 2e

-0 0- er e r

e e e 

=(1-e ) 01+e2 [0

oj er2 [0

S e + eT2

1 e re +irj r ;-rj

U sin g (1-e )=e2

A =e~jI- T er1 e T =e 2 l-e 2 e e T=e~ 21ii r2 -r ! r r -j ri r2 r2 -rj rj r

T\-e re ri)

Therefore, the expectation in Eq. (5.40) becomes

{r [ er er ) (8i -erer
=, ....D

_R =E e R'IR~~_,RI

=E e 2 -_e

=E 2 e e
Rr2iee e 2

U-)) o 2 1.

Using er =--sin (a, + COS(aX)e2where a~ has normal distribution with zero mean

(5.41)

and variance 1- CK In (r), and the fact that E [sin ocr cos ,] =0 due to symmetry of
4

the distribution of a, one obtains e ]e=(1- b)e2+ be where

br = E [cos2 cr]. Hence, in the 2D case, the matrix in Eq. (5.40) may be written

explicitly as
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E
Rr

Rr (ii -eg e, #, -e ee RI =

ij=l,.... -D

2e2 _e2 e
((1-br)e + be) 2  1 2

-e1 e 2 e1 _

(5.42)

Three-dimensional case

In three-dimensional space, the matrix in brackets in Eq. (5.40) may be written as

0 0] 2e2 erer2

0 0 e re 0

00 i erier 3 0

1 0 0~ 0

(1-2e 2) 0 0 0 -erer

0 0 0_ e,e, r

erer e r ie 3

0 + e T

0

er, e r2 eer
0 0 +e 2ee

0 0

Using Eq. (5.43), the expectation in Eq. (5.40) becomes

-eeI RI

=E(1-e2 )RR -E e e, (R' R +R R T

/R RT DT 1 l rEee, r + +_R, , ] + le, ee

where Rr is the ith column of R,. (The various terms must now be expanded and the

expectation dealt with in index notation.)
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ij=1,2,3

-er e)] 0=

-LO
(5.43)
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Substituting Eq. (5.41) into Eq. (5.38) the specific discharge spectrum for the two-

dimensional case is obtained as

q (rk) = k;2C r2+CK ((1 2 
2

-br~e? +be2 e2

where br = E [cos2 (x,)] and ar has normal distribution with mean zero and variance

1
-CK in (r). It is worth noting that:
4

(i) Since g' has zero divergence, its spectral density tensor must satisfy

ki S (k) =0 for each j and k[ (k) = 0 for each i [Panchev,

1971, Eq. 9.4]. One can verify that Eq. 5.45 satisfies these conditions.

(ii) For k in the direction of k, (for el = 1 and e2 = 0), S * ' (k) and S q * (k)

vanish and S.. (rk. ) becomes

S ko
q*q 0 )

(5.46)(1-br) 1 k;2 CK
( 71

The term (1- b,) in Eq. (5.46) is close to zero for small r (at low frequencies) and

approaches 0.5 as r -+ oo. Contrary to linear theory, the spectral density S. does
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not vanish identically along k1. The reason is the random rotation of the flow field at

small scales.

(iii) Like the hydraulic gradient VH, the specific flow q is anisotropic at large

scales but tends to be isotropic at small scales. The scale below which q may

be considered isotropic is controlled by the term br and hence by CK, which

appears in the variance of xr. For example, if one considers isotropy to be

effectively realized when br = 0.6, then this requires Var[a]= 0.9 and a

resolution ri,. = e3 6' . For example, r,. = 8103 for CK =0.4. If ri,, exceeds

the multifractal scaling range of the hydraulic conductivity, r. = k. / k.,

then complete isotropy is not observed, even at the smallest scales.

The spectral components S q'q S q. and S q.q are contour plotted in Figures 5.2a-c

using a representation similar to Figure 5.1. In each figure, the nonlinear functions

from Eq. (5.45) are compared with the linear spectral densities in Eq. (5.4) for CK =

0.1 and CK = 0.3. As in the case of the hydraulic head fluctuations, the main

differences between the linear and nonlinear spectra are that the latter are flatter and

consistent with the fact that, at small scales, _q approaches isotropy (at large

wavenumbers, the spectra S . . and S . . are identical except for a 90' rotation, and

S.. is symmetrical). Both features (slow decay of the spectrum relative to the linear

case and high-wavenumber isotropy) are more pronounced for higher values of CK.

The contours in Figs. 5.2 have a log spacing of -2. The innermost contours have a
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log-spectral value of -2 and decrease outward with increments of -2. The decay

exponent is -2 for the linear theory spectra and -2 + CK for the nonlinear spectra.

Thus, we observe that the spectra of q for the nonlinear theory decays at a slower

rate than the spectra from the linear theory. The difference in the rates of decay

between the linear and nonlinear theory spectra becomes more pronounced as the CK

value increases.
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Figure 5.2a - Spectral contours of the longitudinal specific flow S
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CHAPTER 6: FLOW SIMULATIONS IN SATURATED AQUIFERS WITH
MULTIFRACTAL HYDRAULIC CONDUCTIVITY

Introduction

In this chapter, the theoretical results of Chapter 4 are validated by performing two-

dimensional simulations on a 512 x 512 grid. To produce hydraulic gradients and flows,

boundary conditions of H =1 along x, =0, H =0 along x, =1, where H is the hydraulic

head and no flow through the other two boundaries are imposed. Consequently, the

average hydraulic gradient is oriented in the xi direction and coincides with the mean

flow direction. The flow domain and the boundary conditions are illustrated in Fig. 6.1.

Because of the simplicity of the flow domain, a finite difference approach is used in

computing the head field H, which is then used to calculate the hydraulic gradient field

VH. Using the hydraulic conductivity K field and the hydraulic gradient, the specific

discharge field q is computed. Most of the validating procedures consist of computing

the moments of the field and examining how these moments change scale ratio r. The

scale ratio, also known as resolution r, is defined as the ratio between image size and

pixel size in an image.

In general two types of validation are done: the first consists of creating a K field on a

grid size of say 512 x 512, computing the associated VH and q fields, and then

averaging these fields to obtain {K, VH and q fields on coarser grid sizes. The
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moments of the original field and the fields obtained through averaging are examined.

This type of analysis is known in the multifractal literature as "partial dressing." The

second type of validation consists of examining the scaling properties of flow through K

fields of different resolutions. For example if {K5 12 , K256, K128,K 4 } are K fields on grids

of sizes 512x 512, 256 x 256, 128 x 128 and 64 x 64 respectively, and these fields serve

as inputs into the program that computes the head fields, so that the associated hydraulic

gradient field and specific discharge fields are respectively

{VH5 12,,VH 2 . 6 ,VHs ,VH4} and {q, 12,q25 6,q 12 8,q 64 1- Then, the scaling properties of the

fields are examined by considering how the moments of the sets {K 12 ,K 256 ,K1 2 8,K6 4 },

{VH512,VH 256,VH 28,VH 64 } and {q512,q256,q128,q64} change with resolution (or the grid

size). This type of analysis is known in the multifractal literature as "bare scaling

analysis."

Sections 6.1 through 6.5 examine the "partial dressing" of multifractal K fields. How one

constructs multifractal K fields is discussed in Sec. 6.1. The computation of the scaling

properties of these K fields is also discussed. Using the multifractal K fields as input into

a finite difference program, the head field is calculated. Section 6.2 discusses the finite

difference program used in computing the head field. Properties of the head field are

discussed in section 6.3.
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Figure 6.1 - An illustration of the flow domain and the imposed boundary conditions.
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Section 6.3.2 discusses how the hydraulic gradient VH field is computed from the head

field and what one can observe about its scaling properties. An interesting feature of the

vector fields VH and q from a variable K field is that in addition to considering the scaling

properties of their amplitudes, one has to consider their rotations. The statistical properties

of these rotations are discussed in Sec. 6.5. The properties of the specific discharge are

presented in Sec. 6.4.

The scaling of bare fields is discussed in section 6.6. Unlike the partially dressed field,

where the mean value of q does not depend on the resolution r, in the "bare case" one

observes a decrease in the mean value of q as the K fields are developed to higher

resolutions. To explain this behavior Sec. 6.7 discusses the relation between the log

hydraulic conductivity and the hydraulic gradient VH. The negative correlation between

these fields is examined in detail. Finally, Sec. 6.8 considers the case of a K field with a

high variability. In deriving the theoretical results of Chapter 4, it was assumed that the

contribution of the term VF.Vh in the incremental flow equation (Eq. 4.7) was negligible

compared to V2h. Under this assumption, we obtained theoretical results for the case

when k0 > 1 and CK «1, where ko is the minimum wavenumber for the F = ln (K)

spectrum and CK is the codimension parameter that determines the variability of the K

field. In Sec. 6.8 we consider flow through a K field with a CK value close to unity to

examine if the scaling results still hold or break down under this condition.
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6.1 Construction of the K field and its scaling properties

The hydraulic conductivity field K that is input into the flow program is an isotropic

lognormal multifractal field that satisfies the scale invariance condition

...... d ...
K (S)=A,K (rS) (6.1)

d

where = denotes equality of all finite dimensional distributions and Ar is a random

variable independent of K (rS), K (S) denotes the average value of K in regions S of RD

and r 1. We consider the case when Ar has lognormal distribution, so that F = ln (K) is

a Gaussian random field. Determining the multifractality of a scalar quantity like K

consists of verifying that Eq (6.1) is satisfied. In Chapter 3 it was shown that Eq. (6.1) can

be written as

E [K(S)s] = rw(s)E [K(rS) S] (6.2)

where W (s) is commonly known as the moment scaling function. For a lognormal K field

with E [Ar] =1, ln (Ar) must have a mean value of -CK ln (r) and variance 2 CK ln (r),

thus from the moments of the lognormal distribution [Johnson and Kotz, 1970, chapter 14],

the moment scaling function W (s) is
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W (s)= C, (s2 -s)

W(s) is obtained by plotting log {E [K(S) Y against log (r) for different values of s. For

a D-dimensional K field with a given CK value one can take the moments up to a value

determined from the relation

W (s) ; D (s -1) (6.4)

This relation ensures that the moments of K(S) are finite for s <sL where sL >1 satisfies

W (s)= D (sL 1) (6.5)

and moments of K(S) of order s ; SL diverge. As an example, for a two-dimensional K

field with CK =0.3 the maximum value of s, sL = 6.67. To study the scaling behavior of

the multifractal K field, K fields with CK values of 0.1 and 0.3 were generated.

The numerical simulation of lognormal multifractal measures is discussed in Schertzer and

Lovejoy (1987), Wilson et al. (1991) and Pecknold et al. (1993). This thesis follows the

same procedures outlined in these papers and numerical simulates an isotropic lognormal

multifractal following these steps:

1. A Gaussian white noise r=51 2 with zero mean and variance 2 CK is generated over

the discrete 512 x 512 grid.
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2. rr= 5 12 is Fourier transformed an filtered with a JCkD2 filter, where k is the

amplitude of the wavenumber vector k. Theoretical reasons for choosing this filter

are provided in Schertzer and Lovejoy (1987), Eq. 36. The resulting field is Fourier

transformed to yield a real space field.

3. The field in step 2 is normalized by subtracting CK log (size) .

4. The field in step 3 is exponentiated to yield a multifractal field with a mean of

approximately 1. -

Following the steps outlined above, K fields with CK values of 0.1 and 0.3 were generated.

The K fields with CK = 0.1and 0.3 are shown in Figs. 6.2a and 6.2b. The K field with

CK = 0.3 is sparser and more variable than the CK = 0.1 field. The scaling behavior of the

K field is examined as follows:

1. The simulated K field with E [K] =1 on the 512 x 512 grid corresponds to the K

field at a resolution of 512. To obtain the data at a resolution of 256 x 256, the

original K field is averaged so that the average of four neighboring points on the

original grid corresponds to a new single point on the 256 x 256 grid. In general,

to obtain a new field with resolution R = 2N 2 N where N = 0, 1, 2,.....,8 from the

original 512 x 512 K field, the 512 x 512 K field is averaged over

2 9-N x 2 9-N neighboring points. To further explain this averaging procedure,

consider the K field of resolution r = 4 in Fig. 6.3 being averaged to obtain a field
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with r = 2. The averaging is done such that for the field with r = 4, the averaged

values in the K field with r = 2 are obtained as follows:

Ki = 1 +K 12 +K 21 +K 22

4

K2 K 13 +Kl 4 +K 23 +K 24

4
(6.6)

K
3

- K31 +K 32 +K 4,+K 42
4

K 4 4
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Figure 6.2a - A lognormal multifractal hydraulic conductivity field with CK = 0.1

218



0
0

>0
V

C o
00

0O

1

0

03 60.40.2 00 0.2 0.4 0.6 0.8

X2  xi
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In the discussion that follows, we denote the field at resolution r with a subscript that

shows the resolution of the field. So that the K fields obtained by averaging the K field at

r = 512 to obtain fields with r = 256, 128, 64, 32, 16, 8, 4, 2 and 1 respectively are

denoted as

K ={K 5 12,K 25 69K12 ,K64,K32,K 6,K8,K4,K2K (6.7)

2. To obtain the moments of the K field, Eq. 6.7 is exponentiated to the power s to

obtain K' and the spatial averages are taken. So that the sth moment of the K

field is

(Ks) ={Ks12), (K S S 2s ),(K ),(K ),(Ks

iN
where ( )=- denotes the spatial average of K and N is the number of elements.

Nj=1
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Figure 6.4 - The scaling of a lognormal hydraulic conductivity field K with CK= 0.1.
The straight lines on the graph are obtained by performing a linear regression
against the data points.
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Figure 6.5 - The scaling of a lognormal hydraulic conductivity field K with CK = 0.3 .

The straight lines on the graph are obtained by performing a linear regression

against the data points.
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Figure 6.6 - Comparison between the results of the numerical (empirical) simulation

and the theoretical scaling relations for K fields with CK = 0.1 and 0.3.
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Figure 6.7 - The scaling moments for 20 simulations of lognormal multifractal K fields with

CK = 0.1. Moments for s = 1 have not been shown because they all have a value of
1. Due to the overlap of some points one cannot clearly see all the 20 points.
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Figure 6.8 - The scaling moments of the average values of the moments shown in Figure 6.7.

