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Abstract

As a possible method to achieve steady-state plasma operation in a tokamak fusion reactor,
Lower Hybrid Current Drive (LHCD) has been extensively studied on Alcator C-Mod. The
measurement of current density profiles (or poloidal magnetic field or safety factor) is essential to
the understanding of the LH physics. A polarimeter measures the line-integral of the electron
density times the magnetic field parallel to a chord through the plasma, and is capable of deriving
the current density profile with multi-chord measurements. A three-chord poloidally viewing far-
infrared (FIR) polarimeter has therefore been developed for C-Mod. FIR optics, FIR detectors,
electronics and mechanical components were custom designed and fabricated. Various sources of
vibrations and systematic errors have been carefully dealt with.

A synthetic polarimeter signal has been derived from density profiles from Thomson scattering
and magnetic field profiles from EFIT. The polarimeter results confirm that the magnetic field
profiles from Kinetic EFIT (with Motional Stark Effect and plasma pressure constraints) is much
more accurate than those from normal EFIT (no internal constraints, central safety factor qo-0.9 5)
during the LHCD. The polarimeter data were used to constrain qO, and the result shows that the
current density profile is flattened, and qo increases to ~2 with strong LHCD.

Experiments during LHCD with a plasma density scan, a current scan, and LH power and phase
scans have been carried out. The Polarimetry observations confirm the off-axis current drive, and
strongly decreasing driven current when the density exceeds a limit of about 1.Ox 102 0/m3 . They
also indicate that the driven current is closer to the plasma edge for Ip ~820 kA than for I, ~580
kA, and that lower LH phasing is preferred for higher current drive efficiency.

The polarimeter is the first diagnostic to measure core magnetic fluctuations in Alcator C-Mod.
These include broadband magnetic fluctuations during EDA H-modes that are suppressed with
the application of LH power.
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1. Introduction

Since the fossil fuels on the earth may only last hundreds of years according to the projected

world energy consumption rate, future generations could face an energy shortage, if we do not

find new energy sources.

Besides the renewable sources of power from the sun and wind, nuclear energy is a

candidate with great potential. There are two kinds of nuclear energy: fission and fusion. There

are over 400 fission power plants operational around the world, which provided 13% of the

world's electricity in 2012. The physics and engineering of a fusion reactor are much more

complicated, and are still under development by fusion scientists and engineers.

In section 1.1, we will introduce the basics of thermal nuclear fusion, including its benefits,

challenges and possible ways of implementation. Section 1.2 introduces the concept of the

tokamak. Section 1.3 introduces Alcator C-Mod and some plasma diagnostics that have been

extensively used in this thesis. The Lower Hybrid Current Drive (LHCD) system used to drive the

non-inductive current in C-Mod will be discussed in section 1.4. Finally, we will present the

motivation and outline of the thesis.

1.1 Thermal Nuclear Fusion

Both nuclear fusion and fission reactions release a large amount of energy resulting from the

transformation of the atomic mass into energy. During nuclear fission, heavy nuclei, such as 235u

and 2 Pu, break into lighter ones by reacting with thermal neutrals. Two typical fission reactions

are shown below. Because there are many possible fission products, we only list an average

number of the ejected neutrons and released energy.

235U + n - fission fragments + 2.4n + 192.9 MeV (1.1)

2 Pu + n -> fission fragments + 2.9n + 198.5 MeV (1.2)
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Fusion is a nuclear process in which two light nuclei fuse into a heavier one. While there

are many possible fission reactions, researches mainly focus on the following two:

D+ T -*He + n + 17.6 MeV (1.3)

D + D -3 He +n + 3.27 MeV (1.4)

where deuterium (ID) and tritium (3T) are isotopes of hydrogen. These reactions are preferred

because they have relatively large cross sections, high energy gain, and require relatively low

incident energies.

In theory, there is unlimited fuel for fusion reactions. Deuterium is a natural isotope, with

an abundance of ~0.0 1% in hydrogen. We could extract -10 mg of deuterium from a kg of water,

which could release the energy equal to 300 kg of gasoline through deuterium-deuterium (D-D)

fusion. Therefore, the deuterium from the ocean is enough to power our needs for billions of

years. Tritium has a short half-life of -12 years, and thus does not naturally exist. It can be bred

by bombarding lithium with neutrons in fission or fusion reactors through one of the following

reactions.

3Li + n -> 'T +He (1.5)

3Li +11 -n 1T + 2He + n (1.6)

Fusion energy has some advantages over fission. Fusion energy is more efficient than the

fission energy with about 4 times the energy density by weight as fission. Fission produces long-

lived wastes which have a half-life of millions of years, making the by-product storage a serious

problem, while fusion products are primarily helium. However, the walls of a fusion reactor are

bombarded by neutrons and become activated. These components typically have a short half-life

of -50-100 years and are confined on the vessel wall, which does not need to be replaced or

transported for disposal regularly. Thirdly, there are always criticisms about the safety issue of

fission plant, especially after level 7 nuclear accidents, which happened in Chernobyl and

Fukushima. Fusion reactors do not have this drawback. It requires precise parameter controls,
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such as the current, magnetic field and pressure, to generate and smoothly release the net energy.

If any unexpected condition happens, the fusion reactor will just stop operation and cool down by

itself.

However, making controlled fusion energy on the earth is extremely difficult. Two

nuclei, both with a positive charge, experience a strong repulsive Column force when they are

close to each other. Consequently, the nuclei need to have an energy of >10 keV to overcome the

Column barrier before they can be captured by the short-range strong nuclear force. The fusion

reaction rate is given by

Rab = nanb < UabV > (1.7)

where n,, nb are the densities of two nuclei species and < cabV > is the cross section averaged

over the Maxwellian velocity distribution function with nuclei temperature T. < cabV > iS

peaked at T~10-100 keV (1 keV=11,600 K) depending on nuclei species. At such high

temperatures, the fuel atoms are ionized, forming mixed charged particles called a plasma. Some

of the generated energy needs to be confined in the plasma, so that it can be used to sustain the

fusion reaction without continuous external power input. The energy loss rate is usually

quantified as an energy confinement time, re, the aggregate time over which the plasma loses all

of its stored energy.

Therefore, high density and high temperature plasmas with long energy confinement

times are required to achieve a high fusion reaction rate. The Lawson criterion specifies what is

needed to achieve break-even in a fusion reactor (energy out = energy in). For D-T fusion, the

Lawson criterion [1] is

neTTE > 1021 keV s/m 3  (1.8)

at T=20 keV, where ne is the plasma electron density.
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There are different ways to confine the plasma and exceed this limit. In the case of the Sun,

the plasma is trapped gravitationally because of the Sun's very large mass. We are mainly

pursuing two different technologies for earth bases reactors, inertial confinement fusion (ICF) and

magnetic confinement fusion (MCF).

The idea of ICF is to rapidly compress and heat a pellet of fusion fuel with powerful pulsed

lasers beams arriving at the target from many directions. The momentum and energy of the laser

beams are transferred to the cold pellet, making it extremely dense and hot. The National Ignition

Facility (NIF), operated since 2009, is the largest ICF research device in the world, but has not

achieved ignition yet [2].

Since the fusion fuel is in a plasma state, it can be controlled by strong magnetic fields by

the Lorentz force. Different kinds of MCF machines have been built, such as Stellarators,

Tokamaks, Reversed Field Pinchs (RFP) and the Levitated Dipole Experiment (LDX) [3]. The

tokamak is thus far the most competitive device achieving the best plasma performance.

The fusion energy gain factor Q, the ratio of the fusion power produced in a reactor to the

power required to maintain the steady-state plasma, quantifies the performance of a fusion

reactor. The current world record for Q is 1.25, achieved on JT-60. The next generation fusion

machine, the International Thermonuclear Experimental Reactor (ITER) now under construction,

is designed with Q=10. After the successful operation of ITER, a proposed fusion power plant

DEMOnstration Power Plant (DEMO) would achieve Q=25. With high Q, the plasma could be

continually heated by the fusion energy itself, and the large amount of net fusion energy could be

used to generate electricity.

1.2 Tokamak

The tokamak, which is a Russian acronym based on the words for toroidal magnetic chamber,

was invented in the 1950s [4]. It bends the strong magnetic fields (B,) into a toroidal shape, so

that the charged particles cycle around the field lines in the chamber and do not suffer end losses.
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B, is usually a few Tesla, and is produced by a set of toroidal field coils as shown in Figure 1-1.

The Larmor radius of the charged particles is less than a millimeter with such high field; much

smaller than the minor radius of the tokamak,

The plasma is not well confined with only Bt, since there are particle drifts in the radial

direction, such as ExB, curvature, and VB drifts [3][5], due to the asymmetry of the system in the

poloidal plane. A toroidal plasma current, which is driven by a central solenoid, is necessary to

balance the plasma pressure between the hot core and cooler edge, through Lorentz force. The

combination of Bt and Bp (poloidal magnetic field from toroidal plasma current) causes field lines

to have a helical geometry (black lines in Figure 1-1). An additional vertical field, produced by

the equilibrium field (EF) coils, controls the plasma position and shape.

Primary transformer circuit

Poloidal magnetic field
Equilibrium field coils

Resulting helical magnetic field Toroidal field coils

Plasma current Toroidal magnetic field

Figure 1-1: Schematic of the tokamak with magnetic coils, toroidal plasma current and
magnetic fields (Figure from [6])
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1.3 Alcator C-Mod

Alcator C-Mod [7] is a tokamak which began operation in 1993 at the Plasma Science and Fusion

Center (PSFC) at MIT, and is the successor to Alcator A (1973-1979) and Alcator C (1978-1987).

It is the largest fusion experiment operated by a university, serving as a training site for the next

generation of fusion scientists. The thesis work described here was done on this device.

1.3.1 Machine Parameters and Geometry

The fundamental parameters of C-Mod are listed in Table 1.1. With a compact size, C-Mod has

the highest magnetic field and plasma pressure among existing tokamaks, which allows the ability

to study a very broad range of plasma conditions. It typically runs at Bt=5.4 T. It takes ~15

minutes between plasma discharges to cool down the copper magnetic coils with liquid nitrogen.

As a result, there are typically about 30 discharges in a run day. Up to 6 MW of power in the ion

cyclotron range of frequencies (ICRF) is coupled for auxiliary plasma heating via three fast wave

antennas. Two antennas are operated at 80 MHz for the standard minority heating scenarios:

D(H) (minority species in parentheses) for 4.4-6.9 T and D(3He) for high field operation (7.3-8.0

T) [8]. Another Antenna is operated at a variable frequency between 50 MHz and 80 MHz for

both heating and current drive [9]. 1 MW of net power in the lower hybrid range of frequencies is

used to drive current non-inductively on C-Mod, which will be introduced in detail in the next

section.

A poloidal cross section of C-Mod with typical D-shaped diverted plasma is shown in

Figure 1-2. The green curves are contours of constant poloidal flux, which are projections of the

nested closed magnetic surfaces (produced by helical magnetic field) in the poloidal plane. The

red curve is the last closed fluxed surface (LCFS), outside of which the magnetic field lines are

open (meaning they intersect material surfaces), and the plasma in this region is lost quickly to

the divertor and other metal surfaces. The x-point or null in Figure 1-2 indicates the location

where the poloidal field goes to zero. C-Mod can also run limited plasma discharges, in which
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case the plasma boundary is defined by the Molybdenum surface on the inner cylinder of the

vacuum vessel, known as the limiter. Since impurities generated by material erosion from the

limiter can easily get into the confined core plasma, the plasma radiation loss is usually larger for

limited discharges than for diverted discharges. Plasma boundary conditions also affect the core

plasma, as we will find for the LHCD experiments discussed in chapter 5.

Table 1-1: Alcator C-Mod Parameters

Parameter Symbol Value

Major radius RO 0.67 m

Minor radius A 0.22 m

Central toroidal magnetic field Bt 3-8 T

Plasma elongation K 0.9~1.8

Plasma current IP 0.3-2.1 MA

Central Plasma density ne 0.2 - 20 X 1020 /m 3

Central plasma temperature Te 0.5-8.0 keV

Plasma pulse length tpuIse <5 s (typically 2s)

Energy confinement time Ir ~50 ms

ICRF Power (source) PICRF 8 MW ( 80/50 MHz)

LH Power (source) PLH 3 MW ( 4.6 GHz)

Quantitatively, the poloidal flux at minor radius r is defined as

0 W)= fr2r(x + Raxis)BP(x)dx (1.9)
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where Rx.is is the major radius of the magnetic axis and Bp(x) is the poloidal magnetic

field at minor radius x on the mid-plane. ip(r) increases with r and reaches the maximum at

the plasma edge. It is usually normalized by

r) ()- ( (0)
no(LCFSP -0(O)

(1.10)

where rLCFS is the minor radius at the LCFS. Therefore, *norm = 0 at the magnetic axis,

and knorn = 1 at the LCFS.

X-pomt
(null)

high field side low field side

Figure 1-2: Alcator C-Mod poloidal cross-section with magnetic flux surfaces, divertor,
outboard limiter (for a secondary protection of the plasma heat flux), inner wall and
vacuum vessel.
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The safety factor (q) is related to the twist of the helical magnetic field, the

number of toroidal turns the magnetic field line makes when it takes one poloidal turn.

For a circular cross-section tokamak plasma with large aspect ratio (Ro/a),

rBtq rBw (1.11)
ROBp(r)

The q profile usually increases with minor radius, as will be shown in chapter 5. The on-

axis safety factor (r -+ 0) is

rBt21rr 2B(
Rgjij= w 2 =- (1.12)Royojotr2 jtoRojo

where jo is the on-axis plasma current density. Since the safety factor profile correlates

with the poloidal magnetic field, and therefore the current density profile, it can be

measured by the polarimeter as well.

1.3.2 C-Mod Diagnostics

To study various aspects of the C-Mod plasma, many diagnostics have been developed

[10][11]. We will briefly introduce some of the diagnostics extensively used in this

thesis.

Motional Stark Effect

The Motional Stark Effect (MSE) diagnostic [10] measures the magnetic pitch angle to infer the

current profile. A diagnostic neutral beam (DNB) with energy of 50 keV and ~10 cm diameter is

injected into C-Mod at the mid-plane with a toroidal angle ~7 off the poloidal plane. When the

hydrogen atoms move across the magnetic fields, they experience an electric field given by

9 = V x B in the rest frame of the moving atoms. This electric field produces very large Stark

shifts for the energetic hydrogen atoms, which generate a complicated spectrum of light by
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interacting with the plasma. The emitted photons are linearly polarized either parallel to or

perpendicular to the electric field. Therefore, the direction of the electric field and thus the

magnetic pitch angle could be derived by measuring the photon polarizations. The H" line is

chosen for measurements because of its high intensity and visible wavelength (-656 nm). To

achieve an ~2 cm spatial resolution, 10 MSE channels are needed from the magnetic axis to the

outer board side of the plasma edge around the mid-plane, as shown in Figure 1-3.

A main challenge of C-Mod MSE diagnostic is the shot-by-shot drift of the measured

pitch angles caused by thermal-stress induced birefringence of the in-vessel lenses [12][13]. The

absolute value of the measured pitch angle is therefore usually not correct. Therefore, the relative

pitch angle change during a plasma discharge is used for the current profile analysis. This relative

change measurement should have a reasonable accuracy, considering the slow temperature

variation for the lens during a 2 s plasma discharge [13][14].

Another disadvantage of the MSE system is its relatively slow time response. The MSE

measurement is usually averaged over 100 ms to reduce the background. Therefore, it cannot

follow fast evolution of the current density profiles, such as during sawtoothing events.

MSE may not work on future large, high density, tokamaks, since the penetration depth

for the high energy beam is insufficient to reach the plasma core.

Two Color Interferometer

The two color interferometer (TCI) system [10][15] measures the line-integrated density along

ten vertically viewing chords in a Michelson configuration on C-Mod. Lasers with two

wavelengths (CO2 and HeNe) are co-aligned along the same beam path, to subtract the vibration

error for the phase shift measurements. The locations of the ten chords are shown in Figure 1-3.

The measurement resolution is typically ~ 5 x 10 18 /m 2 . The line integrated density on channel 4

(n104), at R=0.68 m, is used for feedback control of the plasma density.
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One disadvantage of the TCI system is that all ten vertical chords are close to the plasma

core (r/a=0-0.55) due to the beam-path constraints of the port window. It is not possible to invert

the density profile without edge density measurements. This is one reason that we are developing

a poloidally viewing polarimetry system, which has the potential to span over the whole poloidal

cross-section with multiple chords, instead of choosing the vertically viewing geometry more

commonly used on other experiments.

Thomson Scattering

The Thomson scattering (TS) system [10] measures the local electron density and temperature by

measuring the spectrum of the scattered photons from the plasma electrons. The C-Mod TS

system fires two high power Yttrium Aluminum Garnet (YAG) lasers vertically near the plasma

magnetic axis, as shown in Figure 1-3. Each laser is fired at a rate of 50 Hz, and therefore a time

resolution of 10 ms is achieved by setting up the lasers with a 10 ms offset.

The measurement locations are mapped to the outboard mid-plane assuming the plasma

density and temperature are constant on a given flux surface (because of the rapid transport along

the magnetic field). The data points on the mid-plane are fit to a profile using the numerical codes

Nfits [16] or Quickfit [17]. Quickfit, which fits the core and edge Thomson separately with low

order polynomials and combines them smoothly with a tanh function, is used extensively in this

thesis.

Since the two YAG lasers usually run at different power level with imperfect co-

alignment, it is typical to see a systematic density discrepancy between the two measurements,

which can be eliminated by a careful diagnostic calibration. TS can be benchmarked with TCI to

estimate the systematic errors in the density measurement. The TS density is mapped onto the

TCI beam-path, line integrated and compared with the TCI data. The required correction is

usually less than 10% throughout the time of the discharge when the TS system is well calibrated.

EFIT (with magnetic coil measurements)
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The equilibrium fitting code EFIT [18][19] determines the poloidal magnetic flux surfaces on C-

Mod, by solving the following Grad-Shafranov equation (defined in toroidal coordinate: R, },

z)[7].

A*V= -2RRyojp (1.13)

with

* -R +') (1.14)
aR (Re3R dz

The toroidal plasma current is given by

27r dP F dF
JO = --(poR - + --- ) (1.15)

/to dip R 0

where P(O) is the plasma pressure, and F(O) = RBp. By fitting P(O) and F(O) with low order

(usually 2nd or 3rd) polynomial or spline functions, EFIT minimizes the error between the

reconstructed magnetic field and the external magnetic coil measurements (Figure 1-3). qo is

assumed to be 0.95 in the reconstructions, which is a good approximation for sawtoothing

discharges. The reconstruction results are available shortly after a shot in the MDSplus [20] tree

"ANALYSIS". Since there are no internal constraints from plasma pressure or MSE, this version

of EFIT is called normal EFIT.

Since the assumption on qO is not true during the LHCD discharges, normal EFIT

normally shows larger errors on the reconstructed core magnetic fields, which will be discussed

in detail in chapter 5. Kinetic-EFIT [21] has been developed to simulate the current density

profile for LHCD discharges on C-Mod. In addition to the input diagnostic data for normal EFIT,

Kinetic-EFIT takes the plasma pressure, and magnetic pitch angles from MSE as internal

constraints to improve the reconstruction accuracy. The sawtooth inversion radius (SIR), where

the safety factor q=1, is also a constraint option. As described in chapter 5, polarimetry

measurements have been used to show that the Kinetic-EFIT reconstructions are more accurate

than those from normal EFIT.
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Normal EFIT is automatically run right after each plasma discharge, while Kinetic-EFIT

needs some extra work on preparing good MSE data, such as removing bad data points and

choosing a reference time-slice during the Ohmic phase to provide the baseline error offsets.

Kinetic-EFIT also takes some manpower on the fitting process for manually picking the proper

fixed nodes for the spline fitting of the flux function FF'. Since MSE data are averaged over

several time points to reduce the background noise during LHCD, Kinetic-EFIT usually has a

time resolution no better than 100 ms.

Figure 1-3: C-Mod cross section with locations of the certain measurements.
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1.4 Lower Hybrid Current Drive

C-Mod has a toroidal plasma current, ranging from 0.3 to 2.1 MA. This current is usually driven

by mutual induction between a central solenoid and the plasma itself, which is called Ohmic or

inductive current drive. According to transformer theory, the swing of the central solenoid

current ( COi) needs to be maintained to sustain the plasma current. This process can not last
dt

long, considering the limits of the maximal current and heat load in the solenoid. On C-Mod, we

can run a plasma discharge up to 5 s (typically ~2 s) long, and after that the toroidal magnetic

coils needs to be cooled by liquid nitrogen before the next discharge. To achieve steady-state

operation for future reactors, various non-inductive current drive methods have been intensively

studied.

One technique is to drive the current with Neutral Beam Injection (NBI) [22] by

injecting high energy neutral atoms into the plasma along a tangential direction. The incident

neutral atoms are ionized by the hot plasma, and ultimately generate a net current in the preferred

direction. Another method is to drive the current with high power radio frequency waves, such as

Electron Cyclotron Current Drive (ECCD) [22][23] or LIHCD [3][22]. ECCD selectively heats the

electrons moving in the toroidal direction, which decreases their collision frequency and therefore

increases their contribution to the toroidal current. The asymmetry of the electron distribution

function in the toroidal direction from electron cyclotron heating produces a net toroidal current.

