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Abstract

Over 90% of the data available across the world has been produced over the last two
years, and the trend is increasing. It has therefore become paramount to develop
algorithms which are able to scale to very high dimensions. In this thesis we are
interested in showing how we can use structural properties of a given problem to
come up with models applicable in practice, while keeping most of the value of a
large data set. Our first application provides a provably near-optimal pricing strategy
under large-scale competition, and our second focuses on capturing the interactions
between extreme weather and damage to the power grid from large historical logs.

The first part of this thesis is focused on modeling competition in Revenue Man-
agement (RM) problems. RM is used extensively across a swathe of industries, rang-
ing from airlines to the hospitality industry to retail, and the internet has, by reduc-
ing search costs for customers, potentially added a new challenge to the design and
practice of RM strategies: accounting for competition. This work considers a novel
approach to dynamic pricing in the face of competition that is intuitive, tractable and
leads to asymptotically optimal equilibria. We also provide empirical support for the
notion of equilibrium we posit.

The second part of this thesis was done in collaboration with a utility company
in the North East of the United States. In recent years, there has been a number of
powerful storms that led to extensive power outages. We provide a unified framework
to help power companies reduce the duration of such outages. We first train a data-
driven model to predict the extent and location of damage from weather forecasts.
This information is then used in a robust optimization model to optimally dispatch re-
pair crews ahead of time. Finally, we build an algorithm that uses incoming customer
calls to compute the likelihood of damage at any point in the electrical network.

Thesis Supervisor: Vivek Farias
Title: Robert N. Noyce Professor of Management

Thesis Supervisor: Georgia Perakis
Title: William F. Pounds Professor of Management
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Introduction

The world's technological per-capita capacity to store data has roughly doubled every three

years for the past thirty years1 . Processing power has increased comparatively slowly, and

consequently there has been a strong push towards scalable algorithms which are able to

make the most of the vast amount of data now available.

However, many problems, both theoretical and practical, are not currently amenable to be

solved by such algorithms. Moreover, in spite of unprecedented data collection, key data

often remains missing. It is therefore paramount to find concise ways to combine the data

available with additional information about the problem at hand. By choosing an adequate

model we can significantly reduce the amount of data necessary and sometimes even make

up for missing data.

In this thesis we demonstrate this approach through two separate examples. Our first

application focuses on finding a tractable way to model competition in dynamic pricing

problems. We then consider the problem of reducing power restoration times after major

storms by predicting where power outages are most likely to occur.

'Hilbert, Martin; Lpez, Priscila (2011). "The World's Technological Capacity to Store, Communicate,

and Compute Information". Science 332 (6025): 6065
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Notations

In the rest of this thesis, we will make use of the following notations:

" [v]i is the i-th component of vector v.

" (vi)i is the vector such that Vi, [(vi)i]i = vi.

SV-i = (vj)ji so that v = (vi, vj).

" (x)+ is the positive part of x.

" X i Si is the Cartesian product of sets Si.

" NN = {O,...,N} and Ny = {1,...,N}.

14



Part I

Dynamic Pricing in Revenue

Management:

A Tractable Notion of Equilibrium
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1 Introduction

In this first part of the thesis, we study finite horizon stochastic dynamic games with a

large number of players. Such games can be used to model a wide array of applications

such as dynamic pricing decisions under competition. Stochastic games with many players

are usually difficult to study in the traditional game theoretical framework (e.g. because

of the 'curse of dimensionality'). We focus our analysis on a novel approach to model

competition using stationary policies.

Under these dynamics, each firm (player) is only influenced by the initial average market

price. We find necessary conditions for existence and convergence to equilibria. Moreover,

we show bounds on optimal profit gains from unilateral deviations under such equilibria.

We finally present a numerical study to test the robustness of our assumptions to real

problems.

1.1 Motivation

The modern practice of Revenue Management (RM) extends across a swathe of industries,

ranging from airlines to the hospitality industry to retail. 'Solving' a revenue management

problem frequently entails (among many other things) the solution of some form of dynamic

optimization problem. Such problems capture, in essence, the tension of allocating a limited

supply of some good to uncertain demand, frequently using price as a lever. Often, these

optimization problems are high dimensional. There exists a vast body of research devoted

to the solution of these problems (for example in [26, 21, 20]). Now consider for a moment

a customer looking to purchase an air ticket from New York to San Francisco departing

16



at some specific time. The customer will typically face a plethora of alternatives and with

web tools available today be well aware of these alternatives. The internet has, by reducing

search costs for customers, potentially added a new challenge to the design and practice

of RM strategies - accounting for competition. This chapter considers a novel approach

to modeling dynamic pricing in the face of competition. Our approach makes precise the

notion that firms practicing RM can often compete 'implicitly' [41]. The approach is prag-

matic, and easily compared to other well studied, but potentially less pragmatic notions of

equilibria in dynamic RM games.

Modeling and accounting for competition in RM is challenging. Whereas in a monopolistic

setting, a firm pricing a limited quantity of some perishable product might employ a pricing

strategy contingent on remaining inventory and time to go, in a competitive setting the

pricing decisions of competing firms immediately become relevant to any pricing strategy,

and therefore indirectly, so do the inventory levels of these competing firms. To begin with,

firms are unlikely to reveal information relevant to remnant inventory over time. Second,

even assuming competitors' inventory levels are visible, it is easy to see that the pricing

policy called for will be high dimensional and thus hard to compute or execute. With this

in mind, a viable proposal must satisfy several criteria:

1. The firm's dynamic pricing strategy continues to remain contingent on the firm's

inventory levels; in particular, the firm responds to large demand shocks it may face.

2. The pricing strategy is learnable and emerges 'naturally'.

3. The pricing strategy prescribed is at least an approximate notion of equilibrium in

the sense that if all competing firms adopted the policy, there is little to gain from a

unilateral deviation.

We consider an oligopoly where each individual firm is endowed with some initial inventory

that it must sell over a finite horizon. The demand faced by a given firm is a function of

the price it posts as well as those posted by its competitors; we assume that this demand

system satisfies the law of demand. Firms can adjust their prices over the course of the

selling horizon; they may do this to effectively ration their own inventory (the traditional

role of RM) and also to respond to their competitors. This describes a dynamic stochastic

17



game for which one might consider several equilibrium concepts.

1.2 Potential Equilibrium Concepts

One notion of equilibrium in the game above is that of a Markov Perfect Equilibrium (MPE).

Assuming inventory levels are common knowledge, an MPE must specify a pricing policy

for each firm contingent on that firms inventory level as well as those of its competitors.

Due to natural complementarities in the game above, it is not difficult to show that an MPE

exists and that a number of natural learning dynamics converge to this equilibrium; see for

instance [16, 3]. While attractive, this notion is a poor fit to our requirements:

1. Arriving at such an equilibrium is hard computationally.

2. The resulting policies are high dimensional and it is unreasonable to expect firms to

employ a dynamic pricing strategy with the information requirements of an MPE.

At the other end of the spectrum, one may consider employing the notion of a Nash equilib-

rium where firms commit to a fixed pricing strategy and do not deviate from this strategy

over the course of the selling season; see [40, 27, 20]. This 'open loop' behavior is typically

justified by making assumptions on model primitives that guarantee that a fixed pricing

strategy is approximately optimal. While attractive in its simplicity, the notion that a firm

does not respond to shocks it may face is perhaps unreasonable. Put another way, the

absence of sub-game perfection is questionable.

Another notion of equilibrium which is closely related to this work is that of 'oblivious

equilibrium' [43, 2, 1], with a subtle but important distinction as we will shortly note. This

notion of equilibrium assumes that a firm commits to a dynamic pricing policy contingent

on its own inventory levels but oblivious to the inventory levels of its competitors; instead

the firm assumes a demand system that incorporates a 'fixed' competitor effect. This notion

of equilibrium bears some resemblance to the notion that firms practicing RM effectively

incorporate competition via the demand models they assume. At first it is unclear how such

a prescription could preclude the possibility that a firm could gain by deviating from this

strategy and tracking, say, the actual inventory levels of its competitors. What we exploit

18



is the fact that in demand systems of interest to us, at any given point in time, a firm is

impacted by its competitors only through the 'average' of their prices at that point in time.

While the price path of a single one of these competitors is by itself stochastic, the average

of these price paths is less so and for a large number of competitors will look approximately

deterministic.

1.3 Contributions

We make several contributions relative to the notion of equilibrium proposed:

1. Simplicity: the notion we posit effectively asks for firms to employ policies that are

structurally similar to those a monopolist practicing dynamic pricing might use. Im-

portantly, these policies allow firms to adjust prices in response to demand shocks

they face.

2. Learnability: We show that best response dynamics converge to this equilibrium. It

is interesting to note here, that if one employed a notion of equilibrium wherein the

assumed average competitor price were allowed to vary with time it is no longer clear

that best response dynamics are isotone so that the learnability of such an equilibrium

in the RM setting is unclear. This latter notion would be in analogy with that studied

in [43].

3. An 'Approximate' Equilibrium: We prove that gains from a unilateral deviation even

with perfect information on competitor inventory levels are small when a firm faces

a large number of competitors. This rests on establishing two phenomena: (a) the

averaging of prices across competing firms at a given point in time (this is non-

obvious since pricing policies across firms get correlated over time) and (b) a structural

observation specific to dynamic pricing showing that the expected price of a given firm

cannot vary much over the course of the selling season. This latter observation permits

many of the attractive features offered by our notion of equilibrium.

4. Empirical Support: Using pricing data collected over several months for a set of

substitutable transcontinental flights we observe that while the price trajectories for

19



an individual flight are potentially volatile, the average trajectory is far less so, and

essentially constant. These are precisely the requirements for the notion of equilibrium

we posit to be a reasonable one.

In summary, we posit a notion of equilibrium that we demonstrate is a natural candidate

for dynamic RM applications.

1.4 Outline

This part of the thesis is structured as follows. In Chapter 2 we introduce the general

framework for our dynamic competition model. In Chapter 3 we then define the notion of

stationary equilibrium and show that it satisfies the four axioms posited earlier: simplicity,

empirical support, learnability and near-optimal profits. Finally, in Chapter 4, we evaluate

the performance of the stationary equilibrium compared to other common equilibrium con-

cepts (Nash equilibrium, Markov perfect equilibrium). Finally, we conclude by summarizing

the key features of the stationary equilibrium along with stating a few directions for future

research. For clarity, proofs can be found in Chapter 6.

20



2 Model

In this chapter we present our dynamic competition model. We start by introducing the

setting in which firms act (Subsection 2.1); in the following three sections, we then describe

how firms act. We start by presenting a framework that captures the variability in informa-

tion available for firms to make their pricing decisions (Subsection 2.3), then we present the

corresponding notion of profit which each firm will try to maximize (Subsection 2.4), and

finally we propose a simple and natural dynamic to model how firms respond to each other's

pricing choices (Subsection 2.5). We conclude this chapter by presenting the assumptions

under which we will study the model.

2.1 The Game

We consider a dynamic pricing problem for a single perishable product in a competitive

market, modeled as a stochastic game, i.e. a tuple ' = (1, T, C, A, A):

" Firms. There are finitely many firms indexed by i e I = N*.

" Time. The game is played in discrete time. Periods are indexed by t e T = NT. Time

is indexed starting from the final stage up to the initial stage: t = T corresponds to

the initial time-step and t = 0 to the final time-step.

* Capacities. Initially, each firm i is endowed with some capacity ci e N. At any time

t, the current capacities of all the firms is represented by a vector ct e N' (e.g. ci,t

denotes the capacity of firm i at period t). As will be made precise below, capacities

are non-increasing over time and we can therefore define C = X i Ci = X i NCT as the

set of all possible capacity vectors in the game.

21



" Prices. At each time-step t, each firm i sets a price pi,t from a set Ai = [0, p 9] with

p9 > 0. We denote by pt the vector of all prices chosen by the firms at time t and by

A = X i A the set of all possible such vectors. Finally we assume that when firm i

has no residual capacity, its price is always equal to p,.

" Sales. Given a vector of prices pt and a vector of capacities ct, firm i's probability

Ai(pt, ct) of making a sale at time step t > 0 is given by the following equation:

Ai(pt, ct) = I(c yo) min 1, (a - #ipi,t + Z y7ipit)) (2.1)

j#i

where Vi, j, ai > 0, /i > 0, yij > 0. In the final time-step t = 0, demand is assumed

to be null: no firm can make a sale. If firm i makes a sale, it earns a payoff pi and its

capacity is decreased by 1 in the following time step: ci,t_1 = ci,t - 1, otherwise its

payoff is zero and capacity remains the same: ci,ti = ci,t. To simplify notation, from

now on, we will drop ct from Ai when ci,t > 0.

The objective of each firm during a game is to maximize its total expected profit over the

course of the time horizon, that is the expected total profit generated from selling its initial

inventory. Any remaining inventory at the end of the game (t = 0) is discarded at no

value.

2.2 Assumptions

In order to guarantee that equation (2.1) is a valid probability and ensure the stability of

the dynamics introduced previously, we require the following three assumptions:

Assumption 2.2.1. Diagonal dominance:

Vi, Pi > Z Yij (2.2)
j#i

This assumption is standard in the dynamic pricing literature (cf. for example in [27, 14])

and is verified in most real world applications. A simple interpretation of this assumption

22



is a requirement that overall sales decrease when each firm increases its price: it is not

possible for the total market demand to grow as prices go up.

Assumption 2.2.2. Upper bounds on prices:

V = ai + zj,;yi,jpT (2.3)

This assumption is without loss of generality as demand for each firm will also be equal to 0

for any price above the upper bound. It is easy to show that such a set of prices exists and is

unique. Indeed, we can rewrite equation (2.3) as M(pf)i = (ai)i with M being the square

matrix defined by [M]ii = A3 and [M]ij = -yij for i # j. From Assumption 2.2.1, M is

a diagonally dominant matrix and therefore invertible. Hence existence and uniqueness of

the (po)i.

Assumption 2.2.3. Valid demand:

Vi, np < 1 (2.4)

Note that this can be rewritten in terms of the aoj, i, yij using the matrix M introduced

above: Vi, M- 1 (ai)i < (i/0B)j. This assumption guarantees that the expression inside

the minimum in the demand function A in equation (2.1) is always smaller than 1. From

equation (2.4) and (2.2), V(i, p), ai -#ipi + E i Qjpj - ai+Ejoi yijpj < ai+EZi -Yijp =

ip? O 1. Therefore V(i, p, c), A2 (p, c) e [0, 1]. This allow us the rewrite the demand more

simply as follows:

Aj(pt, Ct) = 1l{cg,>o} (ai - fipi,t + E 7ijpy,t) + (2.5)
joi

2.3 Strategies

In this section, we define the notion of strategy which captures all the information necessary

to describe a firm's behavior. In general, a firm's strategy could depend on many things (ex-
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ternal market indicators, past events, predicted supply outages, etc.), however models very

quickly become intractable as the number of such factors grows. This is why, traditionally

in stochastic games (for example in [19, 35]), firm strategies are assumed to be Markovian:

a firm's actions only depend on the current state of the game. In this paper, we follow this

line of thought and focus our analysis on Markovian strategies: the pricing decisions made

at a given time-step by a firm depend solely on its and its competitors' capacities at that

time-step.

Definition 2.3.1. A strategy pi : C x T --> Ai is a mapping from capacities and time to

a set of prices which entirely determines a firm's pricing decisions. Given capacities ct and

time t, firm i will choose price pi(ct, t). We denote by IL = (pti)i the vector of strategies

across firms. Finally, the combination of a capacity vector c and a time-step t will often be

referred to as a state of the game.

Given a strategy vector pt, we are therefore able to determine each firm's prices in any

possible state of the game. In particular, since demand at any given time-step is only a

function of the firms' current capacities and prices, given a strategy vector ft, we can write

sale probabilities as a function of the state:

A: C x T-+ R

(ct, t) Ai (p (ct, t), ct)

It is now straightforward to see that the random vector of capacities at each time-step can

be modeled as a Markov chain.

Definition 2.3.2. Define the capacity vector Ct = (Ci,t)i as the random vector correspond-

ing to all the firms' capacities at time t. Since strategies are Markovian, the capacity vector

at time-step t only depends on the time-step t and its value at the previous time-step t + 1,

therefore is a (non-homogeneous) Markov Chain on C with the following transition rates
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and boundary condition:

CT = CTt Ci,t - 1, w.p. A(Ct, t)
Vi eI,11Vt c T, Ci,t-1 =T

Cit, otherwise

Notice that, up until now, we have assumed that firm strategies depend on the entire vector

of current capacities. This means that in order to set its price, each firm has to have access

to all of its competitors' capacity levels. In many cases in practice, as was mentioned above

in Section 1.1, this is an unreasonable assumption. Furthermore, even if firms were able to

observe those capacity levels, there might be too many to store effectively and we might

want to restrict the number of competitors' capacities which firms need to keep track of.