This is the average scaling moment of 20 realizations of K fields with CK = 0.1.
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The scaling of the K field with CK = 0.1 and 0.3 obtained following the steps

outlined above are shown in Figs. 6.4 and 6.5. The empirical W (s), the slopes of the

moments in Figs. 6.4 and 6.5, were obtained through linear regression of log E [K ]}

versus log{r}, where r ={512,256,128,64,32,16,8,4,2,1} and are shown in Fig. 6.6; for

CK =03 the moments q = 3 and 4 are slightly less than the theoretical slopes predicted by

Eq. 6.3. The discrepancy of the empirically obtained slopes from the theoretical can be

attributed to the seed used in generating the K field. In fact, one cannot overemphasize

the fact that the numerical simulations involve an inherent randomness and depending on

the seed used one may obtain slightly varying results. Fig. 6.7 shows the results of 20

simulations performed to generate K fields with CK = 0.1. Each K field was created with

a different seed. It is interesting to observe the results are closely clustered. The slopes of

the individual realizations are presented in Table 6.1. And the average value of the

realizations is plotted in Fig. 6.8. The average slopes closely match the theoretical

slopes for a K field with CK =0.1 given in Table 6.1.
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Table 6.1 Slopes of log (Ks) versus log {resolution} for K fields with CK =0.1

WK(2) W(3) WK(4)

0.219 0.627 1.32
0.210 0.629 1.26
0.213 0.613 1.15
0.200 0.600 1.23
0.220 0.615 1.19
0.290 0.820 1.43
0.180 0.600 1.20
0.210 0.530 1.15
0.200 0.620 1.18
0.230 0.600 1.20
0.200 0.560 1.10
0.210 0.560 1.09
0.200 0.610 1.21
0.214 0.590 1.19
0.210 0.612 1.15
0.195 0.609 1.19
0.199 0.607 1.20
0.189 0.594 1.19
0.215 0.599 1.24
0.204 0.604 1.19

Mean 0.210 Mean 0.609 Mean 1.20

Standard Standard Standard
Deviation 0.02 Deviation 0.055 Deviation 0.07

Theoretical 0.2 Theoretical 0.6 Theoretical 1.2
Value Value Value
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6.2 Computing the Head Field

A finite difference code was used in computing the head field. There is a vast

literature on the application of the finite difference approach in simulating groundwater

flow (for example Bear, 1992; Langtangen, 1999 among others). Moreover, the finite

difference approach is extremely popular in the hydrologic community due to the

availability of commercial software packages such as Modflow©, Visualflow© and

similar packages. Due to the simple geometry of the flow domain used in this thesis, the

finite difference code was implemented using Matlab©. Construction of the finite

difference code begins with a discretization of the flow domain. For a 2D flow domain

the zero divergence Darcy equation is expressed as [Bear, 1992]

a (K aH a (K aHl=O(68-I K- +-I K- -=0 (6.8)
ax ax ay ay

The first and second derivatives are expressed in approximate form. By subscripting the

H and K variables with (i,j) to denote their values at node (i,j), the terms in Eq. (6.8)

are approximated as

3H 1 'Hi. -Hi

K-~-(K ,+ Kid ' (6.9)
ax 2 Ax
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where Ax is the grid size in the x, direction and Eq. (6.9) is the flow in the x, direction

from node (i, j) to node (i+1, j). The flow from node (i -1, j) to node (i, j) in the x,

direction is approximated as

KaH 1
ax 2

+ K ( -H' )
Ax

An approximation for the second derivative is then obtained as

K -H -K

a (K aH)_ ax )(ij)x(i+,j) '

ax ax Ax

Substituting Eqs. (6.9) and (6.10) into Eq. (6.11) gives

1  + H -H j
2 Ax

H..-H
2 (K1j + K1 j

Ax1

Letting Ai = 1
2

K( +K

(Ax, )2
and B=

2
(Ax )2's ,j, Eq. (6.12) can be written as
(Ax,)2

(6.10)

(6.11)

(6.12)
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(6.13)-- K- aH = - (A, + B )Hij +B H
ax( ax)

Likewise

a K aH) C Hi,1 - (C + D )Hij +DH
ay (ay

(6.14)

where C= - and D =- 1 K ______

j 2 (Ax 2 )2  a 2 (Ax2

From Eqs. (6.13) and (6.14), Eq. (6.8) can be written as

(6.15)

The goal is to obtain a solution for Hi, subject to the boundary conditions. Eq. (6.15)

constitutes a discrete system of equations that can be written in matrix form as

[Q]{u}= {B} (6.16)

where Q is the matrix of the coefficients of the head, u is the head field for which a

solution is being sought and B is a vector of the boundary conditions. The Matlab@

solver is used in solving Eq. (6.16). The numerical solution presented above should be

consistent, converge, and be stable for the solver to be considered reliable [Bear, 1992].
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The condition of consistency requires the numerical derivation to tend to the exact

solutions when the finite intervals Ax, and Ax 2 -+0. In regards to the condition of

convergence, Bear [1992] says, "It is much more difficult to verify the condition of

convergence.........In many applications, it is impossible to prove convergence in a

rigorous way. Therefore it is usually sufficient if the numerical procedure has been

verified against a variety of analytical solutions." The code used in this thesis has been

tested against known deterministic solutions and thus convergence of the code may be

assumed [Wang and Henderson, 1982 and Elfeki et al., 1997].

6.3 The Head Field

With the hydraulic conductivity K data (for example as shown in Fig. 6.2) as the input

with the boundary conditions shown in Fig. 6.1, the hydraulic head field was computed.

The hydraulic head for the K field in Fig. 6.2 is shown in Fig. 6.9. There are several

interesting features about this head field, which was also observed for all the computed

head fields:

1. First, it is observed that the imposed constant head boundary conditions tend to

propagate towards the interior of the flow domain. At the top left corner of the

hydraulic head field one observes a sustained head value close to the imposed value

of 1. A similar behavior is observed at the lower right boundary, where low head

values are sustained into the flow domain. This behavior can be attributed to the

seed used because from Fig. 6.10 we notice that the head contours for CK = 0.3 do
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not exhibit the same behavior. This persistence of the imposed boundary conditions

into the flow domain has been observed by other researchers, for example Ababou

[1988].

2. The contour plots of the head fields obtained for K fields with CK values of 0.1 and

0.3 are shown in Fig. 6.10. At first one notices the increasing wavy nature of the

head contours as the CK values increase. At a rather small distance away from the

boundary, one can observe the effect of the imposed no flow condition. However,

this effect diminishes rapidly as one moves to the interior of the flow boundary.

3. Another interesting observation about the head field is that compared to the K field,

the head field seems less erratic. In contrast to the K field, the head fields exhibit a

much longer range of correlation. The values of the K field (see Fig. 6.2) change

quite rapidly as one moves from one location to the other, whereas the head field

values change relatively slowly. One can observe from the head contours the clear

demarcation of the various head values and the region each interval occupies.

Contour plots for the K fields could not even be obtained because of the rapidly

changing values from one location to the other, which makes it infeasible to

triangulate the data and display it with contours as was done for the head field.
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An important consideration in the theoretical analysis in this study deals with the scaling

properties of the hydraulic gradient field. The scaling properties of the hydraulic gradient

VH are examined to study its behavior when flow occurs in an isotropic lognormal

multifractal K field. In a fashion similar to one used in studying the scaling properties of

the K field, the behavior of the slope of the log {fVH' }versus log (resolution) is

examined.

The notion of resolution as used in analyzing the data, corresponds to the number of

quadrants over which the original data is divided and analyzed. One can gain a better

understanding of this notion of resolution by looking at Fig. 6.12. This figure illustrates

the hydraulic gradient data at resolutions r = 1, 2, 4 and 8. At resolution r = 1, the H data

is distributed over one square block. A regression analysis is used in determining the

components of the hydraulic gradient in the x, and x 2 directions. The equation of the

plane has the form

H =JI + J2x2 +(6.17)

where E is a zero mean residual term, H (xx 2 ) is the head field, J, and J2 are the

slopes of the plane in the x, and x 2 directions respectively and correspond to the
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Figure 6.11 - The hydraulic gradient field computed from a K field with CK= 0.1
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components of the hydraulic gradients in these directions. A regression analysis

performed according to Eq. 6.17 on the head field at r = 1 produced a J, = -1.096 and

J2 = -0.0621 so that the mean hydraulic gradient J = 1 +j2 = 1.0978. This mean

hydraulic gradient exceeds the initially imposed J = 1. As discussed previously, the

discrepancy between the numerically obtained J and the imposed value increases as the

variance or CK value of the K field increases because in variable K fields, the rotation of

the flow vectors increase as the variability of the K field increases. Another interesting

feature of the hydraulic gradient is that although it was initially imposed in the x,

direction, the computed value shows a slight deviation or rotation away from the x,

direction. The magnitude of this rotation angle a is computed as follows:

a = arctan J (6.18)

In further discussions, the rotation angle at a resolution r will be denoted as cc,. Thus

for r = 1 in Fig. 6.11 the mean hydraulic gradient J has an associated rotation angle

x = 3.24*.

To obtain the mean hydraulic gradient at different resolutions, the hydraulic head field H

is divided into a number of squares corresponding to the resolution. For example as

shown in Fig. 6.12 at r =2, the H field is subdivided into 4 squares, so that there are two r

= 2 squares on either axis. Similarly, at r = 4, the H field is subdivided into 42 squares,
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and at r = 8, the H field is subdivided into 82 squares. In general, when the H field is

being analyzed to obtain the mean hydraulic gradient J, = VH, I at a resolution r, the H

field is subdivided into r2 squares. Next, all the H values within each "subsquare" are

analyzed as discussed in pt. 2 according to Eq. (6.17), to obtain the J, and J2 values for

each quadrant. Following this procedure, the mean hydraulic gradients were obtained for

H field derived from the K field with CK = 0.1 and the mean hydraulic gradients are

displayed for r = 1, 2, 4 and 8 in Fig.6.12. A few interesting observations can be made

about this figure: First of all, the mean hydraulic gradient at r = 1, does not coincide

exactly with the imposed mean hydraulic gradient. The deviation of the computed mean

hydraulic gradient from the x, direction can be attributed to the heterogeneity of the K

field, which in turn causes the flow vectors to rotate and effectively increases the mean

hydraulic gradient. Also, the heterogeneity of the K field results in a slight rotation of the

mean hydraulic gradient at r = 1. As one goes from r = 1 to finer resolutions, there is an

observed increase in the rotations of the hydraulic gradient vectors. The magnitude of the

hydraulic gradient vectors tend to decrease with increasing resolution although their

average value tends to remain the same as one goes from a coarser (small values of r ) to

finer (higher values of r) resolution. The rotations of the hydraulic gradient vectors tend

to become more erratic as one moves from coarser to finer resolutions. The scaling of the

hydraulic gradient vectors is next examined in detail.
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6.3.2 Scaling of the hydraulic gradient

Using the procedure described above, the scaling of the hydraulic gradient fields

for K fields with CK = 0.1 and 0.3 were examined. The mean hydraulic gradient at each

resolution is obtained and then exponentiated to the power s. The mean value of the

exponentiated values are then taken and these are the plotted values in Figs. 6.13 and 6.14

for K fields with CK = 0.1 and 0.3 respectively. From these Figures, one notices a

significant deviation of the scaling behavior when r = 1. This corresponds to the mean

hydraulic gradient over the whole flow domain. The lack of scaling of the mean

hydraulic gradient at r = 1 may be attributed to the persistent behavior of the imposed

constant hydraulic head boundaries, whose effects become pronounced at the larger scale

or at coarse resolutions of r = 1. We observe that at a resolution of even r = 2, the effects

of these boundary conditions do not seem to affect the scaling behavior of the hydraulic

gradient fields for both CK= 0.1 and 0.3. In computing the slopes of the moments of

the mean hydraulic gradients at various resolutions, the values at r = 1 were excluded.

Also it should be noted that although the head field was obtained on a 512 x 512 grid, the

hydraulic gradient fields were obtained for resolutions up to r = 256. The hydraulic

gradient field at a resolution of r = 512 was excluded from the analysis because a

different numerical procedure would have been used in obtaining the hydraulic gradient

values. Specifically, an approximate hydraulic gradient value at r =512 can be obtained
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Figure 6.13 - The scaling of moments for the hydraulic gradient amplitude for CK = 0.1.
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by taking the differences of the H values at unit intervals in the x, and x 2 directions.

This approach is less accurate in determining the gradients than the linear regression

method described above. Hence, to avoid differences in results by virtue of changing the

estimation method, the hydraulic gradient values at r = 512 were excluded.

,The slopes of the plots in Figs. 6.13 and 6.14 are shown in Fig. 6.15, which

compares the theoretically obtained scaling moments of the mean hydraulic gradient with

the numerically obtained values. The theoretical slopes of the hydraulic gradient field (or

the moment scaling function) was obtained in Chapter 4 as:

W(S) C L D-1 S+ 3 (s2-s) (6.19)
-D(D +2) D (D +2)

where D is the space dimension. Thus for K fields with CK = 0.1 and 0.3 in a 2D space,

WJ (s) = CK(0.125s + 0.375(s 2 - s ) . This theoretical curve is plotted in Fig.6.15 for

CK= 0.1 and 0.3 , and compared to the slopes of the curves obtained through the

numerical simulation. We observe that the numerical simulation results closely match of

the theoretical derivations. To illustrate the type of variation one can observe for

different simulations, the hydraulic gradient fields for the 20 K fields whose scaling is

shown in Fig. 6.7 was computed and the scaling of the moments for the 20 VH fields is

shown in Fig. 6.16. The data in Fig. 6.16 displays a close cluster for the different

moments. The slopes of the lines shown in ,Fig. 6.16 are reported in Table 6.2. And the
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scaling of the mean of the 20 simulations is shown in Fig. 6.17. From Table 6.2 and Fig.

6.17 we observe that both the individual simulations and their averaged values show a

good agreement with the theoretical results.

From the numerically obtained hydraulic gradient data, the rotation angles of the

hydraulic gradient vectors were also computed using Eq. (6.18). The properties of these

rotation angles would be further discussed in Section 6.5. In the next section, the scaling

of the specific discharge field is discussed.
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Table 6.2 Slopes of log {E [Js ]} versus log {resolution} for K fields with CK =0.1

Wi (1) Wj (2) Wj (3) Wj (4)

0.0131 0.1136 0.2891 0.5211
0.0002 0.0940 0.2670 0.5080
0.0050 0.0750 0.2040 0.4200
0.0170 0.0140 0.2750 0.5300
0.0080 0.0800 0.2120 0.4200
0.0139 0.0970 0.2400 0.4400
0.0164 0.1142 0.2780 0.4970
0.0155 0.1088 0.2830 0.5200
0.0146 0.1003 0.2410- 0.4300
0.0140 0.1155 0.2910 0.5230
0.0050 0.0970 0.2400 0.4300
0.0080 0.0890 0.2300' 0.4700
0.0100 0.1140 0.2620 0.4750
0.0060 0.0800 0.2200 0.4300
0.0100 0.1010 0.2614 0.5100
0.0151 0.1100 0.2630 0.5600
0.0070 0.0800 0.2300 0.4400
0.0150 0.1010 0.2500 0.4970
0.0110 0.1000 0.2600 0.5200
0.0120 0.1100 0.2811 0.5160

Mean 0.01084 Mean 0.0950 Mean 0.254 Mean

Standard Standard Standard 0.483
Deviation 0.0045 Deviation 0.0024 Deviation 0.0245

Standard
Theoretical 0.0125 Theoretical 0.1 Theoretical 0.2625 Deviation

0.045

Theoretical

0.5
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6.4 Scaling of Specific Discharge Field

From the head field H and the hydraulic conductivity K, the specific discharge field is

obtained approximately as follows

1H..H
(i) qx~~ = jgKi K j ii

(Ax 1 ) (6.20)

(ii) q 21, = K1 1 K [H 2 -
S (Ax')

where Axi and Ax 2 are the grid sizes in the x, and x2 directions respectively. The

magnitude of the flow field is obtained as q = q +q . The flow field for the K field

with CK = 0.1 (shown in Fig. 6.2) calculated using Eq. (6.20) is shown in Fig. 6.18. The

specific discharge field, like the VH field, seems more erratic than the head field and less

erratic than the K field. Unlike the hydraulic gradient field, where we fit a plane to the

whole data set to determine the mean value at r = 1, the value of specific discharge field

at r = 1 is obtained by simply taking the average value over the whole domain.

q (Iq I over the whole flow domain) (6.21)
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Figure 6.18a - The velocity field computed for a hydraulic conductivity field

with CK =0.1
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For r = 2, the flow field is divided into 22 squares. And the mean value of the magnitude

of the specific discharge field within each square is taken, so that

qr= = ((qej), (ge), (ge), (qf)) (6.22)

where the subscript El denotes magnitude of the flow within sub square 1.