LHCD drives the current by electron Landau damping, and will be briefly discussed in the

following section. All of these current drive methods have their own pros and cons, and none of

them could solely drive the whole plasma current for the future fusion reactors. A self-driven

plasma current, bootstrap current [24], is a necessary complement for the external driven current.

The bootstrap current is generated by the trapped electrons with the pressure gradients in the

plasma. Optimal current drive scheme for ITER uses a combination of different current drive
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methods considering the cost and reliability, and the bootstrap current is proposed to drive -50%

of the total current.

Basic theory and the LHCD system on C-Mod will be presented in this section. Details

about the LH physics can be found in review paper [22].

1.4.1 Basic Theory

The LH wave is an electrostatic wave with a frequency between electron and ion cyclotron

frequencies: 2i 2 o2. The wave dispersion relation can be deduced with cold plasma

approximation as

2 L LH
nj ~ nI - 2 (1.16)

Me W 2 - LH

where &LH is

o2
2 _PL

H 2(1.17)
1+ 2

Oce

ckL

nil = ckl1  (1.19)

2 2

=pi nizi e )2 Upe = ( 2 , and k1 , kl are the LH wavenumbers perpendicular or parallel

to the magnetic field. On C-Mod, the incident LH wave has a frequency of f = 4.6 GHz (fci

40 MHz and fce ~ 140 GHz with B135 T), and is launched into the plasma with a phased

waveguide array launcher that defines the initial value of n, [25]. Therefore, nI can be estimated

from local plasma parameters by Equation 1.16. Ray tracing (GENRAY) [26] and full-wave

(LHEAF) codes [27] have been used to simulate the propagation of LH waves in the C-Mod

plasma.
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Electron landau damping of the LH waves results in current being driven in the plasma.

When the LH wave is launched with a phase velocity of 3-5 times that of the electron thermal

velocity (vte = 2 T/me) parallel to the magnetic field, electrons slightly faster than the wave

will be decelerated, and electrons with slightly lower velocity will be accelerated by the wave.

With a Maxwellian velocity distribution function, more electrons are accelerated than damped,

and a plateau is created in the velocity distribution function (Figure 1-4). The asymmetry of the

velocity distribution function results in a driven current, given by

JA = -e fv if(vl)dvi (1.20)

where J1 is the driven current density parallel to the magnetic field, and vIl is the electron parallel

velocity. A Fokker-Plank code, CQL3D [28], has been widely used on C-Mod to simulate the LH

wave power deposition and the driven current profile.

10

010 1 .5 0

/ev-

Figure 1-4: Contours of the electron velocity distribution function, when the parallel LH
phase velocity is ~3-5 times of the electron thermal velocity (VT) (Figure from [22])
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To determine the cost effectiveness of the LH system, it is crucial to evaluate current

drive efficiency and its relation to the plasma and LH wave parameters. The LHCD efficiency is

defined as the ratio of the driven current to the dissipated power.

'IlI
J1LH (1.21)

It can be estimated with a single particle model [25][29], which shows that low density and lower

n are preferred for high current driven efficiency

1
71LH OC 2 (1.22)

1.4.2 C-Mod LH System

The LH system on C-Mod has a source power of up to 3 MW, generated by 12 klystrons. These

tubes produce 250 kW each of microwave power at 4.6 GHz. The power is coupled into the

plasma through a launcher, which for historical reasons is referred to as LH2.

Through a series of protection and feedback control components [25][29], the LH power

from the klystrons is divided and transmitted to LH2 with 64 separated waveguides (16 columns

X 4 rows, Figure 1-5). The central 4 columns are each powered by a single klystron, while the

other 12 columns are divided into 6 pairs, powered by 6 klystrons respectively. A photograph of

the launcher in the C-Mod vacuum vessel is shown in Figure 1-6. Molybdenum limiters on both

sides of the launcher provide protection from the plasma.

The n of the launched LH wave is determined by the phase difference between the

columns of the waveguides, which is normally tuned by the phase of the klystrons. However, for

any two adjacent columns sharing one klystron, a mechanically controlled "phase shim" whose

length can be adjusted is installed on one column to set the desired relative phase.

The LH2 system was regularly operated at 800 kW net power for 0.75 s during the

plasma flat top. It can be remotely controlled to do an n11scan, from 2.4 to 1.6 (phasing from 1150
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to 750), while maintaining high LH power. Consistent high quality LH pulses have contributed to

the success of the LHCD experiments presented in chapter 5.

Figure 1-5: Model drawing of the LH2 launcher

Molybdenum limiter

16x4 waveguides

Figure 1-6: In vessel view of the installed LH2 launcher
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1.5 Motivations for Polarimetry Studies

Although the total plasma current in a tokamak can be easily measured with an external

Rogowski coil, it is much more difficult to measure the current density profile inside the plasma.

On C-Mod, the current density profile is based on EFIT reconstructions using the external

magnetic coil measurements, which may have a large uncertainty in the plasma core due to

insufficient internal magnetic field information. A new multi-chord polarimetry diagnostic which

measures the line integrals of the internal poloidal magnetic fields (weighted by the electron

density) and therefore the toroidal current profile has been developed on C-Mod with the

following motivations.

* Accurate current density profile measurement is crucial for LH physics research.

" The polarimeter works as a benchmark for the MSE diagnostic, which suffers from

thermal drift problems. It also complements the MSE system with much higher time

resolution, off mid-plane measurements and the capability of measurments during high

density plasma operation, when the DNB has difficulty penetrating beyond the edge

plasma.

" Controlling the shape of the current density profile is a key element to enhance the

plasma performance. Potential real-time control of the current density profile with the

polarimeter is critical to reach a steady-state high performance regime of operation in a

tokamak.

* The polarimeter uses a similar laser wavelength and poloidal-viewing geometry as those

proposed for the ITER polarimeter. Our development experience has already contributed

to improvements in experiments on J-TEXT [30], EAST and DIII-D [31], and will

significantly contribute to the future diagnostic development on ITER.

* The polarimetry system has a 2 MHz bandwidth, which allows measurements of high

frequency magnetic and density fluctuations. It is the only diagnostic thus far to measure
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the core magnetic fluctuations on C-Mod. These fluctuation measurements will enhance

our understanding of turbulence and transport.

1.6 Thesis Outline

We have developed a 3-chord poloidal viewing polarimeter on C-Mod, which senses current

density profile changes during LHCD experiments, and diagnoses a wide frequency band for both

density and magnetic fluctuations.

Chapter 2 briefly introduces the polarimetry theory and reviews various measurement

techniques previously developed to improve the diagnostic accuracy.

In chapter 3, we will present the development of the 3-chord polarimeter, including

designing the beam-path geometry and improving the optical components. Digital and analog

phase analysis techniques for detector signals are compared.

The processes to reduce the noise and calibrate the polarimetry errors are presented in

chapter 4. Polarimetry sensitivity to plasma density, current and position changes are evaluated. A

sufficiently low noise level allows sawtooth crashes to be regularly observed on all three

polarimetry chords.

Chapter 5 presents the polarimetry observations during LHCD experiments. We scan the

LH power, timing, and phasing, and plasma density and current, and infer the current drive

efficiency through polarimetry measurements. We also validate the Kinetic-EFIT results through

comparisons of polarimetry measurements with synthetic signals. Finally, polarimetry data are

incorporated into normal EFIT to constrain the central safety factor, qo.

Chapter 6 introduces fluctuations as measured by the polarimeter. Broadband fluctuations

during the EDA H-mode are observed by polarimeter, and are found to be significantly

suppressed with high power LH waves. The polarimeter also confirms the poloidal asymmetry of

the weakly coherent mode (WCM) in I-Mode.
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Finally, we will summarize the experimental results and discuss the possible future

polarimetry upgrades in Chapter 7.
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2. Basic Polarimetry Theory

Diagnosing the internal magnetic field in fusion machines with polarimetry was first proposed by

De Marco and Segre in 1972 [32]. The Faraday rotation of a linearly polarized probing beam

propagating through the magnetized plasma contains the magnetic field information parallel to

the probing beam propagation direction. Since then, polarimetry diagnostics have been developed

with various improvements, including different probing beam modulation and phase detecting

techniques, different optical path geometries, and different parameter measurements (magnetic

field and/or plasma density, equilibrium and/or fluctuations) [33][34][35][36][37][31]. To design

a polarimeter according to the specific geometry and plasma parameters of C-Mod, we need to

understand basic polarimetry theory, and to be familiar with the pros and cons of the previous

polarimetry systems on other experiments around the world.

In section 2.1, we will introduce the basic theory of the interferometry/polarimetry

measurements in magnetized plasma.

Section 2.2 reviews previously successful polarimetry measurement techniques, and

discusses the pros and cons for each method. Different optical viewing geometries for the

polarimetry systems are also discussed.

Since the polarimeter measurement is the line integral along the beam path, it is not

straightforward to deduce the local magnetic field or the current density profile, even from multi-

chord measurements. Section 2.3 presents the methods to infer the current density profile from

multi-chord polarimetry data.
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2.1 Basic Polarimetry Theory

A polarimeter is a diagnostic based on a plasma refractive-index measurement, similar to an

interferometer. When a probing laser beam propagates through the plasma, it has a different phase

shift compared to free space propagation. The phase shift is proportional to the plasma density,

and can be measured by an interferometer. In highly anisotropic magnetized plasma, the

polarization of the probing beam can be rotated: an effect called Faraday rotation. The Faraday

rotation depends on both the plasma density and internal magnetic field. To understand how these

refractive-index based diagnostics work, especially for the polarimeter, we start from the plasma

dispersion relations.

2.1.1 Dispersion Relations

The propagation of the electromagnetic waves in plasma follows Maxwell's equations:

V X E i =(2.1)
at

1 aE (2.2V x B =--+ (2.2)
c2 at

The plasma current is a function of the electric field, according to Ohm's Law

= .(2.3)

where Y is the plasma conductivity tensor. By eliminating B and J, Equations 2.1-2.3 are

combined into

V X (V X E + + a (F = 0 (2.4)
c2 at2at

With the plane-wave assumption (short wavelength compared to gradient scale lengths), E =

PO e ik- , we can apply a Fourier technique to Equation 2.4 by relating V to ik and to -iw.

Equation 2.4 becomes
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(2.6)

To make sure there is a non-trivial solution, the determinant of the coefficient matrix has to

be zero. Thus, we find the dispersion relation from

det [E-k2I+ I7 = 0 (2.7)

where F= I+-c is the dielectric tensor. The refractive index is defined as N =
NEO (A)

det[NN - N 2 -+ JE=0 (2.8)

The thermal motions of the charged particles are neglected (cold plasma approximation), and the

particles are driven by the electrical field

= = niqi j (2.9)

where i represents different species of charged particles. Since the velocity of the electrons is

much higher than that of the ions, the electrons are usually the dominant contributors to the

plasma current

f~ -neeIe (2.10)

To solve for the electron velocities, we use the momentum equation for a single electron,

which can be simplified by substituting - ih for a
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(2.5)

-e(k + i x i) = me UVat
(2.11)

-e(k + i x f) = -iWMmev (2.12)



Equation 2.12 can be transformed to three scalar equations in the following coordinate system:

The z-axis is the wave vector direction, and magnetic field and wave vector (with relative angle

0) define the y-z plane, as shown in Figure 2-1.

-e
VX = m (Ex + vyB cos 0 - vzB sin 0) (2.13)

-ie
VY =M--( Ey - v B cos 0 ) (2.14)

-te
vz =- (Ez -vxB sin G) (2.15)

COme

Z k (EM wave)

0 B

x

Figure 2-1: Coordinate system

The three velocity components are then solved as

vx = A(Ex - iY cos 0 Ey+ iY sinG Ez) (2.16)

vy = A[iY cos 0 Ex + (1 - Y2 sin2 )Ey + (-Y 2 sin e cos G)Ez] (2.17)

v, = A [-iY sin e Ex + (-Y 2 sin e cos G)Ey + (1 - Y2 cos 2 G)E] (2.18)

where Y = = < 1, and A = -ie Substituting the velocities into Equation 2.9,
mew W MeW(-y 2 )

the dielectric tensor becomes
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X
1-_y2
iXY Cos 0

E = -C

iXY sin 0
1 - y2

iXY cos 6

1 y2
X(1 -Y 2 sin2 9)
1 -

XY 2 cos 0 sin 0
1 - y2

iXY sine

1-y2
Xy 2 cos 0 sin0

1-y2
X(1 - y 2 cos 2 9)

1 -

where X = f - &__«1. Since the wave vector k (also N) is along the z-axis, Equation 2.7

becomes

-N 2 1_y2

iXY cos 0

1-Y2
iXY sin 0

1-y2

iXY cos 9
1-y2

1 - N2  X(1 - y 2 sin 2 0)
1 - y2

XY 2 cos 0 sin 0
1- y2

iXY sin 0
1 - y2

XY2 cos 0 sin0 =0

1 y2

X(1 -Y 2 cos 2 9)
1-y2

The solution for the refractive index is the Appleton-Hartree formula [38],

X(1 - X)

1 - X 2 y2 sin 2 9 y2 sin 2 e) + (1 - X) 2 y 2 cos 2 &
(2.21)

where + correspond to different characteristic polarizations. The related transverse characteristic

polarizations are

E iY sin 2 0

Ey 2(1-X)cos9

y 2 sin 90
+4(1-X)2 cos 2 9i 1 1

2.1.2 Limiting Cases

(1) If we neglect the birefringence of the plasma (assume Y=0), the plasma refractive index

simplifies to

N2 = 1 -X (2.23)

(2.24)
1 X

N = (1 - X)2 ~ 1 -
2

The phase difference measured by interferometry comes from the different refractive index

between vacuum and plasma,

47

(2.19)

1

N 2 = 1 -

(2.20)

(2.22)



= f ( (N - 1)dl ~-f Xd1 = 2 A nedl (2.25)
C 2c 47T EOC2mef

Therefore, the interferometer measures the line-integral of the electron density along the laser

beam-path, and the phase shift, for a given density, is proportional to the laser wavelength.

(2) In a strong magnetic field, we have to take plasma birefringence into consideration, and the

plasma refractive indices depend on 6. When the magnetic field is parallel to the wave vector

(6 = 00)

x
N2 = - ~:Z 1 - X(1 T Y) (2.26)

N + 1 - 2~ -Y (2.27)
2

The characteristic polarizations are counter-rotating circularly-polarized beams

E = +i (2.28)
Ey

The Faraday rotation effect is caused by the phase difference between these two characteristic

waves. Assuming a linearly polarized beam aligned with the x-axis, it can be decomposed into

two circularly polarized beams EO = EOs = E+ + E

where E+ = ( T if^e-

After propagation a small distance z in the plasma,

z= + eik+z + eik-z

E0 1(k++k-z-t) k+k- ik+-k k+-k- k+k-=- e 2z e 2 Z+ e- 2 x -ix e 2 , - e - 2z
2 K A

= Eoe L(2z-t)(cos a x^ + sin a 9) (2.29)
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where a = k+-k-, z = W (N+ - N_). The laser beam not only experiences a phase shift of
2 2c

k++k. z (interferometry effect), but also has a Faraday rotation through angle a. According to the
2

WKBJ approximation [38], the total Faraday rotation through the plasma is

3 o e3.

a o -(N+ - N_)d =' XYd = 3 m neBIdl (2.30)
f2c 2c 8jth em

Therefore, the polarimeter measures the line-integral of the electron density and the magnetic

field along the laser beam-path, and the rotation angle is proportional to A2 . It is about two orders

of magnitude smaller than the interferometry phase shift with the FIR wavelength and C-Mod

magnetic fields.

(3) When the magnetic field is perpendicular to the wave vector (0 = 900),

N2 = 1-X or 1 - X(-X)(2.31)
1-X-Y 2  (.1

No - 1 -(2.32)
2

N ~1-X(1 -X)
Nx ~X 1 - (2.33)

2(1 - X - y2)

Since N0 is the same as the refractive index without magnetic field (Equation 2.24), it is named

the ordinary-mode (0-mode). For the O-mode, the characteristic polarization is a linear

polarization along the y-axis (Ex=Ez=0). The other mode is the extraordinary-mode (X-mode).

The characteristic polarization for X-mode is

E~ 1-X-Y 2

- (2.34)
Ez iXY

If the incident linearly polarized beam only has an x or y component, it will only see

either X-mode or O-mode, and will sustain the linear polarization. When the incident beam

polarization is 450 relative to the magnetic field, E0 = .(2 + f)et, the and y components
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experience different indices of refraction, and thus have different phase after going through a thin

slab of magnetized plasma with thickness z.

Zo =N/2 (eixz i + eikoz )e-it = _1_(ei(kx-ko)z + Y)ei(kOz-wt) (2.35)

Therefore, the linearly polarized beam turns into an elliptically polarized beam. The phase

difference between the R and y components is called the Cotton-Mouton (C-M) effect, qpCM

which is calculated by

W)Z
C xk~ k 0)Z = - (Nx - N.) (2.36)C

According to the WKBJ approximation, the total C-M effect of the beam propagation

through the plasma is

o >XY2  e 4A
fCM = (Nx - NO) dl ---- dl ~fneR~dI (2.37)C C 2 167t3E"C4M3

Thus, the C-M effect is proportional to A3, the line-integral of the electron density and the square

of the perpendicular magnetic field.

2.1.3 Normal Case

We have deduced the Faraday rotation and C-M effects separately in limiting cases, when the

magnetic field is either parallel or perpendicular to the laser propagation direction. However, the

angle between k and i is usually neither 0 or 900 in our plasma, and the Faraday rotation and C-

M effects are mixed together. It is nontrivial to extract either effect accurately, unless one of them

is much smaller than the other, and thus can be neglected.

When « 1, we have

1 X(1 T Y cos6) (2.38)
2

(2.39)
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which is close to the limiting case (2) with two circularly-polarized characteristic polarizations,

and the incident beam has a Faraday rotation

a 8zr ecA neB cos 8 dl (2.40)
81r2E C3M

Similarly, when Y>> 1, the two characteristic polarizations are 0-mode and X-mode, with

respective refractive indices

No ~ 1 - - (2.41)
2

N~~1 x(1-X)
Nx ~ 1 - X~ )(2.42)

2(1 - X - Y 2 sin 2 0)

In this case, the C-M effect is given by

e4A3  r
C neB 2 sin2 0 dl (2.43)

161r 3 E0 C4M3 f

On C-Mod, the polarimetry wavelength is A = 117.73 yim (chapter 3), and the toroidal

magnetic field is ~5.4 T, so that Y = W- eBA ~ 0.06. Since the poloidal magnetic field along
Co 2irmec

the polarimetry beam-path depends on total plasma current and the location of the polarimetry

chords, it changes with the plasma conditions and measurement locations. It is estimated to be 0.2

to 0.6 T, and cos8 ~ 0.04 to 0.1. Thus, -u-- 0.6 to 1.5, where none of the previous
Cos e

approximations hold. Segre has utilized the Poincare sphere and Stokes parameters to deal with

the case where the Faraday rotation and C-M effects are mixed with each other and the two

effects are comparable [39][40]. It was shown that when both effects are small (a 2 + (P < 1),

either Faraday rotation or the C-M effect can be obtained directly with the approximation

equations we have deduced. For the C-Mod polarimetry data we will present in the following

chapters, especially for the LHCD discharges, a 2 + <2 «1 is well satisfied, and therefore we

can freely use the approximation equations we deduced for analysis.
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2.2 Review of Polarimetry Techniques

Polarimetry/interferometry systems have been built on many machines [33][34][41][42][43][44]

[45]. To achieve high spatial and temporal resolution, some of the polarimetry systems were

successfully upgraded to more than 10 chords with a time resolution up to ~1us [45]. To enhance

the measurement accuracy and reduce the systematic errors, new detecting and probing beam

modulation techniques have been developed. Poloidally viewing systems have replaced the

previously more typical vertically viewing geometry, in order to span the whole plasma poloidal

cross section. Tangentially viewing polarimeters have been used to measure the plasma density as

an alternative to the interferometer. In this section, we will go through these polarimetry systems,

by mainly covering different beam modulation methods and different optical geometries.

2.2.1 Different Beam Modulation Methods

(a) Linear polarization beam measurement technique

The traditional and most straightforward method to measure the Faraday rotation is to launch a

linearly polarized beam, and measure how much the polarization plane rotates in the plasma. The

first successful multi-chord interferometer/polarimeter system was built with this measurement

scheme by Soltwisch on TEXTOR [33]. The system had a nine-chord simultaneous measurement

of both the phase shift and rotation, with 0.15" accuracy and 3 ms time resolution for the

polarimeter.

To discuss the measurement technique, only a single chord optical system is shown in

Figure 2-2. A linearly polarized beam with a wavelength of 337 pm is split into two beams by a

beam splitter. The probing beam goes through the plasma, and experiences both the

interferometry phase shift and Faraday rotation. The reference beam is given a frequency shift Ao

by a rotating grating, allowing a heterodyne measurement to be made. These two beams are

recombined with a beam combiner after the plasma, and form beat signals on detectors D, and Dp.
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Neglecting beam ellipticity induced by the plasma or optical system, the signals on the two

detectors are approximately

SI,, = C1,p + Ay,p sin (Acot + AP + J,) (2.44)

where Ay is the interferometry phase shift. The detector signal amplitudes are

A1 = [(1 - Ip)IpIrf (2.45)

1
Ap = [*2PpIrf (2.46)

where OP is the Faraday rotation angle, and Ip (I,) is the power of the probe (reference) beam.