For this reason we introduce the concept of observed capacities:

Definition 2.3.3. We denote by oi(ct) the vector of observed capacities by firm i at time

I where ou : C C is a measurable function such that U o aj = -i. We also define

Vi e I, Si = uj(Ci) as the set of capacities observable by firm i.

Given an observation vector a, we say that a strategy vector 4 is o-observable if it is

uniquely determined by each firm's observations. More formally, A is o-observable if and

only if 3i' : ai(C) x T -+ IR such that V(c, t), pi (c, t) = t'(o-i(c), t) or equivalently, if and

only if V(i, t), pi(., t) : (C, EA) -- (R, B) is measurable, where Ei is the a-algebra on C

generated by o-i and B the Borel algebra on (R. For convenience, we define y4' such that

p (ct, t) = pi (-j(ct), t) and the associated pj = (p )i, ujj = (pji>

The concept of observed capacities allows our model to capture a wide array of strategies.

One could for example consider fixed-price strategies where firms post a fixed price until they

run out of inventory by choosing a such that [u-(ct)]j = 1 to) and [Ui(ct)]j c,T, Vj #

i. Another less trivial example would be strategies contingent uniquely on a firm's own

inventory, in which case we would pick u such that [o(ct)]j = ci,t and [oi(ct)]j = cj,T, Vj =

i. Finally, this modeling choice is without loss of generality since by picking u equal to the

identity, we retrieve the full information model.
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Note finally that even though firms are no longer in general able to observe the capacity

levels of their competitors at any time step t, the initial capacity vector CT is still known

by all firms.

2.4 Value Functions

Given the information that is has available, the goal of each firm is to maximize its expected

profit i.e. maximize its total revenue from sold inventory over the course of a game.

The standard form to express this expected profit is through the use of a value function

which represents the profit to go from any state of the game. In particular, in our setting,

the value function maps a capacity vector c and a time-step t to the expected profit from

that state and takes the following form:

Definition 2.4.1.

Vtt,4_i: C x T - P

T~

(C,t) -4E 2>p(Cti,t')A (Ct,,t'1C

. t'=t% ) t=C

However, recall that only some capacity vectors can be observed by each firm, firms are

therefore in general unable to know the true vector of capacities at a given time step. We

must amend the previous equation to take this fact into account. Given observations o and

strategies /., we define Vf,-_ : Si x T -+ R as the value function of firm i from any given

observable state (recall that by definition, Si is the set of all capacities observable by firm i):

Definition 2.4.2.

V( , ) : S) X t R

(Si, t) -E Z pj(Ct,, t')Af (C,,,t') -(C)=si
Z ) ~i( t
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Given a strategy vector 1L and an observed state si, firm i is able to infer the underlying

probability distribution of the true capacity vector c (since all firms know the initial vector

of capacities CT) and from there compute its expected profit V',_ (si, t). Note that, in

general, ci(Ct) is not a Markov chain.

However, computing this new value function still requires that each firm know each of its

competitors' entire strategy function. Indeed, in order to compute its expected demand at

any time-step, a firm must know what each of its competitors' price will be. In most cases

this is an unreasonable assumption and firms aren't able to infer how their competitors

make their pricing decision which makes it impossible for them to compute their expected

profit using the previous equation. We alleviate this difficulty by allowing firms to calcu-

late their profit against an estimated but simpler demand function which only depends on

variables it can observe:

Definition 2.4.3. Given observations o- and a strategy vector P, each firm i will assume

that demand is given by the function below, where q is the assumed demand:

,q": S, x T - R

(Si, 0) [77(A)]Msi, t)

Similarly to Definition 2.3.2, we can define a random vector corresponding to how capac-

ities would evolve under assumed demand q. Note that Definition 2.4.3 allows each firm

to assume a different demand function, therefore the random vector of assumed capacities

is firm dependent: each firm will have its own Markov chain {St}t of capacities associated

with its assumed demand '9.

Definition 2.4.4. Define the assumed capacity vector St = (Si,t)i as the random vector

corresponding to all the firms' assumed capacities at time t. Similarly to Ct, we know

that St is a (non-homogeneous) Markov Chain on C with the following transition rates and
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boundary condition:

[ST]i = oi(cT)

Vi eI,1Vte C-77S'- = {i~ 1, w-p. 7 (t
Si't, otherwise

It is important to observe that in general St does not correspond to the true vector of ob-

served capacities, i.e. St # o-i(Ct) for some firm i and time-step t. Indeed, by construction,

the demand assumed by a firm only depends on what it can observe, whereas in truth the

demand is still ruled by equation (2.1), which depends on the capacities and strategies of all

firms (and St is always a Markov chain, oi(Ct) in general is not). Moreover, the assumed

capacities across firms do not necessarily match: there can be two firms i and j such that

at time-step t, Sjt #Sj't.

For the aforementioned reasons, it is simpler to think of each assumed capacity vector only

in the context of its corresponding firm. From the point of view of a firm, it provides an

observable and simpler (yet generally inexact) model for how its competitors' capacities and

prices evolve. More importantly, it enables each firm to compute its assumed value function:

Definition 2.4.5.

V ,': S. x T -+ R

(si It)~ E Z Pi Ai~')r) 71,j(St, It') St = Si
..t'=tI

The expected profit computed using this assumed value function is in general, of course, also

inexact. That is, it differs from the true expected profit as computed using Definition 2.4.1.

This is to be expected since its underlying demand doesn't correspond to the true demand.

However, by controlling the shape of the assumed demand, we are able to strike a balance

between tractability and precision.
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2.5 Best Response Dynamics

In this section we are interested in how firms learn and react to each other's strategies. In-

deed, through the demand model (expressed in equation (2.1)), each firm's pricing decisions

can potentially impact all of the other firms' profits. For example if firm i globally decreases

its prices, the demand rate A3 observed by any firm j # i will increase (it will remain con-

stant if the corresponding 7yj is equal to 0). It therefore stands to reason that firms take

into account their competitors' strategies in their own pricing decisions: if their competitors'

strategies change, the strategy which maximizes their own profit will also change.

We model this dynamic process iteratively. Firms play the game described above (in Sec-

tion 2.1) repeatedly and each time choose a new pricing strategy which maximizes their

expected profit given the current strategies used by their competitor, i.e. the best response

to the strategies currently used. We use the notion of best response as a natural proxy for

how rational firms behave in practice:

Definition 2.5.1. Given observations o and assumed demand 77, we define the (a, rq)-best

response operator 'I"' as follows: Vi e I, Vsj e S, Vt e T,

(i)]j (si, t) = arg sup V"" (i, t)

Using standard compacity arguments, it can be shown that V07 is non-empty and we denote

by 0"7(p) an element of V7"(M) (referred to as a best response to strategy ji).

From any initial vector of strategies pO , we can apply the best response operator iteratively

and define iterated (o, 7)-best response as follows: Vn > 1,

n = a?(11n-1)

= (#54)f(tjo) in the composition sense

Note that all firms update their strategy at each iteration (by computing their own best

response). This implies that in general a firm's strategy choice won't actually be optimal in
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the next realization of the game since its competitors' pricing policies have changed since

the last iteration. In this chapter, we are particularly interested in the reverse case: where

a firm's best response remains optimal in the next iteration of the game. We then say that

we have reached an equilibrium:

Definition 2.5.2. A strategy vector t is a (a, 7)-equilibrium if and only if it is a (a' 2)-best

response to itself, i.e. a fixed point of the (a, 27)-best response operator:

4 e<'

Intuitively, an equilibrium corresponds to a situation where no single firm can increase its

expected profit by changing its strategy. In other words, once such an equilibrium has been

reached, a firm's strategy is already a best response to its competitors' strategies. In other

words, best response dynamics have converged.

Finally, we note that, in general, the convergence of best response dynamics, and the exis-

tence of a corresponding equilibrium are hard problems.
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3 Stationary Equilibrium

By appropriately choosing the observations vector a and the assumed demand 17, we are able

to cover a wide spectrum of equilibria. In particular, as mentioned in the previous chapter,

we are able to recover two extreme cases: a fixed price Nash equilibrium, eminently tractable

but arguably too simple, and a Markov perfect equilibrium over all the firms' capacities,

optimal among Markovian strategies but unpractical in most settings. Here we aim to find

the right balance between computability and performance.

3.1 Simplicity

We start with the following two requirements: a firm needs to be able to respond to shocks

in its own demand (as opposed for instance to the fixed price Nash equilibrium), and a

firm has to be able to optimize its pricing decisions while taking competition into account

but with minimal information from its competitors (as opposed to the full Markov perfect

equilibrium setting).

The first condition requires that a firm be able to track its own inventory, which is in prac-

tice a reasonable assumption (most industries have implemented some kind of automated

inventory tracking, be it in the airline industry, in the hotel business or even more recently

in large scale grocery chains, etc.). This motivates a choice of observations vector of the

form: [ao (ct)]j = ci,t and [ou (ct)]j = CjT, Vj # i. Intuitively, each firm is able to observe its

current inventory level but assumes nothing about its competitors' inventory (for example

by letting it remain at their initial levels).

In order to fulfill the second condition, one needs to find a way to model the effect com-
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petition has on a firm's demand in a concise way. A step in that direction is to replace

the 'competition factor' >j, yijj (c,t, t) in the demand function by its expected value

E [Ez 0yijplj(cj,t, t) . This is the approach taken in the oblivious equilibrium literature

(43, 2, 1]). This however still has the drawback of requiring each firm to know its com-

petitors' pricing strategy across all time-steps. We therefore go one step further and as-

sume that this competition factor remains constant over time, equal to its initial value

Eoi -yijpu (cj, T). Even though the resulting assumed demand will diverge likely more from

the true demand than a time dependent one, we argue in the rest of this chapter that

there is in fact sufficient information in the initial time-step to find near-optimal pricing

strategies.

This finally leads us to define the following equilibrium concept, which satisfies both our

previous criteria:

Definition 3.1.1. Let ' = (I,T,C,A,A) be a game as described in Section 2.1. Let

now 0-s and r/ be the observations vector and assumed demand respectively such that:

V(i, j) e 1 2, Vt e T,

[0 (ct)] = { ci, if j = i (3.1)
Cj,T, otherwise

[71'(p)]i(si, t) =ai - #ipi(si, t) + Z yij p<" (CT, T) (3.2)
i96i

We define a stationary equilibrium as a (u-, rq)-equilibrium.

In summary, firm i's pricing decision relies on the following three factors:

" the number of time-steps to go t,

" its own inventory level ci,t,

" its 'competition factor' Zji ijy1 (cjT).

Note that since competition between firms is captured through a single term, the 'compe-

tition factor', the dimension of the state space of the dynamic problem a firm would need

to solve to optimize its revenue is greatly reduced (it is actually of dimension two). In
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particular, notice that its size is now independent of the total number of firms which allows

our notion of equilibrium to remain practical for very large numbers of firms. In fact, we

will show in Section 3.3 that as the number of firms grows, the 'quality' of the equilibrium

increases (in a sense that is formally defined in Theorem 3.3.1).

To simplify notation, we will from now on omit the superscript s from the observations

vector a- and assumed demand q'. Unless otherwise stated, any mention of o- and 7 will

refer to their corresponding stationary expressions defined in equations (3.1) and (3.2)

respectively.

3.2 Learnability

Now that we have posited a notion of equilibrium, one of the first steps is to check under

which conditions it exists and more importantly, whether firms' pricing strategies will nat-

urally converge to it. This is the focus of our first theorem:

Theorem 3.2.1. Under Assumptions 2.2.1, 2.2.2 and 2.2.3, there exists at least one sta-

tionary equilibrium. Moreover, iterated stationary best response starting from an initial

low-pricing strategy converges to such an equilibrium.

The key result in the proof of this theorem is the following: each firm's best response

strategy increases with its competition factor. Intuitively, when firms are pricing low, the

competition factor is also low and firms do not benefit much from competition in their sales

probability. Therefore they cannot afford to price very high either when computing their

best response. As firms increase their prices, so does their demand, which in turn leads

firms to further increase their prices. However, as prices are bounded (by p'), we know

that firms' strategies converge. From there it is straightforward to show that this limit

is in fact a stationary equilibrium. The step by step proof of this result can be found in

Chapter 6.

An interesting fact is that this is no longer the case when if we pick a time-dependent

assumed demand such as the expected competition factor at each time-step. Indeed, under

some parameter choices, we observe a cyclic behavior in best response strategies. By fixing
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the competition factor to be equal to its initial value, we avoid this issue and are able to

guarantee monotonicity of best response strategies.

3.3 Asymptotic Optimality

In the previous section, we have shown that when firms myopically optimize their profit,

i.e. 'best respond' to their competitors, they will eventually reach a stable pricing strategy.

We are now interested in estimating how well these policies perform.

In particular, we would like to bound the profit gains a firm can make by unilaterally

deviating from a stationary equilibrium. This is a non-obvious question as the demand

against which firms optimize their profit (the assumed demand) is not equal to the true

demand which governs when sales are realized. If there is a lot to gain for firms by deviating

from a stationary equilibrium, the equilibrium becomes artificial: it is a compelling concept

only if profits under the assumed demand and the true demand match closely.

Our second theorem demonstrates that as the number of firm grows, under some technical

conditions, we can bound unilateral profit gains at a stationary equilibrium, thereby justify

our notion of stationary equilibrium as an approximate-equilibrium:

Theorem 3.3.1. Let {Im}{ml} be a sequence of games such that:

" There are N types of firms. We denote by ui the type of firm i, and by k' the

total number of firms of type u in game m. Firms of a similar type share a common

demand function and initial capacity: Vu, u', there exist a,, #u, -yu,,, and cu such that

Vm, Vi, ac4 = aus,01 = oui, ci = cu and

ytuiuj if -=u

km-1, otherwise

* Vm,Vu, km >, 2 and minu kamrsafi

" Assumptions 2.2.1, 2.2.2 and 2.2.3 are satisfied
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Vm, let p m be a stationary equilibrium policy of the game, atm the corresponding observation

vector, and define Jm = maxtT E [yTp(aT(Ct), t) - AT(o4(CT), T)] the maximum expected

difference between a firm's current price and its initial price. We can then bound the optimal

profit gain a firm can make by unilaterally deviating from a stationary equilibrium as the

number of firm grows large:

. LT(t"))(UT (CT), T) 16 EgaYijj,4lim % ZZ > 1 - i:i i(3.3)
m-oo max, V(4,,tm.)(CT, T) (ai + /ip9X) 2

8(#Oip'? - ai)
( + - (3.4)

where the right hand terms are taken for m = 1.

The proof of this result is two-fold: we first introduce a new assumed demand which incor-

porates a time-dependent competition factor. In fact, it is self-concordant (the competition

factor it assumes is the one that it generates). We then bound how much profit a firm

can gain by unilaterally deviating from a stationary equilibrium under this new assumed

demand. This is done by comparing the competition factors under both assumed demands

and showing that they do not differ too much. Secondly we show that as the number of

firms grows, the true demand function approaches the new time-dependent assumed de-

mand. This is intuitively the case because demand shocks average out across firms. Tying

both these statements together yields our result. The proof of which can once again be

found in its entirety in Chapter 6.

The second bound (equation (3.4)) is derived from the first (equation (3.3)) using a relatively

loose bound on the Ji (namely that Vi, Ji < p,/2). In practice, from having run extensive

simulations for a wide variety of parameters, we actually observe that Ji < 0.2p9. This

once again indicates that stationary equilibrium policies perform significantly better than

the second bound would suggest.

Note that both these upper bounds are independent of initial capacities and of the time-

horizon. Moreover, they hold for any strategy. In particular, they include strategies which

are not a-observable, i.e. which can not readily be applied (e.g. because they use infor-

mation about competitors' current inventory levels and pricing strategies). If we were to

restrict ourselves to strategies with requirements similar to our equilibrium strategies, we
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would likely also have much tighter bounds.

Finally, we consider three limit cases where the bound yields intuitive results:

" As Vi, c5 -+ 0, this implies that price shocks become very small: the competition

factor becomes essentially constant, i.e. equal to its initial value. This implies that

the assumed demand q becomes exact. It therefore makes sense that in this case a

stationary equilibrium becomes an exact equilibrium.

" As Vi, jyij -+ 0, the competition factor vanishes: each firm's demand is affected by its

competitors' prices very little. The game degenerates to a collection of monopolistic

and separate dynamic pricing problems. In this case also the assumed demand and

the stationary equilibrium becomes exact.

" When there is only one type of firm, Theorem 3.3.1's statement simplifies to the

following:

Corollary 3.3.2. Let {Im >,2} be a sequence of games such that each game has m

firms and there exist ao, 1o, -yo, and co such that Vm, Vi,aT = ao, ,3l = o, cT = co

and Vj,Yj = -yo/(m - 1). Assume also that assumptions 2.2.1, 2.2.2 and 2.2.3 are

satisfied.

