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Abstract

Rail transit systems are subject to frequent disruptions caused by a variety of disturbances
such as a disabled train or a door jam. Such disruptions often last for 10 to 20 minutes and
can severely impact passenger level of service for long after the blockage has been cleared.
Transit agencies usually employ various train control strategies such as train holding and
short-turning to respond to these disruptions. The efficiency of these controls strategies
relies upon the system-wide impacts of any control action. Unfortunately, it is extremely
difficult for a dispatcher to assess such impacts and derive the best control actions in-real
time.

This thesis focuses upon the development of a real-time disruption control model for
a rail transit loop line. Holding and short-turning are studied as means to minimize the
sum of passenger in-platform waiting time and in-vehicle delay time. A simple holding
strategy is first introduced for a simplified subway system and a deterministic mathematical
programming formulation is derived. The formulation is rewritten in matrix form, providing
insights into the behavior of a more realistic system. The original formulation is next
extended to a more realistic, albeit deterministic, holding problem for a general transit loop
line. A quadratic and mixed integer programming formulation is obtained and a procedure
to efficiently solve it is presented.

The formulation is applied to two disruption scenarios on a simplified system based on
the MBTA Red Line. The sensitivity of the optimal holding strategy to the assumption
of finite train capacity and the cost of in-vehicle time is also investigated. Results confirm
that evening headway sequences at stations is generally equivalent to minimizing passenger
waiting time but this goal is constrained by train capacities and limited by the cost of
holding. It is also shown that accounting for holding costs leads to simple optimal strategies
wherein a few early control actions are exerted on a few trains and terminal holding is
preferred, with significant associated time savings (19-51%). All the problem instances are
solved in less than ten seconds using a two-step solution procedure.

Finally, the short-turn strategy is studied in more detail. Guidelines are given for
determining efficient short-turning options and exactly assessing their benefits using the
developed holding model in some cases.

Thesis Supervisor: Nigel H.M. Wilson, Ph.D.
Title: Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

High-frequency rail transit systems have been playing an increasing role in urban

transportation, reducing traffic congestion, creating livable communities and meeting

the need for basic mobility. Nonetheless, they are not immune to disturbances that

can impact their reliability as an alternate urban transport mode. Especially during

peak periods, disturbances on a transit line may result in overcrowded trains, long

delays and severe degradation in the level of service provided.

Transit agencies have made increasing use of better information technologies in-

cluding automatic vehicle location (AVL) and automatic vehicle monitoring (AVM)

systems to monitor and regulate train operations. While advanced train control sys-

tems can automatically recover from minor disturbances, longer delays must still be

handled using dispatchers' experience and judgment. Recent research to improve the

train control decision making process has not yet led to implementable models, even

when assuming that all the disruption parameters are known deterministically.

This thesis reports on real-time control strategies for rail transit systems to deal

with disruptions. It presents a model that considers holding and that can be com-

patible with a real-time decision-making process. The model is tested on a modified

system based on the Massachusetts Bay Transportation Authority (MBTA), and find-

ings from the test disruption scenarios are presented. In particular, the sensitivity

of the optimal holding strategy to vehicle capacity and the cost of in-vehicle delay

is thorougly examined. It is also shown that this model can serve as a basis for

13



evaluating some types of short-turning strategies.

1.1 Motivation

Heavy rail transit lines are subject to frequent disruptions or delays that can severely

impact passenger level of service. According to Song [31], there were approximately

323 incidents or disruptions of at least 10 minutes duration on the MBTA Red Line

during a two-year period ending in 1996. This averages three disruptions per week,

with most of the recorded delay durations between 10 and 20 minutes.

Disruption durations longer than 20 minutes are generally caused by disabled

trains, but can also be associated with bomb threats, fires on trains or other severe

technical problems. In such disruption cases, part of a track and/or a station is lost

and changes in operating plan are needed such as introducing substitute bus service.

Disruptions with shorter durations, such as 10 to 20 minutes, are more frequent

and are typically caused by a disabled train, door jam or malfunctioning signal. For

these types of disruption, substitute bus service would be costly and non-responsive.

Thus, transit agencies usually use real-time control strategies to deal with these types

of delays in the case of both bus and rail. Common strategies include holding a

vehicle at a station, expressing a vehicle over a segment of the line, and short-turning

a vehicle. For a better understanding of the model presented in this thesis and what

it purports to do, a more detailed description and analysis of these control strategies

is presented in Section 1.3.

Existing automatic train regulation systems control vehicle speeds and/or spacings

between vehicles in order to achieve adherence to trains' dispatching schedule and to

maintain regular headways between trains. These systems strive to address minor

deviations from the operating plans and the scheduled headway sequences between

trains. Yet, none of them specifically address the cases of longer disruptions that

require train control strategies such as the ones mentioned above.

This lack is compounded by the large amount of information to consider and

the difficulty of quickly assessing the system-wide costs and benefits of any train

14



control action. Not only must dispatchers know the location of the trains relative

to the disruption location, but they also need to know the train loads and the track

configuration in order to select appropriate control strategies to minimize the service

impacts. Making effective decisions in a short time is extremely difficult given the

unpredictable and stochastic nature of transit systems and because any decision can

have major repercussions down the line and on future operations. Hence, train control

decisions are usually made based on judgment and experience.

Therefore, there is a need for automatic train control DSS that would determine

in real-time the optimal train controls to apply to minimize the system-wide effects of

a disruption. With the increasing use and improvement of automatic vehicle location

(AVL) and automatic vehicle monitoring (AVM) systems, there are great opportuni-

ties for the development and integration of such tools into existing train regulation

systems.

The research presented in this thesis is motivated by recent research (Shen [30]

and O'Dell [26, 27]) that formulated the disruption recovery problem as deterministic

mathematical programs in the case of heavy rail transit. The objective was to mini-

mize passenger waiting time (and on-board delay in [30]), given a known fixed delay

duration. Although these formulations led to interesting findings and recommenda-

tions for heavy rail control, the required times to solve the control problem may not

be compatible with real-time implementation of the models. Compounding this was

the assumption of a fixed delay duration, as this parameter is generally unknown.

Moreover, relaxing this assumption would yield a more complex problem and almost

certainly much larger solution times, thus affecting the real-time tractability of any

non-deterministic train control problem.

The model developed in this research determines the optimal train holding strat-

egy. The holding model is implemented using commercial optimization software and

yields solution times that are compatible with real-time decision making. It can be ap-

plied on any non-branching rail transit line with real-time train location information

available. The model formulation can also serve as a basis for a real-time stochastic

15



train control model that considers the uncertainty of the delay duration.

1.2 Review of Prior Work

1.2.1 Literature Review

The earliest research in the field of transit control strategy stemmed from mathemat-

ical studies of simplified transportation systems. These early studies drew on fields of

applied mathematics such as queuing theory, Markov chains, game theory, stochas-

tic processes and Monte Carlo simulation (see [1, 5, 4, 23, 28, 35]). One consistent

finding from this early work was the complexity of the mathematical models involved

and the difficulty of obtaining exact analytical results. Moreover, because of the lack

of AVL systems at the time of those studies, only a few parameters of the system

could be assumed to be known in real-time and available to analyze disruptions and

consequently derive optimal train control strategies. The solution to these train con-

trol problems usually depended upon macro-level parameters such as the mean and

variance of the headway distribution, the correlation between successive arrivals, or

the ratio of passengers benefited to passengers disbenefited by the control strategy

(see [4]). Of particular interest is the work presented by Barnett [5] who considers a

rudimentary system with only one infinite-capacity vehicle, and all passengers board-

ing at the same stop and having the same travel cost structure. Based on this simple

system and other economic constraints, Barnett derived a simple holding strategy

(holding the vehicle until a threshold headway) that solves an apparently complex

mathematical problem. Although his result was purely analytical, he suspected that

any strong analytical results for larger and more complicated systems would be most

difficult to obtain.

Far from being discouraged by those results, researchers further investigated the

opportunity of using real-time information in modeling complex transportation sys-

tems. Thus, the locus of interest shifted from seeking exact analytical results to the

16



application of mathematical optimization methods.

Turnquist [34] first described an advanced schedule control model which illustrates

how real time data on vehicle location and passenger loads for vehicles along a transit

route can be used to reduce schedule deviations. Turnquist suggested that the model

could be used as the basis for a control strategy that uses multiple control points and

which regulates vehicle speeds to restore vehicles to schedule at the succeeding stops,

rather than simply reacting to deviations from schedule by holding vehicles. The

strategy was designed to take advantage of the broad capabilities for real time data

acquisition represented by automatic vehicle location (AVL) and automatic passenger

counting (APC) systems. The work was applicable to both rail and bus transit

operations.

Furth [14] investigated optimal headway adjustment strategies to recover from

delays, taking into account both ride time and waiting time at stations. Contrary to

Turnquist's approach, Furth considered using holding strategies at stations only. He

compared benefits provided by spreading the recovery over a large number of trains

(minimizing platform waiting time) and by immediate recovery from the delay (op-

timizing ride time). Depending on the location and the duration of the initial delay,

recovery spreading was shown to yield larger benefits. Furth's approach was also in-

teresting as he limited the control scheme to the trains located behind the blockage.

He found that benefits were not very large but merited being included in automatic

train control systems. O'Dell [26, 27] later showed that much larger benefits come

from controlling the trains ahead of the blockage (see below).

More recent research (Eberlein [12], O'Dell [26, 27] and Shen [30]) has focused on

the evaluation of control strategies under different disruption duration scenarios and

using mathematical programming formulations of the problem. Holding, expressing

and short-turning of trains were considered in these rail transit studies.

Eberlein [11, 12] first considered the problems of deadheading, expressing and

holding with vehicle locations as real-time input parameters. The objective was to
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minimize the total passenger waiting time in a single-loop system with no costs asso-

ciated with the control actions. Delay incurred due to holding by passengers on-board

the held train was omitted. In her more general model, running times between sta-

tions and passenger flow rates were station specific but deterministic. Moreover, as

the model focused on routine control and not on significant disruptions, train capacity

and short-turning strategies were not considered. The resulting mathematical formu-

lation had a non-linear cost function and non-linear constraints. Heuristics were used

to solve the problem as fast methods to solve non-linear mathematical programs were

not yet available. Yet, Eberlein's formulations provided a solid foundation for further

applications of operations research methods in this area.

Based upon the models developed by Eberlein, O'Dell [26, 27] formulated train

holding and short-turning as disruption recovery strategies for a transit line with

branches, namely the MBTA Red Line. Train capacity was considered and O'Dell also

introduced the symplifying assumption that the delay duration was known. In-vehicle

delay time was also omitted. The resulting formulation was a linearly constrained

mathematical program with non linear costs. The quadratic objective function was

approximated by piece-wise linear functions so that the resulting linear mixed integer

program (MIP) could be solved by the existing linear optimizers.

For the holding problem, O'Dell considered and formulated three different types

of holding strategies: holding trains at any station, holding trains at the first station

they reach after the disruption occurs, and holding each train at only one optimally

chosen station. Holding at any station clearly yielded greater benefits as the two

other options were constrained versions of the general holding problem. Also, since

in-vehicle delay time was not considered by the model, the resulting optimal holding

strategies overestimated the benefits of holding and considered holding trains at mul-

tiple stations, which can be more difficult for dispatchers to implement. Nonetheless,

she found that most of benefits of holding could be achieved by controlling a small

set of trains ahead of the blockage, at a few stations. The short-turning problem

was also formulated, assuming the final train order after the short-turn is given, and
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extending this formulation to an undetermined train order was also discussed.

The formulations were tested on two disruption scenarios with two different block-

age durations. This yielded reductions in total passenger waiting-time of 15-40% in

the case of the holding strategy, with no consideration of the increased on-board time

for held passengers. The implementation of the short-turning model led to the conclu-

sion that greater benefits are achieved by short-turning when the blockage duration is

longer, as the time spent on short-turning trains is a relatively less significant factor.

O'Dell implemented her model formulations on a Sun SPARC 20 workstation

with CPlex 3.0. By reducing the set of trains deemed impacted by the optimal con-

trol strategy, the problem size was reduced so that solution times under 30 seconds

were achieved. Although these values seemed compatible with real-time implementa-

tion, the presented formulations were still too slow to solve if the model were to be

extended to a stochastic formulation of the problem.

This model served later as a basis for Shen [30] in designing a more general model

that considered holding, short-turning and expressing. Shen's model also assumed the

disruption duration to be known and used a linear approximation of the cost function

however the objective function combined the total passenger in-platform time and

the on-board delay time due to holding.

Shen showed that, when accounting for the cost of holding, the benefits of holding

might be less than suggested by O'Dell. Decreases less than 20% in weighted waiting

time were observed in the only disruption scenario used to test the model formula-

tion. Nonetheless, Shen also showed that short-turning combined with holding could

achieve tremendous savings in waiting time: up to 57% decrease in weighted waiting

timed was observed.

Two other major findings from the model implementation were also emphasized.

First, expressing was shown to yield marginal additional benefits compared to the

other two control strategies. Second, it was concluded from the optimal solutions

that benefits of holding primarily stem from holding trains ahead of the blockage,

which was consistent with O'Dell's findings.

19



In addition, Shen investigated the consequences of mis-estimating the disruption

duration. By comparing the optimal solutions obtained with the hypothesized and the

true durations, Shen showed that the effectiveness of short-turning is quite sensitive

to the estimate of the disruption duration. In contrast, holding and expressing were

robust strategies.

Furthermore, even after improving the solution search procedure with CPLEX 4.0,

the solution times needed to solve the MIP problem formulation were not compatible

with use in a stochastic formulation of the problem: it took more than 60 seconds to

solve the combined holding, expressing and short-turning problems for a 20-minute

disruption scenario. The large solution times were the consequences of numerous

binary variables used to model each of the control strategies. The obtained range

was nevertheless deemed acceptable for real-time use, assuming a deterministic delay

duration.

1.2.2 Shortcomings and Limitations

While the abovementioned research has provided valuable insights and comparisons

of the respective benefits of each control strategy under certain conditions, none of

them have been demonstrated to be reliably implementable within transit agencies.

All the prior work still has serious shortcomings and impediments to practical use:

e First, all the studies presented above used a deterministic representation of

train control parameters such as running times, dwell-times and delay duration.

While the consequences of using deterministic dwell-times and running times

for a certain time period might be acceptable, the assumption of a predeter-

mined delay duration is almost certainly too strong. The sensitivity analysis

by Shen [30] showed that while the benefits of certain control strategies can be

significant, they may be sensitive to the disruption duration variability. Given

that dispatchers usually cannot estimate this duration accurately, these meth-

ods might lead to ineffective control strategies.

* Second, the solution times [26, 30] may still be too large for real-time use in
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transit operations, at least in the short term. It is suspected that the model

formulations are overly complex to yield reliable fast solution times with the

current state-of-art in optimization solvers. It is almost certain that, in the short

run, these formulations could not form the core mathematical representation for

the stochastic version of the train holding problem. Moreover, all those models

seek optimality: it is unclear that this goal is worth the extra solution time given

the simplifications made at the modeling stage. For real world applications,

strict optimality is not a necessary goal.

" Third, some important practical issues have been overlooked for the sake of

model tractability. For example, constraints due to terminal operations prac-

tices were not taken into account. Nonetheless, some important realistic as-

sumptions were made in developing the optimization framework. For instance

train capacity and short-turning locations were incorporated in the optimization

models as well as line branching.

" Fourth, a very limited number of instances of the problem have been tested

using real-time information in the optimization formulation. While findings

were in general consistent among the different applications, the small number

of such applications has yielded only general conclusions on the efficiency and

the relative performance of train control strategies. In particular, the sensitivity

of the optimal solutions to the relative weights of in-vehicle delay time and in-

platform waiting time was not investigated.

None of the research using optimization techniques has lead to methodologies or

tools which are readily usable by the transit industry. Actually, only studies based

on simple heuristics or incremental recovery strategies have been of some success in

that respect (Song[31]).
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1.3 Existing Real-Time Control Strategies

Three types of control strategies are available to transit agencies to respond to dis-

ruptions that do not require substitute bus service, but introduce changes to the

operating plans. They are holding, short-turning and expressing.

1.3.1 Holding

The holding strategy consists of delaying trains' departures at stations. It is the

easiest strategy to implement and therefore the most frequently used within transit

agencies. Disruptions generally result in a gap in front of the train immediately

affected by the blockage. The objective of holding is to even out the sequence of

headways preceding the blocked train. This goal is mainly driven by two rationales.

First, the original rationale for transit practitioners to even out headways stems

from the ease of train and crew scheduling that a regular schedule entails. Indeed,

rail transit operations include not only train and service scheduling but also crew

assignment. Each of these problems is a rather complicated task on its own, so that

optimally solving these problems together has been long considered impossible. Thus,

operating a regular schedule was likely to be the best option for transit operators to

conduct operations efficiently while providing an adequate level of service to their

passengers.

Second, it has been demonstrated that, under some simplifying assumptions, the

average waiting time at a station is minimized when the variance of the vehicles'

(train or bus) headway is minimized (Welding [29]). While this result is simple and

consistent with transit operators' practices, it depends on two important assumptions:

i) For the considered observation period, the passenger arrival process has a con-

stant rate at the observation station.

ii) Vehicles have (effectively) infinite capacity, i.e. any capacity constraint is not

binding.

Clearly, assumption i) is difficult to argue since, at any station, the passenger ar-
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rival process is likely to vary over time and generally shows a high level of randomness

(see Eberlein [11]). Assumption Zi) is most questionable when train loads are close

to the train capacity. This situation is most likely to arise when a disruption occurs,

resulting in a long preceding headway for the blocked train and a consequently larger

number of passengers waiting for this train down the line.

Although the goal of holding is simple, different holding strategies can differ

greatly in their implementation complexity, depending on the extent of required con-

trol actions. Indeed, a holding strategy is defined by the choice of the trains to be

held and the stations where the holding occurs. Thus, as described by O'Dell [261,

holding strategies can be classified according to the restrictions in selecting:

1. The set of trains that might be held and,

2. The set of stations where each of these trains might be held.

Below we review each of these possible restrictions along with results of the effec-

tiveness of each type of control strategy.

Choice of The Controlled Trains

We distinguish here two sets of trains:

" the set of trains located behind the blockage and,

" the set of trains located ahead of the blockage (both downline from the disrup-

tion and in the reverse direction).

O'Dell [26 showed from her model implementation that negligible savings in wait-

ing time are achieved through active holding1 of trains behind the blockage (less than

1%).

'Following O'Dell [26], we make the distinction between passive and active train holding. A train
is said to be passively held at a station if it dwells beyond the necessary dwell-time due to some
physical constraints or as a consequence of the operating plan. For instance, trains queuing just
behind the blockage are said to be passively held during the blockage duration. In the same fashion,
a train that waits for a ring-off to be dispatched from the terminal station is also said to be passively
held. Train holding for reasons other than the aforementioned ones is said to be active.

23



This result is intuitive when we consider in more detail the dynamics created by

a disruption. We refer to Figure 1-1 for illustration. As the delay duration increases,

trains behind the blockage (referred to as -1 and -2 in the figure) queue up behind

the blockage. Meanwhile, a gap is created between train 0 and train 1 if no active

control is exerted. These two distinct dynamics result in an increasing number of

passengers affected by the growing delay, at stations both behind and ahead of the

blockage. Behind the blockage, passengers who board trains queuing up behind the

blockage are passively held and see their travel time increase. Ahead of the blockage

(downline from the disruption and in the reverse direction), passengers arriving at

stations already served by train 1 are affected by the long headway and accumulate

at those stations.

Thus, train capacity becomes an issue for trains behind the blockage as they must

serve the growing number of passengers arriving at stations behind and ahead of

the disruption. It follows that actively holding these trains would only increase the

waiting time and the number of affected passengers, with no benefits derived. Thus,

trains located behind the blockage are not considered for active holding.

Nevertheless, one must evaluate the waiting time for these trains in assessing a

holding strategy when delays grow and train capacity becomes a concern. For ex-

ample, trains which are held ahead of the blockage not only change the headway

sequence for trains in front of the blockage, but also help reduce the gap in front of

the blocked train (train 0). This leads to fewer passengers waiting for train 0 (and

following trains) and an alleviation of on-board congestion for these trains. Hence,

the beneficial impacts of holding trains ahead of the blockage on trains behind the

blockage should be captured in the assessment of any holding strategy.

Furthermore, the number of trains behind the blockage needed to clear all the

passengers left behind (once the blockage is removed) not only depends on the train

controls exerted ahead of the blockage, but also on the disruption duration and loca-

tion. For instance, in Fig. 1-1, there are few stations and trains behind the blockage

in the disruption direction. As the delay grows, trains in the reverse direction (e.g.,

24



4R 3R 2R 'R

12 11 10 9 8
13

X, 2 X3 7

2 3 4 5 6

-2 -10 12

Disruption
location

train

station

crossover
track

Figure 1-1: A disruption on a simple loop line

3 R and 4R) would become part of the queue forming behind the blockage. Also, once

the blockage is removed, they may need to reach congested stations as fast as possible

in order to alleviate platform crowding.

One needs to be careful in drawing the line between the trains considered "behind

the blockage" (not considered for holding) and those ahead of the blockage (considered

for holding). The model presented later in this thesis considers trains behind the

blockage to include only those trains needed (in the disruption direction and the

reverse direction) to clear all the passengers left behind when no control action is

taken2

Furthermore, we note that holding a full train at a station yields no benefits.

This is because the immediate benefits of a train's hold consist of a decrease in total

2 Trains in the reverse direction that are considered as "behind trains" are not actively held

and are dispatched at the minimum safe headway after they reach the beginning terminal in the

disruption direction. They are affected by a holding strategy only through the number of passengers

left behind at stations after the terminal. Thus, these trains can be modeled as trains sitting at the

terminal with a dispatching headway equal to the minimum safe headway.
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passenger waiting time for the following train, as the following departure headway is

reduced. In the case of a train loaded to capacity, arriving passengers cannot board the

full train and must await the next train, so that the total passenger waiting time for

the following train is not affected by the additional hold. In addition, these passengers

might be frustrated by the sight of a full train they cannot board. Compounding this

is the additional waiting time for departure incurred by passengers who boarded this

train before it reached capacity. Finally, through-passengers3 on-board the held train

would be affected by the extra riding time due to the holding action. In consequence,

once capacity is reached, trains should not be held any longer.

Choice of The Holding Stations

Differentiating holding strategies through selection of the holding station leads to

three different types of strategies. The first strategy is to hold trains at the first

station they arrive at after the disruption starts ("Hold First"). The second strategy

is to hold each train at only one optimally chosen station ("Hold Once"). The third

strategy allows trains to be held sequentially at more than one station on the line.

Intuitively and as confirmed by model experiments in [26], the fewer the con-

straints placed on the choice of the holding stations, the more effective the holding

strategy will be. Specifically, the "Hold All" strategy is more effective than the "Hold

Once" strategy, which is in turn more effective than the "Hold First" strategy. How-

ever, O'Dell showed that the benefits of "Hold All" were only slightly greater than

for the two other strategies (the reduction in waiting time was less than 1%).

Nevertheless, it is expected that the difference between these strategies' respective

effectiveness will be more pronounced when on-board delay time is included in the

objective function. To illustrate this, one can consider train lR in Fig 1-1, arriving

at station 8 where many passengers board to travel to the following station 9. In this

case, holding at station 9 might turn out to be more beneficial than at station 8. This

would happen if delaying the downstream benefits of the hold has a cost that is less

3Through-passengers of a train at a station are defined as passengers who are on-board the train
both when it enters and leaves the station.
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than holding passengers at station 8.

Conclusion

In consequence, an effective holding strategy should only consider actively holding

trains ahead of the blockage at multiple stations. Trains behind the blockage are

passively held but they are clearly affected by the choice of the holding strategy,

as active holding in front of the blockage impacts both passenger waiting time for

these trains and their loads. Hence, trains behind the blockage, albeit not controlled,

should be included in assessing the effectiveness of a holding strategy.

1.3.2 Short-Turning

Short-turning is another strategy that is often employed by transit agencies. It con-

sists of turning a train to the reverse direction before it reaches the terminus. It is

considered because simply holding trains might not bring sufficient gains in recov-

ering from some disruptions. Especially for longer disruptions, spreading the delay

over a limited number of trains ahead of the blockage will still yield long headways

and can be of limited value. Similarly, when a blockage is located in a high-demand

portion of the line, the situation can very quickly become critical in terms of train

and platform congestion. In these situations, dispatchers could make beneficial use

of the less crowded trains and additional capacity that may be available on trains

serving other parts of the line.