By comparing S1 with the signal from another beam, which does not go through the

plasma but with the same path length, we can extract Ap. While Op can be directly extracted from

Ap, it usually suffers from large systematic errors, since Ip and 1r vary due to laser power changes

or beam refraction in the plasma. The amplitude effect can be eliminated by calculating Op from

A1/Ap, if the two detectors are calibrated to the same response.

This method worked well on TEXOR by using pyro-electro detectors, which have large

apertures relative to the beam size and are not sensitive to the beam offsets from plasma

refraction. As will be discussed in chapter 3, the pyro-electric detector has low sensitivity at high

frequency and has been replaced with Schottky diode mixers in the newly developed polarimetry

systems. One disadvantage of the Schottky diode mixer is that it is extremely sensitive to the

beam coupling, thus the signal amplitude may drop significantly with strong beam refraction in

the plasma. This effect cannot be easily calibrated out, because it is different on each detector,

largely depending on the detector alignment.
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Figure 2-2: Schematic drawing of the polarimetry/interferometry system on TEXTOR with
the linearly polarized beam measurement technique (Figure from [331)

(b) Rotating elliptically polarized beam measurement technique

With large measurement errors for the amplitude measurement technique at high bandwidth,

more accurate phase measurement techniques have been developed to measure the Faraday

rotation. These methods typically require modulating the incident beams instead of using a

linearly polarized beam.

A rotating elliptically polarized beam scheme was developed on MTX [34], shown

schematically in Figure 2-3. A linearly polarized probe beam is converted to a rotating elliptically
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polarized beam with a quarter-wave plate followed by a half-wave plate which rotates at -1 kHz.

The reference beam comes from a second laser with a frequency offset of Aco=l MHz, and is

combined with the probe beam on both the reference and plasma mixers. The detected signals

have two beat frequencies, with a fast beat at 1 MHz which carries the interferometry phase, and

the envelop at a few kHz carrying the Faraday rotation phase (shown in Figure 2-4). By

demodulation and filtering, both the interferometry and polarimetry phases can be deduced by

comparing the signals between a probe detector and a reference detector. An accuracy of 0.20 has

been achieved using this technique.
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Figure 2-3: Schematic drawing of the Polarimetry/Interferometry system on MTX with a
rotating elliptically polarized beam measurement technique (Figure from 1341).
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Since this is a phase measurement technique, changes of the signal amplitude due to

plasma refraction are not a big concern. Another advantage is that it only requires one detector for

each chord. With fewer detectors, this method not only reduces cost per channel, but also saves

space that can be used to accommodate more polarimetry chords in a compact system design.

The main disadvantage for this method is that the time resolution for the Faraday rotation

measurement is restricted by the rotating frequency of the half-wave plate, which is limited to a

few kHz. The time resolution is sufficient for current density profile analysis, but restricts the

application in fluctuation measurements.
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Figure 2-4: Simulated time history of the polarimetry waveforms. The phase of the 1MHz
IF contains the interferometry information. The phase difference between the envelopes of
the reference detector and the probing detector is twice the Faraday rotation a (Figure
from 146])
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(c) Counter-rotating circularly-polarized beam measurement technique

Another phase measure technique is called the Dodel-Kunz method [35], which

modulates two perpendicular linearly polarized laser beams into two counter-rotating circularly

polarized beams. This method has been successfully implemented on RTP [47] and MST [45],

and was also adopted for the C-Mod polarimeter.

Two orthogonal linearly polarized probe beams with a frequency offset AW< o are

transformed by a '/4 wave-plate into L- and R- circularly polarized beams with amplitude a and b,

respectively

EL = a[cos(w) - + sin(wt) 9] (2.47)

ER = b[cos((w + aw)t) X - sin((w + Aw)t) 9] (2.48)

If we measure the x component of the superposition of these two beams with a square law

detector as a reference,

Pref = [a cos(wt) + b cos((w + At)t)2

a2 [cos(2wt) + 1] + b 2 [cos(2cot + 2Awt) + 1] (2.49)
2

+ ab cos(2wt + A&t) cos(Awt)

By picking out the low frequency component aw with a band pass filter, we find

Pref = ab cos(Awt) (2.50)

After going through a slab of plasma with thickness z

EL = a'[cos(wt - k.z) - + sin(wt - k _z)f] (2.51)

ER = b'[cos((w + Aw)t - k+z) £ - sin((w + Aw)t - k+z) 9] (2.52)

considering R- (L-) rotating beams with wavenumbers k, (k.). Similar to the reference, the probe

detector measures the superposition of their R components, and keeps the Aw component by using

a bandpass filter
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Pprob = ab'cos(Awt + 2a)

where a = 2 -- z = W (N+ - N_) is the Faraday rotation. Although the reference and probe

detectors have different amplitudes, the Faraday rotation is calculated from their phase difference,

and is not affected by amplitude variations.

By introducing a third laser with a different frequency, o, as a local oscillator (LO)

beam, either of the rotating probe beams, together with the reference beam, form a traditional

interferometer. An advantage of this triple-laser interferometer/polarimeter system is that it

measures both the Faraday rotation and interferometry signals with high time resolution (A1us),

and only one detector for each chord is used, which reduces cost and saves significant space for a

compact multi-chord system. A challenge for this technique is that it needs well co-aligned laser

beams. Misalignment between two probing beams will cause a systematic error on the Faraday

rotation measurement, the details of which will be discussed in chapter 4.

(d) Photoelastic modulation methods

An alternative idea, instead of modulating the input beam, is to modulate the output beam after

going through the plasma, with a photoelastic modulator (PEM). This approach has been applied

to the CO2 polarimetry systems on JT-60U [48] and C-Mod (in Figure 2-5) [49]. A linearly

polarized beam is launched along x-direction, as a probing beam,

E = a cos(ot) R (2.54)

After going through the plasma, its polarization rotates by an angle a (we neglect the signal

amplitude change in the following analysis, as we only care about the phase).

E = a cos(wt) [cos a R + sin a ^] (2.55)

Then, the beam traverses a PEM, with the optical axis aligned in the x-direction. The output beam

is then:
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S= a cos(wt) [cos a e-2- e+ sin a e29] (2.56)

A = AO cos(t) (2.57)

where A is the optical retardation of the PEM, and Q is the angular frequency of a piezoelectric

transducer (PZT) used to stress the photoelectric element.

A polarizer orientated at 450 with respect to the x-axis picks up part of the laser beam

which is then directed onto a square-law detector.

Edet = a cos(wt) cos a e T + sin a e2 (2.58)

2 a2

Pdet = IEdet I = - [1 + cos(2ot)] [1 + sin 2a cos(AO cos(12t))] (2.59)

If we filter out the high frequency component (2a), and then expand the detector power in Bessel

functions, we get

2 
0

Pdet = - [1 + sin(2a)JO(AO) + 2 sin(2a) EJ2n(Ao) cos(2nf2t)] (2.60)
n=1

We find the ratio of the amplitude of the second harmonic to the DC component is then

=2 sin(2a) J2(A0 ) (2.61)
1 + sin(2a) JO(AO)

and the Faraday rotation is

1Vra = -sin-'( ) (2.62)
2 2J2 (Ao) VrJo(Ao)

as long as the maximum retardation AO is known. AO depends on both the setup of the PEM

(applied voltage on PZT) and the incident angle of the linearly polarized beam. A calibration by

rotating the incident beam angle is necessary to find Ao [50]. With this method, only one laser is

necessary, and one detector is required for each channel.

A disadvantage of this method is that the PEM is limited to short wavelengths, typically

only available up to the near infrared region. Recently, a PEM for a wavelength of ~50 ptm has
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been developed and bench tested by Akiyama [50]. With the development of a PEM for longer

wavelengths, this modulation method may receive wider application for future polarimetry

systems.

Another disadvantage is that the time resolution for this method is only up to tens of kHz,

which is determined by the modulation frequency of the PEM. The fluctuation measurement

capability is thus restricted when using this technique.

Polaim

Adbu~tbI&
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Beam phwPlama
CO Law (20 W OutW) B.3

Figure 2-5: Schematic of the PEM polarimeter configuration on C-Mod. (Figure from [491)

2.2.2 Different Viewing Geometries

Early interferometer/polarimeter systems were developed with vertical viewing geometry. Since

the laser beams went through vertical port windows, in-vessel optics were not needed. With this

geometry, it is convenient to design a multi-chord system either by expanding the incident beam

to a large slab beam, or by splitting it into multiple, discrete beams. The polarimeters on

TEXTOR (Figure 1-1), MTX, RTP and MST all adapted this geometry, with approximately 10

chords of simultaneous measurements, which achieved low noise level [33][34][47][45].
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However, on C-Mod, constraints of the vertical port geometry would limit the

interferometry/polarimetry chords to the core plasma, missing the edge.

To achieve better profile inversions, the chords should fully span the whole plasma cross-

section. A multi-chord poloidal viewing polarimetry was developed for this purpose, and has

been implemented on JET, and C-Mod, and is proposed for ITER. The laser beams are injected

into the machine through a horizontal port window, and reflected back by corner-cube retro-

reflectors installed in the inner wall. The beams have to be split and directed into the machine

with different incident angles, which make a multi-chord compact design challenging.

A radially viewing polarimeter designed for NSTX-U has been tested on DIII-D [31][36].

The probing beam has a long wavelength (2=1.04 mm) and is reflected by the inner-wall tiles

instead of in-vessel optics. By scanning the toroidal field, the relative dominance of Faraday

rotation and C-M effects have been studied. This system shows promise for diagnosing global

magnetic fluctuations.

Some polarimeters are designed with a tangential geometry [37][51]. The laser beams

enter the machine through a tangential port window, and hit retro-reflectors mounted in the outer

wall or outside the vacuum vessel. Because the toroidal magnetic field can be well known,

tangential polarimeter can be used to measure the line averaged plasma density. The Faraday

rotation is usually less than 2n, and thus it has no fringe jump issue, and can be a more robust

way to measure the density than an interferometer. LHD has implemented a CO2 tangential

polarimeter with a noise level below 0.01' at 3 ms time resolution [51]. A CO2 tangential

polarimeter is also proposed for installation on ITER [52].

2.3 Current Density Profile

Both interferometers and polarimeters yield line-integral measurements. To measure electron

density and current density profiles, the line-integrated data needs to be inverted to get the local

plasma quantities.
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Various techniques have been used to invert interferometry data in order to derive

profiles [15]. A typical method is to use Abel inversion [38], which works well for a circular

plasma. For a D-shaped plasma, more complicated techniques are used. We can discretize the

density profile into some unknown density parameters according to the magnetic flux surfaces,

and the interferometry integral for each chord becomes a summation of the density parameters

weighted by the path-lengths between flux surfaces. The multi-chord measurements can be

represented as a matrix:

A = (2.63)

where the matrix A contains the path-length information for each chord, np is the unknown

density vector , and # is the interferometry phase vector. The dimension of $ (chord number) has

to be larger than that of np, so that np can be solved by non-linear least square method. Direct

inversion of A numerically may cause large errors, so Singular Value Decomposition (SVD)

techniques [53] are typically used to invert A, and then calculate the density profile matrix using:

no =- A-'# (2.64)

The poloidal magnetic field, as a vector, is much more difficult to be inverted from the

polarimetry data, since the projected magnetic field components on the beampaths are different,

even on the same magnetic flux surface. An inversion technique by using Fourier expansion of

the magnetic field profile was developed for the proposed ITER polarimeter, and high-resolution

plasma current profiles were successfully generated in a numerical simulation [54]. The

expansion contains a large number of base functions, so a large number of polarimetry chords

(16-chord data used in the reference) is necessary to achieve an inversion with reasonable

accuracy.

An alternative approach, which requires fewer measurement chords, is to fit the current

density profile or q-profile with a model function characterized by some free parameters [55][56].

For Ohmically driven plasma, a simple toroidal current profile model might be assumed as
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J =Jo 1 - (r) (2.65)

where JO is the on-axis current density and a is the minor radius. In this case there is only one free

parameter, m, considering that J is constrained by the total plasma current. The location of the

magnetic axis can be determined by the polarimetry chords around the magnetic axis, when the

chords are purely vertical or horizontal and the plasma is left-right or up-down symmetric, as the

sign of the Faraday rotation changes across the magnetic axis. The internal magnetic field can be

calculated by the plasma current model with the location of the magnetic axis. We can integrate

the density from the interferometer and the magnetic field along the beam-paths, to get the

simulated polarimetry signals. The free parameter m is obtained by minimizing the errors between

the simulation and the measurement data. Since this method only takes the total current and

interferometry and polarimetry data as input, the time resolution can be very good (~A ps). The

limitation is that the current density profile model will most likely be unacceptable during LHCD.

A more accurate and robust method is to incorporate the polarimetry data into EFIT as an

internal constraint. Kinetic-EFIT takes external magnetic field, plasma pressure profile, MSE

pitch angles (if available), sawtooth inverse radius and total plasma current as constraints, and can

produce a more accurate current density profile reconstruction than normal EFIT, which uses only

the external magnetic measurements to constrain the reconstruction. With extra information from

the polarimeter, it should be possible to further improve the EFIT reconstruction accuracy of

parameters, such as the plasma elongation, since the polarimetry contains off mid-plane

measurements. As shown in section 5.4, this is indeed the case. A multi-chord polarimeter

constrained EFIT (without MSE) will have good time resolution, and could be used to measure

the current density profile for real-time feedback during the plasma discharge.
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3. Development of the Polarimeter Diagnostic on C-Mod

The C-Mod Polarimetry system uses Far Infrared (FIR) lasers, for reasons that will be made clear

later in this chapter. Since there are few commercially available optical components for FIR

wavelengths, most of the optics had to be custom designed. The C-Mod Polarimeter is designed

with a poloidal viewing geometry, which requires in-vessel optics, and thus is more complicated

than the typical vertical viewing polarimeter, used on many of the other facilities.

A multi-chord polarimetry system has been developed for C-Mod thus far, while the

addition of a third laser would allow interferometry to be added in the future. A single chord

proto-type polarimetry system was installed in the C-Mod cell for the 2010 C-Mod campaign,

which was then upgraded to three chord measurements for the 2012 campaign. An upgrade to six

chords with an interferometer-polarimetry combined system has been planned for the near future.

The schematic design and the three-chord system geometry will be described in section 3.1.

Details of the lasers, optics, detectors and optical path design will be presented in section 3.2.

3.1 Measurement Scheme and System Geometry

3.1.1 Schematic Measurement Scheme

The C-Mod polarimetry system uses the Dodel-Kunz method [35] to measure the Faraday

rotation. As shown in Figure 3-1, two laser beams with a 4 MHz intermediate frequency (IF),

which is tunable over a 10 MHz bandwidth with little laser power loss, are combined with a half-

waveplate and a wire-mesh polarizer. Two orthogonal beams pass through the quarter-waveplate

resulting in two co-aligned counter-rotating circularly-polarized beams. A small percentage of the

laser beam power is reflected by a beam-splitter to produce a reference signal, and the remaining

power goes through the plasma with a poloidal view, hitting the corner-cube retro-reflectors

mounted in the inner wall, is reflected back, and finally reflects off another beam-splitter.
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The detected signals with the phase information are amplified and then recorded by high

speed digitizers (up to 20 Msps). A frequency meter (shown by the dotted line box in Figure 3-1)

is used to lock one laser frequency relative to the other. The reference signal is passed into the

frequency meter, which produces a voltage signal proportional to the deviation of the IF from the

target frequency (IF-Wage). This signal is integrated and fed back to a piezoelectric transducer

(PZT), which controls the length and therefore the operational frequency of the FIR cavity, and

thus keeping the IF locked to the target frequency.
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Figure 3-1: Schematic design for the polarimetry system on C-Mod

3.1.2 Three-Chord Geometry

In Figure 3-2, the geometry of the three-chord double pass polarimetry system is shown, from the

laser source to the corner-cube retro-reflectors mounted within the inner wall of C-Mod. The

lasers are located on the lower optical table (1.3 m x 3 m x 0.3 m) sitting on the C-Mod cell floor.
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Two lasers are stacked together, which makes it easier to deal with the laser power cables and gas

lines, while keeping the output window of two lasers close to each other. It also saves space for

other components on the optical table, considering the big size of the FIR lasers. Air pucks are

installed between the table legs and the table surface, and Sorbothane" is installed between legs

and cell floor, both of which greatly reduce vibrations of the lower table. The laser beams are

collimated using a 3 m radius of curvature spherical mirror, and are then directed to a second

optical table (0.9 m x 1.8 m x 0.07 m) that is attached to the mechanically very stable 60 cm thick

concrete igloo that surrounds C-Mod. On the upper table the beam is split into a reference beam

and three chords that probe the plasma, as shown in Figure 3-3. A reference beam is picked off

from the chord#1 beam with a beam-splitter. Plano-convex plastic TPX lenses focus the probe

beams onto the 13 mm aperture of the retro-reflectors located on the inner wall. The return beam

from the retro-reflector for each chord is picked off by another beam-splitter and focused onto a

detector by a 900 off-axis parabolic mirror. The detector is mounted on a 3-axis linear stage

combined with a goniometer and a rotation stage, and thus has the flexibility of both position and

angle adjustment to achieve the best signal level. The overall path length from lasers to the probe

detector is roughly 14 m.

Although the polarimetry system can only make three chord measurements

simultaneously, it has flexibility to choose from any three of the six available measurement

positions. The six chords available for viewing are shown with the cross section of typical

poloidal magnetic flux in Figure 3-4 and are located from 0.04 to 0.39 m above the mid-plane on

the inner wall. All six chords must be above the magnetic axis at this point, since the viewing

position and angle of the polarimetry system are restricted by other diagnostics on the same

horizontal port. The projected distances (defined as x) from the magnetic axis to these chords are

10, 16, 20, 23, 29, 35 cm. All chords enter the vessel through a single z-cut quartz vacuum

window which does not affect the state of polarization of the probe beam. During operations,

chords with x=10 (#1) and 16 (#2) cm are always used, and the third channel (#3) is typically
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alternated between x=20 and 23 cm. When it is upgraded to a six chord measurement, at least one

chord will view below the mid-plane of the machine, which will help to derive central safety

factor (qo) directly from Faraday rotation measurements near the magnetic axis [56], and also

enhance the ability to differentiate magnetic fluctuations from density fluctuations, as will be

discussed in chapter 6.
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Figure 3-2: System geometry for the three-chord double-pass polarimeter on C-Mod. To
simplify the optical path in the figure, only the beam for one chord (red line) is shown.
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Figure 3-3: Optical layout on the upper table. Yellow lines are beam paths. The beam from

the lower table is split into a reference and three probe beams by beam-splitters (BS). Each

chord has a quartz-waveplate to transfer beams into circularly-polarized beams and a TPX

lens to focus the beams onto the retro-reflectors.
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Figure 3-4: Poloidal cross section of the magnetic flux on C-Mod. The viewing paths for six
available chords are shown. All of them are above the vessel midplane. The top chord with
retro-reflector at z=0.39 m (x=35 cm) views outside of the last closed flux surface (LCFS).
During operations, chords with x=10 (#1) and 16 (#2) cm are always used, and the third
channel (#3) is typically alternated between x=20 and 23 cm.

3.2 Instrumental Design

3.2.1 Laser Wavelength Selection

To design a successful polarimetry diagnostic, it is critical to choose the proper laser source

according to several criteria, as discussed in the following paragraphs.

The Faraday effect needs to be large enough for accurate measurements. Since the

Faraday rotation signal is proportional to X2 (Equation 2.30), it is desirable to choose a long

wavelength to get good signal-to-noise ratio. However the Cotton-Mouton (C-M) effect is

proportional to 2 (Equation 2.37), and we want to make sure it is not much larger than the

Faraday effect, which might contaminate the Faraday rotation measurements.
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When the laser beam propagates in the plasma, we need to make sure the refraction of the

laser beam by plasma density gradient is small. Therefore, the laser wavelength should not be too

long, as the refraction is proportional to X2 Vne. For a vertical-viewing single pass polarimetry

system, the beam offset on detectors due to plasma refraction might be significant, considering

the long distance from plasma to detectors. Therefore, the signal amplitude changes significantly

during a plasma discharge, especially for edge channels which have suffered large refraction

effects. For the C-Mod polarimetry system, this refraction problem is minimized with a poloidal-

viewing double pass geometry. Assuming the retro-reflectors on the inner-wall work perfectly to

reflect the beams back along the original path, the beam offsets on the detectors should be

negligible. For the C-Mod system it is important to make sure the beam deviation is small at the

inner-wall where the retro-reflector is mounted. A large refraction effect in the plasma would

deflect the laser beam away from the center of the retro-reflectors, and there could be significant

beam power loss and increased error in the phase measurements. Ray tracing simulations of laser

beams in C-Mod plasmas show that the refraction effect is small (Table 3-1& Table 3-2) over the

range of plasmas of interest.

The laser wavelength also determines the size of the beam required to allow a properly

sized focal spot at the inner wall retro-reflector from outside the vacuum vessel (Gaussian beam

propagation), which sets a limitation on the number of polarimetry chords that can be

accommodated in the limited space available. If we choose a longer wavelength, the beam size

for a given propagation path is larger, and it is more difficult to build multiple chord systems

compactly. This effect also restricts the chordal spatial resolution.

To optimize the laser wavelength, consideration is also given to the availability of

commercial detectors. High sensitivity detectors for the particular laser wavelength we choose are

desirable. Details about the detectors will be discussed in section 3.2.8.

