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Abstract

This dissertation is a collection of three essays on environmental policy and empirical

development economics, unified in their underlying inquiry of the welfare effects of cli-

mate in Mexico.
The first chapter presents evidence on the relationship between exposure to ex-

treme temperatures and precipitation and mortality, as well as the relationship be-

tween severe weather and agricultural income and crop production in the country, us-

ing random year-to-year variation in temperature. Estimates suggest that exchanging

one single day with an average temperature for one day with extreme temperature in-

creases the crude mortality rate by 0.15%. The impact is spatially and temporally het-

erogeneous: the extreme heat effect on death is three times larger in rural areas than in

urban areas, while its effect on agriculture is significantly larger if it takes place during

the agricultural growing season.
The second essay is an analysis of the impact of future climate change on death in

Mexico. Estimates suggest that in the absence of any future effective mitigation or

technology adaptation, climate change leads to a 4 to 9% increase in the annual mor-

tality rate during the 21" century. I show that climate change disproportionately af-

fects vulnerable groups, particularly children and rural households, whose mortality

rates are estimated to increase by 19% and 40% respectively. Overall, by the end of the

century climate change will lead to a loss of more than 3.1 million life-years per annum

(equivalent to one life-year lost every ten seconds.)
The third essay makes the case for the effectiveness of targeted government inter-

ventions to mitigate the negative impact of weather-induced income shocks. I show

that El Nifno- and La Nifia-related severe meteorological conditions lead to sharp de-
clines in consumption and welfare outcomes, particularly among the poor, and more
specifically in female-headed and indigenous households. Estimates suggest that the

provision of a safety net significantly raises expected utility by smoothing consumption
and reducing inefficient behaviors ex post.

Thesis supervisor: Karen R. Polenske
Title: Peter de Florez Professor of Regional Political Economy
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Climate [is] inconceivably more important
than everything one has taken to be im-
portant so far.
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Introduction

1 Problem Significance

Mexico is a country that is exceptionally vulnerable to extreme weather patterns.

What is distinctive about Mexico is its highly heterogeneous climate and ecosystems.

Large portions of the country are located around so-called convergence zones, areas

where opposing prevailing winds come together and drastically affect precipitation pat-

terns. It lies squarely within the hurricane belt, and all regions of both of its coasts are

susceptible to severe storms almost half of the year. Its pronounced topography, which

ranges from rugged mountains and low coastal plains to high plateaus and deserts,

leads to strong spatial and temporal climate contrasts and varied forms of vulnerabil-

ity, which are usually exacerbated by poverty and underperforming institutions. Of

Mexico's 195 million hectares of land, 85% is considered semi-arid, arid, or very arid,

with climates characterized by low, seasonal and highly variable rainfall. Overall, 88

million people (roughly 8 out of 10 Mexicans) and virtually all the poor are exposed to

some type of climatic risk, according to the national government (see Figures 1-4.)

Most troubling, global warming and anthropogenic climate change are making weather

more severe and less predictable, which, as Figure 5 shows, leads to an increase in the

frequency of natural disasters, exacerbating risk at an unprecedented pace (O'Brien &

Leichenko 2000, Ministry of Social Development of Mexico 2010, 2012.)

It is important to understand the nature of the risks from climate, where natural

and human systems are likely to be most vulnerable. In particular, either as a result of

Mexico's remarkable ecogeography or due to climate's superimposition on existing vul-

nerabilities inherent in Mexico's socioeconomic and institutional environment, there is

a long history of research about climate in Mexico and its impact on the population,

particularly on the poor. Historically, much of the seminal work on climate and its

human impact has employed Mexico as a case study. Already at the dawn of the 19'

century, Alexander von Humboldt, a Prussian geographer, was arguably the first pro-

ponent of investigating into the structure and social situation of the population and
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the health system and the role climate plays in it, using Mexico as a case study.1 A

century later, Ellsworth Huntington (1913) would be the first to develop a theory of

climate change using Mexico as a reference to illustrate regional meteorological fluctu-

ations.2 For almost a century, the issue of climate has laid firmly both in the academic

discourse and the political milieu, from paleoclimatology and the first greenhouse effect

theories in the 1930s and 1940s to aerosol pollution and ozone depletion in the 1960s

and 1970s to the establishment of the Intergovernmental Panel on Climate Change in

1988. Nonetheless, the acceleration of anthropogenic global warming and the increasing

evidence of its impacts has led to an explosion of interest in the climate process across

disciplines within and beyond climate science. As a result of empirical innovations or

the development of new theoretical frameworks or methodological formulations, recent

works have concentrated in more textured research approaches and shed light on key

socioeconomic issues in which the role of climate is central, at least for the Mexican

case: studies range from how climatic conditions affect the agricultural system and the

composition of farmers' resilience (Appendini & Liverman 1994, Gay et al. 2006), to

the extent to which the structure of the economy and market distortions exacerbate

climate vulnerability (Gordillo & Rello 1980, O'Brien & Leichenko 2000), to the effect

of weather on precipitous institutional change, the intersection of climate and political

power, and the role of the state (Eakin & Lemos 2006, Florescano 1980, Liverman

1990), to uncertainty, innovations, incentives and adaptation constraints in a changing

climate, both in urban and rural areas (Eakin 2006, Ministry of Social Development of

Mexico 2012), to the role of climate in cultural evolution (Hoddell, Brenner & Curtis

2007.)

From a policy standpoint, this rich body of literature raises an important overarch-

ing question: Who is vulnerable to the multiple environmental changes underway,

1Von Humboldt's expedition to Latin America laid the foundation of modern physical geography
and meteorology. In his Essai politique sur le royaume de la Nouvelle-Espagne (1811, p. 270-271), he
asserted that "a country's physiognomy, its mountain ranges, the extension of its highlands, eleva-
tion, and how it determines temperature, is intrinsically associated with the progress of the people
and the welfare of its population." [La physionomie d'un pays, I'agroupement des montagnes,
1'6tendue des plateaux, 1'i1ivation qui en determine la tempirature, a les rapports les plus essentiels
avec les progres de la population et avec le bien-etre des habitans.

2 For a historical synthesis of the early research of climate in Mexico, see Metcalfe (1987.)
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where, and why? Traditional welfare research draws on theories of climate vulnerability

and economic specialization from the disaster management, environmental change and

development studies to answer this question (Birkmann 2005.) However, many empiri-

cal works, especially on developing countries where data accessibility is often inade-

quate, unintentionally overlook the spatial variability of the different types of vulnera-

bility and of their relationships. Some scholars have outlined that "vulnerability rests in

a multifaceted coupled system with connections operating at different spatiotemporal

scales" (Turner et al. 2003, p. 8076), while acknowledging that "we have a limited un-

derstanding of how changing socio-economic and environmental conditions affect vul-

nerability [and] a more precise idea of how to integrate the time and spatial dependen-

cy of vulnerability into measurements tools" (Birkmann 2005, p. 6) is indeed still miss-

ing. Moreover, scholars have rarely attempted to examine comparatively the microeco-

nomic effect of local climate shocks in regional and national contexts. Similarly, the

fact that some groups are more vulnerable than others needs to be recognized (O'Brien

& Leichenko 2000.) Underlying this vulnerability asymmetry is the inability of (mostly

poor) families to cope with the negative effects of weather shocks through formal sav-

ings, credit and insurance markets, which are rarely functional for them. The poor are

thus left with a variety of alternative informal mechanisms that provide inadequate

risk-coping capabilities at a very high cost for their families, thus posing serious conse-

quences for their wellbeing (Paxson 1992, Townsend 1994.) Equally concerning from a

methodological point of view, a body of empirical climate research from heterogeneous

disciplinary perspectives inadequately covers the complex nature of weather patterns

by assuming straight line changes in climate and paying little attention to the dispro-

portionate impact of extremes. Failure to consider the complexity of the climate pro-

cess renders these models, regardless of carefully devised methodologies, foundationally

fragile in their conclusions.

2 General Objective and Focus

These Essays in Climate and Development are an effort to overcome the aforemen-

tioned limitations, guided by the primary question of why, within the same region, sim-
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ilar extreme climate patterns and weather shocks lead to dramatically different welfare

impacts on the population, and through which mechanisms they can be mitigated.

To answer this question, I specifically focus on three condensed issues: through

what mechanisms does the structure of local economies mediate the impact of welfare

and to what extent do climate extremes affect human health? What is the welfare cost

of climate change for both the rural and urban localities and what are the vulnerable

groups that will be disproportionately affected by global warming? How effective can

targeted state interventions be in insulating poor households from weather-induced in-

come shocks and reducing their need to resort to costly ex post risk-coping strategies?

Although the complexity and relevance of these questions lend themselves to be

answered in three separate essays, each one relying on complementary theoretical

frameworks and innovative methodologies that isolate the effect of weather from other

variables, the essays collectively fit within a broader narrative on the underlying wel-

fare effects of climate in Mexico. The initial essay, The Welfare Impact of Extremes:

Evidence from Random Fluctuations in Weather, concentrates on the relationship be-

tween extreme weather and welfare, highlighting its human health, food security and

agricultural dimensions. FRom there, the second essay, Weather and the Coming Death

of Mexico's Poor: A Regional Analysis of the Cost of Climate Change, builds on Essay

1's findings and leads to study climate change and how future global warming trends

are posed to aggravate vulnerabilities, particularly for the rural poor. This in turn

transitions into the third essay, Climate Shocks, Safety Nets, and Shielded Poor: Exper-

imental Evidence from Rural Mexico, a discussion on the sources of vulnerability for

the poor, the risk-coping instruments they resort to in the event of a climate shock,

and the evaluation of development assistance as an effective climate vulnerability-

mitigation mechanism.

3 Theoretical Grounding and Contributions

Although both the conceptual framework and the empirical strategy of this disserta-

tion are grounded on economic theory and microeconometric techniques, my investiga-

tion of climate dynamics is not dominated by one particular field, but rather, of neces-
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sity, informed by multiple disciplines. The essays necessarily sit at the intersection of

four mutually supportive themes: epidemiology, agronomy, climatology, and program

evaluation.

Suffice it to say for the sake of brevity, that climate at its most extreme simultane-

ously exacerbates the disease environment and depresses agricultural output and

yields, disproportionately affecting rural households through their weather-contingent

incomes (JPCC 2012.) These negative effects, furthermore, are likely to become more

severe as anthropogenic greenhouse gas emissions cause higher temperatures and in-

creased precipitation over the coming decades, making it more difficult to maintain

and improve current levels of population welfare (WHO 2009.) As a result, in order to

protect poor and vulnerable households from substandard living conditions resulting

from severe weather, it is critical to determine what the most cost-effective policymak-

ing approaches at the government's disposal for tackling vulnerability are, especially

when there is pressure to cut programs that prevent people from falling below basic

standards of health and welfare (Banerjee & Duflo 2011.)

Needless to say, I am not the first to look at the human dimension of climate dy-

namics. This is an area that is well traveled and a considerable amount of work has

been done over the past three decades across many disciplines, from geography, mete-

orology and ecology to anthropology, economics, political science, environmental plan-

ning and public health. However, this dissertation is differentiated in at least four sig-

nificant ways from most others who write about the general topic of climate, as I argue

below.

3.1 Accounting for Non-Linear Asymmetric Relationships

First, this dissertation fundamentally departs from previous research in the way that

climate is approached. I eliminate a strong assumption that has been made in many

studies across the social sciences. On the whole, it seems fair to say that the study of

climate in the social sciences rarely accounts for nonlinear asymmetric relationships

between weather and a range of agricultural and welfare outcomes. These nonlinear

relationships may be concealed when, for example, daily observations are averaged into
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monthly or seasonal variables (Schlenker & Roberts 2009.) On the face of it, the ne-

glect is surprising, given the serious misspecification and omitted variable bias prob-

lems this omission causes (Sinclair & Seligman 1996, 2000, Long et al. 2005.)

A large body of work on Mexico, including recent studies, makes use of monthly

and even seasonal and yearly climatic data (Aguilar & Vicarelli 2011, Andersen &

Verner 2010, Conde et al. 1997, Liverman 1990, Vicarelli 2011.) Unfortunately, this is

not an idiosyncrasy of research on Mexico. Studies for both developed and other devel-

oping countries, spanning different disciplines and employing different methods, have

the same shortcoming. Examples include Eng and Mercer (1998), Glass et al. (1982),

Larsen (1990), O'Brien (2000), Ramal et al. (2009) and Rifakis et al. (2005.)

I emphasize throughout these essays that the temporal aggregation done in these

and other studies is a very risky practice due to the nonlinear effects of weather. Epi-

demiologists have shown that a J- or U-shaped curve has been found appropriate to

describe the association between weather and death, with elevated mortality being ob-

served at temperature extremes and relatively lower mortality at moderate tempera-

tures (Basu & Samet 2002, Curriero et al. 2002, Huynen et al. 2001, Kunst, Looman &

Mackenbach 1993.) Similarly, agronomists have shown that most crops undergo severe

abiotic stress at very high or very low temperatures and precipitation levels, which

disproportionately increase the likelihood of crop loss (G6mez Rojas & Esquivel Mota

2002, Neild & Newman 1990, Wang, Vinocur & Altman 2007.)

There are some fierce debates in the literature concerning the challenges of captur-

ing the true effects of particular weather events based on data that by construction

lead to inaccurate estimations. The richness and high frequency of my data allows me

to solve this problem of controvertible evidence. I introduce two approaches from the

agronomy literature to model the nonlinearity of climate. One approach, carried out in

Essays 1 and 2, is to distribute all the daily temperature and rainfall estimates in a

given year over small intervals in order to maintain weather variation in any given

specification, thus accounting for nonlinear effects. Another approach is to convert dai-

ly temperatures into degree-days, which represent heating or cooling units (Hodges

1991, Grierson 2002.) The effect of heat or cold accumulation is nonlinear since tem-
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perature must be above a heat threshold or below a cold threshold. I use this strategy

in both Essays 1 and 3.

3.2 Identifying Effective Strategies for Causal Relationships

The fields of environmental and development planning are chronically lacking strong

empirical evidence. Observational studies typically carried out in these disciplines may

be strongly suggestive, but do not carry the same empirical weight as a research

framework that acknowledges the identification problem because they are unable to

offer a definitive causal picture.

In effect, a problem that has plagued these and other social science fields for years

is that of identifiability. Observational studies typically attempt to reduce bias by

simply using regression with controls for confounding variables. Often, the claim is

that observational research designs isolate cause and effect. But far from serving as

"evidence" of causality, the interpretation of coefficients in such a regression framework

does not necessarily have any behavioral implication. As a result, observational re-

search designs cannot reliably identify the effects of particular phenomena or policies

in the face of complex and multiple channels of causality (Banerjee & Duflo 2009.) To

attribute causality, a clearly labeled source of identifying variation in a causal variable,

and the use of a particular empirical methodology to exploit this information is re-

quired (Angrist & Krueger 1999.) This identification strategy is absent in observational

studies.

My study, on the contrary, directly puts the identification problem front and cen-

ter. I recognize that both climatic and economic processes often lead to simultaneity,

so that exogenous variation is required to learn about causal relationships from infor-

mation capturing climate patterns and household behavior. This is an important con-

sideration for two explicit reasons. On the one hand, climate variables are correlated

with other variables, such as infrastructure, urbanization, and the structure of the

economy. However, if critical variables correlated with climate are omitted from the

empirical specification, the climate variables are likely to pick up non-climate effects

and lead to biased estimates and predictions (Schlenker & Roberts 2009.) On the other
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hand, the question of whether poverty alleviation programs are effective vulnerability-

reduction mechanisms needs to recognize that program recipience is rarely, if ever,

random. By definition, poverty alleviation programs are implemented in poor commu-

nities and, as a result, vulnerability may be higher in the areas where the program op-

erates. Observational analyses might confound the effect of the program with the eco-

nomic, behavioral, and political institutions that hinder development in the first place.

Without an identification strategy, the researcher could only establish a correlation be-

tween policies and vulnerability outcomes at best.

I overcome these problems in my study using rigorous methods and the appropriate

data. The empirical approach I employ in all three essays is based on panel data analy-

sis and, due to the randomness of climate patterns, it seems reasonable to presume

that weather fluctuations are orthogonal to unobserved determinants of mortality, ag-

ricultural outcomes and other welfare measures I study. Deschenes and Greenstone

(2011) argue that there is reason to believe that such an identification strategy is valid.

Similarly, to assess the impact of a targeted state intervention on poor rural Mexican

households in the context of severe weather, my identification strategy in Essay 3

draws on the fact that the rollout of the program was phased and that, due to this

phasing, random program assignment was introduced. The exogenous variation caused

by random program assignment created two groups (recipients and non-recipients) that

are probabilistically similar to each other in expectation. Under such conditions, as

explained by Shadish, Cook and Campbell (2002, p. 13), "any outcome differences that

are observed between those groups at the end of the study are likely to be due to

treatment, not to differences between the groups that already existed at the start of

the study", hence providing internally valid estimates of the causal effect.

3.3 Overcoming Data-Driven Credibility Obstacles

Compared to most of the social-science research on climate in Mexico, the empirical

specifications of this study are fed using high-resolution, well-calibrated data, which is

critical to design and execute effective and targeted policy responses and long-term

adaptation programs.
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Although important modeling advances have occurred over the past several years,

high-frequency data from many general circulation models have been inaccessible or, at

the very least, not openly available. As a result, researchers continue to employ data

developed from previous versions of such models, compromising accuracy, precision,

and inter-comparability. Today, models with 2-degree-gridded are routinely used, yet

recent climate research production on Mexico has examples of climate simulations with

results on a 4 by 5 latitude/longitude geographic grid. This is roughly equivalent to a

400 km by 500 km grid, a very coarse resolution for regional impact studies. At this

resolution, it becomes challenging to project regional impacts. Liverman & O'Brien

(1991, p. 354) argue that "coarse scales make it difficult to allocate climate changes to

specific locations and tend to neglect some of the important sub-grid scale weather

patterns." To complicate matters, the temporal resolution of data readily available is

typically inadequate, with significant portions of data expressed as monthly averaged

values (IPCC 2013.) For a variety of climate models, daily predictions are not available

on a subnational scale over the course of the entire 21" century (Deschenes & Green-

stone 2007.) As I discussed in subsection 3.1., this periodicity is problematic because if

the impact of climate is nonlinear, averaging over time dilutes the true climate re-

sponse. This consideration is particularly important when considering large, non-

marginal changes in climate, now expected as a result of global warming (Schlenker &

Roberts 2009.)

Having those issues in mind, the atmospheric component of the global circulation

model I employ in Essay 2 for my analysis has daily temperature and precipitation da-

ta at an improved surface resolution of about 295 km by 278 km at 45 degrees of lati-

tude. Similarly, my observed climate dataset is constructed at a 3-hour temporal reso-

lution (eight data points per day) with a spatial resolution 32 km at the lowest lati-

tude. Overall, the new finer-scale climate dataset I developed allows me to carry out

more accurate model predictions, both at the national and regional levels, than most of

the previous empirical specifications in the literature. In effect, a significant contribu-

tion of my study to the regional science literature is the credible identification of im-

portant regional weather patterns and its effects on development outcomes and partic-

ular vulnerable groups across time and space.
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Another issue that my data overcome and that is typically encountered in the cli-

mate impact literature is that climate change models are often unreliable to make pro-

jections of future climate change and unable to replicate current climate and climate

variability (Liverman & O'Brien 1991.) Specifically, the IPCC acknowledges that many

climate change models show significant errors in the simulation of El Niflo-Southern

Oscillation (ENSO) (Randall et al. 2007.) This is of particular relevance to climate an-

alysts conducting research on Latin America, given that ENSO has a wide range of

effects on Mexico (Magafia et al. 2004.)

Research shows that the North American Regional Reanalysis (NARR) model,

which I employ in Essay 1 to construct observed temperature and precipitation data,

meets this challenge and simulates the current climatic state with a high degree of

fidelity, representing accurately extreme weather event patterns over the North Ameri-

can Region (NOAA, 2012.) In order to determine the ability of NARR to simulate

large scale circulation patterns, Mesinger et al. (2006) compare the NARR precipita-

tion for January 1998 (when the El Nifno effect was underway) with observed precipita-

tion. Their comparison shows that over land there is an extremely high agreement be-

tween NARR and observed precipitation, even over the complex western topography of

Mexico.

Finally, in Essay 3 I effectively integrate heterogeneous data sources, by merging

this climate dataset with a large panel of rural households in 506 Mexican communities

that were part of the original impact evaluation of Mexico's Education, Health, and

Nutrition Program. With these data, the empirical framework becomes remarkably

powerful in its ability to measure climate adaptation and vulnerability mitigation as a

result of a specific public intervention. Overall, this study is one the first large-scale

empirical investigations linking with methodological rigor weather and welfare out-

comes for a developing country.

3.4 Challenging Conventional Wisdoms

The conventional explanation for the ineffectiveness of government-led anti-poverty

policy is challenged by my research findings. A common piece of received wisdom
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about development assistance policy, particularly attractive to market ideologues, is

that safety nets and poverty-alleviation schemes are the opiates to economic growth.

Many vocal laissez-faire economists argue that poor countries around the world get

massive amounts of development assistance and yet they remain just as poor. Devel-

opment aid, so the critique goes, stalls development and perpetuates poverty in a dys-

functional cycle (Bauer 1972, Easterly, 2001, 2009.) Africa is the poster child of this

anti-poverty policy rhetoric: millions of dollars in development funding have been fo-

cused there, but welfare remains dismally low. The neoliberal sweeping recipe against

the ills of aid policy is, of course, to let markets be free so that people can find their

own ways to solve their problems and engage in poverty-reducing economic activity

(Easterly 2006.)

This is a compelling hypothesis. But is it true?

The argument, on the one hand, is problematic because it ignores the counterfac-

tual that perhaps Africa would be in a worse state in the absence of poverty alleviation

efforts. On the other hand, although development assistance, in general, and safety

nets, in particular, are sometimes characterized with a strong element of caricature,

portrayed as evils that render the poor dependent, passive, and helpless,' I find that

this diagnosis is doubly misguided: development assistance can be effective to adjust

the poor's expectations, both individually and collectively. My research illustrates that

the poor are conscious agents, and precisely because they do not have many resources

at their disposal, they are sophisticated decision-makers. In spite of credit, insurance

and other critical markets not functioning for them, the poor are capable of coping,

adjusting, and adapting to a variety of shocks.4 As I demonstrate in this dissertation,

: For example, a February 3"', 2012 article on the New York Times quoted Newt Gingrich, a U.S.
politician, as saying that "the 'genuine conservative' position is that the 'safety net is actually a spi-
der web [that] traps people in dependency."

' The adaptation process is not perfect. The poor are not rational agents due to a set of behavior-
al biases. Duflo (2012) does an excellent summary of these biases and the logic behind them: some
biases are economic. Poverty makes people overly risk averse, to the point of foregoing economic
opportunity. Some are institutional. The non-poor do not have to worry about putting thought to
critical decisions in their lives (from immunization and disinfection to schooling and insurance) be-
cause the institutions within which they live are set up to do the job for them. The poor, with no
one guiding their choices, are entirely responsible for every aspect of their lives. As she illustrates, it
is easier for a poor person in a sub-Saharan African village to go to school, get vaccinated, drink
clean water or be insured than for a rich person in a Western city not to. Some are psychological.
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well-designed development schemes may fine-tune these behavioral decisions. In Essay

3, I show that the provision of a modest safety net for the most vulnerable serves as a

shield against unexpected shocks, leads to significant welfare changes, and, as a result,

induces corrective behavioral decisions that offsets the propensity to undertake risky

strategies that compromise social and economic well-being. This is an extremely im-

portant finding that runs exactly counter to basic assumptions of traditional economic

theory: small changes to incentives (in the form of a modest safety net in this case)

nudge people into making different decisions than they would otherwise have done.'

When designed correctly, these nudges can yield decisions that improve people's overall

welfare.

My study also offers another radical shift in perspective regarding the poor per-

formance by the state as a purveyor of development. Skeptics of development policy

have clear structural objections to the effectiveness of government as a safety net pro-

vider. Libertarians claim that the provision of aid opens the floodgates of dependency,

corruption, kleptocracy, underdevelopment, and weakened local institutions, ultimately

perpetuating poverty, the thesis goes, because a lump-sum transfer does not change

the incentives at the margin to invest in the economy (Easterly 2007, Moyo 2009.)

Along these lines, Moss, Pettersson and van de Walle (2006, pp. 14-15) argue that

"large aid flows can result in a reduction in governmental accountability because gov-

erning 61ites no longer need to ensure the support of their publics and the assent of

their legislatures when they do not need to raise revenues from the local economy, as

With so many difficult decisions to make by themselves, the poor may believe they have less con-
trol, or opt to do nothing in order to avoid making a mistake. They are well aware that they do not
have all the information they need to make a thoughtful decision, but also understand that collect-
ing this information comes at a cost. In addition, behavioral research has shown that the poor are
time-inconsistent and find difficult to resist to immediate temptation, often postponing costs in
preference for wellbeing in the present, regardless of the impact that such a decision has on their
future. Some are sociological. A major asymmetry between developed and developing countries is
that for the poor, the basic presumption of trust, instrumental for most social interactions, is lack-
ing. The absence of complete markets, transparency and basic property rights cannot warrant
trustworthy behavior and is prone to exploit vulnerabilities.

' The notion that the poor's decision-making process may be suboptimal and non-monotonic con-
tests the libertarian conviction that, regardless of the many difficulties they face oil a daily basis,
the poor are rational agents. It is because of individual rationality, the argument goes, that the poor
are in fact the best judges of what is in their best interests, so anti-poverty policies are by construc-
tion futile.
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long as they keep the donors happy and willing to provide alternative sources of fund-

ing."

Colored clich6s from the right often purport government as the fons et origo of

economic hindrance. The ideological hostility towards the state as a vital anti-poverty

policy stakeholder and the neglect of government interventions as positive for the des-

titute is detrimental to archetypal notions of development and justice and the amelio-

ration of the lives of the poor. A thorough reading of economic history illustrates the

successful contributions and deep involvement of government in many aspects of eco-

nomic and social policy (Amsden 1989, 2001, Chang 2002.) The time I spent on the

ground working with program designers and community workers in rural Mexico was

equally illuminating to debunk this fallacious reasoning. I found that while corruption,

political patronage, clientelism and abuse of power are serious issues obstructing pro-

gram targeting and operational efficiency, they can be overcome through reasonably

modest reform. A program's modus operandi containing basic provisions related to

transparency, access to information, community involvement mechanisms and simple

legal provisions against political use might be insufficient to deter ulterior political in-

centives. However, as I document in Essay 3, my research shows that these safeguards

facilitate program effectiveness and feasibility, even in the absence of complex reform

processes. Mexico's Education, Health, and Nutrition Program, which I evaluate, is a

good example of an institutional design accounting for these considerations (Levy

2006, De la 0 2007.)

4 Specifics of the Dissertation and Overview of Find-
ings

For each essay, I outline the significance of the research and its relevance to the broad-

er vulnerability and climate discourses. I provide a detailed review of the existing liter-

ature in order to discuss the evolution and state of the art in relevant works that

bridge climate, vulnerability and welfare. Along with this synthesis, I introduce key

concepts and current strategies to study climate impacts. I proceed to set out the con-

ceptual framework, assessing the advantages and limitations of different theoretical
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perspectives. I present the epistemological and methodological reasons why the models

I adopt possess the capacity to overcome important deficiencies of existing research.

Then, I explain how each concept in my theories is operationalized, as well as the

sources of my data and methods of variable construction. Next, I frame my economet-

ric strategy, justify its adequacy and present my research findings, which are organized

into two to three subsections. Each essay concludes with a succinct restatement of the

subject matter, followed by a brief summary of high-level contributions, key empirical

considerations and outcomes and their policy implications, as well as suggested avenues

for future work.

In The Welfare Impact of Extremes: Evidence from Random Fluctuations in

Weather, I analyze the causal relationship between exposure to extreme temperatures

and precipitation and mortality, as well as the relationship among severe weather, agri-

cultural income and crop production in the country. I use data for all 2,454 municipali-

ties of Mexico for the period 1980-2010. Overall, I find that extreme heat significantly

increases mortality, while the health effect of extreme cold is generally trivial.

In particular, I show that exchanging one day with a temperature of 16-18*C for

one day with temperatures higher than 30*C increases the crude mortality rate by

0.15%, a result robust to several model specifications. I also find that the extreme heat

effect on death is significantly more acute in rural regions, leading to increases of up to

0.2% vis-A-vis a 0.07% increase in urban areas. The timing of climate extremes is rele-

vant: I show that if a weather shock takes place during the agricultural growing season,

the effects on mortality and agricultural output, productivity, prices, and crop yields

are large and significant, but not so if such shocks occur during the non-growing sea-

son.

In Weather and the Coming Death of Mexico's Poor: A Regional Analysis of the

Cost of Climate Change, I estimate the impact of climate change on death in Mexico

by using random year-to-year variation in temperature and a coupled atmosphere-

ocean general circulation model. In the absence of any future effective mitigation or

technology adaptation, I find that climate change leads to a 4-9% increase in the an-

nual mortality rate during the 21? century. I find that climate change will dispropor-

tionately affect vulnerable groups. My analysis points to a 11% increase in annual
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mortality rate among seniors between the ages of 70 and 74, while the annual mortali-

ty rate for infants and young children is expected to increase by 19%. I show that

those who have the fewest assets (and who have contributed least to climate change)

will be hit the hardest: by the end of the century, annual mortality rates are projected

to increase by 5% in cities. Conversely, the estimated change in rural areas, where the

majority of the poor is concentrated, is 40%.

Furthermore, I present evidence that there is wide variation in the vulnerability of

different Mexican regions to projected climate change. While I find large increases in

the annual mortality rate in both the Northeast and the Northwest (the hottest re-

gions of the country), my model predicts a decline in the annual death rate of the

South region.

Overall, my results suggest that by the end of the century, climate change will lead

to a loss of more than 3.1 million life-years per annum (equivalent to one life-year lost

every ten seconds.) This is an upper-bound estimate as agents are expected to adapt

to a slowly warming climate.

Finally, in Climate Shocks, Safety Nets, and Shielded Poor: Experimental Evidence

from Rural Mexico, I argue that extreme weather is a major source of vulnerability for

rural poor households, not only because climate has a direct impact on agriculture but

also because poor households usually are not equipped to deal with unexpected shocks.

To cope with a crisis, poor households resort to strategies that simultaneously decrease

their short-term welfare and make it harder for families to get out of poverty in the

medium and long term.

With this essay, I show that in cases of market failure, government interventions

are effective mechanisms to mitigate the negative impact of weather-induced income

shocks. By combining experimental data for 24,000 households in 506 communities of

rural Mexico for 1998 and 1999 with extreme-weather metrics that account for the

non-linearity of climate impacts, I show that El Niflo- and La Nifia-related severe me-

teorological conditions lead to sharp declines in consumption and welfare outcomes,

particularly among the poor, and more specifically on female-headed and indigenous

households.
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I examine the role of a poverty-alleviation program in Mexico by exploiting the fact

that its rollout was phased, thus introducing random assignment that allows me to

evaluate its impact on welfare. I show that the program shields its recipients by insu-

lating them from weather-induced income shocks, allowing them to maintain stable

consumption while reducing their propensity to resort to a variety of costly risk-coping

strategies. The results are robust to several severe-climate-model specifications.

Overall, my estimates suggest that the provision of a safety net significantly raises

expected utility by smoothing consumption and reducing inefficient behaviors ex post:

the marginal gain in welfare from the provision of an income transfer can be almost

three times as large as the increase in total consumption, depending on the households'

level of risk aversion.
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Figure 1. Vulnerability to high temperatures, by municipality
Source: Centro Nacional de Prevenci6n de Desastres (2012)
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Figure 2. Vulnerability to low temperatures, by municipality
Source: Centro Nacional de Prevenci6n de Desastres (2012)
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Source: Centro Nacional de Prevenci6n de Desastres (2012)
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Figure 4. Vulnerability to high precipitation (floods), by municipality
Source: Centro Nacional de Prevenci6n de Desastres (2012)
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Figure 5. Major climate shocks in Mexico, by frequency and trend, 1980-2010
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Note: Meteorological shocks include storms only; hydrological shocks include floods and
landslides; climatologic shocks include extreme temperatures, droughts and wildfires.
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Chapter 1

The Welfare Impact of
Extremes: Evidence from
Random Fluctuations in
Weathert

1 Introduction

The mechanisms through which weather impacts human welfare are complex and rare-

ly linear. They often encompass a wide variety of factors ranging from geographical

location, economic development, settlement patterns and behavioral adaptation to in-

tra-seasonal acclimatization, demographic characteristics, urbanization, and environ-

mental pollutants. Combined, these factors make some areas more vulnerable to cli-

mate variability than others (O'Brien & Leichenko 2000.) Mexico and other developing

countries are a clear example. Inherent features of the developing world make people

residing in industrializing regions more exposed to the negative impacts of weather

than their developed-world counterparts. On average, people in developing countries

spend more time outdoors (Basu & Samet 2002), whether at their workplace, produc-

ing goods for their household's own use and maintenance, commuting, or even carrying

out activities to meet biological needs such as eating, sleeping, and relaxing. Even in-

doors, households in developing countries are more likely to lack air conditioning or

display other features providing insulation from extreme weather (Rothman & Green-

land 1998.)

t JEL classifications: 112, Q12, Q51, Q54. Keywords: weather shocks, climate extremes, mortality,
agricultural income, Mexico. I am particularly grateful to Karen R. Polenske, Esther Duflo, Amy
Glasmeier, Carlos Ludena, Dave Donaldson, Sebastidn Miller, Leonardo SAnchez and my colleagues
at the Inter-American Development Bank Dissertation Fellowship Program, Washington, D.C., and
seminar participants at the Massachusetts Institute of Technology, Harvard University and Colum-
bia University, as well as two anonymous referees for constructive comments. I thank MIT, CONA-
CyT and IADB for the generous financial support provided for this chapter.
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In developing-country settings specifically, the power of weather can be generally

understood through two specific types of channels. One is direct: weather impacts hu-

man physiology through thermal stress and changes in metabolic rates, as well as in-

creased incidence of diseases caused or spread by severe climatic conditions. The link-

ages between extreme climatological conditions as determinants of disease emergence

are particularly significant in Mexico (see Figure 1). In an extreme situation, severe

weather may ultimately lead to death. In fact, the effect of extreme weather on mortal-

ity is a public health threat of considerable magnitude: even though economic (includ-

ing insured) disaster losses associated with climate and geophysical events are higher in

developed countries, fatality rates are higher in developing countries. During the period

from 1970 to 2008, over 95 percent of deaths from inclement weather occurred in de-

veloping countries (IPCC 2012.)

Substantial epidemiological evidence documents a strong relation between severe

weather and mortality. The body adapts thermally to survive in drastic temperature

environments, typically through thermoregulatory control mechanisms, such as shiver-

ing, arteriovenous shunt vasoconstriction, sweating and precapillary vasodilation in

cold and hot environments, respectively. However, these physiological processes are on-

ly effective within certain limits. Weather can be so extreme that such adjustments fail

to balance body and ambient temperature, which can lead to strokes, hypothermia and

hyperthermia, and other conditions that may be fatal.

Many studies focusing on both industrial and developing countries have consistent-

ly shown that extreme heat is a natural hazard that can have a pronounced effect on

human wellbeing. This relationship has been considered relevant to public health for

millennia and empirically researched as early as the 1930s: in a classic study, Gover

(1938) reports excess deaths associated with elevated ambient temperature exposure in

' Already in HEpt Aspwv, Thbd7wv, Twb7rwv (On Airs, Waters, Places), a fifth-century B.C. medi-
cal treatise ascribed to Hippocrates, the author deals with the effects of climate on health. The text
starts by arguing that "whoever wishes to investigate medicine properly, should proceed thus: in the
first place to consider the seasons of the year, and what effects each of them produces for they are
not at all alike, but differ much from themselves in regard to their changes. Then the winds, the hot
and the cold, especially such as are common to all countries, and then such as are peculiar to each
locality." See http://classics.mit.edu/Hippocrates/airwatpl.mb.txt for the full-text trans-
lation.
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86 U.S. cities from 1925 to 1937. Studies of army recruits published in the 1940s

(Schickele 1947) and 1950s (Stallones, Gauld & Dodge 1957) also underscore an associ-

ation between ambient heat exposure and death. More recently, Hajat, O'Connor, and

Kosatsky (2010) observe that in Europe, increases in emergency hospital admissions

among individuals with respiratory diseases have been noted during hot weather, while

in studies from the United States, heat-related increases were noted in admissions for

heart disease, acute myocardial infarction, and congestive heart failure. Using district-

level data for India, Burgess et al. (2011) show that hot days and deficient rainfall

cause large increases in mortality within a year of their occurrence in rural regions.

Basu and Samet (2002) and Kovats and Hajat (2008) present a general review of the

literature on the effects of hot temperature on mortality rates.

The evidence is also robust for cold climate. Deschenes and Moretti (2009) estimate

that the aggregate effect of cold weather on mortality is quantitatively large, the num-

ber of annual deaths attributable to cold temperature being equivalent to 0.8 percent

of total deaths in the United States. This effect is even larger in low-income areas.

Hashizume et al. (2009) characterize the daily temperature-mortality relationship in

rural Bangladesh and find that for the period between 1994 and 2002, a 1*C decrease

in mean temperature was associated with a 3.2 percent (95 percent confidence interval:

0.9-5.5) increase in mortality, with deaths resulting from perinatal causes sharply in-

creasing with low temperatures. In an international study of temperature and weather

in urban areas using data from 12 cities in developing countries, including Mexico City

and Monterrey, McMichael et al. (2008) find a U-shaped temperature-mortality rela-

tionship, with significant death rate increases at lower temperatures. Analitis et al.

(2008) study the short-term effects of cold weather on mortality in 15 European cities

and find that a 1*C decrease in temperature was associated with a 1.3 percent increase

in the daily number of total natural deaths and increases of 1.2 percent, 1.7 percent

and 3.3 percent in cerebrovascular, cardiovascular and respiratory deaths, respectively,

the increase being greater for the older age groups. Hassi (2005) presents a review of

the literature on cold exposure mortality.

The other mechanism through which weather impacts humans, especially in devel-

oping countries, is indirect. It can be understood as a "food-security mechanism," char-
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acterized in general terms by two different channels. The first channel could be de-

scribed as an "income-based channel" in which health outcomes are negatively influ-

enced as a result of adverse weather disrupting the household's sources of income on

which it relies for subsistence (Burgess et al. 2011.) Indeed, many regions in the world,

and particularly the poorest, rely almost solely on small-scale, climate-sensitive sub-

sistence farming, which is especially susceptible to inclement weather (IPCC 2012.)

Mexico is a good example. Although the agricultural sector does not have economic

relevance (as a percentage of the country's gross domestic product), it is a socially crit-

ical sector, not only because agriculture is the source of livelihood of a major part of

Mexico's population but also because rural poverty exacerbates climate-induced agri-

cultural vulnerability (see Figures 2 and 3.)

The second channel could take the form of a "consumption-based channel" whereby

consumption of basic goods and food intake is restrained as a result of natural-

calamity-induced supply shortages, speculative behavior, and increased demand to deal

with uncertainty. The economic consequence of extreme weather is higher food prices,

which ultimately affect the poor as a result of reduced purchasing power, increasing

their likelihood of becoming famine victims as a result (Lin & Yang 2000.) Overall,

weather has played a major role in 17 out of 24 major famines from 1693 through 2005

(for a listing of famines, see 0 Grdda 2007, p. 20), suggesting that the food-security

mechanism is as relevant as the direct human physiology channel.7

There are many instances in both the development and agricultural economics lit-

eratures exposing how the income-based channel operates in a self-sufficiency farming

context. For instance, in an influential article, Sen (1981, p. 449) discusses the Ethiopi-

an and Bangladeshi famines of the early 1970s and weather (droughts and floods, re-

spectively), and points out that in both cases farmers were disproportionally affected:

"the farming population faced starvation, because their own food output was insuffi-

cient, and they did not have the ability to buy food from others, as food output is also

their source of income." Food output is also negatively impacted by extreme tempera-

7 Intuitively, given that both channels of the food-security mechanism ultimately affect human
health, it is also useful to consider both income and consumption-based channels as two specific
mechanisms through which human physiology is impacted. In this sense, the physiological mecha-
nism can be seen as the "aggregate effect" of weather on mortality.
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ture, as shown by Hatfield et al. (2011.) Wheeler et al. (2000) find that crops are espe-

cially at risk when extreme temperatures take place near or during their pollination

phase, while Prasad et al. (2006) document the adverse impact of extreme tempera-

tures on crop yields. In addition, Porter and Semenov (2005) and Hurkman et al.

(2009) have found that even if inclement climate does not lead to harvest loss, weather

extremes do affect photosynthesis and respiration rates, among other crop development

and growth processes, causing lower crop quality and micronutrient malnutrition. Ket-

tlewell, Sothern, and Koukkari (1999), Gooding et al. (2003), and Martre et al. (2003)

show that there is a significant negative association between extreme weather and both

protein content and nutritional properties.

The role of weather in the consumption-based channel is also studied by many ana-

lysts. In the same study on famines presented above, Sen (1981) discusses that the

wages paid to farm laborers in 1942 did not keep up with the rising price of food,

which was caused, inter alia, by a hurricane that affected rice harvests, as well as infla-

tion in Calcutta, triggered by the Raj putting money into war production. This result-

ed in farmers suffering a reduction in their ability to command power over food, which

eventually resulted in the Bengal famine of 1943. Similar cases in Africa and Europe

are discussed at length by Dreze and Sen (1989) and 0 Grdda (2007.) In a recent re-

port, the staff of the Food and Agriculture Organization of the United Nations (FAO

2008) examines the multiple weather hazards that potentially affect food supply chains

when agricultural production is not consumed where it is produced: transporting food

is contingent upon transport, storage, and distribution infrastructure that is vulnerable

to the destructive nature of severe weather. The more extreme climate events are, the

more pronounced the damage to that infrastructure, which is likely to result in dis-

rupted processing and delivery chains. This is reflected in higher food prices, acutely

impacting the poorest households, who spend a large share of their income on food

(IPCC 2012.)