In general, at a resolution of r, the square flow field is divided into r2 squares and the

mean flow within each square is taken. Once the values of the mean flows at each

resolution are obtained, the moments can be computed by simply exponentiating the

mean values within each sub square. As an example, the higher moments s = 2, 3, or 4 of

the flow field at resolution r =2, is obtained as follows,

(q, = (((q,)),((q,))S ,((q))S ,((q))S) (6.23)

The moments at various resolutions are obtained in a similar fashion. Figs. 6.19 and 6.20

show the moments obtained for velocity fields with CK values of 0.1 and 0.3.

In both figures one notices that the linear scaling of the velocity field does not begin at

the resolution of r = 512 at which the field was computed. Instead, the scaling begins at

approximately r = 256 and continues to a resolution of about r = 2.

The theoretically derived expressions for the scaling of the moments of the

velocity fields are as follows:
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Figure 6.20 - Scaling of the magnitude of the velocity vectors for a field with CK = 0.3
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(i) E [in B,= D -4_ -I C In (r)
D (D+2)

(6.24)

2(D2_l)
(ii) Var [In B, CKIn (yr)

D(D+2)

where y = 1+ 2 CK is a constant which accounts for the variability of the velocity field

when r = 1. For a 2D field the initial moments of the velocity field are computed as

E[B.]s= exp{-0.25sCKIn r+0.375s2C In yr}

The theoretical slopes shown in Fig. 6.21 are computed by performing a linear regression

of log (E [Bs]) versus log (r) for each given value of s. Fig. 6.21 shows the computed

theoretical slopes and the slopes of the velocity moments shown in Figs 6.19 and 6.20.

The numerical scaling moments for the CK =0.1 field show a good agreement with the

theoretically computed curve. Although the log of velocity moments of the CK = 0.3

field display a linear dependence on the log resolution (see Fig. 6.19), the slopes of these

lines are considerably less than the theoretical curve. The discrepancy is due to the seed

used in generating the K field. To illustrate the type of randomness one can expect when

simulating these flow fields, the moment scaling for the specific discharge amplitudes for

the K fields with CK = 0.1 was computed and is displayed in Fig. 6.23 and their average

values are plotted in Fig. 6.24. Even though different seeds were used in creating the
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velocity fields, the 20 velocity fields display a small variance of 0.001 for resolution r =

1.
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Scaling of the inverse velocity field (Slowness)

The inverse of the velocity field is used in deriving the first passage time distribution and

the plume concentrations for solute transport in multifractal K fields. The slowness B' is

characterized as a lognormal random variable with the following mean and variance

E [In (B)] =[1- D 4)]CK ln (r)

(6.25)

2(D2 _1)
Var [In (B;)] = De(D 2) CK In ((1+ 2CK )r)

r D (D +2)

The moments of the inverse velocity fields with CK =0.1 and 0.3 are shown in Fig. 6.24.

Moments from the numerically simulated flow fields are shown as points (circles and

triangles) and overlain with the theoretically computed moments from Eq. (6.25). Fig.

6.24 shows that the theoretically obtained results are valid.
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The discussion so far has focused on the scaling properties of the K-field, the

magnitude of hydraulic gradient and the velocity field. In discussing the scaling of the

hydraulic gradient field, the computation of the rotation angles of the hydraulic gradient

vectors was presented. We now present in detail the properties of the rotation angle, and

the interaction of the hydraulic gradient and hydraulic conductivity field and how these in

turn affect the flow field.

6.5 Properties of the rotation angle

The hydraulic gradient is a vector and its scale invariance properties involve a scaling of

both its magnitude and its rotation vector. This property is better understood by

discussing the transformation of the hydraulic gradient field shown in Fig. 6.12. At the

large-scale r = 1 we have the mean vector in the -xj direction. When r = 2, the size of

the domain has been reduced to half its original size, and one observes that vectors are

about the mean direction. To obtain the hydraulic gradient at r = 1 one needs to multiply

the magnitude of each vector by a random number and rotate each vector to align it in the

direction of the hydraulic gradient vector at r = 1. The isotropic contraction of the

support by a factor, rotating the vectors by a random quantity, and multiplying their

magnitudes by a random quantity to obtain the original field is expressed mathematically

as

VH (S)= (JrRr ).VH (rR S) (6.26)
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where Jr is the magnitude of the hydraulic gradient VH, R, is an orthogonal random

matrix with first column equal to e, that characterizes the random rotation of the first

coordinate axis. For 1D flow, there is no rotation and for 2D flow the rotation matrix

is completely defined by the vector e,. In Eq. (6.26) (J Rr) is independent of the

random field VH (rR'S). To examine this assertion, the angle of rotation of the

vectors cc, at each resolution are computed and plotted against the magnitude of the

hydraulic gradient Jr and shown in Fig. 6.25.

Fig. 6.25 shows the apparent lack of correlation between the rotation angles Xr and

the magnitude of the hydraulic gradient Jr. The plots of ar versus Jr have an

approximately circular shape, indicative of the lack of correlation between the two

parameters.
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Theoretically the rotation angle ar was characterized as a Brownian motion with

independent increments as one moved from one scale or resolution to the other. To

validate this assumption, the value of the rotation angle ar beginning at the coarsest

resolution r = 1 was taken and the rotation angles at the next finer resolution r = 2 was

subtracted from it, to obtain the differences in the rotation angles. This differencing

procedure was continued to the finest resolution of the simulation. Some of the results of

the differencing are shown in Fig. 6.26. The results for the coarser resolutions are not

shown because the points are so few that one cannot really determine the co relational

properties by a visual inspection. However, the results for r = 16 to r = 256 is shown, and

just like Fig. 6.25 shows a lack of correlation of the differences in the angles of rotation

as one moves from a coarser scale to the next finer scale. Moreover, the theoretical

variance of the rotation angle xr as a function of the resolution was obtained as

2
Var [aoI= CKIn (r) (6.27)

D (D + 2)

so that for D = 2 and CK =0.1, Var [C,]=0.025 In (r). To validate this result, the

variance of the rotation angles was computed for each resolution and is shown in Fig.

6.27. The theoretical values were computed using Eq. (6.27) for r = 1, 2, 4, 8,
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16, 32, 64, 128 and 256 and is shown as the straight line on Fig. 6.27. The theoretical

curve was shifted in the positive x-axis by 0.0 13 to match the values of the Var [Cr]

from r = 2 to r = 256. The shift was made to ignore the values of the variance at the low

resolutions that show a departure from the linear behavior of the higher r values. This

departure from linearity of the Var [a,] values at low values of r is explained by the fact

that a unit hydraulic gradient was imposed on the flow boundary.

Next we turn our attention to the distributional properties of the rotation angle Xr and

Jr. In the theoretical derivation we found that both xr and log Jr are normally

distributed. A simple way to examine this assumption is to make a normal'plot of the

distributions of the two parameters. Fig. 6.28 shows the plot of the normalized values of

In (J256) and a256 on a normal probability paper. The ln (Jr) and Car have been

normalized to have mean 0 and 1 respectively for better reading and variance 1.

Normality and independence In (Jr) and Xr which are properties predicted by theory, are

both confirmed.
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6.6 Scaling of Bare Fields

The discussion so far has focused on how a hydraulic conductivity field K developed to a

certain maximum resolution can be averaged or degraded to obtain K fields of coarser

resolutions, and how these coarser fields and the original K field scale. For a K field

developed to a certain resolution, the associated hydraulic gradient VH and specific

discharge q fields are averaged to obtain coarser fields, and the higher moments of these

fields are examined to determine the scaling properties of the K, VH and q fields. In the

numerical cases presented, K fields were generated on a 512 x 512 grid, and the

associated VH and q fields were computed. The scaling properties of the K field were

analyzed by averaging the data on the 512 x 512 grid to obtain K fields on grid sizes of

256 x 256, 128 x 128, 64 x 64 etc. Similarly, the magnitude of the q field was averaged

to obtain |g( fields on coarser grid sizes. The VH field was analyzed differently, by

performing a linear regression on the H field on the 512 x 512 grid to obtain VH fields

with different resolutions. This method of obtaining new fields by averaging the original

field is called "partial dressing" in the multifractal literature. In this section, instead of

averaging the 512 x 512 K field to obtain fields of different resolutions, the analysis is

carried out on K fields originally developed to resolutions of 512, 256, 128 and 64.

Thus five different K fields are generated, and for each field the VH and q are computed.

Next, the scaling properties of the K, VH and q fields are examined. This type of

analysis is known in the multifractal literature as "bare analysis."
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In theory, the so-called bare analysis consists of examining the scaling properties of a

field at different resolutions r. An approximate way to generate "bare fields" is to first

generate the Gaussian white noise Wn over a large field, say 700 x 700 grid. We extract

the inner r x r matrix and create a multifractal K field with resolution r. Steps used in

creating the multifractal K field discussed in Sec. 6.1 are used in creating the multifractal

field over the r x r grid.

Permeability K fields with resolutions of 512, 256, 128 and 64 and CK = 0.1were created

using the above procedure. Subscripting the K fields with their resolutions, so that for

example K512 denotes the field at resolution 512, the moments of the K fields were

obtained as follows:

(Ks) = {K' 4 ('1~28 ), (Ks256) , ( K2 )

where s is between 0 and 4. For s = 1, 2, 3, and 4, the moments of the K fields are shown

in Fig. 6.29. The slopes of the lines is obtained by performing a linear regression of

log (E [Ks) versus log (resolution) and compared to the theoretical slope, which is

CK (s2 -s)in Fig. 6.30. The slopes obtained by linear regression closely match the

theoretical results.

Using the bare K fields {K6 4 ,K 12 8, K256,K512 as inputs into the finite difference program,

the associated head {H 6 4 ,H 12 8, H256 ,H 512 }and specific discharge {q 4 ,q 12 8,q 2 56 ,q 512 1

fields were computed. The hydraulic gradient field was computed following the

procedures discussed in Sec. 6.3.
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The moments of the magnitude of the hydraulic gradient for {K 4 , K12 , K 256 ,K 5 12 } are

computed as

(JS) -(J')(JS (Js 28 )J2 56

where s has a value between 0 and 4. For s = 1, 2, 3 and 4 the computed moments of the

magnitude of the hydraulic gradient for the bare fields is reported in Fig. 6.31. The

slopes of the moments of E [Js] are obtained by performing a linear regression of

log (E[Js]) versus log (resolution) where resolution is {32,64,128,256}. The slopes
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Figure 6.29- The scaling of K fields developed to resolutions of 64, 128, 256 and 512.
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Figure 6.30 - Comparison the scaling of bare multifractal K fields and theoretical scaling
of multifractal K fields with CK =0.1.
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Figure 6.31 - The scaling of hydraulic gradient fields with resolutions 32, 64, 128 and
256 from K fields with CK =0.1.
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Figure 6.32 - Comparison of the scaling moments of the magnitude of the hydraulic
gradient fields of K fields with CK = 0.1 developed to resolutions of 64, 128, 256 and

512 with the theoretical moment scaling function WJ (s)= CK (0.125s +0.375(s2 -s))
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obtained from the linear regression are juxtaposed on the theoretical slopes. The

theoretical slopes for the magnitude of the hydraulic gradient is

W, (s)= C, (0.125s +0.375(s2 -s)). Just like the hydraulic conductivity field K, the

slopes of the moments of the magnitude of hydraulic gradient field J closely matches the

theoretical curves as can be seen in Fig. 6.32. Moreover, the slopes of the bare fields

and the partially dressed fields for J are essentially the same because the hydraulic

gradient field is conservative.

The moments of the specific discharge field are computed in a fashion similar to that of

the hydraulic conductivity field K. The moments of the magnitude of the specific

discharge field are computed as

(qs =~ s) q

64s s 1), 28), (q"56), (q 2

For s = 1, 2, 3 and 4 the computed moments of (qS) versus resolution is plotted in

Fig.6.35. One observes that the expected value of specific discharge decreases as the

resolution to which the field is developed increases. This is because the specific

discharge field is non-conservative and its expected value vanishes as the resolution of

the field tends to infinity. The slopes of the lines in Fig. 6.33 are obtained by performing

a linear regression of log {(qS)} versus log {resolution}. The slopes of the lines in Fig.
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6.33 are compared with the theoretical slopes of Wqb = C [-0.875s+0.375(s2 -s)] for

CK = 0.1 in Fig. 6.34. The results of the numerical simulation confirm the theoretically

obtained results.
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Figure 6.33 - The scaling of velocity fields obtained from K fields developed to
resolutions of 64, 128, 256 and 512.
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6.7 The relation between the log conductivity F and the hydraulic gradient

In the previous section, the flow field was found to be non-conservative. What this

means is that on the average, velocity fields developed on coarser grid, say a 256 x 256

grid will have a higher mean value than velocity fields developed on a finer grid, say a

512 x 512 grid if both fields are developed with the same CK value. This vanishing

behavior of specific discharge as the resolution increases results from the negative

correlation coefficient p between the log conductivity Fr = InKr and the log hydraulic

gradient amplitude In (J,) at any given location x. The correlation coefficient p

obtained from the theoretical derivation is independent of the resolution r and variance of

D+2
the K field but varies with the space dimension D as p = - . The log-conductivity

versus the log hydraulic gradient amplitude for the K field with CK =0.1 are shown in

Fig. 6.35. Section 6.1 discussed how to obtain the K fields at different resolutions and

how one can obtain the amplitude of the hydraulic gradient field was presented in Section

6.3. Using the procedures in these sections, the values of the K and VH fields at

different resolutions were computed and displayed in Fig. 6.35. The correlation

coefficients are summarized in Table 6.3 and for D = 2 confirm the theoretical value of

p = -0.817.

284



r=32

:7t4 I I .

06

0
LO

0

0.001 0.100 10.000

F
r=128

0
LO

LO
0
C;

0.001 0.100 10.000

F

r=64

D.001 0.100 10.000

F
r=256

4-'

0.001 0.100 10.000

F

Figure 6.35 - A scatter plot of the log hydraulic conductivity F versus the log hydraulic
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Table 6.3 - Correlation coefficients between F, and In (J,) for different resolutions r.