In order to quantify the measurement signal levels and refraction offsets, three laser

wavelengths from the IR into the FIR region ( 10.6 im, 117.73 ptm and 432.6 ptm ) have been
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analyzed using typical L-mode and H-mode C-Mod plasma discharges. The expected Faraday

rotation, C-M and interferometric responses are simulated numerically using Thomson Scattering

measured density and the magnetic field from EFIT, both of which are mapped to the polarimetry

chord path. Table 3-1 and Table 3-2 list the Faraday rotation, C-M and interferometric responses

for chord#1. The refraction is the max vertical beam displacement on the inner wall for all six

chords.

Table 3-1 : Laser wavelength selection. Shot# 1080320019 (L-mode) at t=1.0 s,
nl04U0.5x10 2 0/m 2, Is830 kA, B,=6.2 T. (Phase signals are for chord#1. Refraction is the max
beam displacement on inner wall)

Wavelength(ptm) FR/deg C-M/deg Interferometer/fringes Refraction/mm

10.6 0.03 0.003 0.19 0.01

117.73 3.9 3.8 2.1 0.14

432.6 52 190 7.8 1.8

Table 3-2: Laser wavelength selection. Shot# 1120614012, t-1.0 s (H-mode),
nl04w2.9x10 20 /m2 , Ipw830 kA, Bt= 5.2 T. (Phase signals are for chord#1. Refraction is the
max beam displacement on inner wall)

Wavelength(ptm) FR/deg C-M/deg Interferometer/fringes Refraction/mm

10.6 0.16 0.011 1.06 0.01

117.73 20.1 15.5 11.8 1.7

432.6 272 770 43.2 18

According to the tables, 117.73 ptm has reasonable Faraday and C-M effect for both L-

mode and H-mode plasmas, while keeping the refraction low compared to the size of the retro-

reflectors (13 mm in diameter), and thus has been chosen as the operating wavelength for the C-

Mod polarimetry system.
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3.2.2 FIR Laser System

Two commercially available CO 2 pumped, FIR lasers are used in the polarimeter diagnostic

(Coherent SIFIR-50 FPL). They operate at 117.73 gm with 150 mW each, using difluoromethane

(CH2F2) as the fill gas.

The operating gas pressure for each laser cavity is optimized to for maximum FIR laser

power. The optimal pressure was measured for the two lasers, as shown in Figure 3-5: FIR#1 has

a peak power for p-650 mTorr, while FIR#2 has a peak power for p-750 mTorr. If the laser

cavities are filled with gas and then isolated, a continuous gas pressure increase was observed at a

rate of -3 mTorr/min for each laser. An analysis of the gas in the cavities with a Residual Gas

Analyzer indicated that the pressure change comes from outgassing of the fill gas from the laser

cavity, and not a leak of outside air. To maintain the optimal gas pressure, a dynamic gas pressure

control system was developed, which continually feeds the lasers with new gas while pumping

out the old gas. The Programmable logic controller (PLC) controlled gas system keeps the laser

gas at the optimized pressure.

-- FIRM1
110- FIR#2

105

100--

95-

90-

400 500 600 700 800 900 1000
Laser Gas Pressure (mTorr)

Figure 3-5: FIR#1 has a peak power for p-650 mTorr, while FIR#2 has a peak power for
p-750 mTorr
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The FIR laser beam at 117.73 sm is extremely sensitive to the water vapor absorption.

FIR power would be significantly attenuated if the 14 m long beam path was exposed to room air.

Air-tight enclosures (Figure 3-6 and Figure 3-7) were designed to seal the whole optical path, and

the two enclosures are connected by a 12.5 cm aperture tube. By purging with dry air, the relative

humidity in the enclosures is reduced from 50% to less than 2%, at which point the attenuation is

less than 20 %. Panels in each enclosure provide feedthroughs for power, control, and signals.

Easily removable side panels provide good accessibility for optical adjustments. The enclosure

walls are covered with acoustic absorber material that will be discussed in more detail in chapter

4.

Figure 3-6: Air tight enclosure for the lower table. Detachable side panels in the enclosures
provide good accessibility for optical adjustments
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Metal beam and turnbuckle

tube

Figure 3-7: Air tight enclosure for the upper table. The tube connecting the two enclosures

is shown. Detachable side panels in the enclosures provide good accessibility for optical

adjustments.

The FIR laser power and frequency drift over time, especially while the laser is warming

up. A PZT controlled rear mirror on the FIR laser cavity allows the operating frequency of the

laser to be varied over a range of approximately ±5 MHz around line center. The 100 Hz

bandwidth of this PZT system allows the lasers to be frequency locked with a response time faster

than most mechanical drifts and vibrations in the optical system. A frequency meter, as described

in section 3.1, drives the PZT for one of the lasers and locks the IF. An FIR power peaking

system to optimize each of the laser powers is also available, but it is usually not turned on,

because the laser power is relatively stable after warming up about one hour and the phase

measurements are not affected by small changes in laser power (the phase measurement
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technique was discussed in chapter 2). One serious issue for the PZT system is that the mount for

the FIR PZT has a mechanical resonance. By driving the PZT of either laser with a signal

generator, we found a resonant signal near 235 Hz on FIR#1 (210 Hz on FIR#2), as shown in

Figure 3-8. Noise around these frequencies is observed on IF and Faraday rotation signals during

the plasma discharges and a great deal of work has been expended to reduce this effect.

8 .......... 1.1. 1 1...... ........

7 - FIR#1
- FIR#2

6
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PZT driven frequency (Hz)

Figure 3-8: Resonant peaks found on IF signal, when driving the PZT with input signals
near 235 Hz (FIR#1) or 210 Hz (FIR#2). The Y axis is the change in the signal IF frequency
for 1 mV of drive to the PZT.

The lasers are located about 4 m from the tokamak, and experience time varying

magnetic fields of up to 200 G during plasma discharges. This strong magnetic field affected the

Invar* components inside the laser cavity during initial tests of the polarimeter on C-Mod. As

shown in Figure 3-9(a), the IF frequency drifts dramatically, by more than 1 MHz, and the

detector root-mean-square (RMS) voltage dropped to near zero during the plasma discharge. To

shield the lasers from these stray magnetic fields, a steel enclosure (Figure 3-10) roughly 1.25 cm

thick was built up from 0.625 mm thick plates as a laminate structure. This enclosure covered

both lasers, with cutouts to allow for power, control, and cooling interfaces. The enclosure
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successfully reduced the stray magnetic field to ~20 G as measured by a Gauss-meter mounted

close to the lasers inside the shield. From Figure 3-9(b), and the laser stability is greatly improved

with the magnetic shielding installed. Although the residual stray field effects are still observable,

the IF signal remains locked, and the drift of detector RMS voltage is less than 10% during the

plasma discharge. The change in IF frequency was reduced to less than 80 kHz with the addition

of the magnetic shielding.
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Figure 3-9: (a) Significant drift on IF (>1 MIHz) and detector RMS voltage dropped to near
zero without magnetic shielding (b) Minor drifts on IF (< 80 kHz) and detector RMS

voltage with magnetic shielding
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Cutouts for laser cables

Figure 3-10: Both lasers boxed in a steel enclosure to reduce the stray field effects

3.2.3 Gaussian Beam Propagation

For lasers operating in the FIR range of wavelengths over path lengths similar to those needed for

the C-Mod polarimeter, the geometric optics approximation can no longer be used to model the

beam propagation. Gaussian beam theory must be applied to analyze the effects of diffraction on

the laser beam radius (w) along the beam path (z). The beam radius at a distance z from a beam

waist can be calculated as

w(z) = wO 1+ (3.1)

where zR = is the Rayleigh length, and wo is the l/e E-field waist radius.

In order to obtain a waist radius of 5 mm on the retro-reflector, the beam radius must be

~23 mm at a 3 m distance from the retro-reflector, which is the closest possible position for the

TPX lens. Therefore, to capture 99% of the beam power, most of the optics on the upper table

should have a clear aperture of -10 cm. Some of the mirrors and beam-splitters are 15 cm in

diameter, as they are installed at 450 relative to the incident beam.

To evaluate the beam size along the whole beam path, we need both the size and position

of the beam waist for the FIR lasers. The laser beam size has been measured at a couple of
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locations near the laser output window with a pyro-electrical detector. The beam waist is found

near the laser beam output window and has a radius of -5 mm. The beam size along the whole

beam path is calculated by the optics design program (OSLO), some results of which are shown

in Figure 3-11. The beam radius freely expands to 23 mm before being collimated by a 3 m

spherical mirror, and then propagates for -5 m with little change in size. The beam is then

focused down by a 3 m focal length TPX lens to a 5 mm waist at the retro-reflectors. The beam

radius on the vacuum window is -7.8 mm.

Spherical mirror TPX lens
FL=3m FL=3m

Vaccum
Laser 23 mm 23 mm Window
output Retro-

reflector
5 mm 7.8 mm 5m'

3m 5m 3m

Figure 3-11: Gaussian Beam radius along the laser beam path.

3.2.4 Quartz Vacuum Window and Waveplates

Since quartz has a low absorption coefficient for FIR laser power and is also transparent for the

visible alignment laser, it is a very good choice to be used for vacuum window and wave-plates

for the C-Mod polarimeter. Quartz is anisotropic but its optical properties can be defined simply

using an xyz rectangular coordinate system. A z-cut quartz plate is produced by cutting the

quartz bar perpendicular to the z-axis (ordinary axis). The refractive index for the whole xy-plane

is N, (ordinary refractive index), thus the z-cut plate does not change the polarization of the

incident beam, and can be used as a vacuum window. X-cut quartz plates are produced by cutting

79



the quartz bar perpendicular to the x-axis. In that case, the y and z axes have different refractive

indexes, and can thus be designed as wave-plates to modify the incident beam state of

polarization.

The vacuum window for the C-Mod polarimeter consists of a 10 cm diameter, 3.5 mm

thick, z-cut quartz plate. Initial tests show the transmission rate of the laser power through the

quartz plate was around 50%-70%, depending on the incident angle, because of the multiple

reflections by the window surfaces (the red curve in Figure 3-12). Since the beams can enter the

window off-normal by up to 230 for the poloidal viewing geometry, a smooth response with

changing incident angle was of great importance for the vacuum window. The air side of the

window was therefore anti-reflection (AR) coated with a 0.020 mm thick LDPE film. The

transmission for the quartz plate with this coating is much more constant than for the uncoated

window within a ±300 incident angle (green curve in Figure 3-12). The 30% power loss comes

from the absorption in the quartz and losses at the second window surface. The vacuum side of

the window could not be coated, since no high-vacuum compatible material could be found for

that coating.

Another reason to choose quartz as the vacuum window material is that it causes a

negligible systematic error. With strong magnetic field, the vacuum window itself may change

the laser polarization, leading to systematic errors in the polarimetry measurements. The Faraday

rotation from the window is

AV = VwindowBpD (3.2)

where Vindod is the Verdet constant, B. is the magnetic field parallel to the beam, and D is the

window thickness. To eliminate this error, the vacuum window needed to be made of material

with a small Verdet constant, such as quartz and diamond for FIR wavelength. Magnetic field-

only test shots confirm the Faraday rotation from the quartz vacuum window is negligible.
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Figure 3-12 Comparison of the transmission rate of the quartz window with and w/o AR
coating.

Waveplates used in the polarimeter system are x-cut quartz plates with the thicknesses

specifically designed for )=1 17.73 pm, using the following formulas:

Nx= 2.16960, N0 = 2.12062

L1 = = 1.202 mm (3.3)
I 2(Nx-NO)

L= = 0.601 mm (3.4)
: 4(Nx - NO)

where Nx , No are refractive indices along the extraordinary (y) and ordinary (z) axes [57], and

Li, Li are the design thicknesses for the half-waveplates and quarter-waveplates. A 5 cm diameter
2i 4

half-waveplate is used to rotate the horizontal linearly polarized beam to a vertically polarized

beam. A 10 cm diameter quarter-waveplate converts the linear polarized beams to counter-

rotating circularly polarized beams for each chord, with the polarization of the incident beams at

450 relative to the optics axes.

81



Without coating, the transmission for the half-waveplate and quarter-waveplate was only

55% and 70% respectively. The quarter-waveplates did not work well at converting linear-

polarized beams into circularly-polarized beams because of multiple reflections between the

waveplate surfaces. A linearly polarized beam was converted into a beam with large ellipticity

(~1.3) after passing through a quarter-waveplate. After coating both sides of the waveplates with

LDPE films, the transmission is improved to ~85% for the half-waveplate and ~90% for the

quarter-waveplate. The ellipticity of the laser beam after going through the coated quarter-

waveplate was reduced to -1.1, which should contribute to a phase error of less than 10% in

theory [47]. This phase error can be measured by the calibration process in section 4.2, and was

confirmed to be less than 5% on C-Mod.

3.2.5 Copper Mesh Beam Splitter

For a double pass polarimetry system, beam-splitters are required to pickoff the laser beam

reflected back by the retro-reflectors, and also to split the beams into multiple chords. Since they

are extensively used, it is critical to make sure that they do not alter the laser beam polarization,

which would corrupt the Faraday rotation measurements.

The beam-splitters for the C-Mod system are made of self-supporting stretched copper

mesh (electroformed meshes with orthogonal grids), which was successfully tested and

implemented on RTP [55][58], TFTR, and MST [59]. The beam splitters are mounted at a 450

angle of incidence. In Figure 3-13, the transmissions through the beam-splitters with several line

densities for both horizontal and vertical polarizations are plotted. The beam-splitter is rotated in

its holder to sweep out the curves shown. A mesh spacing of 400 lines-per-inch (LPI) was finally

chosen for most of the beam-splitters in the system since the response was a smoothly varying

function of angle and provided a nearly even split in power (40% transmission, 60% reflection) at

45' mesh grid angle.
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Because of the asymmetry of the mesh grids, the linearly polarized light may be altered to

an elliptically polarized beam after reflection from, or transmission through the mesh. This effect

depends on the wire-mesh density and mesh grid orientation with respect to the polarization

direction of the incident light from our tests. We can quantify the beam polarization distortion by

measuring the laser power component with an orthogonal polarization relative to the incident

beam. Orthogonal components for horizontally-polarized or vertically-polarized incident light,

when transmitted or reflected by a 400 LPI mesh, are shown in Figure 3-14. When the mesh grid

angle is around 45'-50', the orthogonal components for both the reflected and transmission beam

are small. This measurement proves that mounting the beam-splitter around a 450 mesh grid angle

is important to maintain the linear polarization of the incident light, which agrees with the

calibration results in section 4.2.
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Figure 3-13: Mesh transmission for different mesh spacings and two linearly polarized

incident beams (H: horizontal polarized incident beam, V: vertical polarized incident

beam). The number, such as 70, specifies the lines-per-inch(LPI) for the mesh. The mesh is

mounted at a 450 angle of incident, and is rotated over 900 in the holder to sweep out the

curve.
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Z-cut quartz plate is also a good choice for beam-splitters. They have been implemented

on some other machines, such as JET [41] and RFX-mod [60]. It makes the beam alignment

easier, because of its transparency to the visible alignment laser. The negative side is the beam

power loss from quartz absorption, especially in a double pass system where beam-splitters are

extensively used.

20
Mesh grid

40 60 80
rotation angle (deg)

Figure 3-14: Transmitted orthogonal component for horizontal (square) and vertical (circle)
polarized incident beam; reflected orthogonal component for horizontal (plus) and vertical
(diamond) polarized incident beam.

High resistivity silicon is another potential material for a beam-splitter. It was tested on

C-Mod, to combine the FIR and HeNe beam and picked off -5% of FIR beam power as a

reference at the same time. One problem for the thin (-100 gm) silicon plate we tested is that the

beam transmission varies at different parts of the plate, because of thickness non-uniformity.
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Higher quality silicon plates are needed to avoid this problem. Silicon beam-splitters have also

been tested in the development of ITER poloidal polarimeter in Japan [61].

3.2.6 Focusing Elements

The FIR laser beam needs to be focused down to a 13 mm diameter retro-reflector over a 3 m

path for each chord. Some options for doing this operation include a spherical mirror, an off-axis

parabolic mirror, or a TPX lens, all of which have pros and cons for the application.

The spherical mirror is cheap, and has negligible power loss comparing with lens. A

major disadvantage is that it requires a small incident angle, which complicates the beam path

design, and increases the path length and beam size.

Each off-axis parabolic mirror has a pre-defined off-axis incident angle, so there is no

requirement for a small angle of incident. However, a big disadvantage is that they costs five to

ten thousand dollars each and takes months to get a custom product with the required focal length

and off-axis angle. Even worse is that a given mirror only works for a specific off-axis angle,

which means we would need parabolic mirrors with various parameters for different chord

geometries. This would significantly restrict options for future system upgrades.

With lenses for the focusing optics, the cost is much lower and it is easier to design a

compact optical system, since they easily fit into the beamline. The main disadvantage is the

power loss, which depends on the lens thickness. One lens is used for each polarimeter chord,

which results in a ~20% power loss. The lenses are of a plano-convex design with a 3.0 m focal

length, made of uncoated TPX. Each lens is tilted by a small angle to eliminate spurious

reflections.

3.2.7 Retro-reflectors and Protecting Shutter

The retro-reflectors used in C-Mod are commercially available, fabricated from a glass

substrate, contained in a stainless steel cylindrical housing with a 13 mm clear aperture (Figure
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3-15(a)). The mirror surfaces are coated with gold to enhance reflectivity in the FIR. The retro-

reflector has been tested with no obvious reduction on reflectivity of FIR laser power during a

whole run campaign in C-Mod. However, visible damage to the mirror surfaces has been

observed on some of the retro-reflectors which would almost certainly affect reflectivity at

shorter wavelengths (visible to IR). A molybdenum retro-reflector shown in Figure 3-15(b) is

under development, but has yet to be tested during plasma operation. It is likely that a metal retro-

reflector will be even more robust than glass against surface damage from plasma.

Figure 3-15: (a) Glass retro-reflector with gold coating (b) Prototype molybdenum retro-
reflector with gold coating

The retro-reflectors are installed on the inner wall, where they can be exposed to high

heat flux and possible plasma/neutral sputtering during plasma operation. To protect the retro-

reflectors from this harsh environment, particularly during inner wall limited discharges and

boronizations, a shutter assembly, shown in Figure 3-16, was designed to hold the retro-reflectors

and can be closed to isolate the retro-reflectors when required. The shutter itself is mounted on

the inner wall and protected by molybdenum tiles on either side and across the plasma facing

surface. Two bellows that can be alternately pressurized with helium or evacuated, provide a

push-pull mechanism that opens or closes the shutter. Plasma facing and inner wall facing views
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of the shutter are shown in Figure 3-17. The protection tiles and bellows can be seen in these

views.

In Figure 3-17, a picture of the inner wall is shown in which the openings for the retro-

reflectors can be seen. The six retro-reflectors are spaced along the inner wall from 4 to 39 cm

above the machine mid-plane. Each retro-reflector has a specific viewing angle, which correlates

with the designed incident laser beam.

(a)

retro-reflector 4.

tiles 4-

b

(b

-pull bellows

Figure 3-16: (a) Plasma facing side of the shutter assembly showing protection tiles and

location of the retro-reflectors (b) Inner wall side of the shutter assembly showing the push-

pull bellows.
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Figure 3-17: C-Mod inner wall with six retro-reflectors. The shutter is open, and we can see

all six retro-reflectors.

3.2.8 Mixers

To achieve high signal-noise-ratio (SNR) for multi-chord measurements with a total of -300 mW

power from FIR lasers, it is desirable to use low-noise mixers in the polarimetry system. Liquid

helium cooled InSb or GaAs detectors, pyro-electric detectors or corner-cube Schottky diode

detectors all can be used as mixers.

Liquid helium cooled Insb or GaAs mixers have low noise levels, and have been used on

polarimetry systems of other machines, including TCV [62] and JT-60U [61]. However, these
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mixers require large cryostats to keep them cool, and are not convenient for a multi-chord,

compact system design.

Pyroelectric mixers were used for the first generation of the polarimetry system on

TEXTOR using the amplitude measurement technique [33], as described in chapter 1.

Pyroelectric mixers have a relatively poor noise-equivalent-power, especially at high IF

frequencies. They are not suitable for use at high IF frequencies, needed for the fluctuation

measurements in C-Mod. However, they are very useful in measuring the location of the laser

beams and measuring the laser beam profile, since they have a large clear aperture and are not

sensitive to the beam coupling angle or beam shape.

Schottky diode based mixers have been used on most of the FIR

interferometry/polarimetry systems in the world, because of their good SNR, high frequency

response, and compact size. Four different kinds of mixers have been tested in C-Mod, shown in

Figure 3-18, including commercially available Farran Corner-cube mixers (optimal operation for

100-150 ptm wavelength) [63], corner-cube mixers on loan from UCLA (optimized for

wavelength of 180 pm), a waveguide coupled mixer from Radiometer-Physics, and planar diode

mixers, which were specifically developed for C-Mod polarimetry by Virginia Diode Inc (VDI).