In the next section, I show both the direct and the indirect channels through a

theoretical model.
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2 A Theoretical Framework of Extreme Weather

A theoretical model that portrays the relationship between extreme weather and mor-

tality or other health outcomes should include the direct and indirect mechanisms

through which weather impacts human life. A starting point for this purpose is an ex-

tension of the health as human capital developed by Becker (2007) and adjusted by

Burgess et al. (2011) to incorporate choices that increase agents' probability of survival

under extreme heat. I expand it further in order to account for the negative effects of

extreme cold weather.

Consider the following utility function specified with a constant discount factor for

different time periods for an infinitely lived agent:

V = E [EDStu(ct) (1)
t=O

where ut is the utility at period t that depends on consumption during the same peri-

od, ct. D is the discount factor and St is the probability of the agent being alive (i.e.,

1 - St is the probability of death) during period t, which equals the product of the

conditional probabilities of being alive given that the agent was alive during the previ-

ous period:

t-1

St = sOsis2 ... St-1 =1 St (2)
t=o

Suppose now that the probability of survival in period t is a function of nutrition,

N, which is under the agent's control, subject to a budget constraint, and weather, W,

which is assumed to be exogenous. For the purposes of this paper, I define nutrition as

caloric intake and weather as the number of days throughout the period with inclem-

ent (i.e., excessively cold or excessively hot) climate. Hence, let st = (Nt, Wt) and as-

sume that such a function is increasing in N, but decreasing in W. We thus have two

56



types of consumption goods: food, denoted by N, and a composite good, G, whose con-

sumption is directly valued by the agent.

In this specification, extreme weather, ceteris paribus, has a direct impact on the

probability of the agent's survival, which I defined as the direct impact of weather on

human physiology in the previous section. Likewise, the assumption that s is increasing

in N is what I previously identified as the food-security mechanism, which impacts

human wellbeing indirectly through disruptions in the income stream or subsistence

consumption that lead to severe reductions in caloric intake.

In this formulation, I follow the event-timing specification of Burgess et al. (2011):

given weather conditions for period t, the agent chooses her bundle of goods

(Nt(Wt), Gt(Wt)). Then the agent's death shock takes place, with the probability of

surviving death st = (Nt, Wt). If the agent does survive through the next period, the

function V gives her intra-period utility.

For simplicity, I assume that the budget constraint has a constant interest rate,

and perfect and fair annuity and capital markets. Likewise, I assume that the price of

food is pN, while that of the composite good equals pG, with both being constant over

time. Notice that if expenditures in a given period surpass income, future savings will

have to pay off the due balance. Thus

St(pN NT + pGGr -y)
ST(Y - pNNT - PG GT) = E S (1 + r)t - (3)

t=1-

If the agent maximizes her utility function (1) in period 0 subject to the budget

constraint (3), we arrive at the optimal intertemporal consumption choice

u'(co)E[s1 ]

DE[s 1u'(c 1 )] 1 + r (4)

whereby the first-order condition for the choice of caloric intake is
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aN (co) + E [ Stut (c) 2 E[V] = ApNSO (5)

This is an intertemporal characterization of optimal food choice whereby the mar-

ginal benefit of spending on food at time t equals the marginal cost of spending on

food at time t. Equation (5) implies that the optimizing agent equalizes the present-

value marginal flow benefit from the control across periods.

This first-order condition can be used to determine the extent to which the agent

would be willing to pay to insulate herself from inclement weather in period 0. Burgess

et al. (2011) characterize a transfer r * that is a function of weather, W, in period 0.

Such a transfer holds expected lifetime utility V constant regardless of the value of W,

so that

dr* (WO) _ dy(WO) + No ds(NO, WO) V
dWO dWO OWO dWo s )AJ

The amount the agent would be willing to pay to insulate herself from inclement

weather in period 0 depends on three conditions. First, the willingness to avoid the risk

of being exposed to the negative physiological impacts of weather, which as discussed

in the previous section, may ultimately lead to death. This is represented by the third

term in equation (6), _ ds(N WO) E []Q, which is the product of the probability of sur-

viving given weather conditions W, ds( Wo), and which Becker (2007, p. 384) refers todW 0

as "the statistical value of life," which is the monetary value given by the agent of sur-

viving through period 0, E [ .]

Second, given that extreme weather puts food-security at risk, the agent would be

willing to pay an amount equal to the first term of equation (6), - dy, to avoid any

loss of income resulting from extreme weather. Third, the agent would need to be

compensated for any changes in terms of food expenditure derived from the agent try-

ing to reduce her chance of dying by counterweighing the negative effects of severe cli-

58



mate through the acquisition of more nutrients. This is expressed by the second term

of equation (6), 0.

Based on equation (6), I propose an empirical approach that estimates the effect of

weather on human physiology, particularly on death, as well as that of climate on vari-

ables that determine incomes. As a result of money fungibility, it does not matter

whether the agent faces a climate shock through either the human physiology or the

food-security channel. The agent is only concerned about being insulated from inclem-

ent weather, for which she is willing to pay a price. A consideration that needs to be

emphasized is that, given that markets are complete in this model, a policy that cor-

rects market failure is irrelevant. However, as Burgess et al. (2011, p. 10) argue, such a

model "does characterize the value that households place on avoiding temperature ex-

tremes, which an external funder, such as a foreign donor, might wish to use to com-

pare the merits of competing policy proposals."

In the next section, I discuss the data I use to carry out an empirical analysis

based on this theoretical framework.

3 Data

As I have argued throughout this paper so far, weather impacts humans via two chan-

nels, one that is direct, resulting from severe climate affecting human physiology, and

another that is indirect, whereby weather disturbs the mechanisms through which

households secure their food consumption. The extreme consequence of both channels

is death.

An empirical specification of the theoretical framework presented above, which il-

lustrates the human impact of weather, requires data on three types of variables: one

that portrays human physiology, one that portrays food security, and one that portrays

climate.

Typical variables that may work well to assess the impact of weather variation on

human physiology include the incidence of particular water and vector-borne diseases,

hospital admissions, clinic attendance, morbidity rates, and mortality rates (WHO,
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WMO & UNEP 2003.) In terms of variables that are likely to reflect a given communi-

ty's degree of food security-especially in low and middle-income area contexts-

income, job productivity and nature of job, crop production, and food consumption are

all plausible proxies (USAID 1992.) Finally, the natural choices for studying climatic

phenomena are temperature, pressure, rainfall, hail, aridity, wind, as well as the occur-

rence of certain weather events like tornados and cyclones (WMO 2012.)

As good evidence requires good data, I selected those variables generated with high

frequency, high spatial disaggregation, and high-quality monitoring. The following con-

stitute the variables that I employ for the following empirical analysis.

3.1 Mortality

To calculate mortality rates, information on deaths, births, and population is needed. I

obtain death and birth counts data at the municipal level through each state's Civil

Registry Office. Because each state has its own registration data and formats, I digitize

and harmonize the 32 datasets (31 state datasets and one dataset for Mexico City) us-

ing standardized codes for births, deaths, and fetal deaths. I collect monthly data for

the period January 1990-December 2010 for 2,454 Mexican municipalities (99.9 percent

of the total.)

Given that annual population data are not available for Mexican municipalities, I

construct a population monthly time series using censal information for population in

combination with migration flow data obtained from Mexico's National Council of

Population Demographic Indicators and the State and Municipal Database System of

Mexico's National Institute of Statistics (INEGI.) These data are available for years

1990, 1995, 2000, and 2010. For intercensal years, I estimate (midyear) population us-

ing the component method, which is defined by the use of estimates or projections of

births, deaths, and net migration to update a population (Hollmann, Mulder & Kallan

2000.) In its simplest statement, the component method is expressed by the following

equation:
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Pt = Pt-1 + Bt,,t - Dt,,t + Mt,,t (7)

where Pt = population at time t;

Pt, = population at time t - 1;

B,_-, = births, in the interval from time t - 1 to time t;

D,gt = deaths, in the interval from time t - 1 to time t; and

M,_i = net migration, in the interval from time t - 1 to time t.

For simplicity, I compute intercensal net migration using what demographers refer

to as the Das Gupta method (Das Gupta 1991.) This technique assumes that the ratio

of the intercensal estimate to the postcensal estimate should follow a geometric pro-

gression over the five-year period. Naturally, there is no universal norm for producing

intercensal migration estimates, and I could employ other methodologies.

With these variables, I construct a crude (total) mortality rate, which I define as

the total number of deaths (excluding fetal deaths) per period per 1,000 people (see

Figure 4). In addition to the crude mortality rate, I also distinguish among two sub-

types of mortality indicators: infant mortality rate (i.e., the number of deaths of chil-

dren less than 1 year old per period per 1,000 live births) and perinatal mortality rate

(i.e., the number of stillbirths per period per 1,000 live births) (see Figures 5.and 6.) I

also compare these mortality rates by area, defining the rural mortality rate as the

mortality rate in communities with fewer than 2,500 residents (Figure 7), and urban

mortality rate as the mortality rate in communities with 2,500 residents or more (Fig-

ure 8.) Table 1 presents relevant descriptive statistics.

The comparative analysis of urban and rural areas is of particular relevance. The

distinction follows an intuitive logic: the food-security mechanism is more likely to find

empirical support in rural communities. The reason is twofold: on the one hand, ex-

treme weather has a clear and direct impact on agriculture, and this sector is the main

source of employment for rural regions. Figures 9 and 10 illustrate a clear spatial over-

lap between rurality and agricultural specialization. The latest Household Income and
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Expenditures National Survey (INEGI 2011) is also indicative of this phenomenon: in

2010, almost 62 percent of surveyed households living in rural communities worked in

the agricultural sector, while only 7 percent of households residing in urban areas did.

On the other hand, this spatial imbalance translates into significant differences in in-

come: the same survey reports that, also in 2010, households where no members were

employed in agriculture had an income, on average, of 13,365 Mexican pesos per

month (1,062 USD.8 ) Households with some (but not all) members being employed in

the primary sector of the economy earned, on average, 8,618 pesos (686 USD.) Finally,

in the case where the entire household is engaged in agricultural work, monthly income

averages 4,841 pesos (385 USD), or roughly a third of income in non-agricultural

households.

These differences are reflected in two different patterns of household consumption:

monthly expenditures in urban areas are high (relative to rural communities) and food

consumption has a relatively smaller share of total expenditures. Urban households

spend on average 8,878 pesos (707 USD) per month, of which almost 32 percent is

spent on food. In contrast, rural households spend on average 4,602 (366 USD) pesos

per month, of which 40 percent is spent on food. Table 2 summarizes these discrepan-

cies.

3.2 Agricultural Outcomes

I obtain data for agricultural outcomes for the period 1994-2009 using Mexico's Agro-

alimentary and Fishing Information System. I obtain information on the value of agri-

cultural output (in thousands of pesos), and total hectares under crop cultivation

(planted and harvested) at the municipal level for 2,454 municipalities.

In addition to totals, I collect municipal data for 10 major crops' for the volume of

production (in tons) and average prices per ton. Using this dataset, I create two addi-

tional indicators: I define agricultural productivity as the value of agricultural output

' Based on the average midpoint exchange rate of 0.0796 MXN/USD from August 21, 2010
through November 28, 2010, the period when the survey was carried out.

' These crops are green alfalfa, beans, corn, green chili, oats, pastures, sorghum, tomato, tomatil-
lo, and wheat.
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divided by harvested hectare, whereas crop yields are expressed as the volume of pro-

duction divided by harvested hectare. Monetary values were expressed in Mexican pe-

sos of 2009. I deflated prices using a price index that weights the municipal price of

each of the 10 major crops by the value of agricultural output of that crop in a given

year.

Given the nature of the agricultural cycle in Mexico, the calendar year and the ag-

ricultural year differ. By convention, the agricultural year in Mexico lasts 18 months: it

begins on October 1 of year t - 1 and ends on March 30 of year t + 1, and thus the

first three months of a given agricultural year overlap with the last three months of the

previous agricultural year. I collect annual agricultural data based on agricultural

years. In my empirical analysis, I reconcile calendar years and agricultural cycles by

synchronizing weather data accordingly. In addition, my analysis of the agricultural

data shows that, even though there are differences resulting from geographical loca-

tion, elevation, rainfall, coastal proximity, and varying photoperiods, the period when

crop growing intensifies starts typically in early April and ends in late August. For my

empirical analysis, I thus define this period as Mexico's growing season. Similarly, the

period of November through February is characterized by crop-growing inactivity, and

throughout this paper I will refer to this timespan as the non-growing season. Table 3

presents summary statistics for several agricultural outcomes, including yields and vol-

ume of production for corn, Mexico's main staple.

3.3 Weather

The most essential data to carry out any empirical analysis on weather and its impacts

are, of necessity, climatic records. A variety of models provide environmental analysts

with climatic observations, and I employ some to assess weather impacts in Mexico in

terms of human, environmental, and agricultural outcomes. In studying the impact of

severe weather on health and cognitive development, Aguilar and Vicarelli (2011) use

precipitation data at 0.5 degree resolution climate grids, which were generated by the

Climate Research Unit and the Tyndall Centre for Climate Change Research, both at

the University of East Anglia. Sienz Romero et al. (2010) develop spatial climate
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models to estimate plant-climate relationships using thin-plate-smoothing splines of

ANUSPLIN software, created by the Australian National University. Pollak and Cor-

bett (1993) use spatial agroclimatic data to determine corn ecologies.

The underlying problem with these and other works that follow similar methodolo-

gies is their use of monthly climatic data. Using monthly climatic data is problematic

due to the nonlinear effects of weather, which may be concealed when, for example,

daily observations are averaged into monthly or seasonal variables. In effect, daily and

even finer-scale weather data facilitate estimation of models that aim to identify non-

linearities and breakpoints in the effect of weather. Schlenker and Roberts (2009) use

daily temperature data and find a nonlinear asymmetric relationship between weather

and crops yields in the United States, with yields decreasing more rapidly above the

optimal temperature vis-A-vis their increasing below the optimal temperature. The as-

sumption of nonlinearity is particularly critical for studies like this one, where I at-

tempt to represent the relationship between weather and human physiology. In many

studies, for the case of mortality, researchers have found a J- or U-shaped curve appro-

priate to describe the association, with elevated mortality being observed at tempera-

ture extremes and relatively lower mortality at moderate temperatures (Burgess et al.

2011; Curriero et al. 2002; Deschenes & Greenstone 2011; Huynen et al. 2001; Kunst,

Looman & Mackenbach 1993.)

I use daily temperature and precipitation data from the North American Regional

Reanalysis (NARR) model (NOAA, 2012.) The NARR project is a long-term, high-

frequency, dynamically consistent meteorological and land-surface-hydrology dataset

developed by the National Centers for Environmental Prediction (NCEP) as an exten-

sion of the NCEP Global Reanalysis, which is run over the North American Region. It

covers the period 1979 to 2010 and data are available at three-hour intervals (i.e., eight

data points per day), on a Northern Hemisphere Lambert Conformal Conic grid with a

resolution of 0.3 degrees (32km)/45 layers at the lowest latitude. In addition to the

modeling benefits of high spatial resolution, I employ NARR due to the model's good

representation of extreme weather events, resulting from the model outputting all "na-

tive" (Eta) grid time-integrated quantities of water budget. In a recent study, Mesinger

et al. (2006) compare the NARR precipitation for January 1998 (when the El Niflo
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effect was underway) with observed precipitation. Their comparison shows that over

land there is an extremely high agreement between NARR and observed precipitation,

even over the complex western topography of Mexico.

Other variables could be employed for future work. The NARR dataset also in-

cludes information on wind speed, humidity, elevation, and other common climatic fac-

tors, but evidence shows that, for the most important crops of Mexico in terms of out-

put (i.e., corn, sorghum, and wheat), temperature and precipitation are the two weath-

er elements that can effectively inhibit plant growth and development to the point of

crop failure (Ministry of Agriculture of Mexico 2012b.) Conversely, non-optimal values

in altitude, soil quality, or light-intensity requirements may only retard growth or re-

duce yields, but these factors are not likely to put crops at imminent risk (FAO 2007.)

I construct daily temperature and precipitation data in two simple steps. First, I

apply a spherical interpolation routine to the data: I take weighted averages of the dai-

ly mean temperature and accumulated precipitation of every NARR gridpoint within

30 kilometers of each municipality's geographic center, with the inverse squared haver-

sine distance between the NARR gridpoint and the municipality centroid as the

weighting factor.10 Second, I distribute all the (365, or 366 for leap years) daily tem-

perature estimates in a given year over 14 ranges: daily mean temperature lower than

10*C; daily mean temperature higher than 30*C, and 10 two-degree-wide intervals (i.e.,

10*C-12*C, 12*C-14*C,..., 28*C-30*C) in between. Similarly, I distribute the daily accu-

mulated rainfall estimates over 15 two-millimeter-wide ranges (i.e., 0-2mm, 2-4mm,...,

28-30mm) plus an extra range for daily accumulated precipitation exceeding 30mm,

and another range containing exclusively days without rainfall. Slicing the weather da-

ta into small intervals is important for the empirical strategy that will follow, for it

maintains weather variation in any given specification, thus accounting for the nonlin-

ear effects of weather extremes discussed above.

0 The haversine distance measure is useful when the units are located on the surface of the earth

and the coordinate variables represent the geographical coordinates of the spatial units and a spher-

ical distance between the spatial units needs to be calculated. This is accomplished by calculating

ds= r x c, where r is the mean radius of the Earth (6,371.009 kms); c = 2 arcsin(min(1, yfa));

a = sin2 + cos( 1) cos( 2 ) sin2 A ; = (42- 1) = '(2[t] -x 2 [s]) ; A = -(A - A)
(x 1 [t] - x,[s]); x, [s] and x, [t] are the longitudes of point s and point t, respectively; and x2 [s] and

x 2 [t] are the latitudes of point s and point t, respectively.
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Figures 11 and 12 illustrate these ranges for the period 1979-2009. The height of

the bars represents the weighted average number of days across municipality-by-year

temperature and rainfall realizations, where the municipality-by-year's total population

is the weight. The weighted average temperature is 18.6*C, while the weighted average

daily accumulated precipitation is approximately 2mm.

An alternative approach to using ranges is suggested by Burgess et al. (2011.) They

construct a measure of the cumulative number of degrees-times-days that exceed 32*C

in a year, in an attempt to reflect the nonlinear effects of temperature." Although it

collapses daily weather observations into a single metric, this measure, by taking into

account the number of degrees per day above a certain threshold, still indirectly ac-

counts for the nonlinear effects of weather. For this paper, I follow a similar strategy

by constructing four aggregate measures: (1) the cumulative degrees-times-days that

exceed 30*C in a year, (2) the cumulative degrees-times-days below 10*C in a year, (3)

the total millimeters-times-days that exceed 8 millimeters, and (4) the total millime-

ters-times-days below 3 millimeters. The rationale behind these thresholds is ecological.

These are the minimum and maximum temperature and precipitation requirements for

corn, Mexico's staple crop. Beyond these values, corn usually begins to stress, putting

at serious risk its survival (G6mez Rojas & Esquivel Mota 2002; Ministry of Agricul-

ture of Mexico 2012a; Neild & Newman 1990; North Dakota Corn Utilization Council

1997.)

Table 4 summarizes the descriptive statistics for the temperature and precipitation

variables employed.

4 Empirical Strategy

I use two empirical specifications to establish the relationship between weather and

mortality. The first one is an attempt to capture the full distribution of annual fluctua-

tions in weather and is based on equation (8):

" The choice of using 32*C as the threshold is based on the public health and agronomy research
that has consistently shown that temperatures higher than 32*C are severe for both human and crop
physiology (Burgess et al. 2011.)
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12 17

Ymt Z O4tempmj +( Pkrain Yd + am + Yt + Alt - At 2 + emt (8)
j=1 k=1

where Ymt is the log (crude or an alternative) mortality rate (or agricultural outcome

of interest) in municipality m in year t (using levels virtually leaves the results un-

changed, but for the sake of clarity, I use logs.) tempmtj and rainmtk are the separate j

temperature and k precipitation ranges described above for municipality m in year t.

The impact of temperature thus equals the sum of all j ranges, whereas the impact

of precipitation is equivalent to the sum of all k ranges. Notice that the only functional

form restrictions in this specification are (1) that the mortality impacts of temperature

and precipitation are constant within each 2-degree and 2-millimeter range, respective-

ly, and (2) that all days with temperatures/rainfall above (below or equal to)

30'C/30mm (10"C/Omm) have the same impact in terms of mortality.

am is the fixed effect of municipality m. I include municipality fixed effects to con-

trol for the average differences across municipalities in any observable or unobservable

predictors of log mortality rate so that, for instance, demographic, socioeconomic, or

clinical impacts will not be confounded with that of weather. Similarly, yt is the unre-

stricted time-fixed effect of year t. These fixed effects control for time-varying differ-

ences in the dependent variable that are common across municipalities, such as the

introduction of the Seguro Popular in 2003. Because such shocks are unlikely to have

the same effect at the regional level (for instance, among Seguro Popular delegations,

the pricing of prescription drugs varies greatly across regions), equation (8) also in-

cludes quadratic polynomial time trends A, for the r=5 mesoregions of Mexico (North-

east, Northwest, South, Center, and Center-West) which, at least in terms of weather,

are fairly homogenous. Finally, Emt is the stochastic error term.

The second specification fits equation (9):

Yrt = 3CDD30mt + 6CDD1Omt + pCMMD8mt + 17CMMD3mt +
(9)
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where CDD30mt (CDD10mt) is the cumulative degrees-times-days that exceed 30*C

(below 10*C) in municipality m in year t. Similarly, CMMD8mt (CMMD3mt) is the

cumulative millimeters-times-days that exceed 8mm (below 3mm) in municipality m in

year t. This specification also includes municipal fixed effects a., time fixed effects -yt,

quadratic polynomial time trends A., and a stochastic error term E6 t.

By definition, equation (9) is a more restrictive approach than equation (8), given

that it assumes that the impact of weather on mortality is determined by extreme

temperatures and rainfall only. However, with only four estimated coefficients instead

of 29, sensitivity of the results is gained due to improved statistical power to detect

weather effects.

As discussed by Burgess et al. (2011) and Deschenes and Greenstone (2011), the

validity of my empirical strategy for studying the weather-mortality relationship relies

on the assumption that equations (8) and (9) yield unbiased estimates of the

0 j, Pk 13, J, p, and rq vectors. Given the two-way fixed-effect identification strategy em-

ployed, any omitted variables that are constant over time and/or particular to one

municipality will not bias the estimates, even if the omitted variables are correlated

with the explanatory variables. If weather variability is supposed to be random, then it

is plausible to assume that it is uncorrelated to unobserved mortality determinants.

5 Results

I present two different sets of results, based on the two hypothesized mechanisms

through which extreme weather affects humans to the point of causing death: (1) the

human physiology channel (severe weather impacts human physiology through thermal

stress and disease, which in an extreme situation may lead to death) and (2) the food-

security channel (mortality rates are driven as a result of adverse weather disrupting

either the household's sources of income on which it relies for subsistence or its pur-

chasing-power capacity, or both, increasing the likelihood of becoming famine victims

as a result.)

These results are derived from the fitting of equation (8), distributing temperatures

and precipitation estimates over small intervals to maintain weather variation. Because
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observing a common variance structure over time is unlikely, my results are based on a

cluster-correlated Huber-White covariance matrix estimator, which avoids the assump-

tion of homoskedasticity (Wooldridge 2004.) In addition, I weight my empirical speci-

fication by the square root of the total municipal population, in an effort to correct for

heteroskedasticity associated with municipal differences in estimation precision of mor-

tality rates, having the additional advantage of presenting impacts on one person, ra-

ther than one municipality (Deschenes and Greenstone 2011.) Although temperature

and precipitation are modeled in the same way, I only report temperature estimates.

The findings show that precipitation, in general, is unlikely to have a significant inde-

pendent influence on mortality and agricultural outcomes.

5.1 The Physiology Channel

Figure 13 presents the results of the impact of temperature on mortality rates. More

specifically, it shows the estimated impact of an additional day in 12 temperature

ranges, relative to a reference range, which in this case is the 16*-18*C.

Two patterns emerge. First, graphically, a J-shaped curve is fairly appropriate to

describe the weather-death association. As theory predicts, moderate temperature

ranges do not seem to have an impact on mortality rates. In fact, among the eight

ranges that account for temperatures between 12*-26*C, only two are statistically sig-

nificant at the conventional levels. Colder ranges, in general, do not have an effect sta-

tistically different from the reference range. Second, extreme hot weather does seem to

have a sustained impact on death. All three ranges including the hotter temperature

ranges are statistically different from the reference category. For instance, one addi-

tional day with an average temperature above 26*C increases mortality rates by at

least 0.1 percent relative to a day with a mean temperature in the 16*C-18'C range.1 2

12 Precipitation impacts are typically insignificant at the conventional levels, with the exception of
the extreme-precipitation ranges (i.e., the far-left and far-right categories including days with no
precipitation and rainfall exceeding 30mm., respectively) Although what can be thought of as the
"drought range" (i.e., the range that includes days with no precipitation) does not comparatively
have an important impact on death, extreme rainfall does pose significant threats to human wellbe-
ing. One single day with rainfall higher than 30mm increases mortality rates by 0.7 percent relative
to one with rainfall ranging from 6-8mm.
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As I pointed out before, some studies have investigated the impact of extreme

weather on perinatal and infant mortality. Hashizume et al. (2009) find that perinatal

mortality sharply increases with low temperatures. Dadvand et al. (2011) conclude

that extreme heat was associated with a reduction in the average gestational age of

children, which is associated with perinatal mortality and morbidity. Burgess et al.

(2011) show that weather extremes appear to increase infant mortality in rural India,

but not in urban areas. Scheers-Masters, Schootman, and Thach (2004) find no evi-

dence that elevated environmental temperatures have a significant role in the develop-

ment of sudden infant death syndrome.

Figure 14 shows that there is no clear relationship between temperature, either ex-

treme or moderate, and fetal mortality. If anything, colder temperatures seem to be

associated with lower fetal mortality rates, but the effect is minimal. All the tempera-

ture ranges above 12*C are small in magnitude and insignificant. As for infant mortali-

ty, Figure 15 shows that extreme heat is positively associated with infant mortality

rates, but in terms of extreme cold, it is not possible to reject the null hypothesis of

equality with the base category. I note that the point estimate of days with tempera-

tures higher than 30*C relative to the reference 16*-18*C range is 0.15 percent for the

crude mortality response function, while it is 50 percent larger (0.23 percent) for the

infant mortality specification. This finding echoes Deschenes and Greenstone's (2011)

result that the impact on annual mortality of hot weather (i.e., higher than 90*F) for

infants is twice as large as the point estimate for the general population. The impact

of precipitation on both fetal and infant mortality is, with frequency, statistically nil.

Figures 16 and 17 show the relationship between weather and death by type of ar-

ea. I analyze two types of areas: rural and urban. Recall that I define rural mortality

rate as the mortality rate in communities with fewer than 2,500 residents, and urban

mortality rate as the mortality rate in communities with 2,500 residents or more. It is

important to emphasize that this differentiation is relevant because it would indicate

that people living in rural areas are potentially more exposed to the negative impacts

of weather, given that their main economic activity, agriculture, is easily upended by

climate shocks.
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From the analysis of these plots, several interesting findings emerge. In terms of

temperature, the effect on death is virtually zero for urban areas: only two out of the

12 temperature ranges are significant, but small in magnitude, with no temperature

ranges being associated with increases in mortality rates greater than 0.1 percent.

Conversely, the response function between log rural mortality rate and temperature

indicates that rural areas are especially vulnerable to the negative effects of extreme

(particularly hot) temperatures. Although the variance of rural mortality is high (see

Table 1), which results in wider confidence intervals, the five hottest temperature

ranges (i.e., temperatures higher than 26*C) are all statistically significant and of high-

er magnitude than the urban coefficients. For example, exchanging a single day in the

16*C-18*C range for one in the >30*C range would lead to an increase in annual mor-

tality rates of 0.2 percent in rural areas (for urban areas the coefficient is not statisti-

cally different from the reference range.) In terms of the precipitation response func-

tions, for most coefficients, both for urban and rural areas, it is not possible to reject

the null hypothesis of equality with the base range.

To evaluate the robustness of these results, I present in Table 5 several versions of

equation (9) which, in spite of being less flexible than previous specifications of equa-

tion (8), offers sensitivity gains due to improved statistical power to detect weather

effects. Column (1) shows the relationship between extreme weather and annual mor-

tality. Once again, cold temperatures do not seem to have an effect on crude mortality

rates. The impact of hot weather is, in comparison, as found before, considerable: each

additional degree above 30*C per year is associated with a 0.02 percent increase in the

crude mortality rate. In other words, a one-standard deviation (34.3 percent) increase

in the cumulative-degree-days above 30*C would lead to a 0.7 percent increase in the

crude mortality rates. Exposure to extreme precipitation patterns, defined as the cu-

mulative-millimeter-days above 8mm or below 3mm, is positively associated with crude

mortality rates. Each additional millimeter above or below the threshold causes a 0.01-

0.02 percent increase in the crude mortality rate.

Columns (2) and (3) show the relationship between extreme weather and infant

and fetal mortality rates. As with the previous specification, severe weather events do

not seem to lead to an increase in mortality in infants or stillbirths, with the exception
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of extreme heat, which is associated with a 0.04 percent increase in infant mortality

rates. Extreme precipitation patterns seem to be negatively associated with these types

of mortality indicators, or at most, have a negligible positive effect.

In columns (5) and (6), I compare the effect of weather on mortality by type of ar-

ea. Once again, the impact of cold weather is statistically zero. In terms of extreme

heat and precipitation, I again find that rural areas are more vulnerable than urban

areas. According to equation (9), the effect of an additional degree above 30*C per year

on mortality rates is twice as large for rural regions relative to urban areas. In terms of

precipitation, differences are more prominent, with exposure to an additional millime-

ter-day above 8mm having an impact on rural mortality rates approximately eight

times larger than on urban mortality rates.

So far, I have shown that hot temperatures are associated with higher mortality

rates. In particular, infants seem to be a segment of the population particularly vul-

nerable to extreme heat. The impact of cold temperatures is normally trivial. In addi-

tion, the impact of (hot) temperature seems to be differentiated: it is larger for rural

regions than for urban areas. As for rainfall, the effect is ambiguous: depending on the

specification, precipitation extremes may be strongly associated with higher mortality

or reflect habitually insignificant estimates.

The rural/urban differentiation is to be expected if the food-security mechanism is

at work. In particular, the "income-based channel," where health outcomes are nega-

tively influenced as a result of adverse weather disrupting the household's sources of

income on which it relies for subsistence is more likely to operate in rural regions. Ag-

riculture, which is the economic sector most susceptible to weather variability, is the

main income-generating activity in rural communities, while in urban centers industry

and services play a more significant role (see Table 2.)

I test this hypothesis below, first by comparing the impact of weather during the

growing season vis-A-vis the non-growing season. If weather leads to contractions in

agricultural output, which in turn decreases income, constraining consumption and ul-

timately causing death, then extreme weather taking place during the growing season

should be particularly damaging, but severe weather events occurring in the non-

growing season should have an inconsequential impact on mortality.
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5.2 The Food-Security Channel

The timing of extreme weather is important. A look at Figures 18 through 21 validates

once more the negative effect of high temperatures on mortality, provided that such

high temperatures take place during the growing season. This effect is statistically sig-

nificant for rural areas, but not for urban areas, which suggests that rural specializa-

tion in agriculture may explain differences in mortality rates, as discussed above. Even

though signs and magnitudes seem to be correct for the temperature impacts during

the non-growing season, the null hypothesis of equality with the base category is not

rejected for most of the temperature ranges. The three higher temperature ranges for

rural areas are statistically different from zero: an additional single day with tempera-

tures higher than 26*C increases mortality on average by 0.2 percent, relative to the

base category of 16*C-18*C, which indicates that virtually all the effect that tempera-

ture exerts on mortality is explained by the occurrence of extreme events during the

growing season. Precipitation impacts are generally insignificant at the conventional

levels, both for urban and rural areas, regardless of the timing of rainfall.

Figures 22-24 point to a similar conclusion in terms of the effect of weather on ag-

ricultural output. Notice that the effect of extreme weather on agricultural output is

not apparent at first sight. The number of extreme hot (or cold) days in a given agri-

cultural year does not seem to have a significant impact on agricultural output (see

Figure 22.) However, when the regressors consist of temperature ranges for growing-

season days only, a clear negative relationship emerges: the higher the temperature, the

lower the agricultural output (see Figure 23.) On the contrary, as expected, when I re-

gress agricultural productivity against non-growing-season temperature ranges, there is

no relationship between temperature and agricultural output that is statistically signif-

icant at the conventional levels, which is reflected in the fairly flat line shown in Figure

24. As in the mortality analysis, the relationship between precipitation and agricul-

tural output, as modeled, yields insignificant results.

It is important to notice that, because of the reduced number of observations per

range (instead of 365 days per year, the growing season, as defined, has 153 days, while

the non-growing season comprises only 120 days), parameter estimation precision is
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reduced. Yet, I find the same results when estimating equation (9) for urban and rural

areas (see Table 6.) In terms of temperature, hot weather is substantially more danger-

ous than cold temperatures in Mexico. Again, severe temperature impacts on mortality

are typically zero or slightly positive during the non-growing season. Conversely, they

are large in magnitude and statistically significant during the growing season (with the

exception of cold weather in rural areas, whose impact is statistically zero.)

Similarly, extreme precipitation patterns have a more profound mortality impact in

rural areas, with rural-mortality estimates being approximately three times larger than

urban ones. Cumulative-millimeter-day variables are always significant for the growing-

season specifications, but typically equal to zero in statistical terms for the non-

growing season regressions.

An analysis of key variables of the agricultural cycle provides further evidence of

the food-security channel being at work. Table 7 presents estimates of the impact of

extreme temperatures on agricultural output, agricultural productivity, and crop pric-

es, both for the growing and the non-growing season, based only on equation (9), given

the estimate precision issues pointed out above. It is worth noting that these results

support the food-security channel hypothesis: extreme weather is indeed negatively af-

fecting productivity and prices. In turn, as the abundant literature on famines, food

supply chains, and agroecology has repeatedly shown, this reduces income and con-

sumption.

Columns (1) and (2) in Table 7 report the impact of extreme weather on agricul-

tural income. In terms of temperature, the findings are similar to those of the mortali-

ty analysis in the previous section. Extreme heat, operationalized as the number of

cumulative-degree-days above 30"C, is associated with lower agricultural income, and

the association is significant at the conventional levels. This is true for the growing

season, but not so for the non-growing season. In effect, while one additional degree-

day above 30*C during the growing season leads to a 5 percent decrease in agricultural

income, one extra degree-day above 30*C during the non-growing season has an effect

that is not statistically different from zero. Once again, consistent with the results of

the mortality analysis, cold days do not seem to have an impact, either during the

growing season or during the non-growing season, on agricultural income. With regard
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to the precipitation variables, both "dry" and "wet" days during the growing season

lead to decreases in income. Both coefficients are negative and statistically significant,

but dry days are roughly three times more damaging than wet days: an additional mil-

limeter-day above 8 mm. is associated with a 0.04 percent decrease in output, while an

additional millimeter-day below 3 mm. is associated with a 0.13 percent decrease in

income. Conversely, precipitation impact estimates for the non-growing-season regres-

sion are statistically equal to zero.

Columns (3) and (4) in Table 7 replicate this exercise for agricultural productivity,

measured as the value of output per cultivated hectare. The impact of extreme weath-

er on productivity is very similar to that on agricultural income. First, notice that se-

vere precipitation and temperatures taking place during the non-growing season do not

seem to have a significant effect on agricultural productivity. The null hypothesis of

equality to zero is not rejected for any weather coefficient. Second, the effect of abnor-

mally high and low temperatures on productivity is negative, and comparable in mag-

nitude to the effect on agricultural output, but not statistically significant. Finally,

both the coefficients for the cumulative-millimeter-days above 8 mm. and the cumula-

tive-millimeter-days below 3 mm. are, as expected, negative and significant at the con-

ventional levels, with productivity decreases ranging from 0.02 percent in the case of

an extra millimeter above 8 mm/day to 0.08 percent for the case of an additional mil-

limeter below 3mm/day.

Table 8 presents more specific results for yields, defined as tons per cultivated hec-

tare, for five of the most important crops in Mexico: corn, beans, chilies, tomato, and

wheat, for which sufficient data are available. Together, these crops make up more

than 55 percent of the total value of agricultural output of the country. Columns (1)

through (6) show the results of estimating equation (8.) As in previous versions of

equation (8), moderate temperature and precipitation ranges are, in general, equal to

the reference range, so that I present only the three most extreme ranges at both ends

of the distribution for the sake of conciseness. An analogous pattern to previous esti-

mations arises: cold temperatures usually do not have a significant effect on yields; if

anything, colder temperatures increase yields. Severely hot temperatures, on the con-

trary, do seem to impact crop yields negatively. For the five crops analyzed, all show a
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clear negative relation between temperature and yields, and three are statistically sig-

nificant at the conventional levels. In the case of Mexico's staple crop, corn, for which

the largest number of observations is available, an additional day in any of the three

coldest temperature ranges leads to an approximate yield increase of 0.1 percent rela-

tive to the reference temperature range of 16'-18*C. Conversely, an additional day in

any of the three hottest temperature ranges, leads, on average, to a 0.1 percent yield

decrease relative to the reference temperature range. For other crops, the impact of hot

temperatures is even more acute: for instance, one single day with temperatures higher

than 30*C leads to a 0.3 percent decrease in tomato yields and to a 0.5 percent de-

crease in wheat yields.

The results of precipitation ranges are fairly parallel to those of temperature ex-

tremes. Precipitation ranges below 4 mm., with the exception of the wheat regression,

are negative and generally significant. Days with limited rainfall, relative to the refer-

ence precipitation range, lead to yield decreases ranging from 0.2 percent to 0.9 per-

cent. Days with extreme rainfall, relative to the reference precipitation range, lead to

yield decreases ranging from 0.4 percent to 3 percent. Once again, taking as an exam-

ple the representative case of corn, an additional day in the 0 mm. range leads to a 0.2

percent yield decrease (relative to the reference category of 6-8 mm.), while an extra

day with rainfall surpassing 30 mm. leads to a 0.4 percent yield decrease.

If extreme weather, both in terms of precipitation and temperature, leads to de-

creases in output, yields and productivity, then price increases ought to be expected.

The price mechanism in market economies adjusts in response to constraints in crop

supplies. Columns (5) and (6) in Table 7 present the results of estimating equation (9)

for a bundle of agricultural prices for 10 representative crops that make up approxi-

mately 70 percent of the total value of agricultural production in Mexico (Servicio de

Informaci6n Agroalimentaria y Pesquera 2012.)

Indeed, extreme weather does increase agricultural prices, with hot temperatures

being the weather condition that exacerbates prices most. This pattern once again

holds for the growing season only. An additional degree-day above 30*C is associated

with a sharp 7 percent increase in crop prices. Any other severe weather impact is con-

siderably weaker. An additional degree-day below 10*C leads to a 0.4 percent increase

76



in agricultural prices. Likewise, an extra millimeter-day above the 8 mm. threshold is

associated with a 0.02 percent increase in crop prices, while an extra millimeter-day

below the 3 mm. threshold leads to an increase of approximately 0.06 percent in agri-

cultural prices. Unsurprisingly, when agricultural income and productivity seems to be

unaffected by weather, that is, during the non-growing season, prices are not affected

by severe climate either."

6 Conclusion

Extreme weather exerts negative effects on humans, particularly on the most vulnera-

ble. Using data for all the 2,454 municipalities of Mexico for the period 1980-2010, I

analyze the impact of exposure to severe weather, defined for the purposes of this pa-

per as extreme temperatures and precipitation, on death and agricultural outcomes.

I present empirical evidence for the hypothesis that extreme weather increases mor-

tality rates and decreases agricultural income and productivity, in addition to increas-

ing crop prices. In particular, I find that extreme heat is the most damaging form se-

vere weather may take. I find that extremely hot temperatures increase mortality and

crop prices, while they at the same time decrease agricultural income, agricultural

productivity, and yields of critical crops, such as corn, which a large number of poor

households in rural Mexico depend upon for their subsistence. As expected, given that

Mexico does not have harshly cold seasons, I do not find any statistically significant

effect of cold weather on health or agricultural outcomes. I find that precipitation ex-

tremes have an ambiguous effect on mortality depending on the model specification.

Evidence is more coherent in terms of agricultural outcomes, as I find that both lim-

ited and extreme rainfall pose negative consequences for crop yields, agricultural in-

" The findings throughout this paper should be interpreted taking into account the inherent limi-

tations of the empirical specification. For instance, given that I estimated the effect of weather on

mortality based on inter-annual climate variation, the estimates should be understood as short-term

impacts of unanticipated severe weather, which provide an upper-bound to the impact of less un-

predictable extreme weather. As Burgess et al. (2011, p. 33) point out: "individuals are likely to be
better able to adapt to long-run, predictable change, for example through migration (for example,
from rural to urban areas), technology adoption, or occupational change away from climate-exposed
industries such as agriculture."
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comes and productivity, with these effects being observed during the growing season

only.

I find that rural areas are substantially more vulnerable to severe weather than ur-

ban areas. In addition, I also find that, for rural areas, if extreme weather takes place

during the peak of the growing season, the effects are considerably stronger than in a

situation where climate extremes are observed during non-growing times. This echoes

the conclusion of Burgess et al. (2011) for their study in India. As they put it: "quasi-

random weather fluctuations introduce a lottery in the survival chances of citizens. But

this lottery only affects people living in the rural parts where agricultural yields, wages

and prices are adversely affected by hot and dry weather" (p. 34.)

These results have an important policy implication: under severe weather condi-

tions, a free market economy can produce socially unfair outcomes. In particular, cli-

mate extremes cause crop prices to rise precisely when incomes fall (farmers have less

output, productivity falls), which in an extreme situation may lead to death, as evi-

denced in this paper. In other words, the price mechanism aggravates the problem in-

stead of being self-correcting. Technically speaking, the problem is one of missing mar-

kets rather than market failure: if regions specialized in agriculture (usually rural

communities) had sufficient insurance and credit mechanisms catering to the poor, the-

se would provide safety nets in the event of a weather shock. As a result, the govern-

ment may play a key role in creating the conditions to mitigate the adverse effects of

climate, even though these risks cannot be fully eliminated.