The theoretical value for D = 2 is p = -0.817.
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Resolution, Bare correlation coefficient

r P

32 -0.809

64 -0.813

128 -0.813

256 -0.815



Effective Hydraulic Conductivity

In the theoretical derivations of flow, it was found that the average flow depends on the

resolution r to which the K field has been developed, the variability of the K field (CK)

and the space dimension D through the relation

E rq (x)]= r K [ ... (6.28)

T2C a
The amplitude r D of B [qr W] may be interpreted as the effective conductivity Keff

of the medium. To validate this result we take the K field on a grid size of 512 x 512,

and degrade the K field through averaging to obtain K fields of sizes 256 x 256, 128x128

.... 1x1. We denote these fields as {K512,K 256 , K12 8 ,...,K 1i. These K fields serve as

inputs into the flow program. For each K field, the specific discharge field q, and the

mean hydraulic gradient J = -IVHI is computed. Next, we compute the projection of the

flow field in the xi direction. In fact, one can simply take the x, component of the flow

field. Then for each q we compute qm = E [q, / J] . Therefore, qm is the flow in the

direction of the mean hydraulic gradient for J = K = 1. Using K fields with

CK = 0.1 and 0.3 and the procedure just described, the effective conductivity was

computed for resolutions r = 1, 2, 4.. .512.

The results of the computations are presented in Fig. 6.36. The theoretical slopes in Fig.

6.36 are obtained by performing a linear regression of log {Ke } versus

287



log {resolution} for the computed data. For the CK = 0.1 and 0.3 fields the slopes of the

lines are approximately -0.1 and -0.3 respectively. Results from the simulation validate

the theoretical results.
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Figure 6.36 -The effective conductivity for K fields with CK = 0.1 and 0.3
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6.8 Flow simulation for a K field with a high variability (CK = 0.8)

The simulations performed so far have validated the theoretical results. It is worth

recalling that the theoretical results were obtained by considering the zero divergence

flow equations for a cascade of "bare" K fields. The theoretical results were obtained by

considering the behavior of the zero divergence Darcy equation as one moves from the

deterministic solution at the large scale where

{E[K] =1,VF =0, J = - VHJ = [1,0,0] and q = [1,0,0]}to finer resolutions where higher

frequency components are gradually added to the F = In K field. When the scale of the

problem is incremented by an infinitesimal amount so that the head field H is

incremented by an amount h, then the hydraulic gradient at the finer scale can be written

as VH = 0 + Vh , where J1 is the mean hydraulic gradient in the xi direction so that

0

the flow equation at the finer scale can be written as

V 2 h +VF.Vh = -J1 -- (6.29)
ax,

One of the assumptions made in the theoretical derivations in Chapter was that the

contribution of the term {VF.Vh}is small relative to that of V2 h. To evaluate whether

this ignored term has an influence on the scaling properties of the hydraulic gradient VH
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and the specific discharge fields q, we perform a numerical simulation on a square 512 x

512 grid and examine the scaling behavior of IVHI and q when the K field has a high

variance. Specifically, an isotropic lognormal K field with a CK = 0.8 for which the F =

InK field has a variance of 2*0.8*log(512) ~ 10, which may be considered a significant

variability for an F field, was simulated using the steps discussed in section 6.1. The

scaling of the K field is presented in Fig. 6.37. A comparison of the slopes of the lines in

Fig. 6.37 with the theoretical moment scaling function for the K field

WK (S)= CK (S2 -s) for CK =0.8 are shown in Fig. 6.38. It is worth noting that one can

only determine the sth moment up to a value for which WK (s) D (s - 1), from which we

obtain for D =2, s 5 2.5 as the maximum moment for which one can consider the scaling

of the field. Figs. 6.37 and 6.38 show that the K field scale as expected.
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Figure 6.37 - The scaling of a K field with CK= 0.8
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Using the K field with CK =0.8, the head field was computed and its contour displayed

in Fig. 6.39. To examine the hydraulic gradient field, the procedures in Section 6.3.2 are

used to analyze the scaling properties of the hydraulic gradient field. The hydraulic

gradient field is graphically presented in Fig. 6.40. The scaling of the hydraulic gradient

field is presented in Fig. 6.41. A comparison of the empirically obtained scaling

moments is compared with the theoretical scaling moments in Fig. 6.42.

Finally, the specific discharge field was computed and its scaling moments computed and

compared with the theoretical moment scaling function. Moments of the flow

magnitudes are computed and presented in Fig. 6.43. In Fig. 6.43, one observes a linear

behavior of the log the expected moments of the specific discharge magnitudes and the

log of the resolution. The slopes of the lines in Fig. 6.43 are compared with the

theoretical moments in Fig. 6.44 and we find a close agreement between the empirical

and theoretical values. What these results demonstrate is that for at least fields with F =

InK variances up to a value of 10, the assumptions made in the derivation of the

theoretical results seem valid. In fact attempts to perform flow simulations for K fields

with CK 1 were made. Unfortunately, the solution of the head field did not converge,

and hence the properties of these fields cannot be presented. The lack of convergence for

these extremely high values of CK may be due to the sparse nature of the K field for

which the numerical method cannot obtain a suitable solution. Moreover, for an

extremely high CK value, the finite difference method may be limited in its applicability

since the gradients of the K and the F = InK fields become substantial. The interesting
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conclusion one can draw from these simulations is that for K fields with variability up to

CK =0.8, the assumptions made in the theoretical derivations seem valid.
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Figure 6.40 - The hydraulic gradient field computed for a K field with CK = 0.8
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Figure 6.41 - The scaling of the hydraulic gradient amplitude for K fields with CK=0.8.
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Figure 6.42 - A comparison of the moment scaling of the hydraulic gradient amplitude
and the theoretical moment scaling function for a K field with CK = 0.8.
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Figure 6.43 - The scaling of the hydraulic gradient amplitudes for a K field with

CK =0.8
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Figure 6.44 - A comparison of the moment scaling of the specific flow amplitude and the

theoretical moment scaling function for a K field with CK = 0.8
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To illustrate the type of variability one would expect in simulating flow fields with a high

variability as in the case of CK = 0.8, several simulations were performed and the results

are reported in Figure 6.45. The scaling of the specific flow is presented in Figure 6.45a

and their average values are shown in Figure 6.45b. A comparison of the numerically

obtained slopes of the specific flow and the theoretically predicted values are shown in

Figure 6.45c. For this high variability field, we observe a good agreement between the

numerical and theoretical results.
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CHAPTER 7 - SOLUTE TRANSPORT IN RANDOM POROUS MEDIA

Introduction

Understanding how solutes are transported in random porous media has occupied a

central role in hydrology over the past three decades. One of the primary aims of solute

transport research is to predict the extent of dilution or mixing of a solute as it moves

with.the flow. The mixing mechanisms of dispersion differ from one scale to another. At

the molecular scale, thermodynamic diffusion causes mixing. At the microscopic scale,

mixing is caused by velocity variations due to changes in the pore geometry (pore size

and shape, the tortuosity of the flow paths, dead ends and the connectivity of the flow

paths). At the macroscopic level, the mixing is to a large extent caused by velocity

variations that are in turn governed by variations of hydraulic conductivity [Bear, 1972;

Rajaram and Gelhar, 1993]. In general, the solute transport theories quantify the dilution

of a solute in terms of their spatial moments and macrodispersivity that describes the

growth rate of the second spatial moment with respect to distance. The moments and

macrodispersivity definitions are presented below:

Denoting the concentration field in a single realization as C (x, t) and the porosity as n,

the spatial moments of the concentration field in a single realization are determined as

follows [Gelhar, 1993; Rajaram and Gelhar, 1993, 1995]:

The total mass of the solute m
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m= nC(x, t)dx

Center of mass position for a single realization x

x n (t)= xC(x, t)dx i = 1, 2, 3

Second moment tensor for a single realization Sij

- xi (t))(xi -xj (t))C(x, t)dx ij = 1, 2, 3

For inert solutes, the concentration field in any realization of steady flow at the

macroscopic scale in a heterogeneous porous medium satisfies the advection - dispersion

equation (ADE)

acn -
at

aC a K C~
+qj (x)-- E.. - =0

ax axi axi)
i,j = 1, 2, 3

where qj (x) is the Darcy flow in the xi direction

Ei is the local bulk dispersion coefficient, equal to nDi and Di is the dispersion

coefficient that includes both molecular diffusion and hydrodynamic dispersion.
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Eq. (7.4) is derived from the principle of the conservation of mass (see for example Bear,

1972 pages 617 - 627). The solution of Eq. (7.4) is obtained through Laplace transform

methods (see for example Sahimi, 1995) and is used in determining the dispersion

coefficient of geologic samples in the laboratory or from pumping tests. These tests are

based on the assumption that solute transport can be modeled with a single value of D.

This is called the Fickian assumption. Additionally, plumes modeled with this approach

are assumed to have smooth Gaussian shapes.

In the stochastic analysis of solute transport in random hydraulic conductivity fields K, a

quantity of interest is the ensemble mean concentration field. Several researchers have

obtained differential equations for the ensemble mean concentration for transport in

random K fields (see for example Gelhar, 1993; Dagan, 1984; Koch and Brady, 1988).

For uniform mean flow in the xi direction, these studies express Eq. (7.4) as follows:

adC aC a - aC
n -- +q - IqA. -a =0 i,j = 1, 2,3 (7.5)at ax, axi ax.

where ql is the uniform mean flow, Aii is the macrodispersivity tensor and C is the

ensemble mean concentration and is related to the single realization concentration field

C (x, t) through the following equations:

C (x, t)= E[C (x, t)] (7.6)
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Center of mass of the ensemble average concentration xi (t) in the ith direction

xim(t)=- xi
m _M

(x,t)dx = q1t
n

i = 1, 2,3 (7.7)

Second moment M (t)

in (t)= xi -x (t))(xj (7.8)

i,j = 1, 2, 3

The macrodispersivity tensor Aii is related to M through the following equations

[Gelhar, 1993; Dagan,]

n dM..
Aij (t) = n " (7.9

2q1 dt

which can be expressed in terms of displacement xi as

dxi

)

0)
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Thus Aij quantifies the dispersion of the ensemble mean concentration about the

ensemble-mean center of mass position and it may be expected to be a reasonable

estimate of the second moment growth rate in a single realization only under ergodic

conditions (large initial solute size and at large displacements from the point of injection

for instance). The second moment tensor Mii is not equivalent to the ensemble average

of the single realization second moment Iij (t), which is defined as

(7.11)

where Sij (t) is defined in Eq. (7.3). The difference between Ii, (t) and Mij (t) is well

established in the literature on turbulent diffusion (e.g. Csanady, 1973, Rajaram and

Gelhar, 1993 and 1995) and is expressed as

(7.12)

where

is a tensor whose component denotes the ensemble average of the product of the

deviations of the center of mass in a realization in the i and j directions from the
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ensemble mean center of mass locations in the same directions. In general, Mij is larger

than Ii. For uniform mean flow in the x, direction, Eq. (7.12) may be written as

(7.13)

From the theory of turbulent diffusion, macrodispersivity expressions have been obtained

to relate Mij and Iij to the specific discharge spectra (see Neuman, 1987; Koch and

Brady, 1988; Dagan, 1988; Gelhar, 1993; Rajaram and Gelhar, 1993 and 1995). These

theories are reviewed in Chapter 2. These expressions are:

Ensemble macrodispersivity A

(7.14)
A xI)= I dM n

2 dxi q o

Plume-scale dependent macrodispersion (also known as relative dispersivity) A'

A~~ ~ ~~ xxi = 3=

2d q o -e

. 1-e -kklj S qq (k)dkd

(7.15)
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where ox is the pore scale dispersion coefficient.

The rate of growth of Iij in Eq. (7.15) involves two scales: the plume displacement xi

and the plume size Iij. When the growth rate of Mij is constant, the transport is

described as Fickian. Non-Fickian or anomalous transport occurs when the growth rate

of Mi is time or space dependent [Elfeki et al., 1997 ]. The non-Fickian transport can

also be classified to be either sub-diffusive (fractal dispersion) in which the growth of

Mii is slower than linearly with time or super-diffusive transport (also known as

hyperdiffusion) in which Mij grows faster than linearly with time [Elfeki et al., 1997;

Bershadskii, 1999]. These mechanisms can be described mathematically as follows:

(i) MI, ~ t,

(7.16)

(ii) Al ~1

assuming a constant mean flow, Eq. (7.16) can be written as

(i Mil ~ Xi

(7.17)

(ii) All ~ xi

where M11 is the variance in the longitudinal direction, Al is the longitudinal

macrodispersivity, t is the travel time from the point of injection and A is an exponent

describing the transport regime. When X =1 the transport is described as diffusive, X <1

describes sub-diffusive (fractal) dispersion and when X > 1 the transport is described as
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superdiffusive. Transport in heterogeneous media has been found to possess 1 ; X <2

[Arya et al., 1985; Hewett, 1986; Neuman, 1990 among others]. Moreover, field

experiments (for example Rehfeldt and Gelhar (1992) for the Cape Cod site; Sudicky

(1986) for the Borden site, Freyberg, 1986; Boggs et al., 1992) reveal that plumes have

irregular shapes, different from the smooth Gaussian plumes predicted by the solution to

the ADE. Recent developments in solute transport have aimed at addressing these two

key issues:

1. Models that will describe the scale-dependent behavior of macrodispersivity

2. Models that will account for the asymmetry of plumes in heterogeneous

porous media.

Scale-dependent macrodispersivity models by Gelhar and Axness (1983), Rajaram and

Gelhar (1993 and 1995), Neuman and Zhang (1990 ) and Dagan (1987) among others,

dual porosity models by Coats and Smith (1964) which is reviewed in Chapter 2, and

more recently the continuous time random walk (CTRW) by Berkowitz et al. (2000),

Margolin and Berkowitz (2000), Yanosky et al. (1999) have been posited to explain the

asymmetry of concentration distributions and scale dependent behavior of

macrodispersivity.

In the next section, we present results for macrodispersivity in multifractal porous media.

Specifically, we compare macrodispersivities computed from specific discharge spectra

from linear theory and nonlinear theory presented in Chapter 6. In Sec 7.3, we present a

brief review of the CTRW model. The scaling features of flow through multifractal
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porous media are exploited in Sec. 7.4 to derive expressions for the first passage time

distribution and mean plume concentration. Sec. 7.5 presents a comparison of the model

in Sec. 7.4 with the CTRW and two-phase models.