A main disadvantage for Schottky diode mixers is that it is extremely sensitive to electrostatic

damage. A couple of Farran and UCLA mixers were actually damaged during the test process. A

disadvantage of the corner-cube mixer is that it has high reflectivity for FIR laser beams, and thus

could potentially cause cross-talk problem between different mixers. The corner-cube mixers also

use very fragile, with whisker contacts that often fail and must be repaired. The new planar

Schottky diode mixer is more robust than the corner-cube mixers, as it does not have whisker

contacts, but instead the diode is part of the etched chips substrate, visible in Figure 3-19(a). FIR

power is coupled to the diode through a pyramidal horn, shown in Figure 3-19(b), and a WR-0.4

waveguide. The optimal beam waist at the horn is 0.27 mm.
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Figure 3-18: Figure 3-18: Four mixers tested. (a) Farran Corner-cube Mixer (optimal
operation for 100-150 jim) (b) Corner-cube Mixer for 180 pfm (loan from UCLA) (c)
Waveguide coupling mixer from Radiometer-Physics (d) Planar diode mixer (developed by
VDI for our wavelength at 117.73 pm )

Figure 3-19: (a) Micrograph of the planar Schottky diode and a portion of the coupling
structure (b) Pyramidal horn where FIR power couples through
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The pros and cons for each mixer have been listed in Table 3-3 for convenient

comparisons. The newly developed planar diode mixer is considered to be the best choice, and

has been used for the experimental measurements on C-Mod.

The planar diode mixers are insensitive to the polarization of the incident beam: the

responses of the two mixer axes are about 1:5. Polarizers are therefore necessary in front of the

detectors, to improve the response of the pyramidal horns. The polarizers used are free-standing

10 im diameter tungsten wires spaced 25 pm apart. They exhibit a very good extinction ratio

(less than 0.1% leakage) and are used in front of all the mixers to select the polarization

component desired for the measurement (i.e., polarization orientation parallel to the toroidal

magnetic field). They are very low loss components.

The output signal levels from the mixers are in the mV range, and amplifiers with

bandpass filters centered at 4 MHz, with a Ior 2 MHz bandwidth, are used to filter the signals.

Table 3-3: Comparisons of four Schottky diode mixers

Different FIR mixers Size Optimized for Responsivity Easy to Optical

1=117.73 pm (V/W) damage Feedback

Corner-cube (Farran) Large Yes 15 Yes Yes

Corner-cube (UCLA) Small No NA Yes Yes

Waveguide coupling Medium No NA Yes No

Planar diode (VDI) Small Yes ~400 No No

3.3 Phase Analysis

3.3.1 Digital Phase Comparator

The probe and reference signals are digitized at 20MHz, well above the bandpass Nyquist

frequency, so that the needed phase information can be obtained using a fully digital process [64].
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Digital phase difference analysis offers the advantage of fast time resolution without complex

analog comparators and eliminates the errors introduced by amplitude variation in the

signals. Both the reference and probe channels are sinusoidal signals oscillating at the IF, set and

controlled with feedback to -4 MHz. To obtain the phase difference between the probe signals

and reference, all channels must be digitally preprocessed. The reference channel can be

expressed in a discrete form as

r(n) = A(n) COS[OIFfnt + 0(n)], n=0,l,2,.. .,N-1 (3.5)

where N is the data array length, and At is the sampling interval. Through Discrete Fourier

transformed (DFT), Equation 3.5 is transferred into frequency space

N-1

R(oIF) = 1j r(n)e-iwnAt (3.6)

n=O

It is then digitally filtered to remove the equilibrium component and negative frequencies (n>N/2

terms),

N
-- 1

R'(WIF) -inAt (3.7)

n=o

and is transformed back to the time domain

r'(n) = A'(n)exp{i[OIFnAt + 0(n)]) (3.8)

Similarly, the probe signals can also be transformed to the complex time domain signal

s'(n) = B'(n)exp{i[wIFnAt + Os(n)]1 (3.9)

The conjugated reference and a probe signal are multiplied together, generating a complex

signal, 4.

O(n) = s'(n)r'*(n) = C'(n) exp i[O,(n) - 0,(n)] (3.10)
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The phase difference between the probe and reference signal is then just

tan- [Im(*)/Re(4)]. Note that in this process the amplitude dependence is removed. Finally,

the Faraday effect is 1/2 of the measured phase change when using the R-, L-wave technique,

which was discussed in chapter 2.

3.3.2 Analog Phase Comparator

In order to do digital phase comparison, both the reference and probe signals have to be digitized

and stored into the database before we can run our digital phase comparator to generate the phase

difference. As the signals are digitized at a 20 MHz sampling rate for 2-3 seconds on C-Mod, it

takes several minutes to store the data and calculate the Faraday rotation. Therefore, the analog

phase comparator has an advantage, if we want to see the Faraday rotation immediately after a

plasma discharge, or if we want to use Faraday rotation signal to feedback control the plasma

current. The analog phase comparator is also used when we are diagnosing the system vibration

noise level. We can observe the Faraday rotation error on the oscilloscope, while introducing

vibration noise in the system by tapping the optical components or using a speaker to acoustically

drive known resonant frequencies.

For the analog phase comparator, an XOR circuit was developed to compare the phase

between two sinusoidal input signals. A comparator converts both signals into square waves, and

then feeds the signals into an XOR gate. The XOR output, after filtering, is a voltage proportional

to the phase difference between the two signals. By driving the circuit using two signal generators

offset slightly in frequency, a plot of phase difference verses XOR output voltage can be

produced, which is used to calibrate the XOR output with the phase difference between input

signals.

To confirm that the phase from the XOR circuit is the same as the digital phase, the

Faraday rotation for a plasma discharge from the XOR circuit (red curve in top trace) and the

digital phase comparator (black curve in top trace) are plotted together in Figure 3-20. We can see
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these two phase signals overlap during the whole plasma discharge as expected, and the

difference is at the noise level of the measurement.
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Figure 3-20: Faraday rotation from both digital and analog comparators for shot
1110113010. Analog phase from the XOR circuit agrees perfectly with the digital phase.
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4. Polarimetry Noise Improvements and Performance Analysis

We need to reduce the noise level for the polarimetry system to an acceptable level (~0. 1), and

make sure the system is indeed sensitive to the plasma parameters we want to measure, in order to

effectively measure the current density profile changes during LHCD experiments (chapter 5) and

to measure fluctuations (chapter 6) ,

After successfully testing the polarimetry system in the lab with a long beam path and no

plasma, the system was installed on C-Mod. A single chord polarimeter, serving as a proto-type

of the multi-chord diagnostic system, was made operational during the 2010 C-Mod campaign.

This system was upgraded to a 3-chord measurement during the 2012 C-Mod campaign. There

was very good progress in understanding and improving the measurement noise during the

system development. Several difficulties were encountered and resolved during the development

process, as described in this chapter. These experiences have already contributed to the

polarimetry development on J-TEXT [30] and EAST, both of which have picked the same FIR

lasers (Coherent Inc.) and the detectors (VDI) as used in our system. Our experience on

systematic error reduction for mesh beam-splitters contributes to similar experiments on DIIID

[31][36]. The experience on C-Mod should also be a valuable resource in developing a

poloidally-viewing polarimetry system on ITER, as it is designed with the same wavelength (118

pm) and similar viewing geometry [65][66].

In section 4.1, we will review the noise induced by multiple factors in the Faraday

rotation measurements, including vibrations, IF stability, co-linearity errors, spurious reflections,

and stray magnetic fields. Various methods have been implemented to mitigate different source of

noises.

In section 4.2, we will discuss the systematic error from the asymmetric mesh beam-

splitters. This phase error is quantified and reduced with a calibration technique using a rotating

half-waveplate.
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The measured Faraday rotation is proportional to the integral of the electron density and

magnetic field along the beam-path. To confirm the polarimeter sensitivity to these plasma

parameters, we evaluate the Faraday rotation performance during density, current or plasma

position scans, as described in section 4.3. Since the C-Mod polarimeter has a time resolution of

~1 ps, it is also fast enough to capture the dynamics of plasma parameter changes during

sawtooth crashes. All three chords respond to the sawtooth crashes, and these measurements have

the potential for measuring current density profile changes during the crash.

4.1 Noise Improvements

4.1.1 Acoustic Noise

Our FIR lasers are sensitive to acoustic noise, with major resonances around 220 Hz and 330 Hz,

which also appear on the measured Faraday rotation signals. 10 cm of acoustic foam, which

attenuates the sound wave passing through by approximately a factor of 100, are attached to the

enclosure panels, at the top of the enclosures and around the laser magnetic shielding box, to

damp the acoustic noise in the polarimetry system (white pieces in Figure 3-6 and Figure 3-7).

To evaluate the phase errors due to acoustic noise, we acquired Faraday rotation

measurements without plasma (zero phase change in theory) for the single chord system. The

phases were monitored for 20 seconds, as shown in Figure 4-1. About +0.30 Faraday rotation drift

was observed, when a panel was taken off the enclosure (black curve). When the enclosure was

fully closed (red curve), the Faraday rotation signal had less than 0.10 phase error. The sound

damping also effectively reduces sound vibration induced high frequency phase noise, which

could mask small amplitude phase changes due to plasma fluctuations. Therefore, to achieve low

noise and low phase error for both the equilibrium and fluctuation measurements, it is important

to get the polarimetry system well shielded from the very noisy acoustic environment in C-Mod

cell.
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Figure 4-1: ±0.30 Faraday rotation phase error when a panel is off the enclosure (black

curve). Smaller phase error with the enclosure closed (red curve).

4.1.2 Mechanical Vibration Noise

With the lower optical table sitting on the solid C-Mod cell floor (±25 gm movement during

discharges as determined by accelerometer measurements), and the upper optical table rigidly

attached to the igloo (60 cm thick concrete blocks and very stable) that surrounds the tokamak,

the vibrations of the optical tables can be reduced to a low level. However, the laser cavities have

connections to the laser gas lines, RF cables and pumping lines, all of which may transfer

vibrations to the lasers (our tests show that this is especially true for the pumping lines). To

reduce the laser vibration, the pumping lines were changed from stainless steel bellows to Teflon

lines, which are soft and effectively isolate the vibrations. Since the lasers, detectors and retro-

reflectors are not located on a single table (Figure 3-2), the relative movement of the tables could

cause extra measurement error. Therefore, it is important to make sure the optical tables

themselves do not move during the plasma discharge. Three heavy metal beams and turnbuckle
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hardware, connecting the upper table to the igloo, provide additional mechanical support (one of

these components is shown in Figure 3-7).

Both longitudinal and transverse vibrations may cause phase error in measuring the

Faraday rotation effect. The polarimeter is not as sensitive to longitudinal vibrations as is the

interferometer. Since we are measuring the phase change of an envelope with a wavelength of 75

m (ilenveope = c/IF where IF=4 MIz), a parallel path-length change of about 1 cm would be

required in a double pass system to cause a 0.10 change in phase. Independent interferometric

measurements of the C-Mod inner wall, where the retro-reflectors are mounted, with a HeNe laser

indicate longitudinal movement on the order of 100 ptm is to be expected. So the changes in

longitudinal path-length will not cause detectable errors in the Faraday rotation signals.

Transverse vibration, which allows two laser beams to diverge from perfect co-axial

alignment, can cause much bigger phase errors. In this case, the important length is the laser

wavelength, and maintaining a phase measurement error below 0.10 requires that the angular

deviation between two beams be less than

0.1 0 Xlaser

3650 x Lpath

where Ataser = 117.73 pm and the beam path-length Lpath ; 14m. Thus 6 ; 3 nRad. Since the

beam is focused down into the mixer, the phase measurement might be less sensitivity to the

vibration than found from this calculation.

Rigid mirror and laser mounts are essential to keep the vibration phase noise down to a

reasonable range. To achieve a solid and compact design, custom optical mounts were designed

for most of the optics on the upper vertical table, including the waveplates, TPX lenses, beam-

splitters and polarizers. These mounts are constructed from half inch aluminum plate and are

designed specifically for rigidity by incorporating gussets to keep the plane of the optical

components fixed.
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4.1.3 IF Stabilization

Since the frequency for each laser drifts with time, especially during a plasma discharge, the IF

can shift in frequency. As discussed in section 3.2.2, the IF can be feedback controlled, so its

frequency shift is normally less than ±10 kHz, and may increase to ±40 kHz during the plasma

discharges. The stability of the IF also affects the Faraday rotation measurement. The phase noise

caused by a change in IF, Af, is

Aa = 21T i (Lpb- Lref) (4.2)

where LPb and Lref are the path-length for the probe and reference detectors. AL = Lp-Lref is

~6 m in our three-chord system, leading to Aa~ +0.05' for an ±40 kHz shift in Af of our system.

This noise level likely reflects the minimum attainable with the current optical path layout. In

future system upgrade, AL should be minimized to less than 1 m, to reduce even further the phase

errors from the shifts in IF.

4.1.4 Laser Beam Co-linearity

To realize Faraday rotation measurement with the Dodel-Kunz method, the L-and R- circularly

polarized beams need to be well co-aligned with each other. Small misalignment between the two

beams may cause a big phase error, since each beam will see different vibrations along its beam-

path. An even more serious problem is that two beams will see different parts of the plasma due

to the beam offset. Perfectly collinear L- and R- beams see the same interferometric phase shift

with a second order difference from the Faraday rotation effect, so the interferometric effects are

cancelled out and the phase difference between the two beams will only show the much smaller

Faraday rotation effect. When L- and R- beams are not collinear, their phase difference will show

a significant systematic error from different interferometric phase shift. A 0.1 mm offset between

two beams may result in 0.1' error for a single pass polarimetry system, as seen on other

machines [67].
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The phase error from the parallel offset between L- and R- beams may not be significant

for C-Mod polarimetry, because of the double path geometry. Two beams will switch position

after being reflected by the retro-reflector. Therefore, the double pass interferometric effects

would be the same for L- and R- beams, even when there is some offset between them.

It is difficult to reduce the beam alignment error with methods that depend largely on by-

eye observations. On C-Mod, two laser beams are carefully co-aligned to an accuracy of below 1

mm by measurements with a 2-D pyroelectric camera and thermal crystal sheets. A rotating

dielectric wedge method has been developed for the MST polarimeter system, which increases

the accuracy of the beam alignment [68]. This method could be used for the C-Mod polarimetry

alignment in the future.

4.1.5 Spurious Reflections

Spurious reflections in the polarimetry system can cause a large phase error in the Faraday

rotation measurements. Several sources of spurious reflections have been identified and then

largely eliminated in the C-Mod polarimeter system.

One spurious reflection source is from the beam-splitters. Six beam-splitters are needed

on the upper table to divide the beam and pick off the returning beam. In cases where only half

of the beam power is used, the other half needs to be carefully dumped onto FIR absorption

materials, so that it will not be reflected back into the system. The absorption materials are

carefully aligned to minimize the phase noise on the detectors. Sawtooth structures are machined

on their surface, which enhances the absorption efficiency.

A second source of spurious reflections is from the corner-cube retro-reflectors on the

inner wall. The laser beam can be reflected all the way back into the laser source, which may

affect the laser stability, and the reflected beam may get back into the polarimetry system again

by reflection off the laser output coupler. This spurious reflection should have less than 1% the
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power of the original beam, considering the power loss on the extra beam pass. This source of

phase error has been found to be less than the error from other sources.

Corner-cube mixers (Figure 3-18 (a)) can also cause reflection problems, since the design

naturally sends any undetected light back into the optical path. Detectors set up on opposite legs

of a beam-splitter result in easily detectable phase error caused by this crosstalk. Therefore, a

separate beam-splitter has been used to pick off a fraction of the beam to create a reference signal,

rather than sharing a single beam-splitter with another detector. Also, the new planar diode

detector (Figure 3-18 (b)) uses a horn coupling geometry instead of a corner-cube, which should

greatly reduce beam reflection off the detector, if the detector is aligned with a small tilt angle.

Another spurious source is the reflection from the quartz vacuum window. If the incident

beam is nearly perpendicular to the window, there would be a small fraction of the beam reflected

back to the system and the false signal on the probe detector can be large even when the shutter to

protect the retro-reflector is closed (no returning beam from the retro-reflector). For the six

poloidal-viewing chords on C-Mod, we only observed reflections from the vacuum window on

chord#3. Realignment by 2 cm of the turning mirror that directed the laser beam through the

window eliminated this problem. In the planned upgrade to 6 chords, a separate window would be

provided for each chord. In this case each vacuum window would be installed with a small tilt

angle relative to the incident beams, to prevent window reflection issues. An added advantage to

using separate windows is the ability to design the window as an etalon, with minimal losses and

reflections.

One way to estimate the phase error from spurious reflection is to monitor the signal

amplitude and noise level on the reference detector when the shutter to the retro-reflectors is

alternatively opened and closed. Another way is to check if the signal on any chord changes while

blocking any other chord. If no change of the detector signal results, this indicates that the phase

error from spurious reflections is negligible compared with other noise sources.
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4.1.6 TF Ramp-Induced Error

A slow drift in phase, of about 1~2', can occur during toroidal magnetic field (TF) ramps, when

there is no plasma, and the Faraday rotation should be zero. A series of no-plasma tests for each

C-Mod magnet revealed that the Faraday rotation measurement is mainly affected by ramps in TF

field, and not the poloidal fields. For a TF-only test shot, shown in Figure 4-2, the red curve

shows the time history of the toroidal field, which ramps up to 5.4 T between -Is and 0 s, and

then ramps back down between 1.1 and 2.7 s. The apparent Faraday rotation on chord#1 (black

curve) shows a - 0.50 slow drift during the TF ramps, but is close to zero during the TF flattop,

indicating this error is sensitive to the magnetic field change (dB/dt) but not the magnetic field

itself. The Faraday rotation phase error during the poloidal field coil tests is negligible.
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Figure 4-2: TF-only test shot. The Faraday rotation has a ~.5* slow drift during the TF
ramps, but it is close to zero during the TF flattop, indicating the phase error is sensitive to
the magnetic field change, but not the magnetic field itself.
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With a phase drift right before the discharge caused by the TF ramp, it is difficult to

define the zero baseline for the Faraday rotation measurement during a plasma discharge.

However, to live with the TF ramp noise, we can obtain a short period of flat baseline right before

the plasma, by adjusting the toroidal field starting time 0.1 s earlier than usual. In Figure 4-3,

Faraday rotation signals (1120614012) for all three chords have flat baselines from -0.2 to 0 s.

The shadow region has been expanded and shown as the blue curves in Figure 4-4. Baselines for

another two discharges (1120612002, 1120626012) with different times to reach the TF flattop

(tTy) are shown as black and red curves. Flat baselines are achieved when the tI is earlier than -

0.2 s.
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Figure 4-3: Three-chord measurements with improved baselines before the plasma (-0.2 to 0
s), by adjusting the TF ramp starting time 0.1 s earlier than usual. The shadowed area is
expanded and compared with another shot with noisy baselines in Figure 4-4.
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Figure 4-4: Baseline comparison for three discharges with normal TF ramp (black curve)

and adjusted TF ramp (red and blue curves). For the adjusted cases, the TF ramp-up starts

0.1 seconds earlier than normal, so that flat-top is reached by tM-0.2 s for the red shot and

by ta-0.3 s for the blue shot. (Polarimeter only records signals from -0.2 to 2.2 s at 20 MHz,

due to the limitation of the digitizer memory)

4.1.7 TF Effect

The high toroidal field of C-Mod carries with it two concerns. One concern is that if the laser

beam-path differs from 90 degrees to the toroidal field direction by an angle 6, the toroidal

magnetic field will have a non-zero projection on the polarimetry beam-path, which will produce

a Faraday rotation error. The measured Faraday effect is
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a = Cf , ne B -dl = Cf A2(f neBpcos6 dl + f neBt sin6dl) (4.3)

where Cf 2 f neBt sindl is the phase error from the toroidal field pick up. Assume the beam is

off by 10 from the poloidal cross section, the resulting phase error could be a couple of degrees,

which is ~20% of the Faraday effect from the poloidal field we are measuring, as shown in

simulations of C-Mod plasma discharges. The other concern is that the C-M effect may

contaminate the Faraday rotation measurement with high toroidal field, as discussed in chapter 2.

To prove both errors are not significant on C-Mod Polarimetry, shots were taken with the

same plasma current and density, while B, was varied from 5.4 to 7.5 T, shown in Figure 4-5. For

these two discharges, the measured Faraday effect (chord#1) was unchanged, indicating the beam

misalignment in the toroidal direction is negligible (a 1"misalignment should introduce a ~10%

Faraday rotation disagreement between these two discharges) , and the C-M effect is playing no

big role in the Faraday rotation measurement in these two discharges.

4.2 Calibration

To measure the Faraday rotation effect with the Dodel-Kunz method, we need to launch two

circularly-polarized beams into the plasma. However, optics in the polarimetry system may cause

significant laser polarization changes, which may cause the circularly-polarized probe beams to

become elliptically polarized, and the Faraday rotation measurements would then have large

systematic errors. As shown in section 3.2.5, the mesh beam-splitters are a source of polarization

distortion in our system.

To quantify and correct the systematic errors from polarization distortion, a 50 mm

diameter half-wave plate, located between the off-axis parabolic focusing mirror and the probe

detector is rotated by an automatic rotation stage to produce a calibrated phase shift. For

circularly-polarized probe beams, the phase change should be twice that of the half-wave plate

rotation angle. Measurements show that the systematic error depends on the orientation of the
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mesh grid for the beam-splitters. In Figure 4-6, we rotate the beam-splitter which picks off the

returning beam to the probe detector, and repeat the calibration process with different mesh grid

angles. The calibration phase is almost a linear function of the half-waveplate rotation angle with

an error of less than 5%, when the wires of the beam-splitter are set to 45*. The calibration phase

could have a significant non-linear response, when the mesh grid of the beam-splitter is setup far

away from 45*. Any deviation in linearity is then recorded and can be used to calibrate the

measurements during a plasma discharge. This calibration must be checked whenever a new

optical component is added to the system.
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Figure 4-5: Faraday rotation signals are the same for two shots while the density and

current are the same (shaded region). Bt=7.5 T for the black curve, and Bt=5.4 T for the

red curve. No significant TF misalignment or C-M effect was observed.