For instance, we could short-turn trains from the reverse direction to "fill the

gap" developing in front of the blockage. Alternatively, when there exists high levels

of travel demand in the reverse direction, trains could also be short-turned from

behind the blockage to supply service in the other direction. We review below with

the help of Figure 1-1 the different types of service impacts due to a blockage and

estimate the effectiveness of diverse short-turning strategies in response.
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Analysis

We consider the simple disruption case shown in Fig. 1-1. We consider different de-

mand scenarios in parts of the line and we investigate the potential for short-turning

in each of these scenarios. We first consider the case of high demand for travel be-

tween stations downline from the disruption, which might lead to short-turning trains

to a location ahead of the blockage. We then consider the case of high demand for

service between stations 11 and 13, which might lead to short-turning trains behind

the blockage to the reverse direction.

We first assume that many passengers are traveling from station 6 to station 7

(terminal). In this case, only train 1 services these passengers during the duration of

the blockage. Holding train 1 at station 6 might yield benefits but they are limited

by the train capacity constraint and the additional travel-time incurred. Therefore,

a short-turn loop might be considered, consisting of stations 6, 7, 8 and crossover

X3. Short-turning trains 1 R and T might then be considered at crossover X3, but we

would then remove the service provided by these trains in the reverse direction to the

disruption. This service removal results in a headway increase following train 2 R and

consequently larger waiting times at stations located after station 9, once serviced by

train 2 R. One of the tradeoffs in choosing an effective short-turning strategy is between

the potential waiting time savings in the served areas versus service degradation in

areas where service is reduced.

We next consider that many passengers are traveling from station 11 to station

13. In this case, trains -1 and -2 could be short-turned from behind the blockage, using

crossover X2. In this case, trains outside the short-turn loop (consisting of stations 1,

2, 3, 11, 12, 13 and crossover X2) can be held in order to reduce the gap developing in

front of the blocked train 0. These holds can result in a decrease in total waiting time

at stations 5 through 10 once the blockage is removed but additional in-platform

and in-vehicle time are incurred as in any holding strategy. Most of these savings

may also be achieved by holding only a subset of the trains 1 through 3 R, so that
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train 3 R might "enter" the short-turn loop. This would provide additional service

for passengers traveling from stations 11 and 12 to station 13. The benefits of these

short-turns have associated costs as, within the short-turn loop, people "dumped" by

short-turned trains -1 and -2 at station 3 create additional demand at this station

for train 4 R. Nevertheless, if there are few passengers on-board these trains, queuing

these trains behind the blockage instead of using this additional capacity might be

sup-optimal. Hence, the decision here is clearly based on the tradeoff between the

potential waiting time savings at stations outside the short-turn loop and the costs of

the short-turning actions.

We now suppose that crossover X2 is not available, and trains -1 and -2 are short-

turned using X, and there is also high demand for travel between stations 2 and 3. In

this case, short-turning train -1 might not be beneficial within the short-turn loop, as

many passengers would be denied reaching station 3. Here, one tradeoff in making an

effective short-turning decision is between the waiting time savings in the fully served

areas versus service degradation in skipped areas.

From the above analysis, we can also conclude that the choice of a short-turn

location depends on the availability and the location of the crossover tracks, but

more importantly on the location of the disruption. During peak hours, most heavy

rail transit lines serve the CBD that is located at the middle of the line and to which

many riders travel. Since passengers are dumped by the short-turned trains, short

turns ideally take place near the terminal, where trains' passenger loads are low. If

the disruption is located beyond the CBD and close to the terminal, blocked trains

are likely to have additional capacity that can be redirected to the reverse (peak)

direction. In this case, trains that are short-turned would use a crossover track that

is located behind the blockage, if available. If the blockage is located before the CBD

and close to the terminal, then an appropriate strategy would short-turn trains at a

crossover located between the blockage and the CBD.

Another important point is that short-turning a train requires reverse track oper-

ations, for which running speeds are lower for safety reasons: on MBTA lines, normal
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running speeds are between 20 and 40 mph, compared to a maximum speed of 25 mph

on reverse tracks. As crossover operations are time-consuming (six minutes is typical

on MBTA lines), short-turning strategies are only appropriate when we have longer

disturbances or unusual circumstances. Therefore, based on train location informa-

tion, inter-station running times, cross-over locations and the duration of the delay,

there are limited sets of candidate trains for short-turning at any available cross-over.

Consequently, not only must the choice of a short-turn location consider the location

of the disruption and the aforementioned tradeoffs (based on the characteristics of

travel demand along the line), but it is also restricted by the availability, configuration

and ease of use of crossovers.

Conclusion

The potential benefits of short-turning depend mainly on the location of the disrup-

tion relative to the CBD (which determines the type of short-turn to be considered),

and also on the choice of the short-turned trains and the achieved sequence of trains

in the direction where trains are short-turned to. These critical factors cannot be

treated separately as they all affect the choice and the effectiveness of a short-turning

strategy.

Also, for a given short-turn strategy, train holding (passive and active) must be

considered both to enable trains to be short-turned and to maximize benefits. Hence,

the holding problem can be seen as the core sub-problem in any short-turning strategy.

The difficulty of the short-turning strategy then lies in choosing a small set of feasible

and sound short-turning strategies to assess.

Chapter 5 will provide a more detail discussion of these critical factors of the

short-turn decision making process. It will also present how a holding model might

be used to determine the effectiveness of a short-turn decision.
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1.3.3 Expressing

Expressing is a third control strategy that is often used by transit agencies in re-

sponse to service disruptions. An expressed train skips selected stops during its trip

and hence has a reduced running time and preceding headway beyond the express

segment. Shen showed in [30] that the expressing strategy provides only marginal

benefit beyond holding and short-turning. Rather, expressing can be seen as a post-

processing decision once holding and short-turning decisions have been made.

Therefore, we will focus on holding and short-turning as the primary strategies to

deal with disruptions and treat expressing as a post-processor option.

1.4 Thesis Contents

1.4.1 Research Approach

Based on the discussion above, we first model the holding problem since it is the key

sub-problem of the overall train control problem. The goal at this stage is to obtain

a model that not only includes the features in the Shen and O'Dell models as well

as terminal operations, but also has reduced solution times. These two seemingly

contradictory goals can be achieved through the use of a more effective formulation

of the problem, based on findings in O'Dell [26] and Shen [30].

Second, the short-turning problem is discussed in more detail and guidelines will

be developed to help dispatchers make sound and efficient short-turn decisions. We

will show how any given short-turning strategy can be formulated as a corresponding

holding problem. Hence, the goal here is to give guidelines to choose a small set of

short-turn strategies and assess each of these with the use of the previously developed

holding model. These guidelines, combined with the holding model, could be even-

tually included in an automatic decision support system to help dispatchers make

efficient short-turn decisions in real time.
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1.4.2 Thesis Plan

In Chapter 2, we analyze a simple holding strategy that considers holding trains

ahead of the blockage at the first station each train arrives at after the blockage.

The resulting model serves as a basis for the more complex train control problems

addressed in the remainder of the thesis.

In Chapter 3, we develop a more realistic, general system model, which considers

holding trains at multiple stations in the disruption direction, ahead of the blockage,

as well as in the reverse direction. Terminal operations and terminal capacity issues

are analyzed and incorporated into the train control model.

In Chapter 4, we test the model formulation on several disruption scenarios, an-

alyze the control strategies output by the model and perform sensitivity analysis

with respect to various problem parameters. Results from the test scenarios are also

studied to derive useful holding recommendations for manual control as well as for po-

tential use in a DSS. To decrease solution times, a simple two-step solution procedure

is presented and tested.

In Chapter 5, the short-turn strategy is discussed and studied in more detail. The

study will focus on providing guidance to dispatchers in order to make useful short-

turn decisions. In particular, it is shown how, for a common type of short-turn, the

holding model developed in Chapter 4 can be easily modified and used to assess the

impacts and the efficiency of a given short-turn strategy.

Finally, Chapter 6 summarizes the findings and offers suggestions for future re-

search. In particular, the assumption of a known delay duration is discussed and

suggestions for developing models that relax this assumption in future research are

presented.
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Chapter 2

Formulation and Analysis of a

Simple Control Strategy

We first analyze a simple train control strategy for a simplified subway system. The

system to be considered consists of a set of trains operating on a non-branching loop

line, on which a disruption occurs. We assume that layover times at the terminal

station are sufficiently large to ensure that delays caused by both the disruption and

any control strategy will not impact line operations in the opposite direction. Thus,

holding trains in the reverse direction from the disruption is not considered in the

problem tackled in this chapter.

Although such a subway system seems a priori unrealistic, its study will provide

us a better understanding of control strategy mechanisms in a simple system. The

control strategy studied in this chapter is the "Hold First" strategy, wherein con-

trolled trains are held at the first station they arrive at after the disruption occurs.

The model does not consider capacity constraints for trains behind the blockage and

the impacts of passengers left behind by these trains.

As mentioned in section 1.2.1, prior work by Furth [14] first focused on holding

trains behind the blockage. O'Dell [26, 27] later showed that significantly greater

benefits stem from holding trains at stations ahead of the disruption location. Hence,

our study will focus on controlling trains ahead of the blockage, which are not delayed
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by the disruption.

This chapter, as well as the next one, aims to formulate and solve the above

holding problems as optimization programs. A careful formulation and analysis is

necessary to derive suitable numerical methods for solving this problem efficiently. It

would also give us insight into the seeming complexity of the train control problem:

one interesting aspect for instance is the impact of a train being held on other trains'

movements on the line. Numerical methods will be used to solve the optimization

program and obtain implementable control suggestions.

2.1 The "Hold First" Strategy

As previously stated, the "Hold First" control strategy consists of holding trains ahead

of the blockage, when we can hold a controlled train only at the first station arrived

at after the disruption starts. Even though this strategy may not be optimal', such a

holding scheme is not unrealistic in some cases. For instance, during off-peak periods,

we may want to recover quickly from minor service disruptions by immediately holding

a small set of trains ahead of the blockage.

The assumptions and the notation used for the "Hold First" problem formulation

are provided below and illustrated in Figure 2-1.

2.1.1 Assumptions and Notation

Assumptions

We make the following assumptions for our "Hold First" problem.

9 The duration of the delay is a known fixed parameter. As discussed before

(Section 1.2.2), this is probably the most questionable assumption.

le.g., holding at one particular station might be undesirable when many on-board passen-
gers alight at the following station. In this case, holding at the next station would cause less
inconvenience.
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" Passenger arrival rates and alighting fractions are constant and station-specific.

This assumption is reasonable if the system's characteristics do not show much

variation throughout the analysis period. This assumption also implies that

passengers arrive randomly at stations, which is questionable especially in the

case of transfer stations. At those stations, bulk arrivals are more likely due to

transfers from other lines, but the characteristics of this process are complex and

will not affect the expected waiting time. Therefore, a random arrival process

will also be assumed at these stations to estimate expected passenger waiting

times.

" Train dwell-times are constant and station-specific. Dwell-time is generally a

function of platform boardings and alightings (see Lin [20, 21]). Therefore, since

the number of passengers waiting for a given train depends on its preceding

headway, holding the train ahead will affect its dwell-time. Nonetheless, dwell-

time standard deviations at a station are in general under half a minute, which

is a small fraction of the mean passenger waiting time. Thus, simplifying the

dwell-time component may not be critical in developing holding strategies that

seek to minimize passenger waiting time.

" Train movements between stations are deterministic. This assumption seems

a priori questionable as train movements are stochastic in nature: they are

function of many factors such as weather, track conditions and the train control

system. Yet, we note again that for a limited analysis period, the standard

deviation of train running time between two stations is likely small compared

with other times of interest such as train headways and holding times, whose

variations more significantly affect the level of service provided.

" Full trains ahead of the blockage are not allowed to be held. As discussed in the

presentation of the various holding strategies in Section 1.3.1, trains ahead of

the blockage that are loaded to capacity before departing are not held beyond

the necessary dwell-time.
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Notation

The following notation is used in the holding problem formulations:

do = delay duration

N = number of trains located between the blockage and the terminal in

the disruption direction

M = number of stations on the line

Mo = station where the blockage occurs, or the station immediately

ahead of the blockage if the disruption occurs between stations

Ci = capacity of train i

ri = holding time of train i at its control station

Hi = uncontrolled departure headway of the ith train ahead of the blocked

train

H,= minimum safe headway

m(i) the current station of train i = 1, .. ., N or the next arrived at -if

traveling between two stations- after the disruption starts (m(O) = MO)

G = station group of train i (see below).

Li,m load of train i upon arriving at station m

LO = Li,m(i) for i = 0,..., N

Am = passenger arrival rate at station m

am = passenger alighting fraction at station m

We define for each controlled train i its station group, denoted G, as the set

of stations between its control station m(i) and the preceding train i + 1 's control

station m(i + 1)2 (non-inclusive). For train 0, Go = {Mo, Mo + 1, ... , m(1) - 1}. For

train N, the station group GN includes its control station and all stations down the

2For the sake of simplicity, we adopt here the unusual notation: train i + 1 is the train ahead of
train i.
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line until the station before the terminal: GN = {m(N), m(N) + 1,. . . , M - 1}. For

instance, the time-space diagram (Fig. 2-1) shows that G1 = {Mo+3, Mo+4, Mo0 + 5}

and m(1) = {Mo + 3}.

M, Am, am and H, are parameters of the system whose values are known; also, Hi,

G, MO and L? can be determined in real-time3 , given basic train location information.

Stations
Terminal

M -1.. - -- - --.- -- - --..........

H rN
HN H

.. . . . .. ..... _... ................ .. ..........----- -

Disruption Time
time

Figure 2-1: "Hold first" strategy with N= 3 trains held

2.1.2 Problem Formulation

Choice of a Cost Function

As stated by Barnett in [5],

3We can estimate L? from knowledge of train i 's departure time (and hence headways) at previous
stations and the passenger arrival rate at those stations.
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[s]ince the primary effect of randomness is to create irregular intervals,

it is appropriate that the waiting-time distribution for passengers be a

major focus of efforts to improve service.[ ... Thus], the [transit] company

chooses the waiting-time distribution that minimizes a group cost function

I ... ].

The discussion provided in Barnett [5, pages 119-122] serves as a basis for the for-

mulation of our problem and above all for the selection of an appropriate objective

for our train control strategy.

In [5], Barnett assumes that the time-related "cost" the passenger associates with

his trip is a function of three variables F(a, u, v) = Q(a) + R(u) + S(v), where a repre-

sents the amount of time the rider has allotted for his trip ; u his waiting time for the

vehicle, and v the difference between his actual arrival time and the time he wanted to

arrive. The cost component Q(a) is based on the amount of time the rider considers

necessary for his trip. The R(u) cost component relates solely to the inconvenience of

waiting. S(v) measures the rider's "disutility" of arriving at his destination v units

late or, if v is negative, JvJ units early. Through variations of the "holding pattern",

Barnett considers what control can be exerted on the waiting-time distribution to

produce the lowest average cost per rider.

Although realistic and analytically tractable, this form of the objective function

is not suitable for a model formulation to be used in a DSS. Indeed, as acknowledged

in [5], the use of Q(a) and S(v) ignores

[ ... ] the fact that waiting has different "disutility" for different passengers-

who face varying consequences of reaching destinations early or late-[ ...

as] waiting costs are assessed identically for all users.

The lack of information to overcome this difficulty is tantalizing and leads us to

adopt a cost function that is the least subjective possible and can be easily calculated

from available real-time data (which would be R(u) in [5]).
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Hence, we choose our cost function as the total passenger time, that is waiting

and on-board time. The choice of a total value is mainly motivated by mathemat-

ical tractability concerns. Indeed, an intuitive alternative cost function would be a

weighted sum of average waiting times at all stations of the form Ztraii Ai,mWi,m,

where Wim is the average waiting time for train i at station m and Aim is defined as

the ratio of number of passengers waiting at station m for train i to the total number

of passengers waiting in the system. Clearly, the value of those weights is dependent

on the adopted control strategy, inasmuch as they include passengers arriving at the

system during a train's hold. Specifically, additional passengers arriving downstream

of the holding station during the hold must be considered in the cost function. Since

those arrivals appear in both the numerator and the denominator of the ratios, the

cost function can turn out to be quite difficult to compute and lack some necessary

properties for optimization (e.g. convexity).

In the same fashion, capturing the average negative effects of holding on on-board

passengers is also complex, since these effects depend on the proposed solution to the

holding problem. Therefore, minimizing total passenger time seems a more tractable

and reasonable goal to target for the train control problem.

Formulation

In the scope of the "Hold First" strategy, we have already determined the number

of trains to be held and their control stations. Thus, the control problem is viewed

as finding the optimal holding times {ri}i=1,...,N so that the benefits of our holding

strategy are maximized while the inconvenience it causes is minimized. This problem

is equivalent to minimizing an objective function of the form F(r) = Fi(r) + pF 2(r)

with respect to r = (ri, r 2,. . ., rN), where:

" F represents the total platform waiting time for both the held trains and the

delayed train

* F2 accounts for the total extra riding time due to holding
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M p is a positive coefficient that weighs the negative effects of extra riding time

against the total waiting time

We can derive the expression for those functions by inspection from the time-

space diagram (Fig. 2-1) based on the headways that are modified by holding trains.

We obtain the following equations:

F1(r) = (Ho + do - ri) 2 + (Hj+r-r+1) +(H+r)2
imEG2 i. j=1

N

F2(r) = - am(i))ri
i=1

In the first equation, the first term corresponds to the delayed train O's headway

at a given station m. The second and third terms correspond to headways for the

preceding trains up to the train that is held at this station. We also consider that

passengers who board a train during a station hold experience extra waiting time

(for the train to depart), rather than extra ride time. Thus, in the second equation,

we only account for the held train's passengers who remain on board at the control

station, which is represented by the expression L?(1 - am()).

Hence, we must solve the following standard constrained optimization problem:

N Ar
(HF) min F(r)= Y 2 (Ho+do -r12 (Hi +ri

i=1 mEGi

i-1 N

+ (H + rj - rj+1) 2  + p x LO(1 - am(i))ri (2.1)
j=1 i=1

subject to:

Load constraints

Lo,m+i = Lo,m(1 - am) + Am (Ho + do), Vm : Mo < m < m(1) (2.2a)
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Lo,m+i = Lo,m(1 - am) + Am (Ho + do - ri),

Li,m+1 - Li,m(1 - am) + Am (Hi + ri),

Li,m+i = Li,m(1 - am) + Am (Hi + ri - ri+1),

LN,m+1 = LN,m(1 - am) + Am (HN + TN),

Vm: m(1) < m < M - 1 (2.2b)

Vm: m(i) m < m(i +1),

Vi = 1, .. ., N - 1 (2.2c)

Vm: m(i + 1) < M < M - 1,

Vi = 1, .. ., N - 1 (2.2d)

Vm: m(N) < m < M - 1 (2.2e)

Capacity constraints

Li,m+i < C ,

Ho + do - r1 > Hs

Hi + ri - rj+1 > Hs,

ri > 0,

Vm: m(i) < m < M - 1, Vi = 0,..., N

Vi=

Vi=

(2.3)

(2.4a)

(2.4b)

(2.4c)

1, .

1, .

The first group of equality constraints calculate train loads at stations. The first

equation of this group calculates entering loads at stations for train 0. The second

equation has the same calculations for the trains ahead of the blockage at the sta-

tions contained in the train station group while the third equation considers loads at

stations further down the line. The second set of inequalities constrain those loads

to be bounded by the train capacity. Indeed, in the scope of this strategy, which is

applicable to disruptions of limited duration, we are likely to hold trains ahead of

the blockage so that no capacity constraint is violated. Furthermore, the capacity

constraint applies only to trains 1 through N as the disabled train 0 is likely to be
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overloaded. The third set of inequality constraints simply state that train headways

must be greater than the minimum safe headway and that holding times must be

positive.

We recognize this as a constrained quadratic program with linear constraints. To

write the objective function in a more standard form, we first note that

N i-1

Am (Hj + rj - rj+) 2

i=1 mEGi j=1

N i-1

(Hj+rj -rj+)2 E Am
i=1 j=1 mEGi

N i-1

EZZ(Hj + rj - rj+)2 (i),
i=1 j=1

N-1 N

N E (Hj + rj - r+)2 A()
j=1 i=j+l

N-i N

E (Hj + r - rj+)2 A(i)
j=1

N-i

= A(] + 1)(j + rj - rj+1)2,

j=1

where A(i) = Am
mEGi

N

where A(j) = A
i=j

1 1 N-1

F(r) = A(1) (Ho + do - ri2 A(i±+ 1) (H + ri - ri+1

N 2 XN

5 A(i) (Hi + r + x 5 L (1 - am())ri
i=1 i=1

(2.5)
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and in standardized matrix form,

1
F(r) = -r'Qr + c'r + f

2

where

/ 2A(1) -A(2) 0

-A(2) 2A(2) -A(3)

0 -A(3)

0 0

0

0

2A(N - 1) -A(N)

-A(N) 2A(N))

A(1)(H 1 -

A(2) (H 2

Ho - do)

- Hi)

A(i) (Hi - Hi_1)

A(N) (HN - HN-1)

LO (1 - am(i))

LO(1 - am(2 ))

L (1 - am(i))

LON (1 - am(N))

and f is a constant term with respect to the decision variable r.

2.2 Model Analysis

2.2.1 Model Formulation

The structure of the quadratic program obtained in our simple "Hold First" strategy

is appealing in several respects. First, the objective function has been formulated in a
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simple form in equations (2.5) through (2.7b), allowing for easy implementation. Also,

the expression shown in equations (2.7a) and (2.7b) provides us with an interesting

interpretation of the coefficients in our quadratic cost function.

The coefficients of the linear terms (with respect to the holding times) are shown

in equation (2.7b). The coefficient of the holding variable ri in the first term of

the right-hand side is A(i) (Hi - Hi_1). Given that A(i) represents the cumulative

arrival rate from station m(i) through station M - 1, we can interpret the coefficient

A(i) (Hi - Hi-1) as the difference in the number of boardings between trains i and

i - 1 from station m(i) through station M - 1. If this term is positive, this means

that there will be more passengers waiting for train i than for train i - 1, thus holding

train i (i.e, ri > 0) is likely to increase the value of our cost function. Otherwise,

holding train i will provide us benefits by reducing waiting time for train i - 1, which

captures more ridership than its predecessor. The second part of the right-hand side

in equation (2.7b) is simply associated with the extra-riding time.

The coefficients of the non-linear terms in equation (2.7a) consist of diagonal and

cross-term coefficients, associated with the variables riri and riri+1 respectively. The

positive sign of the diagonal coefficient A(i) is obviously related to the increased

waiting time for train i if held at station m(i). More interesting is the negative sign

of the non-diagonal coefficients A(i + 1). This shows that the interaction between

train i and i + l's holds contributes to a decrease in waiting time for train i beyond

station m(i + 1).

2.2.2 Solution Procedure

Provided that the matrix Q is definite positive4 , the objective function (2.6) is convex

and thus has a minimum value. This is a standard optimization problem that can be

solved in real-time for any disruption since the variables are continuous and are very

small in number.

A disruption scenario with parameters N = 5 and M = 13 was solved using

4The proof of this conjecture is beyond the scope of this thesis.
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MATLAB. The solution time was negligible. Results of this implementation are not

presented in this thesis but this disruption scenario is solved using a more general

model presented in Chapter 3. Therefore, results from this model implementation are

presented and analyzed in Chapter 4.

2.3 Conclusion

This analysis has led us to the formulation of a simple model that is, under the

assumptions made about the system, easy to implement and use relying on data

readily available to the transit operator. Given the existence of AVL and adequate

data storage and transfer technologies, this simple train control strategy could be

easily implemented and may prove useful.

Nevertheless, we acknowledge that this simple control strategy (hold trains only

at the first station and up to the terminal) is of limited use. We thus extend this

problem formulation to. derive a more general train control model in the next chapter.
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Chapter 3

The General Train Holding

Problem

Although insightful and implementable in some cases, the "Hold First" model is overly

restrictive in regard to the choice of holding stations. In a general case, operators

might hold trains at any station or at multiple stations on the line, which could yield

more benefits. Indeed, we know from Section 1.3.1 that benefits can be greater when

holding at multiple stations or at least beyond the first station reached'. Another

drawback of this model is the non-consideration of trains located behind the blocked

train and in particular capacity issues for these trains.

