

Systems Engineering Advancement Research Initiative

Using Dynamic Multi-Attribute Tradespace Exploration to Develop Value Robust Systems

Dr. Adam M. Ross, MIT <u>adamross@mit.edu</u> Sikorsky IEEE CT AES Lunch May 24, 2007

Meeting Customer Needs

- Goál of design is to create value (profits, usefulness, voice of the customer, etc...)
- Requirements capture a mapping of needs to specifications to guide design

Deploying a "Valuable" System...

- Goal of design is to create value (profits, usefulness, voice of the customer, etc...)
- People change their minds…
- To continue to deliver value, systems must change as well...

What is System Success?

Success is defined across multiple perspectives and multiple time periods

Types of Changes

 Δ Designs (including technology)

 Δ Context (including operating environment, competition)

 Δ Constraints (including "laws")

 Δ Needs (including attributes)

Physical (e.g. nature) Human-made (e.g. policy, schedule) Resources (e.g. capital) Scoping (e.g. self-imposed)

 Δ DMs (including individuals and groups)

 Δ Resources (including dollars and time)

How can System Designers cope with these types of changes during design?

Aspects of Dynamic MATE

How can System Designers cope with these types of changes during design?

- System Success criteria
 - Expanding scope of system "value"
- Tradespace exploration
 - Understanding success possibilities across a large number of designs
- Change taxonomy
 - Specifying and identifying change types
- Tradespace networks
 - Analyzing changeability of designs
- System Epoch/Era analysis
 - Quantifying effects of changing contexts on system success

Tradespace Exploration

Assessment of cost and utility of large space of possible system designs

seari.mit.edu

© 2007 Massachusetts Institute of Technology

DER Exan			nple "Real Systems"			
Spacetug vs CX-OLEV			Single Sat Gase; New Utilities; 9930 archs			
500 - 400 - 300 - 200 - 100 - 0 0 0.2 U	0.4 0.6 0 tility (dimensionless)	 Storable Biprop Cryo Electric Nuclear Biprop GEO tug Cryo GEO tug Electric GEO tug Electric GEO tug CX-OLEV GEO tender LEO 1 tender LEO 2 tender LEO 4 tender LEO 4 tender A LEO 4A tender 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Streak (Oct 2005 launch	
	Electric Cruiser	CX-OLEV (2009 launch)	Wet Mass kg	325 - 450	420	
	(2002 stady)		Lifetime (yrs)	2.3 - 0.5	1	
Wet Mass kg	1405	1400	Orbit	300 -185 km @ 20°	321a-296p -> 200 @ 96	
Dry Mass kg	805	670*	LV	Minotaur	Minotaur	
Propellant kg	600	730*	Utility	0.61 - 0.55	0.57 - 0.54*	
Equipment kg	300	213*	Modified Utility**	0.56 - 0.50	0.59	
DV m/s	12000 - 16500***	15900**	Cost \$M	75 - 72	75***	
Utility	0.69	0.69	Instruments	Three (?)	Ion gauge and atomic	
	1				oxygen sensor	

Systems Engineering Advancement Research Initiative Tradespace Analysis: Selecting "best" designs

Tradespace Networks

Example: X-TOS Transition Rules

Rule	Description	Change agent origin	
R1: Plane Change	Increase/decrease inclination, decrease ∆V	Internal (Adaptable)	
R2: Apogee Burn	Increase/decrease apogee, decrease ΔV	Internal (Adaptable)	
R3: Perigee Burn	Increase/decrease perigee, decrease ∆V	Internal (Adaptable)	
R4: Plane Tug	Increase/decrease inclination, requires "tugable"	External (Flexible)	
R5: Apogee Tug	Increase/decrease apogee, requires "tugable"	External (Flexible)	
R6: Perigee Tug	Increase/decrease perigee, requires "tugable"	External (Flexible)	
R7: Space Refuel	Increase ∆V, requires "refuelable"	External (Flexible)	
R8: Add Sat	Change all orbit, ∆V	External (Flexible)	

Tradespace designs = nodes Applied transition rules = arcs

Transition rules are mechanisms to change one design into another The more outgoing arcs, the more potential change mechanisms

Systems Engineering Advancement Research Initiative Tradespace Networks: Changing designs over time

Filtered outdegree is a measure of the <u>apparent</u> <u>changeability</u> of a design

Ex: X-TOS Outdegree function

DV	2471	903	1687	2535	1909	3030	7156
Inclination	90	30	70	90	70	90	90
Apogee	460	460	460	460	1075	2000	770
Perigee	150	150	150	290	150	150	350
Com Arch	TDRSS	TDRSS	TDRSS	TDRSS	TDRSS	TDRSS	TDRSS
Delta V	1200	1200	1200	1200	1200	1200	1000
Prop Type	Chem	Chem	Chem	Chem	Elec	Elec	Chem
Pwr Type	Fuel Cell	Solar Array	Solar Array				
Ant Gain	Low	Low	Low	Low	Low	Low	Low
Data Life	0.51	0.51	0.51	10.05	0.52	0.61	11
Lat Div	180	60	140	180	140	180	180
Eq Time	5	11	6	5	2	2	5
Latency	2.27	2.27	2.27	2.30	2.42	2.67	2.40
Sample Alt	150	150	150	290	150	150	350
Cost (\$10M)	4.21	4.21	4.21	4.88	4.52	4.99	4.15

Pareto Set designs (903, 1687, 2535, 2471) are not the most changeable

Design 7156 becomes relatively more changeable as cost threshold increases

Outdegree functions reveal differential nature of apparent changeability

Tradespace Networks in the System Era

Pareto Tracing across Epochs

Systems Engineering Advancement Research Initiative

5

RI

Changeability Quantified as Filtered Outdegree

Temporal strategy can be developed across networked tradespace

seari.mit.edu

© 2007 Massachusetts Institute of Technology

Example System Timeline

Example system: Serviceable satellite

System timeline with "serviceability"-enabled paths allow value delivery

seari.mit.edu

Achieving Value Robustness

Time

Ο

0

Ο

S_{1,b}

Active

 $S_{1,e}S_{2,b}$

Epoch 1

State 1

DV₂=DV

Cost

Passive

Τ,

Epoch 2

State 2

0

O

000

0

Research suggests two strategies for "Value Robustness"

New Context Drivers

- External Constraints
- Design Technologies
- Value Expectations
- 1. Passive
 - Choose "clever" designs that remain high value
 - Quantifiable: Pareto Trace number

2. Active

- Choose changeable designs that can deliver high value when needed
- Quantifiable: Filtered Outdegree

Utility

0

Utility

Cost

 S_{2e}

Systems Engineering Advancement Research Initiative

Thank you for your attention! Any questions? adamross@mit.edu

For further details on topic please see:

Ross, Adam M., <u>Managing Unarticulated Value: Changeability in</u> <u>Multi-Attribute Tradespace Exploration</u>. Cambridge, MA: MIT. PhD in Engineering Systems. 2006.