Furthermore, if extreme heat is the most lethal mechanism through which weather

affects human physiology, and this impact is considerably stronger in rural regions,

given their dependence on agriculture, the consequences of climate change are likely to

be unevenly distributed across communities. Empirical evidence indicates that there

has been an overall decrease in the number of cold days, while the number of warm

spells and heat waves has increased (IPCC 2012.) As a result, development policy must

encompass differential vulnerability and capacity mechanisms in order for communities

to better adapt to these changing conditions. Future research should focus on these

environmental and institutional aspects.
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Table 1. Mortality Rates in Mexico, 1990-2010, by Type of Area

Pooled
(1)

Rural
(2)

Urban
(3)

Crude mortality rate 4.8 9.1 4.9
(1.4) (34.5) (1.9)

Infant mortality rate 15.4 31.6 19.8
(9.6) (160.3) (64.9)

Fetal mortality rate 10.5 16.4 13.6
(6.7) (99.6) (51.5)

Note: Municipalities may consist of urban areas only, rural areas only, or a combination of
both. All statistics are weighted by total municipal population. Standard deviations in pa-
rentheses.

Table 2. Household Income and Expenditures (in Mexican Pesos), by Type of Household

% Households

Food Employed in
Income Expenditures Consumption Agriculture

(1) (2) (3) (4)
Pooled 11,667 7,964 2,607 18.9
Urban 13,026 8,878 2,816 7.2
Rural 6,673 4,602 1,839 61.9

Source: Encuesta Nacional de Ingresos y Gastos de los Hogares 2010.
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Table 3. Relevant Agricultural Outcomes in Mexico, 1994-2009, by Type of Area

Pooled Rural Urban

(1) (2) (3)

Agricultural output ($1,000) 658,092.4 664,831.9 84,092.1

(1959499) (1969799) (259492)

Agricultural productivity 21.5 21.6 11.9

($/ha) (817.3) (822.0) (54.1)

Harvested hectares (ha) 36,791.8 37,154.2 6,388.6

(46923) (47070) (10285)

Yield (corn) (tons/ha) 2.7 2.7 1.3

(2.1) (2.1) (0.9)

Volume (corn) (tons) 54,114.5 54,709.9 1,138.9

(155137) (155904) (1740)

Price index 2.3 2.3 2.3

(2.2) (2.2) (2.3)

Note: If fewer than 2,500 residents live in a given municipality, such a municipality is con-
sidered "rural." Data refer to the agricultural cycle, rather than calendar years. Monetary
values are in thousands of pesos of 2009. All statistics are weighted by total harvested hec-
tares, except descriptive statistics for corn, which are weighted by harvested hectares of
corn. Standard deviations in parentheses.
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Table 4. Extreme Weather in Mexico, 1979-2009, by Type of Area

Rates

Daily mean temperature (*C)

Annual average rainfall (mm)

Annual degree-days (over 30*C)

Annual degree-days (below 10*C)

Annual millimeters-days (over
8mm)

Annual

3mm)

millimeters-days (below

Note: If fewer than 2,500 residents live in a given municipality, such a municipality is con-
sidered "rural." All statistics are weighted by total municipal population. Standard devia-
tions in parentheses.
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Pooled

(1)
18.5

(4.4)
712.8

(419.1)

11.6

(45.5)
30.1

(54.7)

174.8
(225.1)

779.7
(122.7)

Rural

(2)

17.4

(3.9)
678.9

(332.7)
6.8

(30.0)
38.7

(57.8)
129.3

(139.8)
764.9

(120.6)

Urban

(3)
18.5
(4.4)

713.0
(419.5)

11.6
(45.5)

30.1
(54.7)
175.1

(225.4)

779.8

(122.8)



Table 5. Estimates of the Impact of Extreme Weather on Relevant Mortality Rates

Crude
mortality

Infant
mortality

Fetal
mortality

Urban
mortality

Rural
mortality

(1) (2) (3) (4) (5)

Cumulative-degree- 0.00022 * 0.00038 ** 0.00008 0.00018 ** 0.00034 *

days above 30 (0.00007) (0.00019) (0.00028) (0.00007) (0.00021)

Cumulative-degree- 0.00004 -0.00017 -0.00041 ** 0.00005 -0.00028

days below 10 (0.00005) (0.00012) (0.00018) (0.00009) (0.00022)

Cumulative-mm-days 0.00010 * 0.00006 * -0.00017 * 0.00003 ** 0.00022 *

above 8 (0.00001) (0.00003) (0.00004) (0.00002) (0.00004)

Cumulative-mm-days 0.00019 *** -0.00004 -0.00021 *** 0.00012 * 0.00040 ***

below 3 (0.00003) (0.00007) (0.00008) (0.00004) (0.00009)

N 48,583 40,425 35,104 29,206 46,384

Note: Response variables are in logs. Regressions include municipality fixed-effects, time fixed-effects and quadratic regional time trends.

All statistics are weighted by total municipal population. Huber-White standard errors in parentheses. * significant at 10%; ** signifi-

cant at 5%; *** significant at 1%.



Table 6. Estimates of the Impact of Extreme Weather on Relevant Mortality Rates, by Season

Agricultural year Growing season Non-growing season

Urban Rural Urban Rural Urban Rural
mortality mortality mortality mortality mortality mortality

(1) (2) (3) (4) (5) (6)
Cumulative-degree-days 0.00018 ** 0.00034 * 0.02484 *** 0.06166 * 0.00017 ** 0.00022
above 30 (0.00007) (0.00021) (0.00649) (0.00821) (0.00008) (0.00022)

Cumulative-degree-days 0.00005 -0.00028 0.00261 ** 0.00014 0.00002 -0.00016
below 10 (0.00009) (0.00022) (0.00122) (0.00190) (0.00010) (0.00025)

Cumulative-millimeter- 0.00003 ** 0.00022 * 0.00001 0.00033 * 0.00013 * 0.00009
days above 8 (0.00002) (0.00004) (0.00003) (0.00008) (0.00005) (0.00009)
Cumulative-millimeter- 0.00012 *** 0.00040 * 0.00019 * 0.00070 * -0.00006 0.00063 **

days below 3 (0.00004) (0.00009) (0.00006) (0.00014) (0.00013) (0.00031)
N 29,206 46,384 29,206 46,384 29,206 46,384

Note: Response variables are in logs. Regressions include municipality fixed-effects, time fixed-effects and quadratic regional time trends.
All statistics are weighted by total municipal population. Huber-White standard errors in parentheses. * significant at 10%; ** signifi-
cant at 5%; *** significant at 1%.
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Table 7. Estimates of the Impact of Extreme Weather on Relevant Agricultural Outcomes, by Season

Agricultural income
Agricultural productivity

(output/ha) Crop prices

Non- .Non- .Non-
Growing sea- growing Growing growing Growing growing

son goigseason goigseasongrwn
season season season

(1) (2) (3) (4) (5) (6)

Cumulative-degree-days -0.04935 ** 0.00030 -0.05122 0.00102 0.06983 * -0.00066

above 30 (0.02298) (0.00057) (0.03389) (0.00055) (0.01951) (0.00040)

Cumulative-degree-days 0.00014 0.00054 -0.00556 0.00046 0.00407 * -0.00000

below 10 (0.00373) (0.00035) (0.00344) (0.00034) (0.00241) (0.00024)

Cumulative-millimeter- -0.00040 * -0.00056 -0.00024 ** -0.00055 0.00017 ** 0.00011

days above 8 (0.00010) (0.00043) (0.00010) (0.00043) (0.00008) (0.00023)

Cumulative-millimeter- -0.00133 * -0.00148 -0.00079 * -0.00112 0.00056 ** 0.00076

days below 3 (0.00030) (0.00121) (0.00031) (0.00123) (0.00023) (0.00055)

N 27,562 27,562 27,562 27,562 27,715 27,715

Note: Response variables are in logs. Regressions include municipality fixed-effects, time fixed-effects and quadratic regional time trends.

All statistics are weighted by total harvested hectares. Huber-White standard errors in parentheses. * significant at 10%; ** significant

at 5%; *** significant at 1%.
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Table 8. Estimates of the Impact of Extreme Weather on Relevant Crop Yields (tons/ha)

Days
10 *-12*C

(2)
* 0.00089

(0.00036)
** -0.00041

(0.00091)
-0.00496

(0.00206)
** -0.00012

(0.00129)
-0.0018

(0.00084)

**

**

Days
120-14

(3)
0.001

(0.000
0.001

(0.000
0.002

(0.002
0.000

(0.000
0.000

(0.000

Impact on log crop yields
Days

*C 26 *-28 *C

(4)
03 ** -0.00155 *

27) (0.00036)
13 -0.00259

39) (0.00099)
65 -0.00107

32) (0.00226)
66 -0.00117

)9) (0.00132)
79 -0.00101

56) (0.00125)

Days
28 *-30 OC

(5)
-0.00093

(0.00043)
-0.00159

(0.00093)
-0.00107

(0.00217)
-0.00122

(0.00115)
-0.00443

(0.00221)

Days
> 30 *C

(6)
** -0.00066 *

(0.00036)
* -0.00258 **

(0.00107)
-0.00103

(0.00225)
-0.00099

(0.00186)
** -0.00511 *

(0.00188)
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Corn

(n=26,343)
Beans

(n=20,054)
Chillies

(n=7,863)
Tomato

(n=6,270)
Wheat

(n=6,261)

Days
< 10 C

(1)
0.00123

(0.00039)
0.00237

(0.00075)
-0.00003

(0.00239)
-0.00393

(0.00152)
0.00020

(0.00074)



Table 8., continued

Impact on log crop yields
Days Days Days Days Days Days
0mm 0-2mm 2-4mm 26-28mm 28-30mm > 30mm

(1) (2) (3) (4) (5) (6)
Corn -0.00183 ** -0.00219 * -0.00265 *** -0.00728 0.00300 -0.00386 *

(n=26,343) (0.00077) (0.00082) (0.00096) (0.00491) (0.00871) (0.00200)
Beans -0.00205 -0.00232 -0.00076 -0.00133 0.01481 -0.00436

(n=20,054) (0.00268) (0.00262) (0.00355) (0.00615) (0.00952) (0.00365)
Chillies -0.00671 ** -0.00648 ** -0.00875 ** -0.00020 -0.01627 0.00087

(n=7,863) (0.00285) (0.00294) (0.00350) (0.01243) (0.01491) (0.00727)
Tomato -0.00260 -0.00304 -0.00251 -0.02802 ** 0.00606 -0.01581 **

(n=6,270) (0.00246) (0.00240) (0.00293) (0.01156) (0.01396) (0.00652)
Wheat 0.00516 *** 0.00617 * 0.00503 ** 0.02770 * 0.03279 * -0.01076 **

(n=6,261) (0.00188) (0.00189) (0.00203) (0.01035) (0.01228) (0.00543)

Note: Response variables are in logs. Regressions include municipality fixed-effects, time fixed-effects and quadratic regional time trends.
All statistics are weighted by each crop's total harvested hectares. Huber-White standard errors in parentheses. * significant at 10%; **
significant at 5%; *** significant at 1%.
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Figure 1. Probability of infectious-disease outbreaks due to severe weather events
Note: Areas with a high probability of infectious-disease outbreaks resulting from severe weather
are shown in red; areas with low probability in green.
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Figure 2. Economic and social importance of the agricultural sector, Latin American countries
Source: World Bank (2010)
Note: Size of the balloons represents the level of agricultural gross domestic product.
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Figure 3. Agricultural vulnerability, by municipality
Source: Instituto Mexicano de Tecnologfa del Agua (2010)
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Figure 4. Crude (all-cause) mortality rate, by municipality, 2010
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Figure 5. Infant mortality rate, by municipality, 2010
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Figure 6. Perinatal mortality rate, by municipality, 2010
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Figure 7. Rural mortality rate, by municipality, 2010
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Figure 8. Urban mortality rate, by municipality, 2010
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Figure 9. Urbanization in Mexico, by municipality, 2000
Source: Instituto Nacional de Ecologia y Cambio Climdtico (2013)
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Figure 10. Economic sector specialization in Mexico, by municipality, 2000
Source: Instituto Nacional de Ecologia y Cambio ClimAtico (2013)
Note: A: Agriculture; Q: mining and quarrying; M: manufacturing; S: services.
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Figure 12. Rainfall distribution in Mexico, 1979-2010
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Figure 13. Estimated impact of a day in 12 temperature ranges on log annual mortality rate, rel-
ative to a day in the 16*-18*C range
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Figure 14. Estimated impact of a day in 12 temperature ranges on log annual fetal mortality
rate, relative to a day in the 16*-18*C range
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Figure 15. Estimated impact of a day in 12 temperature ranges on log annual infant mortality

rate, relative to a day in the 16*-18*C range
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Figure 16. Estimated impact of a day in 12 temperature ranges on log annual urban mortality

rate, relative to a day in the 16'-18*C range
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Figure 17. Estimated impact of a day in 12 temperature ranges on log annual rural mortality

rate, relative to a day in the 16*-18'C range
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Figure 18. Estimated impact of a growing-season day in 12 temperature ranges on log annual

urban mortality rate, relative to a day in the 16'-18*C range
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Figure 19. Estimated impact of a growing-season day in 12 temperature ranges
rural mortality rate, relative to a day in the 16*-18*C range
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Figure 20. Estimated impact of a non-growing-season day in 12 temperature ranges on log annu-

al urban mortality rate, relative to a day in the 16*-18*C range
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21. Estimated impact of a non-growing-season day in 12 temperature ranges on log annu-

mortality rate, relative to a day in the 16'-18"C range
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Figure 22. Estimated impact of a day in 12 temperature ranges on log annual agricultural out-

put, relative to a day in the 16*-18*C range
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Figure 23. Estimated impact of a growing-season day in 12 temperature ranges on log anm
agricultural output, relative to a day in the 16*-18*C range
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Figure 24. Estimated impact of a non-growing-season day in 12 temperature ranges on log annu-
al agricultural output, relative to a day in the 16'-18'C range
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Chapter 2
Weather and the Coming
Death of Mexico's Poor:
A Regional Analysis of
the Cost of Climate
Changet

"The rich will find their world to be more expensive, inconvenient,
uncomfortable, disrupted and colorless; in general, more unpleasant
and unpredictable, perhaps greatly so. The poor will die."

Kirk R. Smith
Symposium on Climate Change

and Health Introduction, 2008

1 Introduction

The decade from 1900 to 1909 was colder than 95% of the last 11,300 years, since the

end of the last Ice Age. If not for anthropogenic influences, due to the natural cooling

phases of our planet, the Earth would be currently undergoing a cold phase and get-

ting even colder. Contradictorily, the decade from 2000 to 2009 was hotter than about

82% of the last 11,300 years. In fact, temperatures have increased in the last hundred

t JEL classifications: 112, Q12, Q51, Q54. Keywords: Climate change, mortality, years of life lost,

Mexico. This paper was written while the author was a visiting scholar at the Global Environmental

Change Team, Sector for Social and Human Sciences, UNESCO, Paris, France. I thank Karen R.

Polenske, JoAnn Carmin, Amy Glasmeier, Paul de Guchteneire and Mario Molina for valuable ad-

vice, as well as conference participants for their comments and suggestions. I am grateful to the

British Atmospheric Data Centre for granting me access to the climate-change data I use in this

research as well as the Hugh Hampton Young Memorial Fund Fellowship at MIT for their generous

financial support.
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years as much as they had cooled in the last seven thousand, a significant feature con-

sidering the Holocene period's stable weather patterns. If emissions continue as cur-

rently predicted, global temperatures will rise well above anything the world has ever

seen since the last deglaciation, more than 11 millennia ago (Marcott et al. 2013.)

This exceptionally dramatic change in climate is in itself one of the most perilous

threats to mankind, but in particular one of the most significant welfare risks develop-

ing countries face, in particular because most of them are poorly prepared to face it

(Andersen et al 2010.) Aside from the many ecological and biophysical implications a

changing weather poses worldwide (Walther et al. 2002; Parmesan 2006), climate

change, from the public policy standpoint, is a threat to poverty alleviation and eco-

nomic development: extreme climatic variability, particularly in the context of poverty

-when resilience to shocks is already low-, erodes people's assets and their livelihood

strategies. The socioeconomic implications of climate change range, inter alia, from

water scarcity and natural hazards that lead to household and community asset deple-

tion (Rossing 2010; Rossin & Rubin 2010) to severe disruptions in the agricultural

production systems and food insecurity (Olesen 2010) to significant human health

risks, forced displacement (particularly in coastal areas), and resource scarcities that

potentially lead to armed conflict (Nielsen 2010; Andersen et al. 2010; Andersen, Lund

& Verner 2010; Rubin 2010.) This process of climate-change-derived inequity-with

the rich in general being, until recently, the cause of the problem and the poor in gen-

eral disproportionately suffering the consequences, is likely to hinder the development

process, on the one hand, and exacerbate regional disparities, on the other hand.

In this paper, I argue that climate change is not only an environmental issue, but a

welfare, and in particular, a health issue. The purpose of this paper is to provide evi-

dence on the regional welfare impact of climate change in the context of high vulnera-

bility to weather variability. In order to attain this, I study the case of Mexico, a coun-

try that, given its socioeconomic conditions and geohydrological characteristics, will be

particularly affected by climate change and the extreme-weather thereof derived (Unit-

ed Nations 2011.) The Global Humanitarian Forum (2009) specifically underscores

that Mexico is one of the most vulnerable regions to climate change, especially because

of floods and increased rainfall variability. Similarly, The World Bank (2009) places
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Mexico among the countries most vulnerable to climate change: 68% of its population

and 71% of its GDP are at risk of suffering the adverse consequences of this environ-

mental phenomenon. Borja-Vega and De la Fuente (2013) show that climate change

will increase agricultural vulnerability, especially in municipalities with more adverse

socio-demographic conditions (see Figure 1.) Ethnographic data collected in agricul-

tural communities in rural Mexico have evidenced how constraints in soil quality, to-

pography and water resources make rural regions in Mexico extremely sensitive to cli-

matic conditions (Eakin 2006.)

The remainder of this paper is organized as follows. In Section 1, I introduce the

methodological and empirical innovations of my research as well as the contributions

to filling existing research gaps. In Section 2, I cover the review of the literature on the

future impact of climate change on health and mortality. In Section 3, I introduce the

theoretical foundation of the paper, establishing the relationship between short-run

weather fluctuations and long-term climate change. In Section 4, I present a detailed

description of the data, while in Sections 5 and 6, I discuss the empirical specification I

employed to establish the relationship between climate change and mortality and show

the results. In Section 7, I conclude with several policy and planning recommendations

to build up regional adaptive capacity.

2 Research Gaps and Contributions

The novelty of this paper is that it investigates the climate change issue from both

a spatial and vulnerability perspective in Mexico, an industrializing country. The focus

of a substantial body of empirical work devoted to this issue has been on Western na-

tions, yet it is in the developing world where vulnerability to climate change is more

salient, primarily because agriculture plays a larger role in the economy and access to

healthcare is inadequate. In Mexico, empirical studies on the impact of climate change

are rare and applied research on the weather-health relationship is even scarcer, plau-

sibly as a result of the exhaustive data requirements such research would entail (Riojas

Rodriguez 2006.)
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Most of the previous empirical research on the human impact of climate change in

Mexico assesses both social and environmental impacts at the national scale and gen-

eralizes its findings for the population as a whole. Empirical research on particular

subgroups of Mexicans is still nascent and regional analyses are few and constrained

and generally observational. Noticeably, there is no single rigorous, non-anecdotal evi-

dence-based analysis assessing the impact of climate change on infants, young children,

women, indigenous groups, the elderly, or other groups disproportionately at risk.

Similarly, the limited amount of regional projections on changes in temperature and

precipitation to assess the vulnerability of the country's population to extreme climate

events, as well as of adaptation measures, are mostly based on statistical downscaling

methods (Magafia Rueda 2010.) Such techniques are not designed to improve on the

modeling of physical processes and feedbacks, so that many of the potential implica-

tions of climate change at the regional level in Mexico derived from the employment of

these methodologies are inadequate for policy-making instrumentation (Estrada et al.

2012.) High-resolution climate models do a better job simulating climate-change ef-

fects.

This paper is a contribution to solving this research gap. I use high-resolution cli-

matic data for all the 2,454 municipalities of Mexico for the period 1980-2010, along

with climate predictions from a major coupled atmosphere-ocean general circulation

model for the period 2011-2099 to attribute the regional impact of climate change on

welfare in Mexico. I study how future climate is expected to affect human welfare in

rural and urban areas, as well as the five Mexican mesoregions1 4 over the next century,

in a (business-as-usual) scenario, where the consumption of fossil fuels does not de-

crease. In particular, I focus on the serious health risk climate change poses by study-

ing the temperature-mortality dynamics both at the national and subnational scale. I

also study how climate change is expected to primarily affect vulnerable subgroups of

"4 Mexico's five mesoregions (Northeast, Northwest, South, Center, and Center-West), as defined
in the 2001-2006 National Development Plan, can be considered merely a geographic definition
of boundaries which group two or more states into a common territorial delimitation, created for
regional development coordination purposes. Given the spatial proximity of states within a given
mesoregion, it is fair to say that each mesoregion is fairly homogeneous, at least in terms of climate
and geography (see Figure 2.) Indeed, Mexico's mesoregional division and the Kdppen climate classi-
fication main groups have a fairly consistent overlap.
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the population -infants, the elderly and the poor- by predicting age-group-specific and

area-specific impacts of climate change. By combining highly detailed mortality time

series at the municipal level with high-resolution climate data, this is one of the first

large-scale applied works studying the relationship between future climate change and

death presenting ideal data conditions for empirical analysis. The World Bank (2010,

p. 10) emphasizes that "robust climate change assessments should be undertaken by

drawing on long-term (at least 30-year), high-quality records. [...1 In practice, such da-

ta sets are seldom available."

The climate-change-death relationship is a critical policy and planning issue. As I

discussed in Guerrero CompeAn (2013), a number of human diseases derive from severe

weather and climate extremes, from cardiovascular and respiratory illnesses caused by

anomalous hot and cold weather, to the transmission of infectious diseases and malnu-

trition from crop failures. The World Health Organization (WHO) estimates that the

warming and precipitation trends due to anthropogenic climate change claim 150,000

lives every year (Patz, Campbell-Lendrum, Holloway & Foley 2005.) In 2000 alone,

92,000 disability-adjusted life years (DALY), a measure of harm to human health equal

to the number of years of life lost due to premature death plus the number of years

lived with disability, were attributed to climate change in Latin America, almost twelve

times as many as in developed countries (Costello et al. 2009; Campbell-Lendrum,

Corvalin & Priiss-Ustiin 2003.) The occurrence of climate-change-induced extreme

events is likely to increase in the region (Gutierrez & Espinosa 2010.)

Another innovation of this paper is the methodology it employs to measure cli-

mate-change impacts. Most empirical research on the impacts of climate change resorts

to either the experimental approach or the Ricardian approach. The experimental ap-

proach, usually applied in agricultural economics and biology, relies on controlled ex-

periments where analysts manipulate temperature, greenhouse gases and rainfall levels

across crops to see how plant life responds and yields differ. Jentsch, Kreyling and

Beierkuhnlein (2007) summarize key findings of experiments manipulating weather

events. While this "weather randomization" has the potential to reliably reduce spuri-

ous causality, most probably it inaccurately takes into account the adaptive behavior

of optimizing farmers, producing bias (Guiteras 2008.) Conversely, the Ricardian ap-
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proach is based on the assumption that the productive value of land characteristics can

be derived from the sale value of land, in which case the implicit prices of characteris-

tics reflect their contribution to productivity in perpetuity, an observation credited to

David Ricardo. In the context of climate change, this approach is used to determine

the implicit value of climate and its impact on agricultural revenues and productivity

(Maddison, Manley & Kurukulasuriya 2007), with its inherent health and, more broad-

ly, welfare implications. Mendelsohn et al. (2000) review the Ricardian approach at

length. Like the experimental approach, the Ricardian approach also poses methodo-

logical challenges. This technique does better than "weather randomization" in account-

ing for adaptive behavior by virtue of cross-sectional analysis to isolate the impact of

climate in determining agricultural profitability. Even so, for this method to be useful,

two preconditions are essential: well-functioning market systems should be present and

all factors correlated with climate and influencing productivity, such as farmer and soil

quality, should be accounted for in the model. Needless to say, this is at best challeng-

ing in data-constrained, incomplete-market developing countries (Guiteras 2008.)

A third approach, which I employ in this paper, is based on panel data analysis

and makes use of fluctuations in observed weather to measure the impact of climate on

agricultural and health outcomes (Deschenes & Greenstone 2007, 2011; Deschines &

Moretti 2009; Schlenker & Roberts 2009.) Because this is a data-intensive approach,

most research where panel data analysis has been carried out has focused on the Unit-

ed States and European cases. Along with the work of Burgess et al. (2011) on India,

this paper is one of the first attempts to apply this methodology in a developing coun-

try. My empirical strategy, as I will discuss later, is an attempt to capture the full dis-

tribution of annual fluctuations in weather, identifying weather parameter estimates

from municipality-specific and year-specific deviations in yearly weather from mean

climate, under the assumption that weather variability is random. As suggested by

Guiteras (2008, p. 11), "the use of district-level data is important to obtain adequate

within-year climate variation, thereby distinguishing climate impacts from other na-

tional-level yearly shocks." Including municipality fixed effects controls for the average

differences across municipalities in any observable or unobservable predictors of log
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mortality rate, so that, say, demographic, socioeconomic, or clinical impacts will not

confound with that of weather.

This methodology has benefits with caveats. In particular, the method relies on

municipal and time fixed effect identification strategy, thus controlling any omitted

variables that are constant over time and/or particular to one municipality and reduc-

ing bias. Likewise, panel data reflect intra-year adjustments such as changes in agricul-

tural or health inputs. However, one should bear in mind that estimates from panel

data are unable to reflect longer-term ex post adaptive capacity strategies, such as

technology adoption, institutional regime change, time preference and market decision

adjustments.

3 Health Risks Resulting from Climate Change: A Re-
view of the Literature

In this section, I review the current literature on the relationship between climate and

health and how its interaction is expected to evolve as a result of future weather varia-

bility. Two bodies of research investigate this interaction: on the one hand, empirical

analyses based on observed data and past extreme-weather events, focus on current

climate-change-attributed and -anticipated impacts on human health; on the other

hand, model simulation studies project the implications of climate variability in terms

of future health risks and regional vulnerability.

For a survey on the broader literature on impacts on water, ecosystems, food sys-

tems and food security, human settlements, infrastructure, and tourism, see IPCC

(2012.)

3.1 The Extreme-Weather Literature and Climate Observational Stud-

ies

The extreme-weather literature and climate observational studies are, in terms of im-

pact and policy implications, characteristically bifocal. One focus is the extreme-

weather phenomenon itself, and the immediate crisis it creates in terms of impacts on

wellbeing and the human system. Another focus is the long-term impact of severe
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events, which concentrates on the implications of exposure and vulnerability. This

body of research underscores the uncertainty derived from climate risks, as well as the

adaptation processes to cope with severe weather that most societies only had to deal

with it very infrequently and who may have to deal with it much more regularly, pos-

ing both institutional and behavioral challenges in terms of climate adaptation.

Studies evaluating impacts and risks of extreme events and abrupt weather varia-

bility are inherently impact- and policy-oriented in nature, given that preventing and

responding to disasters is often deemed a primary role of the state and, innately, the

state is the institutional figure that oversights environmental policy and implements

disaster response programs, thus being responsible of evaluating their relief effective-

ness in the aftermath of any given weather shock. As pointed out by Eakin (2005), the

dominance of economic uncertainty over environmental risk in households' decision

making implies a continued role for government intervention to help households adapt

to climatic stress.

Climate is becoming more extreme; globally it has become hotter. The 15 hottest

years since records began in 1850 have been during the past 15 years: 2010 has been

the warmest year yet, followed by 1998, 2005, 2003 and 2002 (NOAA, various years.)

One of the consequences of extreme climate, particularly severely hot weather, is an

increase in mortality rates, especially among children, the elderly and other vulnerable

groups. In Guerrero Compe.n (2013), I find evidence that extreme heat increases mor-

tality. More specifically, I show that exchanging one day with a temperature ranging

between 16 to 18*C for one day with temperatures higher than 30'C increases the

crude mortality rate in 0.15 percentage points. In terms of vulnerable populations, I

find that the extreme heat effect on death is significantly more acute in rural regions,

leading to increases of up to 0.2 percentage points vis-A-vis a 0.07 point-increase in ur-

ban areas. Interestingly, I also find that the timing of climate extremes is relevant: if a

weather shock takes place during the agricultural growing season, the effects on mor-

tality are large significant, but not so if such shocks occur during the non-growing sea-

son. In similar studies, McMichael et al. (2008) and Baccini et al. (2011) evaluate the

relation between daily temperature and mortality in developing and European coun-
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tries, respectively. Both studies report that higher mortality is observed during ex-

tremely hot periods.

Even if death does not take place as a result of severe weather, health conditions

may deteriorate and infectious disease rates may rise. Based on a time-series and elec-

trophoretic analyses, Hashizume et al. (2008) and Ahmed et al. (1991) provide evi-

dence that factors associated with high temperatures and extreme precipitation in-

crease the incidence of diarrhea in Bangladesh, primarily among the poor. Extreme

precipitation patterns have been shown to cause a geographical shift of malaria epi-

demic regions by changing breeding sites for vector mosquitoes. Outbreaks of malaria

were associated with changes in habitat after the 1991 floods in Costa Rica's Atlantic

region (Saenz et al. 1995.) An epidemiological study by Kondo et al. (2002) shows an

association between increased transmission of water borne diseases and severe rainfall.

The authors find that that the incidence of malaria increased by four to five times over

non-disaster periods. Similarly, a periodic lack of precipitation for an extended period

of time is associated with higher disease rates. Increasing malaria prevalence is associ-

ated with warmer climate in central Ethiopia (Tulu 1996), and with extreme climate

variability, partly induced by El Nifno/Southern Oscillation, in Colombia, Venezuela,

India, Sri Lanka, Kenya and Uganda (Bouma & Dye 1997; Bouma & van der Kaay

1996; Lindblade et al. 1999; Poveda et al. 2001; Y6 et al. 2007.) Costa (1993) argues

that black fever outbreaks are observed in Brazil after extended periods of drought.

Outbreaks of infectious associated with contaminated flood water are investigated by

Schmid et al. (2005.) Fritze et al. (2008) argue that extreme weather events are associ-

ated with acute traumatic stress and have significant mental implications, particularly

on low-income or otherwise more vulnerable populations. Research conducted by Lar-

rance, Anastario and Lawry (2007) and Acierno et al. (2007) in communities effected

by Hurricanes Charley, Frances, Ivan, Katrina, and Jeanne shows high rates of post-

traumatic stress disorder, depression, domestic violence and significantly higher rates

of suicide completion and attempts. For a summary of the global burden of climate-

change-attributable disease, see Patz et al. (2005.)

Another outcome of extreme climate is crop damage, which indirectly affects hu-

man health through its impact on food security. Health outcomes are negatively influ-

113



enced as a result of adverse weather disrupting the household's sources of income on

which it relies for subsistence (Burgess et al. 2011.) Indeed, many regions in the world,

and particularly the poorest, rely almost solely on small-scale, climate-sensitive sub-

sistence farming, which is especially susceptible to inclement weather (IPCC 2012.)

Sen (1981, p. 449) discusses the association between that the Ethiopian and Bangla-

deshi famines of the early 1970s and weather (droughts and floods, respectively), and

points out that in both cases farmers where disproportionally affected. Similarly, con-

sumption of basic goods and food intake is restrained as a result of natural-calamity-

induced supply shortages, speculative behavior, and increased demand to deal with

uncertainty. The economic consequence of extreme weather is thus higher food prices,

which ultimately affect the poor as a result of reduced purchasing power, thus increas-

ing their likelihood of becoming famine victims (Lin & Yang 2000.) Sen (1981) discuss-

es that the wages paid to farm laborers in 1942 did not keep up with the rising price of

food, which was caused, inter alia, by a hurricane that affected rice harvests, as well as

inflation in Calcutta, which was triggered by the Raj putting money into war produc-

tion. This resulted in farmers suffering a reduction in their ability to command power

over food, which eventually resulted in the Bengal famine of 1943. Similar cases in Af-

rica and Europe are discussed at length by Dreze and Sen (1989.) Overall, weather has

played a major role in 17 out of 24 major famines from 1693 through 2005 (for a list-

ing of famines, see 0 Grdda (2007, p. 20)), suggesting that food-security is a relevant

in terms of human physiology.

Furthermore, the higher temperatures that have been observed in the past years

have increased the risk of wildfires. Gillett et al. (2004) employ a coupled climate mod-

el to demonstrate that human emissions of greenhouse gases have made a detectable

contribution to warmer temperatures, having a detectable influence on the area burned

by forest fire in Canada over recent decades. Westerling et al. (2006) attribute the in-

crease in western U.S. forest wildfires to warmer spring and summer temperatures, re-

duced precipitation associated with warmer temperatures, reduced snowpack and earli-

er spring snowmelts, and longer, drier summer fire seasons in some middle and upper

elevation forests. In addition to the environmental and economic consequences of wild-

fires, the World Health Organization (1999) finds that major fires in 1997 in south-east
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Asia and the Americas are associated with increases in respiratory and eye symptoms.

In Malaysia, a two to threefold increase in outpatient visits for respiratory diseases and

14% decrease in lung function in school children was reported. Indirect food security

(and consequently, health) impacts of wildfires range from loss of vegetation to a pro-

liferation of eroded fertile soils (Githeko & Woodward 2003.)

Expectedly, a critical issue in the extreme-weather literature is how researchers tie

extreme weather and observed climate variability to anthropogenic climate change. In

fact, climate change detection can be addressed only as a statistical problem, whereby

probabilistic statements are made as to the most likely causes of recently observed cli-

mate change. It will never be possible to prove all the causes of recently observed cli-

mate change since the Earth's climate system is highly complex (Thorne 2001.) How-

ever, despite the impossibility to attribute particular extreme-weather eventualities to

anthropogenic climate change, it is possible to establish whether meteorological phe-

nomena fit the more general pattern toward more extreme weather, and in doing so it

can be determined whether this pattern can be attributed to climate change, rather

than natural processes.

Along these lines, Muller et al. (2012) use sophisticated statistical methods which

allowed the determination of earth land temperature since 1753 and the isolation of

potential sources of bias raised by climate-change skeptics." They show that the his-

toric temperature pattern and recent climate volatility is best fitted by the record of

atmospheric carbon dioxide and its magnitude is consistent with the calculated green-

house effect. Hansen, Sato and Ruedy (2012) examine how global summertime temper-

atures have been changing in recent decades. The authors detect that during the peri-

od from 1951-1980, extremely hot summers covered just 1 percent of Earth's land area.

This rises to 10 percent of the Earth's land area by the period from 1981-2010, and

15 The authors demonstrate that neither urban heating issues (their results using rural data alone

were comparable), nor data selection issues (prior studies selected fewer than 20 percent of the

available temperature stations; the authors used virtually 100 percent), or poor station quality is-

sues (the authors separately analyzed good stations and poor ones), nor human intervention and

data adjustment issues (the authors' work is automated and hands-off) are potentially problematic

and cannot bias their findings. Likewise, the time series is long enough that the authors were able to

account for the fingerprint of solar variability, based on the historical record of sunspots, and find

that solar variation does not seem to impact the temperature trend.
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even higher during the 2006-2010 period. In other words, the odds of such extreme

summers were about 1-in-300 during the 1951-1980 timeframe, but that had increased

to nearly 1-in-10 by 1981-2010. Such a shift is in probability terms extremely implausi-

ble in the absence of climate change. Similarly, Stott, Stone and Allen (2004) investi-

gate the extent to which the 2003 European heat wave was caused by a modification of

the external influences on climate. Although natural variability played a role, the au-

thors estimate that it is very likely (confidence level >90%) that human influence had

more than doubled the risk of European mean summer temperatures as hot as 2003,

and with the likelihood of such events projected to increase 100-fold over the next four

decades. Similarly, Tett et al. (2002) investigate the climatic changes as a response to

natural and man-made factors using a coupled atmosphere/ocean general circulation

model. They find that post-1950 global warming is explained primarily by anthropo-

genic elements and to a minimum extent by natural variation. Hegerl et al. (1996),

North and Stevens (1998), Tett et al. (1999) and Stott et al. (2001) use an optimal de-

tection algorithm to investigate the causes of recent climate change. All of these stud-

ies consistently conclude that anthropogenic changes in greenhouse gases have been

responsible for the warming observed over the last 50 years.

From a political standpoint, some analysts have studied the link between climate

change and conflict. Burke et al. (2009) document strong historical linkages between

temperature and civil conflict in Africa, with warmer years leading to significant in-

creases in the likelihood of war. When combined with climate model projections of fu-

ture temperature trends, the authors project a roughly 60% increase in armed conflict

incidence by 2030, or an additional 390,000 battle deaths if future wars are as deadly

as recent wars. The climate-conflict relationship has been observed for example in Dar-

fur. The 2007 United Nations Environment Programme Annual Report (UNEP 2007)

points out that regional climate change, water scarcity, desertification and deforesta-

tion have increased migration flows from Northern to Southern Sudan, and thus might

have contributed to the initiation of the conflict (Costello et al. 2009.)
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3.2 Future Climate-Change Modelling and Potential-Effect Literature

Given the current impact of a changing and more severe weather and the prospect of

climate extremes occurring more often, recent research has attempted to assess the ex-

tent to which future climate will affect societies. Despite the limits of climate science

(Carmin, Nadkarni & Rhie 2012), the use of climate models and potential trend anal-

yses has become increasingly relevant as the incidence of extreme climatic events is

more recurrent (Eakin 2005.) This literature is relatively small, given that accurately

assessing the impact of climate change is not simple as a result of the uncertainty and

variety of often conflicting assumptions surrounding future human behavior that may

have an impact on climate. However, it offers an intellectual platform for decision-

makers to prioritize policies for social adaptation to climate change and assess the like-

ly magnitude of the health impacts of severe weather. In words of Campbell-Lendrum,

Corvaldn and Priiss-Ustiin (2003, p. 133), "given the importance of natural climate

variability and the potential for societal and individual factors to mediate the potential

effects of climate change, only approximate indications of likely impacts can be ex-

pected. However, it is important to make such estimates available to policymakers,

along with a realistic representation of the associated uncertainty; or remain in the

current unsatisfactory condition of introducing a potentially important and irreversible

health hazard throughout the globe, without any quantitative risk assessment."

In general terms, according to the IPCC (2012, p. 13) "it is virtually certain that

increases in the frequency and magnitude of warm daily temperature extremes and de-

creases in cold extremes will occur in the 21st century at the global scale. It is very

likely that the length, frequency, and/or intensity of warm spells or heat waves will in-

crease over most land areas. Based on the A1B and A2 emissions scenarios, a 1-in-20

year hottest day is likely to become a 1-in-2 year event by the end of the 21st century

in most regions, except in the high latitudes of the Northern Hemisphere, where it is

likely to become a 1-in-5 year event. Under the BI scenario, a 1-in-20 year event would

likely become a 1-in-5 year event (and a 1-in-10 year event in Northern Hemisphere

high latitudes.) The 1-in-20 year extreme daily maximum temperature (i.e., a value

that was exceeded on average only once during the period 1981-2000) will likely in-
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crease by about 1*C to 3*C by the mid-21" century and by about 2C to 5*C by the

late 21st century, depending on the region and emissions scenario (based on the B1,

A1B, and A2 scenarios.) It is likely that the frequency of heavy precipitation or the

proportion of total rainfall from heavy falls will increase in the 21st century over many

areas of the globe. This is particularly the case in the high latitudes and tropical re-

gions, and in winter in the northern mid-latitudes. Heavy rainfalls associated with

tropical cyclones are likely to increase with continued warming. There is medium con-

fidence that, in some regions, increases in heavy precipitation will occur despite pro-

jected decreases in total precipitation in those regions. Based on a range of emissions

scenarios (B1, A1B, A2), a 1-in-20 year annual maximum daily precipitation amount is

likely to become a 1-in-5 to 1-in-15 year event by the end of the 21st century in many

regions, and in most regions the higher emissions scenarios (A1B and A2) lead to a

stronger projected decrease in return period.""' However, Rahmstorf (2007), Hansen et

al. (2007), O'Gorman (2012), Fasullo and Trenberth (2012), Muller et al. (forthcoming)

and other studies have raised the concern that these estimates are overly conservative

and climate change may in fact be more severe.

The potential health effects of such a change in climate, even by the most con-

servative estimates, are significant. Overall, the literature emphasizes at least four

channels through which climate variability affects health outcomes: propagation of dis-

16 A number of greenhouse gas emissions scenarios are described in the IPCC Fourth Assessment
Report (2007.) They have been used to make projections of possible future climate change. The Al
family of scenarios is characterized by rapid economic growth, a global population that reaches 9
billion in 2050 and then gradually declines, the quick spread of new and efficient technologies, and a
convergent world, where income converges between regions and extensive social and cultural inter-
actions worldwide occur. There are subsets to the Al family based on their technological emphasis.
The AlFI scenario emphasizes fossil-fuel use; Scenario AiB assumes a balanced emphasis on all en-
ergy sources; Scenario AlT - Emphasis presumes a non-fossil energy-intensive world. Similarly, the
A2 family of scenarios is characterized by a world of independently operating, self-reliant nations,
with continuously increasing population and regionally oriented economic development. Conversely,
the B scenarios are of a more ecologically friendly world. The B1 scenarios are characterized by rap-
id economic growth as in Al, but with rapid changes towards a service and information economy,
population rising to 9 billion in 2050 and then declining as in Al, reductions in material intensity
and the introduction of clean and resource efficient technologies, and an emphasis on global solu-
tions to economic, social and environmental stability. Finally, the B2 scenarios are characterized by
a continuously increasing population, but at a slower rate than in A2, an emphasis on local, rather
than global, solutions to economic, social and environmental stability, intermediate levels of eco-
nomic development, and less rapid and more fragmented technological change than in Al and Bl.
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eases (infectious and otherwise), extreme temperatures, an increased incidence of natu-

ral disasters, including floods and droughts, and higher levels of pollution (Haines &

Patz 2004.)