Vm, let p m be a stationary equilibrium policy of the game, a m the corresponding

observation vector. We can then bound the optimal profit gain a firm can make by

unilaterally deviating from a stationary equilibrium as the number of firm grows large:

.im V(un,,3)(c4U (CT), T) yoCpo - yo)him -"-"---Z >- 1 - 8 -YP Y)(3.5)M-+00 max, V(I',M.)(CT, T) ao(23o - (yo)2

S1 - 4 70 (3.6)
ao3o

3.4 Empirical Support

So far we have shown that our notion of stationary equilibrium performs well when the

competition factor each firm is faced with remains relatively constant. In this section we

analyze a sample of airline pricing data in order to try and find empirical evidence that this

is indeed the case.
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Our data set consists of airline ticketing data for different flights from New York to San

Francisco operated by seven distinct airlines over the course of a year. In particular we

focus on the posted ticket price as a function of the number of days until departure. The

flights were grouped into separate categories by departure time and day of the week so

that inside each category each flight would be substitutable for another (e.g. all weekday

morning flights).

A plot of the prices as a function of the number of days until departure for one such category

(containing 4 flights) can be found in Figure 3.1. As we can see, individual flight prices are

very volatile (with variations over $100 from one day to the next). This is in line with what

customers typically experience when purchasing tickets.

Figure 3.2 shows the evolution of the average ticket price across these four flights. Even

though the sample size is very small (we are only considering four flights), the curve is

noticeable smoother and flatter than individual price trajectories. One could imagine that,

as we increase the number of flights further, the curve will continue to appear smoother and

flatter.

This particular example therefore validates our assumption that demand shocks are inde-

pendent across different firms which is precisely the condition for stationary strategies to

perform well in practice.
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Figure 3.1: Price (in dollars) for four different substitutable flights from
Francisco as a function of the number of days until departure
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Figure 3.2: Average price (in dollars) over the same four flights from New York to San
Francisco as a function of the number of days until departure

38

New York to San

- - -- - - - --- Zoo

.- .. . . . . . .. .... ..



4 Simulations

Theorem 3.3.1 applies in the limit of the number of firms going to infinity. We are however

also interested in evaluating how our bounds perform in the practical case of a game with

finitely many firms. In order to do this we have simulated how different equilibrium concepts

compare over a similar game. Note that since this requires computing strategies contingent

on the entire state space of the game (the dimensionality of which is exponential in the

number of firms), we can only do this for very small instances of our game. The setting

we chose is the following: 4 firms with symmetrical demand with parameters c = 0.2, 3 =

0.2, y = 0.01 (expectations are approximated by averaging over 200 runs).

Table 4.1 shows the optimality gap (i.e. the maximum profit a firm can make by unilaterally

deviating from equilibrium) for a stationary equilibrium ASE and for a Nash equilibrium

ANash. Under these conditions equation (3.4) predicts a gap of 60% which is more con-

servative than the numbers found below. This further validates the concept our stationary

equilibrium concept while motivating future work to tighten our current bounds.

C T ANash ASE
10 50 20% 5.5%
10 100 16% 10%
10 150 13% 10%
10 200 13% 8.1%
15 50 18% 4.2%
15 100 15% 9.1%
15 150 12% 8.5%
15 200 12% 9.3%

Table 4.1: Optimality gap of Nash equilibria and stationary equilibria for different capacity

and time-horizon values

In this table we have also included the largest gains from unilateral deviations under a
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Nash equilibrium, A Nash. These gains seems to always be larger than the corresponding

stationary equilibrium setting which indicates that firms would be less likely to deviate

from a stationary equilibrium than a Nash equilibrium as they have less to gain from doing

so.
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5 Conclusions and Future Work

In this part we have posited a notion of equilibrium which is both practical and provably

asymptotically optimal, that of stationary equilibrium. In particular, we note that it arises

from a behavior that is naturally exhibited by rational profit maximizing firms, best re-

sponse, and can thus be learned efficiently. Moreover, we show that its assumptions seems

to be verified in practice through the analysis of typical airline pricing data. Finally we

favorably compared numerically the performance of the stationary equilibrium strategies to

other commonly used notions of equilibria such as Nash equilibrium and Markov perfect

equilibrium.

There are several directions for future work related to the results in this chapter. Proving

a tighter bound on the 6i (as defined in Section 3.3) would better the performance guar-

antee of stationary equilibriums strategies. A result on the difference in profit for different

equilibrium concepts (such as was done numerically in Chapter 4) would also be very valu-

able. Finally, we believe it would be worth investigating whether similar results hold under

different demand models (e.g. exponential or multinomial logit demand).
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6 Proofs

For convenience in this chapter, we will rewrite the assumed demand [r/(p)]j,i(cj, t) as

att - #ipj(ci, t) where Vt, aO! = a = ai + EZ ;'yij p,(ci, 1). From this expression it is

easy to see that each firm's strategy is a monopolistic strategy: it doesn't depend on the

other firms' capacities. From now on we will therefore write ,i , and [77]ij as

functions of a firm's own capacity ci and t. Finally, we introduce the notion of marginal

value of capacity ACV:

Definition 6.0.1. Given observations a, assumption function ?7 and strategies /i, we denote

by AVU0_ the marginal value of one unit of capacity for firm i:

AcV''" : C x T ->

(ci, t) -Vj')_ (ci, t) - V )(cj - 1, t)

Using the marginal value of capacity, we can write the standard Bellman equations for our

problem as follows:

Definition 6.0.2. Bellman equation:

Vt e T 1/,;7A )(O,t) = 0

Vcj e Cj, V,71- (ci, 0) = 0

V(ci t) e C x T, "y ) (ci, t) =V( -)(Cit - 1) + max (a t - /ipi)+(pi - A V(" - (c t - 1))
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The second boundary condition comes from the fact that there is no salvage value at the

end of the horizon. In the next section we will show that we are able to find a recursive

closed form solution to this Bellman equation.

6.1 Proof of Theorem 3.2.1

The proof of this theorem relies on four technical lemmas which we now prove.

Lemma 6.1.1. Let #i = [#n(p)]j be the best response by firm i to strategy vector p, we

are able to bound the marginal value of capacity of firm i using strategy Oi. More precisely:

V(cj, t) C- Ci x T,

0 < ACV(,',4 (ci + 1, t) < AcV(/7  -(ci, t) < ps

Proof. The proof is done by induction on t. To simplify notation we temporarily drop the

subscripts and superscripts from V' , as they won't change in this proof. We start by

proving the lower bound and monotonicity:

* t = 0: Vci e Ci,

V(ci, 0) = 0 =Vci E C, AcV(cj, 0) = 0

= Vcj e Ci, 0 < AcV(ci + 1, 0) < ACV(cj, 0)

" t - 1 -+> t: From the Bellman equation and by definition of #i: Vci e Ci,

V(cj, t) = V(cj, t - 1) + (ah - Oi4i(ci, t))(#i(ci, t) - AcV(ci, t - 1)) (6.1)
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Taking differences twice on c, we get:

AcV(ci, t) - AcV(cj - 1, t) = AcV(cj, t - 1) - ACV(ci - 1, t - 1)

+ (ao - flq5(ci, t))(#$(ci, t) - AcV(cj, t - 1))

- 2(af' -ii(ci - 1,t))(#i(ci - 1,t) - AcV(ci- 1,t - 1))

+ (ac - ,3ii(ci - 2, t))(#i(ci - 2, t) - AcV(ci - 2, t - 1))

Moreover, by definition of #i(ci - 1, t):

i (ci - 1, t) e arg max [(a t - #ip)(p - AcV(cj - 1, t - 1)) + V(ci - 1, t - 1)

Therefore, we have:

(aft - #i(Ci - 1, 0))(#i (ci - 1, t) AcVc - 1, t - 1))

S(age - #i i(ci, 0))(A(ci, t) - AcV (ci -1 )

> (aft - A i i(ci - 2, t)) (0i(ci - 2, t) - AcV (ci - 1, )

Plugging this into the previous equality:

AcV(ci, t) - AcV(ci - 1, t)

' ACV(cj, t - 1) - AcV(c2 - 1,t -1)

+W(ah -iii(Cit))(AuV(ci-i -s1)-AcV(cit-))

+ (a O i~i(ci - 2, t))(AcV(ci - 1, t - 1) - AcV(ci - 2, t - 1))

Which in turn yields:

AcV(cj, t) - A cV(cj - 1, t)

<O from the induction hypothesis

(AcV(cj, t - 1) - AcV(cj - 1, t - 1))~(1 - ,'t + 6i $(cit)))
>..0 < from the induction hypothesis

+ (4t -A iq(ci - 2,t)) (AcV(ci - 1, t - 1) -AcV(ci - 2, t - 1))
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From where we get the monotonicity result:

ACV(cj, t) - AcV(cj - 1, t) < 0 (6.2)

Note now that by taking differences of equation (6.1) once on c, we get:

AcV(ci, t) = AcV(ci, t - 1)

+(a , - Mii(ci, W)(Oi(ci, t) - AcV(ci, t - 1))

- (Wt -Oioi(ci - 1,t)((ci -lit) -AcV(ci - 1,t - 1))

>0 O from equation (6.2)

>AcV(ci, t - 1) + (at iic, ) AVc -1, t - - ACVc, t - 1))

> AcV(cj, t - 1)

> 0 from the induction hypothesis

Finally, remains to prove that V(ci, t), AcV(ci, t) < pf. Notice that by definition of #i,

we have that V(ci, t), Oi(cj, t) > AcV(ci, t - 1), otherwise the achieved profit at that stage

would be lower than that of setting the price to p9. This directly implies our desired result:

V(cj, t), ACV(ci, t) < p, (we can artificially increase T to cover the case where t = T). E

Lemma 6.1.2. Let #i = [#/"n7()]j be the best response by firm i to strategy vector p, we

have the following equations:

qi (ci, t) = 1 ( 2  + AcF, (ci, t + 1) (6.3)

(ct) =- 7 (ci,t+ 1) + i + ACVf.-) (ci, t + 1) (6.4)

AcV, ) (ci, t) = AcV (cj, t + 1)

a(t ACVO"7_ (ci - 1, t + 1) + AcV, 4  (ci, t + 1)

+ Oi 2

AcV(i .) (ci - 1, t + 1) - AcV -) (ci, t + 1) (6.5)

Proof. Solving the Bellman equation maximization problem using first order conditions, we
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get that:

1i (iLl
qi (ci, t) = minjP , + 9c0, V (ci, t + 1)

a!'

It is easy to see that " p and from Lemma 6.1.2, we know that AcV(7 0 (ci, t + 1) <

p?, therefore we can simply write #i(ci, t) as in equation (6.3). Replacing this value in the

Bellman equation, we directly get equation (6.4). Finally, taking differences and simplifying

the rightmost terms we get equation (6.5). E

Lemma 6.1.3. Let #i = [#"(p)]; be the best response by firm i to strategy vector p, the

marginal value of capacity for firm i using strategy #i increases with tt. More formally,

V(cj, t, t') e C x T2 , AcV0 7' (ci,t) is continuously differentiable w.r.t. act, and:

Bate, > 0

Proof. Let us prove this result by backwards induction on t. Once again, we temporarily

drop the subscripts and superscripts from V" as they won't change in this proof.

" t = 0: We have AcV(ci, t) = 0, therefore its derivative satisfies the induction hypoth-

esis.

" t + 1 -- t: Differentiating equation (6.5):

A CV(ci, t) _ aAcV(ci, t - 1)

___'=_ _ AcV(cj - 1, t + 1) + ACV(ci, t - 1)
+ A 0i Bae 2/I

x(CV(Ci - 1, t - 1) - ACV(cj, t - 1))
22

+ft' AcV(cj - 1, t - 1) + AcV(ci, t - 1)

#i 2

x a ACV(ci - 1, t - 1) - AcV(ci, t - 1)'

x Bt' , 2 J

46



Aggregating terms together:

'ACV(ci, t - 1)

a,
1

>0

a A, 'p- + -AcV(c ,t-1)
2 2

+acV(ci - 1, t - 1)' ACic -at-1

>0

AcVi (cl - 1,t+1) AcVf(ct+1)
+ t2

To get the desired result, suffices therefore that: 1 - 0 i.e. ai+Zj yij i(cT, T) <

2. This is true from Assumption 2.2.3.

Therefore the induction hypothesis holds for all t, and in particular AcV(ci, t) is also con-

tinuously differentiable w.r.t. aQ,, Vt'. E

Lemma 6.1.4. Let Oj = [#""(p)]; be the best response by firm i to strategy vector p,

then #i is increasing in /i. More precisely, V(ci, t, t') e C, x T2, #(ci,t) is continuously

differentiable w.r.t. a!t, and:

3qi (ci,t)
8a,

Proof. Recall equation (6.3):

#i(ci, t) =
!t ll 1))

From Lemma 6.1.3, qi is differentiable w.r.t. ab, and:

= 1 ( i=t}
2

aA ev(a -7 (c. t + 1)
+ )0,

0
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From this last lemma we can prove Theorem 3.2.1 as follows:

Proof. Once again let qi = [4'9(p)]i. Recall that Vt, a = ai±+ yeyijp(ci, 1). Com-

bining this with Lemma 6.1.4, since Vi, j, yij > 0, we have: V(ci, t) e Ci x T,

S19 i (ci, t)
Vj :A i, > 0 (6.6)

9p (ci,1)

Now let ILs be the null strategy vector, i.e. V(i, c, t) e I x C* x T, pi(c, t) = 0. From

equation (6.6) the sequence {(#o'7)n(pZ)},>o (in the composition sense) is increasing. Since

we also know that it is bounded from above (by (pf)), it converges to a strategy it*.

Finally from Lemma 6.1.4, we have that qi is continuously differentiable therefore ii* must

satisfy #(p*) = p* i.e. p* is a stationary equilibrium. E

6.2 Proof of Theorem 3.3.1

Theorem 3.3.1 bounds the profit sub-optimality gap from using a stationary equilibrium

policy. The sub-optimality comes from the mismatch between assumed demand and actual

demand. Indeed, recall that a stationary equilibrium policy considers the 'competition

term' in the demand function to be constant over the entire game horizon, which in reality

depends on the prices posted by other firms and therefore fluctuates over time.

In order to prove this result, we proceed in two steps. We first compare profits obtained

under the stationary assumed demand with profits obtained under the following assumed

demand:

Definition 6.2.1. We define iteratively the expected assumed demand i as follows:

[ (pl)Ii~j (c, t) = ai - 0ipyj(c, t) + E EggYijp (55 O,t, t) ,if j = i

0, otherwise

where S is the associated capacity random variable.

This assumed demand is by definition monopolistic but not constant over time as opposed
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to the stationary assumed demand q. It captures the interaction between firms' strategies

and the demand function they face. The second step of the proof relies on showing that

this expected assumed demand asymptotically approaches the true demand as the number

of firms grows.

Once again, this proof is structured into four lemmas which we will first state and prove

before demonstrating the proof of our main result.

Lemma 6.2.2. Let pt be a stationary equilibrium. We first show that the expected price for

each firm under assumed demand q increases as the game goes on. More formally, since

time is indexed from T to 0: E [pi(Si,t, t)] is decreasing in t.