107

-2 --

-4

).4 -
).2 --
).0 --

0.5 --

0 --

-2 - Bt=.4T Bt=7.5T -
-4 -



100

- chord #1

"""" bad orlsntaion
E In theory

-50
0

20

-50-

-20 -10 0 10 20 30 40
1/2 Waveplate rotation angle (deg)

Figure 4-6: System calibration with a rotating half-waveplate. The measured phase
responds linearly to the half-waveplate rotation angle, with an error of less than 5% for all
three chords, when the mesh grid of the beam-splitter is set at 45*. The measured phase
shows significant non-linearity, with large systematic error, when the mesh grid of the
beam-splitter is far away from 450 (purple).

4.3 Measurement Performance Analysis

It was exciting to see the phase change between reference and probe detectors with a reasonable

noise level, when the FIR polarimetry system was operational for the first time on C-Mod. Next

we want to confirm we are measuring the Faraday rotation correctly, by analyzing how sensitive

the Faraday effect is to electron density changes, plasma current changes, plasma position sweeps

and sawtooth crashes.

4.3.1 Density Sensitivity

Since Faraday rotation is proportional to the line integral of the electron density along the

poloidal viewing beam path, weighted by the local magnetic field parallel to the beam-path, it
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should have a strong correlation with the TCI signal, as both of them have line integrated density

information. Among the three chords, the Faraday rotation for chord#1 is expected to have similar

trends to the TCI density signal, since they are both heavily weighted near the core where the

density is high.

In Figure 4-7, the Faraday rotation signal for chord#1 is plotted with the TCI density and

plasma current for shot 1110405010. During the flat top of the plasma current, the Faraday

rotation signal shows spikes, similar to density increases seen in the interferometer signal (shaded

regions of the plots, between 0.6 and 0.9 s).
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Figure 4-7: Faraday rotation (chord#1) shows similar spikes as on the density trace, during
the flat-top of the plasma current.

For another H-mode discharge, shown in Figure 4-8, there are three H-modes that clearly

show large density changes during the current flat-top. The Faraday signals from each of the three

chords observe every H-mode transition with time histories similar to those seen in the line
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integral density trace. FR#1 changes about 30% during the H-mode transitions, consistent with

the density variation. FR#3 shows about 50% change, since it is weighted more over the edge

density, which may have a different trend as n104.

From these discharges, we conclude the Faraday rotation measurements are sensitive to

the electron density changes, and the FR#1 shows a similar percentage change as n104, as

expected. To diagnose the current density profile change with the polarimeter, the density

information from other diagnostics, such as TS or the interferometer, needs to be accurate, or else

uncertainties in the density will mask any current induced change on the Faraday rotation signals.
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Figure 4-8: H-modes observed on three-chord Faraday rotation signals, with
shape as the density trace during the current flat-top.
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4.3.2 Plasma Current Sensitivity

The Faraday rotation signal is proportional to the line integral of the magnetic field along the

beam-path, so it does not measure the local plasma current, but approximately the total current

inside the magnetic flux surface to which the beam-path is tangent, according to Ampere's law.

As a zeroth-order check on how the polarimeter responds to a change in the plasma

current, we have compared the Faraday rotation measurements before and after changes were

made in the C-Mod magnet configuration to reverse the direction of the magnetic fields and the

plasma current. In Figure 4-9, for the discharge with the reverse plasma current, the Faraday

rotation also reverses the sign.

-0.5 0.0 0.5 1.0
Time (s)

1.5 2.0

Figure 4-9: A zeroth-order check on polarimetry sensitivity to the changes in the plasma
current. Discharges with reversed plasma current show the Faraday rotation reverses sign.

To more accurately evaluate the polarimetry sensitivity to the plasma current change, we

ramp the plasma current, while keeping the density constant, and see how the Faraday rotation
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responds. In Figure 4-10, when the plasma current ramps down from 1.51 to 1.7 s, the electron

density (n104) and Bt are constant, so that there should be no significant Faraday rotation change

caused by the line-averaged density change or B, ramp. The major radius of the LCFS reduces -2

cm and the minor radius of the plasma reduces ~1.1 cm (5%), from 1.51 to 1.7 s (the plasma is

inner wall limited after t=1.78 s). The Faraday rotation signals for three chords drop ~15% (#1),

30% (#2) and 45% (#3), respectively, which disagrees with the 35% decrease for the plasma

current. Therefore, the Faraday rotation measurements not only respond to the plasma current

change, but also indicate a change of the plasma shape during the current ramp.

As will be discussed in chapter 5, polarimetry has proved to be a useful supplement to

other current profile diagnostics for LHCD experiments on C-Mod, particularly because of its

high temporal resolution.

4.3.3 Plasma Position Sweep

When the plasma moves around or shrinks, the density and magnetic field along the polarimeter

path can change, and the Faraday effect will change accordingly.

We have made piggy-back measurements on some plasma sweep discharges designed for

MSE calibrations. During the MSE plasma sweep calibrations [69], the plasma edge is swept past

multiple MSE channels, and the MSE-measured pitch angle is calibrated by comparison with the

results computed by EFIT. Normally for these discharges, the plasma minor radius shrinks

continually for -1s, while maintaining the electron density and current density in the plasma core.

The poloidal magnetic flux surfaces for two time-slices, one before the start of the sweep (t=0.6

s), and the other near the end of the sweep (t=1.6 s), are shown in Figure 4-11 for discharge

1120516020. The red curve is the LCFS, and the green lines represent the polarimetry chords. All

three chords reach inside of the LCFS at t=0.6 s. However, the edge chord is well outside the
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LCFS at t=1.6 s, by which time the major radius of the LCFS has been reduced from the initial 88

cm to about 77 cm, as shown in Figure 4-11 c.
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Figure 4-10: Plasma current ramps down from 680 to 440 kA (1.51 to 1.7 s), with relatively
constant line averaged electron density. The plasma minor radius reduces 1.1 cm (5%).
This process is during the flat-top for Bt, so there is no phase error due to a Bt ramp.
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Figure 4-11: (a) C-Mod poloidal magnetic flux at t =0.6 s for shot 1120516020. The ted
contour indicates the LCFS, and the green lines are the three polarimetry chords. (b) C-
Mod poloidal magnetic flux at t=1.6 s for shot 1120516020. (c) Major radius of the LCFS
reduces -10 cm during plasma sweeping for 1120516019 (black) & 1120516020 (red)
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The Faraday rotation measurements for two similar plasma sweep discharges are shown

in Figure 4-12. For shot 1120616020 (red), the Faraday rotation angle for the edge chord (third

frame) drops continually, when the plasma current decrease from 800 to -500 kA. The Faraday

effect for this chord is zero at -1.6 s as expected, because the beam-path for the edge chord is

well outside the LCFS from Figure 4-11(b), and thus the density is expected to be very low along

this chord. The Faraday rotation is almost constant for the inner-most chord (first frame), and

drops only slightly for the middle chord (second frame) as the minor radius is reduced, since

major contributions for each of these chords is from the high density plasma core. Similar results

have been observed for shot 1120516019 (black).

We can infer what happens to the plasma from the different dynamics of the three-chord

Faraday rotation time traces. The Faraday rotation of the edge chord drops to zero, indicating the

plasma is shrinking, so that the edge chord is outside the LCFS, and the small change of the

Faraday effect for the inner chords indicates the plasma density and current are maintained in the

core during the sweep.

4.3.4 Sawtooth Crashes

Sawtooth oscillations are the result of a periodic relaxation process in the center of the plasma.

The core temperature rises during the sawtooth ramp phase, and crashes due to MHD instability

(m=n=1 mode, where m is the poloidal mode number and n is the toroidal mode number) which

is associated with central safety factor q0<1 [70]. During the crash, qo rapidly increases and the

current density profile flattens. The central current density decreases -20% during a sawtooth

crash on MST, by polarimetry and interferometric measurements [71]. Normally, we use the core

electron temperature, measured by Electron Cyclotron Emission (ECE) [10], to diagnose the

sawtooth oscillations and measure the sawtooth inversion radius (SIR) [72].
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Figure 4-12: Three-chord Faraday rotation measurements for two plasma sweep
discharges, 1120516019 (black) & 1120516020 (red). Plasma is shrinking while maintaining
density and current in the core, as implied by the polarimetry and TCI measurements.

116



On C-Mod, the sawtooth cycle has a frequency around 100 Hz, and the crash time is

-100 ps, which can be easily captured by the polarimetry. If the current density profile flattens

during the sawtooth crash, we expect to see the Faraday rotation signals drop, assuming the

density is relatively constant. However, we found the Faraday rotation signals for most of the

discharges actually jump up during the crashes. In Figure 4-13, the lower trace is the core electron

temperature from ECE, and it sharply decreases from -5 to 3 keV in a crash and climbs back in a

cycle in 5 to 10 ms. The top trace is the Faraday rotation signal for chord#1, which increases

-0.5' (-5% of the total Faraday rotation) and perfectly aligns with the timing of crashes seen on

the electron temperature. This phenomenon has been regularly observed on all three polarimetry

chords. We do observe that the polarimetry signal on the inner most chord (#1) drops during

sawtooth crashes for some plasma discharges. In Figure 4-14, the core temperature decreases

from -3 to 1.5 keV during the sawtooth crashes, and the FR #1 drops 1 (-3%), while FR#2

increases ~1 (-3%).

From ECE data, the SIR is similar for these two shots, as shown in Figure 4-13 and

Figure 4-14. However, the normalized poloidal flux (from EFIT) at the polarimetry chord

tangency points (':t:0.18, AY2~0. 4 0 and XV3~0.56) for the high density (nl04~2x 10 20/m2) high

current (1.3 MA) shot in Figure 4-14 are significantly different from those of typical C-Mod

discharges, which are pp0.25, '42~0. 5 and XV3-0.
7 . By mapping the poloidal flux to the mid-

plane, we found the two edge polarimetry chords are always well outside of the SIR, thus they

should see minor density increments over the whole beam path in the plasma. The density

increment may dominate the effect of the magnetic field decrement from the current profile

flattening, and thus we have seen the Faraday rotation signal for the two edge channels always

increases during the sawtooth crashes. For chord#1 in Figure 4-13, NV'3 0 .2 5 which is around the

SIR, and density effect may still dominate the effect of the current flattening. However in Figure

4-14, iyz0.18 for chord #1, which is inside the SIR, and therefore this chord should see a
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relatively large effect from the current flattening, with minor density decrement along the beam

path inside the SIR, which might dominate the slight density increment over the other parts the

beam path outside the SIR, consistent with the Faraday rotation increase seen on this chord across

the sawtooth crash. We will be able to capture more details on sawtooth crashes, if the

polarimetry system is upgraded to more chords and able to reach the magnetic axis (this upgrade

was scheduled in one or two years term with funding).
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Figure 4-13: Effects of sawtooth crashes on the polarimeter Faraday rotation angle. The
angle on chord#1 increases during each crash.
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Figure 4-14: Sawtooth crash effect seen on all three polarimetry chords (1120621019). For

this shot, the Faraday rotation drops for chord#1, and increases for other two chords

during each crash.
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5. LHCD Experimental Results

As first discussed in chapter 4, the three-chord polarimetry system was found to be sensitive to

the plasma current and thus can be used to diagnose changes in the current density profile. In this

chapter, we will present the polarimetry measurement results for LHCD experiments performed

during the 2012 C-Mod campaign, and show how polarimetry is used to constrain EFIT

reconstructions.

Section 5.1 introduces a typical LHCD discharge with a significant current density profile

change during the LH. What we expect the polarimeter to see during LHCD will also be

discussed.

In section 5.2, LHCD experiments with a LH power scan, an LH pulse scan, a plasma

density scan, a current scan and an LH phase scan are presented. The polarimetry results not only

confirm the LHCD results from previous numerical simulation and experimental observation,

including density limit results and off-axis current drive, but also led to the discoveries of the

dependences of the current drive efficiency on plasma current and LH phasing.

In section 5.3, a synthetic polarimetry signal has been built, using density profiles from

TS and the magnetic field profile from EFIT. The polarimetry measurement agrees well with the

prediction from normal EFIT (no internal constraints from pressure or MSE, qo is constrained to

0.95, as defined in chapter 1) for sawtoothing discharges, without LHCD. A significant

discrepancy between the measurement and the EFIT prediction appears with LH. Polarimetry

measurements are also compared with Kinetic-EFIT prediction, and the agreement is found to be

much better than the normal EFIT prediction during LH. The polarimeter can be easily converted

to measure the Cotton-Mouton effect (C-M), which agrees with the normal EFIT prediction for a

non LH discharge.
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In section 5.4, we present the first attempt to incorporate the polarimetry measurements

into EFIT by optimizing the constraint of the central safety factor qo. The result shows a

significantly flattened current density profile during LHCD.

5.1 A Typical LHCD Discharge

In order to overcome the tokamak pulse length limitations of the plasma discharge with

Ohmic current drive, lower hybrid current drive (LHCD), an efficient non-inductive current drive

method, has been studied on C-Mod and elsewhere [73][74][75][76]. A typical C-Mod discharge

with LHCD is shown in Figure 5-1. The fourth trace is the toroidal loop voltage (V 0 ,p) measured

on the plasma surface, and in steady state should be the same as the loop voltage in the plasma.

V,1 0 p is usually around 1 V depending on the plasma parameters. In this shot, it drops in

magnitude to around 0.3 V with 800 kW LH pulse (0.9 -1.4 s), which indicates that the LH is

driving part of the current. The total plasma current is constant (second trace), so some of the

Ohmic current is replaced by the LH driven current (For these low density, low beta-p plasmas,

the bootstrap effect is negligible.).

Kinetic-EFIT (defined in chapter 1) shows the off-axis current drive for LH, and the

current profile is flattened during the LHCD. The current density and safety factor (q) profiles at

three different time-slices from Kinetic-EFIT are shown in Figure 5-2. The current density

profiles are fit well by Gaussian functions, and the central safety factor qo, is less than 1 before (t=

0.72 s, black traces) and after (t= 1.72 s, blue traces) the LH pulse. During the LH pulse (t=1.32 s,

red traces), the current profile is much flatter and the core current density drops by about 35%.

The sawtooth oscillations from soft x-ray measurements [10] (bottom trace in Figure 5-1) are

suppressed at t~1.32 s, consistent with qo >1.

With the evolution of the current density profile from Kinetic-EFIT, we can estimate how

the polarimetry signals should respond to the current drive, assuming the plasma density is
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relatively unchanged. When the current profile is flattened during the LHCD, the core poloidal

magnetic field becomes weaker according to Ampere's law (less core current), and FR#1

(Faraday rotation measurement for the inner-most chord) should drop. Since the edge poloidal

magnetic field will not change much with a nearly constant total plasma current, FR#3 (edge-

most chord) should not be significantly affected by the current profile change. FR#2 may

modestly decrease, as it is located between the other two chords.

After the LH is turned off, as the current density profile relaxes back to the Ohmic

current profile (peaked), FR#1 should significantly increase. The polarimetry measurements

confirm these expectations, and will be discussed in detail in the following sections.
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Figure 5-1: A typical LHCD discharge (shot 1120612027). Loop voltage drops in magnitude
during LHCD, since some of the Ohmically driven current is replaced by LH driven

current. Sawtooth oscillations, as measured with soft x-rays, are seen to disappear after the

LH turn-on.
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Figure 5-2: Current density and safety factor (q) profiles at three time-slices from Kinetic-
EFIT: before the LH (t= 0.72 s, black traces), during the LH (t=1.32 s, red traces) and after
the LH (t= 1.72 s, blue traces). The LH pulse is from 0.8-1.4 s.
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5.2 LHCD Experiments

The Faraday rotation change during the LHCD can be affected both by electron density and

current density profile changes. To diagnose the current density profile change on the polarimeter

signals, we have tried to keep the density as flat as possible for the following experiments, since

the Faraday rotation measurements are sensitive to the density change, as clearly shown in section

4.3. It is still typical to see 10% to 20% density variation during the LHCD. However, the

polarimeter signal changes up to ~50% for non-inductive LHCD discharges, so that we can

clearly see the current drive effect in the following polarimeter data, even with some

contributions from changes in density.

5.2.1 LH Power and Pulse Scan

In the first LH experiment, we want to observe that the polarimeter is indeed sensitive to the off-

axis current drive on C-Mod. Since FR#1 is expected to show the largest phase change during the

LHCD among the three chords, we will use it to show the current drive effect. Three LH

discharges with similar parameters are shown in Figure 5-3. When LH turns on at t~0.7 s, FR#1

(top trace) drops 30-50% for all three discharges. The total current is nearly constant, and the line

averaged density only varies about 10% during that time period, suggesting that the Faraday

rotation decrease comes mainly from the current profile change. A flattened current density

profile can explain the drop of FR#1 from 0.7-0.9 s, as analyzed in section 5.1. There is no

significant change in Faraday rotation from 0.9 s to the end of the LH pulses, showing the driven

current is well sustained. Immediately after turning off the LH, the Faraday rotation signal starts

to increase, indicating that the current is peaking. Both the processes of decrement and increment

for FR#1 last for -0.2 s, matching the current relaxation time on C-Mod. Current relaxation time

can be approximated as [77]
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TCR;:t a .T5 (keV)/Zeff

where Zeff is the resistivity enhancement due to impurities, and K is the plasma elongation.

Assuming Zeff= 1.5, ic=1.6 and Te ~2 keV, TCR~ 2 0 0 ms At the end of the shot, FR#1 starts to

drop due to the density change.

The three discharges have slightly different turn-off time for the LH pulse. For all

discharges, the Faraday rotations immediately increase after LH turns off, whether the density is

increasing (red and green traces) or dropping (black trace). Therefore, the response of the Faraday

rotation signal comes from the current profile change, which dominates over the density change

effect and random phase noise.

LH power was also scanned to measure the correlation of the Faraday rotation changes

with current drive power. The Faraday rotation is calculated by averaging the phase during the

later part of the LH pulse when the driven current is steady, such as 1-1.3 s. For the Faraday

rotation before the LH, we pick a 10 ms period where the average plasma density is the same as

the average density during the LH. In this way, the derived Faraday rotation change mainly

comes from the current profile difference, and is not affected by a density variation, assuming the

density profile is relatively constant during the current flat top for these LHCD discharges. The

Faraday rotation changes with the LHCD for all three chords are shown in Figure 5-4.

The error bars are estimated to be ±0.10 for chord #1 ±0.2' for chord #2 and ±0.5' for

chord#3. These estimates are determined by observing the phase error during magnetic field only

test shots. The different noise level for each chord is still under investigation. One of the possible

reasons for higher noise levels of chord#2 and chord#3 is that these two chords have considerably

lower signal levels and more optical components. Another possible reason is that the reference

beam is split from and shares the chord# 1 beam. Therefore, some vibrational noise shared by the

reference and chord#1 might be better cancelled out in the chord#1 signal.
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There is a clearly a systematic increase of rotation for chord #1 as a function of LH

power. The amount of FR#2 change also slightly increases with the LH power, but not clearly

outside of the error bars. FR#3 is usually too noisy for useful measurements for low density

LHCD discharges, but it does show a different trend from the other two channels in this plot.

FR#3 change might be dominated by the variation of the edge plasma density.

The dynamics of the Faraday rotation signals confirm that the current density profile is

flattened during current drive, and then re-peaks after the LH is turned off, and the time scales are

consistent with expected current relaxation time.
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Figure 5-3: Faraday rotation time traces (FR#1) for shots 1120612002, 1120612003 and
1120612005 with LH pulse scan. The LH power is 600 kW, 700 kW and 800 kW
respectively, and the LH turns off at different times. The Faraday rotation immediately

starts to responds to the changes in LH power.
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Figure 5-4: Faraday rotation changes for all three chords with shot-by-shot LH power
scans. The systematic increase of rotation angle is clearest for the innermost chord (#1).

5.2.2 Plasma Density Scan

Previous LHCD experiments demonstrated the dependence of the current drive efficiency on the

electron density in C-Mod [25][78][79]. Hard x-ray (HXR) bremsstrahlung from lower hybrid

driven fast electrons is used as a proxy to compare the current driven efficiency for different

plasma discharges. The HXR diagnostic has 32 poloidally-viewing channels that span the whole

cross section of the plasma, with a spatial resolution of 2 cm. It detects photons at energies of 20-

200 keV, with 1 keV energy resolution [10][80].

Figure 5-5 shows that the HXR count rates (green circles), which have been normalized

to the LH power, decrease exponentially as the line averaged density increases. Above a line

averaged density of 1.0x10 20/m3 (nl04~0.6x10 2 0/m2) the LHCD efficiency becomes poor. The

density limit cannot be explained by bad lower hybrid wave accessibility, since it is lower than

the inaccessible density region (pink region). A synthetic HXR diagnostic has been applied to

simulations using ray-tracing/Fokker-Planck codes (GENRAY/CQL3D), and compared with the
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experimental data. The X-ray count rates expected from the simulations (black curve in Figure

5-5) are much higher than the experimental data, with most dramatic shortfall occurring at the

highest densities.