Hijoka et al. (2002) find that, even though climate change will have some benefits

in terms of health, primarily in the form of decreased mortality rates and increased

agricultural yields in temperate regions, these are overwhelmingly outweighed by sig-

nificant increases in diarrhea, cardiovascular diseases, higher mortality rates in coastal

regions and malnutrition. Assuming unmitigated emissions, Campbell-Lendrum, Cor-

valin and Priiss-Ustiin (2003) project an increase in the burden of diarrheal diseases in

low-income regions ranging from 2 to 5% in 2020. Hales et al. (2002) conclude that, by

2085, climate change will put 5-6 billion people at risk of dengue, compared to 3.4 bil-

lion people if the climate remained unchanged. Climate change will cause a spatial ex-

pansion of the areas suitable for malaria in some regions, predominantly in Africa.

Tanser, Sharp and Le Sueur (2003) provide evidence that, by 2100, Africa can expect a

16 to 28% increase in person-months of malaria exposure across all IPCC emissions

scenarios. Using data for Zimbabwe and India, respectively, Ebi et al. (2005) show that

mountainous areas will become more suitable for transmission, while Bhattacharya et

al. (2006) find that the malaria transmission window is likely to widen in more tem-

perate regions. Globally, Lindsay and Martens (1998) project that at least 260 million

more people will be exposed to malaria by 2080 due to new endemic disease transmis-

sion areas. Other studies conclude that higher-latitude countries will be exposed to

Lyme disease and tick-borne encephalitis by the 2050s if climate change is not mitigat-

ed (Ogden et al. 2006; Randolph & Rogers 2000.) Likewise, schistosomiasis, fascioliasis,

echinococcosis, leishmaniasis, and hantavirus infections are expected to increase as a

result of a changing weather (Mas-Coma, Valero & Bargues 2008; Cdrdenas et al. 2008;

Gray et al. 2009; Clement et al. 2009.)

Other studies investigate the association between expected future warmer tempera-

tures and mortality. As I show in Guerrero CompeAn (2013), heat mortality follows a

J-shaped function with a steeper slope at higher temperatures, so it is anticipated that

global warming will increase mortality rates at a worldwide scale. Using an empirical

model derived from observed mortality, Donaldson et al. (2001) find that annual heat-
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related deaths in the United Kingdom more than quadruple from 798 in 1990s to 3,519

in the 2080s under a medium-high warming scenario and, conversely, they show that

cold-related deaths decrease from 80,313 to 51,243 over the same time period. In a sim-

ilar work, McMichael et al. (2003) find that the temperature-attributable mortality

rate in Australian major cities will triple at the end of the 2 1 't century assuming a 0.8-

5.5*C increase in annual maximum temperature. Burgess et al. (2011) estimate an in-

crease in the overall Indian annual mortality rate of approximately 12% to 46% by the

end of the century. The estimated increase in rural areas ranges between 21% and

62%. A similar exercise performed on the United States by Deschenes and Greenstone

(2011) suggests that, under a "business as usual" scenario, climate change will lead to a

roughly 2% increase in the overall mortality rate there by the end of the century. A

typical critique of these works is that they do not assume acclimatization, that is, the-

se models ignore the possibility of people adapting to new climate conditions. Because

of economic, technological, and physiological reasons, one would expect societies to

adapt to an anticipated and slowly warming climate in various ways. However, rather

than dismissing the conclusions of these studies, their findings should be viewed as up-

per bound estimates of the impact of climate change. Studies that do account for ad-

aptation present similar conclusions. Koppe (2005) finds a 20% increase in heat-related

mortality in Baden-Wiirttemberg, Germany between 1951-2000 and 2001-2055, assum-

ing an AiB emissions scenario. The author also shows that this increase will not be

compensated by reductions in cold-related mortality. Likewise, in a study for Lisbon,

Portugal, Dessai (2003) finds an increase in heat-related mortality rate from 5.4 to 6

deaths/100,000 in the 1968-1998 period to 19.5 to 248.4 deaths/100,000 by the 2080s.

As a result of increased temperature and decreased precipitation under climate change,

Butt et al. (2005) project that the percentage of the population of Mali at risk of hun-

ger will increase from 34% at present to 64-72% by mid-21' t century.

The extent to which climate change may cause more natural disasters has also been

at the center of recent empirical research. Combining models that predict broad cli-

mate changes decades into the future with those that simulate storm development, Lin

et al. (2012) project that climate change could lead to floods that should occur only

once a century happening every three to 20 years, while a 500-year surge could happen
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every 25 to 240 years. Battisti and Naylor (2009) find that in tropical and sub-tropical

areas future growing-season temperatures are expected to exceed the most extreme

temperatures observed from 1900 to 2006, with substantial potential implications for

food systems around the world. Ranger et al. (2011) provide evidence that loses result-

ing from once-in-a-century flood events in Mumbai, India are likely to triple between

now and the 2080s, increasing from 700 million to 2.3 billion USD. Based on mid-range

sea-level rise estimates, Manuel (2006) estimates that the New Orleans region will be

up to four meters below sea level by 2100. Likewise, Carmin, Anguelovski and Roberts

(2012) document that sea levels in Durban, South Africa are rising, on average, by ap-

proximately 3cm each decade, and pose a threat to urban residents in terms of water

scarcity, infrastructure damage, and a variety of public health issues.

Pollution has also been the focus of climate-change-impact research. Depending on

the set of assumptions regarding population dynamics, economic growth, and environ-

mental regulation, this body of research attempts to determine how potential changes

in concentrations of pollutants, mainly ozone may impact future morbidity and mortal-

ity. Using a concentration response function, Knowlton et al. (2004) find that ozone-

related deaths will increase roughly 5% by the 2050s in the New York metropolitan

area. Their findings assume a population and age structure constant at year 2000, no

changes in the United States Environmental Protection Agency 1997 national emis-

sions inventory, and increases in volatile organic compounds and oxides of nitrogen

consistent with a A2 emissions scenario. Following a similar methodology and assump-

tions for 50 Eastern United States cities, Bell et al. (2007) find that ozone-related

deaths will increase roughly 0.3% by mid-21" century. Mickley et al. (2004) project in-

creases in the severity and duration of summertime regional air pollution in the North-

east and Midwest United States by mid-21" century as a result of climate change.

3.3 Evidence from Mexico

Research has repeatedly shown that Mexico is very sensitive to climate change

(O'Brien & Leichenko 2000.) Aguilar et al. (2005) show that changes in temperature

extremes over the 1961-2003 period indicate warming for Mexico and Central America.
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The authors show that temperatures are increasing at a decadal rate of roughly 0.2*C.

A similar rate is found in SEMARNAT (2009.) Compared to the rest of the world,

Mexico will experience above-average warming, with medium-risk scenarios predicting,

on average, 0-2*C rises by 2020, 1-3*C rises by 2050, and 2-4*C rises by 2080

(SEMARNAT 2009.) This is consistent with the findings of Liverman and O'Brien

(1991), who study several general circulation models and project changes in tempera-

ture ranging from 2.3 to 5.4*C by the end of the century. Other studies project worse

scenarios, with 0-3*C rises by 2020 and up to 4-8*C rises by 2050 (Tejeda Martinez,

Conde Alvarez & Valencia Treviso 2008.) Furthermore, precipitation patterns are ex-

pected to become more extreme as a result of climate change, with dry regions experi-

encing more droughts and wet regions facing more floods (Magafia & Caetano 2007.)

Meteorological data from Mexico's National Meteorological Service show that, even

though there is no indication of an increase in intensity in Mexico, 28 hurricanes hit

between 1970 and 1989, while 42 struck between 1990 and 2010 - a 50% increase

(Comisi6n Nacional del Agua 2012.) Sea levels are projected to rise 18-59cm by 2090-

2099, with the respect to the baseline period 1980-1999 (IPCC 2007.)

In terms of health, the Ministry of the Environment of Mexico projects a "substan-

tially higher" incidence of dengue, malaria, and gastrointestinal diseases as a result of

climate change (SEMARNAT 2009.) Depending on the region, a 1*C-increase in tem-

perature is associated with up to a 1% increase in deaths attributed to these diseases

(Riojas Rodriguez 2006.) However, based on a more focalized retrospective ecological

study, using data from two municipalities in the state of Veracruz, Hurtado Diaz et al.

(2007) document that a 1*C-increase in temperature is associated with more than 40%-

increases in the number of dengue cases after four to five months. Similarly, Col6n

Gonzilez, Lake and Bentham (2011) show that the incidence rate of dengue is positive-

ly associated with the strength of extreme-weather events, with the risk of infection

being higher during El Nifno conditions.

Conde and Gay (1999) identify the Central and Northern parts of the country and

the coastal region in Tabasco as the most weather-vulnerable parts of Mexico. The ar-

eas in the north and those with large populations, particularly in central Mexico, are

more vulnerable to drought and desertification, due to erosion and the increasing
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drought resulting from high temperatures and variations in precipitations in these arid

and semi-arid regions. In turn, the coast of the state of Tabasco will be more vulnera-

ble to changes in sea levels. Estimates suggest that the sea could reach between 40 and

50 kilometers inland. These phenomena have important health consequences, ranging

from malnutrition to higher incidence of diseases to water pollution. Although vector-

borne diseases will expand their reach and death tolls as a result of more recurrent

heat waves, especially among elderly people, the indirect effects of climate change on

water, food security, vulnerable shelter and human settlements, and extreme climatic

events are likely to have the biggest effect on health (Costello et al. 2009.) Using an

autoregressive integrated moving average model in a study for the National Institute of

Public Health of Mexico, Riojas Rodriguez et al. (2007) find that extreme weather

patterns in the Olmec region are associated with a significantly higher incidence of

gastrointestinal diseases and respiratory infections. A national study carried out by the

same agency (Riojas Rodriguez et al. 2008) finds that a 1-centigrade temperature in-

crease is expected to increase both gastrointestinal disease and dengue rates by 4-5%

by 2030.

From an economic standpoint, Borja-Vega and De la Fuente (2013) show that cli-

mate change will increase agricultural vulnerability in Mexico, especially in municipali-

ties with more adverse socio-demographic conditions. Although their analysis suggests

a wide variation in municipal vulnerability, they provide evidence that the Northwest

and Central regions will experience significant increases in vulnerability between 2005

and 2045. Galindo (2009) finds that the consequences of climate change for Mexico

vary widely between regions and while many regions are likely to be negatively affect-

ed, there could even be temporary gains in some of these. However, in the long term,

the negative economic effects surpass temporary gains. By 2100, the total economic

costs of climate change, according to his calculations, would be equivalent to an accu-

mulated loss of between 6% and 30% of Mexico's GDP, although the uncertainty asso-

ciated with these calculations has to be taken into account. One of the sectors in which

major losses would occur is that of agriculture and livestock farming, so the rural pop-

ulation would be most affected (Albo & Ordaz Diaz 2011, Liverman 1999.) Corn's

phonological cycle may be reduced by as much as 13% by 2080 as a consequence of
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future warmer temperatures, which would diminish the plant's ability for nutrient ab-

sorption (Ojeda, Martinez & HernAndez 2006; Prieto et al. 2007.) Other climate-

change-induced ecosystem impacts, including deforestation, biodiversity losses and ex-

tensive plague exposure, as well as economic impacts in the tourism, energy and infra-

structure sectors, are discussed in SEMARNAT (2009.) As I discuss in Guerrero

CompeAn (2013), the economic impacts in these activities and population groups in

particular translate directly into higher morbidity and mortality rates.

4 General Conceptual Framework for the Methodologi-
cal Approach

The theoretical foundation of this paper is based on Guiteras's (2008) model of farmer

output and Rosenzweig and Schultz's (1983) household production of health model.

Let the production of health by the household be H = f(T, F, 6), where T represents

temperature, F represents health inputs that can vary in the short term, such as

healthy lifestyle choices, avoidance of injury, sanitary and nutrition habits and

healthcare utilization, and 8 represents inputs that are fixed in the short term and

may only be adjusted in the long term or not even be in the household's control at all,

like migration decisions, health technology, medical research and development, and en-

vironmental quality, standards, and regulation. If temperature and prices are taken as

given, the household maximizes utility by

max{p - f(T, F, 6} - pyF - p6E (1)

where p, and po are the costs of short- and long-term health inputs, respectively,

which are assumed to be linear for simplicity. If inputs are not fixed, at the tempera-

ture T, the household maximizes utility by choosing F(T) and E(T), obtaining as a

result an utility of 7r(T, F(T), E(T)). This is the hypothetical case of full adaptation

by the household.
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If climate changes and temperature increases but households have their health in-

puts fixed, in the representative case, maximized utility would be -r(T', F(T), e(T)).

This situation is best characterized by either the experimental or Ricardian approaches

discussed in the introduction. These models do poorly in terms of accounting for adap-

tive behavior due to their assumptions and data requirements (Guiteras 2008.) By vir-

tue of these types of models understating the possibility of adaptation, the effect of

climate change on the utility of the household would be

AT, = gr(T', r(T), 9(T)) - r(T, P(T), E(T)) (2)

If households can reoptimize r, but are constrained from adjusting E, that is, if

families can adapt their short-term health inputs, but are constrained from changes in

long-term health inputs, the utility of the household after a change in climate would be

7r(T, r(T), E(T)). In this case, the effect of climate change on the utility of the

household would be

ATr = 7r(T', r(T), E(T)) -r(T, r(T), E(T)) (3)

This situation is best characterized by panel data analyses. This method can reflect

intra-year (i.e., short-term) adjustments in agricultural or health inputs resulting from

climate variation. However, estimates from panel data are unable to reflect (longer-

term) ex post adaptive capacity strategies, such as technology adoption, institutional

regime change, time preference and market decision adjustments.

If, given climate change, households could adjust all health inputs, the utility in the

representative case would be (T', F(r), E(T)). Because households can reoptimize all

their health inputs, one can assess the true impact of climate change, which equals

r = 7r(T', r (T), E(T)) - r(T, r (T), E(T)) (4)

125



Assume that households have complete and transitive preferences and exhibit mon-

otonicity in the sense that more choices increase utility. This means that a utility func-

tion u: OR --+ R+ is strictly monotone if Vx, y E OR, x > y = u(x) > u(y). Hence, the

following result is generated:

Air > Ai7rp > A~rR (5)

Methodologically, panel-data models provide a better approximation than the Ri-

cardian approach to the true impact of climate change, given that such models partial-

ly account for adaptive behavior (see Figure 3.) Given that panel-data models are able

to reflect intra-year year (i.e., short-term) adjustments, they can do reasonably well if

changes in climate are small or in a situation where households carry out long-term

health input adjustments gradually. Drastic climatic changes, however, will result in

panel data models overestimating the impact of climate change relative to the true

long-term impact, when households have adapted (Guiteras 2008.)

As documented in the literature, households, especially the poor ones, are antici-

pated to adapt slowly to a changing climate. Guiteras (2007) cites three reasons. First,

it is difficult for households to assess whether climate patterns are changing based sole-

ly on year-to-year extreme events (IPCC 2007.) Realizing the need to adapt to a

warmer climate through the reoptimization of health and other inputs may take time

as a result. Second, carrying out changes in long-term health inputs may be costly for

households (i.e., the decision to migrate involves large fixed costs and irreversible pro-

cesses), so that input reoptimization may be deferred, especially in the presence of un-

certainty (Bertolla & Caballero 1994; Dixit & Pindyck 1994.) Third, asymmetric in-

formation, low human development, hyperbolic time preferences, and failures in the

credit and insurance markets (which are common in developing countries), hinder the

process of adaptation (Foster & Rosenzweig 1995; Duflo, Kremer & Robinson 2009.)
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5 Data Construction

An empirical specification of the theoretical framework presented above, which illus-

trates the human impact of weather, requires data on three types of variables: one that

operationalizes human health, one that operationalizes current climate patterns, and

one that operationalizes future climate changes.

Typical variables that may work well to assess the impact of weather variation on

human health include the incidence of particular water- and vector-borne diseases,

hospital admissions, clinic attendance, morbidity rates, and mortality rates (WHO,

WMO & UNEP 2003.) Similarly, the natural choices for studying climatic phenomena

are temperature, pressure, rainfall, hail, aridity, wind, as well as the occurrence of cer-

tain weather events like tornados and cyclones (WMO 2012.)

As good evidence requires good data, I select those variables generated with high

frequency, high spatial disaggregation, and high-quality monitoring. The following con-

stitute the variables that will be employed for the empirical analysis that I will carry

out in the next section.

5.1 Mortality

The ultimate health impact of severe weather is death. Vital statistics, given their high

disaggregation and frequency, are of particularly good quality in Mexico. To calculate

mortality rates, information on deaths, births, and population are needed. I obtain

death and birth counts data at the municipal level through each state's Civil Registry

Office. Since each state has its own registration data and formats, I digitize and har-

monize the 32 datasets (31 state datasets and one dataset for Mexico City) using

standardized codes for births, deaths, and fetal deaths. I collect monthly data for the

period January 1990-December 2010 for 2,454 Mexican municipalities (99.9% of the

total.)

Given that annual population data are not available for Mexican municipalities, I

construct a population monthly time series using censal information for population in

combination with migration flow data obtained from Mexico's National Council of

Population Demographic Indicators and the State and Municipal Database System of

127



Mexico's National Institute of Statistics (INEGI.) These data are available for years

1990, 1995, 2000 and 2010. For intercensal years, I estimate (midyear) population using

the component method, which is defined simply by the use of estimates or projections

of births, deaths, and net migration to update a population (Hollmann, Mulder & Kal-

lan 2000.) In its simplest statement, the component method is expressed by the follow-

ing equation:

Pt = Pt-i + Bt_,t - Dt-1, + Mt-,, (6)

where P, = population at time t;

Pt_1 = population at time t - 1;

Bti, = births, in the interval from time t - 1 to time t;

D,_j = deaths, in the interval from time t - 1 to time t; and

Mtt = net migration, in the interval from time t - 1 to time t.

For simplicity, I compute intercensal net migration using what demographers refer

to as the Das Gupta method (Das Gupta 1991.) This technique assumes that the ratio

of the intercensal estimate to the postcensal estimate should follow a geometric pro-

gression over the lustrum. Naturally, there is no universal norm for producing intercen-

sal migration estimates, and other methodologies could have also been employed.

With these variables, I construct a crude (total) mortality rate, which I define as

the total number of deaths (excluding fetal deaths) per period per 100,000 people. In

addition to the crude mortality rate, I also distinguish among two subtypes of mortali-

ty indicators: child or "early-life" mortality rate (i.e., the number of deaths of children

less than 5 year old per period per 100,000 people); and "late-life" mortality rate (i.e.,

the number of deaths of people aged over 70 per period per 100,000 people.) These are

important given that children and seniors are more vulnerable than other population

groups to injury, disease, and other negative impacts resulting from climate change

(IPCC 2007; UNICEF 2011.) I also compare these mortality rates by age group and
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type of area, defining rural mortality rate as the mortality rate in communities with

fewer than 2,500 residents, and urban mortality rate as the mortality rate in communi-

ties with 2,500 residents or more. Tables 1 and 2 present relevant descriptive statistics.

The comparative analysis of urban and rural areas is of particular relevance. The

distinction follows an intuitive logic: climate change is more likely to impact rural

communities. On the one hand, extreme weather has a clear and direct impact on agri-

culture, and this sector is the main source of employment for rural regions. The latest

Household Income and Expenditures National Survey (INEGI 2011) is indicative: in

2010, almost 62% of surveyed households living in rural communities worked in the

agricultural sector, while only 7% of households residing in urban areas did. On the

other hand, this spatial imbalance translates into significant differences in income: the

same survey reports that, also in 2010, households where no members were employed

in agriculture had an income, on average, of 13,365 Mexican pesos per month (1,062

USD.) Households with some (but not all) members being employed in the primary

sector of the economy, earned, on average, 8,618 pesos (686 USD.) Finally, in the case

where the entire household is engaged in agricultural work, monthly income averages

4,841 pesos (385 USD), or roughly a third of income in non-agricultural households.

These differences are reflected in two different patterns of household consumption:

monthly expenditures in urban areas are high (relative to rural communities) and food

consumption has a relatively smaller share of total expenditures. Urban households

spend on average 8,878 pesos (707 USD) per month, of which almost 32% is spent on

food. In contrast, rural households spend on average 4,602 (366 USD) pesos per

month, of which 40% is spent on food.

5.2 Years of Life Lost

A useful measure that is alternative to mortality rates is the years of life lost. This in-

dicator takes into account the age at which deaths occur by giving greater weight to

deaths at younger age and lower weight to deaths at older age, thus providing an indi-

17 Based on the average midpoint exchange rate of 0.0796 MXN/USD from August 21, 2010
through November 28, 2010, the period when the survey was carried out.
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rect measure of the opportunity cost of premature mortality, given age at death. A ra-

ther crude approach to calculating the years of life lost for a given cause, given sex or

age, is YLL = n- e, where YLL is the number of years of life lost, nd is the number

of deaths and e' is the standard life expectancy at age of death (in years.)

In order to calculate YLL, analysts usually resort to model life tables. A life table

is a concise way of showing the probabilities of a member of a particular population

living to or dying at a particular age. In general, such life tables include, for a given set

of age intervals, estimates of life expectancy, age at death, probability of dying, and

the estimated number of individuals surviving past a given age, among other met-

rics. Two sets of standard model life table families (Coale & Demeny 1966; United Na-

tions, 1981) are commonly used to derive a variety of mortality indicators and as un-

derlying mortality patterns for estimation and projection by the demographic research

community at large.

I construct a period life table for Mexico based on Coale and Demeny (1966) re-

gional model life tables (see Table 10), assuming a life expectancy of 75 years (for the

period 1990-2012, the life expectancy average was 73.7 years (INEGI 2012a.)) I employ

an extension set of the Coale and Demeny model life tables, which corrects for sub-

stantial deviation for out-of-sample predictions. Tabulations including age-specific mor-

tality rates, probabilities of dying, survival level and ratios, by sex and level of life ex-

pectancy were computed by the United Nations Population Division (Li & Gerland

2011; UNPD 2012.) I combine Coale-Demeny life expectancy patterns for males and

females into age-range-specific pooled patterns by taking a weighted average of the

age-range-specific patterns, where the weights are the average censual population of

males and females over the 1990-2010 period.

I obtain censual population statistics, by sex and age group, from the National In-

stitute of Statistics, Geography and Informatics of Mexico (INEGI)'s Censual Historic

Series. These data are available for years 1990, 1995, 2000 and 2010 (INEGI 2012b.) In

addition, I obtain age-at-death statistics from INEGI's Administrative Registers Statis-

tics Multi-Screen Data-Search System (INEGI 2012c.) Age-at-death data are available

for the 1990-2011 period.
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Several studies make use of the basic YLL = nd - es metric to estimate the number

of years of life lost (an example that is related to the subject of this paper is Deschenes

and Greenstone (2011.)) Nevertheless, such an approach assumes that a year of life

now is equivalent to society to a year of life gained sometime in the future. Similarly, it

assumes that lost years of life have equal value regardless of age. Finally, it assumes

that for a given age, all individuals lose the same amount of health through death, ig-

noring the fact that current life expectancies vary between population groups (Priiss-

Ustfin et al. 2003.) These assumptions are problematic. A number of studies indicate

that there is a broad social preference to value a year lived by a young adult more

highly than a year lived by a young child, or lived at older ages (Institute of Medicine

1986.) Likewise, people generally prefer a healthy year of life immediately, rather than

in the future, if given the choice.

For this reason, rather than computing the basic formulation of YLL, I estimate

the net present value of YLL, applying a 3% discount rate to years of life lost in the

future, the typical value employed in the demographics and epidemiology literature

(Gold et al. 1996.) In addition, I employ a function to model relative age weights, giv-

ing more relative weight to lower age values (Murray & Acharya 1997.) Given that

both age-weighting and discounting are applied, I estimate the years of life lost by

computing

YLL = {KC(exp(a)) exp( -(r + 3)( es + x))[-(r + 3)(es + x) -1] -exp (-(r
Y (r + 3)2

+ )x)[-(r + )x - 1]} + (1 - exp(-res))
r

where YLL is the number of years of life lost; x is the age of death (in years); r is

the discount rate (usually 3%); es is the standard life expectancy at age of death x T3

is an age-weighting constant (typically 0.04), K is an age-weighting modulation con-

stant (normally 1), and C is an adjustment constant for age-weights, whose value is set

at 0.1658 in the World Health Organization's methodology and assessments of Global

Burden of Disease (WHO 2012.)
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5.3 Observed Weather

The most essential data to carry out any empirical analysis on weather and its impacts

are, of necessity, climatic records. There is a variety of models that provide environ-

mental analysts with climatic observations and some have been employed to assess

weather impacts in Mexico in terms of human, environmental, and agricultural out-

comes. In studying the impact of severe weather on health and cognitive development,

Aguilar and Vicarelli (2011) use precipitation data at 0.5 degree resolution climate

grids, which were generated by the Climate Research Unit and the Tyndall Centre for

Climate Change Research, both at the University of East Anglia. Sdenz Romero et al.

(2010) develop spatial climate models to estimate plant-climate relationships using thin

plate smoothing splines of ANUSPLIN software, created by the Australian National

University. Pollak and Corbett (1993) use spatial agroclimatic data to determine corn

ecologies.

The underlying problem with these and other works that follow similar methodolo-

gies is their use of monthly climatic data. Using monthly climatic data is problematic

due to the nonlinear effects of weather, which may be concealed when, for example,

daily observations are averaged into monthly or seasonal variables. In effect, daily and

even finer-scale weather data facilitate estimation of models that aim to identify non-

linearities and breakpoints in the effect of weather. Schlenker and Roberts (2009) use

daily temperature data and find a nonlinear asymmetric relationship between weather

and crops yields in the United States, with yields decreasing more rapidly above the

optimal temperature vis-A-vis their increasing below the optimal temperature. The as-

sumption of nonlinearity is particularly critical for studies like this one, where the re-

searcher attempts to represent the relationship between weather and human physiolo-

gy. In many studies, for the case of mortality, a J- or U-shaped curve has been found

appropriate to describe the association, with elevated mortality being observed at

temperature extremes and relatively lower mortality at moderate temperatures (Bur-

gess et al. 2011; Curriero et al. 2002; Deschtnes & Greenstone 2011; Huynen et al.

2001; Kunst, Looman & Mackenbach 1993.)
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I use daily temperature and precipitation data from the North American Regional

Reanalysis (NARR) model (NOAA 2012.) The NARR project is a long-term, high fre-

quency, dynamically consistent meteorological and land surface hydrology dataset de-

veloped by the National Centers for Environmental Prediction (NCEP) as an extension

of the NCEP Global Reanalysis, which is run over the North American Region. It co-

vers the period 1979 to 2010 and data are available at three-hour intervals (i.e., eight

data points per day), on a Northern Hemisphere Lambert Conformal Conic grid with a

resolution of 0.3 degrees (32km)/45 layers at the lowest latitude. In addition to the

modeling benefits of high spatial resolution, I employ NARR due to the model's good

representation of extreme weather events, resulting from the model outputting all "na-

tive" (Eta) grid time-integrated quantities of water budget. In a recent study, Mesinger

et al. (2006) compare the NARR precipitation for January 1998 (when the El Niflo

effect was underway) with observed precipitation. Their comparison shows that over

land there is an extremely high agreement between NARR and observed precipitation,

even over the complex western topography of Mexico.

Other variables could be employed for future work. The NARR dataset also in-

cludes information on wind speed, humidity, elevation, and other common climatic fac-

tors, but evidence shows that, at least for the most important crops of Mexico in terms

of output (i.e., corn, sorghum, and wheat), temperature and precipitation are the two

weather elements that can effectively inhibit plant growth and development to the

point of crop failure (Ministry of Agriculture of Mexico 2012b.) Conversely, non-

optimal values in altitude, soil quality, or light intensity requirements may only retard

growth or reduce yields, but these factors are not likely to put crops at imminent risk

(FAO 2007.)

I construct daily temperature data in two simple steps. First, I apply a spherical

interpolation routine to the data: I take weighted averages of the daily mean tempera-

ture and accumulated precipitation of every NARR gridpoint within 30 kilometers of

each municipality's geographic center, with the inverse squared haversine distance be-
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tween the NARR gridpoint and the municipality centroid as the weighting factor. 8 Se-

cond, I distribute all the (365, or 366 for leap years) daily temperature estimates in a

given year over 14 ranges: daily mean temperature lower than 10*C; daily mean tem-

perature higher than 30*C, and 10 two-degree-wide ranges (i.e., 10*C-12*C, 12*C-

14 0C,..., 28*C-30*C) in between. Slicing the weather data into small intervals is im-

portant for the empirical strategy that will follow, for it maintains weather variation in

any given specification, thus accounting for the nonlinear effects of weather extremes

discussed above.

Figures 4 and 5 illustrate these ranges for the period 1979-2010. The height of the

bars represents the weighted average number of days across municipality-by-year tem-

perature and rainfall realizations, where the municipality-by-year's total population is

the weight. The weighted average temperature is 18.6*C.

Table 3 summarizes the descriptive statistics for the temperature and precipitation

variables employed.

5.4 Future Weather

In terms of future weather, I use data derived from the Hadley Center Coupled

Model, version 3 (HadCM3), the most recent and complex coupled atmosphere-ocean

general circulation model that has been developed by the Met Office Hadley Centre for

Climate Change (2012), United Kingdom. The British Atmospheric Data Centre,

which is part of the NERC National Centre for Atmospheric Science (NCAS), granted

me access to its calculated trajectory data.

HadCM3 is one of the major models used in the IPCC Fourth Assessment Report

(IPCC 2007), since it considers the interplay of several earth systems and is therefore

considered the most accurate for climate predictions. It should be noted that, even

18 The haversine distance measure is useful when the units are located on the surface of the earth
and the coordinate variables represent the geographical coordinates of the spatial units and a spher-
ical distance between the spatial units needs to be calculated. This is accomplished by calculating
dst = r x c, where r is the mean radius of the Earth (6,371.009 kms); c 2 arcsin(min(1, y ai));
a = sin 2  + cos(#1) cos( 2 ) sin 2 A ; 0 = 1(02 - #1) = 2[t] - X22 [s]) ; A = !(A2 - A) =
(x, [t] - x, [s]); x1 [s] and x1 [t] are the longitudes of point s and point t, respectively; and x 2 [s] and

x 2 [t] are the latitudes of point s and point t, respectively.
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though the state of climate modeling has advanced dramatically over the last several

years, there is still much to learn, especially about the role of greenhouse gas emissions

on climatic behavior (Karl & Trenberth 2003.) Thus, the HadCM3 predictions should

be conceived of as two realizations from a superpopulation of models. The sources of

uncertainty in these models and scenarios are unclear, so uncertainty cannot readily be

incorporated into estimates of the impacts of climate change (Burgess et al 2011.)

Nevertheless, I selected HadCM3 due to primarily three reasons. First, as I discuss

above, one of the critical issues in terms of studying the impact of weather is the fre-

quency of the data, with daily data being preferred from an analytical standpoint, giv-

en that it allows the researcher to detect the abovementioned nonlinear effects of

weather. I obtain daily temperature at 1.5m data from the HadCM3 model for the pe-

riod December 1, 1989-November 30, 2100. Second, given that the model combines his-

torical with projected data, I am able to account for model error in the analysis, reduc-

ing a potential source of bias when carrying out the empirical analysis. This will be

explained in more detail when I discuss the methodological strategy in the following

section. Third, its good simulation of current climate without using flux adjustments

was a major advance at the time it was developed and it still ranks highly compared

to other models in this respect (Reichler & Kim 2008.) It also has the capability to

capture the time-dependent fingerprint of historical climate change in response to nat-

ural and anthropogenic forcings (Stott et al. 2000) which has made it a particularly

useful tool in studies concerning the detection and attribution of past climate changes.

Predictions of climate change from the HadCM3 models are available for some of

the greenhouse gas emissions scenarios described in the IPCC Fourth Assessment Re-

port (2007.) In particular, my data are based on the predictions from the application

of the AFI scenario to the HadCM3 model. As discussed before, the Al family of sce-

narios is characterized by rapid economic growth, a global population that reaches 9

billion in 2050 and then gradually declines, the quick spread of new and efficient tech-

nologies, and a convergent world, where income converges between regions and exten-

sive social and cultural interactions worldwide occur. The AFI scenario assumes,

technologically speaking, a heavy reliance on fossil fuels. This is a "business-as-usual"

scenario, which is the proper scenario to consider when judging policies to restrict
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greenhouse gas emissions (Deschenes & Greenstone 2011.) As these and other authors

point out, given the abundant supply of inexpensive coal and other fossil fuels, a

switch to alternative sources is unlikely without greenhouse gas taxes or the equivalent,

so AlFI is a reasonable benchmark scenario. This scenario assumes the highest rate of

greenhouse gas emissions, and thus needs to be seen as a worst-case outcome.

Typically, a global climate model breaks up the surface of the earth into a number

of latitude/longitude grid boxes. It divides the atmosphere into layers, from the surface

to the stratosphere, and does the same for the ocean, from the surface to the deepest

waters. At each of the points on this three dimensional grid in the atmosphere a numn-

ber of equations, derived from the basic laws of physics, are solved which describe the

large-scale evolution of momentum, heat and moisture. Similar equations, but includ-

ing different variables, are solved for the ocean. The atmospheric component of

HadCM3, which I employ for my analysis, has 19 vertical levels in atmosphere with a

horizontal resolution of 2.5 degrees of latitude by 3.75 degrees of longitude, which pro-

duces a global grid of 96 x 73 grid cells. This is equivalent to a surface resolution of

about 417 km x 278 km at the Equator, reducing to 295 km x 278 km at 45 degrees

of latitude (see Figure 6.)

I construct future daily temperature data in an analogous fashion to observed tem-

perature data, with minor differences in the spherical interpolation routine: I take

weighted averages of the daily mean temperature of every HadCM3 gridpoint within

300 kilometers from each municipality's geographic center, with the inverse squared

haversine distance between the HadCM3 gridpoint and the municipality centroid as

the weighting factor. Second, I distribute all the 360 (HadCM3 simulations often use

a 360-day calendar, where each month is 30 days) daily temperature estimates in a

given year over 14 ranges: daily mean temperature lower than 10*C; daily mean tem-

perature higher than 30*C, and 10 two-degree-wide ranges (i.e., 10*C-12*C, 12*C-

14 0C,..., 28 0C-30*C) in between. The projected change in the distribution of daily tem-

peratures in Mexico is illustrated in Figure 7.
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6 Econometric Strategy

In order to assess the welfare implication of climate change, it is necessary to first es-

tablish the relationship between current weather and mortality. An empirical specifica-

tion that attempts to capture the full distribution of annual fluctuations in weather is

based on the following equation:

12

Ymt Z tempmtj + am + Yt + Alt + A2t 2 + Emt (7)
j=1

where Ymt is the (crude or an alternative) mortality rate in municipality m in year

t (using logs virtually leaves the results unchanged, but for the sake of clarity, my

analysis is carried out using levels.) tempmtj are the separate j temperature ranges de-

scribed above for municipality m in year t = 1980, ..., 2010.19

The impact of temperature thus equals the sum of all j ranges. Notice that the on-

ly functional form restrictions in this specification are (1) the mortality impacts of

temperature are constant within each 2-degree range, respectively, and (2) that all

days with temperatures above (below or equal to) 30*C (10*C) have the same impact

in terms of mortality.

1 Additional regressions including precipitation ranges were run, but the results remained un-
changed. The empirical specification without rainfall variables is also preferred from a methodologi-
cal standpoint. There is insufficient and juxtaposing evidence in terms of the effects of climate-
driven change on the evolution of precipitation patterns, particularly in regions affected by El Nifno
Southern Oscillation (ENSO), whose complex dynamics are limitedly understood and have not been
well modeled as a result. As Seneviratne et al. (2012, p. 157) argue: "A caveat regarding all projec-
tions of future behavior of ENSO arises from systematic biases in the depiction of ENSO behavior
through the 20th century by models (Randall et al., 2007; Guilyardi et al., 2009.) Leloup et al.
(2008) for instance, demonstrate that coupled climate models show wide differences in the ability to
reproduce the spatial characteristics of SST variations associated with ENSO during the 20th centu-
ry, and all models have failings. They concluded that it is difficult to even classify models by the
quality of their reproductions of the behavior of ENSO, because models scored unevenly in their
reproduction of the different phases of the phenomenon. This makes it difficult to determine which
models to use to project future changes in ENSO. Moreover, most of the models are not able to re-
produce the typical circulation anomalies associated with ENSO in the Southern Hemisphere (Vera
and Silvestri, 2009) and the Northern Hemisphere (Joseph & Nigam, 2006.) [...] Our current limited
understanding means that it is not possible at this time to confidently predict whether ENSO activ-
ity will be enhanced or damped due to anthropogenic climate change, or even if the frequency of El
Niflo or La Nifia episodes will change (Collins et al., 2010.)"
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am is the fixed effect of municipality m. I include municipality fixed effects to con-

trol for the average differences across municipalities in any observable or unobservable

predictors of log mortality rate, so that, for instance, demographic, socioeconomic, or

clinical impacts will not be confounded with that of weather. Similarly, -yt is the unre-

stricted time fixed effect of year t. These fixed effects control for time-varying differ-

ences in the dependent variable that are common across municipalities, such as the

introduction of the Seguro Popular in 2003. Because such shocks are unlikely to have

the same effect at the regional level (for instance, among Seguro Popular delegations,

the pricing of prescription drugs varies greatly across regions), equation (7) also in-

cludes quadratic polynomial time trends Ar for the r=5 mesoregions of Mexico (North-

east, Northwest, South, Center, and Center-West) which, at least in terms of weather,

are fairly homogenous. Finally, Emt is the stochastic error term. Because observing a

common variance structure over time is unlikely, my results are based on a cluster-

correlated Huber-White covariance matrix estimator, which avoids the assumption of

homoscedasticity (Wooldridge 2004.) In addition, my empirical specification is weight-

ed by the squared root of the total municipal population, in an effort to correct for

heteroskedasticity associated with municipal differences in estimation precision of mor-

tality rates, having the additional advantage of presenting impacts on one person, ra-

ther than one municipality (Deschenes & Greenstone 2011.)

As discussed by Burgess et al. (2011) and Deschenes and Greenstone (2011), the

validity of my empirical strategy for studying the weather-mortality relationship relies

on the assumption that equation (7) yields unbiased estimates of the 9y, Pk, 3, 3, p, and

r vectors. Given the two-way fixed effect identification strategy employed, any omitted

variables that are constant over time and/or particular to one municipality will not

bias the estimates, even if the omitted variables are correlated with the explanatory

variables. If weather variability is supposed to be random, then it is plausible to as-

sume it is uncorrelated to unobserved mortality determinants.

I use the estimates based on the estimation of equation (7) for the various subsam-

ples of interest to compute the predicted mortality impacts of climate change in Mexi-

co in three future periods (2010-2039, 2040-2069, and 2070-2099) by carrying out the

following routine:
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1. Calculate the predicted change in temperature:

(ATmfd,future period). Using the future climate data from the HadCM3 model

(denoted by H), compute the difference in mean temperature between any giv-

en future period (i.e., 2070-2099) and this model's base period of 1990-2000.

This is done for each municipality m and for each day of the year d. This sub-

traction is done to remove model error by using historical data.

2. Calculate the predicted end-of-century climate:

(T,1980-2010 + ATd,future period). This is simply the sum of the mean tem-

perature for each day of the year and for each municipality over the 1980-2010

period (which is calculated using the NARR data, denoted by N) and the pre-

dicted change in temperature calculated above.

3. Generate i future temperature range variables:

(futuretempmtj). For each municipality, distribute the future daily tempera-

tures among the corresponding j-th temperature range. The resulting distribu-

tion is the HadCM3 predicted end-of-century temperature distribution.

4. Calculate future temperature distributional changes:

(A'Ibnmj = futuretempmj - tempmj) This is the change in the number of

days on which the mean temperature will fall into temperature range j by any

given future period.

5. Calculate the predicted mortality-impact of climate change:

(AYm). The predicted impact in municipality m is based on municipality-level

predictions calculated as Yt = Z 1  ATm , where Amt is the predicted

change in the log mortality rate, 93 is the estimated coefficient on temperature

range j obtained by equation (7), and ATmj is the change in the temperature

distribution described above.

7 Results

In this section, I present the main findings of the analysis of the relationship between

temperature and mortality in Mexico. In particular, I focus on the impact of extreme
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weather on death and how climate-change-induced warming is predicted to further ex-

acerbate the negative effects of hot temperatures on human health.

Table 4b illustrates the relationship between severe temperatures and mortality (for

reference, Table 4a also shows this relationship, using logs instead of levels for the de-

pendent variable, death rate.) It presents the results based on equation (7) for the pe-

riod 1990-2010, using data for 2,454 (99.9%) municipalities of Mexico. Although the

impact of temperature was modeled using 11 2*C temperature ranges (defined as the

number of days in a given temperature category in a municipality per year), for the

purposes of clarity and specificity of analysis, I only present the estimates of the lowest

three (coldest) and highest three (hottest) temperature ranges. Estimates in the center

of the temperature distribution tended to be, in general, statistically insignificant at

the conventional levels.

The first row of Panel A presents the results for crude (all-cause) mortality rates. It

shows that extremely hot days (those with an average temperature higher than 26*C)

are far more deadly than very cold days (defined as those with temperatures lower

than 14*C.) While the three highest temperature ranges are large and significant, only

the lowest temperature range is statistically different from zero and smaller in magni-

tude. Exposure to one day where the temperature is lower than 10*C is associated with

roughly 0.2 additional deaths per 100,000 people. Conversely, the impact of an addi-

tional day with temperatures ranging between 28*C-30*C (relative to the mortality

patterns on a day where temperature is in the 16*C-18*C range) equals 0.5 additional

deaths per 100,000. Exposure to one day where the temperature is higher than 30*C

leads to more than 0.8 additional deaths per 100,000.

As discussed previously in the literature review, there is substantial evidence that

suggests that the impact of severe weather on humans is not uniform. Some groups of

the population may be more vulnerable to extreme temperatures, given their human

physiology characteristics. Rows 2-4 of Panel A in Table 4 support this argument. I

investigate the impact of temperature on the mortality rates of three subpopulations of

interest: infants (i.e., children less than one year old), young children (under the age of

5) and seniors (over 70 years of age.)
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The results show that these groups are disproportionately affected by severe

weather. The impact of cold days is inconclusive: while infant and child mortality rates

seem to decrease with low temperatures, late-life mortality rate increases. However, hot

weather does lead to highly significant and above the general population average in-

creases in mortality. While in terms of the general population exposure to one day

with temperatures higher than 26*C (relative to the impact of a day in the 16*C-18*C

range) leads, on average, to 0.6 additional deaths per 100,000, it raises child mortality

rate by 1.2 additional deaths per 100,000 people. Similarly, it increases infant mortality

rate by more than 2.5 additional deaths per 100,000 live births. Moreover, nearly half

of the crude mortality rate is explained by late-life mortality rate.