In the scope of our holding strategy study, we extend the model developed in

Chapter 2 to address holding at multiple stations and include in our model holding

trains at stations in the reverse direction to the disruption. Also, we model passen-

gers left behind by trains located behind the blocked train as these trains might be

overloaded.

'This general holding strategy is referred to as the "Hold All" strategy through the remainder of
this thesis.
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3.1 Problem Formulation

3.1.1 Multiple Holding

In order to model holding at multiple stations, we first define the following holding

variables:

Definition 3.1. For i = 0,..., N and m > m(i), we define ri,m as the holding time

of train i at station M 2 .

Definition 3.2 (Cumulative holding time). For i= 0,..., N and m > m(i), we

note Ri,m = E(i , the cumulative holding time of train i along the line, up to

station m. By convention, Ri,m(i)_1 0.

Remark. We thus clearly have ri,m Ri,m - Ri,m-i for all m > m(i).

By inspecting the time-space diagram (Fig. 3-1), we can write an expression for

the total waiting time for train 0 and the trains located beyond the blockage in the

disruption direction:

F(Ri,m, Li,m) = EsE
i=O mEGi

Am {(H7 + Rj,m - Rj+i,m) 2 + (Hi +

N M-1

+ p E Li,m(1 - am) (Ri,m - Ri,m-i)
i=1 m=m(i)

We can reformulate this expression as a function of the cumulative holding times by

first noting that

i-1

Am 5(H 3 + Rj,m -Rj+1,m)2

j=0

N

i=O mEGi

N-1 N

:m (H + Rj,m - R3+1,m) 2

j=O i=j+1 mEGj

N-1 M-1 S m (Hj + Rjm - R3+1,m) 2

j=O m=m(j+1)

2Active and passive holdings are considered. Thus the holding time of delayed train 0 includes
the delay duration do.
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station M -3
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m m=m(i)_,m (rim)

-2,m(2)

rim

M0+3
M ---..-...-- -

deHa +dRe

Disruption Time
time

Figure 3-1: "Hold all" strategy with N= 3 trains held

Thus,

N m(i+1)-1 -1 M-1

F(Re~mLS S)A=(H +R,m)2+~ Am(Hi+Ri,m-Ri+i,m)2
i=O mzm(i) i=O mzm(i+1)

N M-1

+ g X ... L.,m . -- 'm) Ri,m - Rim-)

i=1 m=rm(i)

(3.1)

Clearly, we can easily extend this model to holding at stations in the reverse

direction-as opposed to the disruption direction- for trains ahead of the blocked

train3 . Nevertheless, some modeling issues deserve careful consideration:

1. Terminal capacity should be appropriately modeled so that we allow two trains

3This is equivalent to "unfolding" the line.
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to sit at the terminal station in a standard stub-end configuration. When both

platforms are occupied and another train is about to arrive at this terminal as

well, this train would then need to wait until a platform is cleared. In case the

corresponding queuing location is not a station, we would then model it using

a virtual station M - 1 with no passenger arrivals (AM-1 = 0) or alightings

(o'm-1 = 0) associated with it 4.

The model shown hereafter considers both active and passive holding at this

queuing location. That is, trains can be held at the queuing location rather than

at station M - 2. Such an action might seem irrational as queuing at station

M - 2 before the terminal could benefit passengers traveling from this station

to the terminal as they can board the train delayed there. Also, passengers held

at a station are usually less concerned by the holding action if it occurs at a

station.

Nonetheless, there might be cases where queuing between stations would be

beneficial. Indeed, a train queuing after station M - 2 frees this station so that

passengers from following trains can alight at this station without additional

delay. If this benefit outweighs the benefits of train queuing at station M - 2

and servicing more passengers traveling from station M - 2 to the terminal,

queuing between stations will be appropriate. The benefits of such situations

are captured by the objective function defined above.

2. Queuing behind the blockage must also be considered as queued trains can in-

cur different waiting times depending on the holding strategies ahead of the

blockage.

3. Train capacity is to be modeled and the load calculation constraints conse-

quently modified for trains behind the blockage. The extra waiting-time in-

curred by passengers left behind by fully loaded trains should be properly in-

4In this case, the total number of stations included in the model is 2M - 3 when we unfold

the line. We have two modeled stations for every physical station (one platform in each direction),
except for the terminal station and the queuing location which are each modeled by one station.
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cluded in the objective function as well.

3.1.2 Notation

We introduce some new notation to describe the general holding model:

Ti is a subscript used for trains currently at the terminal ahead of the

disruption. Here, i = 1, 2 as we consider two platforms at the terminal

iR is a subscript used for the ith train in the reverse direction

6 a binary parameter that is equal to one if a second train is present at the

terminal ahead of the disruption. We assume that there is always

at least one train at this terminal.

NB = number of trains located behind the first blocked train in both the disruption

and the reverse directions, needed to clear the passengers left behind.

Trains in the reverse direction are modeled as sitting at the terminal

behind the disruption, with a dispatching headway equal to the minimum

safe headway

NR = number of trains operating in the reverse direction (and not considered

as "trains behind"), not including any train sitting at any terminal

SB = index set of trains "behind the blockage"

(SB = {-NB,... , -2, -1, 0})

SA = index set of trains ahead of the blockage in the disruption direction.

(SA = {1, 2, .. , N})

ST = index set of trains at the terminal ahead of the blockage.

(ST {T 1} or ST = {T 1 , T2})

SR = index set of trains in the reverse direction (SR = {1R, 2 R, ... , NR})

S = index set of all trains in the system, i.e., S = SB U SA U ST U SR
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hi,m = departure headway of train i at station m

Pi,m = number of passengers left behind by train i at station m

Qi = remaining layover time of train i at the terminal following the disruption,

if the train is not held before this station

T = maximum dispatching time deviation from schedule at the terminal

following the disruption

- minimum turnaround time at terminal stations

HNP is defined as the projected headway of train N. It is defined as the

difference between the preceding train's departure time at station

M - 1 and the projected departure time of train N if this train is not held

between stations m(N) and M - 1

The minimum turnaround time E is the time required after arrival for the train

to be ready to depart in the reverse direction. This typically includes the time for

the train crew to switch ends of the train and routine checking.

Note that the holding variable Ri,m associated with train i at the terminal station

in our model includes the layover time, which is considered to be a holding time. Also,

the definition of train N's projected headway at station M - 1 allows us to consider

any holding actions already exerted on train N between stations m(N) and M - 1.

For trains i C SB (i < 0) behind the blocked train, only passive holding is considered,

as discussed in Section 1.3.1. These passive holds only occur at the queuing location,

at the terminal and at queuing stations behind the blockage.

3.1.3 Definition of the objective function

We clearly have four groups of trains to consider: 1) trains behind the blockage

including train 0 (referred to as group I), 2) trains ahead of the blockage in the

disruption direction (referred to as group II), 3) one or two trains at the terminal

following the disruption (group III) and 4) trains in the reverse direction (group IV).
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Thus, we can write the cost function as the sum of four different functions associated

with each of these train groups, plus the waiting cost incurred by any passengers left

behind:

F(hi,m, Ri,m, Li,m, P,m) = EIVL Fg(hi,m, Ri,m, Li,m) + Fp(hi,m, Pim) (3.2)

with

F(h, R, L) =
0

i=-NB

2M-3

z
rn= rn(i)

Am +
2 h'm + Ix

0 2M-3

i=-NB m=m(i)

Li,m (1 - am) (Ri,m - Rim-i)

(3.3)

where we note h = {hi,m}, R = {R,m} and L = {Li,m}-

N 2M-3

E E 2hi'm + y
i=1 m=m(i)

1+6 2M-3

SS hMiM+Iyx
i=1 m=M

N 2M--3

E E 2 Li,m(1
i=1 m=m(i)

1+6 2M-3

LT,m(1
i=1 i=M

- am) (Ri,m - Rim-1) ,

(3.4)

am) (RTj,m - RTi,m-1) ,

(3.5)

NR 2M-3 Am

S S 2 h±/
i=IR m=M(i)

NR 2M-3

55 1 Li,m(I - am) (Ri,m -
i=lR m=m(i)

(3.6)
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0 2M-3

and Fp(h, P) = Pi,mhi-,m (3.7)
i=-NB m=m(i)

Equation 3.5 shows how we can simply model a second train at the terminal ahead

of the disruption with the use of the binary parameter J.

3.1.4 Formulation of the constraints

Below we present the constraints to which the holding time, load and passenger-left-

behind variables are subject. For the sake of readability, we assume that the train

preceding train i is also denoted i + 1 for trains i ( {-NB,... , o,... N - 1}. For

instance, the train preceding train i = N is train i + 1 LN Ti and the train preceding

train i = T2 is train i +1 Lf

Headway calculation constraints

hi,m Hi + Ri,m, Vm : m(i) < m < m(i + 1), Vi E S - {NR} (3.8a)

hi,m =Hi + Ri,m - Ri+i,m,

Vm:m(i+1) <m< 2M-3, Vic S-{N} (3.8b)

hNR,m = HNR + RNR,m, Vm: m(NR) < m < 2M - 3 (3.8c)

Load/capacity constraints for trains ahead of the blockage

Li,m+1 = (1 - am)Li,m + Am hi,m,

Vm : m(i) m < 2M - 3, Vi C SA U ST U SR (3.9a)

Li,m+1 < Ci, Vm: m(i) < m < 2M - 3, Vi E SA U ST U SR (3.9b)
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Load/capacity constraints for trains behind the blockage

Li,m+i Pi+1,m + (1 - am)Lim + Amhi,m,

Vm : m(i) < m < 2M - 3, Vi E SB

Li,m+l < Ci, Vm : m(i) K m < 2M - 3, Vi E SB

Li,m+i > Pi+1,m + (1 - ozm)Li,m + Amhi,m - Kvi,m,

Vm: m(i) < m < 2M - 3, Vi E SB

Li,m+1 > Ci - K(l - vi,m), Vm : m(i) K m < 2M - 3, Vi E SB

, where K is a large constant

Left-behind-passenger constraints

Pi-m = Pi+1,m + L,m(1 - cm) + Amhi,m - Li,m+,

Vm : m(i) < m < 2M - 3, Vi E SB

Minimum safe headways

Hi + Ri,m > Hs, Vm : m(i) < m < m(i + 1), Vi E S -{NR}

Hi + Ri,m-i - Ri+im > Hs, Vm : m(i) 5 m < m(i + 1), Vi E S - {NR}

Terminal capacity queuing constraints

Ri+2,M H+1 + Hi + Rj,M-1, Vi K N - 2

RT 1 ,M - RT1 ,M-1 < HN + HN-1 + RN-1,M-1

RT2,m - RT2 ,M-1 < HT, + HNJ + RN,M-1 + K(1 - 6)

Queuing constraints and no-active holding for trains behind the blockage

RRMo+-m = 0, Vi E SB : Mo + i - > 2S

Ri,m -Ri,m-1 = , Vm {M - 1, M}and m>22, VZ ESB
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(3.10a)

(3. 10b)

(3.10c)

(3. 1Od)

(3.11a)

(3.12a)

(3.12b)

(3.13a)

(3-13b)

(3.13c)

(3.14a)

(3.14b)



Layover constraints at terminal

Ri,M > Qj,

Turn-around constraints at terminal

Ri,M - RM-1 , Vi C SB U SA U ST

Maximal deviation from schedule constraints

Ri,M - 1 < F Vi E SB U SA U ST (3.17)

Passenger left-behind pickup constraints (for trains behind)

Vi7m >vi-,m, Vi E SB, Vm < 2M - 3

Ro,M0 > do

Cumulative holding times are monotonically increasing

Vi E S

Ri,m, Li,m, Pi,m > 0 and vi,m E 0, 1}

The use of the large constant K and the binary parameter 6 in the constraints

involving a second train at a terminal are straightforward. For a second train at
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Vi E SB U SA U ST (3.15)

(3.16)

Disruption duration constraint

(3.18)

(3.19)

Ri,m - Ri,m-i > 0, (3.20)



a terminal, the large constant K enables the slack variable of the corresponding

inequality to be very large and thus the constraint is effectively "dropped" if this

second train is not present.

Equations (3.8) simply calculate the modified preceding headway of train i. Equa-

tions (3.10) are equivalent to the following set of load/capacity constraints for trains

i c SB (i < 0) behind the blockage:

Li,m+1 = min (Li,m(1 - &m) + Am hi,m, Ci) , Vm : m(i) < m < 2M - 3 (3.21)

where the min function has been modeled through the use of the large constant K

and the binary variables vi,m (vi,m = 1 iff passengers are left behind by train i at

station m, 0 otherwise).

Consequently, our holding problem is a 0-1 Mixed Integer Program (0-1 MIP) that

might be hard to solve in a reasonable amount of time. In fact, this combinatorial

problem is greatly simplified by constraint (3.18). This constraint states that, if a

train i < 0 leaves no passengers behind, then the following trains do not deny boarding

either. Given the description of the train capacity issue presented in Section 1.3.1,

this simply means that trains behind the blockage gradually pick up passengers left

behind at stations where the train capacity issue arises.

As in the case of the "Hold First" model, Equations (3.9) state that trains ahead

of the blockage, and in the reverse direction, are not held after they reach capacity.

Thus, no passengers are left behind by these trains.

On the contrary, trains behind the blockage are likely to experience overcrowd-

ing as passengers boarding these trains accumulate both ahead of, and behind, the

blockage during the disruption, as discussed in Section 1.3.1. The load/capacity con-

straints for trains behind the blockage (Eq. (3.10)) state that these trains may be

overloaded and thus deny passengers boarding.

The terminal capacity constraints (3.13) are derived directly from inspection of

the headways in Figure 3-2. In this figure, distinction is made between trains i with

i < N - 2 and trains N - 1 and N. We focus on the case i < N - 2 as the two
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other cases are easily derived from it. In this case, we can see from Figure 3-2 that

the gap between a train i and its second predecessor at station M - 1 is equal to

(Hj+1 + Ri+1,M-1 - Ri+2,M-1) + (Hi + R,M_1 - Ri+1,M-1) = Hi + Hj+i + RiM-1 -

Ri+2,M-1. This value must be greater than train i + 2's holding time at the terminal

(Ri+2,M - Ri+2,M-1) so that a platform is free for train i to enter, which yields (3.13a).

AStations

.. -... ..... ........... .... ...... .. .......... ..... ...... .....-1. .......... ....--... ...~.-. -.. -... .- ----.-.. -... -----.-.. -...

Hj,1 + Ri 1m~ - Ri+2,M-1 ..---...-. -- .........I................. ......

Mi2, -R +2,- . ............. ...

- -.. ..... - - ----- ------- --

Time

1i :!! N-2

Stations

HN + RN, M-1 .

M- Ni+R-1 .- M.

m(N).

I Time

- .= .N -.

Figure 3-2: Train queuing before the terminal

Constraints (3.14) constrain trains behind the blocked train not to be held until

they reach the closest station to the disruption where they can queue. In this case,

the queueing time is included in the holding variable Ri,MQ+i for i G SB as queuing or

holding has the same effect on trains' headway (passive hold). In the same fashion,

delay do is incorporated into the cumulative holding time RO,Mo.

The meaning of constraint (3.15) is clearer if we rewrite it in the form Ri,M -

Rj,M-1 > Qi - Ri,M-1, Vi < N. In the previous equation, the left-hand side represents

the (passive) holding time of train i at terminal M, and the right-hand side represents

train i's remaining layover time when it reaches station M. Thus, the inequality states

that train i must be passively held at the terminal until it is dispatched according to
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the schedule.

Finally, equations (3.15), (3.16) and (3.17) ensure that operational constraints are

respected at the terminal station.

3.2 Model Size and Boundary Effects

Clearly, the model used here is limited by the set of stations modeled and included

in the evaluation of the objective function (2M - 3). Including solely stations in the

disruption direction and the reverse direction can be considered unsatisfactory in the

case of very long disruptions and/or very short recovery times. For such cases, the

number of trips needed to recover from the delay (those trips incurring holding) might

be well beyond the one trip in the reverse direction implied by our model. Also, as

the downstream effects of holding at station 2M -3 are not evaluated in our objective

function, unnecessary or unreasonable holds might be considered at this station.

One could attempt to correct this limitation by "unfolding" the line more than

once and setting the boundary of our system to a station with index greater than

2M - 3. This is equivalent to considering the trains in the system as traveling on a

very long one-way line (with every other segment of the line being identical). The

limit of this line could depend on the delay duration. Nevertheless, this approach

clearly expands the size of the model and increases the solution time as the delay

duration increases. This is a major impediment to the real-time implementability of

our model. In addition, difficulties arise from the longer duration of the observation

period, resulting in variations of the system parameters (passenger arrival rates and

alighting fractions).

Another approach to overcome the boundary effects would be assuming that,

beyond station 2M - 3, long delays are recovered through the use of terminal layover

times. One would then restrict the cumulative holding times in the other direction

(Ri,2M-3 - Ri,M) in order to make this strategy effective. The difficulty here is to

appropriately evaluate the benefits derived from the use of terminal layover time
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beyond station 2M - 3, given the holding pattern exerted on the system before

station 2M - 3. Variations of the problem parameters also make this approach less

attractive.

3.3 A Two-Step Solution Procedure

We have here a 0-1 MIP formulation of the holding problem that can be solved

by current commercial integer program solvers. These solvers usually tackle this

type of problem by intelligently enumerating the feasible solutions to the problem.

Nonetheless, we can improve this enumeration procedure by using a priori knowledge

about the values of the binary variables. Constraint (3.18) already provided a way to

prune many branches of the solution tree. Indeed, if for given i and m, the subtree

below the branch vi,m = 0 is searched during the solution procedure, constraint (3.18)

prunes all the branches vj,m =, j < i. We provide below another means to further

prune the tree.

It is clear that, if a train at a station was not fully loaded when no control strategy

was considered, then an effective control strategy will not "create" a capacity issue

for this train at the same station.

This leads to the two-step solution procedure shown below (we denote our holding

program W):

Step 1. Constrain all trains' active holding at stations to be null and seek a feasible

solution R0 , LO, P, v0 to the corresponding linear system of constraints.

Step 2. Solve 7(R, L, P, v) with the variables vi,m for 0.m 7  0, and constrain the other

vi,m to be zero.

The underlying rationale of this approach is straightforward. We first locate in

Step 1 the locations where the train capacity issue arises in the absence of any holding.

Given this information (the 9 m's) from this worst-case scenario, we attempt to come

up with a better solution in Step 2. At this stage, we will not have train capacity
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issues at stations where trains were not fully loaded before. That is, if Vfm = 0 after

Step 1, then vi,m is set to zero. This means that, during the solution procedure, none

of the branches vi,m =1 (for 94 m = 0) in the solution tree are explored.

This procedure can dramatically reduce the number of free binary variables if few

trains and/or few stations are affected by the train capacity issue without holding.

This can occur when the delay is not long enough to lead to capacity issues at many

stations. In this case, train capacity issues arise mainly at stations with large passen-

ger arrival rates and/or small passenger alighting fractions. Similarly, the problem

size is reduced if a small set of trains are overloaded at these stations. In both cases,

the smaller number of train i/station m combinations affected by the capacity issue

(Vifm =1) leads to the smaller numbers of binary variables present in Step 2 and

branches which must be searched during the solution procedure.

3.4 Conclusion

In this chapter, we developed a formulation of the train holding model, based on

train headways and cumulative holding times. All the model variables are continuous,

except for the binary variables associated with train capacities. The model considers

actively holding trains ahead of the blockage (downline from the disruption and in

the reverse direction) at stations up to the end of the reverse direction. The objective

function is chosen as the weighted sum of the total passenger waiting time and in-

vehicle time. The exact non-linear form of this function was used in solving the

problem, as distinct from Shen [30] and O'Dell [26].

We also discussed the possible impacts of the limited set of stations where we

evaluate the effects of a holding strategy. These impacts are shown through results

of model application in Chapter 4. A simple two-step solution procedure was also

proposed to solve this problem.
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Chapter 4

Application of the General Holding

Model

In this chapter, we present results from the general holding model ("Hold All") appli-

cation. Two problem instances on the MBTA Red Line are treated, both involving a

disruption on the line during the morning peak period, as even minor disruptions at

this time of day can lead to serious consequences if effective control actions are not

taken.

Results from both disruption cases are presented and analyzed in this chapter.

Detailed implementation results from both disruption cases are presented in Appen-

dices A and B. The analysis of the implementation results will focus on several

points:

" The benefits achieved by the optimal holding strategy as well as its structure

" The impact of train capacity on the optimal holding strategy

* The sensitivity of the holding strategy to the cost associated with in-vehicle

delay due to holding (i.e., to y).

* The viability of the resulting holding strategies for use by dispatchers

Moreover, we will assess the efficiency of the model and the two-step solution

procedure from a real-time implementation point of view. Execution times with and
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without the two-step solution procedure will be examined and compared with the

ones obtained by O'Dell in [26].

4.1 Problem Setting

4.1.1 The MBTA Red Line

We applied the "Hold All" model to the different disruption scenarios on the Mas-

sachusetts Bay Transportation Authority (MBTA) Red Line, which also served as an

instance of model application in Shen [30] and O'Dell[26].

The MBTA Red Line is a heavy rail system with two branches and a common

trunk portion. The junction point of the branching structure is JFK Station (see

Figure 4-1). Each train has a capacity of about 960 passengers and are typically

dispatched onto the line from two terminal stations, Ashmont and Braintree, each

being located at the end of a branch. Trains are scheduled to be dispatched every

eight and six minutes from Ashmont and Braintree respectively. This results in a

mean scheduled headway of three to four minutes on the trunk portion of the line. In

addition, there are layovers of approximately six minutes at Alewife Station, which is

located at the northern end of the trunk portion of the line.

Although our model is not generally applicable to transit systems with a branching

structure such as the Red Line, we use the MBTA Red Line so we can compare our

results with results presented in O'Dell [26], who solved an instance of disruption lo-

cated on the trunk portion of the line (20-minute disruption at Harvard Northbound).

To apply the model developed in Chapter 3, we modeled the line as a single loop line

with two terminal stations (Alewife and JFK), in place of a branching structure.

Trains dispatched from the two branch terminals are thus not considered until they

reach JFK so that the passenger arrival rate at JFK station is modified to include

both passengers boarding at JFK and passengers arriving from the two branches.

Also, trains arriving at JFK are next considered dispatched in the reverse direction,

in the same fashion as at any regular terminal.
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The scenarios presented in this section are based on disruptions occurring on the

trunk portion of the line at 8:15AM, during the morning peak period. Since the model

formulation was tested off-line, train location and passenger load information were

derived from the dispatching schedule and nominal running times instead of using

real-time information.

Alewvife RED LINE
Davis

Porter(Commuter Rail)
arvard

central Downtown Crossing4... (connection to
endall Orange Line) Alewife RED LINE

Charl r South Station
Ms. G en . C

Hos pi a n ommuter Rail) Davis

Park Street roadway Porter(C ommuter Rail)
(connection to ndrei arvard

(e K Uss Central Downtown Crossing(Commuter Rail) (connection to4 endall Orange Line)

Charles South Station
Mass. Gen (Commuter Rail)

Savin Hill Hospital

Fields Corner c (connection to ndreuNQuin Paik Streetrody
FldCrnr n' Green Line) JFK/ UMass

Shauwmut llaston (Commuter Rail)

Quin'
Ashmont. Cen

Adams

Braintree

Figure 4-1: The MBTA Red Line
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4.1.2 Input Data

Passenger arrival rates and alighting fractions at each station (see Table 4.1) were

estimated from data collected by the Massachusetts' Central Transportation Planning

Staff (CTPS) [32]. The CTPS data consist of detailed counts of passengers arriving

and alighting at each station, for fifteen minute intervals throughout the day.