The interaction of LH waves with the Scrape-off layer (SOL) plasma could be an

important effect contributing to the reduction of current drive efficiency in high density plasmas.

The newly developed SOL-reflectometer found that the density profile in the SOL region changes

significantly during LH for high density plasmas [78][79]. A SOL model including the electron-

ion collisions was therefore developed in CQL3D. The simulated HXR rate with this model

shows better agreement with the experimental observations, especially when the SOL model with

high collision frequency is included, but is still a factor of about 10 too high.
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Figure 5-5: For LHCD discharges with densities below about 1x10 20 m 3 , HXR count rates

drop at approximately the expected exponential rate as a function of line average density.

At higher densities, the fall-off becomes unexpectedly rapid, and LHCD efficiency on C-

Mod is weak above this density threshold. (Figure from [81])
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A simulation code (LHEAF [27]) was developed to incorporate full-wave effects, such as

diffraction and scattering, which are not included in GENRAY. LHEAF indicates the LH waves

are mainly absorbed just inside of the LCFS (0.8<r/a<1), which also potentially explains the low

current drive efficiency at high density, as shown in Figure 5-5.

The polarimeter was used to examine this LHCD density limit with a shot-by-shot

density scan. Time traces of four consecutive LHCD discharges (1120612005, 6, 7, 9) with the

same plasma current (580 kA) and line averaged density ne from -0.6 to 1.05x10 20/M 3 are plotted

in Figure 5-6. Similar to the analysis in section 5.2.1, we average the Faraday rotation angle

during the LHCD, and then calculate its difference with the Faraday rotation angle before the LH

where there is a similar density, to quantify the Faraday rotation change. The results are shown in

Figure 5-7. Both the change of FR#1 and FR#2 decrease with higher density, which demonstrates

the LHCD efficiency decreases with higher density. The green shot (-1.05x10 20 /m3) is the point

where the HXR count rates diverge from the CQL3D simulation, and FR#1 drops less than 0.50

comparing with ~20 for the low density shot. Polarimeter results confirm the current drive

efficiency is poor beyond n=1 .0x10 2 0/m3.
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Figure 5-6: Four consecutive discharges with a shot-by-shot density scan (0.4 to
0.7x102 /m 2). Ip=580 kA, LH=800 kW. Strong LHCD effect observed on FR#1, for low
density shots (black and red), very weak LHCD effect observed for shot over the density
limit (green shot).
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Figure 5-7: Faraday rotation change during the LHCD for a shot-by-shot density scan. Both
the change of FR#1 and FR#2 decrease with higher density

It has also been found that the HXR count rates do not drop as dramatically during inner

wall limited discharges as compared to diverted discharged, so polarimeter results during limited

discharges should also be of interest. HXR count rates for diverted discharges with large or small

(3-5 mm) gaps and fully limited discharges are shown in Figure 5-8. The inner-wall limited

discharges (blue stars) have much higher count rates than the diverted discharges.

The polarimeter observed some weak current drive for a limited discharge in the 2012 run

campaign. In Figure 5-9, 1120612009 (black trace) is a diverted discharge and 1120612015 (red

trace) is a limited discharge, both of which have the same density, and total current and LH

power. FR#1 shows a slightly larger decrease in rotation for the limited discharge during the LH,

and a larger increase after LH is turned off. The FR#1 signal changes -15% during LH, compared

with -40% for the low density LHCD discharges. Therefore, some weak current drive is indicated

by the polarimetry measurement, which is qualitatively consistent with non-thermal ECE (GPC2)

observation (third frame). Although the LH trips for the diverted discharge, non-thermal ECE
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measurement already shows some discrepancy between the two shots before the LH trips, so the

trips cannot explain different current driven efficiency.
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Figure 5-8: HXR count rate as a function of the line averaged density. Inner wall limited

discharges (blue starts) has higher count rate than the diverted discharges with large and

small (3-5 mm) inner gaps. (Figure from [79])

135

I I I I ~ I I

0 Large gap
3 Small gap

Limited (a) .



97.0
-6.5-

6.0 -Diverted
L. Inner-wall limi

600 -

X 400 -
.. 200 -

0 -

,.,4-

21 2 -
a-.

S0
1.4
1.2
1.0
0.8 -
0.6 - 7

4. 0.7b5-
E... 0.70 -
S. 0.65-

00.60 -
1.0
0.8 -

0.46-
0.2 -
020

0.4 0.6 0,8

ted

1.0 1.2 1.4 1.6
time(s)

Figure 5-9: Time traces of a high density limited discharge (red) are compared with a

diverted discharge (black). Some weak LHCD for the limited discharge is observed by the

polarimeter, which is qualitatively consistent with non-thermal ECE measurements.

5.2.3 Plasma Current Scan

Although according to theory (Equation 1.22) the LHCD efficiency is independent of the plasma

current, GENRAY/CQL3D simulations show the position of the LH power deposition depends on

the plasma current [82]. In Figure 5-10, two LHCD discharges with different plasma current and
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the same plasma density were simulated by GENRAY/CQL3D. The power mainly deposits inside

of r/a=0.6 for the shot with IP=300 kA (red), but with a significant component for r/a between 0.6

and 0.8 for the 800 kA shot (black). This simulation predicts that LH deposits more power close

to the edge for high current shot. We believe this result is a consequence of toroidal wave

propagation and upshifts in the launched nil spectrum.

4

E

S2

0
0.0 0.2 0.4 0.6 0.8 1.0

r/o

Figure 5-10: LHCD power deposition for 300 kA (red) and 800 kA (black) discharges,
simulated by GENRAY/CQL3D. LH deposits more power close to the edge for high current
shot. (Figure from [821)

The three-chord polarimeter can be used to infer the location of the driven current, since

each chord has different sensitivities for the current driven at different locations. In Figure 4-11,

the magnetic flux surfaces for the three polarimetry beam-paths tangent to xVw0.2 5 , V2-0.5 and

'W3-0.7 for a typical C-Mod discharge are shown. The three chords approximately respond to the

core plasma current decrements inside of NV', 'y2 and V3, which should be equal to the driven

current outside of N", V2and W3 respectively. By observing the LHCD effect on different chords,

we may infer what the current density profile looks like and where the current is dominantly

driven.
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Figure 5-11 shows time traces for four LHCD discharges, with Ip=580 kA for

1120612005 (black) and 1120612017 (red), and Ip=800 kA for 1120612027 (blue) and

1120612028 (green). With a density of n104t4 e' 9/m2 and LH power at 800 kW, strong LHCD

was achieved for all four discharges, since the loop voltage drops dramatically and significant

levels of non-thermal electrons are detected by ECE.

The Faraday rotation changes during the LH pulses are shown in Figure 5-12. FR#1

decreases significantly for both the low and high current shots, thus the driven current has major

components outside of i1-0.2 5 . FR#2 decreases about three times more for 800 kA (~1.50) than

580 kA (~0.50) shots, implying there is more current driven outside of xV2~0.5 for Ip~820 kA than

for Ipt580kA. FR#3 drops '1 for the green shot, which is outside the error bar of -0.5 0, and its

Faraday rotation time trace in

Figure 5-11 follows similar trends to those of the other two chords. These observations

indicate some current is driven outside of V3~0.7 for the high current case. Polarimetry responses

for the three chords suggest that there is more driven current close to the edge for the high current

discharges, and these experimental results agree with previous CQL3D simulations.

The polarimetry measurements have shown an ability to infer the current driven location

with only three line-integrated signals. With potentially more chords in operation in the future,

the location of the driven current could be much more accurately measured. With enough

measurement chords, the current profile can be parametrically fitted with the free parameters in

the current profile models, as discussed in chapter 2.
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Figure 5-11: Different LHCD effects are observed by the polarimeter for shots with Ip= 580

kA (black, red) and Ip= 800 kA (blue, green)
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Figure 5-12: Faraday rotation changes for the four discharges in Figure 5-11. FR #1 has a
significant change for both the low and high current shots, while FR #2 sees a big drop only
for the high current shots (I,=820 kA).

The Faraday rotation change shows a better sensitivity to current profile changes than the

loop voltage during the LHCD. Two discharges in Figure 5-13 are similar to each other with the

same total current and only a small variation in density. Vl00., looks exactly the same throughout

the LH pulse. However, FR#1 drops -I more for the red shot, which might be consistent with the

slightly larger non-thermal ECE observations during the second half of the LH pulse.
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Figure 5-13: Two similar LHCD discharges. FR#1 shows a better sensitivity to the current

profile changes than VIOOP.

5.2.4 LH Launcher Phase Scan

In theory, LHCD efficiency is inversely proportional to N1 (Equation 1.22), so that LHCD with

lower N11 (lower phasing) should be more efficient in driving plasma current.

Numerical simulations with GENRAY/CQL3D show LH with higher antenna phasing

should drive less non-inductive current, and the power deposition should be closer to the

edge[80]. Simulation results for three discharges with 750, 90' and 105 phasing (corresponding to

launched NI, of 1.60, 1.92 and 2.24) are shown in Figure 5-14. Clearly, more LH power is
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deposited close to the edge (r/a~0.7) for the shot with 1050 phasing, and the driven current is also

closer to the plasma edge.

COL3D Predicted Power Deposition Profile

''E '" 75
4 -- o-,9

3 .105
3

C

0
0 0.2 0.4 06 0.8 1

sqrt(w,) ~ rIa

CQL3D Predicted Toroidal Current Profile
,20

E
S15

C 10-

0
0 0.2 0.4 0.6 0.8 1

sqrt(y,) ~ 6a

Figure 5-14: GENRAY/CQL3D simulation shows LH deposits more power and thus more
driven current close to the edge for lower antenna phasing. (Figure from [80])

With MSE as a constraint, Kinetic-EFIT shows that the current density profiles for the

discharges with lower phase LHCD were flatter than those with higher launched phase during the

2008 C-Mod campaign, as shown in Figure 5-15 [69]. However, MSE measurements did not

show significant differences of the magnetic pitch angle change with shot-by-shot LH phase
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scans from preliminary analysis in the 2012 C-Mod run campaign (more detailed analysis is still

ongoing). One difference for the new LH phase scan results is that the plasma current was -600

kA in 2012 compared with -800 kA in 2008, which may contribute to different driven current

density profiles as was just described.

0.2 0.4 0.6
r/a

0.8 1.0

Figure 5-15: The current density profiles flatten with decreased launched phase, as inferred

from Kinetic-EFIT reconstructions with MSE constraints (Figure from [69])

The polarimeter measurements have also been used to help understand the dependence of

current drive efficiency on LH phasing. The time traces of the polarimetry measurements with

shot-by-shot LH phase scans are shown in Figure 5-16. The key is to keep all the other plasma

and LH parameters the same, and compare the change of FR#1 for discharges with different LH

phasing (750- black, 900 -red, 105*-blue, and 1150 -green).
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Figure 5-16: Faraday rotation on chord#1 with a shot-by-shot LH phasing scan (
1120912017, 1120912012, 1120912021, 1120912024 with 750, 900, 1050 and 1150 phasing

respectively). N104 m4x10 19/M2 , Im,600 kA, and LH w600 kW.
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The FR#1 change caused by the LHCD is shown in Figure 5-17. The FR#1 change

decreases with higher phasing, which agrees with the LH theory prediction. Unfortunately, we

cannot simply conclude that this Faraday rotation change difference originates from LH phasing,

since the density is slightly lower for two lower phasing discharges (black and red), which

contributes to better current drive efficiency. To isolate the density effect, a time window of 1.5-

1.6s was chosen in Figure 5-16, where density for the 115' phasing shot is similar to the 750 and

900 phasing shots. The 1150 phasing shot has a higher Faraday rotation angle, which represents

worse current drive efficiency.

-0.4 ...... ...................

-0.6 -

CM-0.8-

-1.0 -

-1.2

60 70 80 90 100 110 120 130
LH Phase (deg)

Figure 5-17: FR#1 change decreases with higher LH phasing, which agrees with LH theory.

To make the comparison of LHCD efficiency with different LH phasing more robust, a

phase scan was performed within a single shot, which avoids shot-by-shot differences in plasma,

LH and diagnostic performance, was carried out, and the results are shown in Figure 5-18. FR#1

jumps to a sharper slope (larger time derivative) when the LH phasing decreases, even though the

density slope becomes flatter throughout the LH pulse (no jump on the density slope). The linear
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regression slopes of FR#1 for different LH phases are shown in Figure 5-19 (slope for

phase=1 150 is calculated near t=1.2 s). The FR#1 slope is larger for lower phasing discharges,

indicating higher current drive efficiency, consistent with the loop voltage change in Figure 5-18.

Linear least squares fitting of the FR#1 slope with 1 is shown in Figure 5-20. The implied
nil

current drive efficiency from FR#1 approximately linearly increases with , as we would expect

from LH theory.

The polarimeter measurements confirm that low LH phasing (750) is preferred for high

current drive efficiency, from both the shot-by-shot and within-shot phase scans on C-Mod.

These results also agree qualitatively with GENRAY/CQL3D simulations and the MSE analysis

from the 2008 run campaign.
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Figure 5-18: LH phase scan within one shot: 1150, 1050, 900, 750*. The magnitude of the time

derivative of FR#1 becomes larger when the LH phasing decreases.
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5.3 Validate Kinetic-EFIT

5.3.1 Synthetic Polarimeter Signals from EFIT and TS

A synthetic polarimetry signal can be calculated by integrating the poloidal magnetic field and the

electron density along the beam-paths (Equation 2.30). The poloidal magnetic field is extracted

from EFIT.

There are various diagnostics that could provide electron density profile measurements.

One is the interferometer, which measures the line integrated density with a fast time resolution

and could be inverted to the density profile, if there are enough chords spanning over the plasma

cross section. On C-Mod, TCI (introduced in chapter 1) has ten vertical chords, but focuses on

the middle region of the plasma. The accuracy of the inverted density profile is not very good

without edge density coverage [15]. With the addition of a third FIR laser, interferometry

measurement capability could be added to the polarimeter in the future, so that we could get a

direct density measurement along the polarimeter beampath. With both FIR interferometry and

TCI measurements from two different viewing directions, it might then be possible to obtain good

inverted density profiles.

Very good density profiles are already provided by the Thomson scattering (TS)

diagnostic (introduced in chapter 1), which is cross-calibrated with TCI. The density profile from

TS is mapped to the polarimetry beam-paths using EFIT magnetic flux surface reconstructions.

With a time resolution of 10 ms for TS, the synthetic polarimetry signal will have a 10 ms time

resolution as well.

All of the contributions to the FIR interferometry phase changes, including the Faraday

effect, the C-M effect and systematic errors due to toroidal misalignment of the beampaths, can

be estimated by integrating the density and/or related magnetic field components along the beam-

paths. Detail comparisons between the EFIT predicted signals and the experimental

measurements will be presented in the following section.
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5.3.2 Faraday Rotation Measurements Compared with EFIT Prediction

Figure 5-21 and Figure 5-22 compare three-chord Faraday rotation measurements (black traces)

with the synthetic polarimetry signals (red traces) generated by using normal EFIT (no internal

constraints from pressure or MSE, and q0 is constrained to 0.95), for two discharges, 1120216017

and 1120216003. The EFIT predictions agree well with polarimeter measurements, especially for

the first two chords. Chord#3 has the worst noise level, but within those uncertainties, shows a

good match to the EFIT predictions.

A challenge for the comparisons is that the Faraday rotation measurement has a phase

drift during the TF ramp, making it difficult to define a baseline, as was discussed in chapter 4.

By picking the wrong baseline, for example using the flat phase before TF ramp (before -Is), we

may find an offset between the measurement and the synthetic signal, estimated to be up to 10 for

chords #1 and #2, and up to 2' for chord#3.

One way to mitigate the baseline drift problem is to start the TF ramp 100 ms earlier than

usual, which results in a quiet baseline right before the plasma discharge is obtained (Figure 4-3).

However, this method requires reprogramming the plasma control system for the discharges

loaded from previous runs, and is not implemented for the discharges in this thesis.

Instead the measurement and EFIT prediction are aligned at one time-slice at an early

time in the discharge. The measurement signals are typically shifted by a small phase angle,

which is less than the baseline drift error. This method was not applied until phase comparisons

with quiet baselines were obtained and we were confident in the accuracy of our measured

Faraday rotation signals.
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Figure 5-21: Faraday rotation measurements agree well with the synthetic signals

calculated by EFIT and TS density, for all three chords. Shot 1120216017, I,=l.l MA, n104

ramps from 0.4 to 0.9x10 20/m2 during the current flat top.
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Figure 5-22: Faraday rotation measurements agree well with the synthetic signals

calculated by EFIT and TS density, for all three chords. Shot 1120216003, Ip=.l MA, n104

ramps from 0.3 to 0.5x10 20/m2 during the current flat top.

The synthetic Faraday rotation signal is inaccurate during LHCD because of large errors

in the derived internal magnetic field from normal EFIT for the non-inductive plasma. Therefore,

we expect to see the measurement signals disagree with the EFIT predictions during LHCD,

especially for FR#1, since it is most sensitive to the LHCD.

The time traces of a low density (nl04~w).4x10 20/m2) LHCD discharge, with 800 kW LH

power from 0.8-1.4 s, are plotted in Figure 5-23. To define a baseline for each chord, the Faraday
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rotation measurements (black traces) are aligned with the synthetic signals (red traces), right

before the LH pulse (t=0.8 s). Then, the EFIT predictions are overlayed with the measurements

for the time period before the LH pulse for all three chords. When LH turns on, the measurement

and EFIT prediction for chord#1 start to separate from each other with an increasing discrepancy,

evolving over the current relaxation time (~200 ms). This effect is sustained until the end of the

LH pulse. The discrepancy deceases to zero in another current relaxation time after the LH power

is turned off. A similar trend is observed on chord#2, while there is no obvious LH effect on

chord#3. The observed discrepancy between measurements and synthetic signals confirms that

the reconstructed internal poloidal magnetic field from the normal EFIT is not accurate during

LHCD, which should be improved by incorporating the polarimetry data into EFIT as an internal

constraint. Similar results have been observed on dozens of other discharges with good LHCD.

One more discharge is shown in Figure 5-24, with nl04~0.45x]O20 /m2 and I;6O kA.

In Figure 5-25, another synthetic polarimetry signal is produced by Kinetic-EFIT (blue

squares), which includes internal constrains provided by the plasma pressure and MSE pitch

angles. Its time resolution is 100 ms, since the MSE data are averaged to improve the SNR. The

Faraday rotation measurement agrees well with the prediction from Kinetic-EFIT for all three

chords, and the discrepancy is much smaller than that from the normal EFIT. Therefore, the

polarimeter confirms that the Kinetic-EFIT captures a more accurate representation of the current

profile than normal EFIT during the LHCD.
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Figure 5-23: Comparison between the measurements and the EFIT predictions for a LHCD
discharge. FR#O shows a big discprency between two traces, which confirms the poloidal

magnetic field from normal EFIT is inaccurate during LHCD .
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Figure 5-24: Comparison between the measurements and the EFIT predictions for a LHCD
discharge. The FR#1 shows a big discrepency between two traces.
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Figure 5-25: Faraday rotation agrees with the prediction from Kinetic-EFIT (blue squares,

100 ms resolution). The discrepancy between measurement and Kinetic-EFIT prediction is

much smaller than that from the normal EFIT during the LH pulse.

5.3.3 C-M Measurements Compared with EFIT Predictions

Most polarimetry systems are operating in parameter regimes with negligible Cotton-Mouton (C-

M) effect. However, on machines with high TF, such as ITER and C-Mod, there is a concern that

the C-M effect can be significant in the poloidal measurement geometry and may affect the

Faraday measurements, which might make it difficult to measure either of the effects. This

concern need to be addressed, if we would like to implement a poloidal viewing polarimetry

system on ITER or other high field, high density tokomaks. One method that has been tried is to
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use linearly polarized beams to measure the Faraday and C-M effect simultaneously, such as has

been implemented on JET [83]. The other way is to mitigate the C-M effect on the Faraday

rotation measurements by using the Dodel-Kunz method [35]. Alcator C-Mod, with toroidal

magnetic field up to 8 T, provides an excellent platform to assess if the C-M effect on the Faraday

rotation can be eliminated down to an acceptable level by using the Dodel-Kunz method. Shot-

by-shot TF scans, while keeping other parameters unchanged, were carried out on C-Mod.

Section 4.2 presents discharges with different TF, and the Faraday Effects are similar, which

means the C-M effect does not contaminate our measurements at the current noise levels.

On C-Mod, the Faraday rotation measurements can be easily converted to C-M

measurements by removing the quarter-wave plate. In this way, the probe detector measures the

phase difference between two orthogonal linear polarized beams, which represents the phase

delay between O-mode and X-mode, which is precisely the C-M effect. In Figure 5-26, chord#1

was set up to measure the C-M effect. Although the C-M measurement (black curve in the first

frame) is noisier than the polarimetry measurement, it agrees reasonably well with the EFIT

projection (red curve). Chord#2 still measures the Faraday effect (second frame), which agrees

with the EFIT projection as well. A combined polarimetry/C-M system could be an alternative

option to a polarimetry/interferometry system to realize simultaneous density/current profile

measurements, since the C-M has the advantage of having no fringe jump issues, which can be an

issue for interferometry. Such a system would require only two FIR lasers, rather than the three

required for a polarimetry/interferometry system.
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Figure 5-26: a) C M effect measurement (black) with the EFIT prediction (red); b)
Faraday effect measurement (black) with the EFT prediction (red). Agreement is
reasonably good for both M and Faraday effects.