Alternative regional specifications shown in Panel B also reveal the same pattern.

Extremely high temperatures are associated with higher mortality rates, while cold

temperatures pose a more limited risk (both in terms of magnitude and significance)

with regard to its impact on death. There are some interesting regional patterns that

are worth noting. As predicted by theory and evidenced empirically, the magnitude of

the impact of severe weather is considerably larger in rural areas than in urban cen-

ters. Exchanging a single day in the 16"C-18'C range for one in the highest tempera-

ture range leads to approximately 0.6 additional urban deaths per 100,000. Even

though there are fewer days to identify the highest temperature range coefficient, the

null hypothesis of equality is rejected at the 1% level. The impact at the rural level is

almost tenfold: exchanging a single day in the 16*C-18*C range for one in the highest

temperature range leads to approximately 5.3 additional rural deaths per 100,000. In

this case, even though this impact is not significant at the conventional level, it should

not be dismissed and assumed irrelevant. Given that large measurement variability

(see Table 1) may mask important effects, the impact of extremely hot temperatures in

rural regions should be at least deemed as "possibly harmful."

At the regional level, several interesting findings are observed. First, the impact of

severe weather on mortality rates is spatially heterogeneous. The effect of the lowest

temperature ranges from -0.2 to 0.3 additional deaths per 100,000. This effect is signif-

icant at the conventional level for two regions (Center-West and Center.) Similarly, the

impact of the highest temperature ranges from 0.1 to 2.5 additional deaths per
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100,000. This impact is significant at the 5% level for three regions (Northeast, North-

west and Center-West.) Second, in general, hotter/dryer regions fare worse than more

temperate/more humid regions (see Figure 8) in terms of high-temperature impacts on

mortality (low-temperature impacts are insignificant generally.) The estimated mortali-

ty impact of the above-30*C temperature range in the dryer/hotter regions (Northeast,

Northwest, Center) is always statistically significant and ranges from 0.8-2.5 additional

deaths per 100,000. Conversely, the estimated mortality impact of the above-30*C

temperature range in the colder/more humid regions (Center-West and South) is never

statistically significant and ranges from 0.1-0.3 additional deaths per 100,000. This is

reflected in the test of equal regional estimates (bottom row of Table 4b) being reject-

ed. These findings indicate that different levels of adaptation take place regionally.

They also suggest that while hotter (colder) regions are better adapted to cope with

severely hot (cold) weather in developed countries (Basu & Samet 2002), it may not be

so in developing settings, where resource-constrained, agriculture-intensive economies

are habitual.

Table 5 also reports the relationship between extreme weather and mortality rates,

underscoring differences in age groups. Once again, with the exception of the coldest

temperature ranges in the over-the-age-of-45 regressions, lower temperature ranges are

in general non-significant. On the contrary, high-temperature ranges are usually asso-

ciated with increases in the mortality rate across age groups. Notice that the effect of

extremely high temperatures on death follows a U-shaped curve, showing that middle-

aged people are the most resilient against extreme weather and that exposure to severe

heat increases mortality in all but one age group (ages 20-24.) Older people are the

most vulnerable group to the negative effects of extremely high temperatures: one ex-

tra day with mean temperature above 30*C leads to roughly 2 additional annual

deaths per 100,000 people age 65-69; 4 additional annual deaths per 100,000 people age

70-74; and more than 5 additional annual deaths per 100,000 people age 75 and older.

Table 6 shows that, in the absence of any future effective mitigation (corresponding

to the IPCC AFI scenario), the impact of extreme weather on death is likely to be

exacerbated as a result of climate change. The error-corrected Hadley 3 AFI results

indicate that climate change would have no statistically significant impact in the early
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2 1" century. However, halfway through the century, climate change would lead to a 4%

increase in the annual mortality rate. By the end of the 21? century, it would lead to a

9% increase in the annual mortality rate in Mexico. Regardless of the time period of

analysis, the aggregate impact of weather on mortality is explained by statistically sig-

nificant increases in the mortality rate as a result of the predicted increases in the fre-

quency of hot days (8% increase in the annual mortality rate by the end of the century,

significant at the 1% level) and statistically significant decreases in the mortality rate

as a result of the predicted decreases in the frequency of cold days (2% decrease in the

annual mortality rate by the end of the century, significant at the 1% level.) The over-

all effect is marginally statistically significant at the conventional significance levels for

the mid-century and end-of-century time periods.

Table 7 reports alternative specifications of the mortality rate, focusing on three

particularly vulnerable subpopulations: infants, children, and seniors. As expected, the

effect of weather on death in these subpopulations is disproportionate given their high-

er susceptibility to severe weather. While climate change would lead to a 8.9% increase

in the overall annual mortality rate, it would cause a 9.3% increase in the mortality

rate among seniors. Similarly, it would increase infant and child mortality rates by

17.9% and 19.4% respectively. These estimates are precise and statistically significant

at the conventional levels. In every alternative specification of the mortality rate, as

climate gets warmer throughout the 21? century, the effect of weather on death be-

comes more prominent. However, the effect size does not growth at a constant rate

over time. For example, the overall impact of climate change on the infant mortality

rate fluctuates from a 4% increase in the period 2010-2039 to a 10% increase in the

period 2040-2069 to a 18% increase in the period 2070-2099. Similar patterns are ob-

served for child and late-life mortality rates as well. In general, the increased mortality

is mainly attributable to changes in the future temperature distribution, with signifi-

cant increases in the number of hot days.

Table 8 breaks down the analysis by type of area. As expected, given the findings

presented in Table 4, the results are sharply different for urban and rural areas. By the

end of the century, annual mortality rates are predicted to increase by 40% in rural

areas, and this estimate is statistically significant at the conventional levels. Again, the
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increased mortality is almost entirely attributable to the increase in the number of

very hot days (where the mean temperature exceeds 30*C.) The urban mortality re-

gression tells a completely different story. The predicted change in annual mortality is

5%, and is statistically distinguishable from zero at the 10% level only. Regardless of

the time period, the predicted increases in annual mortality are larger and more con-

centrated in the rural areas. An important implication of these findings is that climate

change will disproportionately affect the poor. In effect, in 2010 (the most recent year

that data are available) while only 10% of urban households are considered "food-

poor," i.e., unable to obtain a basic food basket even if all of the household's available

income just is used for sustenance, 24% of rural households are confronted to alimen-

tary poverty (Consejo Nacional de Evaluaci6n de la Politica de Desarrollo Social 2013.)

While significant changes in climate are predicted in this century, it is very likely

that these changes will vary regionally. As a result, in terms of impact assessment pro-

cesses, the regional scale is of more practical interest to decision-makers than the ag-

gregate national scale. Table 9 reveals wide variation in the vulnerability of different

regions to projected mean warming in every time period considered. It also indicates

that the net welfare effect of climate change is likely to increase over time. For the

period 2010-2039, the predicted overall effect of climate change is only statistically sig-

nificant for two regions only. The Center-West region is expected to undergo a relative-

ly small increase (3%) in the annual mortality rate. Conversely, the South region is ex-

pected to experience a decline of the same magnitude (3%) in the annual mortality

rate. For the mid-century period, the predicted change in mortality is positive for all

but one region (South) and is statistically different from zero in three of the five Mexi-

can regions (Northwest, Northeast, and South.) Again, the South region is projected to

experience a decline in annual mortality (9%), while predictions for the hottest regions

of the country (Northwest and Northeast) estimate annual mortality increases of 9%

and 5%, respectively. At the end of the century, regional differences will become more

apparent. The largest increases in the annual mortality rate are projected to occur in

the hottest regions of the country: the predicted effect of climate change on annual

mortality, according to the error-corrected HadCM3 AlFI model, is a 11% increase in

the Northeast and a 20% increase in the Northwest. On the contrary, the model pre-
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dicts a significant decline in the annual death rate of the South region (11%.) The net

effect of climate change on the annual mortality rate of the Center and Center-West

region is positive, but smaller in magnitude (9% and 1%, respectively) and statistically

equal to zero.

Finally, based on equation (7), Tables 11-13 present estimates of the impact of cli-

mate change on annual mortality rate, by age group, over the short, medium, and long

terms, characterized by the error-corrected Hadley 3 AlFI predictions. Once again, I

define short term as the average of the predictions for the years 2010-2039; medium

term as the average of the predictions for the years 2040-2069; and long term as the

average of the predictions for the years 2070-2099. The final row of Tables 11-13 aggre-

gates all age-group-specific estimates to provide a weighted-by-age-group overall esti-

mate. Columns (1)-(3) report the national age-group-specific estimate of the change in

annual mortality for the extreme ranges of the temperature distribution (i.e., <100C

and >30*C) and an aggregate middle temperature category resulting from grouping

the middle 9 temperature ranges (10*C-30*C.) Column (4) shows the total temperature

impact, which is the sum of Columns (1)-(3). Column (5) reports the estimated per-

centage change in the annual mortality rate, which is calculated as the ratio of the

change in the age group's annual mortality rate due to predicted climate change to its

baseline annual mortality rate. Column (6) reports the change in life-years due to pre-

dicted climate change for each age category, based on a years-of-life-lost formulation

that accounts for age-weighting and time-discounting, as previously discussed in the

Data Construction section. For this calculation, I use data from the period life table

for Mexico I construct for this analysis, and which I replicate in Table 10. A negative

value in Column (6) corresponds to gains of life years, i.e., climate change is likely to

lead to a decline in death counts.

Over the short term, I find that the impact of climate change is inconsequential.

The total impact on annual crude mortality rate is statistically not different from zero.

Although non-significant at conventional levels, the results show that, if anything, cli-

mate change would lead overall to 750 fewer deaths per 100,000, a 0.3% decline in the

annual mortality rate. Notice that this non-significant result is the outcome of two op-

posite forces balancing each other out: a statistically significant increase in the mortali-
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ty rate due to a higher frequency of very-high-temperature days and a statistically sig-

nificant decline in the mortality rate due to a lower frequency of very-low-temperature

days. In terms of age groups, only infants and children under five are negatively affect-

ed by climate change. It is the sole age group for which the impact on annual mortality

rate is statistically significant (in the short term.) I find a 1.9% increase in this age

group's mortality rate, equivalent to 538 additional deaths per 100,000 per year, or an

annual loss of 34,850 years of life lost.

Over the medium term, the impact of climate change is significantly more pro-

nounced than in the short term. The total impact on annual crude mortality rate is

statistically different from zero at the 5% level. The results show that climate change

would lead overall to 3,878 additional deaths per 100,000, a 3.9% increase in the annu-

al mortality rate. Once again, this effect is explained by a future temperature distribu-

tion with more recurrent hot days and less frequent cold days. As discussed in the lit-

erature review, two groups are most vulnerable to climate change: infants and young

children, and seniors. My analysis points to a 5.8% increase in annual mortality rate

among seniors between the ages of 70 and 74 (the results for the 75+ age group are

statistically zero), while the annual mortality rate for infants and young children is ex-

pected to increase by 9.5%. This is equivalent to 797 and 2,585 additional annual

deaths per 100,000, respectively. Combined, this equals to roughly 782,000 years of life

lost annually.

By the end of the century, the impact of climate change will be further exacerbat-

ed. Over the long term, the total impact on annual crude mortality rate is statistically

different from zero at the 1% level. The results show that climate change would lead

overall to 10,001 additional deaths per 100,000, a 8.9% increase in the annual mortality

rate. In other words, the impact of climate change on mortality between the mid and

the end-of-century is expected to more than double. The impact of climate change on

vulnerable groups will be intensified as well. My analysis points to a 11.0% increase in

annual mortality rate among seniors between the ages of 70 and 74, while the annual

mortality rate for infants and young children is expected to increase by 19.3%. This is

equivalent to 1,689 and 5,221 additional annual deaths per 100,000, respectively. Over-

146



all, the results suggest that climate change would lead to a loss of more than 3.1 mil-

lion life-years per annum.

8 Conclusion

Climate change is a clear challenge for the planet, not only for the damage it is ex-

pected to inflict on underdeveloped economic systems, but also for the social inequities

it is likely to exacerbate. This is especially true for countries like Mexico, where the

number of people relying on primary economic activities is significantly higher than in

industrialized nations, and where roughly half of the population lives under abject

poverty or does not have access to well-functioning credit and insurance markets.

Without such markets, it will be difficult for many people to mitigate the negative ef-

fects of global warming and future severe weather, both on their income sources and

their own health.

In this paper, I connect future climate change to adverse health outcomes. I show

that the warmer the climate becomes, the higher the all-cause mortality rate. In the

absence of any future effective mitigation or adaptation, my results indicate that cli-

mate change would have no statistically significant impact in the early 2 1 't century.

However, halfway through the century, climate change would lead to a 4% increase in

the annual mortality rate. By the end of the 21't century, it would lead to a 9% in-

crease in the annual mortality rate in Mexico.

I find that climate change will have its greatest effect in deprived areas and vulner-

able segments of the population. Infants, children and seniors will be disproportionate-

ly affected given their higher susceptibility to severe weather. While climate change

would lead to a 8.9% increase in the overall annual mortality rate, my analysis points

to a 11.0% increase in annual mortality rate among seniors between the ages of 70 and

74, while the annual mortality rate for infants and young children is expected to in-

crease by 19.3%. This is equivalent to 1,689 and 5,221 additional annual deaths per

100,000, respectively. In all, the results suggest that climate change would lead to a

loss of more than 3.1 million life-years per annum (equivalent to one life-year lost every

ten seconds.) Equally, those who have the fewest assets (and who have contributed
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least to climate change) will be hit the hardest: while annual mortality rates are pro-

jected to increase by 5% in cities by the end of the century, the expected change in ru-

ral areas, where the majority of the poor is concentrated, is 40%.

In addition, I present evidence that there is wide variation in the vulnerability of

different Mexican regions to projected climate change. While I find large increases in

the annual mortality rate in both the Northeast and the Northwest (the hottest re-

gions of the country), my model predicts a significant decline in the annual death rate

of the South region.

In the light of these findings, there are several key issues that need to be considered

as the projected impact of climate change materializes. It is important to emphasize

that the most critical social policy issue regarding climate change should be the reduc-

tion of health risks among the most vulnerable. Four recommendations towards this

end are presented below:

1. In terms of knowledge generation, it is important to produce more and better

data on both hydrometeorological phenomena and health outcomes. While

mortality data, as I evidence in this paper, are of high quality and disaggrega-

tion, other relevant health outcomes, such as morbidity and the incidence of

particular diseases, are currently unavailable. To operationalize truly useful

vulnerability assessments and risk monitoring, disease transmission patterns,

municipality-specific epidemiological and meteorological station data, and other

complex information is required.

2. In terms of future research implications, one proposal is to focus on the differ-

entiated impact of climate on alternative human health measures. Similarly, the

policy, economic, and environmental implications of the regional variability of

climate impact is worth investigated and need to be addressed. The methodolo-

gy I introduce in this paper can be employed to develop estimates of the wel-

fare cost of climate change (not only in. terms of health, but also agricultural

incomes, nutrition, or energy consumption) in other countries at risk. Finally, in

addition to understanding patterns of risk, it is important to evaluate the spa-

tial vulnerability of indigenous groups, households with young children or sen-

iors, families living in irregular settlements, and other populations susceptible
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to severe weather in order to reduce their risk. A geographic information sys-

tem analysis for rural and urban-poor communities is thus indispensable to

identify their vulnerability and implement ad hoc policies to their capacity and

capabilities.

3. In terms of poverty alleviation, it is critical to target climate-change-adaptation

efforts to the specific needs of vulnerable populations, primarily the poor, in-

fants, and the elderly. Basic health infrastructure in rural Mexico is scarce and

deficient. Notorious health inequities exist in Mexico, associated with high

prevalence of social exclusion, particularly in the rural regions of the country

(Gonzdlez Perez et al. 2008.) A more substantive health reform aimed at redis-

tribution through fiscal policy and access of the vulnerable to the health system

is essential. The development of the clinical and human capacity of the health

system that resonates with local preferences is necessary to give way to coher-

ent, bottom-up community-based health planning that provides the foundation

for an effective public health response to the many climate-induced threats to

health (Carmin & Zhang 2009; Costello et al. 2009.) Likewise, as I will show in

the next paper, state interventions in the form of safety net development, con-

ditional-cash-transfer programs, nutritional programs, especially for households

with infants and young children, effective disaster coping preparedness, or other

mechanisms to enhance the adaptive capacity of disadvantaged households and

communities to deal with climatic variability and risks leads to sustained im-

provements in welfare.

4. In terms of institutional coordination, a more solid framework to have all the

levels of government reinforce, rather than exclude, one another to provide an

effective climate-change-coping response, particularly in poor communities, is

required. Rather than having the states and municipalities implement frag-

mented and likely contradictory strategies to cope with climate change, 20 a con-

nection with active broad federal responses, like the National Climate Change

Strategy, would be more conducive to multisectoral policy implementation ca-

20 See for instance the Climate Change Program of Action of the State of Nuevo Le6n or Mexico
City's Climate Action Local Strategy.
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pacities, responsive to market failures and effective to facilitate access to more

resources for communities in need. In terms of research, it would be useful to

understand what is driving municipalities and states to initiate local climate

adaptation planning and the extent of its variation.
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Table 1. Mortality Rates in Mexico, 1990-2011, by Type of Area

Pooled
(1)

Rural
(2)

Urban
(3)

Crude mortality rate 4.8 9.1 4.9
(1.4) (34.5) (1.9)

Child mortality rate 3.1 8.8 3.5
(3.8) (64.1) (11.2)

Late-life mortality rate 2.0 3.5 2.1

(0.9) (14.5) (1.0)

Note: Municipalities may consist of urban areas only, rural areas only, or a combination of both.

All statistics are weighted by total municipal population. Standard deviations in parentheses.

Table 2. Crude (All-Cause) Mortality Rate in Mexico, 1990-2011, by Age Group

Crude mor-
Age group tality rate

(1)

25-29

30-34

35-39

40-44

45-49

50-54

1.8
(1.2)

1.8
(1.1)

2.2

(1.3)
3.0

(1.7)
4.4

(2.1)

6.3
(2.6)

Crude mor-
Age group tality rate

(1)

55-59

60-64

65-69

70-74

75 and over

9.8
(3.7)
13.9
(4.9)

21.4

(7.3)
31.2

(10.7)
79.5

(18.9)

Note: All-cause mortality by age group is the annual number of deaths in a given age group per

the population in that age group (expressed per 1,000.) All statistics are weighted by total munic-

ipal population within each age group. Standard deviations in parentheses.
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Age group

Pooled

0-4

5-9

10-14

15-19

20-24

Crude mor-
tality rate

(1)
4.8

(1.4)

4.6

(2.9)
0.3

(0.4)

0.4

(0.3)
0.8

(0.6)
1.2

(0.8)



Table 3. Relevant Climate Outcomes in Mexico, 1979-2009, by Type of Area

Rates Pooled Rural Urban

(1) (2) (3)
Daily mean temperature (*C) 18.5 17.4 18.5

(4.4) (3.9) (4.4)
Annual average rainfall (mm) 712.8 678.9 713.0

(419.1) (332.7) (419.5)
Annual degree-days (over 30'C) 11.6 6.8 11.6

(45.5) (30.0) (45.5)
Annual degree-days (below 10'C) 30.1 38.7 30.1

(54.7) (57.8) (54.7)
Annual millimeters-days (over 8mm) 174.8 129.3 175.1

(225.1) (139.8) (225.4)
Annual millimeters-days (below 3mm) 779.7 764.9 779.8

(122.7) (120.6) (122.8)

Note: If fewer than 2,500 residents live in a given municipality, such a municipality is considered
"rural." All statistics are weighted by total municipal population. Standard deviations in parenthe-
ses.
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Table 4. Estimates of the Impact of Extreme
of Area

Temperatures on Several Annual Log and Actual Mortality Rates, by Regions and Type

a. Impact on annual log mortality rates

Days Days Days Days Days Days

< 10 *C 10 '-12 *C 12*-14 *C 26 *-28 "C 28 *-30 'C > 30 *C

(1) (2) (3) (4) (5) (6)

Panel A. Pooled estimates

Crude 0.00032

(n=48,583) (0.00009)
Child -0.00073

(n=30,755) (0.00021)
Late-life 0.00043

(n=48,219) (0.00010)
Panel B. Alternative specifications

Urban 0.00029

(n=29,206) (0.00010)
Rural -0.00077

(n=46,384) (0.00055)

-0.00093

(0.00091)
* -0.00246

(0.00111)
*** -0.00131

(0.00092)

**

-0.00127
(0.00094)

0.00214

(0.00144)

0.00035

(0.00031)
-0.00075

(0.00047)
0.00058

(0.00033)

0.00011

(0.00033)
-0.00018

(0.00072)

*

0.00116
(0.00018)

0.00115
(0.00055)

0.00140

(0.00023)

0.00052
(0.00021)

0.00311
(0.00136)

0.00081
(0.00022)

** 0.00154

(0.00062)
*** 0.00076

(0.00026)

** 0.00037

(0.00025)
** 0.00284

(0.00139)

0.00153
(0.00027)

** 0.00128

(0.00069)
*** 0.00166

(0.00035)

**

0.00095
(0.00030)

0.00393
(0.00102)
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Table 4., continued

a. Impact on log annual mortality rates
Days

< 10 C

Panel B. Alternative specifications

Northwest 0.00000

(n=1,966) (0.00031)
Northeast 0.00008

(n=4,760) (0.00018)
Center-West -0.00036

(n=9,118) (0.00019)
Center 0.00044

(n=10,559) (0.00032)
South 0.00014

(n=22,180) (0.00015)
p-value (Wald tests

of regional equality)

Days

10 *-12 *C

(2)

*

0.006

-0.00094

(0.00084)
0.00044

(0.00071)
-0.00010

(0.00034)
-0.00123

(0.00155)
0.00184

(0.00064)

Days

12 *-14 *C

(3)

-0.00015

(0.00050)
0.00064

(0.00060)
0.00048

(0.00024)
0.00008

(0.00050)
* 0.00109

(0.00035)

0.090

Days

26 *-28 *C

(4)

0.00039

(0.00041)
0.00103

(0.00042)
** 0.00097

(0.00038)
0.00317

(0.00104)
*** 0.00048

(0.00028)

0.564

Days

28 030 *C

(5)

0.00078

(0.00035)
** 0.00067

(0.00058)
* 0.00161

(0.00039)
*** 0.00582

(0.00182)
* -0.00002

(0.00029)

0.069

Days

> 30 *C

(6)

** 0.00235

(0.00053)
0.00162

(0.00073)
* 0.00055

(0.00104)
*** -0.00230

(0.00162)
0.00029

(0.00033)

0.000 0.002

Note: Regressions include municipality fixed-effects, time fixed-effects and quadratic regional time trends. All statistics are weighted by
total municipal population. Huber-White standard errors in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%.
Temperature exposure is modeled with 11 temperature-day ranges defined as the number of days in a given temperature category in a
municipality-year. Only the estimates on the lowest three (coldest) and highest three (hottest) temperature ranges are reported for com-
pactness.
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Table 4., continued

b. Impact on annual mortality rates

Days Days Days Days Days Days

< 10 0C 10 0-12 C 12*-14 C 26 *-28'C 28 "-30 *C > 30 *C

(1) (2) (3) (4) (5) (6)

Panel A. Pooled estimates

Crude 0.174

(n=48,664) (0.051)
Infant -0.598

(n=48,656) (0.346)

Child -0.274

(n=48,656) (0.092)
Late-life 0.097

(n=48,664) (0.023)
Panel B. Alternative specifications

Urban 0.207

(n=30,777) (0.057)
Rural -1.022

(n=48,023) (2.151)

0.025
(0.243)

* -3.971
(1.802)

*** -0.766

(0.344)
*** -0.025

(0.094)

0.013
(0.262)

5.637
(4.077)

**

**

0.004

(0.117)
-0.118

(0.697)
-0.174

(0.216)
0.019

(0.048)

-0.121

(0.131)
-0.398

(8.946)

0.614

(0.099)
3.204

(0.687)
1.029

(0.258)
0.261

(0.045)

0.349

(0.122)

2.021

(3.994)

0.530
(0.111)

1.574

(0.930)
1.657

(0.322)
0.186

(0.051)

0.301
(0.135)

3.864

(5.190)

0.812
(0.131)

* 2.774

(0.938)
0.897

(0.286)
0.356

(0.067)

** 0.573
(0.156)

5.256

(5.016)
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Table 4., continued

b. Impact on annual mortality rates

Days Days Days Days Days Days

< 10 0C 10 *-12*C 12 14 *C 26 28 0C 28 *-30 C > 30 *C
(1) (2) (3) (4) (5) (6)

Panel B. Alternative

Northwest

(n=1,975)
Northeast

(n=4,760)
Center-West

(n=9,119)
Center

(n=10,562)
South

(n=22,248)
p-value (Wald tests

of regional equality)

specifications

-0.016

(0.135)
0.053

(0.087)
-0.199

(0.088)
0.327
(0.149)
0.021

(0.072)

0.002

-0.486
(0.384)
0.412

(0.315)
** -0.049

(0.155)
** 0.108

(0.455)
1.033

(0.297)

0.020

-0.104

(0.233)
0.327
(0.265)
0.145

(0.113)
0.092
(0.252)

* 0.545

(0.166)

0.259

0.173
(0.200)
0.490

(0.202)
0.482

(0.169)
1.728
(0.427)

*** 0.231

(0.123)

0.020

0.386

(0.168)
** 0.367

(0.260)
* 0.734

(0.177)
*** 2.801

(0.510)
* 0.095

(0.129)

0.000

** 1.056

(0.248)
0.792

(0.352)
* 0.296

(0.382)
*** 2.531

(0.433)
0.079

(0.140)

0.034

Note: Crude and late-life mortality rates are defined as the annual number of deaths per 100,000 people. Infant and child mortality rates
are defined as the annual number of deaths per 100,000 live births. Age-specific mortality rates are defined as the annual number of
deaths per 100,000 people in the specified group. Regressions include municipality fixed-effects, time fixed-effects and quadratic regional
time trends. All statistics are weighted by total municipal population. Huber-White standard errors in parentheses. * significant at 10%;
** significant at 5%; *** significant at 1%. Temperature exposure is modeled with 11 temperature-day ranges defined as the number of
days in a given temperature category in a municipality-year. Only the estimates on the lowest three (coldest) and highest three (hottest)
temperature ranges are reported for compactness.
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Table 5. Estimates of the Impact of Extreme Temperatures on All-Cause Annual Mortality Rate, by Age Group

Impact on annual mortality rates

Days Days Days Days Days Days

< 10 *C 10 0-12*C 12*-14 0C 26 0-28 *C 28 30 *C > 30 *C

(1) (2) (3) (4) (5) (6)

Panel A. Pooled estimates

All ages (unadjusted)

(n=48,664)
All ages (adjusted)

(n=48,664)

Panel B. Age-group

Age 0-4

(n=48,623)
Age 5-9

(n=48,624)
Age 10-14

(n=48,624)
Age 15-19

(n=48,624)
Age 20-24

(n=48,624)
Age 25-29

(n=48,624)
Age 30-34

(n=48,624)
Age 35-39
(n=48,624)

0.174

(0.051)
0.154

(0.071)

specifications
0.157

(0.081)
0.002

(0.006)
0.009

(0.006)
0.021

(0.013)
0.042

(0.020)
0.031

(0.036)
0.030

(0.031)
0.056

(0.038)

0.025
(0.243)

** 0.030
(0.296)

**

0.207

(0.366)
-0.021

(0.024)

0.029
(0.024)

0.016

(0.054)

-0.078
(0.081)

0.061
(0.146)

-0.056
(0.112)

0.117

(0.142)

0.530
(0.111)

0.441

(0.166)

0.004

(0.117)
0.039

(0.147)

-0.046

(0.201)

-0.001
(0.019)

0.005
(0.016)
-0.036

(0.029)
-0.027

(0.042)

0.030
(0.085)

0.015
(0.072)
-0.055

(0.092)

0.614

(0.099)
0.447

(0.147)

1.595

(0.171)

0.030
(0.023)

0.058
(0.021)

0.017
(0.041)

-0.107
(0.061)

0.140

(0.098)
0.100

(0.088)
0.160

(0.109)

**

0.812
(0.131)

0.547

(0.182)

1.702

(0.218)
0.044

(0.029)

0.069
(0.029)

0.076
(0.053)
-0.016

(0.077)
0.326

(0.118)
0.148

(0.109)
0.247

(0.111)

1.447

(0.262)

0.064

(0.026)

0.060
(0.025)

0.046

(0.043)

-0.030
(0.060)

0.139
(0.100)

0.232

(0.083)
0.225

(0.104)

**

**

**
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Table 5., continued

Impact on annual mortality rates

Days

< 10 0C

(1)
0.091

(0.049)
0.123

(0.068)
0.196

(0.087)
0.238

(0.121)
0.314

(0.190)
0.719

(0.298)
0.628

(0.440)
3.306

(1.027)

Days

10 *-12 *C

(2)
0.013

(0.203)
* 0.063

(0.274)
** 0.282

(0.360)
** 0.201

(0.579)
* 0.569

(0.894)
** 0.342

(1.224)
-0.621

(1.873)
*** -1.337

(4.163)

Days

12 -14 IC

(3)
-0.039

(0.116)
-0.120

(0.155)
0.084

(0.181)
-0.339

(0.249)
0.269

(0.396)
0.779

(0.611)
0.364

(0.832)
1.902

(1.770)

Days

26 *-28 *C

(4)
0.212

(0.116)
0.173

(0.149)
0.519

(0.212)
0.378

(0.261)
0.692

(0.405)
1.528

(0.588)
3.428

(0.804)
4.985

(1.571)

Days

28 0-30 *C

(5)
* 0.255

(0.119)
0.219

(0.162)
** 0.539

(0.216)
0.487

(0.304)
* 0.941

(0.417)
1.606

(0.656)
3.201

(0.876)
3.423

(1.740)

Note: All-cause mortality by age group is the annual number of deaths in a given age group per the population in that age group (ex-
pressed per 100,000.) Regressions include municipality fixed-effects, time fixed-effects and quadratic regional time trends. All statistics
are weighted by total municipal population within each age group. Age-group specific estimates were combined into an age-adjusted
pooled estimate by taking a weighted average of the age-specific estimates, where the weight is the average population in each age group.
Huber-White standard errors in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%. Temperature exposure is
modeled with 11 temperature-day ranges defined as the number of days in a given temperature category in a municipality-year. Only the
estimates on the lowest three (coldest) and highest three (hottest) temperature ranges are reported for compactness.
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Age 40-44

(n=48,624)

Age 45-49

(n=48,624)
Age 50-54

(n=48,624)
Age 55-59

(n=48,624)
Age 60-64

(n=48,624)
Age 65-69

(n-48,624)
Age 70-74

(n=48,624)
Age 75+

(n=48,624)

Days

> 30*C

(6)
** 0.312

(0.142)
0.161

(0.189)
** 0.285

(0.269)
0.734

(0.354)
** 1.263

(0.466)
** 1.952

(0.712)
4.301

(1.027)
** 5.298

(1.912)

**

**



Table 6. Estimates of the Impact of Climate Change
ture Temperature Distribution

on All-Cause log Annual Mortality Rate, by Time Period and Segment of the Fu-

Impact on log annual

Days

10 0-30 0C

(2)

crude mortality rate

Days

>300C

(3)

Total

impact

(4)

All-cause mortality

2010-2039 -0.01870 * 0.01172 ** 0.00369 *** -0.00329

(n=49,080) (0.00520) (0.00541) (0.00068) (0.00757)

2040-2069 -0.02057 * 0.02421 0.03552 * 0.03916 **

(n=49,080) (0.00572) (0.01475) (0.00650) (0.01705)
2070-2099 -0.02090 * 0.02954 0.08038 *** 0.08903 *

(n=49,080) (0.00581) (0.01811) (0.01472) (0.02419)

Note: Estimates based on error-corrected Hadley CM3 AlFI model. Temperature exposure is modeled with 11 temperature-day ranges

defined as the number of days in a given temperature category in a municipality-year. Regressions include municipality fixed-effects,

time fixed-effects and quadratic regional time trends. All statistics are weighted by total municipal population, with a sample size of

49,080. Huber-White standard errors in parentheses, taking climate-change predictions as constants. * significant at 10%; ** significant

at 5%; *** significant at 1%.
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Table 7. Estimates of the Impact of Climate Change on Alternative log Annual Mortality Rates, by Time Period and Segment of the
Future Temperature Distribution

Impact on log annual mortality rates

Days

< 10 0C

(1)

Days

10 0-30 0C

(2)

Days

>300C

(3)

Total

impact

(4)

Infant mortality

2010-2039 0.01780

(0.00810)
2040-2069 0.01957

(0.00890)
2070-2099 0.01988

(0.00905)
Child mortality

2010-2039

**

**

**

-0.00192

(0.00782)
2040-2069 -0.00211

(0.00861)
2070-2099 -0.00214

(0.00874)

0.01524

(0.00997)
0.04755

(0.02900)
0.07938

(0.04305)

0.01606

(0.00895)
0.04468

(0.02566)
0.07518

(0.03716)

*

0.00367
(0.00165)

0.03537

(0.01594)
0.08005

(0.03607)

* 0.00553

(0.00138)
* 0.05328

(0.01325)
** 0.12056

(0.02999)

** 0.03671

(0.01632)
** 0.1025

(0.04483)
** 0.17931

(0.07485)

* 0.01968

(0.01425)
* 0.09585

(0.03861)
* 0.19360

(0.06372)
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Table 7., continued

Impact on log annual mortality rates

Days Days Days Total

< 10 0C 10 0-30 0C >300C impact

(1) (2) (3) (4)

Late-life mortality

2010-2039 -0.02523 *** 0.01429 ** 0.00399 * -0.00695

(0.00577) (0.00564) (0.00087) (0.00817)

2040-2069 -0.02775 * 0.03040 ** 0.03843 *** 0.04109 **

(0.00634) (0.01543) (0.00835) (0.01944)

2070-2099 -0.02819 * 0.03391 * 0.08697 * 0.09269 *

(0.00644) (0.01957) (0.01889) (0.02960)

Note: Estimates based on error-corrected Hadley CM3 AFI model. Temperature exposure is modeled with 11 temperature-day ranges

defined as the number of days in a given temperature category in a municipality-year. Regressions include municipality fixed-effects,

time fixed-effects and quadratic regional time trends. All statistics are weighted by total municipal population, with a sample size of

49,080. Huber-White standard errors in parentheses, taking climate-change predictions as constants. * significant at 10%; ** significant

at 5%; *** significant at 1%.
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Table 8. Estimates of the Impact of Climate
Future Temperature Distribution

Change on log Annual Mortality Rate, by Type of Area, Time Period and Segment of the

Days

< 10 0C

(1)
Urban mortality

2010-2039

2040-2069

2070-2099

Rural mortality

2010-2039

2040-2069

2070-2099

-0.01702

(0.00582)
-0.01872

(0.00641)

-0.01902
(0.00651)

0.04456

(0.03292)
0.04901

(0.03621)
0.04979

(0.03679)

Impact on log

Days

10 0-30 0C

(2)

0.00951

(0.00592)
* 0.01829

(0.01610)
* 0.01688

(0.02009)

0.02169

(0.02396)
0.06887

(0.06710)
0.14154

(0.09356)

annual mortality rates

Days

>300C

(3)

0.00228

(0.00075)
0.02191

(0.00723)
0.04958

(0.01635)

0.00945

(0.00500)
0.09103

(0.04811)
0.20600

(0.10888)

Total

impact

(4)

-0.00523

(0.00841)
* 0.02148

(0.01888)
*** 0.04744

(0.02703)

* 0.07571

(0.04787)
* 0.20891

(0.12387)
* 0.39733

(0.20255)

Note: Estimates based on error-corrected Hadley CM3 AlFI model. Temperature exposure is modeled with 11 temperature-day ranges
defined as the number of days in a given temperature category in a municipality-year. Regressions include municipality fixed-effects,
time fixed-effects and quadratic regional time trends. All statistics are weighted by total municipal population, with a sample size of
49,080. Huber-White standard errors in parentheses, taking climate-change predictions as constants. * significant at 10%; ** significant
at 5%; *** significant at 1%.
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Table 9. Estimates of the Impact of Climate Change on log Annual Mortality Rate, by Region, Time Period and Segment of the Future

Temperature Distribution

Impact on log annual mortality rates

Days

< 10C

(1)

Days

10 0-30 0C
(2)

Days

>300C
(3)

Total

impact

(4)

Northwest

2010-2039 -0.00027
(0.01900)

2040-2069 -0.00029
(0.02090)

2070-2099 -0.00030
(0.02123)

Northeast

2010-2039 -0.00481
(0.01103)

2040-2069 -0.00529
(0.01213)

2070-2099 -0.00538
(0.01232)

Center- West

2010-2039 0.02121
(0.01142)

2040-2069 0.02333
(0.01256)

2070-2099 0.02370
(0.01276)

0.01375
(0.01022)

0.04117

(0.03303)
0.08206

(0.04922)

*

0.00477
(0.00979)

0.01728
(0.03123)

0.02945

(0.05361)

* 0.00761

(0.00576)
* 0.01284

(0.01762)
* 0.03388

(0.02794)

0.00565

(0.00132)
0.05443

(0.01269)
0.12317

(0.02872)

-0.00390
(0.00180)

0.03753
(0.01736)

0.08493
(0.03929)

0.00132
(0.00257)

0.01271
(0.02471)

0.02876
(0.05593)

0.01914

(0.02679)
* 0.09531

(0.05630)
*** 0.20494

(0.08341)

**

**

**

0.00385
(0.02060)

0.04952

(0.01333)
0.10901

(0.03119)

0.03014

(0.01495)
0.04887

(0.03721)
0.08634

(0.06997)
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Table 9., continued

Impact on log annual mortality rates

Days

< 10*C

(1)
Center

2010-2039 -0.02552

(0.01941)
2040-2069 -0.02807

(0.02135)
2070-2099 -0.02852

(0.02169)
South

2010-2039 -0.00845

(0.00886)
2040-2069 -0.00929

(0.00974)
2070-2099 -0.00943

(0.00990)

Days

10 0-30 0C

(2)

0.05655

(0.01667)
0.12500

(0.04307)
0.15950

(0.06314)

-0.02583

(0.00626)
-0.08645

(0.01868)
-0.11319

(0.02555)

Days

>300C

(3)

-0.00552

(0.00400)
** -0.05317

(0.03848)
** -0.12032

(0.08709)

* 0.00070

(0.00082)
* 0.00672

(0.00798)
* 0.01520

(0.01806)

Note: Estimates based on error-corrected Hadley CM3 AFI model. Temperature exposure is modeled with 11 temperature-day ranges
defined as the number of days in a given temperature category in a municipality-year. Regressions include municipality fixed-effects,
time fixed-effects and quadratic regional time trends. All statistics are weighted by total municipal population, with a sample size of
49,080. Huber-White standard errors in parentheses, taking climate-change predictions as constants. * significant at 10%; ** significant
at 5%; *** significant at 1%.
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Total

impact

(4)

0.02550

(0.03034)
0.04376

(0.05652)
0.01066

(0.09325)

-0.03358

(0.00899)
-0.08903

(0.02217)
-0.10742

(0.03575)



Table 10. Period Life Table for Mexico

Age interval

(1)
Age 0-4

Age 5-9
Age 10-14

Age 15-19
Age 20-24

Age 25-29
Age 30-34

Age 35-39
Age 40-44

Age 45-49

Age 50-54

Age 55-59
Age 60-64

Age 65-69

Age 70-74

Age 75+

Average
population

(2)
10,453,800

10,840,879
10,737,539
10,186,748

9,030,924

7,813,376
7,098,699
6,431,469

5,230,683
4,320,078

3,560,547
2,739,610
2,298,072
1,709,116
1,304,626

1,948,281

Average age
at death

(3)

Life expec-
tancy at age

range
(4)

0.5
6.9

12.2

17.3
22.1

27.0
32.0
37.0
42.0

47.0

52.1
57.0
62.1
67.0
72.0
84.5

75.6
69.4

64.2

59.3
54.6
49.9
45.0

40.2

35.4

30.8
26.2
22.0

17.9
14.2

10.9
4.3

ARS proba-
bility of dy-

ing

(5)
0.00236
0.00118
0.00137
0.00220

0.00280
0.00323
0.00406

0.00570
0.00895
0.01473

0.02414

0.03966
0.06628
0.11286
0.18996

0.53830

Survivors to
age range

(6)
99,081
98,463
97,868
97,495
99,450

95,311
95,665

95,222
94,313

92,669
90,286
86,389
79,853
69,493
54,169

4,513

Age-range-
specific sur-
vivor ratio

(7)
0.99357
0.99870
0.99593
0.99602
0.99923
0.98917
0.98768
0.98358
0.97866
0.96994
0.95807
0.93790
0.90170
0.83916
0.73570
0.31428

Note: Average population and average age at death data are for the 1990-2010 period. Columns (4)-(7) estimates based on the Coale-

Demeny West model life table system, assuming a life expectancy of 75 years for both genders. Life expectancy patterns for males and

females are combined into age-range-specific pooled patterns by taking a weighted average of the age-range-specific patterns, where the

weights are the average population of males and females over the 1990-2010 period. Age-range-specific probability of dying is the proba-

bility of death occurring within one year for each age group. Survivors-to-age range is the number of survivors out of 100,000 born alive.