Station Station Passenger Arrival # Alightings Departing Loads Alighting
Name Acronym Rate (pax/min) per Train of Trains Fraction
JFK JFK 147.6 0 633 0.00

Andrew AND 10.5 11 657 0.02
Broadway BRW 6.3 15 671 0.02

South Station STA 24.3 198 572 0.30
Downtown Crossing DTX 19.6 272 408 0.48

Park Street PKS 18.1 170 286 0.42
Charles MGH MGH 4.7 56 253 0.20

Kendall KEN 1.3 96 162 0.38
Central CEN 2.6 45 130 0.28
Harvard HAR 4.3 87 57 0.67
Porter POR 1.0 13 47 0.23
Davis DAV 0.8 14 37 0.29

Queuing Location QUE 0.0 0 37 0.00
Alewife ALW 38.7 37 153 1.00
Davis DAV 44.3 2 270 0.01
Porter POR 30.1 4 382 0.01

Harvard HAR 37.3 53 475 0.14
Central CEN 27.2 25 487 0.05
Kendall KEN 5.6 72 468 0.15

Charles MGH MGH 3.7 42 442 0.09
Park Street PKS 21.2 134 399 0.30

Downtown Crossing DTX 18.3 171 306 0.43
South Station STA 3.6 190 132 0.62

Broadway BRW 0.5 12 124 0.09
Andrew AND 1.3 8 120 0.07

Table 4.1: Station-specific parameters

4.2 Disruption Description

The problems analyzed here are a blockage on the Northbound tracks at the Harvard

Square Station and a blockage located at Porter Square Southbound. The disruption

durations are assumed to be twenty minutes in the case of Harvard Northbound and

fifteen minutes at Porter Square Southbound. In both cases, all initial train headways

are equal to four minutes. In both disruption scenarios, one major consequence of the

blockage is an increased headway in front of the blocked train, that is propagated in

the southbound direction if control actions are not taken. As many passengers travel
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from the Alewife terminal to the central business district (Park Street-South Station)

during the morning peak, this would result in increased passenger waiting time, large

passenger accumulation and overloaded trains at stations in the Southbound direction.

Thus, appropriate holding actions should show significant benefits in this case, both

reducing in-platform waiting time at stations and the number of passenger left behind

by the blocked trains.

In the two disruption cases considered, train locations1 (see Tables 4.2 and 4.3)

are derived from the knowledge of train running times between stations2 and assum-

ing four-minute headways between trains. Trains' initial loads Lim(i) are calculated

using passenger arrival rates and alighting fractions at stations (we assume that the

preceding headways of all trains at all stations are also four minutes). We take ten

minutes as the maximal deviation from the scheduled dispatched time for all trains

(referred to as IF in the model).

Sensitivity analysis of the model solution is studied by solving the Harvard dis-

ruption case for different values of the model parameters. We first applied the holding

model assuming infinite train capacity and without considering the effects of holding

on on-board passengers. We then applied the model using a finite train capacity and

different values for the weight yu of the in-vehicle delay time versus in-platform wait-

ing time: p =0, 0.1 and 0.5. The Porter Square disruption case was solved with a

finite train capacity and it = 0.5. Results are presented and discussed in the following

section with more details provided in Appendices A and B.

1In the Porter Southbound disruption, train -1 just departed from Alewife and train -2 is sitting
at this station. We included the remaining layover time of train -2 (four minutes) in its holding time
and thus, the current headway is 0 minute. In the same fashion, train -3 is currently traveling in
the reverse direction with an actual preceding headway of four minutes. We model it as sitting at
Alewife with H- 3 = 0 and m(-3) = 1.

2Taken from Shen[30.
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Station I JFK AND I BRW ISTA DTX IPKS I MGHI] KEN I CEN HAR POR DAV
Train -6
Train -5
Train -4
Train -3
Train -2
Train -1
Train 0
Train 1
Train 2

*

*

*

*

*

Blockage
*

Station ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND
Terminal Train T1 *
Terminal Train T 2 *

Reverse Train 1
R *

Reverse Train 2
R *

Reverse Train 3
R *

Reverse Train 
4

R *
Reverse Train 

5
R *

Table 4.2: Initial train locations: Harvard Northbound disruption case

Station AND BRW STA DTX PKS MGH KEN CEN HAR POR I DAV
Reverse Train 1

R *
Reverse Train 2

R *
Reverse Train 3

R *
Reverse Train 4

R *
Reverse Train 5

R *
Reverse Train 6

R *
Reverse Train 7

R *
Reverse Train -3 *

Table 4.3: Initial train locations: Porter Square Southbound disruption case
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Station ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND JFK
Train-2 *
Train - *

Train 0 Blockage
Train 1 *
Train 2 *
Train 3 *
Train 4 *

Terminal Train Ti *
Terminal Train T 2



4.3 Model Results

4.3.1 Minimizing In-Platform Waiting Time (M = 0) with In-

finite Train Capacity

We first applied the general holding model for the Harvard disruption case with the

assumption of infinite train capacity and without considering the impact of holding

trains on on-board passengers (p = 0). The resulting optimal holding times and

headways are summarized in Tables 4.4 and 4.53 respectively.

Headway Distribution and Holding Actions Pattern

From Table 4.4, the optimal holding pattern produced by our model results in nearly

perfectly even headways (at each station, across all trains). This observation is con-

sistent with the result derived by Welding in [29], which states that passenger waiting

time at a given station is minimized when the variance of headways between trains

is minimized:

WT= 2+ h2 (4.1)2 +2

where:

WT = average waiting time of passenger

h = mean headway of trains arriving at this station

Var(h) variance of train headways

3No holding action is taken for trains/stations that are not shown in the tables. Blocked train
0 and trains queue behind the blockage and, after the blockage is cleared, are not held at stations
except at the terminal where they are held for the minimum turn-around time.
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HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Train 1 10.0 3.3 0.4 2.3 2.8 0.5 0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.2 0.0

Train 2 6.7 2.3 4.5 2.1 1.1 0.0 0.8 0.0 0.6 0.0 0.4 0.0 0.3 0.0

Train T1  11.0 1.4 1.6 0.0 1.1 0.0 0.8 0.0 0.7 0.0 0.5 0.0

Train T 2  
4.5 0.7 2.1 0.0 1.5 0.0 1.1 0.0 0.9 0.0 0.7 0.0

Train I 2.7 0.0 1.9 0.0 1.4 0.0 1.1 0.0 0.9 0.0

Train 2
R 2.3 0.0 1.7 0.0 1.3 0.0 1.0 0.0

Train 3
R 2.0 0.0 1.6 0.0 1.2 0.0

Train 4
R 1.8 0.0 1.4 0.0

Train 5
R 

1.6 0.0

Table 4.4: Holding times (min): Harvard Northbound disruption;
p = 0, infinite capacity

HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Train 0 24.0 14.0 10.7 10.3 10.0 7.2 6.7 6.7 6.3 6.3 6.0 6.0 5.8 5.8 5.6 5.6

Train 1 14.0 10.7 8.7 6.5 7.2 6.7 6.7 6.3 6.3 6.0 6.0 5.8 5.8 5.6 5.6

Train 2 10.7 13.0 6.5 7.2 6.7 6.7 6.3 6.3 6.0 6.0 5.8 5.8 5.6 5.6

Train Ti 6.5 7.2 6.7 6.7 6.3 6.3 6.0 6.0 5.8 5.8 5.6 5.6

Train T2  6.5 7.2 6.7 6.7 6.3 6.3 6.0 6.0 5.8 5.8 5.6 5.6

Train 1
R 6.7 6.7 6.3 6.3 6.0 6.0 5.8 5.8 5.6 5.6

Train 2
R 6.3 6.3 6.0 6.0 5.8 5.8 5.6 5.6

Train 3
R 6.0 6.0 5.8 5.8 5.6 5.6

Train 4
R 5.8 5.8 5.6 5.6

Train 5R 5.6 5.6

Table 4.5: Preceding departing headway: Harvard Northbound disruption;

p = 0, infinite capacity
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By inspecting the locations and values of the holds in Table 4.4, along with the

headway sequences across stations, the following properties of the optimal holding

strategy are found:

i) No train is considered for (active) holding at a station located between two sta-

tions m(i) and m(i + 1)

ii) The value of the constant headway sequence decreases, as we move down the

line

iii) At a given station, a train's holding time is smaller than its preceding train's

holding time.

iv) For a given train traveling in a given direction, its holding time (at holding

stations) is monotically decreasing

To understand these properties, we must first note that at a station m only the

headways of trains 0 and ahead are affected by holding. If we denote by hi train i's

departure headway at the preceding station and by ri its holding time at station m,

the sequence of departing headways at station m is as follows:

hp + rp

h_ 1 + rp_1 - rp

hp- 2 + rp- 2 - r_ 1  (4.2)

hi + r1 - r2

ho - r1  (train 0 is not held)

where train p is assumed to be the first controlled train at station m so that p + 1

headways departing station m are affected by the holding actions.
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Property i) suggests that, at a station m located between two stations m(i) and

m(i + 1), there may not be holding actions such that WT = h/2 x (1+ Var(h)/h) is

decreased. Indeed, we first note that at stations m such that m(i) <m < m(i + 1),

the same sequence of headways is to be evened out and is of the form shown in

Equations (4.2). By summing the p + 1 equations in (4.2), we observe that the

holding terms cancel out so that the average headway h is constant across stations

m E [m(i), . .. , m(i + 1) - 1]. Thus, according to Welding's formula, waiting time at

these stations is minimized only if Var(h) is minimized. This leads to evening out

the headway sequence by holding trains at station m(i), but no control should be

considered at a station m E [m(i) + 1, ... , m(i + 1) - 1]: otherwise Var(h) would be

increased and the waiting time at this station would not be minimal.

On the other hand, a new train p + I's headway is added to the sequence of head-

ways coming out of station m(i + 1). If this headway is not equal to the following

trains' even headway entering this station, control actions should then be considered

to achieve a new even headway sequence at station m(i + 1). We refer to Table 4.5

to illustrate this: the departing headway sequence is even and equal to six minutes

at Charles MGH and no train is held at the following station (Park Street) -thus

keeping a six-minute headway sequence. At Downtown Crossing, train 4 R's departing

headway is added to the sequence of headways to be evened out. The value of this

headway without control is four minutes, which is different from the six-minute head-

way sequence at Park Street. Thus trains are held at Downtown Crossing to yield a

4
5.8-minute departing headway sequence

Since in our scenario, the additional uncontrolled headway to be added is always

equal to four minutes, it also implies that evening out a new headway sequence at a

later station (where a four-minute headway is added) yields a lower even headway:

this is the property i) above.

Property iii) can also be demonstrated by using expression (4.2). At a given con-

4 In light of Equation (4.2) and the aforementioned cancellation of the holding times in summing
headways in (4.2), one can verify that the average entering headway ((8x6 min.+4 min.)/9=5.77

min.) is equal to the average headway departing this station (5.8 min.).
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trol station the corresponding sequence of headways is evened out and we can write

hi + r 1 - r2= ho - ri, which is equivalent to r2 - r 1 = r1 since ho = hi (since the

entering headways are assumed to be even). As r1 > 0, we obtain r 2 > r1. A similar

argument by induction can be used to prove that train i + 1's hold is longer than

train i's hold (for i < p - 1): we again write that hi + ri - ri+1 = h_ 1 + ri_1 - ri and

hi = hi_1, which yields ri+1 - ri = ri - ri_1 > 0, the last inequality being implied by

the induction hypothesis. From a more intuitive point of view, we can also observe

that train i's departure headway at station m is hi + ri - ri+ 1 for i = 0, . . . , p, so

that train i's headway is changed by the difference between its holding time and that

of its preceding train, namely ri - ri+1. Since a smaller headway hp+i is introduced

in the headway sequence, this sequence is evened out by reducing train i's headway.

This implies that ri-ri+1 must be negative, that is train i+1 is held longer than train i.

We give here an intuitive interpretation of property iv): for a given train, we know

that its controlled headway at a control station is equal to the value of the achieved

even headway sequence. From properties i) and ii), we know that for two control

stations, the value of the headway sequence is smaller (and closer to the normal

headway) at the second station downline. Also, there are more trains controlled there

as well. Hence, the amount of holding for a given train should be less at the second

station in order to achieve even headways.

Maximal Deviation from Schedule Constraint

Nevertheless, we note from Table 4.4 that the abovementioned properties do not hold

for all trains at all stations. In particular, trains are held at Davis Square Inbound

(which is not a station m(i)) and the corresponding holding times are not decreasing.

Also, even headways are not achieved at either the queuing location or at Alewife.

Uneven headways are permissible at the queuing location as no in-platform waiting

time is associated with headways here: the objective value is not a function of the

headway distribution at this "virtual" station.

The two other points are explained by observing from Table 4.4 that the cumula-

71



tive holding time of train 1 at Alewife is 16 minutes5 . Since train l's layover time at

the beginning of the disruption is six minutes and the maximal deviation from sched-

ule is ten minutes, this means that the maximal deviation from schedule constraint is

binding for train 1, which forces it to be dispatched from Alewife after being held for

only 2.3 minutes. Limiting the hold at Alewife results in an uneven departure head-

way sequence at Alewife: train 0's headway is ten minutes while preceding trains left

this station with six-minute headways. As the headway sequence "entering" Davis

is uneven, trains are held at this station to achieve even departure headways and

smaller waiting time even though this is not a station m(i). Also, the holding time

sequence at Davis is increasing, as distinct from other stations: this can be derived

mathematically following the same argument as for decreasing holding times6 .

Conclusion

We conclude that, under some "ideal" conditions (no consideration of the holding

cost, no maximal deviation from schedule constraints, and infinite train capacities),

minimizing passenger waiting time is equivalent to achieving perfectly even headway

sequences at stations. The control actions needed to achieve this regularity follow a

special pattern, resulting in smaller headways ahead of the blocked trains. It is noted

that these conditions are necessary for this equivalence to hold strictly.

Moreover, the holding strategy required to achieve this goal is complicated, as

shown in Table 4.4: trains are held at multiple stations along their trip, which might

be difficult for dispatchers to implement.

Finally, it is clear that not considering the effects of holding on on-board passengers

is unrealistic as passengers held at multiple stations are likely to be disgruntled by such

delays. Therefore, such an assumption and the derived strategy are not appropriate

for real application.

5Train 1 is held 10 minutes at Porter Square, 3.3 minutes at Davis Square, 0.4 minutes at the
queuing location and 2.3 at Alewife.

6We have here one long headway followed by an even sequence of smaller headways at Davis but
an even sequence of headways followed by one smaller headway at other stations.

72



4.3.2 Minimizing In-Platform Waiting Time (y = 0) with Fi-

nite Train Capacity

a) Analysis

Headway Distribution and Holding Pattern Solving the same problem with

finite train capacity yields a much different holding pattern as shown in Tables 4.6

and 4.7. Here, trains from train 0 through the second terminal train are fully loaded

when departing from Kendall Square Southbound, thus limiting the holding actions

earlier on the line and the possibility of achieving even headway sequences at stations

(see Tables 4.8 and 4.97). Also, train 0 is fully loaded and leaves passengers behind

at Porter, Harvard and Central stations. Therefore, the train capacity constrains the

length of the holds on trains T and T2 up to Kendall Station, which results in uneven

headway sequences.

This limitation is better understood if we separate the trains into two different

groups composed of trains 0 through T2, and the reverse trains. Within each of these

groups, the headway distribution is regular (except for train 0) so there are clearly

different impacts of the holding actions for each group. For the group of reverse trains,

the train capacity constraint is not binding at any station, so that perfectly even

headways between these trains are achieved. Trains 0 through T are only affected

by the holding actions on themselves and on train T2 (which is also constrained by

the train capacity issue arising at Kendall Station). This results in a perfectly even

headway distribution for train 0 through T2 at all stations except at stations between

the queuing location and Kendall (inclusive), where train 0's headway is different.

'Trains in the Table 4.9 are shown in a reverse order to better show the "spillover" effect of
passengers left behind.
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HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Train 1 10.0 3.3 0.3 2.3 1.5 0.6 0.0 0.3 1.7 0.0 0.0 0.2 0.0 0.2 0.0

Train 2 6.7 2.3 4.6 1.1 1.4 0.1 0.8 1.2 0.0 0.0 0.3 0.0 0.3 0.0

Train T1  11.0 0.7 2.2 0.1 1.3 0.8 0.0 0.0 0.5 0.0 0.5 0.0

Train T 2  
4.5 0.4 3.0 0.2 1.8 0.4 0.0 0.0 0.6 0.0 0.7 0.0

Train 1R 3.8 0.2 2.3 0.0 0.0 0.0 0.8 0.0 0.9 0.0

Train 2
R 3.2 0.0 1.1 0.0 1.1 0.0 1.0 0.0

Train 3
R 2.1 0.0 1.4 0.0 1.2 0.0

Train 4
R 1.8 0.0 1.4 0.0

Train 5
R 

1.6 0.0

Table 4.6: Holding times (min): Harvard Northbound disruption;
p= 0, capacity = 960 passengers/train

HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Train 0 24.0 14.0 10.7 10.3 10.0 8.5 7.9 7.9 7.6 5.9 5.9 5.9 5.8 5.8 5.6 5.6

Train 1 14.0 10.7 8.7 6.5 6.9 6.1 6.0 5.5 5.9 5.9 5.9 5.8 5.8 5.6 5.6

Train 2 10.7 12.9 6.5 6.9 6.1 6.0 5.5 5.9 5.9 5.9 5.8 5.8 5.6 5.6

Train Ti 6.5 6.9 6.1 6.0 5.5 5.9 5.9 5.9 5.8 5.8 5.6 5.6

Train T2  6.5 6.9 6.1 6.0 5.5 5.9 5.9 5.9 5.8 5.8 5.6 5.6

Train 1
R 7.8 8.0 7.2 7.2 6.1 6.1 5.8 5.8 5.6 5.6

Train 2
R 7.2 7.2 6.1 6.1 5.8 5.8 5.6 5.6

Train 3
R 6.1 6.1 5.8 5.8 5.6 5.6

Train 4
R 5.8 5.8 5.6 5.6

Train 5R 5.6 5.6

Table 4.7: Preceding departing headway: Harvard Northbound disruption;
y = 0, capacity = 960 passengers/train



HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND JFK

Train -2 104 43 35 26 26 77 165 224 267 308 273 256 221 163 69 64 62

Train -1 113 46 37 28 28 77 165 255 454 645 559 516 404 267 109 100 96

Train 0 23 110 98 78 78 387 761 960 960 960 849 795 682 495 209 193 187

Train 1 23 31 31 31 251 553 730 852 960 849 795 682 495 209 193 187

Train 2 14 18 18 251 553 730 852 960 849 795 682 494 209 193 187

Terminal Train Ti 0 251 553 730 852 960 849 795 682 494 209 193 187

Terminal Train T2  0 251 553 730 852 960 849 795 682 494 209 193 187

Reverse Train IR 331 562 781 938 837 784 678 493 208 192 186

Reverse Train 2
R 548 716 649 613 558 424 182 169 164

Reverse Train 3
R 566 537 506 394 171 158 155

Reverse Train 4
R 489 385 167 155 152

Reverse Train 5
R 234 216 208

Table 4.8: Entering train loads: Harvard Northbound disruption;

M = 0, capacity = 960 passengers/train
-1
Q1T

HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND JFK

Train0 0 0 0 0 0 0 31 160 159 0 0 0 0 0 0 0 0

Train-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Train-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Additional Wait = 700 pax-min

Table 4.9: Passengers left behind: Harvard Northbound disruption;

p = 0, capacity = 960 passengers/train



At the queuing location and Alewife, this is explained by the same reasons as in

the case of infinite train capacity: no waiting time is associated with the queuing

location while train l's remaining layover time limits the evenness of train headways

at Alewife. At Porter, Harvard and Central, the train capacity constraint is binding

for train 0 and the additional waiting time incurred by passengers left behind by

this train must be included in the objective function. Total in-platform waiting time

-which includes the extra wait due to denied boardings- is minimized at these stations

for headway sequences that are not even. This is permissible since the evenness

of headways was an optimality condition for minimizing in-platform waiting time

incurred by passengers who are not left behind (this quantity will be referred to as

the in-platform waiting time throughout the remainder of the thesis, as opposed to

the total in-platform waiting time, which includes the extra waiting time incurred

by passengers left behind). We note here that the total in-platform waiting time is

minimized for headway values that are smaller for trains 1, T1 and T2 but greater for

the capacitated train 0. This suggests that the savings in waiting time for the former

trains outweigh the additional waiting time experienced by passengers left behind by

train 0.

At Davis Square, the headways are not even, even though no capacity issue arises

at this station (from Table 4.8, train O's departing load is 761). This result seems

a priori counterintuitive but can be explained as follows. The departing headways

achieved at this station not only impact the in-platform waiting time at this station,

but also the train passenger loads at following stations, where the train capacity issue

arises. Thus, the headway sequence achieved at this station also determines the value

of the total in-platform waiting time at following stations and thus its unevenness is

not a violation of the optimality conditions.

Moreover, the impacts of the holding strategy on each of the two groups of trains

are clearly not independent, as holding train l affects train TI's headway. From Ta-

ble 4.6, it is noted that headways among all trains are essentially equal at any station

beyond Charles MGH. The optimal solution seeks to achieve some level of "conti-

nuity" in the headways between these two groups of trains although the number of
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stations where this can be achieved is limited because of the train capacity constraint.

Furthermore, we note that the properties highlighted in the case of an infinite

train capacity do not generally hold here. Specifically, these properties do not nec-

essarily hold in sections of the line affected by train capacity. For instance, train

1 is held longer than train 2 at Kendall, as the regularity of the headway sequence

departing Central Square is limited by the train capacity constraint: two headways

of 7.2 minutes are followed by four headways of 5.5 minutes, and then followed by

the 7.6-minute headway of train 0.

Passengers Left Behind The number of passengers left behind is greatly reduced

by holding train 1 in front of train 0 (see Tables 4.10 and 4.11). When no trains are

controlled, trains 0 through -3 leave passengers behind at Davis, Porter, Harvard,

Central and Park Street stations. This results in a total number of 5090 passengers

left behind and an additional waiting time of 10177 passenger-minutes incurred by

these passengers. These passengers are first denied boarding by train 0, which adds

to the level of congestion of the following trains as overloads "spill over". When

holding is applied, the reduced preceding headway of the blocked train 0 (less than

ten minutes) reduces the number of passengers left behind (by train 0) at Porter,

Harvard and Central stations to only 350 passengers, resulting in additional waiting

time of only 700 passenger-minutes. This is important as denying passengers boarding

is badly perceived and should be avoided as much as possible.
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HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND JFK

Train0 0 0 0 0 0 691 592 612 497 0 0 106 0 0 0 0 0

Train-1 0 0 0 0 0 0 540 552 503 0 0 0 0 0 0 0 0

Train-2 0 0 0 0 0 0 0 323 510 0 0 0 0 0 0 0 0

Train-3 0 0 0 0 0 0 0 0 164 0 0 0 0 0 0 0 0
Additional Wait = 10177 pax-min

Table 4.10: Passengers left behind: No hold, capacity = 960 passengers/train

HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND JFK

Train0 0 0 0 0 0 0 31 160 159 0 0 0 0 0 0 0 0

Train-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Train-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Additional Wait = 700 pax-min

Table 4.11: Passengers left behind: M = 0, capacity = 960 passengers/train
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b) Evaluation and Comparison of Different Control Strategies

In order to assess the efficiency of this control strategy and others-in comparison

with the "No Hold" strategy, we must define a common set of trains and stations

for which in-platform waiting times and in-vehicle delay times are evaluated and

compared. For instance, in the case of the Harvard Northbound disruption, all trains

located downline of the disruption, at the terminal and in the reverse direction are

subject to control actions. Moreover, there are no benefits from the holding actions

(exerted at any station) at stations located behind the blockage, since holding only

affects headways at stations ahead of the blockage. Thus, passenger times associated

with the controlled trains (and train 0) are evaluated at each train's first control

station m(i) through the end boundary of the modeled line, station 2M - 3. For

trains behind the blockage, we know that trains 0 through -3 leave passengers behind

at stations located behind the blockage when no control actions are taken. Hence,

passenger times associated with trains -1 through -4 are evaluated at stations from

Porter Square through 2M - 3, since control actions reduce the number of passengers

boarding these trains at these stations. Trains -5 and -6 are not impacted by any

control action and thus are not included in the set of trains: they queue behind the

blockage and then run at maximal speed with a minimum safe headway once the

blockage is removed.

The Harvard Square scenario was solved by O'Dell [26], with a holding model

that considered the branching structure of the MBTA Red Line but did not consider

in-vehicle delay time (that is, y = 0 for our model). Detailed implementation results

are not shown in [26] but the passenger-time savings were indicated: O'Dell found

that holding led to a passenger time savings of 46%, while we found a value of 49%

using the train and station impact sets described above.

c) Conclusion

The previous analysis strongly supports the view that the headway distribution must

have a high level of regularity to be optimal, but that this optimization goal is con-
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strained by the train capacity. At stations where this constraint is binding, achieving

perfectly even headway sequences does not necessarily lead to minimal waiting times

since waiting time of passengers left behind must be accounted for. Rather, differ-

ent headway distributions are achieved for different groups of trains, each of these

experiencing different levels of congestion during the observation period.