5.4 Incorporating Polarimeter Data into EFIT to Constrain qs

Since the MSE constrained kinetic-EFIT only has a time resolution of 100 ins, developing a

polarimetry constrained EFIT with a much faster time resolution is critical for diagnosing the

evolution of the current density profile and controlling the q-profile in real time, as successfully

tested on JET [84] [85] [86].

Incorporating the polarimeter data into the EFIT equilibrium reconstruction is

complicated, since the polarimetry signals are line integrations and they depend on both the

density and magnetic field along the beam path. Our first attempts to incorporate the polarimetry

measurements into equilibrium reconstruction focused on optimizing the qo constraint.

Reproducing qo with a good accuracy is very difficult in EFIT without internal constraints. Thus,
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normal EFIT is usually run assuming that qO is about 0.95. Although this is probably a reasonable

assumption for many sawtoothing C-Mod discharges, it is certainly not correct with strong off-

axis LHCD. In Figure 5-27, there is a -1.50 discrepancy between the polarimeter measurement

(black curve in 3rd frame) and the normal EFIT prediction (blue curve) for FR#1 during LH. By

allowing qo to become a free parameter, the synthetic Faraday rotation from the modified EFIT

comes into good agreement with measurement (green curve).

The methodology is to scan the qO and minimize the following equation

3 2

Serr = j ai ) (5.2)
a=1

where a, is the Faraday rotation for chord#i, a* is the EFIT predicted Faraday rotation after

tuning qO, and Aa, is the typical RMS error associated with the measurement of a,. The optimized

qo is found to be ~2 with the single chord polarimetry constraint (FR#1).

The plasma stored energy, obtained in three different ways, is compared in the bottom

frame of Figure 5-27. The green trace is calculated using the polarimetry-constrained EFIT, the

blue trace is from normal EFIT, and the red trace is based on the total kinetic energies of the

plasma electrons and ions. We use the electron density and temperature from TS measurements.

The ion temperature is assumed to be same as the electron temperature. The ion density profile is

calculated with effective ion charge (Zeff) by assuming the same profile as the electrons. The

stored energy drops to zero using normal EFIT, which is clearly incorrect. Polarimetry EFIT

shows larger stored energy during the LHCD, and is closer to the kinetic energy than the normal

EFIT.

Three time-slices of the current density and q profiles from polarimetry-constraint EFIT

are shown in Figure 5-28. The red curves are profiles before the LH (t=0.6 s), when qo<i. With

the LHCD, the current is significantly flattened and qO>l at t=1.2 s (blue), which are consistent

with the off-axis current drive and the time at which the sawteeth disappear. After turning off the

LH at 1.4 s, the current profile slowly peaks and qo drops at t= 1.5 s (green curves).

159



0.60 1.4

0.55 1.0

0.86
C.5 LH - 0.6 2
0A5 0.4

0.401
1 A
1.2
1.0-

S0.8 --
$0.6

> 0.4-

5.0
, 4.5

4.0
-3.5 -Measuramedt

3.0 -nraE
2.5 I ,Efl

2.4-
2.2
2.0 polarimery qO

1.6
1.4
1.
1.0

25 n
20

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Time (s)

Figure 5-27: Large differences are observed between measurement (black curve in 3rd

frame) and normal EFIT prediction (blue curve) for FR#1 during LHCD. qo was chosen to
minimize the difference between the measurements and EFIT predictions (green curve).
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Figure 5-28: Current density (a) and safety factor (b) profiles for three time-slices, before

the LH at t= 0.6 s (red), during the LH at t=1.2 s (blue) and after the LH at t=1.5 s (green).
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6. Polarimetry Measured Fluctuations

Measuring the internal magnetic fluctuations is essential for understanding plasma transport and

improving plasma confinement. The newly developed polarimetry system with a relatively wide

bandwidth (2MHz) compared to polarimetry systems on most of the other machines in the world

is capable of measuring broadband internal magnetic fluctuations, which are not measurable by

other existing fluctuation diagnostics on C-Mod.

The measured Faraday rotation signal depends on both the plasma density and magnetic

field, and we can rewrite each variable as a sum of the equilibrium and fluctuating components: a

= ao + 6a, n = no + Sn, and B = Bo + SB. Therefore, the fluctuating Faraday rotation signal

includes three terms,

Sa = cf A'(f 6nBO.dI + f nSB.dl + f SnSB.dl) (6.1)

where the first term is the density fluctuation weighted by the equilibrium magnetic field along

the beam-path, the second term is the magnetic fluctuation along the beam-path weighted by the

equilibrium density, and the third term is a negligible higher order quantity (both oin and 8B are

small). Since the polarimeter measures the integral of the product of the density and magnetic

field, it is nontrivial to extract either type of fluctuation or locate the position of the fluctuations

with only three-chord measurements of available in the current system.

In the 2012 C-Mod run campaign, the three-chord polarimetry system was used to

measure fluctuations associated with various MHD instabilities, fast-particle driven modes, and

broadband turbulence, including a wide frequency range from -5 to 800 kHz, and with a good

signal-to-noise ratio. With the difficulty of separately extracting the magnetic or density

fluctuation components from the mixed polarimetry signals, the underlying physics has not yet

been thoroughly studied. In this chapter, we will briefly discuss the polarimetry fluctuation

measurements. Detailed physics analysis could follow with future experiments, especially if the
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system were upgraded to six horizontally viewing chords with at least one chord through the

magnetic axis.

Section 6.1 presents fluctuations measured with the polarimetry system during EDA H-

mode [87][88] discharges. These fluctuations are found to be altered with LH waves. The quasi-

coherent mode (QCM) drifts down in frequency and the broadband fluctuations first observed by

the polarimeter are suppressed during LH. A shot-by-shot LH power scan shows that the change

of the fluctuations clearly begins when the LH power is higher than 500 kW, and then scales with

the LH power.

Section 6.2 presents polarimetry fluctuations for I-mode [89][90] plasma, including the

weakly coherent mode (WCM) [89] [90] [91] and neo-classical tearing modes (NTMs) [92]. Three

polarimetry chords confirm the poloidal asymmetry of the WCM, previously discovered by fast

magnetic coils [10].

6.1 LH Waves Alter Fluctuations during EDA H-mode

H-mode means high-confinement mode, compared to the traditional low-confinement mode (L-

mode) [93]. With a transport barrier formed near the plasma edge, H-mode enhances both energy

and particle confinement, and forms steep density and temperature gradients just inside the LCFS.

Auxiliary heating with ICRF is usually necessary to transition the plasma from L- mode to H-

mode on C-Mod. There are three different kinds of H-modes on C-Mod, ELM-free H-modes [87],

ELMy [87][94][95] and EDA H-modes. The EDA H-mode, which is named for the enhanced D"

signals, can last for more than ten times the energy confinement time, and the duration is

primarily limited by the length of the ICRF pulse, increased impurity levels or injections.

Fluctuations in EDA H-mode, as measured by the polarimeter, are shown in Figure

6-1(a). A QCM at -100 kHz is observed on all three chords, which is consistent with PCI

[10][96] and reflectometry measurements, as shown in Figure 6-1(b). This mode is already well
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studied with a 3D edge fluid code BOUT (BOUT++) [97][98] and extensive experiments on C-

Mod [99][100]. It is recognized to be a localized mode near the edge plasma density gradient

region (pedestal), and is identified as responsible for enhanced outward impurity transport across

the barrier region, which results in long pulse stability, and is unlike ELM-free H-modes, which

are usually transient because of impurity accumulation. The QCM was believed to be related to

resistive ballooning mode instabilities [101], but there is new experimental evidence on C-Mod

suggesting that the QCM is an electron drift-Alfven wave [102]. Three polarimetry chords

crossing the pedestal at different locations and with different angles all see very similar QCM

activity, which confirms that there is no evidence of a poloidal asymmetry in the location of the

QCM from Magnetics measurements.

In addition, broadband fluctuations are observed in 200-600 kHz range by the

polarimeter. This mode has smaller amplitude, and is much broader and upshifted in frequency

compared to the QCM. It appears on chord#l and #2, but not on the edge chord, which indicates

that the broadband fluctuations are core fluctuations. Also, the fluctuations in this frequency

range are not observed by the reflectometer or PCI, which are sensitive only to density

fluctuations. From these initial measurements, one possible conclusion is that the broadband

fluctuations are core magnetic fluctuations. Since the probing FIR laser beams have a diameter

Dz1 .5 cm in the plasma, the polarimeter should measure fluctuations with a wavenumber of up to

kpolar 24.2/cm. Therefore, it is also possible that the broadband fluctuations are density

fluctuations but with a wave-number outside of the range that PCI (1-15/cm) [103] is most

sensitive to. From these observations, we confirm that the polarimeter can make low phase noise

measurements of small amplitude perturbations.

LH power (PL1I=650 kW) significantly changed both the QCM and broadband

fluctuations, as shown in the spectrograms in Figure 6-2(a). The LH power is applied from 0.92

to 1.25 s, during the EDA H-mode. The QCM downshifts from -120 to 60 kHz, and becomes

165



more coherent during the LH pulse. This phenomenon also appears on the PCI, reflectometer and

Gas Puff Imaging (GPI) [10][104] measurements.

40

I..

3I

9

I

a.
S
I..

800

600

400

200

I'-

12.5 12.5
2.0 2.0

1.0 ____________________E 1.0
0.6 0.8 1.0 1.2 1.4 1.6 0.6 0.8 1.0 1.2 1.4 1.6

t (s) t (s)
Figure 6-1: (a) Three-chord polarimetry fluctuation measurements with the EDA H-mode.
Polarimetry observed QCM mode is consistent with PCI and reflectometer measurements
in (b). Higher frequency broadband fluctuations are only found on core channels (#1, #2).
(b) QCM on PCI and reflectometer signals. A second order harmonic of the QCM is shown
on reflectometer.

The fluctuation intensity, integrated over 250-600 kHz is shown as a function of time in

Figure 6-2(b). It significantly drops when LH turns on for both chord#1 and #2 and rises when

LH turns off. The line-averaged density decreases ~10% during the LH (a similar change in the

core density is seen with TS), which partially explains the reduction of the core magnetic
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fluctuations, since the polarimetry magnetic fluctuation component is weighted by electron

density. The core rotation from the High Resolution X-ray Spectroscopy (HIREX) [105][106]

measurements increases during LH, as shown in the sixth frame of Figure 6-2(b). The higher

rotation shear may suggest a higher ExB shear, which stabilizes the core turbulence and explains

the suppression of the broadband magnetic fluctuations [107][108]. The broadband fluctuations

are correlated with sawtooth events, as sawtooth crashes are clearly seen on the integrated power

signals of chord#1 and chord#2.
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Figure 6-2: (a) With 600 kW LHI applied during the EDA H-Mode, the QCM drifts down in
frequency and becomes more coherent. (b) The fluctuation intensity integrated over 250-600
kW is reduced with LHI. Sawtooth crashes are seen on the integrated fluctuation intensity.
The plasma stored energy from EFIT and the core toroidal rotation increase, and the line
averaged density decreases, during the LHI.

To determine if the LH effects on EDA H-mode fluctuations scale with LHI power or not,

a shot-by-shot LH power scan was done. Figure 6-3 shows polarimetry fluctuations (chord#1) for

four shots with LHI power from 0 to 600 kW. In (a), the QCM and the broadband turbulence are

continuous throughout the whole EDA H-mode. In (b), there is still no obvious change on the

fluctuations with 300 kW LHI power. When the LH power is increased to 500 kW, a down shift in
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frequency for the QCM, and suppression of the broadband fluctuations appear in (c). This

phenomenon is more significant with higher LH power, at 600 kW in (d). The broadband

fluctuation intensity decreases with the LH power (300-600 kW) as shown in Figure 6-4.
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6.2 I-mode Fluctuations

I-mode is a recently explored plasma operating regime on C-Mod [89][90]. It has good energy

confinement, similar to H-mode, and particle confinement similar to L-mode. Its outward

impurity diffusion is larger than H-mode, so there is less of an impurity accumulation problem. I-

mode can be run in a stationary manner, since it does not need edge localized modes (ELMs) to

suppress the core build-up of impurities. Fluctuations for I-mode plasmas have been thoroughly

analyzed with some diagnostics on C-Mod. The new polarimetry system also observes

fluctuations during I-mode, such as WCM [89][90][91] and NTMs [92], and its measurements

will contribute to I-mode physics research on C-Mod.

Polarimeter fluctuations for a steady I-mode are shown in Figure 6-5. When the

confinement transitions to I-mode, at t~0.8 s, the broadband fluctuations are reduced, while

another higher frequency (~300-500 kHz) mode appears on chords #2 and #3. This mode is

called the Weakly Coherent Mode (WCM), as it is broader in frequency than the QCM. The
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WCM is strongest on chord#3 and is almost invisible on chord#1. Thus, there is a poloidal

asymmetry for the WCM, with increased fluctuation amplitude away from the mid-plane, which

is consistent with previous fast magnetic coil measurements [91][109].

If we check a lower frequency region, from 20 to 50 kIz, NTMs are observed in the

polarimeter signals (Figure 6-6). NTMs are resistive tearing mode islands that are sustained by a

helically perturbed bootstrap current. They have been frequently observed in I-mode plasmas on

C-Mod, and are usually triggered by large sawtooth crashes [92]. The NTMs are mainly studied

using edge magnetic coil measurements. The magnetic coils observe intense NTMs in the 30 to

45 kHz frequency band (top frame), which clearly correlate with sawtooth crashes shown in the

core temperature signal (bottom trace). The polarimeter finds NTMs in the same frequency range.

Chord#1 observes both 45 and 30 kHz NTMs, though they are weak. Chord#2 only detects 30

kHz NTMs, similar to the observation from the PCI measurements.

There are other fluctuation modes observed by polarimetry, such as energetic particle

driven mode during ICRH (200-400 kHz), snakes (5-20 kHz) and potential Alfvenic activity

(150-450 kHz) [110].
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While both magnetic and density fluctuations have been observed by the three-chord polarimeter,

the relative strength of these two fluctuations is still unresolved. A top priority going forward is to

understand the relative magnitude of the fluctuation components, and to determine how that

weighting changes with different chords.

Isolating the contributions from density and magnetic fluctuations requires an upgrade to the

present polarimetry system. Simultaneously measuring the density fluctuations along the same

beam-path, can be achieved by adding the interferometry or C-M measurement capability to our

system, which would go a long way toward isolating contributions to the fluctuation levels from

magnetic and density effects. By comparing with the fluctuations found by the interferometer, we

will be able to estimate the magnetic fluctuation levels seen by the polarimeter. Another way to

estimate the magnetic fluctuation, without requiring an extra FIR laser, is to provide a polarimetry

chord going through the mid-plane. The density fluctuation term will be zero, since there is no

component of the equilibrium field parallel to the probe beams on the mid-plane. Fluctuations

observed on this chord provide a direct measurement of the line-integrated radial magnetic field

fluctuations. A chord on the midplane will be a high priority for any upgrade of the polarimeter.
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7. Summary and Future Work

We have developed a three-chord polarimeter, which contributes to the LHCD study on C-Mod.

It is the first time an FIR polarimeter with a poloidally viewing geometry (double pass) has been

operated on a tokamak. The system has also been used to measure core magnetic fluctuations for

the first time in a tokamak. Experimental results and recommended future work will be

summarized in the following sections.

7.1 Summary

The development of the three-chord polarimetry system was introduced in chapter 3. An FIR

wavelength was chosen, to achieve a measurable Faraday rotation with typical C-Mod plasma

discharges, while keeping the CM effect and beam refraction in the plasma at acceptable levels.

Significant efforts were taken to maximize the laser power and stabilize the lasers during the

plasma discharges by designing a laser gas flowing system, laser table enclosures, an IF feedback

control system and a magnetic shielding box. We also custom designed most of the FIR optics

used in the system. The quartz vacuum window and waveplates were AR coated which not only

enhances the optical transmission, but also reduces the laser beam ellipticity after going through a

quarter-waveplate. The wire mesh beamsplitters were thoroughly tested, and meshes with optimal

mesh density and mesh grid orientation were used. Custom-designed long focal length TPX

lenses focus the beams down onto the retro-reflectors installed on the C-Mod inner-wall. The

retro-reflectors are protected with a shutter assembly system, which can be closed during

boronization or plasma disruption experiments. Three old style FIR detectors were tested, and a

novel planar Schottky diode detector with much higher sensitivity has been specifically designed

and fabricated for our laser wavelength. Both digital and analog phase comparators have been

tested and benchmarked against each other.
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In chapter 4, we describe improvements made in the polarimeter to reduce the noise level.

Acoustic noise is damped with sound proofing material surrounding the enclosures and lasers.

The lasers and optics are all secured on stable optical tables to reduce vibration noise. Since the

vibrations were coupled to the lasers through the original metal pumping lines, we replaced the

lines with Teflon pipes, and moved the laser coolers and vacuum pumps as far away from the

lasers as possible. The laser beam co-linearity was optimized by using a 2D pyroelectric camera.

Spurious reflections were taken care of by dumping the unused beams onto FIR absorption

materials, and replacing the corner-cube detectors with the new detectors which could be

optimized to reduce reflections. Phase errors induced by TF ramps were studied, and the baseline

drift problem was found to be mitigated by programming the TF to start 100 ms earlier than

usual. System calibration found the phase error from the beam polarization change is less than

5%. After dealing with these sources of noise, the polarimeter was found to be sensitive to plasma

density changes, current changes and plasma position sweeps. All three chords observe the

sawtooth crash events with very good time resolution.

In chapter 5, we used the polarimeter to infer current density profile changes during

LHCD experiments. The current profile was confirmed to be flattened by the application of LH

power, and to peak after the LH was turned off. The driven current increases with the LH power,

and decreases with higher plasma densities (weak driven current beyond ne=l .0x10 20/m3). The

driven current was observed to have significant components close to the plasma edge with a high

plasma current (Ip~ 820 kA), consistent with the CQL3D predictions. The polarimeter observed

better current driven efficiency for lower LH phasing during both a shot-by-shot and a within-

shot LH phase scan. The polarimeter was also used to benchmark reconstructions from both

normal EFIT and Kinetic-EFIT. Synthetic polarimetry signals from Kinetic-EFIT agree with the

measurements much better than those from the normal EFIT during LHCD, indicating more

accurate internal magnetic field reconstruction for Kinetic-EFIT. Polarimetry measurements were
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used to constrain the central safety factor qO in EFIT, which shows the current profile is

broadened and in some of the particular cases studied, qO increases to ~2 with LH.

Polarimetry fluctuation measurements were presented in chapter 6. Both density and

magnetic fluctuations can be captured by the polarimeter. It not only observed fluctuation features

consistent with observations from other diagnostics, such as QCM, WCM, NTMs, sawtooth

precursors and snakes, but also was used to discover a new class of core broadband magnetic

fluctuations during EDA H-mode. The broadband fluctuations were then suppressed by the LH

waves, which may be explained by increased ExB shear. The polarimeter also confirmed the

poloidal asymmetry of the WCM during I-mode operation.

7.2 Future work

Since the FIR lasers are sensitive to stray magnetic fields and vibrational noise, it is beneficial to

move the lasers away from C-Mod. The lasers were moved into an interface room after the 2012

C-Mod run campaign. The room has a concrete floor, and good temperature control, and the laser

vacuum pumps and coolers will be installed in a neighboring room. Therefore, the lasers can

operate in a quiet and temperature controlled environment. The magnetic field in this room is

only ~3 G during the plasma discharge, so that the shielding box will not be necessary. The lasers

beam will be directed onto the vertical table in the cell using only two more mirror reflections.

The total beam path increases from ~14 to ~24 m with the new optical layout, but the beam size

on the vertical table will not change appreciably because of the rather large diameter of the beam

(long Rayleigh length).

The next system upgrade will be to enhance the system to allow measurements along at

least six horizontally viewing chords, with one chord below the magnetic axis, which should

allow direct measurement of the central safety factor without the need for profile inversion

[55][56]. A radial chord going through the magnetic axis will also benefit the measurement of the

magnetic fluctuations, since the effects of density fluctuations should be negligible on the
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midplane, where the equilibrium magnetic fields are perpendicular to the beam path. More space

near the horizontal port is needed to achieve this multi-chord upgrade, and thus we might need to

relocate some existing diagnostics sharing the same port window with the polarimeter. A separate

vacuum window will be used for each chord, so that we can use small thin windows with very

little absorption and with the thickness chosen to act as an etalon.

Another important upgrade is incorporating the interferometric measurement capability

into the polarimeter, by adding a third FIR laser [45][47]. In this configuration, either

density/current profiles or density/magnetic fluctuations can be measured simultaneously.

The polarimeter has been used to constrain qO as described in this thesis. A step going

forward is to constrain the whole safety factor or current density profile. With more polarimetry

measurement chords available in the future, parametric fitting for these profiles will also be

available. The current density profile from both the polarimetry-EFIT and parametric fitting can

be compared to the Kinetic-EFIT current profile and CQL3D simulations. The evolution of the

current density profiles during sawtooth crashes, and with LHCD will be further analyzed. It is

also interesting to measure the current density profile changes during plasma disruptions and

current ramp experiments. Controlling the current density or safety factor profiles in real-time

requires a real time measurement, and polarimetry can provide this with excellent time resolution.
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