The age-range-specific survivor ratio is the probability of living through a given age range. ARS: Age-range-specific.
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Table 11. Estimates of the Impact of Short-Term Climate Change on Annual (All-Cause) Mortality Rate,
of the Future Temperature Distribution

by Age Group and Segment

Impact on annual

Days

*C >300C

(3)

crude (all-cause) mortality rate

Total % Change

impact in rate

(4) (5)
2010-2039

Age 0-4

Age 5-9

Age 10-14

Age 15-19

Age 20-24

Age 25-29

Age 30-34

Age 35-39

Age 40-44

Age 45-49

-388
(202)

-6
(16)
-22

(16)
-51

(32)
-92

(45)
-60

(70)
-52

(55)
-87

(59)
-113

(61)
-122

(68)

*

**

713
(169)

41

(14)

18

(14)
24

(26)
11

(32)
26

(47)
73

(36)
68

(41)
66

(40)
48

(42)

*

*

213

(27)
6

(4)
9

(4)
9

(6)
-2

(8)
31

(11)

** 13
(10)

* 20

(9)
* 20

(9)
8

(10)

538

(250)
41

(25)
** 5

(23)
-18

(45)
-83

(57)
-3

(83)

34
(62)

** 0
(60)

** -27

(62)
-66

(64)

** 1.9

(1.4)
2.3

(1.8)
0.7

(1.6)
0.0

(1.8)
-0.4

(1.5)
-0.4

(1.3)
0.5

(1.4)

-0.7
(1.1)
-0.8

(1.1)
-1.0

(1.0)
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Days

<100C

(1)

Days

100-30

(2)

Years-life

lost

(6)

34,850

3,680

139

-1,013

-29

335

-5

-245

-527



Table 11., continued

Impact on annual crude (all-cause) mortality rate

Days Days Days Total % Change Years-life

<100C 10 0-30 0C >300C impact in rate lost

(2)

** 49

(43)
** 73

(46)

* 50

(55)
** 93

(59)
195
(65)

339
(206)

** 1885

(935)

(3)
12

(11)
24

(11)
35

(13)
41

(15)
66

(16)
116

(42)

** 622
(207)

(4)

-97
(66)

** -48

(73)
-74

(91)
*** -138

(96)
86

(105)
-899

(316)
-750

(1478)

Note: The mortality rate is the annual number of deaths in a given age group per the population in that age group (expressed per

100,000.) Estimates based on error-corrected Hadley CM3 AlFI model. Temperature exposure is modeled with 11 temperature-day

ranges defined as the number of days in a given temperature category in a municipality-year. Regressions include municipality fixed-

effects, time fixed-effects and quadratic regional time trends. All statistics are weighted by total municipal population within each age

group. Age-group specific estimates were combined into an age-adjusted pooled estimate by taking a weighted average of the age-specific

estimates, where the weight is the average population in each age group. Huber-White standard errors in parentheses, taking climate-

change predictions as constants. Years of life lost based on the author's period life table for Mexico, with discounting and age-weighting.
* significant at 10%; ** significant at 5%; *** significant at 1%.
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(5)

Age 50-54

Age 55-59

Age 60-64

Age 65-69

Age 70-74

Age 75+

All ages
(weighted)

(1)
-158
(70)
-145

(74)
-159

96
-272

(112)

-175
(123)
-1354

(421)

-3257
(1519)

(6)
-532

-33

-84

-124

60

-416

-1.0
(0.9)
-0.2

(0.8)
-0.5

(0.8)
-0.7

(0.7)
1.0

(0.7)

-1.3

(0.6)

-0.3
0.8

**

36,056



Table 12. Estimates of the Impact of Mid-Century Climate Change on Annual (All-Cause) Mortality Rate, by Age Group and Segment
of the Future Temperature Distribution

Impact on annual crude (all-cause) mortality rate

Days Days Days Total % Change Years-life
<100 C 10 0-30 0C >300 C impact in m. rate lost

(1) (2) (3) (4) (5) (6)
2040-2069

Age 0-4

Age 5-9

Age 10-14

Age 15-19

Age 20-24

Age 25-29

Age 30-34

Age 35-39

Age 40-44

Age 45-49

-431

(224)
-7

(17)
-24

(17)
-57

(35)
-103

(50)
-67

(78)
-58

(61)
-96

(65)
-125

(67)
-136

(75)

*

**

1164

(440)
55

(41)
17

(38)
33

(72)
-31

(89)
-78

(125)

87
(98)

-2

(102)
35

(107)
84

(113)

*

*

1852

(237)
50

(33)
78

(33)
81

(56)
-15

(73)
267

(96)
111

(82)
168

(76)
173

(79)
73

(86)

2585

(607)
98

(67)
** 71

(64)
57

(110)
-149

(139)
122

(214)
141

(155)
** 69

(150)
** 82

(153)
21

(159)

9.5

(3.7)
7.0

(4.8)
4.7

(4.3)
4.3

(4.0)
-0.7

(3.3)
3.6

(3.3)
2.7

(3.2)
0.1

(2.7)
0.2

(2.6)
-0.3

(2.2)

** 779,172

25,586

12,675

8,561

-3,195

11,027

7,344

109

184

-50

182



Table 12., continued

Impact on annual crude (all-cause) mortality rate

Days Days Days Total % Change Years-life

<100C 10 0-30 0C >300C impact in m. rate lost

Age 50-54

Age 55-59

Age 60-64

Age 65-69

Age 70-74

Age 75+

All ages

(1)
-175
(78)
-161
(82)
-176

(107)
-301

(129)
-194

(136)
-1490

(466)

-3612

(weighted) (1685)

(2)
** 13

(113)
78

(128)
* -7

(151)
** 8

(160)
417

(171)

211

(513)
** 2084

(2463)

Note: The mortality rate is the annual number of deaths in a given age group per the population in that age group (expressed per

100,000.) Estimates based on error-corrected Hadley CM3 AlFI model. Temperature exposure is modeled with 11 temperature-day

ranges defined as the number of days in a given temperature category in a municipality-year. Regressions include municipality fixed-

effects, time fixed-effects and quadratic regional time trends. All statistics are weighted by total municipal population within each age

group. Age-group specific estimates were combined into an age-adjusted pooled estimate by taking a weighted average of the age-specific

estimates, where the weight is the average population in each age group. Huber-White standard errors in parentheses, taking climate-

change predictions as constants. Years of life lost based on the author's period life table for Mexico, with discounting and age-weighting.
* significant at 10%; ** significant at 5%; *** significant at 1%.

183

(5)(3)
106

(100)
212

(102)

305
(113)

349
(127)

574

(137)
1023

(369)

5407

(4)
-56

(169)
129

(182)
122

(209)
56

(218)
797

(238)
-266

(611)

3878

**

-0.7
(2.1)

-0.6
(2.0)

0.7
1.9
0.8

(1.7)
5.8

(1.6)

-0.1

(1.2)

3.9
(1.7)

(6)
-214

-265

191

57

3,097

-9

844,270

(1800) (3446)

**



Table 13. Estimates of the Impact of End-of-Century Climate Change on Annual (All-Cause) Mortality Rate, by Age Group and Seg-
muent of the Future Temperature Distribution

Days
<100C

(1)
2070-2099

Age 0-4

Age 5-9

Age 10-14

Age 15-19

Age 20-24

Age 25-29

Age 30-34

Age 35-39

Age 40-44

Age 45-49

-437
(227)

-7
(18)
-25

(17)
-58

(36)
-104

(50)
-68

(79)
-58

(62)
-98

(66)
-127

(68)
-138
(76)

Days
10*-30*

(2)

Impact on annual

Days
>300 C

(3)

* 1592

(605)
27

(64)
5

(59)
29

(108)
** -143

(132)
-181

(184)

39
(144)
-106

(147)
* 10

(150)
* 123

(163)

4065

(521)
110

(73)
172

(73)
177

(123)
-32

(157)
575

(207)
-238

(175)
-359

(162)
369

(168)
157

(184)

crude (all-cause) mortality rate

Total % Change
impact in m. rate

(4) (5)

5221

(959)
130

(113)
** 152

(111)
148

(183)
-279

(231)
327

(356)
218

(263)
** 155

(248)
** 252

(250)
142

(265)

19.3

(6.1)
10.3

(8.1)
9.1

(7.6)
7.2

(6.1)
-2.4

(5.3)
7.6

(5.5)
3.9

(5.2)
0.2

(4.4)
0.9

(4.1)
0.3

(3.6)

184

Years-life
lost

(6)

2,934,497

48,448

50,420

36,215

20,867

55,903

16,212

491

2,522

335



Table 13., continued

Impact on annual crude (all-cause) mortality rate

Days Days Days Total % Change Years-life
<100 C 10 0-30 0C >300 C impact in m. rate lost

(1) (2) (3) (4) (5) (6)

** 38
(162)

** 120

(183)
* -59

(215)
** -125

(236)

647
(245)

-84

(698)

** 1933
(3496)

227
(214)

455

(219)

659
(243)

751
(274)

1238
(296)

2208

(797)
11726

(3888)

88
(291)

** 412

(296)
421

(333)
320

(355)
* 1689

(391)

605

(975)
*** 10001

(5621)

Note: The mortality rate is the annual number of deaths in a given age group per the population in that age group (expressed per
100,000.) Estimates based on error-corrected Hadley CM3 A1FI model. Temperature exposure is modeled with 11 temperature-day
ranges defined as the number of days in a given temperature category in a municipality-year. Regressions include municipality fixed-
effects, time fixed-effects and quadratic regional time trends. All statistics are weighted by total municipal population within each age
group. Age-group specific estimates were combined into an age-adjusted pooled estimate by taking a weighted average of the age-specific
estimates, where the weight is the average population in each age group. Huber-White standard errors in parentheses, taking climate-
change predictions as constants. Years of life lost based on the author's period life table for Mexico, with discounting and age-weighting.
* significant at 10%; ** significant at 5%; *** significant at 1%.
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Age 50-54

Age 55-59

Age 60-64

Age 65-69

Age 70-74

Age 75+

All ages

(weighted)

-177
(78)
-163
(83)
-179

(108)
-305

(126)

-196
(138)

-1518

(472)

-3658
(1707)

*

0.0

(3.4)
1.6

(3.1)
1.7

(2.9)
1.9

(2.6)

11.0
(2.6)

1.4

(1.9)

8.9
(2.4)

1

2,205

1,582

761

11,865

293

3,182,617
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Figure 1. Vulnerability intensification due to climate change, by municipality, 2005-2045
Source: Borja-Vega and De la Fuente (2013)
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Figure 2. The Mexican mesoregions
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Figure 3. True impact of climate change on the utility of the household and estimated
impacts based on the Ricardian and panel-data approaches, which differ on their adaptive
behavior assumptions
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Figure 8. Weather in Mexico, by climate group
Notes: Group 1: Tropical humid climate; Group 2: Tropical sub-humid climate; Group 3:
Dry climate; Group 4: Very dry climate; Group 5: Temperate sub-humid climate; Group 6:
Temperate humid climate.
Source: Instituto Nacional de Estadistica, Geografia e Informdtica.
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Chapter 3
Climate Shocks, Safety
Nets, and Shielded Poor:
Experimental Evidence
from Rural Mexicot

1 Introduction

Weather has become more extreme. It has become hotter: since 2000, at least 59 coun-

tries and territories, along with the South Pole, have had their highest temperature

records broken (Weather Underground 2012, United States Antarctic Program 2012),

with over half of these record-breakers taking place over the past 36 months." Weather

has become colder too: during the same time period, at least 10 countries recorded all-

time low temperatures, according to the same sources.2 2 It has also become rainier:

globally, 2010 and 2011 have been the years with the heaviest documented rainfall in

more than a century of recordkeeping (National Oceanic and Atmospheric Administra-

t JEL classifications: D04, Q12, Q51, Q54, R28. Keywords: extreme weather, consumption
smoothing, vulnerability, Mexico. I thank Karen R. Polenske, Alice Amsden, Abhijit Banerjee, Es-
ther Duflo, Dan Levy, Santiago Levy, Akbar Noman and Joseph Stiglitz for their constant support
of this research. This paper was conceived at the Advanced Graduate Workshop on Poverty, Devel-
opment and Globalization, Manchester, United Kingdom, and I particularly thank workshop partic-
ipants for their valuable insights, especially Niki Banks, Xi Chen, Megha Mukim, Virginia Oliveros,
Lucy Scott and Sheba Tejani for extremely helpful conversations. I am grateful to the Martin Fami-
ly Society of Fellows for Sustainability at MIT for their generous financial support.

21 These countries and territories are Afghanistan, Algeria, Anguilla, Armenia, Aruba, Ascension
Island, Bahrain, Belarus, Bosnia and Herzegovina, Cape Verde, Cayman Islands, Chad, China, Co-
lombia, Congo-Brazzaville, Cyprus, Dominica, Dominican Republic, Finland, France, French Gui-
ana, Gabon, Germany, Guinea, Indonesia, Iran, Iraq, Japan, Jordan, Kenya, Kuwait, Luxembourg,
Macau, Micronesia (FSM), Moldova, Morocco, Myanmar, Niger, Nigeria, Norfolk Island, Palau, Pa-
kistan, Portugal, Russia, Rwanda, Saudi Arabia, Somalia, Switzerland, Sudan, Tanzania, Tunisia,
Turkey, Turks and Caicos Islands, Ukraine, the United Arab Emirates, the United Kingdom, the
United States, Zambia, and Zimbabwe. The India Meteorological Department doubts the validity
of 55*C (131*F) readings reported in Orissa during 2005.

22 These countries are Bhutan, Chile, Egypt, Ethiopia, Guinea, Guyana, Niue, Tuvalu, the United
Arab Emirates, and the United Kingdom.
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tion 2011.) It has become drier as well: only in Mexico, nearly 900,000 hectares of

farmland and 1.7 million head of livestock have been lost due to severe drought - the

worst in more than seven decades of data collecting. April 2011 was the first time on

record where more than 95% of the country was considered to be undergoing drought,

according to the North American Drought Monitor (National Commission of Water

2012.) Min et al. (2011) and Pall et al. (2011) attribute this extreme weather trend to

anthropogenic climate change. To the extent that global warming intensifies, climate

extremes are likely to be more recurrent in the future, as discussed in an article by

Easterling et al. (2000.) Abrupt weather has multiple environmental, social, and eco-

nomic repercussions.

In this paper, I argue that extreme weather phenomena hit one specific group of

people disproportionately and unfairly: the poorest of the poor. As I will discuss be-

low, this is because not only does weather impacts the very things the poorest depend

on most -dry-land agriculture; tropical forests; and subsistence fishing (Deschenes &

Greenstone 2006)- but also because the very poor are not able to access credit, savings

and insurance markets, or other traditional and institutional social-risk management

instruments to cope with the adverse effects of unexpected shocks, like severe weather

(Banerjee 2004, Banerjee & Duflo 2007, Global Humanitarian Forum 2009, Lee 2009,

Mendelsohn 2009.) The World Bank (2010) reports that the demand for agricultural

insurance is usually low or even nonexistent where formal credit is not available for

agriculture. Mexico is no exception: while the private sector's participation in agricul-

tural insurance has been oriented toward developed agricultural regions and large or

very well organized producers, low-income agricultural producers do not have access to

insurance, and rely on agricultural producer associations or government-sponsored in-

surance in the wake of extreme weather events (Centro de Estudios de las Finanzas

Pniblicas 2011, Villarreal GonzAlez 2009.) Overall, more than one in three municipali-

ties in Mexico do not have access to crop insurance provided by the government, as

Figure 1 illustrates. Not surprisingly, recovery after a climate shock is slow or simply

impossible as a result: Figure 2 shows that of the 278 major natural disasters that have

taken place in Mexico between 1980 and 2010, insured losses accounted for only 5 bil-

lion USD of the 31 billion USD damage.
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In open economies, like Mexico's, the vulnerability of the poor is further exacerbat-

ed by the negative consequences of globalization, particularly the marginalization of

production (O'Brien & Leichenko 2000.) This is evident by taking a look at Figures 3

and 4, which together show a clear overlap between vulnerability and poverty, whose

interplay has been the subject of rigorous study (Eakin 2005, Eriksen et al. 2007) I ar-

gue in this paper that the dominance of economic uncertainty over environmental risk

in households' decisions implies a continued role for government intervention to help

households adapt to climatic stress.

The objective of this paper is normative in nature. My interest is to show that, in

the absence of these mechanisms, alternative interventions may be effective to mitigate

the negative impact of weather-induced income shocks. In particular, I investigate the

extent to which anti-poverty programs increase welfare by reducing vulnerability and

enhancing consumption smoothing, as proposed in the social risk management litera-

ture (see Holzmann & Jorgensen (2000) for a review.) It is argued that enhancing the

ability of households and communities to deal with climatic variability and risks is

beneficial (IPCC 2012), yet the extent to which enhanced coping capacities lead to im-

provements in welfare is not clear. Such knowledge is much needed at a time when

there is pressure to cut social development programs that give people the chance to

lead healthier and more productive lives.

In general, the question of whether anti-poverty programs are effective vulnerabil-

ity-reduction mechanisms is of paramount importance for developing countries seeking

to incorporate climatic risk considerations in future development initiatives. However,

in order to answer it empirically, an important methodological problem needs to be

overcome: program recipience is not random. By definition, anti-poverty programs are

implemented in poor communities and, as a result, vulnerability may be higher in the

areas where the program operates. Observational analyses might confound the effect of

the program with the economic, behavioral and political institutions that hinder devel-

opment in the first place. Without an identification strategy, the researcher could only

establish a correlation between policies and vulnerability outcomes at best.
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2 Objective and Contributions

I contribute to this debate by assessing the impact on poor rural Mexican house-

holds of extreme temperature and precipitation induced by El Nino and La Nifia, cli-

mate patterns characterized by anomalous sea surface temperature that exacerbates

the incidence of severe weather phenomena. I rely on exogenous variation in recipience

in order to evaluate the extent to which a large antipoverty program mitigates climate

vulnerability by comparing several welfare and consumption outcomes between pro-

gram recipients and non-recipients.

This paper is innovative because I combine high-resolution daily climatic data at

the community level from a long-term, high frequency, dynamically consistent meteoro-

logical model with survey data for 24,000 households in 506 Mexican communities in

seven states of Mexico (Guerrero, Hidalgo, Michoacdn, Puebla, Quertaro, San Luis

Potosi, and Veracruz.) The survey was part of the original impact evaluation of the

National Program of Education, Health, and Nutrition (which I will henceforth refer to

as Progresa, as is typically known in Mexico), a conditional cash-transfer program de-

signed to increase school attendance and doctor visits. My identification -strategy

draws on the fact that Progresa began to operate randomly in 320 communities in

May 1998, but had not been implemented in other 186 communities by December

1999. This phased rollout introduced random assignment. As Levy (2006, p. 37) points

out and is graphically shown in Figure 5, "the first set of localities and families could

be considered subject to the effects of the program and the second set representative of

what happens in the absence of the program (until they are incorporated); in other

terms, the first set would be the treatment group and the second the control group."

These two groups are probabilistically similar to each other in expectation. Hence, any

outcome differences that are observed between those groups at the end of the study are

likely to be due to the effect of Progresa, not to differences between the groups that

already existed at the start of the study (Shadish, Cook, & Campbell 2002, p. 13.) The

Progresa intervention is an example of a "randomized experiment," and provides a logi-
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cal basis for making unbiased inferences about the causal impact of any given policy

(Murnane & Willett 2010.)21

I present evidence on the disproportionately negative impact of weather shocks on

the poor. Unlike previous empirical studies that focus on one class of shock, such as

extreme temperature (Burgess et al. 2011, Deschenes & Moretti 2009), or extreme pre-

cipitation patterns (Aguilar and Vicarelli 2011), I analyze simultaneously four types of

weather shocks: extreme heat, extreme cold, extreme rainfall, and extreme drought.

The distinction is relevant because, as Hegerl, Hanlon and Beierkuhnlein (2011) argue,

it is often not clear which extremes matter the most. I show that, in the event of most

of these weather shocks, Progresa mitigates this inequality and partially insulates the

poor from drastic contractions in income. I analyze the extent to which households re-

ceiving the benefits of the program use Progresa as a short-run consumption insurance

mechanism. I measure consumption both in monetary and caloric terms, in order to

assess whether poor households that face weather shocks self-insulate by acquiring rel-

atively cheaper sources of calories, as reported by Behrman & Deolalikar (1989.) Simi-

larly, I study other several self-insurance strategies to which households resort in the

event of a weather-induced income shock. A self-insurance strategy that deserves spe-

cial attention, given that deteriorating environments triggered by severe weather causes

forced displacement of people, is migration (Piguet, P6coud & de Guchteneire 2011.) I

evaluate the extent to which Progresa provides a safety net that may reduce the pro-

pensity to migrate, thus avoiding costly ex post risk strategies that could compromise

social and economic welfare. Finally, I analyze whether there are differences in house-

hold vulnerability by observable characteristics, such as the gender of the head of the

household, his/her level of education and indigeneity or ethnic minority self-

identification, and land tenure.

" This is why randomized controlled trials are often deemed as "the simplest and best way of as-
sessing the impact of a program" (Banerjee, 2007, p. 5) because the researcher has "control over the
treatment, [which] allow for the straightforward maintenance of the independence assumption"
(Morgan & Winship 2007, p. 41), which presumes that treatment status is independent of the po-
tential outcomes. I will discuss this in more detail when I present the theoretical framework of this
paper.

195



I exploit the fact that, coincidentally, due to their time of occurrence, El Nifio- and

La Nifia-induced extreme climatic events that took place in Mexico at the end of the

1990s were captured by the Progresa randomized evaluation data: the Climate Report

for 1998 published by the American Meteorological Society (Bell et al. 1999) indicates

that the period of July 1997 through June 1998, was unusually hot and the driest in

the historical record for Mexico dating back to 1945. This drought was linked to the

1997-98 El Nifno, the strongest El Nifno event of the past century (Bell et al. 1999) (See

Figure 6, Panels A and B.) In October 1998, a Progresa evaluation survey collecting

information on events that took place in the previous year was carried out.

Similarly, a 2-year La Nifia event suddenly started to develop in the spring of 1998

(see Figure 6, Panel C.) As a consequence, during the harvest season of September

1998 and especially that of October 1999, some areas experienced anomalous tempera-

tures and unexpectedly intense rains and even floods. Then in November 1999, another

Progresa evaluation survey was conducted. The parallel timing of the Progresa survey

implementation and the occurrence of these extreme-weather events, along with the

substantial variation in temperature and precipitation across communities, provides

the unusual opportunity to make use of the program's randomized social-experiment

component as a causal inference design to test whether the program successfully re-

duces climate vulnerability among the poor.

An important contribution of this paper is the use of daily climatic data, a signifi-

cant improvement over the majority of studies that employ monthly or even yearly da-

ta to assess weather impacts (see for instance Aguilar & Vicarelli (2011), Sdenz

Romero et al. (2010), and Pollak & Corbett (1993.)) The underlying shortcoming of

these and other works that follow similar methodologies is that using monthly climatic

data ignores the nonlinear effects of weather, which may be concealed when, for exam-

ple, daily observations are averaged into monthly or seasonal variables, thus attenuat-

ing the impact of climate as a result. Deschenes and Greenstone (2011) and Schlenker

and Roberts (2009) show that daily and finer-scale weather data facilitate the identifi-

cation of nonlinearities and breakpoints in the effect of weather in empirical models.

This study benefits from studying the case of Mexican rural households for four

reasons: first, the focus of most previous empirical climate-impact studies has been on
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the United States (Guiteras, 2008), but vulnerability to extreme weather is greater in

the developing world, where agriculture typically plays a larger economic role. The

Mexican case is ideal to evaluate the impact of weather variability in the context of

resilient poverty. Second, Mexico represents a useful case to study the impact of ex-

treme weather for developing countries, given that it has undergone diverse degrees of

climate variability (e.g. extreme rainfall with La Nifia event in 1999 and severe

droughts as a result of the 1997-1998 El Nifno effect) and that such phenomena are ex-

pected to become more recurrent (United Nations 2011.) Third, rural households in

Mexico will be particularly affected by extreme-weather events derived from climate

change. The Global Humanitarian Forum (2009) specifically underscores that Mexico

is one of the most vulnerable regions to climate change, especially because of floods

and increased rainfall variability. Similarly, the World Bank (2009) places Mexico

among the countries most vulnerable to climate change: 68% of its population and 71%

of its GDP are at risk of suffering the adverse consequences of this environmental phe-

nomenon. Ethnographic data collected in agricultural communities in rural Mexico

show that constraints in soil quality, topography and water resources make rural

households in Mexico extremely sensitive to climatic conditions (Eakin 2006.) Fourth,

in terms of my empirical analysis and as I will discuss in more detail when I present

the methodology I employ for this paper, studying Mexico provides the unusual oppor-

tunity of using a national-scale data set created to evaluate a social policy in combina-

tion with climatic data in order to empirically analyze the impact of weather variabil-

ity. In effect, the link between extreme-weather shocks and well-being usually has not

been tested empirically. In fact, with the exception of the large-scale study by Burgess

et al. (2009) and others thence derived, the research on the impact of inter-annual var-

iation in weather on household behavior in developing countries is limited to anecdotal

evidence and several relevant case studies that are nonetheless constrained by data un-

availability. As far as I know, I am the first to examine empirically the impact of a so-

cial program as a weather-risk-mitigation mechanism, combining data from a random-

ized evaluation with information derived from sophisticated climate models.

The remainder of this paper is organized as follows: in Section 3, I present a review

of the literature on the linkages between weather and development, and how severe
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climate and other types of unexpected income shocks in general, may decrease the wel-

fare of the household in the absence of critical markets. In section 4, I discuss my con-

ceptual framework of the impact of income shocks, deriving welfare gains from the

provision of a safety net when private insurance markets are incomplete. Section 5 pre-

sents a detailed description of the data, while in Sections 6 and 7, I discuss the empiri-

cal specification I employed to analyze the impact of weather on welfare outcomes and

evaluate the effectiveness of Progresa as a climate vulnerability mitigation mechanism

and show the results. Section 8 provides a conclusion, summarizing the main findings.

3 A Synthesis of the Literature on Risk and the Poor

Extreme weather is an environmental phenomenon in essence, so it is logical that, at

least comparatively, its ecological dimension has been the most comprehensively stud-

ied. However, the emphasis on ecosystem and biodiversity issues has relegated social

and cultural phenomena to secondary concerns (Global Humanitarian Forum 2009.)

Among the top 20 most-cited papers on climate and/or global warming published be-

tween 1999 and 2009, none of them investigates potential disruptions at the socioeco-

nomic scale (Thomson Reuters 2009.) Among the most studied topics related to cli-

mate in recent years are its effect on ecosystem trajectories and ecological change

(Parmesan & Yohe 2002, Walther et al. 2002); extinction risks and the evolutions, dis-

tributions and abundances of species (Hoegh-Guldberg 1999, Root et al. 2003, Thomas

et al. 2004); feedbacks in the climate system (Cox et al. 2000, Roeckner et al. 1999);

and the vulnerability of natural resources (Vorosmarty et al. 2000.)

In spite of the research imbalance, significant work has been done on the many

forms extreme weather affects people and their standard of living. Deschenes and

Moretti (2009) and McMichael et al. (2006) find that abrupt climate is associated with

diminished health condition and increased temporal displacement. Rosenzweig et al.

(2001) focus on the effect of extreme weather events on agriculture and food produc-

tion, showing that shifts in climate will disproportionately affect developing countries,

exposing them to reduced food supplies and potential increases in malnutrition. In ru-

ral regions, extreme weather may result in microecological adjustments such as mulch
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application and tillage alterations (Wilken 1987), crop diversification (Altieri & Trujillo

1987, Trujillo 1990), geographical relocation of agricultural production (Thompson &

Wilson 1994), and assets sell (such as livestock and farm equipment) (Eakin 2000.)

Endfield (2007) explores how extreme weather events drove community engagement

and the creation of social networks as a means of fortifying social resilience, taking co-

lonial Mexico as her case study. Burgess et al. (2011) document a large effect of

weather on death among India's rural population, respectively, stemming from the fact

that this population's economic welfare is almost entirely drawn from agricultural in-

come streams. In all, as Binswanger and Rosenzweig (1993) claim, weather is the fac-

tor contributing to income variability that is most likely to influence welfare, particu-

larly in agricultural economies.

If extreme weather is understood as an unexpected income shock, with a generally

negative impact on the household's income stream, it is likely that it will affect groups

whose income is low. For one, as I document in Guerrero Compedn (2013), extreme

weather affects households living in poverty disproportionately given that adverse cli-

matic events impact agricultural productivity and crop yields, thus drastically reducing

household income. Particularly in the short run, given their inability to adapt to unex-

pected shocks, farmers' incomes are particularly uncertain and vulnerable to the in-

creased frequency and severity of adverse climatic events (LaFleur, Purvis & Jones

2009.) One reason why poor households are seldom able to cope with the negative ef-

fects of weather shocks is that they rarely have access to formal ex ante risk manage-

ment and ex post risk coping instruments provided by the savings, credit and insurance

markets to face a negative income shock, either because they do not exist or because

they work imperfectly as a result of the borrower's limited liability and other standard

problems of moral hazard and adverse selection (Bell 1988, Besley 1994, Stiglitz 1990.)

The poor are thus left with a variety of alternative mechanisms that provide inade-

quate insurance at a very high cost for the household. Simply put, in the absence of

savings, credit, or insurance mechanisms, adverse climatic events are likely to cause

fluctuations in rural household incomes, which in turn will lead to negative changes in

household consumption, posing serious consequences for the wellbeing of farmers in a

village economy (Paxson 1992, Townsend 1994.)
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The many channels through which households cope with the lack of well-developed

insurance and credit markets and buffer themselves from the effects of risk have been

the subject of a considerable body of theoretical and empirical work. Households can

insulate themselves from the negative effects of an unexpected income shock through

savings, income-smoothing or other risk management strategies, and a variety of in-

formal risk-sharing mechanisms. These strategies are discussed below.

3.1 Self-Insurance through Asset Accumulation/Depletion

The basic self-insurance strategy employed by households to cope with risk is savings,

or, more generally, asset holding. In particular, asset holding is traditionally hypothe-

sized as another income shock buffer for poor households in the context of imperfect

credit markets (Deaton 1991, 1992.) The consumer builds up assets in good years to

deplete in bad years, i.e., saves and dissaves, in order to smooth consumption in the

face of income uncertainty. Using data from a nine-round survey conducted in northern

Nigeria, Udry (1995) finds that, consistent with simple models of consumption smooth-

ing, net saving is lower in those households subjected to adverse idiosyncratic shocks

on their upland plots.

Binswanger and McIntire (1987) and Davies (1996) argue that buying and selling

cattle is a traditional strategy to cope with income fluctuations in many rural areas.

Rosenzweig and Wolpin (1993) have shown that bullock sales contribute to consump-

tion smoothing in South Indian villages, although Lim and Townsend (1994) argue

that crop inventory appears to be the main strategy.

Asset accumulation is not risk-free however. Dercon (2002) discusses that during

the Ethiopian famine in the 1980s, the terms of trade between livestock and staples

were severely distorted, so that farmers needed to raise three times as much livestock

to purchase the same amount of food, drastically reducing consumption instead of sell-

ing assets as a result. Similarly, Hoogeveen (2002) finds that livestock sales are ineffec-

tive income shock buffers. Fafchamps, Udry and Czukas (1998) show that during some

of the worst drought years in Burkina Faso's recent history, livestock sales compen-

sated for at most between 15% and 30% of income fluctuations.
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3.2 Self-Insurance through Income and Consumption Smoothing

Households also resort to strategies that reduce risk in the income process, usually in

the form of conservative allocation portfolios and income diversification. Eswaran and

Kotwal (1989) show that, unlike households without liquidity constraints, asset-poor

households in an imperfect credit market are not able to carry out activities whose in-

come is volatile, given that risk is high.

To handle income risk, asset-poor households will have to enter suboptimal low-

risk, low-return activities. Using data from Indian households, Murdoch (1990, 1995)

illustrates that asset-poor households sacrifice expected profits for lower risk, devoting

a larger share of land to safer traditional varieties of rice and castor than to riskier but

high-return varieties. Similarly, Binswanger & Rosenzweig (1993) study rural villages

in South India and show that farmers shift production into more conservative and less

profitable modes as the environment becomes riskier.

Kochar (1995) argues that another income-based strategy to cope with risk is for

households to adjust labor supply. Taking India as a case study, he finds that house-

holds are fairly insulated from crop shocks due to well-functioning labor markets,

which enable them to smooth shocks through compensating increases in market hours

of work.

Alderman and Paxson (1994) and Barrett, Reardon and Webb (2001) document

that income source diversification is another form of self-insurance when credit and

insurance markets fail. Webb and Reardon (1992) find that households' capacity to

cope with the drought shocks of the mid-1980s in Burkina Faso were strongly associat-

ed with the extent of their non-farm diversification patterns. Barrett and Arcese

(1998) similarly show that wildlife poaching in Tanzania in part responds to agrocli-

matic shocks that affect farm labor productivity. Townsend (1993) demonstrates that

ex ante spatial land fragmentation for crop diversification has been a mechanism used

since medieval times to reduce risk from yield variability. Carter (1997) further dis-

cusses the issue of diversification and argues that intercropping two crops, such as

moisture-intensive sorghum and moisture-extensive millet, on the same field is common

practice in West African agriculture to diversify against specific, microclimatic risk.
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In an extreme situation, Miguel (2005) reports that severe weather events lead to a

large increase in the murder of elderly women ("witches") by relatives in a rural Tanza-

nian district. A hypothesis is that households near subsistence consumption levels kill,

expel, or starve relatively unproductive elderly household members to safeguard (i.e.,

consumption-smooth) the nutritional status of other more productive members. Chen

(2007) develops a model of religiously motivated social violence, inspired by the rise of

Islamic fundamentalism during the Indonesian financial crisis. He shows that the need

for ex post insurance resulting from economic distress stimulates individuals to join re-

ligious clubs that have a consumption-insurance function, and where commitment to

the group can be demonstrated by taking violent actions against non-group members.

He finds that credit availability mitigates the effect of economic distress on violence.

As in the case of self-insurance through asset accumulation, income-smoothing

strategies are, however, partially effective in terms of risk reduction. Duflo and Udry

(2004) show that household members may not to insure each other against variation in

income that they can perfectly observe. Sen (1981) and Fafchamps, Udry and Czukas

(1998) discuss that natural disasters may decrease the demand for local services, di-

minishing the effectiveness of income source diversification. Similarly, specialization

may not imply that households are risk-takers, but rather that they do not have the

option to diversify: in general, non-agricultural, non-exploitative activities or lucrative

alternative agricultural activities are not easily accessible to the poor (Dercon 2002),

especially poor women (Kabeer 1990), as a result of household characteristics (Bigsten

& Kayizzi-Mugerwa 1995), institutional, economic and cultural conditions (Heyer 1996,

Jiggins 1986, Watts 1988) as well as differences in timing and location of activities, or

a capacity to estimate risks (Adams & Mortimore 1997, Evans & Ngau 1991.) The im-

plication is that the poor have to enter into low return-capital extensive activities,

since high return activities require capital. As a result, they are less diversified despite

facing more serious consequences of bad income draws with limited insurance and cred-

it market imperfections. In all, many diversification strategies are actually mean in-

come reducing, making them less interesting for households (Dercon 2002.)
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3.3 Self-Insurance through Informal Risk-Sharing

The implications of risk sharing, defined as sharing with another party the burden of

loss from a risk and the measures to reduce such risk, have been studied both from the

theoretical modeling and empirical research standpoints (Coate & Ravallion 1993,

Nash 1966, Ligon, Thomas & Worrall 1997, Kimball 1988, Townsend 1994, Jacoby &

Skoufias 1998.)

Grimard (1997) evidences partial insurance performed by individual households

with other members of the same ethnic group in CMte d'Ivoire, particularly for the

households residing in the regions least likely to have access to formal financial ar-

rangements. In a relevant study, Udry (1994) finds that informal mutual insurance

cannot insure people completely. He documents that increases in risk make insurance

less effective by reducing the maximum enforceable group size, while finding that al-

most no borrower defaulted when they faced a negative shock. Conversely, defaults

were more frequent when the borrower benefited from a positive shock, suggesting that

the terms of repayment are endogenously adapted in the event of a negative shock. In

addition, as first suggested by Becker (1974), Udry shows that informal mutual insur-

ance is similar to state-contingent credit or quasi-credit arrangements: on average a

borrower with a good realization repays more than s/he borrowed but a borrower with

a bad realization repays less. Likewise, a lender with a good realization receives on av-

erage less than s/he lent, but a lender with a bad realization receives more.

The literature provides evidence that households engage in risk-sharing strategies

aimed at insulating, at least partially, consumption changes from income changes.

Rosenzweig (1988) shows that, in the absence of income insurance, cross-household

kinship ties are a common risk-mitigation strategy, with families marrying daughters

intentionally to grooms in distant villages as an implicit insurance-based transfer

schemes which contributes to smoothing consumption through remittances in the face

of income losses by any of the households involved. Fafchamps and Lund (2001) show

that households dealing with negative shocks receive help through networks of friends

and family in the form of gifts and informal loans. Controlling for income, Ravallion

and Dearden (1988) find that in rural Java, households with ill members are recipients
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of greater transfers. Chen (2010) presents a theory of religion as a risk-sharing mecha-

nism in which people pool their resources and redistribute the pool according to their

relative religious intensities.

But risk-sharing arrangements are limited in their effectiveness. As Dercon (2002)

argues, when households understand that they are part of a risk-sharing agreement,

they will accumulate assets only to cope with common shocks to self-insure, given that

idiosyncratic shocks could now be insured through the risk-sharing agreement. In more

general terms, if savings are possible, then the introduction of a public safety net

would reduce (or crowd-out) precautionary savings, since overall risk has been reduced,

which by definition means lower precautionary savings (Deaton 1991, Cox & Jimenez

1992.) Household characteristics also determine the effectiveness of risk-sharing agree-

ments. Using data for a Tanzanian village, De Weerdt (2002) shows that the poorer

the household the smaller the social network they can rely on in times of need.

3.4 The Need for Safety Nets

Regardless of the risk-coping strategy, the overall conclusion of this research is that

most households succeed in partially protecting themselves from the full effects of the

income shocks to which they are subjected, but not to the degree required by either a

Pareto efficient allocation of risk (within local communities) or by the permanent in-

come hypothesis (over time) (Kazianga & Udry 2006.) A clear policy implication is

that given the poor's lack of access to private credit and insurance markets, as well as

the inadequacy of the informal risk-coping mechanisms they resort to in order to miti-

gate the adverse effects of unexpected income shocks, a state-provided safety net could

yield substantial welfare gains. As implied by Diamond (1977), if the private market

limits or does not provide access to credit and insurance to economic agents, a safety

net could help alleviate this market failure. With this in mind, the next section pre-

sents a model of income shocks and derives the welfare gains from the provision of a

safety net when private insurance markets are incomplete.
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4 The Basic Model of Social Insurance for the Poor

The theoretical framework of this paper is an effort to show that the provision of safe-

ty nets has important consequences in terms of welfare for the poor. I adopt the social

insurance model developed by Chetty and Looney (2006.) The model underlies the

empirical analysis of the next section, and emerges from the public economics litera-

ture. It shows that the extent to which a safety net increases welfare is a function of

the intensity of the shock and the degree of risk aversion of the household. One of the

key predictions of the model is that the welfare value of insurance may be significant

in the context of imperfectly functioning markets, where credit and insurance mecha-

nisms are not readily available. Alternatively, insurance may be important in situations

where high levels of risk aversion are typical, as costly ex post risk strategies that could

compromise social and economic welfare are less likely to be relied upon.

Formally, given that the household's utility derived from consumption is expressed

as u(c), the disutility of attaining c dollars of consumption, i.e., the effort the house-

hold engages in to obtain such level of consumption, equals

0(c) = 0(c) (1)

The notion that a weather shock increases the value of 0 should be straightforward:

in the absence of a weather shock, 0 represents the typical effort required by the

household to consume c dollars. As I discussed in the review of the literature, given

that the economic and social costs of ex post risk-coping, be it in the form of asset de-

pletion, suboptimal portfolio choices, migration or otherwise, are oftentimes substan-

tial, households need to put more effort in order to maintain the same level of con-

sumption c, so that 9 increases.

If the effort typically required to attain a level of consumption c is normalized to

9 = 1, in the event of a weather shock 9 = 2 if it takes twice as much effort to generate

the same level of consumption.

Let p be the probability of the household being hit by a weather shock. c, is the

consumption level of the household in the event of a shock, while c, is the consump-
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tion level of the household in the absence of a shock, which are assumed to be different

if households do not have complete access to the credit and insurance markets. An ac-

tuarially fair insurance program that rises c. by one dollar must lower cns by I. The

marginal welfare gain from such a program is expressed by

fV =pu'c,)- ( -p) '(c..) = P ('C.) - U'(C.)) (2)p1 -p

Cardinally, this expression is uninterpretable given that utility functions are not

uniquely defined. In monetary terms, equation (2) may be expressed as the normalized

gain from a one-dollar change in consumption in the absence of a shock, that is,

(1 - p)u'(cn,). If p is fixed, the welfare gain from social insurance relative to an in-

crease in consumption in the absence of a shock is then proportional to

W '(c,) - U'(cS,) (3)
u' (c,,)

For simplicity, one can obtain a second-order Taylor approximation to the change

in social welfare:24

1
U'(c,) ~ U'(c,) + u" (cn.)(c, - cn.) + -u"'(c. )(cs - Cn,)2

2

u'(cS) - u'(cs,) u"(c,,)(c. - cn,) 1 u"'(cs,)(c, - cn,)2

U'(cs,) U'(cns) 2 U'(cs,)

U" (C.S ( s) l + U'"(Cn) U" (Cn,) (C n 2

U'(cs,) (c8 - c.8) + 2 u"(cns) U'(c.,) (c, -

24 Consider a differentiable real-valued function on some subset of Euclidean space, f: R" -+ R.
The function can be approximated in the region around some arbitrary point y E Rn by its tangent

hyperplane. If f: " -- R, the Taylor approximation takes the form f(x) ~ 4 (x - y) -

f(y) + f'(y)(x - y) + lf"(y)(x - y)2 + ---.
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u"(c.') ( ) u"'(c.) u"(c 8 ) (C. -
= _ _ - (C - C l+ ,, u ,'(c) u (c) (- cs)

'(c 8) 
2) (c I,, 

)(2)

= U- (C - cs) .-- + 1 " C,,) ," (C , - Cs.
N'(cs) c 2 U(Cs,) U(C,) u"(

Notice that u = -/-'(cs) is the Arrow-Pratt measure of relative risk-aversion

(Arrow 1965, Pratt 1964), p = ' -- ) .-cn, is the coefficient of relative prudence

(Kimball 1990)25, and A-C = ' -S- is the decrease in consumption resulting from the
C es

weather shock. Hence,

AC 1/AC\ 2  (4)
c 2 c)

If the third and higher order terms of u(cns) are small, i.e., u/'(CnJ) 0 -> p ~ 0,

we arrive at

Ac(5
W A C- (5)

c

As a result, the welfare gain of providing a safety net can be expressed as the

product of the size of consumption fluctuations (L) and the utility value derived from

exhibiting (the optimizing behavior of) a smoother consumption path (Y) over time.