Hence, we can only conclude that minimizing total in-platform waiting time with

finite train capacity is equivalent to achieving headway sequences at stations so that

fewer passengers are left behind and headway variance is minimized within different

groups of trains. We also observed that the number of passengers left behind was

substantially decreased.

4.3.3 Minimizing In-platform Waiting Time and Optimal Hold-

ing Structure

From the two previous sections, we observe that minimizing only in-platform waiting

time leads to holding patterns that look both complex to implement and difficult

to justify from the dispatcher's perspective. For instance, holding is considered at

Central Square Southbound while departing loads are high from this station.

In the case of infinite train capacity, this apparent complexity can be simply inter-

preted if we have in mind that, minimizing in-platform waiting time is theoretically

equivalent to achieving regular headways at each station, under some operational con-

straints. As achieving regular headways at one station impacts the headways at other

stations for the same trains, we see the complex holding pattern as the constrained

solution to obtaining a regular headway pattern under the specified constraints.

However, we have shown that this equivalence does not hold when a finite train

capacity is considered and the corresponding constraint is binding. In this case, pas-

sengers left behind by overloaded trains incur additional waiting time. This additional

time is included in the objective function, which cannot be written under the form

shown in Equation 4.1. Consequently, even headways do not necessarily lead to min-
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imal in-platform waiting time, and the structure of the holding solution shows a level

of complexity that cannot always be explained as simply as in the case of infinite

train capacity.

4.3.4 Minimizing Total Waiting Time

As mentioned above, not accounting for the in-vehicle delay due to holding might

be inappropriate as the extra ride time incurred by passengers on-board held trains

might not be negligible relative to in-platform waiting time. Nevertheless, we must

differentiate between these two types of times as passengers on board a train are likely

to perceive the time spent on board a train as being less onerous than on-platform

waiting time. Thus, in-vehicle delay is generally perceived as less detrimental than

additional waiting at platforms.

To explore this issue, we solved the Harvard Northbound disruption case with two

non-zero values for the relative weight p of in-vehicle delay against in-platform waiting

time (y = 0.1 and 0.5). An additional disruption case (Porter Southbound with finite

train capacity and p = 0.5) was also solved to further illustrate our findings. Next

we present the results from each of these model applications focusing on:

" The impacts of considering in-vehicle delay time on the effectiveness of the

holding strategy

" The sensitivity of the optimal headway distribution and holding actions to the

weight p

a) Minimizing Total Waiting Time with t = 0.1

We first solved the Harvard Northbound disruption case for a value of P = 0.1, which

is based on one minute of in-vehicle delay time being valued the same as ten minutes

of in-platform waiting time. Results of this application are presented in Tables 4.12

through 4.15 below.
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HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Train 0 20.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train 1 10.2 0.8 0.0 4.9 1.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0

Train 2 4.9 0.0 9.4 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train Ti 12.1 0.5 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train T 2  
5.4 0.2 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train 1
R 3.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train 2
R 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train 3
R 0.0 0.5 0.0 0.0 0.0 0.0

Train 4
R 0.0 0.0 0.0 0.0

Train 
5 R 0.0 0.0

Table 4.12: Holding times (min): Harvard Northbound disruption;
p = 0.1, capacity = 960 passengers/train

HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Train 0 24.0 13.8 12.9 12.9 10.0 8.5 8.5 8.5 8.5 8.5 8.5 8.1 8.1 8.1 8.1 8.1

Train 1 14.2 10.1 10.1 5.7 6.4 6.4 6.4 6.4 6.4 6.4 6.8 6.8 6.8 6.8 6.8

Train 2 8.9 8.9 6.2 6.5 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2

Train T 6.8 7.0 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7

Train T2  7.4 7.6 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3

Train 1R 7.9 7.9 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2

Train 2
R 5.8 5.8 5.8 5.3 5.3 5.3 5.3 5.3

Train 3
R 4.0 4.5 4.5 4.5 4.5 4.5

Train 4
R 4.0 4.0 4.0 4.0

Train 5
R 4.0 4.0

Table 4.13: Preceding departing headway: Harvard Northbound disruption;
p = 0.1, capacity = 960 passengers/train
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HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND JFK

Train -2 104 43 35 26 26 77 165 224 267 308 273 256 221 163 69 64 62

Train -1 113 46 37 28 28 77 165 274 495 709 614 566 438 287 116 107 102

Train 0 23 110 98 80 80 387 761 960 960 960 864 817 743 572 247 229 223

Train 1 23 31 30 30 220 500 686 828 960 852 798 704 526 225 208 203

Train 2 14 17 17 239 523 703 834 960 850 797 688 505 214 198 193

Train Ti 0 262 571 737 847 960 848 793 676 490 207 191 186

Train T2  0 284 618 771 859 960 846 789 664 475 200 184 179

Train IR 331 566 783 912 809 759 662 490 209 193 188

Train 2
R 548 678 609 575 515 391 168 155 152

Train 3 R 566 530 466 348 148 137 134

Train 4
R 489 352 148 137 133

Train 5
R 234 215 205

Table 4.14: Entering loads: Harvard Northbound disruption;
M = 0.1, capacity = 960 passengers/train

HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND JFK

Train0 0 0 0 0 0 0 50 184 185 0 0 0 0 0 0 0 0

Train-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Train-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Additional Wait = 839 pax-min

Table 4.15: Passengers left behind: Harvard Northbound disruption;
p = 0.1, capacity = 960 passengers/train
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Holding Pattern and Cost When the cost of holding is included in the objective

function and even with the assumption that ten minutes of in-platform waiting time is

equivalent to only one minute of in-vehicle time, the optimal holding pattern becomes

very simple as only a few trains are held at only a few stations. As shown in Table 4.12,

seven trains are actively held at seven stations in this case (resulting in a total active

holding time of 39.3 minutes), as compared to nine trains held at eleven stations for

a total holding time of 72 minutes when p = 0. This suggests that the holding costs

incurred by on-board passengers can be large so that, even for small values of p, this

quantity must be considered.

Table 4.16 below provides support for this statement8 (the time incurred by pas-

sengers left behind is indicated within parentheses). When in-vehicle delay time is

not included in the objective function, this quantity is equal to 22361 pax-min, which

is comparable to the value of 34816 pax-min of total in-platform waiting time. For

p = 0.1, the in-vehicle delay time is decreased to 4740 pax-min, that is a 79% decrease

at a cost of 600, or only 2%, extra pax-min of total in-platform waiting time.

Model Total In-Platform Waiting Unweighted In-Vehicle
Parameters Time (pax-min) Time (pax-min)

No Hold 68794 (10177) 0
y = 0 34816 (700) 22361

A = 0.1 35418 (839) 4740

Table 4.16: In-platform waiting time and in-vehicle delay time

As expected, holding actions are exerted on trains which are not heavily loaded

and preferably at stations without high passenger through volumes as holding such

trains yields less in-vehicle delay time. We also note that no hold takes place at

the queuing location. As discussed in Section 3.1.1, this is because holding at this

location has an associated cost but no associated benefits.

8 The waiting time associated with each train at each station and the cost associated with both
passive and active holding are shown in detail in Appendix A.
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Moreover, we can infer from these results that after the disruption starts, trains

are mainly held in their travel direction at the next station reached m(i) and/or a few

stations beyond it. For instance, train 1 is held 10.2 minutes at Porter Square in the

disruption direction and only 0.8 minutes at the following station. This suggests that

an optimal strategy seeks to control trains at "early" stations and obtain benefits

from these early actions further down the line, since holding a train at a station not

only modifies its departure headway at this station but also at later stations9 . Hence,

holding a train at one of the earliest stations arrived at can yield significant benefits

down the line and avoid the cost of holds at later stations.

Yet, there also exists a tradeoff between holding a train at the first station arrived

at and holding it at a later station, which stems from the costs (in-vehicle delay)

and benefits (smaller waiting time at following stations) achieved in each case. For

instance, Train 3 R is not held at Charles MGH but at the following station (Park

Street) as fewer people would be negatively affected by the hold at the latter station

(466 versus 530 passengers) and few people would benefit from a hold at Charles MGH.

Furthermore, it is noted from Table 4.12 that, when in-vehicle delay time is taken

into account, the locations of the active holds are shifted from trunk line stations to

the terminal. Trains arriving at the terminal are held beyond the scheduled layover

time but incur no (or few) holds at further stations. Indeed, terminal holding and use

of the scheduled layover time to "buffer" against the delay are preferred as no extra

ride-time cost is associated with terminal holding10 . This implies that delay recovery

is preferably performed at the terminal in order to minimize the negative impacts of

the disruption in the reverse direction. For instance, terminal train T is held 6.1

minutes more than its scheduled layover time of six minutes, and is held for only 0.5

and 0.3 minutes respectively at Davis and Porter.

9The preceding train's hold also modifies it.
"0Holding has no associated costs other than the incurred additional waiting time for departure,

since there are no through-standees at the terminal stations (aM = 1 and thus, (1 - am)Li,m = 0).
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Headway and In-Platform Time Distribution Although holding costs are not

negligible and passengers left behind incur extra-waiting time, in-platform waiting

time is still the main component of the cost function to minimize. Thus, we focus

here on the headway distribution and the associated waiting time distribution to

assess the efficiency of holding with respect to in-platform waiting time when holding

costs are accounted for.

From inspection of Table 4.13, it seems a priori that the headway sequences at

stations show a high level of variability, which suggests that in-platform waiting time

at stations is far from optimal. Nevertheless, Table 4.17 shows that in-platform wait-

ing time is in fact only two percent above the minimum (34579 versus 33825), in spite

of the uneven headway sequences: the waiting times at stations do not significantly

deviate from the values in the case of infinite capacity and P = 0, for which all head-

ways sequences were essentially even and the in-platform waiting time at stations

was strictly minimized. This suggests that even though the smaller number of holds

exerted at a few stations result in uneven headways, in-platform waiting time can still

be significantly reduced and remain close to its minimal value. This counterintuitive

result can be better understood if we note that at a given station, some headways

are larger than the even headway value while other headways are smaller, so that the

resulting waiting time increase for the former train is "compensated" by the decrease

in waiting time for the latter ones

Table 4.18 also shows that the gain in total passenger time (48%) is close to the

one obtained for p = 0 (~ 49 %).

"Consider as an example the case of a two-headway sequence which is optimized for a common
headway value of 4 minutes. In this instance, having an uneven headway sequence of three and five
minutes results in a total waiting time of 0.5 * (32 + 52) = 17 pax-min, assuming a hypothetical
passenger arrival rate of one passenger per minute. This is only 6% above the minimal value of
0.5 * (42 + 42) = 16 pax-min, reached for a common headway value of four minutes.
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Station Finite Capacity Infinite Capacity Finite Capacity Finite Capacity
No Hold y = 0 =0 0.1

POR 294 197 197 197
DAV 250 143 143 146
ALW 9278 5509 5509 5540
DAV 10632 6096 6146 6167
POR 7455 4248 4311 4374
HAR 9250 5272 5364 5427
CEN 6972 3984 4061 4076
KEN 1434 819 825 838
MGH 968 557 557 578
PKS 5588 3217 3218 3307
DTX 4986 2900 2900 3011
STA 988 575 575 597
BRW 149 88 88 92
AND 373 220 220 230
Total 58617 33825 34115 34579

Table 4.17: Average in-plaform waiting time (pax-min) at stations

_Finite Cap. Infinite Cap. Finite Cap. Finite Cap.
No Hold p = 0 p = 0 p = 0.1

Total In-Platform Waiting Time 68794 33825 34816 35418
(Left-Behind-Pax Time) (10177) (0) (701) (839)

Unweighted In-Vehicle Delay Time 0 21141 22361 4740

Weighted Total Time (p = 0)
Weighted Total Time (p = 0.1)

68794 33825 (51%)
68794

34816 (49%)
35892 (48%)

Table 4.18: Benefits of control strategies

b) Minimizing Total Waiting Time with p = 0.5

We also solved the Harvard Northbound disruption case for a value of [ = 0.5 ac-

counting for a greater value of in-vehicle delay time relative to in-platform waiting

time. Results of this application are presented in Tables 4.19 through 4.22. For

the purpose of sensitivity analysis, we will highlight here the main similarities and

differences with the case p = 0.1.
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HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Train 0 20.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train 1 7.9 0.0 0.0 8.1 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train 2 1.7 0.0 12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train Ti 11.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train T 2  
5.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train 1 R 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train 2
R 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train 3
R 0.0 0.0 0.0 0.0 0.0 0.0

Train 4 R 0.0 0.0 0.0 0.0

Train 5
R 0.0 0.0

Table 4.19: Holding times (min): Harvard Northbound disruption;
it= 0.5, capacity = 960 passengers/train

HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Train 0 24.0 16.1 16.1 16.1 10.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5

Train 1 11.9 10.2 10.2 5.8 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3

Train 2 5.7 5.7 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2

Train Ti 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2

Train T2  7.7 7.7 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1

Train 1R 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6

Train 2
R 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0

Train 3
R 4.0 4.0 4.0 4.0 4.0 4.0

Train 4
R 4.0 4.0 4.0 4.0

Train 5
R 4.0 4.0

Table 4.20: Preceding departing headway: Harvard Northbound disruption;
p = 0.5, capacity = 960 passengers/train

00
00



HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND JFK
Train -2 104 43 35 26 26 77 165 224 267 308 273 256 221 163 69 64 62
Train -1 113 46 37 28 28 77 165 344 590 826 713 656 502 323 130 119 114
Train 0 23 110 100 84 84 387 803 960 960 960 869 826 779 618 269 250 245
Train 1 23 29 29 29 225 504 689 829 960 851 798 693 511 217 201 195
Train 2 14 15 15 241 515 697 832 960 851 797 690 508 215 199 194
Train T1  0 241 515 697 832 960 851 797 690 508 215 199 194
Train T2  0 298 636 783 864 960 845 787 659 469 197 182 176
Train 1

R 331 526 699 843 754 710 637 484 208 193 188
Train 2

R 548 630 557 522 450 330 140 129 126
Train 3

R 566 530 455 333 141 130 127
Train 4 R 489 352 148 137 133
Train 5

R 234 215 205

Table 4.21: Entering loads: Harvard Northbound disruption;
p = 0.5, capacity = 960 passengers/train

HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND JFK
Train0 0 0 0 0 0 0 121 220 210 0 0 0 0 0 0 0 0
Train-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Train-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Additional Wait = 1102 min

Table 4.22: Passengers left behind: Harvard Northbound disruption;
p = 0.5, capacity = 960 passengers/train

00



Holding Pattern and the Cost of Holding From Table 4.19, we note that the

simplicity of the holding pattern highlighted in the case of A = 0.1 is even more pro-

nounced: five trains are held at five stations for a total holding time of 30.9 minutes.

The reduced amount of holding simply reflects that holding is becoming more costly.

As a consequence, the unweighted in-vehicle waiting time is decreased from 4740

pax-min for y = 0.1 to 1119 pax-min, a 76% reduction, for p = 0.5 at a cost of a fur-

ther 1000 pax-min increase in in-platform waiting time, a 3% increase (see Table 4.23).

Model Total In-Platform Waiting Unweighted In-Vehicle
Parameters Time (pax-min) Time (pax-min)

No Hold 68794 (10177) 0
Y = 0 34816 (701) 22361

AL = 0.1 35418 (839) 4740
p = 0.5 36390 (1102) 1119

Table 4.23: In-platform waiting time and in-vehicle time
(with left behind pax time in parenthesis)

Except for train 1, holding occurs only at the next station arrived at or at the ter-

minal1 2 . This emphasizes the two observations that we made earlier: i) Early holding

actions are preferred as they can yield benefits down the line while avoiding the costs

of holds at a later station and, ii) Terminal holding and use of the layover time are

effective as there are no associated holding costs.

Tables 4.24 and 4.25 summarize the above findings by showing the cumulative

holding times by stations and by trains respectively. They clearly show, as A increases,

each train is held less and that there is less holding at non-terminal stations while

terminal holding increases.

12Train 1 is held at Davis since its hold at the preceding station -Alewife- is limited by the
maximum deviation from schedule constraint
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POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND Total
Infinite Capacity, p= 0 10.0 10.0 2.7 2.3 7.0 8.0 0.0 8.0 0.0 7.9 0.0 8.0 0.1 7.8 0.0 72
Finite Capacity, p 0 10.0 10.0 2.6 2.4 3.6 11.1 0.6 9.8 4.2 3.2 0.0 6.6 0.0 7.9 0.0 72

Finite Capacity, 1L 0.1 10.2 5.8 0.0 11.8 3.0 5.8 0.0 1.8 0.0 0.0 0.9 0.0 0.0 0.0 0.0 39.3
Finite Capacity, p =0.5 7.9 1.7 0.0 18.2 0.5 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.9

Table 4.24: Cumulative (active) holding times at stations (min): Harvard Northbound disruption

-6 -5 -4 -3 -2 -1 0 1 2 T T 2  
1

R 
2

R 
3

R 
4

R 
5

R Total
Infinite Capacity, p 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.4 12.8 11.2 9.6 8.0 6.4 4.8 3.2 1.6 72
Finite Capacity, p = 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14.4 12.8 11.2 9.6 8.0 6.4 4.8 3.2 1.6 72

Finite Capacity, p = 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.9 9.1 6.9 5.2 3.9 1.8 0.5 0.0 0.0 39.3
Finite Capacity, p =0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.5 8.2 5.9 3.7 2.6 0.0 0.0 0.0 0.0 30.9

Table 4.25: Cumulative (active) holding times of trains (min): Harvard Northbound disruption



In-Platform Waiting Time From Table 4.20, the headway sequences at stations

again show a high level of variability, which suggests that in-platform waiting time at

stations is far from optimal. Nevertheless, Table 4.27 again shows that in-platform

waiting time is close to its optimal value in spite of the uneven headway sequences.

Table 4.27 also shows that total passenger time savings are reduced to 46% for u = 0.5

against 48% for p = 0.1, but these savings are still both significant and comparable.

Station Finite Capacity Infinite Capacity Finite Capacity Finite Capacity Finite Capacity
No Hold p = 0 y=0 y=0.1 0.5

POR 294 197 197 197 202
DAV 250 143 143 146 165
ALW 9278 5509 5509 5540 5549
DAV 10632 6096 6146 6167 6276
POR 7455 4248 4311 4374 4412
HAR 9250 5272 5364 5427 5475
CEN 6972 3984 4061 4076 4215
KEN 1434 819 825 838 867
MGH 968 557 557 578 597
PKS 5588 3217 3218 3307 3446
DTX 4986 2900 2900 3011 3131
STA 988 575 575 597 621
BRW 149 88 88 92 95
AND 373 220 220 230 238
Total 58617 33825 34115 34579 35288

Average in-plaform waiting time (pax-min) at stations

Finite Cap. Infinite Cap. I Finite Cap. Finite Cap. Finite Capacity
No Hold i = 0 p = 0 p = 0.1 y 0.5

Total In-Platform Waiting Time 68794 33825 34816 35418 36390
(Left-Behind-Pax Time) (10177) (0) (701) (839) (1102)

Unweighted In-vehicle Delay Time 0 21141 22361 4740 1119

68794 33825 (51%) 34816 (49%)
68794
68794

4.27: Benefits of control strategies

35892 (48%)
36949 (46%)

c) The Porter Southbound disruption Case

Tables 4.28 through 4.31 present the application results of the Porter Southbound

disruption case with p = 0.5. We note that the holding times of train -3 and train -2

at Alewife are respectively 17 minutes and 15 minutes. These times actually include

the remaining layover time of train -2 (four minutes) so that these trains' actual

holds (due to queuing) are 11 minutes for train -3 and 13 minutes for train -2. In

the remainder of this section, we focus on the main findings from this application, in

light of the previous results. 92

Table 4.26:

Weigthed Total Time (p = 0)
Weighted Total Time (p = 0.1)
Weighted Total Time (p = 0.5)

Table



Station ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND QUE JFK AND BRW STA DTX

Train -3 17.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0

Train -2 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0

Train -1 13.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0

Train 0 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0

Train 1 7.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.9 0.0 0.0 0.0 0.0

Train 2 0.0 2.3 0.0 0.0 0.0 0.0 0.0 11.4 0.0 0.0 0.0 0.0

Train 3 0.0 0.7 0.0 0.0 0.0 11.3 0.0 0.0 0.0 0.0

Train 4 0.0 0.0 0.0 10.3 0.0 0.0 0.0 0.0
Train Ti 8.7 0.0 0.0 0.0 0.0
Train T1  3.4 0.0 0.0 0.0 0.0
Train IR 0.0 0.0 0.0 0.0
Train 2

R 0.0 0.0 0.0
Train 3

R 0.0 0.0

Table 4.28: Holding times (min): Porter Square Southbound disruption;
y = 0.5, capacity = 960 passengers/train

Station ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND QUE JFK AND BRW STA DTX
Train 0 19.0 19.0 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 5.7 5.7 5.7 5.7 5.7
Train 1 11.4 11.4 11.4 9.1 9.1 9.1 9.1 9.1 9.1 5.7 5.7 5.7 5.7 5.7
Train 2 4.0 6.3 6.3 5.6 5.6 5.6 5.6 5.7 5.7 5.7 5.7 5.7
Train 3 4.0 4.7 4.7 4.7 4.7 5.7 5.7 5.7 5.7 5.7
Train 4 4.0 4.0 4.0 5.6 5.6 5.6 5.6 5.6

Train Ti 5.4 5.4 5.4 5.4 5.4
Train T2 5.4 5.4 5.4 5.4 5.4
Train IR 4.0 4.0 4.0 4.0
Train 2 R 4.0 4.0 4.0
Train 3

R 4.0 4.0

Table 4.29: Preceding departing headway: Porter Square Southbound disruption;
p = 0.5, capacity = 960 passengers/train



Station ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND QUE JFK AND BRW STA DTX
Train -3 0 77 165 224 404 718 622 573 443 289 117 108 103 103 295 310 317 270
Train -2 0 580 663 716 960 960 827 760 574 364 146 134 127 127 295 310 317 270
Train -1 153 905 956 960 960 827 760 574 364 146 134 127 127 295 310 317 270
Train 0 270 838 960 960 881 844 836 689 304 283 278 278 838 880 899 767
Train 1 475 781 732 711 703 578 255 237 233 233 833 875 893 762
Train 2 468 441 445 372 162 150 147 147 833 875 893 762
Train 3 399 301 132 122 120 120 833 875 893 762
Train 4 132 122 119 119 830 873 891 760
Train Ti 0 798 839 856 731
Train T 2  0 798 839 856 731
Train 1

R 633 662 674 569
Train 2

R 657 669 565
Train 3

R 671 567

Table 4.30: Entering loads: Porter Square Southbound disruption;
p = 0.5, capacity = 960 passengers/train

Station ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND QUE JFK AND BRW STA DTX
Train0 0 0 0 470 267 0 0 0 0 0 0 0 0 0 0 0 0 0
Train-1 0 0 0 406 274 0 0 0 0 0 0 0 0 0 0 0 0 0
Train-2 0 0 0 137 280 0 0 0 0 0 0 0 0 0 0 0 0 0
Train-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Additional Wait = 3668 pax-min

Table 4.31: Passengers left behind: Porter Square Southbound disruption;
p = 0.5, capacity = 960 passengers/train



From these tables, the structure of the optimal holding strategy follows the ob-

servations made for the Harvard Northbound disruption case:

* Trains are preferentially held at the earliest station arrived at, in order to benefit

from the impacts of early control actions. This hold might be deferred to a later

station if fewer people are negatively affected by the hold (and the benefits of

the hold at stations down the line are comparable). For instance, Train 3 is not

held at Downtown Crossing but at South Station since 132 on-board passengers

would be delayed in the latter case against 301 passengers in the former case

(see Table 4.30 and Table 4.30).

" Terminal holding and use of layover time can also be effective as they modify

headways at stations down the whole line with no associated in-vehicle delay

time costs.

In the case of the Harvard Northbound disruption, we noted that the headway

distribution was irregular but that in-platform waiting time savings were close to its

optimal value. Here, we observe from Table 4.29 that the headway sequences of trains

1, 2, 3, 4, T and T2 are essentially even at stations located after the JFK terminal 3 .

Thus, terminal holding is used in order to even out train headway sequences.