7.2 Ensemble and plume scale dependent macrodispersivity

To see the effect of nonlinearities in the flow equations on the macrodispersivity

expressions in Eqs. (7.14) and (7.15), one may compare the functions of

A x1) and A xi) for a 2D flow field through a hydraulic conductivity field K field

when Sqjqj (k) in Eqs. (7.14) and (7.15) are taken to be

Linear Theory

Sq (rk )= k-2C r2 [(8i -e 1) eiei)]

Nonlinear Theory

S (rko)=k -2C r-2+K ((1
71 0

(7.18)

e 2  ee
-b,)e 2+ b,e 2 2 1 2

-e1e2 011

where all the terms have been defined in Chapter 5: ko is the minimum wavenumber for

the F = In (K) spectrum, r is the resolution to which the K field is developed, where ej is

the unit vector in the direction of xi (for i =1,2), and br = E [cos2 (r)], cr being the
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random rotation angle of the flow vectors that has a normal distribution with zero mean

and variance 2 C In (r); see Chapters 4.
D(D+2) K

Substituting the spectra in Eq. (7.18) into Eq. (7.14) and assuming that the pore scale

dispersion coefficient (x =0, the ensemble longitudinal and transversal

macrosdispersivities was computed for K fields with CK = 0. 1 and 0.3. Figures 7.1a and

7.lb compare the results of the nonlinear theory with the linear theory. For the results

shown in Fig. 7.1, k. = 1, because honoring the theoretical condition of k. > 1 would

have required a very fine discretization grid and made the computational demands

prohibitive. The ensemble macrodispersivities A,1 and A2 2 have been computed for non-

dimensional distances given by distance [L] * k -. Reflecting the local isotropy of the
[L]_

flow field, the longitudinal and transversal macrodispersivities from nonlinear theory

coincide at small distances. This feature is not captured by the linear perturbation

approach. Another difference with the linear theory is that the macrodispersivities from

nonlinear theory are larger at small distances, due to the increased high frequency content

of the flow predicted by the nonlinear theory. Infact, we see from Figs. 7.1a and 7.lb that

at small distances, the macrodispersivities for the nonlinear theory for CK = 0.3 is larger

than for CK =0.1 because the K field for CK =0.3 has higher frequency content than for

the CK =0.1 field.
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Plume-scale dependent macrodispersivity

The plume-scale macrodispersivities are computed for the linear and nonlinear theories

by substituting Eq. (7.18) into Eq. (7.15). The growth of the plume second moment Is

with mean travel distance is presented in Fig. 7.2, where the nondimensional plume

second moment given by I [L *k [ and the square parenthesis are the dimensions

of I and k . The evolution of two plumes with initial I s of 4x10-6 k and.04k2 are

shown in Figs. 7.2a and 7.2b. The initial plume size is given by the square root of the

determinant of the initial I s, so that for plumes with a circular configuration, initial E s

of 4x10~k2 and.04k2 mean that the plumes have initial diameters of 0.002k. and 0.2k.

respectively. From Fig. 7.2 we see that the plumes initially do not show any visible

growth for small travel distances. This behavior can be explained by the fact that when a

solute is introduced into a flow system, the initial solute locations are not correlated with

the flow velocities. After some travel distance, the solute locations become correlated

with the flow velocities, as a form of sorting occurs within the plume. The sorting is such

that the higher velocities are at the front of the plume, whereas the slowest velocities are

at the tail or end of the plume. The time and its equivalent mean travel distance it takes

for the plume to undergo this sorting of velocities explains the lack of visible plume

growth for short distances shown in Fig. 7.2. Moreover, we see from Fig. 7.2 that the

sorting occurs faster in a plume with a smaller initial size (0.002k.) than for a plume

with a larger initial size (0.2k.).
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Unlike the power law growth of macrodispersivities in Fig. 7.1, the plume-scale

dependent macrodispersivities in Fig. 7.3 display a nonlinear behavior with travel

distance. This nonlinearity is because the growth rate of the plume at any mean travel

distance depends on the longitudinal and transversal plume dimensions at an

infinitesimally smaller travel distance before the location in consideration.
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From Fig. 7.3 it is clear that after a finite mean travel distance, the second

moment of the plumes from the nonlinear theory are higher than those of the linear

theory. This is because of the increased high frequency content of the flow predicted by

the nonlinear theory and is reflected in the macrodispersivities shown in Figs. 7.3.

From Fig. 7.3, the plume-scale dependent macrodispersivities for the nonlinear

theory at short distances are isotropic. This behavior is attributed to the rotations of the

flow vectors that are accounted for in the spectral density tensors of the nonlinear theory.

The Evolution of a Plume with a flow field with multifractal K

To examine the behavior of the ensemble macrodispersivities for the linear and nonlinear

spectra in Eq. (7.18) at small travel distances, we perform a simple scaling analysis and

find that Eq. (7.14) is scale invariant under the scale transformations of the form:

x1 -+xi

ki  ki /BP (7.19)

k2 k 2 /

where P >1. The above set of transformations means that we stretch the mean travel

distance by a factor of P. In frequency space, this is equivalent to contracting the

wavenumber vector by a factor of 1/ P3, so that k, and k2 are contracted by a factor of
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1/ B in Eq. (7.19). Substituting the above transformations into Eq. (7.14) we find that the

ensemble dispersivities have a power-law dependence on mean travel distance, i.e.

- -- CKA ii (x1) 0Xi

ij (^')~
Nonlinear Theory

Linear Theory

Thus, the ensemble second moments Mii have the following power law dependence on

mean travel distance

-2-CK
M xi (X > Xi

M i) x- 2

Nonlinear Theory

Linear Theory

Eqs. (7.21) and (7.20) show that for transport in a multifractal K field, the linear theory

predicts that the plume will grow at a faster rate than the in the nonlinear case.

Following the approach just presented, we derive an expression for two plumes of initial

sizes Ism and Iage , where Esmall < Ilarge injected into a flow field with a multifractal K.

Under the scale transformations in Eq. (7.19), we obtain the following scaling relations

for the evolution of the plumes by substituting Eq. (7.19) into Eq. (7.15)
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YSmall -2+C Y'Big (x

(7.22)

d

where = denotes equality of distributions. Eq. (7.22) relates the second moment of a

bigger plume 'Big that has traveled a distance fxi to the second moment of a smaller

plume Small that travels a smaller distance xi in the same flow field with a multifractal

K. In fact Eq. (7.22) can be used to predict the evolution of a larger plume traveling

through a multifractal flow field. The evolution of a smaller plume through a multifractal

flow field with the same CK value can be used in predicting the behavior of a much

larger plume.

In order to validate Eq. (7.22), two types of computations are performed: the first

type of computation compares the evolution of two plumes computed from Eq. (7.15).

The second type of computation is a numerical simulation of the transport of two plumes

of different initial sizes migrating through a multifractal flow field. The transport code

used in the simulation was developed by Feng (1997) and has been proven efficient for

simulating transport in highly variable K fields.

First, we present results from computations from Eq. (7.15). For the

computational results presented in Table 7.1, k. = 1, sma = 0.0004/k2 and

XLarge =0.0064/k 2 and the results are presented in non-dimensional form.
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Table 7.1a- Evolution of plumes: B=2, CK =0.3, s =0.0004/k0, Z4age =.04/k

Travel Travel
Distance I ( k Distance ($x /ke E 1k Theo
for Small (- for Large ZLarge 'I o Large \Pi / o retica
Small k Plume =k s 1 xi /k

Pluexu0/Sal x 1 ( 1 k0 )
xixk /k 2

-CKxi /ko 2c

0.039 1.65 x 10-4 0.078 5.41 x 10-4 3.27

0.049 2.09 x 10-4  0.098 6.78 x 10~4  3.25

0.098 4.33 x 10-4  0.195 1.41 x 10~3  3.25

0.195 9.36 x 10~4  0.390 3.03 x 10~3  3.24

0.293 1.586 x 10~3 0.586 5.12 x 10-3  3.23 3.25

0.391 2.073 x 10~3 0.781 6.68 x 10~3 3.22

Mean = 3.24
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Table 7.lb- Ensemble macrodispersivity: P = 2, CK = 0.3,

ISmall =0.0004/k 2 1Ige =0.04/k 2
0' Lag
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Travel Travel
Distance /- ) Distance Theoretical

Disan A/-ka c1 ag AllL$g~ x1 /k. Al-g_ (xi /ko)
for Al I-Small~i~ 0  for Large A-Lg 1jxika AliLag
Small Plume = A xi/k f C
Plume = -xk Aik ni-smau xk)

xi/ko

0.039 1.012 0.078 1.72 1.70

0.049 1.098 0.098 1.80 1.64

0.098 1.205 0.195 2.00 1.66

0.195 1.402 0.390 2.30 1.64 1.625

0.293 1.532 0.586 2.45 1.60

0.391 1.652 0.781 2.56 1.55

Mean = 1.63



Table 7.1 shows a very good agreement between the computational results and the

theoretical results in Eq. (7.22). In the second validation, we performed numerical

transport simulations on a 512 x 512 grid. The velocity field serves as the input into the

transport code, and the size, shape and initial location of the plume are defined and the

transport computations are performed for different times. Figures 7.4a and b show the

S40
evolution of plumes with initial sizes of . = 1 0  in flow fields computed from K

*512ko

fields with CK = 0.1 and 0.3 respectively. We observe in these figures that for the same

travel time the plume in the CK =0.1 field travels further and spreads faster than the

plume in the CK = 0.3 field. The velocity field for the CK = 0.3 field is sparser and has a

lower mean value than the CK = 0.1 field. Consequently, the plume travels faster in the

CK = 0.1 field. Similar computations were performed for plumes with initial sizes

20 40
5 12k= and 1 =5j2I ) in a flow field with CK =0.3. The averaged results

for 15 simulations are presented in Table 7.2. For each simulation, the plumes were

placed at different locations in the flow domain, so that the initial velocities varied from

simulation to simulation and the center of mass and second moments for the various

times are computed as the discrete versions of Eqs. (7.2) and (7.3) respectively

Center of mass in the x and y directions
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N

I ,cixi
Si=1

N

Ici
i=1

N

Ixciyi
and y= N

Ici
(7.23)

Second spatial moments

N

Ci Xi (t)-_x )2

Sxx(t)= = N

Ci
i=1

N I - 2

Ci (yjt)y
and S () N c

i=1

(7.24)

For the 15 simulations the ensemble center of mass x and second moment I are

obtained by averaging the values of x, y,S, and Sy:

N

Ixi

Xi = i=1

N

N

I sxx,

and Y =-1 N
SN

(7.25)

From the results in Table 7.2, we find that there is a good agreement between the

theoretical results of Eq. (7.22) and the results of the numerical simulations.
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Fig 7.4 a - Evolution of a plume with initial size .1ko through a flow field with CK = 0.1,

kmax = 512, ko =1 and the times are t = time/kmax*E[V]
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Fig 7.4b - Evolution of a plume with initial size .lko through a flow field with CK =03,

kmax = 512, ko =1 and the times are t = time/kmax*E[V]
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Table 7.2 - The evolution of plumes with initial sizes 1. = 0.0061k and Z = 0.00 15k ,

$3=2, CK =0.3 and k0 =1
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Distance*ko Distance*ko smai (A' Large Theoretical

*ko *ko sma (A) Ratio =

0 1-CK /2

0.0781 0.0826 0.0391 0.0453 1.82

0.1563 0.0975 0.0781 0.0538 1.81

0.2343 0.1128 0.1172 0.0613 1.84 1.8025

0.3125 0.1198 0.1563 0.0666 1.79

Mean = 1.815



The results in Table 7.2 show that during the migration of a plume, there can be a

significant degree of overlap of the subplumes. The small and big plumes are evolved

from the same initial point. However, we find that for the same ensemble mean travel

distance, the smaller plume grows at a faster rate than the larger plume. Thus, if one is to

consider the smaller plume to be a subplume of the larger one, then by comparing the

rates of evolution, one can conclude that within the larger plume, the smaller subplumes

overlap. The results of the simulation in Table 7.2 do not provide information on the

evolution of the mean concentration field. However, it can be used as a predictive tool in

determining the evolution of a larger plume in a flow field with a multifractal hydraulic

conductivity within which the evolution of a smaller plume has been studied.

7.3 - A review of the continuous time random walk (CTRW) model

The CTRW model by Benson et al. [2000], Berkowitz and Scher [2000] obtains a

solution for the Fractional Fokker-Planck equation (FFPE). The FFPE is a generalization

of the Fokker-Planck equation that is used in studying the dynamic behavior of particles

driven by Gaussian noises. For the FFPE the driving source is a Levy stable motion L(t)

instead of a Brownian motion. Specifically for an a -stable Levy motion with skewness

P (-1 1 1) and for a small time t the FFPE is given by
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ap a (1 aa (1 ____-- = yaVP+ - +P/ 2  2P+ 1--P/2  ( a 2p (7.26)
at x (2 x -W (2 _(x)a

where v is the drift of the process, i.e. the mean advective velocity, 2 is a constant

dispersion coefficient, p is the transition probability that quantifies the probability that a

particle that starts out at position y at time t will be at y' at time t'.

For a large number of independent solute "particles" the transition probability can be

replaced by the expected concentration C [Benson et al., 2000]. Further, since the

particle motions are fid, Eq. 7.23 simplifies to

aC aC (1 a"C (1 ___C

2)=-V-+ -+P/2 a---+ -- /2 a (7.27)
at ax 2 axa 2 a(-x)

where the dimensions of 2 are L"T 1 . For Gaussian and lognormal distributions ct = 2

and the classical ADE is recovered, since d2 /2 Solutions to Eq. (7.27) are
udx2  d(-) ouin oE.(.7 r

obtained through Laplace transforms [for example Berkowitz et al., 2000] or Fourier

transforms [e.g. Benson et al., 2000]. The solution of Eq. (7.27) in Fourier space

obtained by Benson et al. is

C(k,t)= exp -(1-P)(-ik) 2t+(1+2)(k t (7.28)
L2 2 v
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This Fourier transform does not have a closed-form inverse. For a symmetric

distribution $ =0 , writing ?= cos (wx/2)12 and using the identities

i = ei'/ 2 and e" = cos 0+ i sin 0, Eq. (7.28) can be written as

(7.29)

Eq. (7.29) is the probability density of a symmetric ci -stable variable C, with mean

g = vt and dispersion parameter a = (/Et)l1a and is known as the first passage time

distribution (FPTD) or the first exit time distribution. The FPTD is the probability of

a particle leaving a given range before a given time.

Berkowitz et. al. (2000) obtain the solution of Eq. (7.27) in Laplace space as

FPTD (L, t) = t' [exp (bua)]

FPTD (L, t)= t [exp (-u + bua)

for 0 < c< 1

for 1 < a< 2

where L is the distance between the inlet, origin or point of injection of the solute

particles and the exit or outlet plane, u is the Laplace variable, b = b L //) is a non-

dimensional measure of L and b, is proportional to the dispersion coefficient in Eq.

(7.27), (/) is the mean displacement of a single transition, and = vt /(/)= t / (t) is a

non-dimensional time.
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Solutions to Eq. (7.30) are obtained by expanding the exponential terms and

integrating term by term to yield

W (-b /,,a
FPTD (L, )=x-

j=O F(j+1)(-ja)
for 0 < a < 1

where F (x)is the gamma function and 1/ F (-ja) =0 for integer values of j a.