Proof. In this proof, we will drop the subscript and superscript i from Si,t and the subscripts

and superscripts from AcV"' as they won't change. Let t E T*:

E [pi(St_1, t - 1)] - E [Ai(St, t)] > 0

I E [p(S_41, t - 1) - p (St, t)] > 0

SE [E [Mi (St-_1, t - 1) - pi (StI t) ISt]] > 0

<= E [ (1 - ce + Oi pi (St, t)) pi (St, t - 1) + (a - 0ip-i (St, t)) [i (St - I1, t - 1) - ti (StI t)] 0

<= E [pi (St, t - 1) - /pi (St, t) + (a - 0ipyj(St, t)) (pi(St - 1, t - 1) - pi (St, t - 1))] 0
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Substituting the value for pi from equation (6.3) into the previous equation:

E [/-i (St-_1, t - 1)] - E [pi (St , t)] > 0

<= E [A cV(St, t - 1) - AcV(St, t)]

+ E (e - /3AcV(St, t)) AcV(st -

E [AcV(St, t) - AcV(St, t - 1)]

( ACV(St 2

1, t - 1) - ACV(St t - 1) >0

1) ]

A cAV(St - 1,t-1) + ACV(St,
2

t -1) ) ( ACV(St - lt -

- OI3cV(St, t))
AcV(St - 1, - 1) - ACV(St, t - 1)

Where the final equivalence comes from equation (6.5). Note also that from equation (6.4):

AcV(c, t) - AcV(c, t - 1) =

AcV(C
= a I

- 1,t - 1) - AcV(c, t -

2

+ A AcV(C, t - 1)2 - AcV(c -1, t - 1)2

ACV(c - 1, t -1) - ACV(c, t-
2
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- 1, t - 1) - AcV(St, t -- #iAcV(St, t))

[(a - #,ACV(C, t - 1))2 - (a - 0 ACV(C - 1, t - 1))2

,E [(af

<=> E 1) - AcV(Stj t - 1)

< E [(af



Finally:

AcV(St - 1, t - 1) - AcV(Stt -1)
2

<= ACV(St, t) - AcV(St, t - 1) < AcV(St - 1, t - 1) - AcV(St, t)

AV(Stt) AcV(St - 1, t - 1) + AcV(St, t - 1)
2

1 2

>O from lemma 4.6

AcV(St - 1, t - 1) + AcV(St, t - 1) AcV(St - 1, t - 1) - ACV(St, t - 1)
- '2 2

>,O from lemma 4.6

(o ( - /3 ACV(St,t))

EE [(

AcV(St - 1, t - 1) - ACV(St, t - 1)
2

AcV(St - 1, t -1)+ AcV(St,t -1) AcV(St -
2

/AV(St - 1, t -
- 3iAcV(St~) M '

1) - ACV(St]t -1)
2

<= E [pj (St_-1, t - 1)] E [/-i (StI t)] 0

Lemma 6.2.3. Let pt be a stationary equilibrium. We show that the expected price for each

firm under assumed demand i is always greater than its initial value:

E we p(ov,t, t) > pi(ci, T)

Proof. In order to prove this result, we prove by induction on t c- 7- the following:

P , 4 c) > P (Si't < c)

E p1-t(5i,, t)] > E [pi(Si,t, t)]

(6.7)

@ t = T: Equation (6.7) is true since Vi e I, Si,T = Si,T = ci.
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* t -+> - 1: Notice that by combining equation (6.7) with Lemma 6.2.2 we get that

E [i(5,, t)] > E [p-t(Sij,, T)] = pi(ci, T) . This implies in particular that Vi e I, Vc <

ci, ri(c, t) >- ij(c, t). Therefore:

P (5,t_ -<- c) c + 1)
>O from equation (6.7)

= P(Sit < c) + P (Sit < c) - D(Sit < c) +i(c + 1, t) P (Si,t= c + 1)

P (Si't < c) +

>,rli(c+1,t) from above

i(c + 1, t)

>P(Si,tc+1) from equation (6.7)

P (Si't < c + 1) - P (S j, < C))

> P (Sit - c) + r7i(c + 1, t) (P (Sit < c + 1) - P (Sit < c))

= P (Sie t c) + r/i(c + 1, t)P (Sit = c + 1)

= P (Sit_1 r C)

Remains to prove the second part of the induction hypothesis:

E [i(54,t_, t - 1)1 =

(1i,t-1 < C)

=P 5,_1 0) ~i (0, t - 1) + yp (ci, t - 1)

,O from Lemma 6.1.1

+ E P 5,t1 c) (p(c, t - 1) -p(c + 1, t - 1))
c=1

> P (Si,t_ 0) /i(0, t - 1) + /i(ci, t - 1)

ci-1

+ E P (Si,t_1 i - C) (pi (C, t - 1) - ti (c + 1, t - 1))
C=1

=E [pi (Si't- 1, t - 1)]
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= P (54i,t < c) + i (C + 1, t) P (54, t =

P 5,i,t_1 = C) pi (c, t - 1)

= P (54i, t_1 < 0) pUi(0, t - 1)
Ci

+ E (P
C=1

- P (54i,t_1 <, C - 1) Ai (C, t - 1)



In particular we therefore have: Vt e T,

E pi5,,t) > [[ti (Si,,, t) ]

> E[pi(Si,T, T)] from Lemma 6.2.2

= pu(ci, T)

Lemma 6.2.4. Let M be a stationary equilibrium. We can lower bound the optimal profit

obtained by unilaterally deviating from this equilibrium under assumed demand i;:

maxV(' (ci, T) > (a + f3ip,) 2

Proof.

>,:/2
T

= max E X p'(S,t, t) a - iip'(S4,t, t) + E y ( j,t, t)

St=1

~=)3jp' -a
T

> maxE Z p'(5i,t,t) - j#pi(S4,i, t) + Z - Ip I
t=1 JOi

= max FE ttp'(5i,t, t) ( + /#jpf) - !3ip (Si,t, t))+

I t) a + /ip) - 3i t (Sj,t, t)
T

>E Z Ai (5,tI t) (ai + #jpO) - Oibs(54,t' t)
t=1(2+

Where Af is a fixed price policy pricing at A ="+ pi (except in the case where capacity
is 4y

is null, in which case price is set to p~as usual). Under policy ftj, at each time step the
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probability of making a sale is equal simply to pi. We can therefore write:

;>tci/T

p~ T j---^--max V (c>,T) t p1(1 pi)T t min(t, ci)

U 4 - p )T 

,22 p=pcT

p( ( p)T-2i

E tET

Lemma 6.2.5. Let pi be a stationary equilibrium. We demonstrate an upper bound on

the maximum relative profit gains from unilaterally deviating from this equilibrium under

assumed demand ij:

V,'P._. (cT, T) 1 Pg iT-

maxy, V(,', 4 (ci, T) (oas + /3ip ') 2

> 1 - 8 (#/p -!i) (6.9)
wr [ (a, + p)2)

thereasimumila tive ofi gain= fatro un(ila,1tral- deiaing) .rmti qiiru ne
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Proof. Let Aj = arg max,, V(O' T- (ci, T), we then have:

Ai(5O ,t, t) ai - /3#it(S5,t, t) + E

ai - Ai i,t, t) -

[- 
+

~E(pj (j,t, ) - t (cj, 0)

fOi

We can rewrite the previous expression in terms of Ai:

V( (ci, T)

= E A (Si,t,t) (oOi- iP(5it, t) +

T1 \

E

+ E

T

E wi (c, )
joi /+

E yi (5jjt, t) - J(c3, t)) ai - /3if (S,t, t)
=1 joi

<,E~j(,ij I)(-4
pi (, j~t, t) i J +1i( ~, )+E-ijij(j

(, Ci

E ai - A ipit 0) + E pj i (cj, 0)
t=1 joi +

- Opip(54,t, t) + E [z Yigj

=Ci VjJi (ijA(ci, T) +i
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=E

FT
= E Z

t=1

Z Ai((it, t)
t=1

1)

+ _

;E Z
t 1

y (5j't, 0)+

E yi t (cj, 0)
i

+ fji

V('9d(ci, T)

+ E j Ij (cj, 0)

y~ (5i,, 0) ai

I

+ -E
A -t



Reorganizing terms, we get:

V_ _ _' (ci, T) ci Z iyijf
maxp Vi'_ (ci, T) 1 i maxp VI 4 - (ciT)

_16Z~yjY

>1 - from Lemma 6.2.4
(ai +,ip9o)2

This proves equation (6.8). In order to prove equation (6.9), first recall that Vci, Vt, pi (ci, t) e

[p*/2, pr], therefore <' < p90/ 2 and:

V. )(ci, T) 8ci E,; yijp,*
> 1 -

maxp; Vi"', (ci, T) ( + #_p_)2

8c= (13p' - a' from Assumption 2.2.2
(Cei + #ip )2

From Lemma 6.2.5, we are able to prove Theorem 3.3.1 as follows:

Proof of Theorem 3.3.1. We first define the random variable H,? as follows:

{number of firms of type u with inventory level c at time t} (6.10)
H,7(c,kt) =m

In this proof as in the statement of this theorem, we will omit the superscript m when it

is equal to 1. We start by showing by induction on t that when at most one firm per type

deviates from the stationary equilibrium policy pm , then:

Vi e I, Vc e Ci, Vt e T, H(c, t) a. > , = c (6.11)

For t = T, the result is true since all firms start with a deterministic inventory level:

Vi, Vc, Hu(c, T) = 1=C = P (sit = c). Let us now assume that the result is true for t

and show that equation (6.11) hold for t - 1. For each firm type u, we denote by iu the

index of the firm deviating from the stationary equilibrium policy A. We denote by t' the

policy used by this firm. If no firm of type u deviates from p, we pick an arbitrary firm

of type u and set ,' = pu. We start by noticing that Hu7 verifies the following equation:
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km Hu(c, t - 1) =

zkHu-(c+1,t)-1 kA -H (c,t)-

Ai +

Where the Ai and Bi are independent identically distributed Bernoulli random variables

with respective rates A,(c + 1, t) and AT(c, t). Intuitively, equation (6.12) expresses the

fact that firms with inventory level c at time t - 1 are either firms that had inventory level

c + 1 at time t and realized a sale at time t or firms that had inventory level c at time t and

didn't make a sale at time t. The A' and B random variables correspond to the firms who

potentially deviate from the stationary equilibrium policy (and therefore have a different

rate). We can rewrite equation (6.12) as follows:

k-7HT(c+1,t)-1
kmHum(c+1,t) -1 1 AH± (cIt - U) km kmH(c +1,t) -1 )

k-Hum(c,t)-l
kmHu (c7 t) -1 U

km km Hu(c, t) - 1

A' + B
kmU

In the case where c = ci, the equation is the same but without the A3 and A'.. Let now i

such that firm i is using the stationary policy p, we then have that:

A (ct,t) = aui - Oui pg (Cit 1)
IC,1

+ Z ' k"Hu" (c', t)pap(c', t) + /',(ct, t) I t)
U Oui Ui c'=o

,Ui i u
+ k km H (c', t)psui(c', t) + /p'su (et, t) - p cst, t)

U (C'=o

= a - i /Ii(ci,t, t)

cu' U', (C-t, 0) - ~iu ,(ci ,,t, 0)
+ U, X Hu" (c',tu p(C', t) + ' m

k7ou (= (/t(Ct UK Ct

km cui P'4 (Ct, 0) - [I, (cii,t, It)
+ km i< HZ" (C', t)p/aui(C', 0) + U' kkm -'= k"i (C/=u, 1Ui
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From the induction hypothesis and since the rightmost terms are bounded, we get:

A"(Ct, t) aas -00ui p (Cit, t) +
U1+U,

C I

7Ui / P (5c',O = c' U (c 0

cui

+ Uii E P ,
c'=O

=-ui - #ui p;(Csi, ) + yusu, E
u / #ui

= [M(p)ii(Csit, 0)

Proceeding as previously, it is easy to show that the same result holds for firms not using

the stationary policy IL. Therefore:

ComiA(Ct) tiru >i[h(e)]at(C0(6,12) (6.13)

Combining this result with equation (6.12), using the law of large numbers we get that:

= c + 1) [N(A)]ii(c + 1, t) +

= P (2Utt-i = c)

This concludes our induction proof. We now show that this result translates to a result on

value functions:

T 1

Z p'(Ci, It') A Z(CtfI t')
t'=t

m VI( , mI)(CyT) =max E

T
a.s. > max E (p(r~'[(p)i(stt

t'=tI

= max Vn) (OT(cT), T)
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= C ') pui (c', 0)

HX"'(cI t - 1) a*s )p (522,e

pAUI (5ul,, 0 ) + 'YUi U E u (5,it, 0)

P (5.Uit = C) [N(p)];i(C, 0)



Finally, combining this last result with Lemma 6.2.5, we get:

V(,"' (C (o (CT),I T)
lim Or

m-oc maxy V,,m.) (CT, T)

16 Zj,j -yijJ'

(ai + 0&pf )2

>1 8(#jipp - cei)
(ai + #jp ')2

M
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Part II

Predicting Power Outages in

Electricity Networks:

A Framework to Reduce

Restoration Time After Large

Storms
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1 Introduction

Severe weather incidents frequently cause large-scale power outages, creating significant

problems in the electricity supply industry. In the past five years, almost one million

customers have lost power in Massachusetts alone. Sometimes for up to eleven days. Such

events cause massive amounts of damage: Hurricane Sandy alone cost over 50 billion dollars

in repairs, a significant portion of which went into restoring the electrical network.

In order to address this growing concern, we use machine learning and robust optimization

to build a two-part model that makes preventative emergency planning more efficient. Using

physical properties of the electrical network and historical data, we construct a model that

predicts outages based on the weather forecast. We then use this prediction to optimally

allocate repair crews in advance of a storm in order to minimize network-wide restoration

time. At the conclusion of this work we find that our model's solution lies within 5% of

the optimal scheduling for crews, while accounting for 90% of the worst-case repair time

scenarios. Our predictive model is based on machine learning and will continuously improve

in granularity and accuracy through the incorporation of additional information. As a data-

driven model it provides an invaluable tool for decision making before a storm, which is

currently motivated primarily by intuition from industry experience.

The work presented in this part of the thesis was done in collaboration with Anna Papush

(graduate student at the Operations Research Center at MIT) Sean Whipple (LGO student

at MIT) and a power utility company in the North East of the United States.
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1.1 Motivation

Due to the unpredictable nature of severe weather events (cf. for example [8]), emergency

storm planning is a particularly challenging problem. The resulting damage to electrical

networks may prompt over a week's worth of restoration work and even longer customer

interruption times. In just the past two years New England was hit by both Hurricanes

Sandy and Irene, coupled with ice storms and massive blizzards such as Nemo. The outages

caused by these events were of such a large scale that in some regions of Massachusetts

hundreds of thousands of customers were out of power, some for up to ten days. Though

this is detrimental to both electricity providers and consumers, few analytical studies have

been conducted with the intent of improving emergency planning. Much of the previous

work has been done in either predicting damage or restoration times, but not both in

conjunction.

During, and in the days following a major event such as a large storm or a hurricane,

mobility is often greatly reduced. There might be dozens of inches of snow covering the

road, or tree limbs blocking access, especially in remote and non-urban areas such as those

covered by the power company. There is therefore also an important need to carefully plan

crew repair routes, to minimize transportation delays and reduce power downtime.

1.2 Literature Review

Society's increasing dependence on technology, media and communication has created a

growing reliance on the electrical supply industry. Stemming from this dependence, weather-

based power outages have recently become a very significant concern for both distributors

and consumers. In the past decade there has been a good deal of research done with respect

to this particular problem, from multiple angles. Most of the literature related to this field

can largely be categorized into three distinct lines of work.

The first of these is research related to climate change and weather-based fore-

casting. Climate variation over the past several decades has sparked a great deal of aca-

demic interest both in terms of data collection and modeling. Synoptic weather typing is

62



a scheme for the classification of weather conditions into distinct types. It has frequently

come into use as a valuable tool for work in climate impact applications such as pollution,

disaster planning, agriculture and human health. In [15] and [29], we see an automated and

manual approach to this kind of weather analysis. The work in [15] predicts occurrences

of freezing rain by using automated synoptic typing on differentiations in air mass. By

studying hourly meteorological readings, they identify weather types correlated with freez-

ing rain and apply stepwise logistic regression to predict its likelihood. Similarly, [29 also

employs airborne particle concentrations and daily weather data to build a manual synoptic

typing that categorizes storm types in advance. This branch of research also encompasses

the effects of climate change on a socio-economic level. Through time series modeling, [22]

predicts daily variability in ski resort attendance based on a combination of surrounding ur-

ban and mountain weather. In [38] and [6], they consider the potentially harmful impacts of

climate variability on temperature-related mortality and air pollution-related health effects

by analyzing correlations with weather parameters.

A second branch of the literature considers electrical system reliability with

respect to weather and the environment. Foundational work in this direction is done

by Billinton et al. in [8], [9] and [10]. These papers propose single and two-state weather

models, then expand these to a three state weather model that captures normal, adverse

and extreme weather circumstances. Through the resulting calculations of reliability indices,

they demonstrate the need for weather to be considered in practical system assessments.

Sensitivity studies show that disregarding weather effects produces overly optimistic system

appraisals, and that inclement weather conditions must be divided into a minimum of two

types. Prior to this work, multiple investigative studies considered specific types of weather

events and their impacts on system reliability. These works, such as [28], [4], and [12],

ultimately aim to improve reliability through system redesign. The work in [28] analyzes

drought conditions and their resulting effects on tree faults; by using the Palmer Drought

Index, they present the influence of drought on tree-caused power outages. The latter

two works consider lightning storms and ice storms, respectively. By modeling system

response and storm characteristics,[4] presents a Monte Carlo simulation that evaluates

system reliability and helps identify weaker areas for system redesign. Using a similar

approach, [12] models weather, vulnerability and restoration times in order to estimate
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system component reliability during severe ice storms. More recently, there have been

general weather reliability studies following [8]. In order to present a cost-benefit analysis

for overhead-to-underground line conversions, the work in [45] estimates damage rates based

on hurricane wind speeds and simulates the resulting restoration process. The paper by

Caswell et al. [13] considers correlations between reliability indices and various weather

parameters to account for system variability.

The third line of work entails the prediction of weather-related electrical power

outages. Some of the earlier considerations of this problem are demonstrated in [36], [17]

and [18]. The approach in [36] utilizes artificial neural networks (ANNs) in order to predict

the number of power interruptions based on inputted weather parameters. This approach

combines time series and regression to develop a learning algorithm. The follow-up works

[17] and [18] consider the effects of normal daily weather conditions on distribution system

interruptions; by using Poisson regression models they determine the significant weather

parameters that contribute most to daily outages. Later work such as [44] and [47] show the

incorporation of other statistical techniques. In [44], contingency probability estimators are

computed through the use of maximum likelihood (ML), to predict a transmission failure

rate, and multiple linear regression on transformed weather data. Using both a Poisson

regression model and a Bayesian network model, [47] proposes a method for predicting the

number of annual overhead distribution line failures caused by weather.