Moreover, we determined that the passenger time is decreased "only" by 19% , as

compared to 46% for the Harvard Northbound case. This suggests that there might

be greater potential for short-turning in this disruption case.

d) Conclusion

We have shown that, when accounting for the costs of holding, the optimal holding

strategy generally shows simple characteristics:

* Trains are preferentially held at the earliest station arrived at, in order to benefit

from the impacts of early control intervention

13Such a pattern also occurs in the case of Harvard Northbound, but it is less obvious as it involves
fewer trains: four are available for holding at the Alewife terminal.
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e Terminal holding and use of layover time are also effective as they can even out

headways at stations down the line without incurring in-vehicle waiting time

These characteristics can lead to optimal holding strategies that are easy to im-

plement since only a few holding actions are required. Nonetheless, one might wonder

whether such simple optimal holding strategies would be less efficient in terms of total

passenger time savings compared to the one obtained without considering in-vehicle

delay time (p = 0). From comparison of the achieved gains in both in-platform wait-

ing time and total passenger time (see Table 4.27), we noted that the holding pattern

is no less efficient that the "complicated" holding strategies shown in Tables 4.4 and

4.6. For instance, the gains in total passenger time are significant (46 % decrease for

p= 0.5 against 48 % for p = 0 for the Harvard Northbound disruption), notwith-

standing the striking difference in the structure of the optimal holding solution. This

is in line with the findings of Barnett [5], who highlights the simplicity of the optimal

strategies derived analytically, and notes that:

This is interesting because there might, one might conjecture, be a reflex-

ive fear that the use of detailed cost functions in optimization problems

entails optimal strategies of such complexity as to be unimplementable.

Our results suggest at least some situations where such fears do not seem

warranted.

The structure and the efficiency of these optimal control strategies are of major

importance since we showed that optimal holding strategies are sufficiently simple to

be implemented by dispatchers and can yield large benefits". This certainly supports

the potential use of this holding model either in a computer based decision support

system or in a manual guidance process.

4.3.5 Execution Time

We used version 12.0 of XPRESS-MP with a branch-and-cut strategy on an 800 MHz

Pentium processor to solve the disruption scenarios described above. The execution

14This conclusion however contradicts the results from the model presented by Shen [30].
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times are shown in Table 4.32. We also present in this table the effectiveness of the

two-step solution procedure described in Chapter 4. For each scenario, we show the

number of binary variables left after Step 1" of the solution procedure along with the

solution time of each step. These times do not include the time needed to generate

the model, which is independent of the model formulation.

Disruption Case p # of vi,m # of vi,m Solution Time Solution Solution
Non-Fixed without 2-Step Time of Time of

after Step 1 Procedure Step 1 Step 2
(sec) (sec) (sec)

Harvard Square 0.0 203 13 14 2 4
20-minute 0.1 203 13 56 1 3

0.5 203 13 14 2 3

Porter Square 0.5 116 17 19 1 3
10-minute

Table 4.32: Execution Times

We note that, in all cases, the number of binary variables, which is the bottleneck

of the solution procedure, was considerably reduced so that less than 20 binary vari-

ables (associated with the train capacity) remain at Step 2 of the solution procedure.

The resulting solution times are significantly smaller: less than 6 seconds is necessary

to achieve optimality with the two-step solution procedure, while 56 seconds were

necessary to solve the Harvard case with u = 0.1 without the two-step solution pro-

cedure. For the other cases, the decrease is less pronounced but is still significant (it

is reduced by at least by a factor of two).

For comparison purposes, O'Dell [26] solved the same scenario using CPLEX

(Version 3.0) on a Sun SPARC 20 workstation with a solution time of 25 seconds.

One could argue that this time and the one obtained by our model are both suitable

for solving the deterministic holding problem in real-time. Nevertheless, this would

not apply to the use of the models in a stochastic formulation of the problem. As

accounting for uncertainty usually increases the size of the model, it is likely that the

'5 The solver was used here to solve the linear system of constraints. This is done by specifying
no objective value and recording the first (and unique) feasible solution found.
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model developed in this thesis would be better for such a purpose.

4.4 Conclusion

In this chapter, we presented and analyzed the implementation results of the model

developed in Chapter 3. The results obtained confirmed that minimizing in-platform

time is equivalent to achieving a regular headway pattern, under the system opera-

tional and physical constraints. In particular, the train capacity constraint is likely

to be binding, which limits the holding actions. The patterns of the holding actions

and the headway sequence were also explained.

In addition, the results showed that minimizing only in-platform time leads to

holding strategies that are complicated and probably unimplementable. In constrast,

including in-vehicle delay in the objective function yields simple optimal control

strategies that can be implemented by dispatchers. The optimal control actions

consist of holding a few trains at a few of the next stations they arrive at and/or

at the terminal stations. Moreover, large gains in passenger waiting time can be

achieved with these simple control actions and compared to the ones obtained with

more complex holding strategies. The solution times obtained are also compatible

with real-time operation controls and with a potential use of the model in a stochas-

tic formulation of the train control problem.
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Chapter 5

The Short-Turning Control

Strategy

In the two previous chapters, we presented and analyzed a train holding model and

derived general guidelines and results that can be used by dispatchers in developing

effective holding strategies.

Although the benefits of holding in general seem large in terms of waiting time

savings, as we discussed in Chapter 1, there are limitations to the holding strategy.

Indeed, in the case of longer disruptions, train capacity limits the possibility of holding

trains ahead of the blockage to achieve even headways, and of course spreading a

longer delay over the trains ahead results in longer headways. This results in increased

waiting times and possible congestion concerns at stations ahead of the blockage. In

this case, an alternative to the holding strategy is to short-turn trains to compensate

for the loss of service in the peak demand direction.

In this chapter, we develop the discussion in Chapter 1 to identify the main

characteristics of the short-turning strategy. We will also show how the short-turning

problem can be viewed as an extension of the holding sub-problem. In particular, our

discussion will focus on several points that can be useful for the dispatchers to define

appropriate short-turning actions:

* The conditions under which short-turning is an effective (complementary) al-
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ternative control operation to holding

" The critical factors in making a short-turning decision. In particular, we will

highlight the importance of the type of short-turn (ahead of, or behind the

blockage), the set of trains to be short-turned and the sequence of trains in the

after-short-turn direction that can produce significant passenger time savings

" How, after these critical factors have been identified and analyzed in the short-

turn decision-making process, the holding model might be used to determine

the complementary holding actions that can provide the best service quality.

These holding decisions are made, given the trains to be short-turned and the

sequence of trains in the after-short-turn direction

We will first present a general analysis of the short-turn control strategy that

summarizes and extends the discussion provided in Section 1.3.2. It also explains

the critical factors in making a short-turning decision. For this purpose, we must

differentiate two types of short-turn: short-turning ahead the blockage and short-

turning behind the blockage. We will then show how the holding model might be

modified to evaluate the benefits of each type of short-turning action. Control issues

associated with each type of short-turn will be discussed and modeling solutions will

be provided.

5.1 General Analysis of the Short-Turn Strategy

5.1.1 Types and Goals of the Short-Turning Strategy

Types of Short-Turning Strategy

According to Wilson et al. [36],

[ ... ] short-turning is the decision to turn a train before it reaches its ter-

minus with the aim of reducing headway variance in the reverse direction

by filling in a large headway gap.

100



Although this goal is essentially true for trains that are short-turned from the

reverse direction to the disruption to fill the gap that is developing in front of the

blockage (short-turning ahead of the blockage), this definition of the short-turning

strategy can be further extended and refined.

First, there exist two types of short-turn control strategies as seen in Section 1.3.2.

Indeed, most heavy rail transit lines serve a CBD on which heavy passengers flows

are focused during the peak periods, and the CBD generally consists of only a few

stations located in the middle of the line. Hence, three different disruption scenarios

can be identified:

1. The blockage is located at, or close to, the CBD

2. The blockage is located before the CBD

3. The blockage is located after the CBD

The potential for short-turning and the issues associated with each of these three

disruption scenarios are different. Here we briefly present these differences with more

discussion of the issues specific to each corresponding short-turn strategy in later

sections:

The blockage is located at, or close, to the CBD In this case, short-turning a

train to serve the CBD would require a train to be short-turned at a cross-over track

located near the CBD. As train loads are usually high in these areas, short-turning a

train would result in many passengers being dumped and worsening congestion levels.

Thus, for this type of disruption, short-turning is usually not an appropriate response.

The blockage is located before the CBD In this case, trains in the reverse

direction have already served the CBD. If the blockage is sufficiently far from the

CBD, train loads are likely to be low and trains with a low passenger load can be

short-turned into the gap that is developing in front of the blockage. Consequently,

the crossover track to use is the one closest to the disruption, downline from the

disruption.
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The ideal case would be a crossover track located just beyond the blockage as

depicted in Fig. 5-1: trains in the off-peak direction would then be redirected behind

the trains ahead of the blockage, thus virtually maintaining a close-to-normal service

in front of the blockage. In this case, only a few holds would be necessary for the

short-turned trains and the trains ahead to even out the headway sequence.

In the reverse direction, the short-turn results in a loss of service and the creation

of a gap, due to the removal of the short-turn trains (see Fig. 5-1). We will provide

a more detailed discussion of this issue in Section 5.2.1.

increased headway
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Figure 5-1: Short-turning ahead of the blockage

The blockage is located after the CBD In this case, the peak demand is in the

reverse direction. If the disruption location is far enough beyond the CBD, trains
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behind the blockage will generally have low passenger loads (see Fig. 5-2). These

trains could then be short-turned at an appropriate crossover track. This short-turn

location must be located between the CBD and the disruption location, and be as

close as possible to the disruption location, so that more stations are served by the

short-turned trains in the reverse direction.

Short-turning here also leads to a loss of service behind the blockage. A more

detailed discussion of this issue in the case of short-turning behind will be provided

in a later section (Section 5.3).

In the case of short-turning behind the blockage, there are generally stations and

trains located between the disruption location and the crossover track in the reverse

direction (unless the blockage occurs at the terminal). Trains are thus short-turned

into a sequence of trains at locations which must be carefully determined. If the

disruption and the crossover track are close enough to the terminal so that all trains

ahead of the blockage can be past the crossover track in the reverse direction before

the short-turn operation is completed, the sequence of trains is straightforward (see

Fig. 5-2). Trains are short-turned behind these trains1 . Otherwise, the selected train

sequence must balance:

" The negative impacts of potential holds on trains in the reverse direction: these

holds could be necessary in order to safely insert the short-turned trains in the

desired train sequence

" The impacts of short-turning trains on the level of service provided behind the

blockage

" The benefits from the additional train service in the reverse direction and the

complementary holds to even out headways

We will discuss the above tradeoffs in more detail in Section 5.3 to give guidance

on how an appropriate train sequence may be identified to achieve significant overall

benefits.

'This case of short-turning is equivalent to short-turning ahead of the blockage since trains are
short-turned into the headway gap developing in front of the blocked train
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Figure 5-2: Short-turning behind the blockage

General Goals of a Short-Turning Strategy

In all cases, one of the major consequences of a blockage is the development of a service

gap in front of the blocked train (the other being the accumulation of passengers both

behind and ahead of the blockage). This results in increased headway variance, and

greater average headways at stations located beyond the blockage.

Short-turning, if considered, must then provide additional train capacity to serve

the CBD (see Section 1.3.2) and also reduce the headway means and variances at sta-

tions, according to Chapter 4. Adding a short-turned train allows average headways

to be smaller while additional holding actions can even out the headway sequences at

stations. In addition, from the results of Chapter 4, smaller holds would be required

at stations served by the new trains to obtain even headway sequences.
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Nevertheless, the negative impacts and the exact overall benefits of a short-turning

action are different for each type of short-turn. As identified by Wilson et al. in [36],

there are actually generally four groups of passengers that are affected by a short-turn

decision:

" Skipped segment boarders-passengers who, if the train had not been short-

turned, would have boarded it at stations outside the short-turn loop, in both

direction

" Skipped segment alighters-those passengers who are dumped by a short-turned

train and must await a following train in order to reach their destination

" Short-turn point boarders-those passengers waiting at the station before the

crossover track and would have boarded a short-turned train had it continued

" Reverse direction passengers-those traveling to the CBD who board one of the

short-turned trains

The last group benefits from a short-turn decision while the three first groups are

negatively affected. Yet, depending on the type of short-turn, the benefits and levels

of inconvenience experienced by each of these groups are different.

Hence, we will separately analyze in more detail each of the short-turn types and

derive in each case a means to determine an efficient short-turn strategy, based on

simple logical considerations and the use of the holding model presented earlier in this

thesis. In each case, we will provide guidance in selecting the trains to be short-turned

and the sequence of trains in the after-short-turn direction by discussing how these

decisions might affect the efficiency of the short-turning strategy. The discussion

provided is intended to allow a dispatcher or an automated DSS to select a small

number of short-turn strategies to assess. We will also show in each of the short-turn

types how the holding model developed in Chapter 3 can be used to determine the

complementary holding actions (ahead of the blockage) and evaluate the efficiency of

a given short-turn strategy.
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We first analyze the simplest case of short-turning-ahead of the blockage- and

then extend our analysis to the short-turn behind strategy.

5.2 Short-Turning Ahead the Blockage

5.2.1 Analysis

Impacts of Short-Turning Ahead

We investigate in more details here the impacts mentioned in Section 5.1.1 of a short-

turn ahead decision on train operations and the level of service provided on various

parts of the line. We will also assess the potential for control actions on these line

segments.

At stations outside the short-turn loop in the reverse direction, train service is

removed, which results in headway gaps and uneven headway sequences if no control

action is taken. Yet, we note that there are a small number of these stations and that

low passenger flows are located there since the short-turn occurs near the terminal

(passenger flows are focused on the CBD during peak periods). Hence, there are

little benefits from holding trains at these stations: the uneven headway sequence

would lead to a waiting time increase for the skipped segment boarders that is likely

negligible in comparison to the time savings achieved in the peak direction2 .

A similar argument-low passengers flows- holds for the negative impacts incurred

by the skipped segment alighters and the short-turn point boarders. For each short-

turn train, few passengers travel beyond the short-turn point and are forced to wait for

another train. Additionally, as underlined in Section 1.3.2, there are a limited number

of trains that can be short-turned, due to the duration of crossover operations 3 so

we can conclude that the overall negative impacts of a short-turn option incurred by

2The model results presented by Shen [30] provides support for such a statement.
3 For instance, in the case of the Porter Southbound disruption presented in Chapter 4, based on

a six-minute short-turn operation duration and the normal inter-station running times, only three
trains can be short-turned at the cross-over track located between Central and Harvard stations.
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skipped segment alighters and short-turn point boarders are small, in comparison to

the waiting time savings achieved in the disruption direction.

We thus conclude that there is no need for controlling the non-short-turned trains

in the direction reverse to the disruption.

In the disruption direction, trains are short-turned into the gap, behind the trains

located immediately ahead of the blockage (see Fig. 5-1). This additional train service

reduces the gap developing in front of the blockage, and thus the average headway

at stations downline from the disruption. Moreover, we know that passenger waiting

time at stations is also a function of the headway sequence at stations. This implies

that complementary holds might further increase the benefits of the additional train

service downline from the disruption.

5.2.2 Solving the Corresponding Holding Problem

From the above description, it appears that, once a short-turn option is chosen, min-

imizing passenger waiting time in the system is equivalent to finding the optimal

holding actions on the new train sequence in front of the disruption. We show below

how trains in the system can be represented in the holding model developed in this

thesis to determine the complementary holds.

We first note that trains in the reverse direction are not subject to active control

actions. Indeed, the analysis of the short-turn ahead decision has shown that trains

in the reverse direction need not to be held to respond to train service removal.

Moreover, model results from the Porter Southbound disruption along with results

presented in Shen[30] show that trains in the reverse direction are not controlled

to respond to the headway gap developing in front of the blockage: for the delay

durations considered, terminal holding downline from the disruption and the use of

layover times are sufficient to buffer against the delay and minimize the weighted

passenger time at stations in the reverse direction.

Therefore, only trains located in the disruption direction, at the terminal downline
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from the disruption and trains behind the blockage (to pick up passengers left behind)

need to be represented in the system model. These trains are of course reindexed

according to the new train order in the disruption direction4 .

Trains initially at stations and the terminal ahead of the blockage are represented

as before, that is using their current position m(i), load Lo(i) and headway Hi at the

beginning of the disruption (refer again to Fig. 5-1).

The headways of the short-turned trains are modified only at stations beyond the

crossover track in the after-short-turn direction (i.e., for m > m' in Fig. 5-1). Thus,

we can represent the trains as sitting at station m' with no passenger load. Their

initial preceding headway at this station are calculated using the estimated train

departure time from this station -when no holding is applied-, based on nominal

inter-station running times and the time required to short-turn a train at the specified

crossover.

Trains behind the blockage are represented with the same parameters as in the

holding model, except for train O's headway Ho. Indeed, at stations m > m',, this

quantity is changed since the preceding train is a new short-turned train. This implies

that in all constraints involving HO and associated with stations m > m,t, HO must be

replaced by HO, the difference between the estimated departure times of train 0 and

the preceding (short-turned) train 1, assuming free running conditions. This quantity

might be negative since a non- delayed train 0 can arrive at platform m' before its

preceding short-turned train.

The simple abovementioned changes to the train representation in the holding

model can then be used to determine the complementary holds on the new train

sequence in the after-short-turn direction and at the terminal downline from the

disruption.

4For instance, in Fig. 5-1, the crossover track is located just ahead of the blockage, and all trains
ahead of the blockage are located downline from this track. If we were to short-turn train 5 R using
this track, the new order of trains ahead of the blockage would simply be 5 R, 1, 2, 3.
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5.2.3 Assessing the Short-Turn Strategy

As in the case of the holding strategy, the impacts of a short-turn strategy can be

evaluated by calculating the waiting times and in-vehicle delay times associated with

the sets of trains and stations impacted by both the short-turn decision and the

complementary holds.

Passenger times associated with trains located downline from the disruption are

evaluated at control stations m from m(i) through 2M-3. Passenger times associated

with trains behind the blockage are evaluated at stations m > m't since the short-

turn strategy only affects the loads of these trains and the headway of train 0 at these

stations.

Moreover, given the analysis of Section 5.2.1, one must evaluate the waiting time

increase associated with skipped segment boarders and alighters, and short-turn point

boarders. For a given short-turn strategy, this is derived directly from the nominal

trains' headway and loads, and passenger arrival rates at stations.

5.2.4 Conclusion

In this section, it was shown that short-turning ahead is a rather simple decision to

analyze. For the delay durations considered in this study, only a handful of trains

can be short-turned during the duration of the blockage and these trains are simply

short-turned into the gap developing in front of the blockage. This leads to only a

very few possible short-turn options to consider.

It was also shown that for a given short-turn option, the associated holding prob-

lem can be easily solved -using the previously developed holding model- and the

impacts of the short-turn strategy assessed.

5.3 Short-Turning Behind the Blockage

The short-turn behind decision is described in more detail here. We will highlight

the main differences of these impacts as compared with a short-turn ahead decision.
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In particular, it will be shown that, under some favorable conditions, short-turning

behind the blockage is similar to a short-turning ahead decision but that otherwise,

the short-turn decision is a much more difficult decision to make.

In the case of a short-turn behind strategy, we first note that skipped segment

alighters and short-turn point boarders incur the same detrimental effects of the short-

turn decision, that is increased in-platform waiting time. Nevertheless, removing

trains from behind the blockage has specific consequences that we describe below.

First, the skipped segment boarders are affected by the train service removal

only if they would have boarded a short-turn train at a station located between the

crossover track and the blockage. At stations located downline from the blockage,

passengers would board the first blocked train (train 0), assuming there is no train

capacity issue at these stations (passenger arrival rates are low at these stations since

the blockage is located near the terminal).

Second, and more importantly, train service removal can free platforms behind

the blockage and limit the propagation of the queue of trains developing behind the

blockage. If the disruption is sufficiently long, this queue could propagate to the CBD

area and hinder travel to the CBD. Thus, depending on the delay duration, removing

trains from behind the blockage can yield benefits (decreased in-vehicle delay time) in

the disruption direction. This beneficial consequence of short-turning in the before-

short-turn direction was not relevant in the case of short-turning ahead since the end

of the line was located between the short-turn location and the blockage: the terminal

provided an additional platform for trains to queue behind the blockage and trains

might be pulled out of service to a yard at the terminal.

In the after short-turn direction, the new train sequence must achieve overall ben-

efits from the additional train service. Nevertheless, this task is made more difficult

in this case of short-turning because there is no natural gap where trains can be

short-turned into. We refer here to Fig. 5-2. Trains in the reverse direction are oper-

ating with a normal service headway of four minutes, which means that either train

1R or train T might have to be held to create a gap into which train -1 could be
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short-turned.

Hence, it appears that the choice of the train sequence must balance:

" The cost of holding trains travelling in the other direction to the CBD

* The waiting time benefits from the additional trains in the peak direction

" The negative effects of holding short-turned trains behind the blockage to achieve

the desired train sequence, as trains can queue up behind the blockage

We note that these tradeoffs are difficult to assess in general. Moreover, we recog-

nize that, even for a given set of short-turn trains and a predetermined train sequence,

the more complicated train sequence generally achieved in the after-short-turn direc-

tion does not lend itself to a simple use of the holding model to determine the optimal

complementary holds to exert. One reason is that holding trains ahead of the blockage

(in both directions) might affect the train sequence that can be achieved, as timing is

a critical factor for more complicated train sequences. Another reason is that several

trains might now be preceded by a short-turn train, which make short-turned trains

difficult to represent in the holding model. Nevertheless, we describe below a case

where such difficulties do not arise.

In the special case the crossover is very close to the terminal, the reverse trains

can travel beyond the crossover location in the after-short-turn direction before the

first short-turn can be completed (as in the instance shown in Fig. 5-2). In this case,

it is most "natural" to create the gap behind the first reverse train by holding trains

located between the blockage and the terminal downline from the disruption. This is

because there is no cost associated with terminal holding and because trains downline

from the disruption carry low passenger loads.

The above case of short-turning is similar to the short-turn ahead case since there

is one gap into which trains are short-turned. For this particular type of short-turn,

the holding model can be used in the same fashion as for the short-turn ahead strategy

to determine the complementary holds to exert on trains ahead of the blockage. The

main difference here is that the change in the initial headway Hi now applies only
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to the next train to be dispatched in the other direction (the one which is held to

create a gap). In addition, this train's cumulative holding time at the terminal must

be greater than the value necessary to create the desired gap, which can be specified

straightforwardly in the holding model by adding a simple inequality.

5.4 Conclusion

In this section, we presented a general analysis of the short-turn control strategy that

summarizes and extends the discussion provided in Section 1.3.2. We differentiated

two types of short-turning (short-turning ahead of the blockage and short-turning

behind the blockage) and we discussed the choice of the short-turned trains and the

train sequence in the after-short-turn direction in each case.

It was shown that the short-turn ahead strategy is generally the simplest to assess

and that the holding model developed in this thesis can be used in this case to

determine the complementary holds that optimize the benefits of any given short-

turn ahead decision.

The short-turn behind strategy was also discussed and it was shown that this

type of short-turn is more difficult to assess as the desired train sequence is difficult

to determine. It involves many tradeoffs that need to be made simultaneously and

the operational constraints of this type of short-turn do not allow a simple use of the

holding model to determine the complementary holds to exert on trains ahead of the

blockage. Nevertheless, we presented one special case of short-turning behind that is

similar to the short-turn ahead case and that can be analyzed in the same fashion.

It must be concluded from this chapter that, although each given short-turn strat-

egy can be seen as a holding problem, a more integrated approach to the short-turning

strategy is probably needed. Specifically, a model based on modified headways (as

for the holding model developed in this thesis) could be developed and the difficult

problem of train reordering must be addressed for this purpose. It is likely that such

a model would make use of additional integer variables and thus increase the solution

times. To prune branches of the solution tree and reduce solution times, methods
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based on simple logical considerations similar to the ones developed for the holding

model could be appropriate.
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Chapter 6

Summary and Conclusions

In this thesis, a deterministic holding problem for real-time disruption recovery has

been developed for addressing service delays in a loop transit line. The model was

applied to two disruption scenarios with different disruption locations and durations

on a simplified version (non-branch) of the MBTA Red Line. Sensitivity of the optimal

holding strategy was conducted with respect to two major model parameters: the

finite train capacity and the value of the weight of in-vehicle delay time against in-

platform waiting time. We also discussed the use of short-turning in certain disruption

scenarios and proposed means to assess the efficiency of some short-turn strategies

with the holding model. In this chapter, the findings are summarized and suggestions

are offered for future research.