The empirical analysis of this paper provides an estimate of (-) for a variety of

weather shocks.

Notice that even if consumption falls negligibly, the benefits of a safety need are

significant if households are highly risk-averse, i.e., take costly measures to insure a

smooth consumption path. Poor households, as argued in the review of the literature

25 The coefficient of relative risk aversion measures the curvature (concavity) of the utility func-

tion. Similarly, the coefficient of relative prudence measures the curvature (convexity) of the mar-
ginal utility function. The greater the coefficient of relative prudence, the stronger is the precaution-

ary savings motive.
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above, incur substantial costs to avoid a decrease in their consumption patterns, given

that they are by definition close to the subsistence level of consumption.

To formalize this notion, consider the isoelastic (constant relative risk-aversion)

utility function

u(c) = (6)

where the elasticity of intertemporal substitution is the reciprocal of the Arrow-

Pratt measure of risk aversion. Given the effort to attain the level of consumption c,

the representative household chooses the optimal level of consumption c*

1-7
max C - c (7)

C 1--y

Hence

c*-0- =0 ==> c(0) = - (8)

A weather shock leads to a consumption fall equal to

Ac _cns-c- =i_ 1 (9)C- C 5  (-0c cns cns \S

Equation (9) indicates that a consumption drop is decreasing in Y (i.e., households

are more reluctant to decrease consumption as -y increases) and increasing in 0, (i.e.,

smoothing consumption takes so much effort that it is preferable to tolerate a larger

consumption drop.) This expression has an important policy implication: the model

predicts that even if the consumption drop is minimal, a safety net is justified on wel-

fare grounds. Based on equation (5), even if -A is small, W e -y may be considera-C r

bly large if poor households are so risk averse that they work extremely hard to main-
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tain consumption stable in the event of a shock (i.e., it is more difficult for a household

hit by a weather shock to earn income.) This is a testable prediction that I will take to

the data.

5 Data and Measurement

5.1 Household Data: The Progresa Evaluation Surveys (ENCEL)

The household data I employ for the empirical analysis are taken from the communi-

ties and households surveys between October 1998 and November 1999 that were car-

ried out to evaluate the impact of the program on several human capital outcomes

among poor households in rural areas. Before discussing the data, a description of Pro-

gresa is presented.

5.1.1 A brief narrative of Progresa

Progresa, Mexico's National Program of Education, Health and Nutrition, was de-

signed as a policy response to the devastating effects of the Mexican economic collapse

of 1994 on disadvantaged regions and the more than sixteen million people that fell

into poverty (CONEVAL 2013.)26 Its main objective was to break the cycle of poverty

by

-[improving] the health and nutritional status of poor house-

holds, particularly of their more vulnerable members: children

under the age of five and pregnant and nursing women;

-[contributing] to children's and young people's completion of

their primary, secondary, and high school education;

-[integrating] education, health, and nutrition interventions,

so that children's school performance is not affected by ill-

health or malnourishment or by the need to work, either inside

26 For a review of the economic and redistributive policies of Mexico during the 20th century and

the politics behind Progresa's conception, implementation, promotion, distribution mechanisms and

manipulation safeguards, see De la 0 Torres (2007), Levy (2009) and Rodrfguez Dorantes (2005.)

Rodrfguez Dorantes (2005) also presents a comprehensive review of the many impact evaluations of

Progresa.
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or outside the home;

-[redistributing] income to families in extreme poverty, in-

creasing their certainty of having a minimum level of consump-

tion;

-[encouraging] the responsibility and active participation of

parents and all members of the family in improving their own
and their children's education, health, and nutritional status
by giving them sufficient information on these issues and com-

plete freedom with regard to their decisions about family size,
children's education, and spending patterns (Levy 2006, p. 21.)

Progresa was a program that targeted the poor through three stages. First, the

program was restricted to communities in extreme poverty: a marginality index to

measure public service coverage was determined, and only those communities with

high and very high marginality indices were selected. Second, the program was limited

to poor households: program officials visited all households in participating communi-

ties and collected data on observable characteristics indicative of relative wealth, and

only those households above a cutoff point were considered eligible. Third, the pro-

gram verified whether selected households represented the poorest in the area: public

meetings to explain the program's rules of operation took place and households who

were not originally selected and believed they were in fact eligible for the program were

allowed to request a re-evaluation (Levy 2006.)

Progresa was a conditional cash transfer program in nature, with the federal gov-

ernment making monetary transfers conditional upon the recipients' actions. Cash

transfers were made once every two months to the female head of the household

through bank deposits or at payment centers in each community, as a means to em-

power women through access to and control over monetary resources. Given that

transfers were a function of the number of children in the household, maximum

amount limits were set in order to avert higher fertility. Once selected to participate in

the program, beneficiary households are entitled to the program's benefits for three

years, contingent upon the fulfillment of the program's requirements. After this period,

program recipients' needs are re-assessed and may be re-enrolled for an additional

three years.
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At its inception, Progresa households received a monthly cash stipend indexed to a

price index to protect the recipients' purchasing power. Although this cash transfer

was intended to improve the nutritional status of the household, families were allowed

to use the nutrition subsidy at their discretion. In addition, an in-kind transfer, con-

sisting of a high-nutrient supplement for infants, young children, pregnant and breast-

feeding women, was provided. Both of these transfers were conditional on the manda-

tory healthcare visits to free clinics by all members of the household, which was re-

ported by health providers to program officials. Furthermore, a variable school grant

was given during the academic year, provided that recipients attended at least 85% of

school days, as certified by school administrators. The grant fluctuated according to

the recipient's gender and educational stage, being the subsidy greater for women, giv-

en their higher propensity to drop out school, and older children, as the projected in-

come they would have earned in the labor market is higher. Moreover, a school sup-

plies subsidy offered twice a year, along with a high-school completion grant provided

at the time of the recipient's graduation (Flores Romero 2010.)27 Table 1 presents the

monthly cash transfer schedule for 1998 and 1999. Overall, between November 1998

and October 1999, the cash transfers received by households averaged 197 pesos of No-

vember 1998 per month (roughly 20 US dollars), approximately 20% of the value of

monthly consumption expenditures before joining the program (Skoufias 2007.)

Progresa expanded coverage dramatically during its first two years of operation,

from 300,000 beneficiary households in 1997 to 2.3 million households in 1999 (see Fig-

ure 7.) By the end of 2012, the program covered 5.8 million households, and has long

been the largest single poverty alleviation program in Mexico's history (Levy 2006;

Ministry of Social Development 2013.)

In order to assess the effectiveness of Progresa, an impact evaluation was carried

out, using data from household surveys.28 I join these data with climatic information at

27 In 2007, the federal government introduced an unconditional cash transfer to help households

cover their electricity bills.
28A valuable feature of Progresa is the experimental nature of the data for its evaluation. If both

sets of localities and households are chosen randomly and if repeated observations of the same vari-
ables are collected for both sets to obtain data before and after program implementation, then econ-
ometric techniques can be applied to the resulting databases to obtain numerical estimates of pro-
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the community level to study the negative consequences of weather-induced income

shocks and the extent to which the program mitigates this effect. Specifically, I use

household data for approximately 24,000 households from 506 communities in the

states of Guerrero, Hidalgo, MichoacAn, Puebla, Quer6taro, San Luis Potosi and Vera-

cruz. I take the (panel) data from the October 1998 and November 1999 rounds of the

Household Evaluation Survey (ENCEL.) Other rounds were carried out in March 1998

and June 1999, but they are not included in my analysis due to the incomparability of

the consumption and income information collected. The survey round of March 2000

could not be employed either, as all households in the control group were already re-

ceiving the benefits of the program, those losing the randomization component of the

data.

All the variables I use for my empirical analysis are at the household level. Adjust

per capita and aggregated individual-level variables using an adult equivalency scale.

Following Case and Deaton (2002), I calculate E, the number of equivalent adults in

each household, by assigning a value of 1 to every adult household member (A), and a

value of 0.3 to each child of 10 years of age or under (K), and by assuming that there

are diminishing marginal needs (0 < 1) to each additional (weighted) person:

E = (A + aK)6 , where 0 = 0.9. In terms of household characteristics, I use data on

several head-of-household demographic observables such as gender, age, educational

attainment, employment, literacy, indigeneity or ethnic minority self-identification, and

land tenure.

Additionally, the November 1999 ENCEL includes data on self-reported risk-

mitigation strategies to weather disasters. I include in my dataset categorical variables

grain impacts. That was in fact what happened. Due to budgetary constraints, Progresa began to
operate in 320 communities in May 1998, but had not been implemented in other 186 communities
by late 1999 (Levy 2006.) In this sense, the phased rollout of the program introduced random as-
signment. Communities were randomly assigned to the treatment or control groups by the Depart-
mnent of Social Program Evaluation and Monitoring of the Mexican Ministry of Social Development.
The first set of communities and families could be considered subject to the effects of Progresa and
the second set representative of what happens in the absence of the program (until they are incor-
porated.) Simply put, the first set would be, using clinical trial terminology, the treatment group,
and the second the control group. After randomization, the two groups of households are followed in
exactly the same way, and the only differences between them should be those intrinsic to the treat-
mnent being compared, i.e., those caused by the program itself.
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on the type of weather disaster experienced by the household (drought, flood, hurri-

canes) and the coping mechanisms they resorted to as a response to these shocks (asset

depletion, migration, labor supply adjustments.)

I follow Hoddinott, Skoufias and Washburn's (2000) methodology to generate mon-

etary variables. I separate consumption in a way that is consistent with the theoretical

model of consumption smoothing. Food consumption (purchased and self-produced) is

the sum of the value of consumption on fruits and vegetables, cereals and grains, meats

and animal products, industrial food and the value of food eaten out. In order to value

food consumed by a household that was self-produced, I generate community-level food

prices and multiply them by the quantity consumed. By taking the median household-

level price in the community, I create community-level food specific prices, with the

requirement that there be at least 20 prices. If 20 households in the community did not

purchase the food, then I look to the municipality, state and national levels. At each

level, the median price was used only if there were at least 20 valid prices. Nonfood

consumption equals to the sum of the value of consumption on transportation, tobac-

co, health and personal care, education, household furnishings, energy, clothing, festi-

vals and recreation. The earnings variable is the sum of labor income from the main

job and other secondary occupations, informal work activities generating income, re-

mittances, transfers from relatives, friends and the government, pensions, interests and

rents received by all members of the household. These variables are expressed in pesos

of October 1998 per month per adult equivalent and were deflated using state-level

agricultural consumer price indices.

In addition to food consumption in pecuniary terms, physical food consumption is

measured in terms of caloric intake per month per adult equivalent. ENCEL includes

information regarding the reported amount of food consumed for 36 items. I convert

these data into calories by first converting different units of volume into a universal

measurement for each product, kilograms in this case. I multiply the kilograms con-

sumed of each of the 36 items by the percentage weight of the food deemed edible (i.e.,

for a banana this is equal to the weight of the fruit without the peel.) Finally, the edi-

ble kilograms of food were converted to calories. My calculations are primarily based

on the caloric values estimated by Mufioz et al. (2000) and information provided by
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the School of Public Health and Nutrition of the Universidad Aut6noma de Nuevo Le-

6n (Mexico) (see Table 2.)

5.2 Meteorological Data

The most essential data to carry out any empirical analysis on weather and its impacts

are, of necessity, climatic records. There is a variety of models that provide environ-

mental analysts with climatic observations and some have been employed to assess

weather impacts in Mexico in terms of human, environmental, and agricultural out-

comes. In studying the impact of severe weather on health and cognitive development,

Aguilar and Vicarelli (2011) use precipitation data at 0.5 degree resolution climate

grids, which were generated by the Climate Research Unit and the Tyndall Centre for

Climate Change Research, both at the University of East Anglia. Sdenz Romero et al.

(2010) develop spatial climate models to estimate plant-climate relationships using thin

plate smoothing splines of ANUSPLIN software, created by the Australian National

University. Pollak and Corbett (1993) use spatial agroclimatic data to determine corn

ecologies.

The underlying problem with these and other works that follow similar methodolo-

gies is their use of monthly climatic data. Using monthly climatic data is problematic

due to the nonlinear effects of weather, which may be concealed when daily observa-

tions are averaged into monthly or seasonal variables. In effect, daily and even finer-

scale weather data facilitate estimation of models that aim to identify nonlinearities

and breakpoints in the effect of weather. Schlenker and Roberts (2009) use daily tem-

perature data and find a nonlinear asymmetric relationship between weather and crops

yields in the United States, with yields decreasing more rapidly above the optimal

temperature vis-A-vis their increasing below the optimal temperature. The assumption

of nonlinearity is particularly critical for studies like this one, where the researcher at-

tempts to represent the relationship between weather and human physiology. In many

studies, for the case of mortality, a J- or U-shaped curve has been found appropriate to

describe the association, with elevated mortality being observed at temperature ex-

tremes and relatively lower mortality at moderate temperatures (Burgess et al. 2011,

214



Curriero et al. 2002, Deschenes & Greenstone 2011, Huynen et al. 2001, Kunst,

Looman & Mackenbach 1993.)

I use daily temperature and precipitation data from the North American Regional

Reanalysis (NARR) model (NOAA, 2012.) The NARR project is a long-term, high-

frequency, dynamically consistent meteorological and land surface hydrology dataset

developed by the National Centers for Environmental Prediction (NCEP) as an exten-

sion of the NCEP Global Reanalysis, which is run over the North American Region. It

covers the period 1979 to 2010 and data are available at three-hour intervals (i.e., eight

data points per day), on a Northern Hemisphere Lambert Conformal Conic grid with a

resolution of 0.3 degrees (32km)/45 layers at the lowest latitude. In addition to the

modeling benefits of high spatial resolution, I employ NARR due to the model's good

representation of extreme weather events, resulting from the model outputting all "na-

tive" (Eta) grid time-integrated quantities of water budget. In a recent study, Mesinger

et al. (2006) compare the NARR precipitation for January 1998 (when the El Nifno

effect was underway) with observed precipitation. Their comparison shows that over

land there is an extremely high agreement between NARR and observed precipitation,

even over the complex western topography of Mexico.

Other variables could be employed for future work. The NARR dataset also in-

cludes information on wind speed, humidity, elevation, and other common climatic fac-

tors, but evidence shows that, at least for the most important crops of Mexico in terms

of output (i.e., corn, sorghum, and wheat), temperature and precipitation are the two

weather elements that can effectively inhibit plant growth and development to the

point of crop failure (Ministry of Agriculture of Mexico, 2012.) Conversely, non-optimal

values in altitude, soil quality, or light intensity requirements may only retard growth

or reduce yields, but these factors are not likely to put crops at imminent risk (FAO,

2007.)

I construct daily temperature and precipitation data in two simple steps. First, I

apply a spherical interpolation routine to the data: I take weighted averages of the dai-

ly mean temperature and accumulated precipitation of every NARR gridpoint within

30 kilometers of each of the 506 Progresa treatment and control villages's geographic
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center, with the inverse squared haversine distance between the NARR gridpoint and

the village centroid as the weighting factor.2 9

Then, I construct four measures of weather that, on the one hand are operative

metrics of extreme climate and, on the other hand capture the nonlinear, asymmetric

relationship between weather and welfare outcomes. These measures are the cumula-

tive degrees-times-days that exceed 33*C in a year (extreme hot weather), the cumula-

tive degrees-times-days below 5*C in a year (extreme cold weather), the total millime-

ters-times-days that exceed 30 millimeters (extreme rainfall), and the total millimeters-

times-days below 0.5 millimeters (extreme drought.) Even though it collapses daily

weather observations into a single metric, these measures, by taking into account the

number of degrees/millimeters per day above/below a certain threshold, still indirectly

accounts for the nonlinear effects of weather and leads to relative sensitivity gains due

to improved statistical power to detect weather effects. These metrics assume that the

sequence of relatively hot, cold, rainy and dry days is irrelevant in terms of impact on

the annual outcome variable. This assumption is supported by the findings of Burgess

et al. (2011.)

Although these cutoff points are arbitrary, the rationale behind these thresholds is

ecological. At these values, many crops -including corn, which is an important source

of income that also supports self-consumption- undergo severe abiotic stress, greatly

increasing the likelihood of crop loss (G6mez Rojas & Esquivel Mota 2002, Ministry of

Agriculture of Mexico 2012, Neild & Newman 1990, North Dakota Corn Utilization

Council 1997, Wang, Vinocur & Altman 2007) Hence, changes in consumption pat-

terns are expected. Because the functional form of the relationship between weather

and welfare is unknown, I also examine other thresholds and specifications to assess

the effect of extreme temperatures and precipitation. The results are robust to changes

in the thresholds over a reasonable range (data available from the author.) Table 3

2' The haversine distance measure is useful when the units are located on the surface of the earth
and the coordinate variables represent the geographical coordinates of the spatial units and a spher-
ical distance between the spatial units needs to be calculated. This is accomplished by calculating
dt = r x c, where r is the mean radius of the Earth (6,371.009 kms); c = 2arcsin(min(1, x/a));
a - sin 2 4 + cos( 1) cos(# 2 ) sin 2 A ; = 1(02 - 01) = 2(x 2 [t] - x2[s]) ; A = z(A2 - A) =

i(x 1 [t] - x 1 [s]); x 1 [s] and x1 [t] are the longitudes of point s and point t, respectively; and x2 [s] and

x 2 [t] are the latitudes of point s and point t, respectively.
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summarizes the descriptive statistics for the temperature and precipitation variables

employed.

6 Evaluation Strategy

This section presents the methodology to identify the impacts of several types of ex-

treme weather events on welfare.

The following equation is used to estimate the effect of each type of shock on wel-

fare outcomes:

WhVt = a + 3 1svt + Xv 2 + 7Yt + 6 hvt (10)

where Whvt is the welfare outcome of household h in village v during year t; set is the

intensity of a given weather shock in village v during year t (i.e., the cumulative de-

grees-times-days that exceed 33*C in a year); Xt is a vector of time-varying household

characteristics; -yt is a time fixed effect; and 6hvt is the error term.30

I operationalize welfare as household consumption per adult equivalent, separately

estimating the effect on food and non-food consumption, as well as caloric intake per

adult equivalent. I transform these variables to logs for ease of interpretation. Because

observing a common variance structure over time is unlikely, I base equation (10) on a

cluster-correlated Huber-White covariance matrix estimator, which avoids the assump-

tion of homoskedasticity (Wooldridge 2004.)

Additionally, I am interested in the impact of being a recipient of Progresa on wel-

fare outcomes in the event of a weather shock. I modify equation (10) to account for

the effect of being assigned to the treatment group:

WhVt = a + f31 Sv + 32 Tut + 33st Tvt + Xh,0 4 + _7t + 6t iff Phvt = 1 (11)

30 I add a set of conditioning variables, X, to increase the precision of the estimates. The ele-
Vt'

ments of the vector X , include household demographic characteristics (household size, percentage
of men and women in reproductive age) and characteristics of the head (gender, age, indigeneity,
literacy, employment status, and educational attainment.)
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where Phvt is a dummy equal to 1 if household h in village v was sufficiently poor dur-

ing year t to be eligible to join the Program; while T,, is a dummy equal to 1 if village

v was randomly selected to join the program during year t. I also adjust standard er-

rors in equation (11) for clustering. Randomized assignment of Tt ensures that

E(et 1 1X,, Tvt) = 0, and therefore OLS estimates of #2 will be unbiased. To verify

randomization, Table 4 presents summary statistics for observable household charac-

teristics in the sample, separately for the control and treatment groups. I also show the

difference between the means of the two groups and report the p-value of a test of the

null hypothesis that they cannot be distinguished from each other. I adjust the stand-

ard errors for clustering. In general, Table 4 corroborates that the random assignment

of Progresa generated observably similar treatment and control groups and thus the

internal validity of the experiment."

In addition, I obtain estimates of 02 in equation (11) for specific sample subsets of

vulnerable groups, such as households headed by women or elderly persons, indigenous

households, and the landless. To allow for such heterogeneity in the treatment effects

by household type, I estimate the following equation:

Whkvt = a + O1svt + 32 Tvt + i33 svtTv + Xhkvt/ 3 4 + Yt + Ehkvt ff Phkvt = 1  (12)

where Phkvt is a dummy equal to 1 if household h in village v belonging to the vulner-

able group k was sufficiently poor during year t to be eligible to join the program.

Welfare impacts can also be assessed through several qualitative measures. I inves-

tigate whether extreme weather shocks increase the probability of a household losing

land, harvest, cattle, hardware or their home. I operationalize these welfare shocks as

categorical variables. To achieve this, I estimate the following probit model:

Prob(Lvt = 1) = F(a + 01svt + Xv'#0 2 ) iff Phvt 1 (13)

3 Of course, even if random assignment was well executed, it is possible that experimental groups
will not be statistically equivalent on all possible dimensions or on any one characteristic (Mutz &
Pemantle 2011.)
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where F is the cumulative normal distribution and Lht if a dummy variable equal to 1

if household h in village v reports a loss resulting from an extreme weather event dur-

ing year t.

Finally, in a similar exercise, I determine the extent to which households resort to

costly self-insurance strategies in the event of a weather-induced shock, as well as

whether program recipiency changes the behavior of households. I am interested in the

impact of extreme-weather shocks on the probability of households undertaking several

risk-coping strategies, specifically asset depletion, forced migration, or labor supply ad-

justments. I operationalize these responses as categorical variables. To achieve this, I

estimate the following probit model:

Prob(RVt = 1) = F(a + / 1 s,t + ! 2Tet + /3 3 t Tot + X,# 4 ) iff Phvt = 1 (14)

where F is the cumulative normal distribution and Rhvt if a dummy equal to 1 if

household h in village v resorts to any given ex post risk-coping strategy during year t.

Similarly, an alternative mitigation strategy to decreasing consumption is for

households to spend their food budget differently. If an unexpected shock decreases

household income, households may resort to changing their diet and consuming

"cheaper" calories provided by inferior goods, i.e., cereals instead of meat, or coarse ce-

reals instead of wheat (Jensen & Miller 2008.) Even though food expenses may de-

crease as a result of a weather shock, caloric intake may remain relatively stable.

To test whether this phenomenon is observed in my sample, I estimate the rela-

tionship between calories consumed, the quality of food, and the resources available for

food consumption by calculating the elasticity of per adult equivalent caloric intake to

per adult equivalent food consumption, as well as the elasticity of food quality (calorie

price) with respect to per adult equivalent food consumption.

Theoretically, the relationship between food consumption and calorie intake and

price is unlikely to be homogeneous for every level of income. In a well-known paper,

Strauss and Thomas (1990) find that when a certain calorie threshold is reached,

households switch to higher protein foods while maintaining an approximately constant

level of calorie intake. Consequently, the use of a linear form in a parametric analysis
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would be inappropriate. I follow Subramanian and Deaton's (1996) non-parametric ap-

proach to estimate a regression function of caloric intake (as well as food quality) on

food consumption. As my objective is to estimate elasticities, I use log values through-

out this exercise.

Consider the non-parametric regression function mr(x) = E(yIx), where y is the per

adult equivalent caloric intake and x is the per adult equivalent food consumption.

Drawing from Subramanian and Deaton (1996), I estimate m(x) using a smooth local

regression technique for both the Progresa treatment and control groups. I employ an

evenly spaced grid of 50 points of x over the range [3,6] and run for each point a

weighted linear regression, with each observation getting a quadratic kernel weight

equal to

( 15F /x-x\1 2

W (X)= 15 [1 / (X-X,2 V - h< x - x <h (15)
0, otherwise

I set the bandwidth h = 0.5. The estimate of m(x) comes from the 50 predicted

values from the local regression at x, while m'(x), the local estimated slope coefficient

#3(x), is used as an estimate of the elasticity. I obtain standard errors for the regression

function and its slope by bootstrapping with and without allowance for cluster design.

To complement the analysis, I also carry out a typical regression analysis. I specify

the following model of caloric availability and quality:

calhvt = a + /3 fht + 7t + Chvt (16)

where calht denotes a caloric outcome of interest (i.e., availability or quality), and

fhvt is the log per adult equivalent food consumption. In addition, I specify equation

(16) as an OLS regression allowing for slope shifts over time, with and without the in-

clusion of a vector of time-varying household characteristics. To allow caloric outcomes

to vary non-linearly with food consumption, I also include the term Ofwjl, so that the

household's elasticity is given by $1 fhat - 32flt (Graham & Powell 2008.)

220



7 Results

7.1 The Impact of Weather Shocks

Extreme weather has a negative impact on the welfare of rural households, given that

adverse climatic events impact agricultural productivity and crop yields, thus reducing,

often drastically, household income. Table 5 presents the impact of weather extremes

on consumption based on equation (10.) It compares whether climate has a more acute

impact on the poor vis-A-vis the non-poor. I consider a household to be non-poor if its

income falls within the top decile of the non-eligible household income distribution.

Regardless of the model specification, the results show that in the event of a

weather shock, the poor are disproportionately affected. For instance, a 1-degree in-

crease in the cumulative number of degrees-times-days that exceed 33*C (abnormal

heat metric) in a year decreases consumption in 1.7-2.2% among the poor, compared

to 0.8-1.4% among the non-poor. Likewise, a 1-degree increase in the cumulative de-

grees-times-days below 5*C (abnormal cold metric) in a given year decreases consump-

tion among the poor by 0.7-1.9%, while consumption among the non-poor is only re-

duced by 0.1-0.3%.

Similar results are found for precipitation extremes. A 1-centimeter (ten-

millimeter) increase in the number of total millimeters-times-days that exceed 30 mil-

limeters (abnormal rainfall metric) leads to a 0.5-0.7% consumption fall among the

poor, compared to a 0.4% consumption decrease among the non-poor. Finally, a 1 cen-

timeter increase in the yearly millimeters-times-days below 0.5 millimeters (extreme

drought metric) is associated with a 0.2-0.5% decrease in consumption among the

poor, while consumption among the non-poor is only reduced up to 0.3%. While the

consumption drop point estimates are highly significant for the poor, they are statisti-

cally equal to zero in several instances among the non-poor. In effect, the Wald statis-

tic (for testing equality of impacts between the poor and the non-poor) is in all but

one case statistically significant at the conventional levels, suggesting that the impact

of weather shocks do in fact differ between these two groups.

An important distinction is that households do not make consumption reduction

decisions homogeneously. In a poverty situation, an unanticipated income shock is ex-
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pected to cause acute drops in non-food consumption, while comparatively maintaining

food consumption stable. If households are at, or near, subsistence levels, they will opt

to give up consumption of relatively unnecessary goods first, as they cannot make cuts

to food consumption without forcing family members below a minimum calorie intake

for survival.

Table 6 reports the results from estimating equation (10), separately for food and

non-food consumption. As expected, in the face of an unexpected weather-induced in-

come shock, poor households will try to maintain their already low food consumption

levels by initially cutting non-food consumption. Non-food consumption drops are at

least twice and up to four times as large as food consumption drops: extreme tempera-

ture coefficients are associated to a 1.5-1.6% decrease in food consumption, and a 3.0-

4.5% decrease in non-food consumption. Similarly, extreme precipitation coefficients

are associated to a 0.03-0.04% reduction in food consumption, and a 1.1-1.5% reduc-

tion in non-food consumption. For the four types of extreme weather events considered

in this paper, the hypothesis of equality of impacts between food and non-food con-

sumption is rejected at the conventional confidence levels.

7.2 The Impact of Safety Nets

The analysis has provided evidence on the negative impact of weather-induced income

shocks. Table 8 shows that the contraction in both food and non-food consumption is

effectively mitigated by program affiliation. In the absence of shocks, the raw treat-

ment effect is significant: depending on the model specification, Progresa increases

food consumption by 11-29% as well as non-food consumption by 6-52%. More im-

portantly, Progresa also proves to be effective as a consumption smoothing mechanism

in the event of a weather shock.

Consider the impact of weather extremes on food consumption (Column 1): for

program non-beneficiaries, the effect of an additional degree-day above (below) the ab-

normal heat (cold) threshold leads to a statistically significant 1% (2%) drop in food

consumption. Conversely, the program shielded its recipients by insulating them from

the weather shock: the differential effect of the program reflects that in spite of an ex-
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treme temperature event hitting the household, food consumption changes are statisti-

cally undetectable. A similar result is found for extreme precipitation shocks. The ef-

fect of an additional centimeter above (below) the abnormal rainfall (drought) thresh-

old leads to a very precisely estimated 4% drop in food consumption among non-

beneficiary households, while beneficiary households affected by a precipitation shock

maintained their food consumption stable.

Non-food consumption regressions (Column 3) lead to comparable results, although

with higher-order magnitudes. For program non-beneficiaries, the effect of an addition-

al degree-day above (below) the abnormal heat (cold) threshold leads to a statistically

significant 4% (5%) drop in non-food consumption. Conversely, the program shielded

its recipients by insulating them from the weather shock: the differential effect of the

program reflects that in spite of an extreme temperature event hitting the household,

non-food consumption changes are, at worst, statistically undetectable or even positive.

Likewise, the effect of an additional centimeter above (below) the abnormal rainfall

(drought) threshold leads to a tightly estimated 13% (16%) drop in non-food consump-

tion among non-beneficiary households, while beneficiary households affected by a pre-

cipitation shock exhibit no statistically significant changes in their non-food consump-

tion. Expectedly, regardless of the extreme weather model specification, the hypothesis

of equality of impacts between food and non-food consumption is rejected at the con-

ventional confidence levels.

7.3 Heterogeneity in the Treatment Effect

In this section, I discuss the results of the analysis where I investigate whether extreme

weather impacts and treatment effects vary with specific characteristics of the head of

the households. Table 10 presents estimates of the impact of extreme weather on sev-

eral segments of the population typically deemed vulnerable in the literature, such as

households headed by women or elderly persons, as well as indigenous and landless

households, among others.

Overall, I find little heterogeneity for the precipitation model specifications: the

hypothesis of equality of abnormal drought coefficients is not rejected at the conven-
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tional levels, while the abnormal rainfall coefficients are statistically different from each

other only at a 90% confidence level. Nevertheless, when the temperature shock regres-

sions are considered, I find significantly larger extreme weather impacts for indigenous

households (Columns 7 and 8) and relatively acuter impacts for female-headed house-

holds (Columns 3 and 4): depending on the specification, extreme temperature shocks

lead to a decrease in consumption in female-headed households between 4 and 50%

larger than that of the typical household. Similarly, they cause a drop in consumption

in indigenous households between 60 and 250% larger than that of the typical house-

hold. However, the negative impacts of extreme weather are, in general, completely

smoothed by the treatment, even for those seemingly vulnerable groups.

7.4 Weather's "Sibling Rivalry"

El Nifno- and La Nifia-related meteorological conditions were responsible for extreme

weather conditions in Mexico (Magaia et al. 2004.) The World Meteorological Organi-

zation's World Climate Services Programme (WMO 2012) reports that "research con-

ducted over recent decades has shed considerable light on the important role played by

interactions between the atmosphere and ocean in the tropical belt of the Pacific

Ocean in altering global weather and climate patterns. During El Nifno events, for ex-

ample, sea temperatures at the surface in the central and eastern tropical Pacific

Ocean become substantially warmer than normal, while shifting eastward intense trop-

ical rainfall in the region. In contrast, during La Nifia events, the sea surface tempera-

tures in these regions become colder than normal, while shifting westward intense trop-

ical rainfall in the region. These temperature changes are strongly linked to major cli-

mate fluctuations around the globe and, once initiated, such events can last for 12

months or more."

Because of the timing of El Nifno of 1998 and La Nifia of 1999, the impact of these

weather events is likely to be captured by the Progresa evaluation data, derived from

surveys carried out in October 1998 and November 1999. The strong El Nifno event of

1997-1998 was followed by a prolonged La Nifia phase that extended from mid-1998 to

early 2001. But do these opposite phenomena cause major redistributions of extreme
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weather events, thus having differentiated impacts on welfare? This is an important

distinction in terms of household adaptation policy design and natural disaster assis-

tance programs in the agricultural sector.

Table 11 shows that the impact of these events is similar. The extreme weather

point estimates suggest that El Nifno intensified the impact of abnormal cold and

drought on household consumption. This goes in line with Magaia et al. (2004), who

find that El Niio events lead to colder, drier winters in central Mexico. Conversely, it

appears that La Nifia increased the effect of abnormal heat and rainfall on household

consumption. Indeed, Magafna, P6rez and Conde (2008) argue that anomalous extreme

rainfall patterns are to be expected as a result of a La Nifna event. Nonetheless, the

Wald test indicates that, regardless of the extreme weather model specification, the

difference between El Nifno and La Nifia impact is not significant from a statistical

standpoint, with p-values ranging from 19 to 91%.

7.5 Other Welfare Impacts

The impact of extreme weather is multidimensional and goes beyond its effect on

household consumption. Household vulnerability may also be reflected in the extent to

which exposure to severe climate causes material losses. A material loss can be inter-

preted as the result of the households' inability to mitigate the impact of the shock.

The Progresa evaluation data include a variety of measures of self-reported losses.

Shock impacts include loss of arable land, harvest, home, tools and hardware and ani-

mals, as well as the death of a member of the household as a result of a natural disas-

ter.

Table 12 presents estimates of the impact of abnormal temperature and precipita-

tion patterns on these six shock impacts. Overall, I find no effect of extreme weather

on death of household members and loss of tools and household hardware. Similarly,

the home loss coefficients change sign from one model specification to the next, sug-

gesting no consistent pattern. Surprisingly, I find that, with the exception of abnormal-

ly cold weather, severe climate in general does not lead to cattle death loss. Eakin

(2006) attributes this to the fact that most households living in poverty do not own
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any animals in the first place. Using survey data collected for a study of agricultural

vulnerability and adaptation in Tlaxcala, Mexico, she finds that only 36% of house-

holds owned a yoke, and half of the survey respondents did not have any pigs, goats or

sheep.

As expected, extreme weather shocks have a direct effect on the loss of arable land

as well as harvest loss. The point estimate for the average effect across all extreme

weather model specifications is a 0.2% increase in the probability of a household losing

arable land. The addition of various control variables does not change the results. The

impact of extreme weather on harvest loss is more acute, particularly for the extreme

temperature regressions. These coefficients are precisely estimated (z scores in the 5 to

9 range) and quantitatively important. I find that being hit by an extreme tempera-

ture shock increases on average the probability that a household loses their harvest by

2.2%. Similarly, the abnormal precipitation models show that being hit by an extreme

rainfall or drought shock increases on average the probability that a household loses

their harvest by 0.4%.

7.6 Risk-Coping Strategies

Poor households are more likely to resort to a reduction in consumption rather than

other strategies to cope with a variety of shocks (World Bank 2003.) However, the se-

verity of the shock may trigger a variety of household ex post risk-coping mechanisms,

including borrowing money, selling assets, diversifying crop production, augmenting

the labor of those already working or of other members of the family (including chil-

dren), seeking job elsewhere, or receiving family aid to cope with the effects of shocks.

As I discuss in the next section, households may also switch to cheaper diets, sacrific-

ing calorie quality and taste. Regardless of the risk-coping strategy, however, it is clear

that all of them are likely to decrease the welfare of the household by rendering its

members more vulnerable and shifting them to even lower standards of living in the

medium and long terms.

Because of the additional income the cash transfer provides, families may be pre-

vented from employing these costly strategies in the event of a weather shock. Hence,
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the estimated marginal effect of treatment should be a reduction in the probability of

adopting a specific risk-coping response. Yet, as the intensity of the shock increases,

the treatment effect may diminish.

The results of probit estimations are presented in Figures 8-16. Overall, average

marginal treatment effects are imprecisely estimated. Although in most cases, regard-

less of the type of weather shock, the point estimates suggest that Progresa does de-

crease households' propensity to resort to a risk-coping strategy in the event of a se-

vere climate shock, the coefficients are never statistically different from zero. One can

only assess with low confidence that the program reduces the probability of the house-

hold sending children to work by 2-3% (Figure 8.) Conversely Progresa may fail to

prevent animal asset depletion, and slightly increase the probability of crop diversifica-

tion, probably as a result of the program enabling farmers to afford other crop varie-

ties (Figures 9 and 10.) For low-intensity weather shocks, the program seems to reduce

the probability of households augmenting their labor supply, but this effect disappears

as weather shocks become more intense (Figure 11.) In terms of the effect of the pro-

gram on the probability of households getting family aid, none of the coefficients are

significant, and their sign changes from one weather shock to the next, suggesting no

consistent pattern (Figure 12.)

The program has virtually no effect on forced domestic migration decisions (Fig-

ures 13-15), but the (imprecisely estimated) coefficients suggest that, in the event of a

weather shock, Progresa beneficiaries may have a higher propensity to migrate abroad,

particularly to the United States: depending on the model specification, the treatment

group has a 1-5% higher likelihood than the control group of moving as a result of

economic struggles and hardship (Figure 16.) Angelucci (2004, 2012), who previously

evidenced this migration dichotomy, argues that this finding is consistent with econom-

ic theories predicting that, by relaxing credit constraints, a cash transfer increases in-

ternational migration, which is more costly than domestic migration. The implication

is that financial constraints to international migration are binding for poor Mexicans,

some of whom would like to migrate but cannot afford to.

The fact that there does not appear to be any significant differences in how Pro-

gresa beneficiaries and non-beneficiaries respond to these shocks was first approached
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by Skoufias (2007), who studied the impact of income shocks (rather than weather

shocks) on household behavior in terms of self-insurance strategies. While it is possible

that the impact of the program is negligible, the possibility that the Progresa data suf-

fer from under-reporting biases cannot be ruled out. The literature on the accuracy of

self-reporting risk coping mechanisms suggests that the likelihood of reporting specific

strategies is associated with the poverty status of the household, the intensity of the

strategy, the legality of the strategy, or the need for justification thereof (Christiaen-

sen, Hoffmann & Sarris 2007; Kidolezi et al. 2005; Mahmoud & Trebesch 2010; Meyer,

Mok and Sullivan 2009.)

7.7 Resilience through Caloric Intake Recomposition

The evidence so far has shown that, when confronted with unexpected weather shocks,

food consumption decreases. Even though the decline in food consumption is of smaller

magnitude when compared to changes in non-food consumption, it is still statistically

significant. If, as theorized, households hit by a weather shock resort to changing their

diet and consuming "cheaper" calories provided by inferior goods, one would expect to

see at best households maintaining their caloric intake in spite of a drop in food con-

sumption. At worst, switching to cheaper calories may imply a loss of micronutrients in

the household's diet. Table 7 reports that, regardless of the type of shock considered, it

appears that the nutritional status of the household is resilient to weather-induced var-

iation in household resources. Compared to the impact of weather on total consump-

tion, caloric intake remains reasonably unaffected, generally as stable as food con-

sumption. In some instances, caloric intake estimates are statistically equal to zero.

Although for the abnormal cold regressions the decline in caloric intake is larger than

the decline in food consumption, usually changes in food consumption are significantly

larger in magnitude. For instance, a 1-degree increase in the cumulative number of de-

grees-times-days that exceed 33*C in a year decreases food consumption by 1.5%, while

virtually having a zero-effect on caloric intake. Similar outcomes are found for the ex-

tremes in the precipitation distribution regressions. The Wald test of equality is reject-
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ed in two cases, and for the other two cases, there is suggestive evidence that food con-

sumption decreases more considerably than caloric intake.

Reassuringly, the results are analogous when accounting for the impact of Progresa.

Table 9 shows that, with the exception of the abnormal drought regression, the treat-

ment effect in terms of food consumption is of larger magnitude than the effect with

respect to caloric intake. In other words, the impact of a cash transfer on food expens-

es is larger than that on nutrient consumption. Consider the abnormal heat regression:

program affiliation increases food consumption by 13%, while caloric intake increases

by only 10%. Similarly, the abnormal cold regression shows that while a cash transfer

increases food consumption by 11-12%, caloric intake increases by 9-10%. In terms on

the rainfall regression, program affiliation leads to a 13% increase in food consumption,

while increasing caloric intake by only 8%. This a priori suggests that increases in in-

come are not directly translated into improvements in nutritional status but, rather,

that households are now able to buy better quality food that is less nutritious per dol-

lar spent. This is in fact what the data show.

Figure 17 presents the local regression estimate for log per adult equivalent caloric

intake and log per adult equivalent food consumption, for both treatment and control

groups. The inner broken lines are two standard error bands with no allowance for

cluster design, while the outer bands show the clustered bootstrap. The regression es-

timate is tightly estimated and shows an almost linear relationship between caloric in-

take and food consumption, with the treatment group showing a slightly higher caloric

intake than the control group. The slope of this graph is approximately 0.34: when the

monetary value of food consumption per adult equivalent increases by 10%, the per

adult equivalent calorie consumption increases by 3.4%. The control group exhibits a

similar behavior, with per adult equivalent calorie consumption increases by 3.2% giv-

en a 10% increase in the amount spent on food consumption.

Similarly, Figure 18 illustrates the local regression estimate for log of price per cal-

orie and log per adult equivalent food consumption, again for both treatment and con-

trol groups. Visually, the functional form that best describes this relationship is again

linear, although the slope is flatter: when the monetary value of food consumption per

adult equivalent increases by 10%, the price per calorie roughly increases by 2% for
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both treatment and control groups. This shows that when households spend more

money on food, they buy more expensive calories. Conversely, when households are hit

by a shock that decreases their food expenses, they try to stabilize their caloric intake

by consuming "cheaper" calories.

Figure 19 shows the estimated elasticities of calorie intake and calorie price for

program recipients, with more conservative clustered and unclustered bootstrap stand-

ard errors. Both elasticities are always below 0.6. At the median log of per adult

equivalent food consumption, the elasticity of calorie intake is roughly 0.4, while the

elasticity of calorie price is approximately 0.3. This range reflects that poor house-

holds' demand for calories increases with income, if not proportionately, given that

they substitute quality for quantity, certainly with an elasticity greater than zero

(Subramanian & Deaton 1996.) This finding is in accord with the elasticities Skoufias

et al. (2011) estimate for a sample of poor households from rural Mexico affiliated to a

targeted nutritional program."