The seminal series of papers by Liu et al., including [30] and [31], address a statistical

approach to predicting spatial distribution of power outages and restoration times resulting

from hurricane and ice storm damage. They employ a generalized linear mixed regression

model (GLMM), however instead of using quantitative characteristics of each storm, they

created indicator variables that map each outage to its respective storm. Furthermore,

their model predicts damage on an outage level, meaning that it indicates whether a given

device will open. This lacks granularity in that an outage may be caused by 5 trees falling

across the lines or only by one broken pole. Their spatial prediction is executed on a 3 km

x 3 km grid cell in a given area serviced by a utility company. Building on this approach,

[24] uses generalized linear models (GLM) as well as generalized additive models (GAM),

in addition to measurable storm data that replaced indicator variables. In order to avoid
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variable collinearity, the data was transformed using principal component analysis (PCA),

which insures that the data is not correlated. This work also predicts on a grid level, now

3.66 km x 2.44 km, in order to estimate numbers of outages, customers without power

and damaged poles and transformers. Although this approach increases the prediction

granularity, it still makes several assumptions on conditions that cause outages, such as

the wind speed necessary to down a pole or uproot a tree. In the more recent work by

Hongfei et al. [25], a Bayesian hierarchical statistical modeling approach is used to predict

the number of outages and capture uncertainty in the outage data. Although the prediction

is not categorized by type of outage, the model also geographically displays the uncertainty

of the damage forecasts.

Finally, optimizing operations in industry is not a novel concept and has been utilized across

many fields and industries. Recently, a similar optimization model was produced with the

purpose of reducing overtime of gas utility repair crews [5]. However to the best of our

knowledge there has not been a utility firm that has combined optimization with this level

of uncertainty to their repair crews (particularly in a storm response scenario).

1.3 Contributions and Outline

Our work addresses the aforementioned issues by introducing a model, and subsequently a

tool, that aid the decision making process of an electricity distributor ahead of a storm. Our

model's unique approach combines information about the weather and geographical data

with properties of the electrical network to predict which parts of the network are most

vulnerable to damage. This allows both for higher accuracy and higher granularity than

currently existing models. The resulting tool stems from a two-part algorithm that first

forecasts damage based on weather reports, then assigns crews across staging platforms to

expedite the power restoration process.

The quality and quantity of the data available, along with the intrinsic complexity of weather

to damage interactions make this problem particularly challenging. Our purely data-driven

approach is well suited to continuously improve as more data gets available and provide an

increasingly reliable counterpoint to the purely intuition-based decision making currently
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utilized in practice. Our optimization model relies heavily on Bertsimas-Sim uncertainty

sets to introduce robustness in the problem formulation. This is critical to getting reliable

results as the inputs for our model are typically hard to estimate.

Furthermore, we provide a secondary framework to guide repairs during and right after a

storm. By combining call information (e.g. the address and the time of loss of power of

each customer) with the failure probabilities of the components of the electrical network

(obtained from the first model), we are able to efficiently estimate the probability that a

particular part of the network has been damaged.

We show that these improvements could lead to a significant reduction in power restoration

delays, by both helping the utility company to better stage resources ahead of a storm and

significantly cutting down crew transportation times.
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2 Predicting Outages

Storm warnings are usually issued by various weather forecasting agencies several days to

a few weeks before a storm hits. Depending on the expected severity of the storm, the

power utility company can bring in extra repair crews from out of state to help recovery.

Once these crews have arrived (which can take multiple days), they are assigned along local

repair crews the day before the storm to areas serviced by the company where damage is

predicted to be most significant. This step is crucial as mobility during and right after a

storm is greatly reduced (trees blocking access ways, heavy snowfall or rain, etc.) and bad

crew placement can lead to extensive repair delays.

Dispatching crews, especially from out of state, is expensive so it is in the company's

best interest to adequately size the extent of the repairs needed. It has happened that

the company has come under fire for spending too much money preparing for storms that

eventually caused little to no damage.

In this chapter, we develop a data-driven model that addresses this problem. We combine

physical properties of the power network (e.g. number of electrical poles, wire framing),

landcover data (e.g. tree cover, soil composition), and weather data (e.g. wind speed,

pressure) to assess the risk of failure in each serviced area. We implement an algorithm,

train it on six important past storms and results show that our model is able to capture

the relationship between weather and damage significantly better than results found in the

literature (e.g. [23]).
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2.1 Data

In order to construct the predictive damage model, we first built a database from several

distinct sources. Since our goal is to forecast damage to the network based on the anticipated

weather, we need to understand the network structure and its vulnerabilities during various

types of storms. To accomplish this we collected data on the following three categories:

physical network properties, historical weather logs and historical outages during different

severe weather events.

2.1.1 Electrical Network Data

To predict outages across an electrical network, we first needed to acquire data describing

its structure. By using data from an electrical distributor in New England, we were able to

construct an interactive mapping of their network across the state of Massachusetts. This

included information on 300 circuits and 60,000 devices, such as reclosers and fuses, which

serve approximately 1.2M customers across the state.

We began this mapping by attaining a physical description of the 280,000 segments that

make up the state-wide network. As shown in Figure 2.1, a segment is a grouping of

consecutive poles and wires that all share the same physical properties. It may contain

a device as described above, but does not necessarily need to. The given list of physical

properties included 35 parameters such as: wire insulation, above or below ground wiring,

pole age, upstream and downstream segment coordinates, framing and length. By utilizing

all of this information we were able to create a connected graph of all the segments for each

given circuit.

Within this network we now define a new term, known as an asset. An asset is a collection of

segments originating at a given device and includes all of the segments directly downstream

of it. In other words, should that device open due to a short circuit, all customers serviced by

the network beyond this point would be out of power. As explained in the next subsection,

this new definition is necessary to allow modeling between historical outage logs and the

physical electrical network. We then aggregated assets for a prediction on a 2 by 2 square
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Power station Substations Low voltage power lines Houses

Segments

Figure 2.1: High level representation of the electricity network. In this work, we are focusing
on the final two elements of the distribution network: circuits and segments. Recall that
each segment corresponds to a small portion of the electricity network from substations
(where power arrives to each circuit) to individual houses. We do not consider the network
upstream of the power generation substations. Devices and segments are then grouped into
'assets'. Each asset comprises of a single device and all the segments that would directly
trigger it to open.
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mile area, as represented by Figure 2.2.

Furthermore, to encompass external properties surrounding the network we overlaid a ge-

ographical land cover mapping that added tree coverage, elevation and population density

information to each asset. These factors were crucial to capture as they are very likely to

influence outages, given severe weather factors such as high wind speeds or heavy precipi-

tation. Figure 2.3 shows the distribution of segments across landcover types.

2.1.2 Historical Weather Data

Our primary objective is to identify future damage based on weather reports before a

storm. However, obtaining historical weather forecast data proved to be a challenge, so

we initially used historical weather data at the actual time of the storm. This allowed us

to identify significant factors and test the models predictive accuracy when it was given

ideal retrospective information. The historical weather data contained approximately 5.2M

hourly logs over the course of severe weather events between 2008 to 2012. These logs came

from 234 stations across Massachusetts and contained records of 20 weather parameters

including: time, wind speed, temperature, pressure and humidity. We used a triangulation

algorithm to assign the weather to a given asset. This algorithm created a weather vector

by averaging the numerical hourly factors at the weather stations closest to an asset.

However, this data was not sufficient for our desired prediction, as weather typically deviates

a great deal from forecasts. We therefore acquired historical weather forecast data that was

comprehensive, but of less granular quality (as illustrated by Figure 2.4). Instead of hourly

logs, the model incorporating forecasts used daily logs. There are only 20 stations from

which we obtained forecast information. Furthermore, there was a great deal of forecasting

error depending on how many days before the event the data was taken. The greatest

discrepancy between the two data sources is the lack of key weather features in the forecast

logs. Of the five most significant factors (as identified by the model during the training on

the historical weather logs), four were not available in the forecasting logs.
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Figure 2.2: This figure illustrates the density of the local distribution electrical network

in Massachusetts. The state is partitioned into square areas of 2 miles per side which are

colored by the number of assets they contain. In particular, notice that this electricity

provider covers most of the rural areas but not the Boston agglomeration. Finally, the

orange circles represent the platforms where the company stages repair crews before and

during large storms.
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Figure 2.3: This histogram depicts the variety of landcover types where segments lie. The
green bars represent the total number of segments corresponding to each category, while
the blue bars represent the total number of segments corresponding to each category that
are a part of an asset which has been damaged in one of the six storms considered in this
work.
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Figure 2.4: This map shows the locations of the weather stations used in this

work. The blue circles represent Weatherbug (http://weather.weatherbug.com/) sta-
tions which provide hourly weather readings (but not forecasts), the orange circles rep-
resent weather stations from a variety of companies and aggregated by Intellovations

(http://www.intellovations.com/) which provide daily weather forecasts. The grey areas

in the background are colored by density of assets (darker means more assets in that area).
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2.1.3 Historical Outage Data

The final piece in building our database consisted of outage logs from the weather events

of interest. These were records from 6 major storms and two years worth of minor weather

incidents. The large storms resulted in about 6,000 outages and 1.1M customers out of

power (see Table 2.1 below), and this information was supplemented by approximately

another 25,000 outages from the minor events. This indicates that only approximately 2%

of assets failed during severe weather, emphasizing the challenge of predicting due to such

a small scale.

Storm name First outage Days Outages Customers out

Winter Storm December 2008 2008-12-12 10 1784 185931
Wind Storm February 2010 2010-02-24 6 615 151350
Winter Storm December 2010 2010-12-26 4 444 106347
Tropical Storm Irene 2011 2011-08-28 8 1715 225567
Winter Storm October 2011 2011-10-29 11 2746 291672
Hurricane Sandy 2012 2012-10-29 7 1466 180416

Table 2.1: Storm outage data

2.2 Model

Our framework aims to capture the complex interactions between the electrical network and

the weather which cause power outages. We start by presenting the general optimization

model, then consider two different cases: a more exact one which requires more information

from the power utility to run, and a coarser one which can readily be applied by the power

utility with the data it has currently available.

2.2.1 Formulation

The interactions between weather conditions and the properties of the power network which

generate failures are difficult to model. In particular, they are highly non-linear and aren't

amenable to most function families found in the literature. For this reason, many traditional

models (e.g. logistic regression) perform relatively poorly when used directly. However, we

can use properties of the problem to make the following assumption:
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Assumption 2.2.1. Damaging events happen independently on the power network as a

Poisson process. The corresponding rate depends on both the weather features and the

physical properties of the network at the time and place considered.

Moreover, since there is relatively little data available to us, we make use of the structure

of the network to capture as much information as possible. The electrical network can be

thought of abstractly as a tree where branches can represent different types of power lines

(e.g. overhead lines with no framing, underground lines, etc.). Some types may be more

vulnerable to failures than others. For example we can expect that a bare wire supported

by poles in a wooded area will be more likely to fail than an underground line. The network

is then partitioned into segments. Segments correspond to a small portion of power lines

(of length roughly a few hundred feet), which allows us assume the following:

Assumption 2.2.2. The damage rate along each segment can be assumed constant.

Combining Assumption 2.2.1 and Assumption 2.2.2, we can then write that failure events

happen on these segments independently across the network and at a rate proportional to

their length, and linearly dependent in the surrounding weather features wt:

As,t sgC,Wt (2.1)

1, is the length of segment s and g,, is a vector of vulnerabilities for segment type cs (cS

being the type of segment s). We do not assume a priori any form for the weather features,

which therefore permits us to capture arbitrary functions of the weather. Note also that

our framework allows for segment types to be more prone to failures under certain weather

conditions but less under other weather conditions. As we will show later in this chapter,

this turns out to be a key driver in the final performance of our predictions.

Ideally, we would be able to study failures at the segment level. However, the granularity of

the data available doesn't currently support it. We therefore batch failure events by asset

(as described in Section 2.1). Since events are assumed to happen independently across the
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network, we get that events happen on each asset a with rate:

Aa,t = 2 lsge8Wt
sea

= la,cgc*Wt
C

= a'gwt

where la is the vector of lengths of each segment type in asset a, and g is the matrix consisting

of the vectors g, assembled column-wise. The previous equation is linear in terms of the

coefficients of the matrix g. By rearranging the terms, we can therefore rewrite it in a more

common way as a scalar product between vectors:

Aa,t = y*Xa,t (2.2)

where xa,t is the vector representation of the matrix lawt* which contains the features for an

asset under specific weather conditions. From now on, we will use the subscript i to represent

the combination (a, t) of a given asset and a particular time. Therefore, by definition of a

Poisson process, the total number Yi of events on each asset is a Poisson random variable

with parameter:

Yi ~ P(7*xi) (2.3)

From here we also get the probability distribution of a failure happening on a given asset. Let

Zi be the indicator variable corresponding to at least an event having happened on an asset:

Zi = 1 if and only if at least one event occurred on one of its segments, i.e. Zi = min(Y, 1).

Therefore Zi is distributed according to the following exponential distribution:

Zi ~ S(1 - e7f*xi) (2.4)

We are now interested in estimating -y. We consider two cases. First the case where Y is

observable (i.e. we have access to the underlying event data), then the case where only Zi
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is observed. In the next two subsections, we show that the maximum likelihood estimator

for -y can be efficiently estimated in both cases.

2.2.2 Without Censoring

In this case, we are able to recover the exact count of events that occurred on an asset. The

corresponding likelihood function is therefore given by:

L() = P (Vi, Yi = yiIy) (2.5)

As is commonly done in the literature, we will focus on the log-likelihood loss function

(where K is a constant that doesn't affect the optimal choice of parameters):

L(-y) = -LnL(7) + K

= [y*xi - yi ln(-y*xi)]

We then have the following result:

Theorem 2.2.3. The following maximum likelihood problem is convex:

max
-7

(2.6)

Proof. Convexity is immediate when

function can be written as follows:

observing that the Hessian matrix of the likelihood

x,kxiH = y(
b i2)(k,l)

= (Dx)* (Dx)

D is a diagonal matrix with entries Di, = 'V. H is therefore a positive semi-definite

matrix.
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2.2.3 With Censoring

Unfortunately, we are unable to optimize the log-likelihood function described in the previ-

ous subsection with the data currently available. We therefore, at least temporarily, focus

ourselves on the following likelihood function instead:

= P (Vi, Zi = ziy) (2.7)

We use the corresponding log-likelihood function:

L(y) = - n(-) + K

= Z *xi - Z In(1 - e- *xi)
zi=o zj=1

We get a similar result in this setting:

Theorem 2.2.4. The following maximum likelihood problem is convex:

max L(y) (2.8)

Proof. Once again, the Hessian matrix is positive semi-definite as can been seen in the

following expression:

H = zi ( iek* 2
(e'y~ / (k,l)

= (Dx)*(Dx)

where D is a diagonal matrix with entries Di,i = '.

2.3 Application

The data described in Section 2.1 was consolidated into a single database in order to run

the model described in Section 2.2 efficiently. We now got through the steps involved to
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generate outage predictions from the raw data.

2.3.1 Segment Clustering

The first step is to group the different segments into types. We do this using a clustering

algorithm: k-means (also referred to as Lloyd's algorithm, cf. [32]). This algorithm aims

to partition the segments into k clusters in which each segment is associated with the

center of its corresponding cluster. The number k of centers was initially set to 20, and

eventually brought down to 10 (which yielded better overall prediction performance). A

higher number of centers leads to better representation of the segments but also more

parameters to optimize in the final model. In order for the clustering algorithm to work,

some of the raw features were normalized by the length of the segment: the total number of

poles (respectively total number of customers) was converted to pole density (respectively

customer density). Without this preprocessing step, the clustering algorithm gives very poor

results as there is a large variance in segment lengths (from 1 meter to 86 miles).

Each segment type is then further categorized by landcover (the 33 landcover categories were

brought down to 10 by grouping similar ones together): forested areas, highly residential

areas, open rural areas, etc.

We therefore now have 100 different segments types corresponding to different physical

properties of the segment (e.g. framing, pole density, wire width, etc.) and the surrounding

landcover. By simply aggregating the total length of each segment type for each asset, we

have generated features compatible with the model described in Section 2.2.

2.3.2 Using Actual Weather Logs

We first ran our algorithm using historical weather logs, i.e. hourly weather readings from

the 234 Weatherbug stations of previous storm days across Massachusetts. We first ana-

lyzed the raw data to discover correlations between the different variables (e.g. 'wind speed'

and 'average wind speed', which both correspond to the same quantity averaged differently)

and removed the highly-correlated and non-relevant columns (for example indoor temper-

ature). We then normalized the data and pruned outliers before transforming the data by

79



performing Principle Component Analysis (PCA).