6.1 Summary and Conclusions

6.1.1 A Simple Control Strategy

In Chapter 2, we analyzed a simple train control strategy for a simplified subway

system, consisting of trains operating on a unidirectional subway line, on which a

disruption of a known duration occurs. The control strategy considered was the

"Hold First" strategy, wherein controlled trains ahead of the blockage are held at the

first station they arrive at after the disruption occurs. The model did not consider
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capacity constraints for trains behind the blockage and the impacts of passengers left

behind by these trains.

Other assumptions were made in order to obtain a more tractable formulation of

this control strategy. First, passenger arrival rates, alighting fractions and train dwell-

times were assumed to be constant and station-specific. In addition, train movements

between stations were supposed to be deterministic. Finally, full trains ahead of the

blockage were not allowed to be held.

The "Hold First" problem was then formulated as a minimization program, subject

to some physical and operational constraints. These linear constraints calculated train

loads at stations and constrained full trains ahead of the blockage not to be held. They

also specified that trains must be operated at a minimum safe headway. The choice of

the objective function to minimize was discussed and this function was chosen as the

weighted sum of total in-platform waiting time at stations and the in-vehicle delay

time due to the blockage and the control actions. The resulting cost function had a

quadratic form and the "Hold First" problem was thus equivalent to a constrained

quadratic program with linear constraints.

This constrained quadratic program with linear constraints was then rewritten in a

standard matrix form, which provided an interesting interpretation of its coefficients.

First, it showed that when there are more passengers waiting for a given train than for

its successor, holding the former is likely to increase the value of the cost function (and

reduce it otherwise). In addition, the matrix coefficients showed that the interaction

between two consecutive trains' holds contributes to a waiting time decrease for the

following train at stations beyond its predecessor's control station.

A model application was solved with MATLAB in negligible solution time.

6.1.2 The General Train Holding Problem

In Chapter 3, we developed a more realistic (albeit deterministic) holding model for

a subway loop-line ("Hold All"). Specifically, holding trains at any station or at

multiple stations (in both directions of the line) was considered as well as passengers

left behind by fully loaded trains.
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The formulation of the general holding problem extended the objective function of

the "Hold First" model to include trains located behind the blockage, at the terminal

downline from the disruption and in the reverse direction. The objective function

also accounted for the additional waiting time incurred by passengers left behind by

full trains. Passenger times associated with each train were only evaluated from the

train's current location through the end station in the reverse direction.

The problem formulation also addressed operations at the terminal downline from

the disruption. Specifically, linear constraints were added to the mathematical pro-

gramming formulation to model layover times and the minimum turn-around time of

trains at terminal stations. Also, the dispatching schedule at terminal was also taken

into account by limiting the amount of time a train's dispatching time could deviate

from the schedule. The formulation obtained for the extended holding model was a

mixed integer quadratic program with linear constraints. Integrality was introduced

by the use of binary variables that indicated whether a train leaves passengers behind

at a station.

In order to solve this type of mathematical program in times compatible with

real-time implementation, a two-step solution procedure was proposed. The first step

of the solution procedure finds a feasible solution to the "No Hold" control strategy

and locates the stations where the train capacity issue does not arise in the absence

of any holding. The second step solves the holding problem by constraining the train

capacity issue not to arise at these stations, since a better solution is sought when

control actions are considered. The described procedure dramatically reduced the

number of free binary variables when few trains and/or few stations are affected by

the train capacity issue without holding.

6.1.3 Model Application

In Chapter 4, results from the general holding model application were presented. Two

problem instances on the MBTA Red Line were treated, both involving a disruption

on the line during the morning peak period. The analysis of the results focused on

i) the structure and the benefits achieved by the optimal holding strategy, ii) the

116



impact of train capacity on the optimal holding strategy, iii) the sensitivity of the

holding strategy to the cost associated with in-vehicle delay due to holding and iv)

the viability of the resulting holding strategies for use by dispatchers.

Minimizing In-Platform Waiting Time

The general holding model was first applied to one of the disruption instances with the

assumption of infinite train capacity and without considering the impact of holding on

on-board passengers. The optimal holding strategy obtained yielded nearly perfectly

even headways at each station across all controlled trains, which is consistent with

an analytical result (Welding [29]), which states that average passenger waiting time

at a given station is minimized when the variance of headways between trains is

minimized. Moreover, the results from this application showed interesting properties

of the optimal holding strategy, that were demonstrated mathematically or explained

intuitively:

* No train is considered for (active) holding at a station located between two

stations m(i) and m(i + 1), where m(i) is the first station a train i arrived at

after the disruption starts

" The value of the constant headway sequence decreases at stations further down

the line

" At a given station, a train's holding time is smaller than its preceding train's

holding time

" For a given train traveling in a given direction, its holding time (at holding

stations) is monotically decreasing

We also showed how the maximal deviation from schedule constraint could limit

the evenness of headway sequences at stations.

It was concluded from this application that, under some "ideal" conditions (no

consideration of the holding cost, no maximal deviation from schedule constraints,

and infinite train capacities), minimizing passenger waiting time was equivalent to
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achieving perfectly even headway sequences at stations. Yet, the holding strategy

required to achieve perfectly even headway sequences was complicated, as trains were

held at multiple stations along their trip, which might be difficult to implement in

real situations. The passenger waiting time was reduced in this case by 51%.

Solving the same problem with finite train capacity yielded a much different hold-

ing pattern with uneven headway sequences at stations. The results suggested that

the headway distribution must in general have a high level of regularity to be opti-

mal, but that this optimization goal was constrained by the train capacity. At stations

where this constraint was binding, achieving perfectly even headway sequences did

not necessarily lead to minimal waiting times since additional wait experienced by

passengers left behind must be accounted for. Rather, different regular headway

distributions were achieved for different groups of trains, each of these experienc-

ing different levels of congestion. It was observed that minimizing only in-platform

waiting time with finite train capacity also led to complex holding patterns. The

passenger waiting time was reduced in this case by 49%.

Minimizing Total Passenger Time

In-vehicle delay was then included in the objective function and the same disruption

scenario was solved for two non-zero values for the relative weight P of in-vehicle delay

against in-platform waiting time (1- = 0.1 and 0.5).

From these model applications, it appeared that the optimal holding pattern be-

comes very simple when in-vehicle delay is accounted for. Less than ten trains were

held at less than ten stations in both applications, as the holding costs incurred by

on-board passengers were actually large, even for small values of p. Moreover, it was

noted that:

" Trains are preferentially held at the earliest station arrived at, in order to benefit

from the impacts of early control interventions

" Terminal holding and use of layover time are also effective as they can even out

headways at stations down the line without incurring in-vehicle waiting time
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costs

The optimal holding strategies also resulted in uneven headway sequences at sta-

tions. Yet, comparison of in-platform time at stations with the case of infinite capacity

and p = 0 -for which even headway sequences were observed- showed that the ir-

regular headway pattern resulted in waiting times that were close to their minimal

value.

Finally, comparison of the total passenger times showed significant savings (48%

and 46% for p = 0.1 and p = 0.5 respectively) that are close to the ones obtained for

an infinite train capacity and p = 0. This supported the idea that holding actions

need not be complicated to be optimal and yield significant time savings.

An additional disruption case was also solved with a finite capacity and P = 0.5.

Application results essentially confirmed the findings above. Nonetheless, passenger

waiting time was reduced by "only" 19%, suggesting that the benefits of holding were

limited in this disruption case and that short-turning might prove more beneficial.

Execution Time

Model applications were solved using the two-step procedure with Version 12.0 of

XPRESS-MP. In all cases, the number of binary variables, which is the bottleneck of

the solution procedure, was considerably reduced so that less than 20 binary variables

remained at Step 2 of the solution procedure. The solution times were reduced by at

least by a factor of two by using the two-step solution procedure and all were under

10 seconds (as compared to a solution time of 25 seconds obtained by O'Dell [26] for

one of our disruption scenario).

6.1.4 The Short-Turn Strategy

In Chapter 5, we presented a general analysis of the short-turn control strategy that

summarized and extended the discussion provided in Section 1.3.2. Two types of

short-turning were defined (short-turning ahead of the blockage and short-turning
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behind the blockage) and we discuss the choice of the short-turned trains and the

train sequence in the after-short-turn direction in each case.

It was shown that the short-turn ahead strategy is generally the simplest to assess

and that the holding model developed in this thesis can be used in this case to

determine the complementary holds that optimize the benefits of any given short-

turn ahead decision.

The short-turn behind strategy was also discussed and it was shown that this

type of short-turn is more difficult to assess as the desired train sequence is difficult

to determine. It involves many tradeoffs that need to be made simultaneously and

the operational constraints of this type of short-turn do not allow simple application

of the holding model to determine the complementary holds to exert on trains ahead

of the blockage. Nevertheless, we presented one special case of short-turning behind

that is similar to short-turn ahead and that can be analyzed in the same fashion.

6.2 Recommendations for Future Research

The holding model developed in this thesis has provided us with insights into the

train control problem: it has highlighted the impacts of train capacity and the cost of

holding on the structure and the efficiency of optimal holding strategies. Moreover,

the model shows a simple formulation and solution times were significantly reduced in

comparison with those presented in Shen [30] and O'Dell [26], which could allow for

real-time implementation of the model. Furthermore, this formulation of the holding

model can be used for routine operations control.

Nevertheless, there is still much work to be done in developing real-time decision

support systems. This thesis suggests the following areas of further research into this

topic:

9 First and foremost, the short-turning strategy needs to be addressed with the

use of a mathematical programming formulation. Although it was shown that

short-turning ahead could be probably addressed using some heuristical proce-

dure combined with the holding model, we highlighted the complexity of the
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short-turning behind decision. It is suggested that model be based on modified

headways, extending the holding model developed in this thesis. The difficult

problem of train reordering must be addressed and means to solve in-real time

the corresponding MIP should be investigated.

e Second, the model presented here is a deterministic model. The most ques-

tionable assumption made here is that the disruption duration is known with

certainty. One way to relax this assumption would be to use a stochastic pro-

gramming formulation of the train control problem, where uncertainty of the

delay duration could be described by some probability distribution, based on

data analysis.

Nevertheless, when some of the data is random, then solutions and the optimal

objective value to the optimization problem are themselves random. One logical

way to pose the problem is to require that we make one control decision now and

minimize the expected passenger time of the consequences of that decision. This

is called the recourse model. We refer to Birge [7] for more detailed explanation

of the recourse model as well as for a complete presentation of the theory of

stochastic programming -we provide below some elements that are relevant to

our topic.

More importantly, solving a recourse problem is generally much more difficult

than solving the deterministic version as evaluating expected costs implies high-

dimensionality numerical integration in the solutions to mathematical programs.

Yet, it is shown that when the random data is discretely distributed -which may

be a plausible simplification for the delay duration parameter, the problem can

be written as a large deterministic problem. The expectations can be written

as finite sums, and each constraint can be duplicated for each realization of

the random data. The resulting equivalent deterministic problem can be solved

using any general purpose optimization package.

The holding model presented in this thesis could be easily adapted to such a

formulation and be implementable in real-time. Although the size of the model
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would increase, we showed that the two-step solution procedure can discard

most of the binary variables that create the bottleneck in solving the corre-

sponding MIP. Hence, it is expected that the stochastic formulation of the

holding problem will have solution times that are compatible with real-time

implementation of the model.

As for short-turning, an efficient deterministic formulation and a solution pro-

cedure still need to be developed before tackling a stochastic version of the

problem. Nevertheless, it is believed that the approach used for the holding

model would apply here as well.
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Appendix A

"Hold All" Model Application

Results. Harvard Square

Northbound Twenty-Minute

Disruption
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Station Name J Andrews BroadwaySouth] DTX Park Charles Kendall Central Harvard Porter Davis Queuing
Station Street MGH Square Square Square Square Location

Station Acronym JFK AND BRW STA DTX PKS MGH KEN CEN HAR POR DAV QUE

Passenger arrival
rate (pax/min) 147.6 10.5 6.3 24.3 19.6 18.1 4.7 1.3 2.6 4.3 1.0 0.8 0.0

Alightings by train 0 11 15 198 272 170 56 96 45 87 13 14 0

Departing loads
by train 633 657 671 572 408 286 253 162 130 57 47 37 37

Alighting fraction 0 0.02 0.02 0.30 0.48 0.42 0.20 0.38 0.28 0.67 0.23 0.29 0

Square Square Square Square MGH Street Crossing Station

Station Acronym ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AN

Passenger arrival
rate (pax/min) 38.7 44.3 30.1 37.3 27.2 5.6 3.7 21.2 18.3 3.6 0.5 1.3

Alightings by train 0 2 4 53 25 72 42 134 171 190 12 8

Departing loads
by train 153 270 382 475 487 468 442 399 306 132 124 120

Alighting fraction 0 0.01 0.01 0.14 0.05 0.15 0.09 0.30 0.43 0.62 0.09 0.07

Table A. 1: Station-specific parameters



Station JFK AND BRW STA DTX PKS MGH KEN CEN HAR POR DAV

*

*

Blockage

Table A.2: Train locations

Entering Remaining
Load Lo Headway HO Layover Time

Train -6 0 4 2
Train -5 633 4 2
Train -4 657 4 2
Train -3 671 4 2
Train -2 286 4 2
Train -1 162 4 2
Train 0 130 4 2
Train 1 57 4 6
Train 2 47 4 6

Train T1  38 4 6
Train T2  38 4 2
Train 1

R 270 4 na
Train 2

R 475 4 na
Train 3

R 468 4 na
Train 4

R 399 4 na
Train 5

R 132 4 na

Table A.3: Train loads, headways and layover times

Train -6
Train -5
Train -4
Train -3
Train -2
Train -1
Train 0
Train 1

'T- ,n ')

*

tD

Station ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND JFK

Terminal Train T1  *
Terminal Train T 2  *

Reverse Train 1
R *

Reverse Train 2
R *

Reverse Train 3
R

Reverse Train 4R
Reverse Train 5 R

*

*



PKS MGH KEN CEN HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Train -4 12.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Train -3 0.0 14.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Train -2 0.0 16.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train -1 18.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Train 0 20.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Train 1 0.0 0.0 0.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train 2 0.0 0.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Train Ti 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Train T 2  

2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Train 1

R 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Train 2

R 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Train 3

R 0.0 0.0 0.0 0.0 0.0 0.0
Train 4 R 0.0 0.0 0.0 0.0
Train 5

R 0.0 0.0

Table A.4: Holding times (min): No hold, capacity = 960 passengers/train

PKS MGH KEN CEN HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND
Train -4 16.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Train -3 4.0 18.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Train -2 4.0 20.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Train -1 22.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Train 0 24.0 24.0 24.0 24.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
Train 1 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Train 2 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Train Ti 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Train T 2  4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Train 1

R 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Train 2

R 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Train 3

R 4.0 4.0 4.0 4.0 4.0 4.0
Train 4

R 4.0 4.0 4.0 4.0
Train 5

R 4.0 4.0

Table A.5: Preceding departing headway: No hold, capacity = 960 passengers/train

bI'



PKS MGH KEN CEN HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Train-4 2321 9 3 5 9 2 2 0 77 89 60 75 54 11 7 42 37 7 1 3

Train-3 145 756 3 5 9 2 2 0 77 89 60 75 54 11 7 42 37 7 1 3

Train-2 37 267 5 9 2 2 0 77 89 60 75 54 11 7 42 37 7 1 3

Train-1 621 9 2 2 0 77 89 60 75 54 11 7 42 37 7 1 3

Train 0 1229 278 230 0 7732 8860 6012 7460 5447 1120 733 4233 3666 727 107 267

Train 1 8 6 0 309 354 240 298 218 45 29 169 147 29 4 11

Train 2 6 0 309 354 240 298 218 45 29 169 147 29 4 11

Train T 309 354 240 298 218 45 29 169 147 29 4 11

Train T2  
309 354 240 298 218 45 29 169 147 29 4 11

Train 1R 240 298 218 45 29 169 147 29 4 11

Train 2
R 218 45 29 169 147 29 4 11

Train 3
R 29 169 147 29 4 11

Train 4
R 

147 29 4 11

Train 5
R 4 11

Table A.6: In-platform waiting time (pax-min): No hold, capacity = 960 passengers/train

PKS MGH KEN CEN HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Train -4 345 490 401 252 186 70 56 41 41 77 165 224 267 472 413 383 310 214 88 82

Train -3 309 252 286 180 135 53 43 32 32 77 165 224 590 960 827 760 574 364 146 134

Train -2 199 178 137 104 43 35 26 26 77 165 763 960 960 827 760 574 364 146 134

Train -1 78 113 46 37 28 28 77 857 960 960 960 827 760 680 424 169 154

Train 0 23 110 108 96 96 773 960 960 960 960 928 918 960 914 420 393

Train 1 23 22 19 19 155 330 447 534 616 546 512 443 326 138 128

Train 2 14 13 13 155 330 447 534 616 546 512 443 326 138 128

Train T 0 155 330 447 534 616 546 512 443 326 138 128

Train T2  
0 155 330 447 534 616 546 512 443 326 138 128

Train lR 331 448 534 617 547 512 443 326 138 128

Train 2
R 548 630 557 522 450 330 140 129

Train 3
R 566 530 455 333 141 130

Train 4
R 489 352 148 137

Train 5R 234 215

Table A.7: Train loads entering at stations: No hold, capacity = 960 passengers/train

L~Q
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PKS MGH KEN CEN HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Train0 0 0 0 0 0 0 0 0 0 691 592 612 497 0 0 106 0 0 0 0

Train-1 0 0 0 0 0 0 0 0 0 0 540 552 503 0 0 0 0 0 0 0

Train-2 0 0 0 0 0 0 0 0 0 0 0 323 510 0 0 0 0 0 0 0

Train-3 0 0 0 0 0 0 0 0 0 0 0 0 164 0 0 0 0 0 0 0

Train-4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A.8: Passengers left behind: No hold, capacity = 960 passengers/train

00



PKS MGH KEN CEN HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Train -4 12.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train -3 0.0 14.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train -2 0.0 16.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train -1 18.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train 0 20.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train 1 10.0 3.3 0.4 2.3 2.8 0.5 0.0 0.4 0.0 0.3 0.0 0.2 0.0 0.2 0.0

Train 2 6.7 2.3 4.5 2.1 1.1 0.0 0.8 0.0 0.6 0.0 0.4 0.0 0.3 0.0
Train T1  11.0 1.4 1.6 0.0 1.1 0.0 0.8 0.0 0.7 0.0 0.5 0.0
Train T 2  4.5 0.7 2.1 0.0 1.5 0.0 1.1 0.0 0.9 0.0 0.7 0.0
Train 1

R 2.7 0.0 1.9 0.0 1.4 0.0 1.1 0.0 0.9 0.0
Train 2

R 2.3 0.0 1.7 0.0 1.3 0.0 1.0 0.0
Train 3

R 2.0 0.0 1.6 0.0 1.2 0.0
Train 4

R 1.8 0.0 1.4 0.0
Train 5

R 1.6 0.0

Table A.9: Holding times (min): IL= 0, infinite capacity

PKS MGH KEN CEN HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND
Train -4 16.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Train -3 4.0 18.0 2,0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Train -2 4.0 20.0 2,0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Train -1 22.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Train 0 24.0 14.0 10.7 10.3 10.0 7.2 6.7 6.7 6.3 6.3 6.0 6.0 5.8 5.8 5.6 5.6
Train 1 14.0 10.7 8.7 6.5 7.2 6.7 6.7 6.3 6.3 6.0 6.0 5.8 5.8 5.6 5.6
Train 2 10.7 13.0 6.5 7.2 6.7 6.7 6.3 6.3 6.0 6.0 5.8 5.8 5.6 5.6
Train Ti 6.5 7.2 6.7 6.7 6.3 6.3 6.0 6.0 5.8 5.8 5.6 5.6
Train T2  6.5 7.2 6.7 6.7 6.3 6.3 6.0 6.0 5.8 5.8 5.6 5.6
Train IR 6.7 6.7 6.3 6.3 6.0 6.0 5.8 5.8 5.6 5.6
Train 2

R 6.3 6.3 6.0 6.0 5.8 5.8 5.6 5.6
Train 3

R 6.0 6.0 5.8 5.8 5.6 5.6
Train 4

R 5.8 5.8 5.6 5.6
Train 5

R 5.6 5.6

Table A.10: Preceding departing headway: [ = 0, infinite capacity
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[ PKS MGH KEN CEN HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

3 5 9 2
3 5 9 2

267 5 9 2
621 9 2

1229 95
95

2 0 77 89 60 75 54 11 7 42 37

2 0 77 89 60 75 54 11 7 42 37

2 0 77 89 60 75 54 11 7 42 37

2 0 77 89 60 75 54 11 7 42 37

46 0 1933 1148 668 829 538 110 66 381 306

46 0 817 1148 668 829 538 111 66 381 306

46 0 817 1148 668 829 538 111 66 381 306

817 1148 668 829 538 111 66 381 306

817 1148 668 829 538 111 66 381 306
668 829 538 111 66 381 306

538 111 66 381 306
66 381 306

306

7
7
7

61
61
61
61
61
61
61
61
61

1
1
1
8
8
8
8
8
8
8
8
8

3
3
3

21
21
21
21
21
21
21
21
21

8 21

Table A. 11: In-platform waiting time (pax-min): /= 0, infinite capacity

2321
145

I. -
9

756
37

Train -4
Train -3
Train -2
Train -1
Train 0
Train 1
Train 2
Train T1
Train T 2
Train lR
Train 2

R
Train 3

R
Train 4

R
Train 5

R

7 1 3



PKS MGH KEN CEN HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND
Train -4 12.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Train -3 0.0 14.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Train -2 0.0 16.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Train -1 18.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Train 0 20.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Train 1 10.0 3.3 0.3 2.3 1.5 0.6 0.0 0.3 1.7 0.0 0.0 0.2 0.0 0.2 0.0
Train 2 6.7 2.3 4.6 1.1 1.4 0.1 0.8 1.2 0.0 0.0 0.3 0.0 0.3 0.0
Train T 11.0 0.7 2.2 0.1 1.3 0.8 0.0 0.0 0.5 0.0 0.5 0,0
Train T 2  4.5 0.4 3.0 0.2 1.8 0.4 0.0 0.0 0.6 0.0 0.7 0.0
Train 1

R 3.8 0.2 2.3 0.0 0.0 0.0 0.8 0.0 0.9 0.0
Train 2

R 3.2 0.0 1.1 0.0 1.1 0.0 1.0 0.0
Train 3

R 2.1 0.0 1.4 0.0 1.2 0.0
Train 4

R 1.8 0.0 1.4 0.0
Train 5

R 1.6 0.0

Table A.12: Holding times (min): p = 0, capacity = 960 passengers/train

PKS MGH KEN CEN HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND
Train -4 16.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Train -3 4.0 18.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2,0
Train -2 4.0 20.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Train -1 22.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Train 0 24.0 14.0 10.7 10.3 10.0 8.5 7.9 7.9 7.6 5.9 5.9 5.9 5.8 5.8 5.6 5.6
Train 1 14.0 10.7 8.7 6.5 6.9 6.1 6.0 5.5 5.9 5.9 5.9 5.8 5.8 5.6 5.6
Train 2 10.7 12.9 6.5 6.9 6.1 6.0 5.5 5.9 5.9 5.9 5.8 5.8 5.6 5.6
Train T 6.5 6.9 6.1 6.0 5.5 5.9 5.9 5.9 5.8 5.8 5.6 5.6
Train T2  6.5 6.9 6.1 6.0 5.5 5.9 5.9 5.9 5.8 5.8 5.6 5.6
Train lR 7.8 8.0 7.2 7.2 6.1 6.1 5.8 5.8 5.6 5.6
Train 2 R 7.2 7.2 6.1 6.1 5.8 5.8 5.6 5.6
Train 3

R 6.1 6.1 5.8 5.8 5.6 5.6
Train 4

R 5.8 5.8 5.6 5.6
Train 5

R 5.6 5.6

Table A.13: Preceding departing headway: p = 0, capacity = 960 passengers/train



PKS MGH KEN CEN HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Train-4 2321 9 3 5 9 2 2 0 77 89 60 75 54 11 7 42 37 7 1 3