While non-parametric regressions are useful to explore bivariate relationships, they

are ineffective to account for multiple variables that simultaneously have an indirect

effect on the relationship (Subramanian & Deaton 1996.) Table 13 presents elasticity

estimates from three sets of parametric regressions based on equation (16.) Panel A

displays the results from a typical ordinary least squares estimation. It consistently

shows that the calorie intake elasticity is higher than the calorie price elasticity (rough-

ly 0.6 and 0.4 respectively.) Estimates for treatment and control groups are similar as

expected. Similarly, Panel B reports a model specification allowing elasticities to vary

non-linearly with food consumption, containing common intercept and slope time

shifts. Average elasticities are analogous to their linear counterparts. Finally, Panel C

modifies the model to include intercept shifts only. This specification does not change

elasticity coefficients significantly. In the three panels, the total expenditure elasticity

of expenses on food consumption is close to one, with a near 60/40% split between the

elasticity of calorie intake and calorie price. A poor household that is 10% richer

spends about 6% more on food and 4% on more expensive (better quality) calories. In

2 For a summary of the literature on the response of nutrient intake to income changes or other
income proxies, see Ogundari and Abdulai (2012.)
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terms of this paper, the main implication of this evidence, which is in accord with the

findings of Stillman and Thomas (2007), is that households are able to cope with un-

expected fluctuations in income by switching to cheaper diets, sacrificing calorie quali-

ty, taste and potentially micronutrients. Put in another way, even among very poor

people, the impact of a cash transfer program on the nutritional status of the house-

hold is certainly positive, but rather limited.

7.8 Progresa's Overall Impact on Welfare

The basic model of social insurance for the poor presented at the beginning of this pa-

per predicts that even if Progresa increases consumption among poor households, its

impact has broader welfare implications, particularly when poor households are so risk

averse that they work extremely hard to maintain consumption stable in the event of a

shock. As shown above, not only does extreme weather decreases consumption, but

also increases the likelihood of arable land and harvest loss. Similarly, poor households

switch to cheaper diets, sacrificing calorie quality, taste and potentially micronutrient

content. Although not conclusively, evidence suggests that as a result of a weather

shock, families resort to very costly ex post risk-coping strategies. Prima facie, scarcity

of resources derived from weather shocks fosters risk aversion and impatience in the

short run (Duflo 2006.) Conversely, a program like Progresa reduces reliance on costly

consumption-smoothing mechanisms when households are hit by shocks.

Although there is substantial debate in the economics and finance literature with

respect to the value of the coefficient of relative risk aversion (y), some authors have

directly or indirectly carried out its empirical parametrization for Mexico. Reinhart,

Ogaki & Ostry (1996) estimate the lower and upper bounds of the intertemporal elas-

ticity of substitution (i.e., 1.) Based on their analysis, -y for Mexico lies in the 1.2-2.3

range. In a previous study using data for Mexico, Brazil, Colombia, and Costa Rica,

Ostry & Reinhart (1992) show that -y for these four countries ranges between 2.3 and

2.7. In another regional exercise, Rossi (1988) finds that y for Mexico and Central

American countries is 2.7.
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Considering that these calibrations are nationwide, it is plausible that the poor-

specific risk-aversion coefficients are higher. Using the survey data for the Progresa

evaluation, however, Pavan & Colussi (2008) find that the coefficient of risk aversion

for borrowing-constrained, poor households equals to 2.25. Likewise, for another study

using the Progresa data, Cho (2005) assumes that -y = 2.0.

Based on these values of the coefficient of relative risk aversion and the estimated

consumption gains derived from being a recipient of Progresa (presented in Table 8),

Table 14 presents several simulations of the implied welfare gain set for a range of -Y.

Notice that the marginal gain in welfare from the provision of Progresa can be almost

three times as large as the increase in total consumption, depending on the household's

level of risk aversion: even though Progresa may help households increase consumption

by 11-34% in the event of an extreme weather shock, there are substantial welfare ben-

efits for beneficiary households, whose expected utility increases between 32 and 93%.

In sum, I find that the provision of a safety net raises welfare by reducing ex post

inefficient behaviors.

8 Conclusion

Extreme weather is a major source of vulnerability for rural poor households. Not only

does it decrease their welfare in the short term, but it also makes it harder for families

to get out of poverty in the medium and long terms, given the suboptimal risk-coping

responses constrained agents resort to as well as their inability to replenish assets. If

the frequency and severity of extreme weather events is likely to increase as a result of

climate change (Skoufias 2003), household inefficient decisions are likely to become

more recurrent, leading to sharp increases in poverty and inequality as a result.

By combining experimental data for 24,000 households in 506 communities of rural

Mexico for 1998 and 1999 with extreme-weather metrics that account for the non-

linearity of climate impacts, I show that El Nifno- and La Nifna-related severe meteoro-

logical conditions lead to sharp declines in consumption and disproportionately affect

the poor. Extreme temperature, as described herein, decreases consumption by 0.7-

2.2% among the poor, compared to 0.1-1.4% among the non-poor. Likewise, precipita-
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tion extremes lead to a 0.5-0.7% consumption fall among the poor, compared to a 0.3-

0.4% consumption decrease among the non-poor. These differences are significant and

robust to several model specifications. As expected, I find that non-food consumption

drops are at least twice and up to four times as large as food consumption drops.

Moreover, my analysis indicates that female-headed and indigenous households are

particularly vulnerable to weather shocks: for these two groups in particular, the con-

traction in consumption resulting from extreme weather is considerably (up to 250%)

larger than that of the typical poor household.

I present evidence that climate-induced changes in welfare are multidimensional

and not limited to their impact on consumption. In particular, extreme weather shocks

increase the probability of a household losing arable land and their harvests. Although

the change in probability is modest, it is precisely estimated.

I also examine the role of Progresa, an anti-poverty program providing conditional

cash transfers to its beneficiaries, in mitigating vulnerability among poor households. I

exploit the fact that the phased rollout of the program introduced random assignment

to evaluate its impact on welfare. I find the program effectively increases both food

and non-food consumption in situations where no weather shocks are observed. More

importantly, I show that the program also shields its recipients by insulating them

from weather-induced income shocks: program recipients smoothed consumption in a

way that food consumption changes are often statistically undetectable.

In addition, I provide suggestive evidence that, as a result of the program, house-

holds are less likely to resort to costly ex post risk-coping strategies when affected by

an extreme weather shock. I find that the program reduces the probability of the

household sending children to work by 2-3%, while diminishing the propensity of adult

members working more by 1%. I report that the program increases the probability of

crop diversification by 1% according to most model specifications. In addition, my es-

timates show that program beneficiaries are 1-5% more likely than non-beneficiaries to

seek job opportunities in the United States. These results, however, should be inter-

preted with caution, because none of the individual coefficients are significant. Finally,

I provide evidence that a risk-coping strategy is for both treatment and control house-

holds to switch to cheaper diets to compensate for the loss of income derived from a
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weather shock: a poor household that is 10% poorer, roughly spends about 6% less on

food and 4% on less expensive (lower quality) calories. Overall, the combination of mit-

igated consumption drops and reduced suboptimal ex post behavior by Progresa lead

to important welfare gains. Considering risk aversion patterns akin to poor rural

households, the expected utility for beneficiary households increases twice as much as

consumption.

In conclusion, a targeted program that transfers income in cash and explicitly in-

cludes disciplinary components in its modus operandi can make an important contribu-

tion to vulnerability mitigation, even in cases where the transfer is fungible. Both at

the micro (Duflo, Hanna & Ryan 2012) and macro level (Amsden 2009), there is theo-

retical recognition and empirical support for the tactical efficacy of control mecha-

nisms, which implicitly suggests that there is a positive role for the state at the center

of development planning (Amsden 2001.)

In devising poverty policy, more attention should focus on understanding the eco-

nomic and institutional factors that influence risk and how crisis management pro-

grams influence the behavior of the household, especially in the context of extreme

vulnerability. Whether vulnerability mitigation in the short term leads to poverty alle-

viation in the long term is still an open question that should be analyzed in subsequent

work. While I studied the effect of a state intervention on ex post risk-coping mitiga-

tion strategies, future research should also focus on the evaluation of government ac-

tions that enhance ex ante risk-mitigation mechanisms, such as rural technological

change (Amsden 2010) and infrastructure development (Polenske & Rockler 1993.)
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Table 1. Program Monthly Cash Transfer Schedule (in U.S. Dollars of November 1998), 1998-

1999

Subsidy component

Nutrition grant per householda

School grant per child'

Primary

3rd grade

4th grade

5th grade

6th grade

Secondary

1st grade (male)

1st grade (female)

2nd grade (male)

2nd grade (female)

3rd grade (male)

3rd grade (female)

School supplies subsidy

Primary

Secondary

Maximum grant per household

1998 1999

9.3 13.3

6.4

7.4

9.3
12.6

18.5
19.5
19.5
21.6
20.4

23.5

8.6
10.3
13.3
17.5

25.5
26.9
26.9
29.9
28.3
32.7

1.9 8.6
8.1

57.5

11.4

80.1

Note: (a) conditional on school enrollment and attendance
conditional on healthcare visits to clinics.
Source: Levy, S., personal communication, April 11, 2013.

for at least 85% of school days; (b)
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Table 2. Caloric Values for Foods and Products Included in the Household Evaluation Survey

Caloric Content Edible
Food Per Per unit content

kg. (

Fruits and vegetables

Tomatoes 190 24 88
Onions 400 44 86
Potatoes 760 162 82
Carrots 440 27 82
Green leafy vegetables 190 119 69
Oranges 470 62 63
Bananas 860 101 68
Apples 650 118 69
Lemons 620 36 20
Cactus leaves 270 23 78

Cereals and grains

Tortillas 2,140 51 100
Corn 3,500 2,800 92
White bread 2,920 82 100
Pastries 3,840 246 100
Sliced bread 2,850 1,425 100
Wheat flour 3,770 3,770 100
Dry packaged soup 3,400 680 100
Rice 3,640 3,276 100
Crackers 4,230 783 100
Beans 3,320 2,988 100
Breakfast cereals 3,890 1,323 100

Meats and animal products

Poultry meat 930 339 100
Beef and pork 2,750 154 60
Sheepmeat and goatmeat 1,360 76 58
Fish and seafood 920 150 50
Canned tuna and sardine 2,820 479 100
Eggs 1,580 52 88
Milk 610 610 100
Cheese 1,460 730 100
Lard 9,020 2,255 95
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Table 2., continued.

Caloric Content Edible
Food Per content

k. Per unit (%
kg.M

Industrial food

Snack cakes 3,980 207 100

Carbonated soft drinks 440 156 100

Alcoholic beverages 460 150 100

Coffee 1,180 118 100

Sugar 3,840 3,840 100

Vegetable oil 8,840 8,840 100

Source: Mufioz (2002), School of Public Health and Nutrition, Universidad Aut6noma de Nuevo
Le6n.
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Table 3. Weather Descriptive Statistics

Temperature

Annual mean (*C)

Cumulative-degree days

Above 30*C

Above 33*C

Above 35*C

Below 10'C

Below 7*C

Below 5*C

Mean

(1) -

18.7
(4.1)

11.9
(27.0)

1.0
(2.7)

0.0
(0.1)
27.7

(45.7)
5.0

(8.0)
1.6

(2.8)

Minimum

(2)

10.2

0.0

0.0

0.0

0.0

0.0

0.0

Maximum

(3)

26.2

129.2

19.5

1.2

326.7

57.0

13.9

0

0

Mean Minimum Maximum

(1) (2) (3)
Rainfall

Annual mean (cm)

Cumulative- centimeter days
Above 1

Above 2

Above 3

Below 0.1

Below 0.05

Below 0.01

2.2

(0.8)

15.4

(10.4)

3.5
(3.1)

0.9

(1.2)
21.5

(2.7)
10.0

(1.4)

1.8

(2.8)
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40;

C

-o

-d

0.5 3.9

0.0

0.0

0.0

15.6

6.9

1.1

35.1

12.0

4.5

29.1

13.8

2.6



Table 3., continued

Mean Minimum Maximum

(1) (2)

Annual extreme days*

Above 90th percentile

Above 95th percentile

Above 99th percentile

Below 10th percentile

Below 5th percentile

Below 1st percentile

46.1

(20.9)
28.4

(18.8)
9.0

(9.0)
30.5
(8.6)
16.0

(4.8)

3.8
(1.6)

(3)

9

2

0

14

7

0

82

60

26

69
b1O

44

11

Annual extreme days*

Above 90th percentile

Above 95th percentile

Above 99th percentile

Below the median'

Below 45th percentile1

Below 35th percentile1

Mean Minimum Maximum

Notes: *The number of extreme
tion) is above or below the n-th

temperature (rainfall) days is defined as annual count of days when the daily temperature (precipita-

percentile for the base period 1979-2010. Abnormally cold patterns are summations of negative differ-

ences between the mean daily temperature and the temperature base (threshold.) To avoid possible confusion, this table presents abso-

lute magnitudes. The same logic applies to the abnormally dry patterns. (1)Given that rainfall patterns are best described by a gamma

distribution, which is right-skewed and bounded at zero, a good approximation to "extreme drought" is the number of single-day rainfall

events below the 35th-50th percentile. For years 1998 and 1999, there are no observations below the first quartile for the base period.
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0

(1) (2) (3)

28.2
(9.7)
11.9
(6.7)

1.8
(1.7)
176.5

(47-1)
130.1
(74.6)

46.5
(66.5)

4

0

0

0

0

0

51

31

9

223

207

171

(1) (2)(1) (2)



Table 4. Orthogonality of Treatment to Household Characteristics

Variable P>jtj

Head characteristics

Elegible for Progresa 0.596
Female 0.684
Senior (65+ years) 0.908
Indigenous 0.873
Literate 0.899
Employed 0.358
Farmer 0.900
Has access to healthcare 0.434
Education

No education 0.903
Primary school 0.766
Secondary school 0.984
High school 0.313
University 0.284

Household characteristics

Size (adult equivalent) 0.191
Accumulated years of schooling 0.802
Men in reproductive age.(%) 0.790
Women in reproductive age (%) 0.120
Landless household 0.369
Hectares of land used last year 0.815
Health

At least one adult was sick last week 0.439
At least one child was sick last week 0.227
At least one child had diarrhea last week 0.749
At least one child had fever last week 0.273
At least one child had the flu last week 0.671
At least one child had a respiratory disease last week 0.571
Accumulated sick days last month 0.211

Log of income per adult equivalent 0.431
Log of food consumption per adult equivalent 0.000 ***

Log of non-food consumption per adult equivalent 0.177
Log of caloric intake per adult equivalent 0.000 *
Shocks experienced

Drought 0.569
Flood 0.465
Frost 0.693
Fire 0.516
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Table 4., continued

Variable P>jtj

Head characteristics

Shocks experienced

Plague 0.341

Earthquake 0.692

Hurricane 0.707

Vulnerability

Lost land 0.139

Lost harvest 0.525

Lost home 0.227

Lost tools 0.230

Lost cattle 0.266

A household member was hurt 0.538

A household member died 0.679

Risk-coping strategies

Sold cattle 0.685

Borrowed money 0.510

Worked more 0.258

Received help from family 0.715

Received help from the government 0.135

Sent children to work 0.121

Migrated 0.609

Within the same municipality 0.815

To another municipality within the same state 0.172

To another state 0.843

To the United States 0.827

Weather variables

Cumulative degree-days above 30*C 0.329

Cumulative degree-days above 33*C 0.310

Cumulative degree-days above 35*C 0.125

Cumulative degree-days below 10*C 0.929

Cumulative degree-days below 7*C 0.995

Cumulative degree-days below 50C 0.726

Cumulative millimeter-days above 10mm 0.199

Cumulative millimeter-days above 20mm 0.178

Cumulative millimeter-days above 30mm 0.430

Cumulative millimeter-days below 1mm 0.582

Cumulative millimeter-days below 0.5mm 0.580

Cumulative millimeter-days below 0.1mm 0.512
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Table 4., continued

Variable

Head characteristics

Weather variables

Days above the
Days above the

Days above the
Days below the

Days below the

Days below the

Days above the

Days above the

Days above the

Days below the

Days below the
Days below the

90th percentile of the temperature distribution
95th percentile of the temperature distribution

99th percentile of the temperature distribution
10th percentile of the temperature distribution
5th percentile of the temperature distribution
1st percentile of the temperature distribution

90th percentile of the rainfall distribution

95th percentile of the rainfall distribution

99th percentile of the rainfall distribution

50th percentile of the rainfall distribution

45th percentile of the rainfall distribution
35th percentile of the rainfall distribution

Note: OLS with Huber-White standard errors based on two survey rounds (October 1998 and No-
vember 1999.) Consumption and income deflated to October 1998 prices. P>I t is the p-value from
tests of randomization. Differences between treatment and control statistically significant at *10%,
**5% and ***1%.
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0.282
0.278
0.116
0.969
0.942

0.641

0.917
0.777
0.589
0.412

0.680
0.362



Table 5. Impact of Extreme Weather on Household Consumption, by Type of Household

Poor households Non-poor households Wald

(1) (2) (3) (4) p-value

Abnormal heat -0.022 * -0.017 * -0.014 ** -0.008 0.231

(0.004) (0.003) (0.006) (0.006)

Abnormal cold -0.019 * -0.007 ** -0.003 -0.001 0.003

(0.004) (0.004) (0.006) (0.006)

Abnormal rainfall -0.007 * -0.005 *** -0.004 ** -0.004 *** 0.012

(0.001) (0.001) (0.001) (0.001)

Abnormal drought -0.005 * -0.002 * -0.002 -0.003 ** 0.003

(0.001) (0.001) (0.001) (0.001)

Controls No Yes No Yes

Number of observations 30,292 26,107 2,554 2,291

Note: Huber-White standard errors in parentheses. * significant at 10%; ** significant at 5%; ***
significant at 1%. The test of equality of coefficients in columns 1 and 3 is a standard Wald test.
Controls include household demographic characteristics as well as characteristics of the head (see
text for details.)
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Table 6. Impact of Extreme Weather on Household Consumption, by Type of Consumption

Total consumption Food consumption Non-food consumption Wald test
(1) (2) (3) (4) (5) (6) p-value

Abnormal heat -0.022 *** -0.017 * -0.015 * -0.011 *** -0.045 * -0.036 *** 0.000
(0.004) (0.003) (0.004) (0.003) (0.006) (0.006)

Abnormal cold -0.019 *** -0.007 ** -0.016 * -0.007 * -0.030 * -0.010 * 0.015
(0.004) (0.004) (0.004) (0.004) (0.006) (0.006)

Abnormal rainfall -0.007 *** -0.005 *** -0.004 * -0.002 *** -0.015 *** -0.012 * 0.000
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Abnormal drought 0.005 * -0.002 * -0.003 *** -0.001 ** -0.011 *** -0.005 * 0.000
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Controls No Yes No Yes No Yes
Number of observations 30,292 26,107 30,253 26,075 29,911 25,809

Note: Huber-White standard errors in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%. The test of equality
of coefficients in columns 3 and 5 is a standard Wald test. Controls include household demographic characteristics as well as characteris-
tics of the head (see text for details.)
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Table 7. Impact of Extreme Weather on Food Consumption, by Constant. Pesos Spent and Caloric Consumption

Total consumption Food consumption expenses Caloric intake Wald test

(1) (2) (3) (4) (5) (6) p-value
Abnormal heat -0.022 * -0.017 * -0.015 * -0.011 *** -0.001 -0.006 * 0.032

(0.004) (0.003) (0.004) (0.003) (0.004) (0.004)

Abnormal cold -0.019 * -0.007 ** -0.016 * -0.007 * -0.019 *** -0.015 * 0.164

(0.004) (0.004) (0.004) (0.004) (0.003) (0.003)
Abnormal rainfall -0.007 * -0.005 *** -0.004 * -0.002 * -0.004 *** -0.003 * 0.540

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Abnormal drought 0.005 * -0.002 * -0.003 * -0.001 ** 0.000 0.002 *** 0.000

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Controls No Yes No Yes No Yes

Number of observations 30,292 26,107 30,253 26,075 30,264 26,085

Note: Huber-White standard errors in parentheses. * significant at 10%; **
of coefficients in columns 3 and 5 is a standard Wald test. Controls include

significant at 5%; *** significant at 1%. The test of equality
household demographic characteristics as well as characteris-

tics of the head (see text for details.) Food consumption expenses deflated to October 1998 prices.
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Table 8. Impact of Extreme Weather on Household Consumption and Treatment Effect, by Type of Consumption

Food consumption

(1) (2)

Non-food consumption

(3) (4)
Abnormal heat regression

Main effect

Treatment

Interaction with treatment

Abnormal cold regression

Main effect

Treatment

Interaction with treatment

-0.014

(0.007)
0.130

(0.025)
-0.007

(0.006)

-0.016
(0.005)

0.119
(0.027)

0.001

(0.007)

* -0.014

(0.006)
* 0.128

(0.020)

-0.003
(0.005)

* -0.005

(0.004)

* 0.114

(0.022)

-0.002

(0.006)

** -0.040

(0.009)
* 0.110

(0.047)
-0.007

(0.011)

-0.050

(0.008)
* 0.155

(0.050)
0.034

(0.010)

**

-0.029

(0.007)
0.094

(0.037)
-0.010

(0.009)

-0.026

(0.007)
* 0.129

(0.040)
* 0.029

(0.010)
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Wald test
p-value

0.000

**

0.000

(1)



Table 8., continued

Food consumption

(1) (2)

Non-food consumption

(3) (4)
Abnormal rainfall regression

Main effect

Treatment

Interaction with treatment

Abnormal drought regression

Main effect

Treatment

Interaction with treatment

Controls

Number of observations

-0.004

(0.001)
0.125

(0.032)
-0.001

(0.002)

-0.004

(0.001)
0.295

(0.136)
0.002

(0.001)
No

30,253

-0.002

(0.001)
* 0.128

(0.026)
-0.001

(0.001)

**

-0.002

(0.001)
0.293

(0.122)

0.002
(0.001)

Yes

26,075

-0.016
(0.002)

*** 0.079
(0.055)

0.002

(0.003)

* -0.013

(0.002)

* 0.515
(0.260)

0.004

(0.003)
No

29,911

Note: Huber-White standard errors in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%. The test of equality
of coefficients in columns 1 and 3 is a standard Wald test. Controls include household demographic characteristics as well as characteris-

tics of the head (see text for details.)
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Wald test
p-value

0.000

0.000

**

*

-0.013
(0.002)

0.058
(0.043)

0.002

(0.002)

-0.007
(0.002)

0.516
(0.226)

0.004
(0.002)

Yes

25,809

**

(1)



Table 9. Impact of Extreme Weather on Food Consumption and Treatment Effect, by Constant Pesos Spent and Caloric Consumption

Food consumption

(1) (2)
Caloric intake

(4)
Abnormal heat regression

Main effect

Treatment

Interaction with treatment

Abnormal cold regression

Main effect

Treatment

Interaction with treatment

-0.014

(0.007)
0.130

(0.025)
-0.007

(0.006)

-0.016
(0.005)

0.119
(0.027)

0.001
(0.007)

* -0.014

(0.006)
* 0.128

(0.020)

-0.003
(0.005)

* -0.005

(0.004)
* 0.114

(0.022)

-0.002

(0.006)

** -0.008

(0.007)
0.099

(0.019)
-0.004

(0.005)

-0.022
(0.004)

* 0.096

(0.021)

0.004

(0.006)

-0.007
(0.006)

* 0.093

(0.017)
-0.002

(0.004)

* -0.016
(0.004)

* 0.090
(0.018)

0.002

(0.006)
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Wald test
p-value

0.292

0.926

(3)



Table 9., continued

Food consumption

(1) (2)

Caloric intake

(3)
Abnormal rainfall regression

Main effect

Treatment

Interaction with treatment

Abnormal drought regression
Main effect

Treatment

Interaction with treatment

Controls

Number of observations

-0.004

(0.001)
0.125

(0.032)
-0.001

(0.002)

-0.004

(0.001)
0.295

(0.136)
0.002

(0.001)
No

30,253

-0.002

(0.001)
* 0.128

(0.026)
-0.001

(0.001)

**

-0.002

(0.001)
0.293

(0.122)

0.002

(0.001)
Yes

26,075

-0.004

(0.001)
* 0.083

(0.022)

0.000
(0.002)

* -0.001

(0.001)
* 0.324

(0.116)
0.002

(0.001)
No

30,264

-0.003
(0.001)

*** 0.082
(0.020)

0.000
(0.001)

0.000
(0.001)

* 0.302
(0.102)

** 0.002

(0.001)
Yes

26,085

Note: Huber-White standard errors in parentheses. * significant at 10%; ** significant at 5%; *** significant at 1%. The test of equality
of coefficients in columns 1 and 3 is a standard Wald test. Controls include household demographic characteristics as well as characteris-
tics of the head (see text for details.) Food consumption expenses deflated to October 1998 prices.
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(4)
Wald test

p-value

0.608

0.000

**

(1)



Table 10. Impact of Extreme Weather on Household Consumption and Treatment Effect, by Se-
lected Characteristics of the Household Head

All households

(1) (2)

Female

(3) (4)
Abnormal heat regression

Main effect

Treatment

Interaction with treatment

Abnormal cold regression

Main effect

Treatment

Interaction with treatment

Abnormal rainfall regression

Main effect

Treatment

Interaction with treatment

Abnormal drought regression

Main effect

Treatment

Interaction with treatment

Controls
Number of observations

-0.013
(0.007)

0.124

(0.027)
-0.014

(0.006)

-0.024

(0.005)
0.125

(0.030)
0.008

(0.007)

-0.007
(0.001)

0.111
(0.033)

0.000
(0.002)

-0.007
(0.001)

0.345

(0.148)

0.002

(0.001)
No

30,292

** -0.013
(0.005)

* 0.120

(0.020)

** -0.008
(0.004)

* -0.010

(0.004)

* 0.116
(0.022)

0.004

(0.006)

* -0.005

(0.001)
* 0.111

(0.025)
0.000

(0.001)

**

-0.004

(0.001)
0.343

(0.126)
0.002

(0.001)
Yes

26,107

** -0.021

(0.010)

* 0.074

(0.038)
* -0.009

(0.008)

** -0.025
(0.009)

* 0.081
(0.039)

0.012

(0.010)

* -0.003
(0.002)

* 0.085
(0.046)

-0.003
(0.003)

* -0.004

(0.002)

* 0.239
(0.248)

** 0.002

(0.002)

No

3,170

* -0.022

(0.010)
* 0.101

(0.033)
-0.004

(0.008)

**

*

**

-0.012

(0.008)
0.109

(0.037)
0.015

(0.010)

-0.001
(0.002)

0.121
(0.040)
-0.004

(0.003)

-0.003
(0.002)

0.396
(0.234)

-0.003
(0.002)

Yes

2,538
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Table 10., continued

Abnormal heat regression

Main effect

Treatment

Interaction with treatment

Abnormal cold regression

Main effect

Treatment

Interaction with treatment

Abnormal rainfall regression

Main effect

Treatment

Interaction with treatment

Abnormal drought regression

Main effect

Treatment

Interaction with treatment

Controls

Number of observations

-0.004

(0.008)
0.102

(0.032)
-0.013

(0.007)

-0.020

(0.006)
0.116

(0.034)

0.011
(0.009)

-0.007
(0.002)

0.082
(0.037)

0.001
(0.002)

-0.006
(0.001)

0.363
(0.182)

0.003
(0.002)

No

4,292

-0.006
(0.007)

* 0.086
(0.025)

* -0.001
(0.006)

* -0.005

(0.006)
* 0.099

(0.028)
0.014

(0.009)

* -0.004

(0.002)

** 0.068
(0.030)

0.001
(0.002)

* -0.003
(0.001)

** 0.344

(0.160)
0.003

(0.002)

Yes

3,791

**

**

**

**

*

-0.025
(0.009)

0.215
0.042

0.002

(0.007)

-0.039
(0.006)

0.156
(0.037)
-0.002

(0.011)

0.000
(0.002)

0.251
(0.071)
-0.005

(0.003)

-0.003
(0.003)

0.655
(0.347)

-0.005
(0.004)

No

10,512

*** -0.026
(0.008)

* 0.204

(0.040)

0.000
(0.006)

* -0.035
(0.006)

* 0.147

(0.036)
-0.004

(0.010)

-0.001
(0.002)

* 0.256
(0.066)
-0.006

(0.003)

*

-0.002

(0.003)
0.529

(0.350)
0.004

(0.004)

Yes

10,501
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Senior

(5) (6) (7)

Indigenous

(8)

**
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Table 10., continued

Illiterate

(9)
Abnormal heat regression

Main effect

Treatment

Interaction with treatment

Abnormal cold regression

Main effect

Treatment

Interaction with treatment

Abnormal rainfall regression

Main effect

Treatment

Interaction with treatment

Abnormal drought regression

Main effect

Treatment

Interaction with treatment

Controls

Number of observations

-0.014

(0.004)

0.119
(0.026)

-0.019
(0.006)

-0.019
(0.005)

0.111
(0.031)

0.002

(0.007)

-0.009
(0.001)

0.104

(0.027)
0.000

(0.002)

-0.007
(0.001)

0.298
(0.159)

0.002

(0.001)
No

17,500

(10)

* -0.014

(0.006)
* 0.120

(0.020)

* -0.010
(0.005)

* -0.007
(0.004)

* 0.105
(0.022)

-0.002

(0.006)

* -0.005

(0.001)
* 0.114

(0.023)
-0.001

(0.001)

*

-0.003
(0.001)

0.251
(0.128)

0.001
(0.001)

Yes

17,471

(11)

** -0.007
(0.010)

* 0.107
(0.034)

** -0.021

(0.009)

-0.018
(0.007)

* 0.112

(0.038)
0.004

(0.009)

* -0.005

(0.002)

* 0.110
(0.041)

-0.002

(0.003)

**

-0.005
(0.001)

0.342

(0.212)

0.002

(0.002)

No

3,902

Unemployed

(12)

-0.004

(0.009)
* 0.110

(0.030)
** -0.011

(0.008)

* -0.004

(0.006)
* 0.122

(0.033)
0.008

(0.009)

** -0.002

(0.002)

* 0.127
(0.034)
-0.002

(0.002)

-0.002
(0.002)

0.391
(0.197)

0.003
(0.002)

Yes

3,291
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Table 10., continued

Abnormal heat regression

Main effect

Treatment

Interaction with treatment

Abnormal cold regression

Main effect

Treatment

Interaction with treatment

Abnormal rainfall regression

Main effect

Treatment

Interaction with treatment

Abnormal drought regression

Main effect

Treatment

Interaction with treatment

Controls

Number of observations

-0.017
(0.006)

0.150
(0.026)
-0.013

(0.005)

-0.020

(0.005)
0.142

(0.029)
-0.004

(0.007)

-0.006
(0.001)

0.141

(0.033)
-0.001

(0.002)

-0.005
(0.001)

0.212

(0.158)
0.001

(0.001)
No

18,006

*** -0.017
(0.005)

* 0.141

(0.021)

** -0.008
(0.004)

* -0.008
(0.004)

* 0.125
(0.023)
-0.001

(0.007)

* -0.004

(0.001)
* 0.137

(0.027)
-0.001

(0.001)

* -0.002

(0.001)
0.203

(0.141)

0.001
(0.001)

Yes

15,797

-0.011

(0.006)
* 0.107

(0.032)
* -0.008

(0.004)

** -0.022

(0.005)
* 0.113

(0.034)

0.009
(0.007)

* -0.007
(0.001)

* 0.093
(0.035)

0.000
(0.002)

** -0.006
(0.001)

0.325
(0.185)

0.002

(0.002)

No

11,591

* -0.012

(0.006)
* 0.107

(0.024)

* -0.006
(0.005)

* -0.013
(0.005)

* 0.108
(0.027)

0.006
(0.007)

* -0.006
(0.001)

* 0.098
(0.027)

0.000
(0.002)

*

-0.004

(0.001)
0.364

(0.157)
0.003

(0.001)
Yes

9,713

** 0.016

0.001

0.076

0.399

**

*
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Farmer

(13) (14)

Landless

(15) (16)
Wald test
p-value

Note: Huber-White standard errors in parentheses. * significant at 10%; ** significant at 5%; ***
significant at 1%. The test of equality of coefficients is a standard Wald test. Controls include
household demographic characteristics as well as characteristics of the head (see text for details.)
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Table 11. Impact of Extreme Weather on Household Consumption and Treatment Effect, by
Weather Event

El Nino

(1)

La Nifia

(2) (3) (4)
Wald test

p-value
Abnormal heat regression

Main effect

Treatment

Interaction with treatment

Abnormal cold regression

Main effect

Treatment

Interaction with treatment

Abnormal rainfall regression

Main effect

Treatment

Interaction with treatment

Abnormal drought regression

Main effect

Treatment

Interaction with treatment

Controls

Number of observations

-0.012

(0.007)
0.124

(0.034)
-0.012

(0.005)

-0.028
(0.005)

0.115
(0.036)

0.008
(0.008)

-0.006
(0.002)

0.091
(0.045)

0.001
(0.002)

-0.007
(0.002)

0.517
(0.211)

-0.004

(0.002)

No

12,887

* -0.012

(0.006)
* 0.120

(0.029)
** -0.008

(0.004)

* -0.015

(0.004)

* 0.105
(0.031)

0.004

(0.007)

**

**

**

-0.004

(0.001)
0.084

(0.037)
0.001

(0.002)

-0.003
(0.001)

0.558
(0.190)

0.005
(0.002)

Yes

11,042

** -0.051
(0.051)

* 0.130
(0.030)

* -0.062
(0.041)

* -0.016
(0.006)

* 0.131
(0.032)

0.009
(0.009)

**

-0.008
(0.002)

0.124

(0.033)
-0.001

(0.002)

** -0.006
(0.001)

* 0.278
(0.161)

** 0.002

(0.001)
No

17,405

-0.061
(0.037)

* 0.129
(0.023)
-0.042

(0.028)

** -0.003
(0.005)

* 0.124

(0.024)

0.008
(0.008)

* -0.005

(0.001)
* 0.130

(0.026)
-0.001

(0.002)

*

-0.004

(0.001)
0.259

(0.138)
0.001

(0.001)
Yes

15,065

Note: Huber-White standard errors in parentheses. * significant at 10%; ** significant at 5%; ***
significant at 1%. The test of equality of coefficients in columns 1 and 3 is a standard Wald test.
Controls include household demographic characteristics as well as characteristics of the head (see
text for details.)
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0.195

0.118

0.554

0.912

*



Table 12. Impact of Extreme Weather on Welfare, by Type of Shock

Arable land loss Harvest loss Home loss

(1) (2) (3) (4) (5) (6)
Abnormal heat 0.001 0.001 0.018 * 0.014 * 0.000 0.000

(0.001) (0.001) (0.004) (0.004) (0.000) (0.000)
Abnormal cold 0.003 * 0.003 * 0.026 * 0.032 * -0.0004 ** -0.001 **

(0.001) (0.001) (0.003) (0.003) (0.000) (0.000)
Abnormal rainfall 0.001 * 0.001 * 0.004 * 0.004 * 0.0001 ** 0.000

(0.000) (0.000) (0.001) (0.000) (0.001) (0.000)
Abnormal drought 0.001 * 0.001 * 0.004 * 0.004 * 0.0003 *** 0.0004 *

(0.000) (0.000) (0.001) (0.001) (0.000) (0.000)
Controls No Yes No Yes No Yes
Number of observations 33,681 26,131 33,681 26,131 33,681 26,131
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Table 12., continued

Hardware loss Death Cattle death loss

(7) (8) (9) (10) (11) (12)
Abnormal heat 0.000 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.001) (0.000)

Abnormal cold 0.000 0.000 0.000 0.000 -0.003 * -0.004 *

(0.000) (0.000) (0.000) (0.000) (0.000) (0.001)

Abnormal rainfall 0.000 0.000 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Abnormal drought 0.0003 ** 0.0003 ** 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Controls No Yes No Yes No Yes

Number of observations 33,681 26,131 33,681 26,131 33,681 26,131

Note: Average marginal effects (OF/Ox) on the probability of a household experiencing a material or human life loss, conditional on be-
ing hit by a weather shock. * significant at 10%; ** significant at 5%; *** significant at 1%. Probit estimation with robust standard er-
rors. Each model includes a full set of time-varying household characteristics (see text for details.)
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Table 13. OLS Estimates of Double Log Calorie Intake and Calorie Price Regressions (Calorie Engel Curves)

Pooled

(1)
Panel A. OLS estimates

Log p.a.e. food consumption

Controls

Number of observations

R 2

Panel B. OLS estimates (full time effects,
Log p.a.e. food consumption

Controls
Number of observations

R 2

Panel C. OLS estimates (intercept shifts

Log p.a.e. food consumption

Controls

Number of observations

R 2

0.589
(0.021)

Yes

26075
0.502

Log caloric intake

Treatment

(2)

0.573
(0.028)

Yes

15549

0.509

non-linear case)
0.600 * 0.583

(0.020) (0.027)
Yes Yes

26075 15549

0.506 0.516

only, non-linear

0.538 *
(0.013)

Yes

26075

0.500

case)

0.550
(0.016)

Yes

15549

0.513

Log price per calorie

Control

(3)

0.618
0.028

Yes

10526
0.489

0.623

(0.028)
Yes

10526
0.491

0.520

(0.021)
Yes

10526
0.480

Pooled

(4)

0.411

(0.021)
Yes

26075
0.423

0.403

(0.020)
Yes

26075
0.431

0.462

(0.013)
Yes

26075
0.424

Treatment

(5)

0.427

(0.028)
Yes

15549
0.414

0.417

(0.027)
Yes

15549

0.423

0.449

(0.016)
Yes

15549

0.419

Control

(6)

0.382
(0.028)

Yes

10526
0.450

0.377

(0.028)
Yes

10526
0.452

0.480

(0.021)
Yes

10526
0.440

Note: p.a.e.=per adult equivalent. Huber-White standard errors in parentheses. * significant at 10%; ** significant at 5%; *** significant
at 1%. Additional regressors not reported include village fixed-effects, time fixed-effects and a vector of time-varying household charac-
teristics including household demographic characteristics and characteristics of the head.
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Table 14. Calibration of Marginal Welfare Gains of Program Recipience

Model Ac/c ROO1  C PC OR1  R

Abnormal heat 0.12 0.14 0.24 0.27 0.28 0.32

Abnormal cold 0.12 0.14 0.23 0.26 0.27 0.31

Abnormal rainfall 0.11 0.13 0.22 0.25 0.26 0.30

Abnormal drought 0.34 0.41 0.69 0.77 0.79 0.93

Note: Based on the coefficients of risk aversion estimated by Reinhart, Ogaki & Ostry [ROO]
(1996), Cho [C] (2005), Pavan & Colussi [PC] (2008), Ostry & Reinhart [OR] (1992) and Rossi [R]
(1988.) Ac/c is the estimated raw treatment effect on total consumption per adult equivalent from
model specifications including a vector of time-varying household demographic characteristics as
well as characteristics of the head. (1): Lower-bound estimates considered.
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Map A: Private insurance

Map B: Federal crop insurance

Figure 1. Municipalities with crop insurance in Mexico, by provider, 2010

Source: Agroasemex (2010)
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Figure 2. Total and insured losses caused by natural disasters in Mexico, 1980-2010
Source: Miinchener Riickversicherungs-Gesellschaft, Geo Risks Research, NatCatSERVICE.
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Figure 3. Climate vulnerability, by municipality
Source: Centro Nacional de Prevenci6n de Desastres (2012)
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Figure 4. Percentage of the population in extreme poverty, by municipality, 2010

Source: Consejo Nacional de Evaluaci6n de la Politica de Desarrollo Social (2011, 2013)

Note: An approximate 2 (3) dollar per person per day threshold for extreme poverty was the

standard adopted by the Mexican government for rural (urban) areas (in 2010 US prices).
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Control
Treatment

Figure 5. Recipient and non-recipient localities selected for the Progresa impact evaluation

Source: Teele, Kumar and Shroff (2009)
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A.

B.

C. -

Figure 6. A three-dimensional sea level and surface temperature profile, Equatorial Pacific Ocean

Notes: Sea surface height is represented by the bumps. Red is 30*C and blue is 8*C. Panel A illus-

trates sea temperature conditions before El Nino started (January 1997.) Panel B. shows how sea

temperature increases as a result of El Nifno episode of 1997 (November), while Panel C. presents

the cooling effect caused by the development of La Nifia in early1998 (March.) Source: NASA

Goddard Space Center, reproduced in NOAA (2013.)
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Map A. August 1997 300,000 households in 6,344 localities

Map B. August 1998: 1.6 million households in 40,711 localities

Map C. September 1999: 2.3 million households in 53,152 localities

Figure 7. Progresa coverage (proliferation of beneficiary localities), 1997-1999
Source: Levy (2006), Ministry of Social Development (1999)

276



0-

0

0
C

00

0
0
I-

I0
0-

-5 -10
Degree-days below 5*C

-15

- - - ...- -

-10 -20 -30
Millimiter-days below 0.5mm

-20

I',0

0

C
00

0
0
I-

'0
0

-------------

-40 -50 0 10 20 30
Millimeter-days above 30mm

40 50

Figure 8. Average marginal program effects ((OF/Ox) with 95% confidence intervals) on the probability of the household sending chil-

dren to work to cope with a weather shock, by type and intensity of shock. Probit estimation with robust standard errors. Each model

includes a full set of time-varying household characteristics (see text for details.)
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Figure 9. Average marginal program effects ((OF/9x) with 95% confidence intervals) on the probability of the household diversifying
crop production to cope with a weather shock, by type and intensity of shock. Probit estimation with robust standard errors. Each
model includes a full set of time-varying household characteristics (see text for details.)
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Figure 10. Average marginal program effects ((aF/dx) with 95% confidence intervals) on the probability of the household selling cat-

tle to cope with a weather shock, by type and intensity of shock. Probit estimation with robust standard errors. Each model includes a

full set of time-varying household characteristics (see text for details.)
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Figure 11. Average marginal program effects ((OF/Ox) with 95% confidence intervals) on the probability of the household adjusting
their labor supply (working more hours) to cope with a weather shock, by type and intensity of shock. Probit estimation with robuststandard errors. Each model includes a full set of time-varying household characteristics (see text for details.)
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Figure 12. Average marginal program effects ((OF/Ox) with 95% confidence intervals) on the probability of the household receiving

family aid to cope with a weather shock, by type and intensity of shock. Probit estimation with robust standard errors. Each model in-

cludes a full set of time-varying household characteristics (see text for details.)
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Figure 17. Calorie Engel curves, Progresa treatment and control groups
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Figure 18. Cost per calorie at constant prices, Progresa treatment and control groups
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Figure 19. Elasticities of calorie intake and calorie price for program recipient households
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