Combining these with the physical segment features from Subsection 2.3.1, we are ready

to run the model. We maximize equation (2.6) using a bounded gradient ascent algorithm,

adding an Li regularization factor (this doesn't change the convexity results from the

previous section since we are restricting ourselves to non-negative parameter values), and

measure the performance of the resulting parameters by doing cross-validation on the six

storms: we train the model on five storms and test on the left-out storm. We use the Pearson

correlation between predicted outages and true outages as performance indicator. This can

be done at several levels of aggregation. Indeed, although the prediction granularity is at

the asset (i.e. device) level, predictions by area (i.e. on a 2 by 2 square mile basis) and by

platform are also extremely relevant. The last one is sufficient for the power utility to plan

how it will dispatch repair crews. Recall that a platform is a staging area where crews are

positioned before a storm, from where they work on a daily basis during restoration times.

In practice, approximately 6 platforms are opened during severe weather events, and there

are about 30 total across Massachusetts. Each platform accounts for a subset of specific

towns and cities, so this aggregation was convenient since each outage log entry contained

a device location.

The results for different levels of aggregation are show in Table 2.2.

Figure 2.5 shows a visual representation of the distribution of outages across platforms.

Both the predicted and actual counts are displayed and easily compared. The example

shown is for Hurricane Sandy, which hit Massachusetts relatively hard, mostly along the

coast. For this particular run, the algorithm performed very well (with a correlation factor

of 85%). Crew placements using these expected outages would have been very close to

optimal.

2.3.3 Using Weather Forecasts

As described under the data subsection in Section 2.1, we were limited in the number of

available weather stations that could provide historical forecast logs. Specifically, we had

less than 10% of the previously available number of stations, as depicted by the map in
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Aggregation level

Storm name Device Area Platform

Winter Storm December 2008 0.17 0.37 0.55
Wind Storm February 2010 0.10 0.23 0.50
Winter Storm December 2010 0.04 0.37 0.48

Tropical Storm Irene 2011 0.17 0.56 0.79
Winter Storm October 2011 0.22 0.50 0.67
Hurricane Sandy 2012 0.16 0.52 0.85
Average 0.14 0.43 0.64

Table 2.2: Out of sample correlation for outage prediction

*0
0 0

.0V

Figure 2.5: Comparison between the true and expected number of outages aggregated

by platform for Hurricane Sandy. The blue circles, centered on staging platforms, are

proportional to the predicted number of outages at that platform. The hollow orange circles

are proportional to the true number of outages. This map corresponds to a correlation of

85% (cf. Table 2.2).
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Figure 2.4.

Consequently, to cover the entirety of the assets across the state when using forecast weather

data, we had to expand the minimum distance between devices and weather stations. If we

use only a 5 mile radius around a given asset, we capture information for only 17.5% of the

devices (10,814 out of 61,704). We enlarged this to a 20 mile radius and were able to capture

97.7% of all devices (60,289), and about 98.6% of customers (953,656 out of 966,750). Note

that this entails a significant decrease in prediction accuracy and granularity since the

weather features for a given asset may be taken from a location up to 20 miles away from

it.

Moreover, the weather forecast logs severely limit how much information we can input in

terms of factors that were available in the historical weather logs. The list of the available

factors includes: temperature high and low, probability of precipitation, average wind speed

and direction, presence of haze or fog, extreme heat or cold indicators, wind category,

chances of rain, snow or thunderstorms and the sky condition. However, we are missing

precipitation rates, hourly gusts and several other factors available in the historical logs and

which were identified as significant when training the model in Subsection 2.3.2.

We then found numerical results using the same methodology and out of sample testing,

but now using forecast data from the day of the weather event as input. These results are

shown in Table 2.3.

Addressing the practical purposes of our tool, the day-of weather forecast is not sufficient

for a prediction because a distributor contracts crews up to five days ahead and places them

at platforms as least a day in advance. Therefore, we obtained numerical results using the

forecast data each day or up to a week before the storm. The results are presented in

Table 2.4.

Additionally, we found that as the number of days before the storm increases, the forecast

data demonstrates increasing discrepancies with actual data. As an example, consider the

figures below. Fig. 5 demonstrates the error in the forecast of wind speed first 3 days, then

7 days and finally 14 days before the actually measured amount, which is indicated by the

grey bar in the center. If we then consider Figure 2.6, we see the mean of the forecast error
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Storm name
Winter Storm December 2008
Wind Storm February 2010
Winter Storm December 2010
Tropical Storm Irene 2011
Winter Storm October 2011
Hurricane Sandy 2012
Average

Aggregation
Device Area

0.07 -o.1o 0.25 -o.12

0.05 -0.05 0.20 -0.03

0.03 -o.o 0.22 -0.15
0.08 -o.o 0.37 -0.19
0.11 -o.11 0.34 -0.16

0.07 -o.o 0.32 -o.2o

0.07 -0.07 0.28 -0.15

level
Platform
0.35 .. 20

0.25 -0.25

0.26 -0.22

0.63 .0.16

0.47 -0.20

0.68 .0.17

0.44 -0.20

Table 2.3: Out of sample correlation for outage prediction using 'day of' forecast data. The

smaller numbers indicate the loss compared to the correlations using actual weather date
from Table 2.2

Days ahead
Storm name

Winter Storm December 2008
Wind Storm February 2010

Winter Storm December 2010
Tropical Storm Irene 2011
Winter Storm October 2011
Hurricane Sandy 2012
Average

0
0.35
0.25
0.26
0.63
0.47
0.68
0.44

1
0.34
0.24
0.24
0.56
0.47
0.67
0.42

2
0.34
0.24
0.24
0.58
0.40
0.66
0.41

3
0.30
0.23
0.25
0.51
0.34
0.68
0.39

4
0.30
0.20
0.25
0.51
0.32
0.66
0.37

5
0.32
0.20
0.24
0.53
0.31
0.67
0.38

6
0.29
0.18
0.23
0.52
0.31
0.63
0.36

7
0.26
0.20
0.22
0.51
0.29
0.64
0.35

Table 2.4: Out of sample correlation for
forecast data from different days ahead.
always decrease as the forecasting horizon i

outage prediction at the platform level using
Note that the quality of the prediction doesn't
ncrease. This is because of the error fluctuations

in weather forecasting: forecasts from a week in advance might be closer to reality than
forecasts from three days in advance.
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and the standard deviation of the error, which increases drastically with time.

2.3.4 Implementation

The algorithm previously described was implemented as a Python application, which di-

rectly interfaces with the MySQL database where the data is stored. Most of the data

processing and analysis was done using Python libraries (pandasi, scikit-learn 2, numpy3,

scipy4 ) which are fast enough to allow for the relatively large size of our datasets. Our

application also included a front end, built with Flask5 , which serves an API exposing the

database and a two-part web tool.

The first part of the tool is an interface to run tests from uploaded weather forecast data

(which is then saved and can be reused for later runs). The utility can select which platforms

are open, which will affect the final display (as expected total outages will be aggregated

only toward open platforms). The training set of storms can also be defined at this stage by

choosing storms from the available historical data. This is helpful for example in order to

train the algorithm on certain types of storms exclusively (for instance wind storms, which

cause very different damage from ice storms). Finally, some of the model parameters may

also be tuned from this page (e.g. the number of segment clusters, the horizon of training

forecasts, etc.). Figure 2.8 below shows a screen capture from this interface.

Once the algorithm has converged, the tool displays a second screen with a visualization of

outage localizations similar to that of Figure 2.5, built using the JavaScript library d3.js6 .

A sample screen capture can be seen in Figure 2.9. Note that only open platforms are

present in the table on the right.

The second part of the tool allows the company to add training data to the model (namely

historical weather forecasts and power outages), which will then be added the available sets

in the testing interface.

1http://pandas.pydata.org/
2 http://scikit-learn.org/
3 http://www.numpy.org/
4 http://www.scipy.org/
5http://flask.pocoo.org/
6 http://d3js.org/
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As we will describe in the next chapter, the output of the outage prediction model is used to

find the optimal crew assignments across platforms. However, this web tool also allows the

utility to run the prediction model for different combinations of parameters, and potentially

use the results directly to help in emergency response decision taking. Having some insight

on which areas are likely to be hit hardest could for example be useful to find out which

platforms to open.
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3 Optimizing Crew Dispatch

During storm events the electricity provider stations its repair crews at sites called plat-

forms. These platforms are the home base for these crews through the duration of the

storm (or until they re-allocate crews). Once stationed crews repair damage to the com-

pany's electrical system when outages occur in locations that are also associated with their

platform. Storm response is not only a large driver of public opinion, it also has a significant

impact on costs. Large storms incur total repairs that number in the millions of dollars,

much of it which the company may not be reimbursed by the Department of Public Utilities

(DPU).

The previous prediction model produced predicted outages at the platform level based upon

weather forecast input. The next step is to utilize those predictions to aid in storm response

planning. An understanding of where they anticipate damage will allow the power utility

to station crews so that they are best suited to repair damage in the fastest time possible.

This will ultimately return service to customers quicker, reduce costs, and aid in justifying

their actions to the DPU in their regulatory filings.

3.1 Deterministic Crew Optimization

3.1.1 Master Formulation

To solve the problem of storm response planning we created a formulation that ultimately

decides where to station crews and what jobs each crew will complete. While this does not

necessarily need to be a 'day to day' scheduler it ultimately gives the company the ability to

better understand the anticipated work of each repair crew as a result of expected outages
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from the damage prediction model. The complete formulation and explanation of variables

is given below

Notation Description

Xijk Crew i assigned to job j at platform k

Decisions Xik Crew i assigned to platform k
Z Objective value equal to the worst case repair time

Data -Yjk Time required to do job j from platform k (including travel)
Data_ Mk Crew capacity for platform k

Table 3.1: Master Formulation Variable Notation

It should be noted that we are currently examining Yjk values that take on a known value.

In reality these repair times are unknown, as repairs can be caused by any combination

of problems with varying repair time, and these unknowns will have serious effects on the

optimization formulation. Moreover their variability can be large (especially since they

include travel time from the platform to the damage location). The uncertainty of ^jk and

its effects on the optimization problem will be discussed later in this chapter.

Our objective is to minimize the time until all customers have their power restored. Other

possible objectives could include time until a given fraction (e.g. 90%) of these customers

have power back or minimizing cost, however the total time until all repairs are complete

is often the metric used by regulators (which is closer to our chosen objective) and we

currently lack any historical cost data to perform any such analysis.

In order to achieve this objective, the company currently relies on the intuition and experi-

ence of employees who have witnessed several past storms. Our approach aims to provide

a quantitative alternative to this process. The model can be represented mathematically as

follows:
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Objective: Minimize Z subject to the following constraints

Z YikXiik ! Z Vi (3.1)
jk

Xi,k < Mk Vk (3.2)

Xii k 1 Vj (3.3)
ik

SXik - 1 Vi (3.4)
k

Xik -< Xik Vi, j, k (3.5)

Xijk, Xi e {0, 1} Vi,j, k (3.6)

Platform capacities are ensured by constraint (3.2) while constraint (3.3) ensures that all

jobs are completed. Constraints (3.4) and (3.5) ensure that crews are assigned to only one

station and they can only repair jobs that are assigned to that station. Constraint (3.1)

stipulates that no repair crew's total repair time can exceed that of the "worst repair time"

given by the objective value Z.

This solution does obtain optimal solutions however at very long solve times. Given the

nature of variables and constraints, serious storm events will have a significant increase in the

number of decision variables and constraints. Consider a case of 300 crews, 600 outages, and

6 platforms to station those crews. The resulting formulation has approximately 2 million

decision variables and constraints. Solve time for this particular case was on the order

of days (relaxing Xiik to a continuous variable on the range [0,1] still produced integral

solutions but the solve time was still insufficiently long). A typical storm, such as hurricane

Sandy, is roughly ten times as big, which renders this formulation impractical for real-time

use cases.

It is possible that the software was exploring an extraneous number of solutions given the

potential symmetry of those solutions. However even achieving gap values that were close

to 3% would take hours. Given the importance of timing in storm response planning an

alternate simplified formulation was explored.
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3.1.2 Relaxed Formulation

Deeper analysis of the previous formulation showed that while we were obtaining optimal

solutions, crews were essentially splitting the work evenly at each platform. In order to

achieve the best state wide completion time, the optimization would drive solutions such

that all crews were completing their work at approximately the same time. By making the

assumption that crews evenly split the work at each platform we can drastically simplify

the problem. We no longer need to assign crews to jobs and platforms. Now our decisions

are reduced to assigning jobs to platforms and the number of crews to each platform.

Notation Description

Xik Job j assigned to platform k

Decisions C Platform k workload
C* Number of crews assigned to platform k
C Objective value indicating worst platform workload

Yjk Time required to do job j from platform k
Data Mk Crew capacity for platform k

C* Total number of crews available

Table 3.2: Relaxed Formulation Variable Notation

The new mathematical model can be represented as the following:

Objective: Minimize C subject to the following constraints

CZ k C
k

Z jkX3k < Ck

X3k > 1
k

We interpret

C* =k C*
C

C* Mk

(3.7)

Vk (3.8)

Vj (3.9)

the number of crews at each platform as the following:

(3.10)

Vk (3.11)

The constraints are analogous to those in the master formulation. The major difference

being that we ensure a statewide completion time with a combination of constraints (3.7)
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and (3.8). Constraints for ensuring all jobs are completed and all platform capacities are

met are similarly modified from the original formulation. Figure 3.1 demonstrates how the

optimization assigns jobs to each platform.

This new formulation is a significant decrease in problem complexity. In our master solution

we examined one potential scenario of 300 crews, 600 jobs, and 6 platforms which contained

approximately 2 million decision variables and constraints. The relaxed formulation reduces

the problem to approximately 7 thousand decision variables and constraints and solve time

is now on the order of seconds. Typical storms will result in a relaxed formulation with less

than 20 thousand variables and solve in under a minute.

3.1.3 Comparison

While the improvement in computation time for the relaxed solution will allow the power

utility to adequately utilize the model within the time constraints imposed by storm op-

erations, it is important to verify that the new formulation produces adequately optimal

results given the assumptions made. In order to validate the relaxed model we will first

look at how accurate our assumption that the model allocates work among crews evenly

in the master solution. Next we will compare workload of crews in the master formulation

and the relaxed formulation at a platform level (it should be noted that here we are still

using nominal jik values as input data into our models).

In order to test the validity of our assumption we ran the master formulation on several

notional data set scenarios. The data sets were created by randomly sampling outages from

previous storms and only opening two platforms for stationing. These are representative of

actual storm scenarios that the company faces but are on a smaller scale to manage solve

time. The histograms below the crew workloads for each platform for all three scenarios.

Ultimately the crew workload differ by only minutes (compared to hours of total work).

The difference is due to the fact that we don't allow crews to go "help" another crew that

is still finishing a job if they have finished early. Overall these differences suggest that our

assumption of equal distribution of workload is a reasonable one.
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Now we will examine the same three scenarios and compare the optimization results from

the original and relaxed formulations. Ultimately we want to ensure that both optimization

results are producing similar numbers of crews at the platform level. Returning to the same

three scenarios we see the following results (the tuples in each entry represent the results

for simulations one, two, and three respectively).

Platform 1 Platform 2

Master Formulation (6,11,10) (33,29,28)
Relaxed Formulation (7,9,11) (32,31,27)

Table 3.3: Master Formulation vs Relaxed Formulation Results

Our relaxed formulation never deviates from the master solution by more than a few crews.

Given the level of granularity of data and our current accuracy for outage prediction, we

believe that this is sufficiently close to the optimum solution. Individual crew workloads

may differ by values more than 10% on occasion but the ultimate operational question we

are trying to answer is quite close to the master counterpart.

3.2 Robust Optimization

As stated earlier we have been dealing with known values of Yjk in our optimization for-

mulations. However, calibrating these values accurately is very hard. We cite below a few

reasons behind this:

" Predictions currently give estimates of P (outage). Inferring damage from these out-

age probabilities decreases the prediction precision. Therefore the total number of

jobs expected might be relatively further from the actual number of jobs than the

correlations from the previous chapter might suggest.

* Any given outage can be caused by a combination of issues (i.e. an outage can be

caused by a broken pole and three down trees or it can be caused icing on a transformer

causing open breakers and downed wires) which lead to variable repair times

It is impossible to escape these uncertainties so we must program them into our optimization

to ensure that our solutions are always valid despite the variation in potential workload
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values. Recall from our relaxed formulation that the only constraint using our unknown 'Yjk

values was the following:

Vk, Z jkXjk ! Ck

We can amend this constraint to include all possible values of ^Yjk and ensure that any

solution given by our optimization will be a valid one with the following:

YjkXjk ! Cky eU,Vk

Here U is the set of all values that y can potentially take on. Given this new constraint all

solutions from the model are guaranteed to be valid. However in this current form we no

longer have a mixed integer problem (MIP). Understanding the nature of U is important

to re-modeling the formulation back to a MIP [7].