Train-3 145 756 3 5 9 2 2 0 77 89 60 75 54 11 7 42 37 7 1 3

Train-2 37 267 5 9 2 2 0 77 89 60 75 54 11 7 42 37 7 1 3

Train-1 621 9 2 2 0 77 89 60 75 54 11 7 42 37 7 1 3

Train 0 1229 95 46 0 1933 1619 939 1165 786 99 64 372 306 61 8 21

Train 1 95 46 0 817 1043 555 677 414 99 64 372 306 61 8 21

Train 2 46 0 817 1043 555 677 414 98 64 372 306 61 8 21

Train Ti 817 1043 555 677 414 98 64 372 306 61 8 21

Train T2  
817 1043 555 677 414 98 64 372 306 61 8 21

Train 1 R 910 1194 701 144 69 396 306 61 8 21

Train 2
R 701 144 69 396 306 61 8 21

Train 3
R 

69 396 306 61 8 21

Train 4
R 

306 61 8 21

Train 5
R 

8 21

Table A. 14: In-platform waiting time (pax-min): p = 0, capacity = 960 passengers/train

PKS MGH KEN CEN HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Train -4 345 490 401 252 186 70 56 41 41 77 165 224 267 308 273 256 221 163 69 64

Train -3 309 252 286 180 135 53 43 32 32 77 165 224 267 308 273 256 221 163 69 64

Train -2 199 178 137 104 43 35 26 26 77 165 224 267 308 273 256 221 163 69 64

Train -1 78 113 46 37 28 28 77 165 255 454 645 559 516 404 267 109 100

Train 0 23 110 98 78 78 387 761 960 960 960 849 795 682 495 209 193

Train 1 23 31 31 31 251 553 730 852 960 849 795 682 495 209 193

Train 2 14 18 18 251 553 730 852 960 849 795 682 494 209 193

Train Ti 0 251 553 730 852 960 849 795 682 494 209 193

Train T2  
0 251 553 730 852 960 849 795 682 494 209 193

Train IR 331 562 781 938 837 784 678 493 208 192

Train 2
R 548 716 649 613 558 424 182 169

Train 3
R 566 537 506 394 171 158

Train 4
R 

489 385 167 155

Train 5
R 

234 216

Table A.15: Train loads entering at stations: p = 0, capacity = 960 passengers/train
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PKS MGH KEN CEN HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Train0 0 0 0 0 0 0 0 0 0 0 31 160 159 0 0 0 0 0 0 0

Train-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Train-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Train-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Train-4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A.16: Passengers left behind: p = 0, capacity = 960 passengers/train

PKS MGH KEN CEN HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Train-4 2420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Train-3 0 2831 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Train-2 0 1768 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Train-1 1016 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Train0 152 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Train 1 178 74 10 0 361 352 0 248 1361 1 1 59 1 32 1

Train 2 66 42 0 271 779 35 659 1019 2 1 118 1 65 2

Train Ti 0 180 1207 70 1071 679 2 1 178 1 98 3

Train T2  
0 90 1635 105 1482 339 1 1 238 1 132 3

Train 1R 1235 107 1736 0 0 0 296 1 165 3

Train 2
R 1648 1 623 1 351 1 174 3

Train 3
R 1090 1 416 1 191 2

Train 4
R 497 0 215 2

Train 5R 340 2

Table A. 17: In-vehicle waiting time (extra ride-time): p = 0, capacity = 960 passengers/train



PKS MGH KEN CEN HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND
Train -4 12.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train -3 0.0 14.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train -2 0.0 16.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train -1 18.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train 0 20.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train 1 10.2 0.8 0.0 4.9 1.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0

Train 2 4.9 0.0 9.4 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train Ti 12.1 0.5 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Train T 2  

5.4 0.2 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train lR 3.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train 2
R 1.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train 3
R 0.0 0.5 0.0 0.0 0.0 0.0

Train 4
R 0.0 0.0 0.0 0.0

Train 
5

R 0.0 0.0

Table A. 18: Holding times (min): p= 0.1, capacity = 960 passengers/train

PKS MGH KEN CEN HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Train -4 16.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

Train -3 4.0 18.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Train -2 4.0 20.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

Train -1 22.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Train 0 24.0 13.8 12.9 12.9 10.0 8.5 8.5 8.5 8.5 8.5 8.5 8.1 8.1 8.1 8.1 8.1
Train 1 14.2 10.1 10.1 5.7 6.4 6.4 6.4 6.4 6.4 6.4 6.8 6.8 6.8 6.8 6.8
Train 2 8.9 8.9 6.2 6.5 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2

Train T, 6.8 7.0 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7
Train T2  7.4 7.6 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3
Train 1

R 7.9 7.9 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2
Train 2

R 5.8 5.8 5.8 5.3 5.3 5.3 5.3 5.3
Train 3

R 4.0 4.5 4.5 4.5 4.5 4.5
Train 4

R 4.0 4.0 4.0 4.0
Train 5

R 4.0 4.0

Table A.19: Preceding departing headway: p = 0.1, capacity = 960 passengers/train



PKS MGH KEN CEN HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Train-4 2321 9 3 5 9 2 2 0 77 89 60 75 54 11 7 42 37 7 1 3

Train-3 145 756 3 5 9 2 2 0 77 89 60 75 54 11 7 42 37 7 1 3

Train-2 37 267 5 9 2 2 0 77 89 60 75 54 11 7 42 37 7 1 3

Train-1 621 9 2 2 0 77 89 60 75 54 11 7 42 37 7 1 3

Train 0 1229 92 67 0 1933 1617 1097 1361 994 204 134 691 598 119 17 44

Train 1 98 41 0 623 900 610 757 553 114 74 495 428 85 12 31

Train 2 32 0 741 923 570 707 516 106 69 401 347 69 10 25

Train Ti 887 1094 491 609 445 91 60 346 299 59 9 22

Train T2  
1046 1280 418 519 379 78 51 294 255 51 7 19

Train 1R 947 1175 516 106 69 401 347 69 10 25

Train 2
R 455 94 61 298 258 51 7 19

Train 3
R 

29 212 184 36 5 13

Train 4
R 

147 29 4 11

Train 
5

R

Table A.20: In-platform waiting time (pax-min): p = 0.1, capacity = 960 passengers/train

PKS MGH KEN CEN HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Train -4 345 490 401 252 186 70 56 41 41 77 165 224 267 308 273 256 221 163 69 64

Train -3 309 252 286 180 135 53 43 32 32 77 165 224 267 308 273 256 221 163 69 64

Train -2 199 178 137 104 43 35 26 26 77 165 224 267 308 273 256 221 163 69 64

Train -1 78 113 46 37 28 28 77 165 274 495 709 614 566 438 287 116 107

Train 0 23 110 98 80 80 387 761 960 960 960 864 817 743 572 247 229

Train 1 23 31 30 30 220 500 686 828 960 852 798 704 526 225 208

Train 2 14 17 17 239 523 703 834 960 850 797 688 505 214 198

Train T1  0 262 571 737 847 960 848 793 676 490 207 191

Train T 2  
0 284 618 771 859 960 846 789 664 475 200 184

Train 1
R 331 566 783 912 809 759 662 490 209 193

Train 2
R 548 678 609 575 515 391 168 155

Train 3
R 566 530 466 348 148 137

Train 4
R 

489 352 148 137

Train 5
R 

234 215

Table A.21: Train loads entering at stations: p = 0.1, capacity = 960 passengers/train



PKS MGH KEN CEN HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Train0 0 0 0 0 0 0 0 0 0 0 50 184 185 0 0 0 0 0 0 0

Train-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Train-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Train-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Train-4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A.22: Passengers left behind: p = 0.1, capacity = 960 passengers/train

PKS MGH KEN CEN HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Train-4 2420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Train-3 0 2831 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Train-2 0 1768 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Train-1 1016 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Train0 152 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Train 1 181 19 0 0 316 0 0 0 0 0 258 0 0 0 0

Train 2 49 0 0 180 0 0 0 0 0 0 0 0 0 0

Train T1  0 130 167 0 0 0 0 0 0 0 0 0

Train T 2  
0 69 982 0 0 0 0 0 0 0 0 0

Train 1
R 1286 0 0 0 0 0 0 0 0 0

Train 2
R 926 0 0 0 0 0 0 0

Train 3
R 0 177 0 0 0 0

Train 4 R 0 0 0 0

Train 5
R 0 0

Table A.23: In-vehicle waiting time (extra ride-time): M = 0.1, capacity = 960 passengers/train



PKS MGH KEN CEN HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Train -4 12.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train -3 0.0 14.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train -2 0.0 16.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train -1 18.0 0.0 0.0 0.0 0.0 2.0 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train 0 20.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Train 1 7.9 0.0 0.0 8.1 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Train 2 1.7 0.0 12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Train T 11.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Train T 2  

5.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Train 1

R 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Train 2

R 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Train 3

R 0.0 0.0 0.0 0.0 0.0 0.0
Train 4

R 0.0 0.0 0.0 0.0
Train 5

R 0.0 0.0

Table A.24: Holding times (min): p = 0.5, capacity = 960 passengers/train

PKS MGH KEN CEN HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND
Train -4 16.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Train -3 4.0 18.0 2,0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2,0
Train -2 4.0 20.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Train -1 22.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Train 0 24.0 16.1 16.1 16.1 10.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5
Train 1 11.9 10.2 10.2 5.8 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3
Train 2 5.7 5.7 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2
Train Ti 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2
Train T2  7.7 7.7 5.1 5,1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1
Train IR 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6
Train 2

R 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Train 3

R 4.0 4.0 4.0 4.0 4.0 4.0
Train 4

R 4.0 4.0 4.0 4.0
Train 5

R 4.0 4.0

Table A.25: Preceding departing headway: p = 0.5, capacity = 960 passengers/train



PKS MGH KEN CEN HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Train-4 2321 9 3 5 9 2 2 0 77 89 60 75 54 11 7 42 37 7 1 3

Train-3 145 756 3 5 9 2 2 0 77 89 60 75 54 11 7 42 37 7 1 3

Train-2 37 267 5 9 2 2 0 77 89 60 75 54 11 7 42 37 7 1 3

Train-1 621 9 2 2 0 77 89 60 75 54 11 7 42 37 7 1 3

Train 0 1229 126 104 0 1933 1996 1354 1681 1227 252 165 954 826 164 24 60

Train 1 68 41 0 657 889 603 749 547 112 74 425 368 73 11 27

Train 2 13 0 751 861 584 725 529 109 71 411 356 71 10 26

Train T1  751 861 584 725 529 109 71 411 356 71 10 26

Train T2  
1148 1315 392 486 355 73 48 276 239 47 7 17

Train IR 655 812 593 122 80 461 399 79 12 29

Train 2
R 218 45 29 169 147 29 4 11

Train 3
R 29 169 147 29 4 11

Train 4
R 

147 29 4 11

Train 5
R 4 11

Table A.26: In-platform waiting time (pax-min): p = 0.5, capacity = 960 passengers/train
PKS MGH KEN CEN HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Train -4 345 490 401 252 186 70 56 41 41 77 165 224 267 308 273 256 221 163 69 64

Train -3 309 252 286 180 135 53 43 32 32 77 165 224 267 308 273 256 221 163 69 64

Train -2 199 178 137 104 43 35 26 26 77 165 224 267 308 273 256 221 163 69 64

Train -1 78 113 46 37 28 28 77 165 344 590 826 713 656 502 323 130 119

Train 0 23 110 100 84 84 387 803 960 960 960 869 826 779 618 269 250

Train 1 23 29 29 29 225 504 689 829 960 851 798 693 511 217 201

Train 2 14 15 15 241 515 697 832 960 851 797 690 508 215 199

Train T1  0 241 515 697 832 960 851 797 690 508 215 199

Train T2  0 298 636 783 864 960 845 787 659 469 197 182

Train 1R 331 526 699 843 754 710 637 484 208 193

Train 2
R 548 630 557 522 450 330 140 129

Train 3 R 566 530 455 333 141 130

Train 4
R 489 352 148 137

Train 5R 234 215

Table A.27: Train loads entering at stations: p = 0.5, capacity = 960 passengers/train

PKS MGH KEN CEN HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Train0 0 0 0 0 0 0 0 0 0 0 121 220 210 0 0 0 0 0 0 0

Train-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Train-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Train-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Train-4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A.28: Passengers left behind: p = 0.5, capacity = 960 passengers/train

00



PKS MGH KEN CEN HAR POR DAV QUE ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

1

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

016 0 0 0 0 0 0
152 0 0

140 0
17

0
0
0

0 0
0 113
0 0
0 0
0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

849 0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0
0 0

Table A.29: In-vehicle waiting time (extra ride-time): p = 0.5, capacity = 960 passengers/train

2420 0
0 2831

0

0
0

1768

Train -4
Train -3
Train -2
Train -1
Train 0
Train 1
Train 2
Train T
Train T 2

Train IR
Train 2

R
Train 3

R
Train 4

R
Train r

0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

0 0

f)



Appendix B

"Hold All" Model Application

Results. Porter Square

Southbound Fifteen-Minute

Disruption

140



Station Name JFK Andrews Broadway South DTX Park Charles Kendall Central
Station Street MCH Square

Q T V NJ AN BRW STA DTX PKS MGH KEN CEN

ta-DavisrPorter Harvard Centra Kendall Charles Park Downtown South Andrew

Square Square Square Square MGH Street Crossing Station

Station Acronym ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND

Passenger arrival
rate (pax/min) 38.7 44.3 30.1 37.3 27.2 5.6 3.7 21.2 18.3 3.6 0.5 1.3

Alightings by train 0 2 4 53 25 72 42 134 171 190 12 8

Departing loads
by train 153 270 382 475 487 468 442 399 306 132 124 120

Alighting fraction 1.00 0.01 0.01 0.14 0.05 0.15 0.09 0.30 0.43 0.62 0.09 0.07

Harvard Forter
Square Square
HAP POR

Passenger arrival
rate (pax/min) 147.6 10.5 6.3 24.3 19.6 18.1 4.7 1.3 2.6 4.3 1.0 0.8

Alightings by train 0 11 15 198 272 170 56 96 45 87 13 14

Departing loads
by train 633 657 671 572 408 286 253 162 130 57 47 37

Alighting fraction 0 0.02 0.02 0.30 0.48 0.42 0.20 0.38 0.28 0.67 0.23 0.29

Table B.1: Station-specific parameters.

Note: Train 8
R is modeled as train -3 sitting at the Alewife terminal with a current headway of 0 minute and a remaining layover time of 2 minutse at Alewife. These

values are indicated in the tables within parenthesis.

avis
Square

DAV



Station ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND QUE JFK

Train-2 *
Train - *
Train 0 Blockage
Train 1
Train 2
Train 3
Train 4

Terminal Train T*
Terminal Train T2

*

Station AND BRW STA DTX PKS MGH KEN CEN HAR POR DAV

Reverse Train lR *

Reverse Train 2
R *

Reverse Train 3
R *

Reverse Train 4
R

Reverse Train 5
R

Reverse Train 6
R

Reverse Train 7
R

Reverse Train 
8 R (-3)

Table B.2: Train locations

Entering Remaining
Load Lo Headway Ho Layover Time

Train - 2 0 0 2
Train - 1 153 4 2
Train 0 270 4 2
Train 1 475 4 6
Train 2 468 4 6
Train 3 399 4 6
Train 4 132 4 6
Train Ti 0 4 6
Train T2  590 4 2
Train 1R 633 4 na
Train 2

R 657 4 na
Train 3

R 671 4 na
Train 4

R 286 4 na
Train 5

R 162 4 na
Train 6

R 130 4 na
Train 7

R 57 4 na
Train -3 47(0) 4(0) 2

Table B.3: Train loads, headways and layover times

L'Q



Station ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND QUE JFK AND BRW STA DTX

Train -3 17.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0

Train -2 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0

Train -1 13.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0

Train 0 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0
Train 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 0.0

Train 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 0.0
Train 3 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 0.0
Train 4 0.0 0.0 0.0 6.0 0.0 0.0 0.0 0.0
Train T1  6.0 0.0 0.0 0.0 0.0
Train T 2  

2.0 0.0 0.0 0.0 0.0
Train 1

R 0.0 0.0 0.0 0.0
Train 2

R 0.0 0.0 0.0
Train 3

R 0.0 0.0

Table B.4: Holding times (min): No hold, capacity = 960 passengers/train

Station ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND QUE JFK AND BRW STA DTX

Train -3 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Train -2 15.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2,0
Train -1 17.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

Train 0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 15.0 15.0 15.0 15.0 15.0
Train 1 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Train 2 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4,0
Train 3 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Train 4 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Train Ti 4.0 4.0 4.0 4.0 4.0
Train T 2  4.0 4.0 4.0 4.0 4.0
Train 1

R 4.0 4.0 4.0 4.0
Train 2

R 4.0 4.0 4.0
Train 3

R 4.0 4.0

Table B.5: Preceding departing headway: No hold, capacity = 960 passengers/train



Station ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND QUE JFK AND BRW STA DTX
Train -3 77 89 60 75 54 11 7 42 37 7 1 3 0 295 21 12 48 39
Train -2 4349 89 60 75 54 11 7 42 37 7 1 3 0 295 21 13 48 39
Train -1 6401 60 75 54 11 7 42 37 7 1 3 0 295 21 13 48 39
Train 0 5426 6733 4916 1011 662 3821 3309 656 96 241 0 16605 1181 709 2730 2205
Train 1 218 45 29 169 147 29 4 11 0 1181 84 50 194 157
Train 2 29 169 147 29 4 11 0 1181 84 50 194 157
Train 3 146 29 4 11 0 4723 336 202 776 627
Train 4 4 11 0.0 7380 525 315 1213 980

Train Ti 1181 84 50 194 156
Train T2  1181 84 50 194 157
Train IR 84 50 194 157
Train 2

R 50 194 157
Train 3

R 194 157

Table B.6: In-platform waiting time: No hold, capacity = 960 passengers/train

Station ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND QUE JFK AND BRW STA DTX
Train -3 0 77 165 404 404 920 793 729 553 352 141 129 123 123 295 378 445 360
Train -2 0 580 663 960 960 960 827 760 574 364 146 134 127 127 884 960 960 721
Train -1 153 905 960 960 960 827 760 653 409 163 149 141 141 960 960 960 797
Train 0 270 960 960 960 922 909 960 895 409 382 381 381 960 960 960 960
Train 1 475 560 499 468 413 308 132 122 119 119 590 621 633 540
Train 2 468 441 393 297 128 118 115 115 590 621 633 540
Train 3 399 301 129 119 116 116 590 621 633 540
Train 4 132 122 119 119 590 621 633 540

Terminal Train 1 0 590 621 633 540
Terminal Train 2 0 590 621 633 540
Reverse Train 1 633 662 674 569
Reverse Train 2 657 669 565
Reverse Train 3 671 567

Table B.7: Train loads entering at stations: No hold, capacity = 960 passengers/train

Station ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND QUE JFK AND BRW STA DTX
Train0 0 0 0 470 469 0 0 79 0 0 0 0 0 1254 138 75 76 0
Train-1 0 0 0 406 476 0 0 0 0 0 0 0 0 589 140 69 0 0
Train-2 0 0 0 137 482 0 0 0 0 0 0 0 0 0 68 62 0 0
Train-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table B.8: Passengers left behind: No hold, capacity = 960 passengers/train



Station ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND QUE JFK AND BRW STA DTX
Train -3 17.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0
Train -2 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0
Train -1 13.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0
Train 0 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0
Train 1 7.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.9 0.0 0.0 0.0 0.0
Train 2 0.0 2.3 0.0 0.0 0.0 0.0 0.0 11.4 0.0 0.0 0.0 0.0
Train 3 0.0 0.7 0.0 0.0 0.0 11.3 0.0 0.0 0.0 0.0
Train 4 0.0 0.0 0.0 10.3 0.0 0.0 0.0 0.0
Train Ti 8.7 0.0 0.0 0.0 0.0
Train T1  3.4 0.0 0.0 0.0 0.0
Train 1

R 0.0 0.0 0.0 0.0
Train 2 R 0.0 0.0 0.0
Train 3

R 0.0 0.0

Table B.9: Holding times (min): y = 0.5, capacity = 960 passengers/train

Station ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND QUE JFK AND BRW STA DTX
Train -3 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Train -2 15.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Train -1 17.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Train 0 19.0 19.0 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.6 5.7 5.7 5.7 5.7 5.7
Train 1 11.4 11.4 11.4 9.1 9.1 9.1 9.1 9.1 9.1 5.7 5.7 5.7 5.7 5.7
Train 2 4.0 6.3 6.3 5.6 5.6 5.6 5.6 5.7 5.7 5.7 5.7 5.7
Train 3 4.0 4.7 4.7 4.7 4.7 5.7 5.7 5.7 5.7 5.7
Train 4 4.0 4.0 4.0 5.6 5.6 5.6 5.6 5.6
Train T1  5.4 5.4 5.4 5.4 5.4
Train T2  5.4 5.4 5.4 5.4 5.4
Train lR 4.0 4.0 4.0 4.0
Train 2

R 4.0 4.0 4.0
Train 3

R 4.0 4.0

Table B.10: Preceding departing headway: M = 0.5, capacity = 960 passengers/train



Station ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND QUE JFK AND BRW STA DTX
Train -3 77.3 88.6 60.1 74.6 54.5 11.2 7.3 42.3 36.7 7.3 1.1 2.7 0.0 295.2 21.0 12.6 48.5 39.2
Train -2 4349.2 88.6 60.1 74.6 54.5 11.2 7.3 42.3 36.7 7.3 1.1 2.7 0.0 295.2 21.0 12.6 48.5 39.2
Train -1 6401.3 60.1 74.6 54.5 11.2 7.3 42.3 36.7 7.3 1.1 2.7 0.0 295.2 21.0 12.6 48.5 39.2
Train 0 5425.8 6732.6 1826.4 375.6 245.9 1419.5 1229.3 243.7 35.8 89.4 0.0 2376.9 169.1 101.5 390.8 315.6
Train 1 1775.4 365.1 239.0 880.1 762.2 151.1 22.2 55.4 0.0 2376.9 169.1 101.5 390.8 315.6
Train 2 29.3 420.0 363.7 56.5 8.3 20.7 0.0 2376.9 169.1 101.5 390.8 315.6
Train 3 146.6 40.5 5.9 14.9 0.0 2376.9 169.1 101.5 390.8 315.6
Train 4 4.3 10.7 0.0 2296.4 163.4 98.0 377.5 304.9

Train Ti 2120.7 150.9 90.5 348.7 281.6
Train T2  2120.7 150.9 90.5 348.7 281.6
Train l 84.0 50.4 194.1 156.8
Train 2

R 50.4 194.1 156.8
Train 3

R 194.1 156.8

Table B.11: In-platform waiting time: [L = 0.5, capacity = 960 passengers/train

Station ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND QUE JFK AND BRW STA DTX
Train -3 0 77 165 224 404 718 622 573 443 289 117 108 103 103 295 310 317 270
Train -2 0 580 663 716 960 960 827 760 574 364 146 134 127 127 295 310 317 270
Train -1 153 905 956 960 960 827 760 574 364 146 134 127 127 295 310 317 270
Train 0 270 838 960 960 881 844 836 689 304 283 278 278 838 880 899 767
Train 1 475 781 732 711 703 578 255 237 233 233 833 875 893 762
Train 2 468 441 445 372 162 150 147 147 833 875 893 762
Train 3 399 301 132 122 120 120 833 875 893 762
Train 4 132 122 119 119 830 873 891 760
Train T 0 798 839 856 731
Train T2  0 798 839 856 731
Train 1R 633 662 674 569
Train 2

R 657 669 565
Train 3 R 671 567

Table B.12: Train loads entering at stations: y = 0.5, capacity = 960 passengers/train

Station ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND QUE JFK AND BRW STA DTX
Train0 0 0 0 470 267 0 0 0 0 0 0 0 0 0 0 0 0 0
Train-1 0 0 0 406 274 0 0 0 0 0 0 0 0 0 0 0 0 0
Train-2 0 0 0 137 280 0 0 0 0 0 0 0 0 0 0 0 0 0
Train-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table B.13: Passengers left behind: M = 0.5, capacity = 960 passengers/train



Station ALW DAV POR HAR CEN KEN MGH PKS DTX STA BRW AND QUE JFK AND BRW STA DTX

3996.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3340.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 705.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 82.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00
0.00 0.00 0.00

0.00 0.00

Table B.14: In-vehicle waiting time (extra ride-time): [L = 0.5, capacity = 960 passengers/train

I'

Train 0
Train 1
Train 2
Train 3
Train 4
Train T
Train T2
Train 1

R
Train 2

R
Train 3

R
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