Writing x = b /t, and since for j # 0 1=-F(aj)sin (iaj), Eq. (7.31) can'
F (1-aj) nt

be written as

1 W F (jot+)
FPTD (L,'c) = - (-x) sin (nja) Fj

Tn j=0 F(j+1)
for 0 < a < 1

Eq. (7.32) can only be evaluated numerically for small values of x, because of the j

exponent. For large x, Eq. (7.32) can be approximated by (Scher and Montroll, 1975)

1 1
FPTD ~

T 27(1- a)
(7.33)

It is often more convenient to examine breakthrough data in terms of the cumulative

FPTD (CFPTD) curves. CFPTDs are defined as
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CFPTD = FPTD (t ')dt'
0

(7.34)

The following expressions are obtained for the CFPTD for 0 < x <1 (Berkowitz et

al., 2000). Similar to the FPTD solutions, the same two cases introduced by x arise.

for up to moderate values of x

1 (j c)
CFPTD =1+-I(-x) sin (ijC)71 j=1 F(j+1)

(7.35)

for large x (>>1)

exp - -- [yx$
CFPTD= e

2m(1-a)(xx)F

Solutions for the FPTD and CFPTD for 1< a < 2 are obtained following the same

methodology used in obtaining Eqs. (7.31) - (7.33), so that
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for small to moderate values of h

(i) FPTD (-h sin 2C(j+1)

na(t) b" j=O F(j+1) X

where h - r)/ ba

for large positive h FPTD is approximated by

(ii) FPTD (h/ (2-a)/[2(a-1)] (_

b V" (t)2nax ((Y - 1) ( I
for large negative h

(7.36)
1 W__ _F (ja+1)

(iii) FPTD 1 2 b (h)- sin(j) (jn(I~b/(xhj=,,F(j+1)

Note that in this case there are three functional forms for the FPTD solution over the

complete range of h, whereas only two functional forms arise in the FPTD solutions for

0 < c <1. The cumulative FPTDs for 1< c < 2 are

CFPTD +
X X j=

s n ( 7[j ) (j/ a)
sin - (i) (7.37)
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for large positive h,

(i) CFPTD= exp{ t(a-1)(h / c)(}

42m (a - 1) (h / a)A

(7.38)

for large negative h

1 F (jU)(ii) CFPTD=1+-$ (-h)y sin (nj oc) ( +)

Figs. 7.5 and 7.6 show the cumulative FPTD for 0 < a <1 and 1< (x < 2 respectively.

The curves become sharper and less disperse as x increases, and again, the curves are

asymmetric with long tails.

The CTRW model resolves one problem associated with applying the ADE to model

flow in heterogeneous media, which is the lack of symmetry predicted by the ADE. The

first term in Eq. (7.27) serves as a transitional term that moves the plume with an average

velocity through the medium. The variance of the plume is described by the second and

third terms which like the ADE, model the plumes' spread with a Fickian dispersion and

captures the asymmetry through the a - parameter.

The CTRW model fails to describe the observed and measured scale-dependent

dispersion or non-Fickian dispersion. Scale-dependent dispersion is a feature of highly

heterogeneous media. Thus, whereas the CTRW model tries the resolve the issues
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associated with the observed asymmetry of plumes, it fails to resolve the observed scale-

dependent dispersion.

An additional shortcoming of the CTRW model is that it fails to directly relate the media

properties to the parameters of the flow model. Thus, a fitted model does not really

provide one with information about the properties of the media and vice-versa.

Conversely, given the measured properties of a flow field one cannot relate these

properties to the parameters of the CTRW model. However, the CTRW model provides a

conceptual model to describe the asymmetry of plumes in heterogeneous media.

In the next section, we exploit the scaling features of the velocity field when flow occurs

in a multifractal K field to derive a model that describes the scale-dependent dispersion

and the asymmetry of the breakthrough curves. The theoretical derivations are presented

next and results obtained are compared with the CTRW and two-phase models.
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Figure 7.5- Cumulative FPTD for 0 < a < 1 for the CTRW model
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7.4 Scaling properties of the Velocity Field

For an isotropic lognormal field that has been developed to a finite resolution r, i.e. when

K (x) = Kr (x) with a spectral density

S (K) (C) K k -D
\ D

ko < k i km

where k is the amplitude of the wavenumber vector jk, CK is the codimension parameter

that determines the variability of the K field and SD is the surface area of a D-dimensional

sphere.

Ignoring the rotations, the associated velocity field Vr (x) has been found to possess the

following scaling relation with good approximation

1. Bare point velocities: VT, (x)=y,.B,.Vr (ri x) r, r >I

(7.39)

2. Bare average velocities: V,, (Q)=yr.Br,. (r- )

where yr1 <1 is a deterministic non-conservation factor, Vr (Q) is the average of Vr (x_)

inside the region Q and B, is a lognormal random variable with the following

parameters:
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E [In(B, )]= D-_1 CKn(r
n D(D+2) -I

Var[ln (B,)= 2(D 2 _1)CKln(r)
D(D+2)

(7.40)

For partially dressed velocity fields, one can assume in approximation that a scaling

relation similar to the above equation applies to the partially dressed average velocity

V along flow lines. This means that

V(A)=B.v (rA) (7.41)

where A is a flow line segment and B is a lognormal random variable with the following

parameters.

E [ln(B) = D-4 -1 CKln (r)
D(D+2)_

2(D2 _1)
Var [ln (Br )]= D(D+2) Kin (Yr/A)

(7.42)

where y is a factor that was introduced to account for the variability of the flow field

when r = 1. It has been found through simulation that y ~1+ 2 CK .
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The scaling of slowness vector (inverse velocity fields) is considered next

S (x)=[1/ I (x),..., 1/VD ()], where D is the spatial dimension. It follows from Eq.

(7.41) that

() d 1

Yrj Br,

and (7.43)

Yr-. (r)
7r, Bri

In the partially dressed case, the S field is conservative in the mean. By analogy with the

velocity, one may expect that when the rotations are ignored then the following

approximate scaling relation will hold

d [1/BJ 
S (M= .1/ ' (rQ)

/ B(7.44)
d

=B .S(r )

This equation has been validated numerically in Chapter 6.

Assuming that the above equation holds along flow lines, then
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S(A)=Br.S(rA)

where B, has the properties of Eq. (7.42).

The first passage time distribution and the mean plume concentration depend on the

marginal distribution of S (A). If the time for a generic particle to travel a distance A

along a flow line is denoted as T., then this time is related to the average slowness in A

as

A

TA f
dx
V(x) = A.S(A)

Taking the log of the left and right hand side of Eq. (7.45) one obtains

In (T, )= in (A)+ln (S, )

Hence the mean and variance of In (TA) are

E[ln (T )] = In (A)+E [In (SA)]

Var [ln (T, )] = Var [ln (SA)]

And the distribution of TA is

(7.45)

(7.46)

(7.47)
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P (TA < t)= P (A.S(A)< t)= P (S(A)< t / A)

FTA (t)= F(A)(t / A)

Figures 7.7 and 7.8 show the probability and cumulative distribution functions (PDF and

CDF) for the slowness and first passage times respectively. The plots show the decrease

in variance of slowness and the first passage time as distance from the point of injection

A increases. In reality, the variance of FPTD increases as A increases as can be seen

from Eq. (7.45). The transformation into log-space conceals this increase in the variance

of FPTD because of the discarded A term in Eq. (7.47). The increase in the variance of

FPTD does not go on indefinitely as can be seen in Figs. 7.10a and 7.10b. The variance

of the FPTD for the flow with CK = 0.1 increases up to a distance (A / k,) of 0.7 and

starts decreasing while the FPTD for the flow with C =0.3 increases up to a distance of

0.9. The decrease in the variance of the FPTD at long travel distances is a result of the

truncated spectrum of log-conductivity used in obtaining the distribution of the slowness.

Thus, the large-scale fluctuations of S are not totally accounted for in the model. From

Fig. 4.1 we see that between the line perpendicular to the k. axis and the spectrum of

F = ln (K), one can add a significant amount of variance to the velocity or slowness

spectrum to account for the large-scale fluctuations in S. This additional component will

eliminate the decrease in the variance of FPTD at large travel distances.

Another insight into why the FPTD variance decreases at long travel distances can

be gained from sampling theory (see for example, Oppenheim et al., 1989 pages 109-
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110). If the flow paths are idealized as sine functions (see Fig. 7.1 1a) and we sample the

slowness or velocity at intervals of A, then a plot of the variance of the mean velocity V

or mean slowness S as a function of A is shown in Fig. 7.1 1b. From this figure we see

that the variance of V (A) and S(A) are not monotonic decreasing functions of A.

Consequently, the variance of FPTD, which is a product of A2 and Var [S (A)] is not a

monotonic increasing function of A.

The first passage time distribution can be used to derive the mean plume

concentration.
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Mean Plume Concentration

For the mean plume concentration, denote by X (t) the location at time t of a particle

released at x = 0 at time 0. Then

(i) Fx t(x)=P[X(t)<x]=P[Tx>t]

= P [In T >lnt]=D{
In t-mnT

Cn x I (7.48)

(ii) F (x)=1-F (t/x)

Figure 7.9 shows the PDF and CDF for the mean plume concentration at various fixed

times for CK =0.1 and 0.2. For large times and the lower value of CK the plume tends

towards a Gaussian distribution. As the mean travel distance E [x]-+1,

E [T(i)]= E [S] = 1 where E [V.] is the asymptotic average velocity and is
E [VXJ'

smaller than the average velocity of flow E [V]. Thus as E [x] -+1 the average mobility

of the solute decreases over time as the particles tend to be trapped in low-velocity areas.
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7.5 Comparison of the Nonlinear Theory Model, the CTRW and the Two-Phase

Models.

In this section, the nonlinear theory model is compared with the CTRW and the two-

phase models. Three types of comparisons are made:

1. First, a comparison of the three models is made with some "real world" data in

Figures 7.12 and 7.13. In Figure 7.12, the models are fitted to data obtained from

the Mobile site by Huyakorn et al., 1986. The concentration data has a lognormal

distribution and thus we see that the nonlinear and two-phase models provide a

better fit to the data than the CTRW model. The CTRW model is particularly

suitable for asymmetric distributions of FPTD as shown in Figs. 7.13. Figure 7.13

plots data from a flow cell by Silliman and Simpson (1986). The flow cell is two-

phase packing consisting of fine and coarse sand that are arranged into two

vertical blocks through water flows horizontally. The CTRW and the two-phase

models provide a better fit to the data than the NL model, and show the suitability

of the CTRW and the two-phase model for asymmetric FTPD that result from

inhomogeneous media.

2. Next, data obtained from numerical simulations of transport of a non-reactive

solute in multifractal fields are compared to the NL and CTRW models. Data

from these simulations are generated using the transport code described in Sec.
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7.2. To compute the FPTD, transport was simulated in a flow field with CK 0.1

and at a distance of 0.12/ko from the point of injection, the total amount of the

solute C, that has transversed a distance of 0.12/k 0 is computed. The ratio of

C, to the total mass of the solute at various evolution times for the plume

constitutes the FPTD. The FPTD of the numerical simulations shown in Fig.7.14

is average of seven FPTD curves. The CTRW and NL models are fitted to the

data in Fig. 7.14 through nonlinear regression and are shown in Fig. 7.14. Both

models provide a good fit to the data. The CTRW model provides a better fit for

the lower half of the breakthrough curves while the NL model provides a better fit

for the upper half of the curves.

3. Finally, using the theoretical formulations of the NL theory in Eq. (7.47) the

FPTD are computed for flow fields with CK =0.04 and 0.4 for travel distances

0.001/k 0 and 0.1/k 0 . These plots are shown in Figs. 7.15 and 7.16 and are

compared with the best fit of the CTRW model. The CTRW model was initially

fit to the breakthrough curve in the near field to obtain the (X value. The CTRW

model assumes the value of (x to be constant for a given flow field. Hence, the (X

value obtaining through regression in the near field is used to compute the FPTD

curve in the far field. From Figures 7.15 and 7.16, we see that the CTRW model

provides a good fit to the data in the near field. However, in the far-field, the

upper parts of the CTRW curves show a slight deviation from the NL FPTD

curves. This is because the transport is non-Fickian: the variance of the FPTD

359



changes with travel distance. This feature is captured by the NL model, whereas

the CTRW models the transport with a constant variance.

These comparisons show in what situations a CTRW, two-phase or the NL model may be

appropriate. The CTRW model determines parameters by fitting to breakthrough curves

obtained in field experiments. The model parameters are then used in predicting the

FPTD at different locations in the flow field. The two-phase model, like the CTRW

model is Fickian and is suitable for modeling asymmetric Fickian transport. The CTRW

is particularly useful for modeling transport in inhomogeneous media. The CTRW and

two-phase models are not suitable for modeling non-Fickian transport. When the flow

field has a multfractal hydraulic conductivity, with known spectral properties (e.g.

CK, ko and km, ), the NL model can be used to predict how a solute will evolve. The

parameters of the NL model have a direct connection with the physical properties of the

flow field. The CTRW model is a conceptual model whose parameters cannot be

determined from the material properties in a flow domain.
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Scaling of Concentration Variance

For sub-diffusive and superdiffusive transport, the plume concentration has a scaling

described by

CY, (0 - t'(7.49)

Assuming a constant mean flow, Eq. (7.49) can be written as

where X is different from 2. For X > 2, the transport is described as superdiffusive

[Bershadskii, 1999]. However transport in heterogeneous porous media, has been found

to possess 1 X < 2 [Arya et al, 1985, Hewett, 1986, Neuman, 1990 among others].

Table 7.3 provides some values of X obtained by various authors. Using Eq. (7.48), the

concentration variances for various times were computed. These computations are shown

in Fig. 7.17. The computations show that for multifractal media X ~ 2- C . Ensemble

macrodispersivity computations in Figs. 7.1a and 7.1b agree with the computations in

Fig. 7.17. Slopes of the ensemble longitudinal macrodispersivities for small travel

distances are exactly 1- CK and have values slightly above 1- C for long travel

distances. Thus, results of the ensemble macrodispersivities in Fig. 7.1 support the

scaling behavior of the concentration moments in Fig. 7.17.
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Table 7.3 - Values of X obtained by various authors
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Author X value

Arya et al. [1985] 1<X<2

Philip [1986] 1<X<2

Neuman [1990] X =1.75

Hewett [1986] 1.4< X <1.6
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CHAPTER 8: FLOW IN AQUIFERS WITH HOMOGENEOUS ANISOTROPIC
LOGNORMAL HYDRAULIC CONDUCTIVITY FIELDS.