3.2.1 Using Box Constraints

The simplest method is to assume all Tjk values reside in a box [ljk, Ujk]. Now our uncer-

tainty set U takes the following form:

Uk = {yIVj, ljk < jk Uik} Vk

Recall our original constraint which contained uncertainty:

Z jkXjk - C e 7jk,Vk

The above constraint can now be re-written as:

UjkXjk < CkVk

While the implementation of this solution is easy note that we now assume that all jobs take

on the worst case scenario value. Given that we assumed all predictions of outages happened
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independently we can assume that their respective repair times are also independent random

variables. Assuming that all of the restoration times will take on their upper bound value

simultaneously is highly unlikely and yields significantly lower objective value.

3.2.2 Using Bertsimas-Sim Uncertainty Sets

Instead of assuming all restoration times assume a worst case value we can now consider

a case where the uncertainty set U is comprised of values where a fraction assume a worst

case scenario and the remainder are forced to their nominal values. Consider the following

representation of the uncertainty set:

Uk {YV k, jk] I C [-ijykb jk i k + 7jk]ZK -'iI

In the above specification of Uk, Yk represents the nominal value of Yjk and -y7k represents

the half width on the interval of which Yjk can reside. IP then bounds the total deviation

from the nominal Ygjk values in the uncertainty set. Ultimately F is a parameter that speci-

fies the number of values that assume the extreme values (-yba - 7jk, Yjsk + -y) [7]. Selection

of the P parameter will be discussed later in this chapter.

To make the constraint robust we can dictate that:

-Yjk = Yjk ± YjYkUjk

where all Ujk reside in the following uncertainty set:

Uk,u U VJik E [-1, 1; UjkI < }

Taking this representation of our uncertainty set Uk,u the original constraint can now be

represented as the following:

Z YjkXJk + max Z UikykXik < Ck
i Gk
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The max problem on the right hand side is a linear optimization of the following problem:

maximize Z(ui - ujk)^kXjk
jk

subject to Z u + u -i <, Vk
k

0-< u,u 1, Vj, k

The above optimization has a bounded finite region, thus attaining a finite optimum value.

By strong duality the following the optimization is also feasible and will obtain the same

optimum value [7].

minimize FRk + Zr k +rik
j

subject to Rk + + -YJkXjk, Vj, k

Rk + k -TkXjk, Vj, k

Rk, r, r >0 Vj, k

Using the above transformations, our original robust constraint:

kXJk + InlaX Uik 73,kXik Ck

Is equivalent to the following set of constraints:

Z[YkXjk + + + rA-A] + rRk Ck Vk

Rk +r + > jkXk, Vj

Rk +r > -- 3Xk, Vj

R +,r, r- > 0 Vj, k

Combining this back with our original relaxed formulation we now have a robust solution

that does not unnecessarily limit the objective value of the solution. Note however that the
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above solution does include the possibility that some constraints will be violated (i.e. it is

possible for the solution to be infeasible) [7]. The probability of this occurrence is dictated

by F. Larger F values will produce more robust formulations but hinder the resulting

objective.

Our formulation can now be written completely as the following:

Objective: Minimize C subject to the following constraints

ZhjkXjk + rA + r] + FRk < Ck Vk (3.12)

Rk + + 7Y kXjk, Vj (3.13)

Rk + -YjkXjk, Vj (3.14)

Rk, r, rA > 0 Vj, k (3.15)

XJk > 1 Vj (3.16)
k

ZCk < C (3.17)
k

We interpret the number of crews at each platform as the following:

C* Ck C* (3.18)
C

C* Mk Vk (3.19)

In the next section we will discuss the trade offs between F by examining the historical

repair information and how that informs our decisions when choosing our half width values

(-Yk) and F

3.3 Calibrating the Model for the Power Utility

In order to choose the parameters of our robust optimization sufficiently we must first obtain

an understanding of previous damaging events. Because our prediction model only predicts

outages and not damage (which is a limitation of the data available and not the model),

examining historical information will be critical.
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Information on damage is rather limited but we have a much richer data set on previous

outages. The data set contains data on what device opened, when it opened, how long until

it was restored, and how many customers were affected by this event. In order to build a

proxy for repair time we decided to use the difference between open and close times and

exclude outages during storm events. During a storm a particular outage may be repaired

by the circuit might not be energized for a number of reasons

" A circuit will not be re-energized if other crews are repairing damage that a given

device feeds to

" Only certain qualified employees can re-energize a circuit, a contract crew may make

the repairs but the system will not turn on until someone re-energizes the circuit thus

affecting the turn on time

" Storms have "emergency" mode where crews are only repairing damage that causes a

risk to the public. Other non-threatening outages therefore have a longer downtime

not because repairs take longer but simply because crews are not authorized to work

Because of these operational differences a restoration time is not a good proxy for repair

time during a storm. Excluding storm outages from the historical data set we get the

following restoration profile (see Figure 3.3).

While the data clearly does not show a normal (or even centered) distribution choosing

a nominal -Yjk such that it equals the average and a half width value that covers a large

portion of the histogram is sufficient. The above histogram then yields that Jk = 166.67

and a half width value 73k = 544.09 (equal to 2 times the standard deviation of the data).

It should be noted that the above values were all non-storm values restoration times so an

average value that is higher than a median is still reasonable. Similarly our half width value,

Yjk we have selected to encompass all of the distribution (with a select few major outliers

excluded). These values are a bit conservative but they are still a valid representation of

the data and the implementation of the robust solution is significantly easier.

We can generate an imputed IP histogram using simulation by random draws and calculating
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F for each simulation using the following.

7 jk

Running 50 simulations with a scenario that contains 600 outages, using random draws

from our historical data with replacement produces Figure 3.4.

Selecting a final F parameter such that it encompasses a significant portion of this histogram

will ensure that our solution will remain valid with very high probability. A 90th percentile

F = 15.81 and is sufficiently robust to meet the operational situation that the utility faces.

While even large deviations (both in number of outages and simulations) yield relatively

similar F values it is recommended that the simulation be re-run with each storm.

It should be noted that while the nominal 7jk value is given by 166.67 in our scenario, we

still apply a weighted distance to that value when applying it to each of the platforms. Even

though the repair time will be the same the added time helps to account for variables such

as travel. This weighted value is tailor-able by the user who can make estimates based upon

weather conditions, logistical operations at the time, and other factors that will impact how

much time crews are traveling.
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Figure 3.1: This figure demonstrates the method used by the optimization to assign each job

to a platform. The amount of time to complete a job from a given platform is represented

by the length of the corresponding dashed line. Intuitively, a given repair will take longer

if the crew assigned to it is dispatched from a further platform.
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4 Estimating Damage From Calls

As a storm progresses, more people lose power in their homes and call the utility company to

notify them. Typically, at least during the daytime, nearly every loss of power is reported,

so the volume of calls is high. It is straightforward to see how this data can provide the

company with very valuable live information on network damage. In this chapter we build

a model and develop an algorithm which uses the localization of these calls to track storm

damage on a much finer scale than what is possible using only weather forecasts. The goal

is to guide emergency repair crews towards the areas where damage is the most likely to

have occurred.

We first describe the framework and algorithm considered (in Sections 4.1 and 4.2 respec-

tively). Then in Section 4.3, we show that the problem described above can indeed be cast

as a special instance of this model and present a prototype implementation.

4.1 Model

In this section we describe the general framework that we will use to infer posterior proba-

bilities from partial information on a graph.

4.1.1 Network

We consider a specific kind of graphs: directed trees. A directed tree is a directed graph

that would be a tree if the edge directions were ignored, i.e. a graph in which any two

vertices are connected by a unique undirected path. We denote by T = (V, B) such a tree

where V is the set of vertices and B is the set of branches (directed edges). Such networks
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are known to be very amenable to message passing algorithms of which belief propagation

is an instance (cf. for example [34, 33]).

Furthermore, we will assume that each vertex has at most one incoming branch (and there-

fore at most one parent). It is simple to show that this also implies that the tree T has

exactly one root. This assumption will allow us to further simplify belief propagation

algorithms commonly found in the signal processing literature (e.g. the standard belief

propagation algorithm introduced by Pearl and studied in [37, 42]).

For any vertex i, we denote by Ci the set of its (direct) children, Di the set of its descendants

(including i), Ai the set of its ancestors, and if it exists, we denote the parent by pi. Note

that for any vertex i, Di u A = V. To illustrate these definitions, consider Figure 4.1. We

have C6 = {9, 10}, D6  {9, 10, 14, 15, 16}, A6 = {0, 2,4, 6}, and P6 = 4.

Finally, without loss of generality, we will assume that the root is indexed by i = 0 and we

denote by V* the set of vertices that have a parent.

4.1.2 States

Each vertex i e V of the graph is assigned a tuple (xi, yi) e Xi x Yj where:

" xi is the state of the vertex and lies in a finite set Xi

" yi represents vertex specific characteristics and belongs to a (non-necessarily finite)

set Yi

Note that the sets Xi and Yi can be different across vertices: the network can consist of

different 'types' of vertices which each have their own states and characteristics. For example

in an electricity network, some vertices could correspond to power lines and others to

residential customers. In practice, characteristics of a power line could then be the distance

between supporting poles, the width of the cable, the wire framing whereas characteristics

of a customer could be the number of residents, any past call history, etc.

In general the state of each vertex is unknown and is therefore represented by a random

variable Xi. We assume that the underlying distribution of these states P ({Xj}iv) can

be factored according to the directed tree T. In particular, this implies that P ({Xi}ieV)
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Figure 4.1: Sample directed tree
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satisfies the Markov property:

Vi e V*, Vx e Xi, P (Xi = x) = Z P (Xi = XIXpi = X') P (Xpi = X') (4.1)
xlcexpi

This equation implies that the state of any vertex only depends on the states of its ancestors.

Moreover, it implies the important property that given the state of a vertex i, the state of

any of its descendants is conditionally independent from the state of its ancestors. We can

formulate this as follows:

Vi e V, Vj e Di, Vk e Aj, Vx e X, P (Xk = x|Xj, X) = P (Xk = XIXi) (4.2)

4.1.3 Evidence

Finally, the state of some vertices might be known. We denote this evidence by a tuple (S, e)

where S is the set of vertices whose state is known and e the vector of their corresponding

states. For example, in the sample tree represented in Figure 4.1, we could have S =

{5, 10} and e = (A, E) where A and E correspond to arbitrary states vertices 5 and 10 can

respectively take.

Not all possible combinations of evidence have to be feasible. Given the form of conditional

probabilities described in equations (4.2), it might be that the probability of witnessing a

set of states indicated by a given evidence is zero. These correspond to combinations of

state that cannot be realized by the network.

Conversely, we say that the evidence is consistent if it is a feasible state of the network,

i.e.

P (Vi e E, Xi = ej) > 0 (4.3)

From now on we will assume that the evidence (S, e) is consistent. Moreover, in order to

simplify notation, we will write P (6) as shorthand for P (Vi e S, Xi = el).
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4.2 Algorithm

Using the framework detailed in Section 4.1, we can rephrase the goal of this section as

follows:

Assume we are given:

* a directed tree T = (V, B)

" transition probabilities

- Vi e V*,Vx e Xi,Vx' e Xp,IP (Xi = x|Xpi = x')

- Vx e- XO, DP (XO = X)

" consistent evidence (S, e) (possibly empty)

We would like to calculate:

Vi e V, VX e Xj, P (Xi = Xf|) (4.4)

A naive combinatorial approach to calculate these conditional posterior probabilities would

be to simply enumerate all state combinations and sum over all possible combinations.

However the number of possibilities to consider grows exponentially with the number of

vertices and quickly becomes impractical. For example, for a network consisting of 100

vertices with only 2 possible states per vertex, the number of possibilities one must consider

is greater than 1030. This would render such an approach inapplicable for our end use case:

a typical circuit consists of several hundred segments and thousands of customers (each of

which corresponds to a vertex).

This type of problem, inference on graphical models, has been studied extensively in the

signal processing literature and has been commonly solved using 'belief propagation' algo-

rithms (e.g. [11, 34, 33, 46, 37]). The first such algorithm was proposed by Judea Pearl

in [39]. These are known to exact on trees and very efficient: their complexity is linear in

the size of the graph (as opposed to the naive exponential complexity mentioned above).

At a high level, belief propagation uses the graphical structure of the tree to compute the
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desired marginals.

We therefore present a variant of a belief propagation algorithm specialized to the specific

directed trees described in the previous section and show that it can indeed be used to

efficiently solve (4.4):

Definition 4.2.1. State inference algorithm

Consider the following set of equations (where products over an empty set are considered

equal to 1):

Vie VVj e CjVx e Xi,mi.j(x) = F dj(x')P (Xj = X'lXj = x) (4.5a)
x'exj

mF6 Wed ai(x) JjjecCj'aj mi._j(x), if i e 9 (4.5b)

ai (x) Hj,Ec,j,'#a mij (x), ow.

ai (x) = P (X = x), if i = 0 (4.5c)

SP (Xi = xIX1P = x') mPi-_i(x'), ow.

di(x) = T(xei> if (4.5d)

fljc, mi._j(x), ow.

The algorithm proceeds in two phases, repeated sequentially:

Bubbling phase

Starting from the leaves of the tree, the algorithm travels towards the root, computing

di and mps.-i for each node i e V* visited

Capturing phase

Once the root is reached, it then travels back towards the leaves and computes mi_.,

and ai for each node i e V

In the next section we show how this algorithm relates to solving equation (4.4).
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4.2.1 Results

Given the formulation of Definition 4.2.1, it is non-obvious how we initialize the algorithm.

Indeed, not all vertices initially have values assigned to the quantities defined in equa-

tions (4.5). An important other consideration is the convergence of these quantities. A

priori, the algorithm could keep updating values in the tree without ever terminating. The

first step is therefore to show that the algorithm can in fact be applied, and moreover, that

it converges in linear time:

Theorem 4.2.2. The state inference algorithm (Definition 4.2.1) is well defined (i.e. the

quantities defined in equations (4.5) can be computed by induction), and converges after the

first capturing phase.

Intuitively, equations (4.5) provide just enough initial information for the bubbling phase

to run (a capturing phase wouldn't be able to update its values at this time). Once this

first phase is done, the 'downstream' messages have all been assigned and now allow for the

capturing phase to happen. The termination of the algorithm after two phases comes from

the fact that neither of these messages change after being assigned once.

This algorithm is very fast: each vertex is visited at most twice (the root is visited only

once), and only requires computing two messages per (undirected) edge along with the

quantities a and d (each of which must be computed for each possible state of the vertex).

From our assumptions on the shape of the graph, there are one less total edges than vertices,

therefore the total number of computations required is of the order 2Eiv lXii, where JXiJ

stands for the cardinality of set Xi. In particular, if all vertices' states take values in a same

set X then the previous quantity simply becomes JVI X.

We now show how this algorithm can be used to compute the marginals we are interested in:

Theorem 4.2.3. Once the state inference algorithm (Definition 4.2.1) has converged, we

are able to compute the desired posterior state probabilities using the following equation:
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Vi e V, Vx e Xi,

P (Xi = xIS) = di (x)a (x) (4.6)
SXfE-xi di(x')ai(x')

It is interesting to note that it is possible to optimize the previous algorithm to allow

for incremental arrival of evidence. Indeed, one can avoid visiting some vertices twice by

observing that upstream messages from descendant of vertices where evidence has just

arrived will not change. This allows for even faster partial updating of the marginals in

practical 'real-time' applications such as the one we are interested in. This is illustrated

in Figure 4.2, which illustrates how information propagates from a vertex which has just

received new evidence.

4.2.2 Proofs

We now give the proofs omitted in the previous subsection.

Proof of Theorem 4.2.2. Initially, we are given the values of di for all nodes with evidence

(di(x) = 6 {x=ei}) and all leaf nodes (di(x) = 1). We are also able to compute their outgoing

upstream messages myi.-i, and recursively repeat this procedure until we reach the root of

the tree (the bubbling phase). Once, we have reached the root, all the upstream messages

have been computed and we have all the information required to move back towards the

leaves computing the downstream messages mpi. and ai as we go (the capturing phase).

To prove the second part of the theorem, notice that all the messages computed during the

initial bubbling phase only depend on the evidence and transition probabilities, therefore

they never change from their initial value. Once the root is reached, we have enough

information to compute all other quantities by doing a breadth first exploration of the tree.

Since the upstream messages never change, once a node is visited in this capturing phase,

none of its incoming messages will change, and the algorithm has converged. i

The proof of Theorem 4.2.2 relies on 2 lemmas (Lemma 4.2.4 and Lemma 4.2.5), which we

first state and prove. These also yield some insight on what information the messages and
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111



quantities from equations (4.5) contain.

Lemma 4.2.4.

Vie VVj e CjVxe Xj, m.j(x) = P(S nDjlXi = x)

Vi, Vx e Xj, di(x) = P (S n DIXi = x)

(4.7a)

(4.7b)

Proof. By induction, starting from the leaves.