Introduction

This chapter extends previous work on flow through random porous media for which the

hydraulic conductivity K was assumed isotropic, lognormal and multifractal to include

anisotropic lognormal multifractal K fields. For anisotropic K fields, the material

properties vary with direction. A commonly studied example of an anisotropic K field is

the stratified aquifer, for which the K perpendicular to the bedding is different from that

parallel to bedding [see for example Gelhar, 1993]. Usually the K field for anisotropic

media is expressed as a second order symmetric tensor [Bear, 1972]

Ki K21 K3

K = K12 K22 K32

K13 K23 K33_

with the property that Kii = Kji and i, j =1, 2 and 3. In general, the flow velocity is at an

arbitrary angle with respect to any normal to any plane, so that it can be decomposed into

three components on each plane. For example, the specific flow in the plane normal to

the x 2 axis is
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ah
21= 21  -ax2

ah
q 22 = K2 2

ah
q2 3 = K2 3 -ax2

where the first subscript refers to the plane and the second subscript refers to the direction

of flow. Similarly, there are three components of flow for the x, and x2 axes. The total

flow in the x 2 direction is given by:

q = q12 + q 22 + q 32

ah ah ah
= K2 -+K2 -- +K32

axi ax 2  ax 3

Current approaches (e.g Gelhar and Axness, 1983; Neuman, 1994 and Ababou, 1995) in

deriving the statistical properties of flow through anisotropic porous media obtain the

expected specific flow via averaged expressions of Darcy's law (Eq. 1.1). The expected

specific flow is

E [qj= KijJ (8.1)

where Kij is the effective permeability tensor which is also denoted as Keff . The

approach of Gelhar and Axness is reviewed in Sec. 2.3. For anisotropic media, the
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integral F k k= J k -dk in Eq. 2.41 is evaluated using the anisotropic version of the
k

log conductivity spectrum Si . As an example, a hydraulic K field with an exponential

covariance function has a log-conductivity spectrum

Sff(k)= 2 (1+X2k2+X2 k 2+X2k)

where X, is the correlation distance in the xi direction. Gelhar and Axness (1983) have

evaluated expressions for a stratified medium with isotropy on the plane of stratification

(XI = > X3 ), a 2D anisotropic field obtained by taking X3 -> 0 and the general case

X1 #X 2 #X for which the integrals were evaluated numerically. Ababou (1995) accounts

for anisotropy by modifying Matheron's expression for Keff (Eq. 2.49) to include the

correlation lengths

K " = K exp 2 1 1J i=172,3 (8.2)
2 D )

where Xh is the harmonic mean of the correlation lengths in the principal directions of

anisotropy. Neuman proposes the same Keff expression as Eq. 8.2 with P replacing .
Xi

Neuman does not however explain how the value of P3 can be determined.
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Rajaram and Gelhar (1995) presented an expression for Sf for an anisotropic K

field that is has some form of scale invariance (fractional Gaussian noise fGn or

fractional Brownian motion fBm)

s(k) = C/(k2 + + [tk2 )(m+3)/2 O<m<2 (8.3)

where C is a constant and the wavenumber k3 is scaled by the factor p. Molz et al.

(1997) obtain an expression similar to Eq. (8.3) for anisotropic fBm/fGn K fields of the

form,

Ck a-I

S(k)= (2 +k 3 )2/ 2  (8.4)

(k + k2+(pk")

where C, (x, $ and p are constants. Molz et al. (1997) discuss different conceptual

models for the anisotropic K field. For example, a fGn could characterize the vertical

variations while the horizontal variations are described by fBm.

This chapter is organized as follows. In Sec. 8.1, the marginal distribution of the

hydraulic gradient for fields with homogeneous anisotropic lognormal hydraulic

conductivity is derived. Unlike the isotropic case, no closed-form solutions are obtained.

However, expressions for the spectral density and covariance of the hydraulic gradient

VH are obtained and these can be evaluated numerically. The complication with the

anisotropic case arises from the characterization of the rotations of the VH vectors. These
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vectors are not uniformly distributed as in the isotropic case but are dependent on the

angle of inclination of the large-scale mean hydraulic gradient. The approach used in

obtaining the results follow the renormalization method used in Chapter 4. We begin

with the known deterministic values of VH under mean field conditions, when the

hydraulic conductivity K is fixed to its mean value. Higher Fourier components are then

progressively added to F = ln (K) and the corresponding effects on the distribution of

VH are determined. The desired marginal distributions are obtained in the limit as the

variance of F is totally accounted for. Sec. 8.2 presents an approximate scheme for

dealing with geometric anisotropy.

8.1 MARGINAL DISTRIBUTION OF THE HYDRAULIC GRADIENT VH FOR
HOMOGENEOUS ANISOTROPIC LOGNORMAL HYDRAULIC
CONDUCTIVITY

Let Q be a region in D-dimensional space where the hydraulic conductivity is an

anisotropic multifractal field. The goal is to determine the marginal distribution of the

hydraulic gradient VH (x ) at a generic point x of Q , when Q is subjected to a large-

scale unit hydraulic gradient. For reasons of convenience, the point x0 at which the

distribution of VH is sought is located at the center of 92. The distribution of VH (6)

is obtained by solving a cascade of nested flow problems at increasing resolution r. At

the coarsest level r = 1, the log-conductivity in Q is F, =0 and the hydraulic head and

normal flow qn on the boundary are equal to their spatial average values. This gives the

mean field solution VH1 (x )= -e and q1 (x)= -e, where e = [1,0,..., 0] is the unit

vector in the first coordinate direction. We then progressively increase the resolution r,
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each time obtaining the hydraulic gradient VH,,+ (x) inside contracted regions of size

Q/r, centered at x. This field is obtained by subjecting Q/r to a mean large-scale

hydraulic gradient equal to VH, (x), assuming that the log-conductivity inside Q / r is

Fr+d (2i) = F (x. )+ Frr+dr) (x). It is assumed that the quantities at resolution r,

F, and VHr , are constants inside Q / r and therefore are evaluated at x , whereas Frr+r)

and VH[rr+& are allowed to vary spatially. In particular, one obtains the conditional

distribution of VHr+d (x )IVH, (x)). An attractive feature of this approach is that

VH, (x ) is a Markov process in the resolution parameter r. Therefore, the process is

completely defined by its initial state VH1 (x ) = -e for r = 1 and the conditional

distribution VHr+d ( )IVH, (x ). Using these initial conditions and conditional

distribution, the marginal distribution of VHr (x )for any r and the desired asymptotic

distributions of VH (x )= lim VHr (x ) can be obtained. In addition, it is assumed that

in spaces of dimension D >1, zero-mean high-frequency fluctuations of the head and flow

along the boundary affect the hydraulic gradient and flow only in a narrow region close

to the boundary. Details of the analysis are presented next.

To characterize the conditional random field VHr+& (x. )IVHr (x,) in a region of

size Q / r around xe, when the region is subjected to a large-scale mean hydraulic

gradient VHr (x 0 ), one begins by rotating the coordinate axes such that the new x, axis

has the direction of -VHr (x). Using a superscript R to denote all quantities in this

rotated reference, we write VHr (x0 ) and VH r+ (x) as
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VHf (xr)= JVHr (x6)e

VHr+ (x_)= -JVHr (x)e+ VHr+ (x)
(8.5)

where e = [1,0,..., 0]. Then the zero divergence flow equation in i /r is

or

V 2 H (x)+ [- JVH, (x_,)|e+VH (x) .VRFy,,d (x)=0

[ r+dr() r (1) & (x 2V ( ) ' F (x )V H (x) +VH (x.R ( _ =VH , (x, dr(

(8.6)

(8.7)

One can relate the VH[rr+d] in Eq. (8.7) to the solution of a simpler problem. Let

VH r,+&i (x) be the hydraulic gradient field in Q / r when the log-conductivity in Q / r is

given by F[rr+&] (x) and a unit large-scale mean hydraulic gradient is applied in the

direction of the negative xi axis. The random field VH' satisfies

(8.8)(x)= arr+dr](2)
ax1

V2H'mp rniE (x)+VH (xVFw

Comparison with Eq. (8.7) shows that
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(8.9)

d

where = denotes equality in distribution. Therefore, from Eq. (8.5), and recalling that we

are considering the hydraulic gradient at point x. we have

VHR (x_ )- IVHr (Xo)Ie-VH (xr] (8.10)

It is important to note that VH[rr+d] (x)in Eq.(8.8) is independent of VHr (x)because

rr+dr] is independent of F,. Hence, the process VHr (x ) is Markovian in the resolution

parameter r.

In the anisotropic case, the transition VHr (x0 )-* VHr, (x) in Eq. (8.10) has

the form

e -(VHr ,r+dr] (x )Ir (8.11)

where a is the unit vector in the direction of VHr (X ), and VH[rr+&] (x)is the

hydraulic gradient due to Fr,,,,] for a unit large-scale hydraulic gradient equal to -ct,.

What is new relative to the isotropic case is that now VH[rr+] (x )depends on the

direction of VHr (x_,). To fully characterize the transition structure of the Markov
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process VH, (x 0 ) -+ VHr+d (xo), the marginal distribution of VH rr+d] is needed. This

distribution is obtained by closely following the analysis in Sec 4.1 of Chapter 4. The

term VH (x).VF (x) in Eq. (8.8) is infinitesimal of higher-order and may be

neglected. If R r is an orthogonal matrix with first column equal to ar, then using the

R T
superscript R to denote quantities in the rotated reference x = _R x , then

(VHR,+d.] (xR )ir) satisfies

V2H'R+ (xIR
aF~R+ (R)

aXR

Eq.(8.12) is written in Fourier space as

-k 2 H.r+dr,(dkR Ir ) =ikk rr+&] (dkR)

where H and F are the spectral measures of H' and F and k2 = + ... + k. Eq. (8.13) is

approximate because the random function H[rr+] (xR I r) with spectral measure in Eq.

(8.13) does not satisfy the boundary conditions. Under the assumptions stated at the

beginning of this section, the effect of this approximation should be small for D > 1.

Hence, the spectral measure of the gradient field VH',rd satisfies

vNi' (dk IR r )=(k'k; )Pr -r~dr (&dkR) (8.14)
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where k'= k /k is the unit vector in the direction of k and k is its first component. Eq.

(8.14) implies that the spectral density tensor of VHRr is

SH 'r+dr (1R I r (R'R k R 2 SF (rR) (8.15)

Therefore, the covariances among the components of VH'R are (omitting the subscript[rr+dr]

[r,r+dr]),

Coy[VHiR , VH Rr] f I VHR 
RD

(1R Ir)dk R
(8.16)

where (U I R, )is the unit random vector with probability density on the unit spherical

surface proportional to SF (rkoRrU), SFrd is the radial spectral density function of F and

is equal to fSF R R )dR , and SVH' RJ is the (i, j) component of the spectral tensor in
RD

Eq. (8.15).

Finding the expectation terms in Eq. (8.16) is the biggest challenge. In general,

these expectations depend on both r and -(Xr. However, in some cases the expectations

depend only on Xr or some component of r . Specifically,
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1. If the log-conductivity field F has a power-law spectrum with geometric

anisotropy so that its spectrum SF (- oc IAkl for some positive definite matrix

A and some a > D, then F ()- \-rF (k) and the expectation terms in Eq.

(8.16) do not depend on r.

2. If in addition F is isotropic in sub-space spanned by the first D-1 coordinate axes,

then the expectation terms depend only on the first component of _a,

The latter case corresponds to a stratified geology with isotropic conductivity on the

stratification planes. In this case, it is possible to numerically evaluate the

expectation terms in Eq. (8.16). An alternate approach is to calculate the moments

QmU (r) = E [UmUnUkUI Rr =I], m, n, k, 1=1,...,D (8.17)

in the unrotated reference (in cases 1 and 2 above, these moments do not depend on r)

and then find the moments in Eq. (8.16) using the relation (UBR)= R (Uli) or in

scalar notation and with the summation convention, (Ui R,) = Ci (Uj I). Then,

E[U2UiUj R]= cimcncikcj.Qmnk (r) (8.18)
m,n,k,l

This corresponds to the method of Gelhar and Axness (1983) reviewed in Chapter 2

(see Eq. 2.46). An important difference between Gelhar and Axness' approach and
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the present work is that they evaluate the large-scale mean hydraulic gradient whereas

the present work evaluates the distribution of the hydraulic gradient at a point within

the aquifer.

8.2 AN APPROXIMATE SCHEME TO DEAL WITH GEOMETRIC ANISOTROPY

Suppose the hydraulic conductivity K has geometric anisotropy inside the region of

interest, Q . This means that, for some positive-definite matrix A, the scaled field

K '(x) = K (Ax)is isotropic. The approximation consists of replacing the actual problem

{K, }with the scaled problem {K ', '}where K' (x) = K (Ax) and Q '={x_: Ax E Q}.

To be specific, consider the case when Q is a D-dimensional rectangle with sides parallel

to the principal directions of anisotropy of K. The coordinate axes are chosen to be

aligned with the principal directions. Constant hydraulic head is specified on the faces of

Q orthogonal to the first coordinate axis and no flow conditions are imposed on the rest

of the boundary. In this case, also the scaled region Q'is a rectangle with sides parallel to

the coordinate axes.

In order to show under which conditions this approximation may be accurate, the flow

equation

V2 H+VF.VH =0 (8.19)

is considered for the two problems, first for the one-dimensional case and then more in

general for any spatial dimension D.
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One-dimensional problem

Suppose that a one-dimensional tube of length L is down-scaled by a factor s.

F (x) and H (x), 0 x L, are the log conductivity and the hydraulic head in the

original problem, in which a large-scale unit hydraulic head is applied by setting

H (0) = L and H (L) =0 . The corresponding functions for the scaled problem are

F, (x) and H, (x), 0 5 x L / s. The boundary conditions for the latter problem are

H (0) = L /s and H (L / s) =0. The following relations hold among quantities in the

original and scaled problems:

F, (x)= F(sx)

VF, (x)= sVF(sx)

VH, (x) = VH (sx) (8.20)

V 2 H, (x)= sV 2 H (sx)

1
H, (x)=-H (sx)

s

Notice that:

1. if F and H satisfy Eq. (8.19) under the original boundary conditions,

F, and H, satisfy Eq. (8.19) under the boundary conditions of the scaled

problems.
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2. the flow q = -K.VH is the same in the two cases; hence the effective hydraulic

conductivity has the same distribution in the two problems, irrespective of the

scaling factor s.

D-Dimensional Problem

Consider now a D-dimensional rectangle Q with side lengths Li, i =1,...,D, specified

hydraulic head values H = L, on the face x, =0 and H =0 on the face at x, = L1 .

The flow domain Q is downscaled by a factor si along the i* coordinate direction, to

make the K field inside Q isotropic. Hydraulic heads H, = L, / s, at x, =0 and

H, = 0 at xi = LI / s are applied. The flow equation for the scaled problem is

V 2 H, (x)+VF (x).VH, (x)=0 (8.21)

The log-conductivity and its gradient are related to the corresponding quantities in the

original problem as

F, (x)=F(Sx)
~-) ((8.22)

VF x) SVF (Sx)
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where S = diag{si }. It is contended that, if the flow line directions are tightly

distributed along the first coordinate direction, then an accurate approximation to

VH, (x) is

VH, (x)= s1S' .VH(Sx) (8.23)
=> V 2H, (x)= sV 2H (Sx)

It is easy to verify that VF, in Eq. (8.22) and VH, in (8.23) satisfy Eq. (8.21) and the

boundary conditions for the scaled problem. Eq. (8.23) is an approximation because

VH, in that equation is not necessarily a gradient field (the gradient of a scalar field H,).

The scaled hydraulic gradient field VH, in Eq. (8.23) is a gradient field in two special

cases: 1. when S = sI (isotropic scaling) and 2. When the flow lines are parallel to the x,

axis (one-dimensional flow). Therefore Eq. (8.23) is expected to be accurate if the flow

is nearly one-dimensional, in both the original and scaled problems. Typically, but not

always, isotropic conductivity requires larger downscaling in the direction of x, than in

the other directions. Since downscaling more in the x, direction that in the other

coordinate directions increases the sinuosity of the flow lines, the approximation is

expected to be accurate if the variance of the rotation angles a2 in the isotropic problem

is small with respect to 1.

To validate the scaling relations in Eqs. (8.22) and (8.23) numerical simulations

were performed on the plane. An anisotropic K field with spectral density of F = In K

given by
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C
SF 2 2alk2 + a 2k2

where a, and a2 are coefficients that determine the correlation of the K field in the

xi and x 2 directions respectively, C is a constant that determines the level of the spectral

density. For a F = In K field with a known variance U2, the value .of C can be determined

from the relation

F $ SF(k)dk
k

For various values of a, and a2 presented in Table 8.1, the flow field was computed and

the effective conductivity Keff was calculated and compared to the Keff obtained from an

isotropic K field but with an aspect ratio that corresponds to a, and a2. The numerical

simulations show that the approximate relations in Eqs. (8.22) and (8.23) are accurate.
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Table 8.1 - A comparison of Kef, from an anisotropic K field with Fj=1.11 compared

to the Keff from an isotropic K field with CK = 0.1 but on a rectangle with aspect ratio

determined by a, and a2 .

Aspect Kff computed from anisotropic Keff computed from an isotj
Ratio spectral density on a rectangle

al

a
2

2 0.734 0.709
0.656 0.683
0.654 0.694
0.720 0.723
0.639 0.673

Mean Keff = 0.681 Mean Kff = 0.696

10 0.874 0.914
0.863 0.880
0.893 0.792
0.842 0.832
0.869 0.841

Mean Keff = 0.868 Mean Keff = 0.852

100 0.915 0.980
0.978 0.990
0.987 0.993
0.962 0.985
0.956 0.989

Mean Keff = 0.960 Mean Keff = 0.987

0.5 0.487 0.501
0.443 0.492
0.461 0.464
0.451 0.488
0.478 0.493

Mean K eff = 0.464 Mean Keff = 0.488
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CHAPTER 9 - SUMMARY AND CONCLUSIONS

9.1 SUMMARY

This research has studied the properties of the hydraulic gradient VH and specific

discharge q when the hydraulic conductivity K is an isotropic lognormal multifractal

field. For these K fields, their F = In (K) spectrum is

SF D C~ D k : km 9.1)
I 0 otherwise

where k is the amplitude of the wavenumber vector k, SD is the surface area of the unit

D-dimensional sphere so that S, = 2, S2 = 2n and S3 = 4n, CK is the so-called

codimension parameter of the K field that determines the level of the spectrum of F and

k. and kM define the limits of the multifractal scaling of K. The results are derived

under certain conditions and assumptions explained in section 4.1 of Chapter 4.

The approach used to derive the renormalization properties of VH and q are different

from the perturbation methods that are standard in the field of stochastic subsurface flow.

Instead of the perturbation expansions, the flow equations (Eqs. 1.1 and 1.2) are solved

by considering a cascade of hydraulic gradient and flow fields at different resolutions

r 1. The fields at resolution r are obtained by using a log-conductivity F in which all

Fourier components with wavenumbers k > rk. have been filtered out; hence, the spectral

density of F. is given by Eq. 9.1 with k. = rk . Using subscript r to denote quantities
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derived under F = F , the hydraulic gradient VHr and specific flow q satisfy the Darcy

and no-divergence conditions

qr = -KVH (9.2)
V2Hr +VFr.VHr = 0

The random fields VH, and q for different resolution r are compared using Eq. (9.2) and

the assumptions above which have been found to be accurate. The main results of the

thesis are summarized next.

In Chapter 2, the linear perturbation method was reviewed and shortcomings of this

approach were discussed. The linear perturbation method is asymptotically correct, as

the variance of the log-conductivity aC tends to zero. However, for hydraulic

conductivity fields with a aC greater than one, several authors (see for example, Dagan,

1985; Deng and Cushman, 1995 and 1998; Hsu and Neuman, 1997 among others) have

found that the inclusion of second order terms has significant effects on the spectra of

VH and q when the variance of F = In (K) exceeds unity. Despite these insights into the

behavior of the flow field when a is greater than one, the computational approach used

makes it extremely difficult to incorporate higher order terms. Numerical solutions of the

flow equations by Bellin et al. (1992) and Lent and Kitanidis (1996) revealed results that

differed significantly from the linear perturbation approach. However, the numerical

methods do not provide any predictive tools in studying flow behavior in heterogeneous

media.
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Lately there have been efforts in studying flow when K has some form of scale-

invariance; more specifically these models have resorted to fractal descriptions of porous

media properties. Reliance on these self-similar models was in part to explain the scale

dependent nature of measured aquifer dispersivities. However, the theoretical

descriptions relied on the linear perturbation approach and failed to capture the behavior

of media with high log-conductivity variance.

In this thesis, the hydraulic conductivity is modeled with a more realistic and general

form of self-similar model - the multifractal. In addition, the scaling properties of the

multifractal hydraulic conductivity field are exploited to obtain a nonlinear solution of the

flow equations. Properties of the multifractal field are described in Chapter 3. The group

of transformations that describe the symmetries of scalar multifractals like K is discussed

in Chapter 3. Moreover, properties of vector fields that are invariant under more complex

space and field transformations (also known as generalized scale invariance GSI, see

Lovejoy and Schertzer 1985 and Schertzer and Lovejoy, 1996) are reviewed. The final

section of Chapter 3 discusses the one-dimensional spectra of K data from Mount Simon

aquifer (Ababou and Gelhar, 1990) and from Northern Arizona by Goggin (1988).

Results of the data analysis show that modeling the hydraulic conductivity with a

spectrum of the type in Eq. 9.1 is not outside the range of what one may observe in

nature. When applicable, multifractality of K is an important property. We know that

homogeneous multifractal fields are generated through a multiplicative cascade process,

which then suggests the basic genetic mechanism of geologic formations with
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multifractal K. In addition, when the K field is modeled as a multifractal it allows one to

exploit its scaling properties to obtain a nonlinear solution of the flow equations.

Moreover, the application of this thesis extends beyond the field of hydrology and are

applicable for example in studying random resistor electrical networks.

In Chapter 4 the distributional properties of the hydraulic gradient VH and specific

discharge q fields were obtained. The results show that the VH and q fields derive their

multifractal properties from the hydraulic conductivity field K and have scale invariance

properties related to those of K. The type of scale invariance displayed by VH and q

involves not only space contraction and multiplication of the fields by a random variable

as in the case of K, but also random rotation of the fields and their supports. The

probability distributions of the random amplitude factor and random rotation that

describe the scaling properties of VH and q depend on the space dimension D and the

multifractal parameter of K, the so-called co-dimension CK.

At large scales the fields VH and q are anisotropic due to the fact that the

hydraulic gradient applied to the entire aquifer has a particular direction. At smaller

scales, the rotational component in the scaling relations of VH and q causes these fields

to approach isotropy. This means that from measuring VH and q inside a very small

region, an observer would be unable to determine the direction of the hydraulic gradient

at large scales. This transition from anisotropy to isotropy as one goes from large to

small scales affects the spectral density tensors of VH and q and the macrodispersivities

in ways that cannot be assessed through conventional perturbation analysis.
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The hydraulic gradient and specific discharge differ sharply in their amplitude

scaling properties. The expected amplitude of VH increases with the resolution,

whereas the expected amplitude of q decreases with increasing r. The reason for the

decrease of E [q] = E [JqJ] with r is that the log conductivity F and the log of the

hydraulic gradient amplitude In (J) = in (JVHJ) are negatively correlated. The correlation

coefficient p between the log conductivity and the log hydraulic gradient amplitude is

not dependent on the resolution or erraticity of the field but on the spatial dimension

under consideration, as indicated through the analytical expression obtained for the

correlation coefficient. Specifically, p = -1, -0.817 and -0.745 for D = 1, 2, and 3

respectively.

Another important result of this thesis is the variation of the effective hydraulic

conductivity Kff with the size of the region considered, or more precisely with the range

R of scales below that of the region over which the K field is multifractal. An analytical

expression for Kff in terms of R, the codimension parameter CK and the space

dimension D was obtained. The result is the same as Matheron's (1967) conjecture.

The analytical results have been validated through two-dimensional simulations over

512 x 512 grids in Chapter 6. All the numerical results closely match the theoretical

predictions. This includes the so-called moment scaling functions of J = IVH and

q = qJ , which characterize the scaling properties of these two quantities.

Chapter 6 continues the flow analysis by deriving the consequence of the multifractality

of VH and q on the spectral density tensors of these fields. The spectral density tensors
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of these fields are obtained and contrasted with results of the linear perturbation

approach. In contrast to the linear perturbation method, the nonlinear analysis accounts

for the rotations of the VH and q vectors. The results indicate that the linear

perturbation approach produces spectral density tensors that have incorrect decay

exponents along any given direction in Fourier space and incorrectly characterizes the

anisotropy of VH and q as being scale invariant. The results in Chapter 6 show that

VH and q are anisotropic at large scales because of the boundary conditions but become

progressively isotropic at small scales. This scale-dependent behavior is important for

computing the macrodispersivities.

Chapter 7 deals with issues related to transport in isotropic lognormal multifractal K

fields. First, the ensemble macrodispersivities and plume-scale dependent

macrodispersivities are computed and compared with results of the linear theory.

Reflecting the scale-dependent anisotropy of the spectral density of q , results for the

nonlinear produce isotropic macrodispersivities at small travel distances. However, the

macrodispersivities become anisotropic over large travel distances. The

macrodispersivities from the linear theory by contrast are anisotropic at all travel

distances. The second part of Chapter 7 exploits the scaling properties of the velocity

field and its inverse to obtain expressions for the first passage time distribution and mean

plume concentration when the flow and transport occur in a saturated aquifer with an

isotropic lognormal multifractal K. Results obtained from the nonlinear approach are

compared with the continuous time random walk (CTRW) and two-phase models. There

are some significant differences in these models. First, the nonlinear model is more

suitable for modeling transport in homogeneous media, whereas the CTRW and two-
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phase models are more suited for transport in non-homogeneous media. Secondly, the

nonlinear model is non-Fickian in nature; that is, it is capable of characterizing the

evolution of a plume whose dispersion coefficient or macrodispersivity changes with

mean travel time or distance. The CTRW and two-phase models are Fickian models and

require a constant dispersion coefficient as an input.

Chapter 8 extends the results of Chapter 4 to consider flow in anisotropic multifractal

fields. The approach used in deriving the marginal distribution of the hydraulic gradient

VH (x_) at a generic point x0 in the flow domain is similar to the approach used in the

isotropic case in Chapter 4. One begins from known deterministic values of VH (x0)

under mean field conditions when the hydraulic conductivity K is fixed to its mean value.

Higher Fourier components are progressively added to F = ln (K) and the corresponding

effects on the distributions of VH (x.) are determined. The marginal distribution of

VH (x) is obtained in the limit as the variance of F is totally accounted for. Unlike the

isotropic case we are unable to obtain closed form solutions for the marginal distribution

of VH (x )because the rotations of the hydraulic gradient vectors are not uniformly

distributed and depend on the angle of inclination of the unit large scale hydraulic

gradient a, Approximate results are however obtained for geometrically anisotropic K

fields. For these fields, approximate results for parallel and series configurations are

obtained for the two-dimensional case. However, estimates of the effective hydraulic

conductivity can be obtained for the three-dimensional case only through numerical

simulations.
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9.2 CONCLUSIONS

The major conclusions of this research are:

1. When flow occurs in a field with an isotropic lognormal multifractal hydraulic

conductivity K, the resulting hydraulic gradient VH and specific discharge q

fields are also multifractal. These results are obtained through a novel

solution approach used in solving the zero divergence Darcy equation.

2. For flow on a plane, the rotation angles of VH and q which are the same can

be characterized as a Brownian motion on a sphere. This distribution

measures the change in the local flow direction that results when higher

wavenumber components are added to the log-conductivity. In the 3D case,

the Brownian motion on the sphere does not have a simple analytical form.

These rotation angles play an important role in the spectral density tensors of

VH and q.

3. Accounting for the rotation angles, the spectral density tensors of VH and q,

unlike the results of the linear perturbation approach, have a scale dependent

anisotropy. The spectral density tensors of this thesis are isotropic at small

scales and become anisotropic at large scales. The rate at which the spectral

tensors become isotropic depends on the variability of the K field. This scale-

dependent behavior is important for the evaluation of macrodispersivities,

which are anisotropic at large travel distances and nearly isotropic locally.
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4. The spectral density tensors obtained from the analysis in this thesis show that

the linear perturbation theory produces incorrect decay exponents for the

spectral density tensors along any given direction in Fourier space.

5. The results of this thesis provide further support for Matheron's 1967

conjecture for effective hydraulic conductivity, which is known to be accurate

at least for fields with a log-conductivity variance a2 <1, for K isotropic

lognormal, and for D = 1 and 2.

6. Exploiting the scaling properties of the inverse velocity field, expressions for

the first-passage time distribution and mean plume concentration were

obtained. These models are particularly suitable for describing transport in

heterogeneous media that displays scale-dependent dispersion and have long

tail distributions, such as those observed in field experiments.

7. The scale-invariant properties of the K field allow one to obtain approximate

closed-form expressions for parallel and series configurations in geometrically

anisotropic K fields.

8. Beyond the applications to hydrology, the results of this thesis present, for the

first time a formal analysis of how parameters in a scale-invariant system can

inherent their scaling properties from one of the variables. This is particularly

pertinent to the study of random resistor networks, which are mathematically

similar to the flow problem analyzed in this thesis.

9.3 RECOMMENDATIONS FOR FUTURE RESEARCH
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The following are recommendations to extend the present work and help improve our

understanding of flow and transport in highly heterogeneous media:

1. The present work has applied the renormalization method in obtaining the key

results. This method is valid when K is multifractal, which means that the

log-conductivity F = ln (K)has a power spectral density of the type

SF(k) oc kD , where D is the space dimension. In certain cases spectra of F

that decay like k~" with (x smaller or larger that D have been observed. The

associated K fields are not multifractal,. although they may have the

multiplicative structure of multifractal fields. Research needs to be done to

consider this more general case, in addition to highly heterogeneous K fields

which do not have a power-law type spectra. The solution approach

developed in this thesis can be applied in studying flow through

heterogeneous porous media that does not have a multifractal K field but has

spectral density of F=lnK of a more general form.

2. An issue not addressed in the study of transport through multifractal porous

media is the lack of macroscopic ergodicity, in the sense that the plume

geometry and path of transport are highly dependent on the characteristics of

the K field in the region of injection. One would expect that the initial

velocity field in the vicinity of injection would determine the evolutionary

nature of the solute. The average velocity field in the region of injection

depends on the resolution to which the flow field has been developed. How
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the resolution affects the velocity field that in turn determines the migrational

properties of the solute need to be further studied.

3. Field data for hydraulic conductivity are scarce. The recent development of

the air-permeameter should allow for an extensive sampling of K-data from

sites of interest. These additional field studies in various rock formations are

required in order to understand the geologic media within which

multifractality of K may apply and the processes that create such fields. In

chapter 3, some empirical data was presented to illustrate some ranges of

frequencies within which multifractality can be observed in nature. One

would expect geologic formations such as sedimentary and some types of

metamorphic formations to exhibit multifractality over certain scales.

Obtaining extensive field data in various formations and analyzing them

would allow one to better understand the processes that generate these fields.

4. Another area that will require much fieldwork is the application of the

transport models developed in this thesis to real-world situations.

Understanding what parameters to measure and how these relate to those of

the theoretical model will be important in accurately predicting solute

spreading in a highly heterogeneous medium and in helping with predictions

of the risk of contamination downstream.
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