Initialization i leaf

" (4.7a) is true because i has no children.

" By construction: if i e E, di(x) = J{x = ei} = P (E r DIXi = x), else di(x) =

1 = P (0IXj = x) = P (E n DIXj = x). Therefore in all cases, (4.7b) is true.

Recursion i => pi

* (4.7a)

Vx e Xi,mi.j(x) = Z dj(x')P (X2 = x'|Xi = x)
x'exi

= ( F(Cn Dj|X = x') P (Xj = x'|Xi = x) HR
X'EX 3

F (E n Dj,Xj = x|Xi = x)
= YX

x'e-xj

= P (S n) DjIXj = x)
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. If i e S, di(x) = J{x=ei) = P (E n DI Xi = x) and the (4.7b) is true. Otherwise,

Vx e Xj, di(x) = H mi._g (x)
jECj

= P (E n DIxi = x)
jeci

= P S n U D(&=ix<=

= P (E n DjIXi = x) since i 0 E

Lemma 4.2.5.

Vi e V*, Vx e Xj , mpj_.i(x) = gi(E) P (Xpj = xIE r D )T

Vi e V, Vx e Xi, ai(x) = gi(S)P (Xi = xJS n D')

where gi(s) = 1 is independent of x and positive.

Proof. By induction, starting from the root.

Initialization i = 0

* (4.8a) is true since i has no parent

" ai (x) = P (Xi = x) = P (Xi = xI 1) = P (Xi = x| 1 n D ) which proves (4.8b)

Recursion pi => i
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* Let's start with (4.8a). If i 0 D:

Vx e X,, mp,-i(x) = api(x) H mpi.j(x)
jecpii#i

= gpi(x)p (Xp = x|E n Dpi)

- gp,(x)P (Xp, = x n Dr) H H
jeC, ,j#i

= gp(x) P (Xp, = xIS n D ') P S n

P (S n DjlXp, = x)

U
jecpi joi

Dvjxpt = X

= gp,(x) P (Xp, = xI(E r D ) n D,) P ((S r Df) r DpIXpi = x)

= .(X)P (Xp =x IE n D )
A (E)z

- gi(E)P (Xp1 = xE n D)

Otherwise, suffices to notice that: 6{x=,e1 = P (S n {pi}IXpj = x) and the previ-

ous proof holds.

. We are now ready to prove (4.8b)

Vx e Xi, ai (x) = E
x I expi

= E P (Xi
x'expi

= x|X, = x') gi(E)P (Xpj = x'|& n D)

=g (E) 7 P(xi = xIX
x ,EXpi

= gi(S)D (Xi = xIEnDr) j

=x') P (X, = x'|r Di)

E_

We now tie the two previous lemmas together and prove Theorem 4.2.3:

Proof of Theorem 4.2.3. We start by showing that we can decompose the posterior proba-
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bilities as follows:

Vi e V, Vx e Xi, P (Xi = xE) = fj(8)P (E n DIXj = x) P (Xi = xIE n D )

where fi (E) = £rED is independent of x and positive.

Indeed, notice that: Vi e V, Vx e X,

P (Xi = xIE) =P (Xi = xI8 n Dj, r D )

P (Xi = x, 9 n Di| r D )

P (E n) DjJS n) Df)
= P ( n DijXj = x, S n D ) P (Xi = xIS n D)

P (8)

Let fi (E) = , we can now write: Vi e V, Vx e Xj,

F(Xi =x1S) = fi(E)P (E n DjjXj = x, E n D ) P (Xi = xS n D )

= fj(E)p (E n DjjXj = X) P (Xi = XIE n D )T

The last part of the previous equation is a consequence of equation (4.2). Using the results

from lemmas 4.2.4 and 4.2.5, we now get: Vi e V, Vx e Xj,

, fi (4)P (Xi = xf6) = f(V)di(x)ai (x)
gi(8 )

= hj(E)dj(x)aj(x)

Since fi(8) and gi(g) are positive, hi(E) is well defined. We get the desired result by noticing

that hi(8) doesn't depend on x. Fl

4.3 Application to the Power Utility

The power utility company we worked with has a tool which tries to infer which device has

opened on a circuit, given customer calls reporting loss of power the company has received.

It is however relatively basic.
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The device is chosen in the following way: it is the single most downstream device which

can explain all the power losses on this circuit. During 'blue sky' days, this prediction

is relatively accurate as most often only one device actually opens and crews can rapidly

check the area to find the damaged segments. It can also be noted that even on non-storm

days calls often come in batches: a single tree branch falling on an electrical wire can

cause hundreds of people to lose power simultaneously. This doesn't alter the quality of the

prediction, as long as there is a single point of failure.

When damage occurs on the circuit at multiple points, which is almost certainly the case

during every major event, this tool yields very imprecise results. Indeed, when several

devices open on distant parts of a circuit (caused by separate damage events), it will try to

explain all the resulting power losses with a single open device, which will typically be much

more upstream than the actual open devices. Our framework takes this fact into account

and allows for multiple open devices.

Moreover, the current tool doesn't provide any information on where the damaging event is

likely to be. At best it gives the location of the next upstream open device. In some cases,

the electrical company might have received some information from customers about such

damages (e.g. a customer saw a pole break next to his house), but in general, this can lead

to repair crews wasting a lot of time trying to find the source of the open device. This is

especially important when they are faced with difficult transport conditions.

In this section, we show how we can apply the framework from the previous sections to

the problem of inferring damage locations on the electrical network from customer calls,

allowing for multiple points of failure and probability estimates at each damage point.

4.3.1 The Graph

Recall that in this work, we are interested in the electricity network at the circuit level. Each

circuit can be viewed effectively as a tree with a generating substation as root. There might

be several circuits starting from the same substation but there are typically few possibilities

of interconnections between each other. For the purpose of this work, we will assume that

no such interconnections are realized and each circuit can be modelled independently as a
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tree.

Since our algorithm also requires information gained from customers, it is straightforward

to see that these must also be represented in the graph, in addition to the 'electrical' portion

of the network. More formally, the set of all vertices can be divided into two subsets:

V = {assets} u {customers} (4.10)

Va Ve

The first subgraph, consisting of the vertices in Va, is built similarly to Chapter 2 on the

'segment model' used by the electricity company. Each circuit is represented by a graph:

each vertex in the graph representing an asset, and each branch an existing path between

two assets (an asset consists in a single device and all the downstream segments that directly

trigger it). Note another difference with the first chapter of this part where we were ignoring

any connectivity between assets and focused on each asset individually. By construction,

this subgraph satisfies the assumptions of the directed tree stated in Section 4.1. Namely,

each vertex has a unique parent and there exists a single unique undirected path between

any two nodes in the graph.

The segments belonging to each asset provide power to multiple customers, all of whom will

lose power if the asset's device opens (along with all the customers of any assets further

downstream). When such an event happens, customers will call the electrical company with

some probability to inform them of the state of their neighboring device. This is represented

in the graph by a customer vertex with an incoming branch from its corresponding asset

node. An important consequence of this structure is that customers will only found on

leaves of the tree, thus there are exactly two types of branches:

B = {asset -+ asset} u {asset -+ customer} (4.11)

8. B,

From equation (4.11), is easy to see that the combined graph of assets and customers also

satisfies the assumptions from Section 4.1.

To summarize, we have shown that we can model each circuit as a directed tree T = (V, 3)
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where vertices represent either assets or customers. To give an idea of the size of these

graphs in practice: the number of assets encountered in a circuit is typically on the order

of 50, but can go up to several thousands. The distribution of the total number of assets

and customers per circuit are represented in figures 4.3 and 4.4 respectively.

4.3.2 States and Transition Probabilities

Now that we have constructed the graph representing devices and customers across each

circuit, the next step is to determine the set of possible states for each vertex, i.e. Xi, Vi e V.

We consider the two subgraphs Va and V, separately and define the following states:

" Asset states. Vi e Va, Xi can take the following values:

Xi = 0 OK

Xi = 1 No power

Xi = 2 Damaged

" Customer states. Vi e Vc, Xi can take the following values:

Xi = 0 No call

Xi = 1 Call

Note that even though we are not trying to predict the probability that an asset vertex has

lost power (we are interested in prediction the likelihood of damage occurring at that asset,

that is of the device being open), we incorporate a no power state. Indeed, without this

third state, we would be unable to factor the distribution according to equation (4.1). An

asset downstream from a damaged asset might not be damaged but still have its customers

call because the power is out.

Furthermore, this formulation allows the electrical company to take into account informa-

tion gained from dispatching crews. When a crew drives to a particular street from the

depot, they are able to observe the state of nearby devices and power lines (be it intact,

damaged, or out of power), thereby giving information which can readily be fed back into

the model.
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Figure 4.3: Histogram of the number of devices per circuit.

Figure 4.4: Histogram of the number of customers per circuit.
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Given our earlier assumption that no reconnections happen on the tree, we can use an

important property of power distribution circuits: if power is lost at a given asset, power is

also lost at all the assets downstream from this asset. This implies in particular that we can

model the physical reality of the electrical network while also satisfying equation (4.1) by

considering the following transition matrices {Pj}; among the vertices of subgraph Va:

1 - 7ri 7ri 0

Vi E Va, Pi= 0 7ri 1 - )ri (4.12)

0 7ri 1 - 7ri

7ri is a number between 0 and 1 that represents the probability that the asset corresponding

to vertex i is damaged and the transition matrix Pi is defined as the matrix such that:

VXi, Xpi e Xa, Pxp,xi = P (Xi = XiIXpi = Xpy) (4.13)

Let us describe case by case the transition matrix described in equation (4.12):

" If the parent pi of asset i has power, by definition of 7ri, with probability 7ri asset i

will incur some damage and the corresponding device will open. Otherwise, asset i

behaves as normal.

" If the parent pi of asset i has no power, asset i will never have any power. However,

with probability 7ri it might also be damaged.

" Likewise, if the parent pi of asset i has been damaged, asset i will never have any

power, and with probability 7ri might also be damaged.

7ri is computed using weather data and the features computed in Chapter 2. The compu-

tation is essentially the same as in the first chapter, but the weather features will now be

more precise as this model will be run while the storm is happening. Therefore the weather

data won't suffer for forecasting errors. Moreover, the fact that this model is run in real

time makes it possible to use weather logs instead of forecasts, which as was discussed in

Chapter 2 contain much more information (e.g. rainfall rate, wind gust speeds, pressure,

etc.) to allow for significantly higher prediction accuracy.
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Similarly to the asset vertices, we can also define a transition matrix for the vertices corre-

sponding to customers:

1 0

Vie V, Pi = - 7r 7r (4.14)

1-7r' 7r

7r now represents the probability that customer i calls given that there is no power in the

corresponding asset. This probability can be estimated from previous storm call statistics.

In this work, we did not pursue this direction and used a reasonable number for our tests,

and leave precise estimation for future research.

Note that equation (4.14) implies in particular that there are no 'false alerts', i.e. there are

no customers who wrongly notify the company of a loss of power. This enables us, without

loss of generality, to group all direct children customer vertices from an asset i into one

'super vertex' with call probability 7r" = 1 - HjEC,(1 - ir9). This transformation allows us

to significantly reduce the number of vertices in the graph (as can be seen from Figure 4.4)

and speed up the algorithm. However, this change also makes the implicit assumption that

there are no internal failures inside an asset that leave the device closed. For example, we

do not allow a house to lose power on its own, whereas in reality this is sometimes the case

(the end line connecting a house to the electrical network could be severed without affecting

other houses).

Finally, recall that only assets are represented in the graph. In order to recover granularity

at the segment level we once again use results from Chapter 2. This time we take the

individual segment features and combine them with the weather data to generate individual

segment failure probabilities. Since we assume that failures happen independently across

the graph, we are able to recover segment failure likelihoods. More simply, we are able to

rank, inside each asset, the segments which are the most vulnerable and, from there, guide

repair crews to a target damage location.
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4.3.3 Implementation

In order to simulate how the company might run this model, the algorithm was implemented

in JavaScript (compiled from CoffeeScript) and can be run directly from any HTML5 com-

patible browser (Google Chrome, Mozilla Firefox, and recent versions of Internet Explorer).

The tool includes visualizations of the graph using d3.js, supporting both geographical co-

ordinates of each asset and customer or a generated force-repulsion layout. The figures

below (4.5, 4.6, 4.7, and 4.8) present screenshots of this interface in different states. This

interface also allows information to be directly inputed into the model by toggling the state

of each vertex in real time.

Figure 4.5 presents the way a particular circuit is displayed when no customer has notified

the company of a power loss. The vertices are placed according to the geographical location

of their corresponding entity (each asset vertex is centered on its device). Blue vertices

represent assets while green vertices represent customers, and the generation substation is

connected to the circuit via the vertex closest to the top right corner of the graph.

The next figure, Figure 4.6, shows the updated state of the circuit after a single called has

arrived: the corresponding customer vertex has turned from green to orange. At the same

time, the two closest asset vertices have turned red and black respectively. Red indicates

that damage is very likely at this vertex, whereas black indicates that with high likelihood

the asset is out of power but otherwise intact.

In Figure 4.7, many customers have called reporting power outages and as a result there

are many more assets likely out of power (the black vertices). Notice that the algorithm

flags three vertices as probable points of failure (in red), such as the selected one where

the computed a posteriori failure probability is 59.4%. Figure 4.8 shows the graph in the

same state but with vertices sized by failure probability: the three previous vertices are now

easily spotted.

The algorithm is very fast. On a circuit such as this one (with 145 asset and 65 customer

vertices) updating the marginals is virtually instant. Even for larger circuits, such as those

mentioned above, computations take less than a second, which makes this algorithm very

practical for real time updates. Note that if inconsistent evidence is entered (such as setting
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the state of an asset vertex to normal downstream of a damaged asset), the update will fail

(the algorithm yields a division by zero error), and the current implementation will return

to its state right before this update.
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5 Conclusions and Future Work

The way power utility companies handle responses to storm events is directly linked with

their ability to provide quality energy services to customers and to minimize costs during

these storm responses. There is a unique opportunity here to significantly improve their

process of getting ready for such major events, for example by learning ahead of time where

the electricity network is most likely to see damage and what the best method of preparing

repairs for that damage is.

The frameworks described in this part of the thesis could therefore add a lot value to such a

company's emergency response system, especially during major storms. The tool shown in

Chapter 2 can help the utility scale their response (e.g. how many out of state crews to bring

in), while the second tool presented in Chapter 3 will guide initial crew placement among

areas likely to be hit. During major events, the damage estimation algorithm implemented

in Chapter 4 would yield much more precise estimated damage locations than the regular

tool currently used.

It is important to note that as the quality of the data available grows, the precision of

our models will continuously improve. Indeed, the models presented here are driven by

weather forecasts and historical outage data. As a result, both the outage prediction and

crew optimization models are limited by the errors inherent in these data sets. The better a

company is able to quantify how it handles power restoration (e.g. repair times, restoration

times, crew assignments, etc.), the better the proposed framework will work. A richer data

set would also allow for more complex constraints in the optimization model and is therefore

critical to a more realistic representation of actual crew dispatching (for example, one which

would incorporate travel times between platforms).
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Finally, there are several directions of interest for the future in order to improve the al-

gorithms presented. With more granular outage data, the damage prediction model could

function at the segment level instead of at the asset level. The interactions between land-

cover and physical properties of the network could also be explored further. Even though the

formulation is built to be robust, the crew optimization model relies on having reasonable

estimates of repair times for which some deeper statistical analysis would be beneficial. The

circuit damage estimation algorithm could also be extended to allow for circuit reconnec-

tions: in some cases the electricity company is able to restore power to certain assets that

previously had lost power by isolating parts of the circuit and closing emergency switches.

This could be done by allowing the model to capture dynamic changes to the structure of

the tree.

Ultimately we believe that the insights gained from such tools will allow power utilities to

provide better service to their customers (particularly in an environment where regulator

demands are increasing) at a lower cost.

127



Concluding Remarks

In recent years, a lot of research has been focused on processing large quantities of data.

However, in practice not all the data required to solve most problems is readily available. In

this thesis, through two very different applications, we have presented an approach which

utilizes structural properties of the problem considered to reduce data requirements and

make up for missing data.

Our first example studied a dynamic pricing problem. We demonstrated policies that allows

firms to compete asymptotically optimally with very low information requirements. The

insight here is that by appropriately choosing summary statistics, we are able to capture

most of the impact of competition. Policies similar to the ones we presented could be applied

in practice by firms practising Revenue Management in highly competitive markets (e.g. in

the airline or hotel industries).

In the second part of this thesis we focused on reducing power outage durations caused by

major storms. In spite of missing historical data and the complexity of weather related

damage, we are able to accurately pinpoint areas where major repairs are likely to be

required. We built a practical tool around our model that a power utility can run to prepare

itself ahead of a storm and reduce the total time until power is restored to all customers.

Indeed, our predictions can be used not only to station crews preventively ahead of a storm

but also to guide them during the event.
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