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Mouse models for Huntington’s Disease (HD) and HD patients demonstrate motor and behavioral dysfunc-
tions, such as progressive loss of coordination and memory, and share similar transcriptional profiles and
striatal neuron atrophy. Clear differences between the mouse and human diseases include almost complete
striatal degeneration and rarity of intranuclear inclusions in HD, and the fact that mice expressing full-length
mutant huntingtin do not demonstrate a shortened life span characteritstic of HD. While no clinical interven-
tions tested in mouse models to date have delayed disease progression, the mouse models provide an
invaluable tool for both investigating the underlying pathogenic processes and developing new effective
therapies. Inherent differences between humans and mice must be considered in the search for efficacious
treatments for HD, but the striking similarities between human HD and mouse models support the view that
these models are a biologically relevant system to support the identification and testing of potential clinical
therapies.
Introduction
Huntington’s disease (HD) is a progressive, fatal neurodegener-

ative disorder characterized bymotor, cognitive, behavioral, and

psychological dysfunction. The cause of HD is an expansion

within a trinucleotide poly(CAG) tract in exon 1 of the huntingtin

(HTT) gene (The Huntington’s Disease Collaborative Research

Group, 1993). Age of onset is roughly inversely correlated with

the length of the CAG tract, which causes disease when 39

or more CAG repeats are present (Nørremølle et al., 1993).

Affecting approximately 1 in 10,000 people worldwide (Myers

et al., 1993), themost obvious pathology is progressive neurode-

generation, particularly within the striatum (caudate and puta-

men). The massive loss of neurons in this region, normally

responsible (among many things) for facilitation of volitional

movement, is believed to lead to the characteristic motor

dysfunctions of HD, such as uncontrolled limb and trunk move-

ments, difficulty maintaining gaze, and general lack of balance

and coordination (Bates et al., 2002). Neuronal loss or dysfunc-

tion also leads to cognitive problems, behavioral abnormalities,

and psychological dysfunction, some of which are reported

before motor abnormalities are noticeable. Importantly, some

patients present with a more rigid, Parkinsonian form of the

disease, typical when age of onset is under 20 (so called juvenile

onset cases). These children generally have large repeats, up to

120 for a 3-year-old patient (Cannella et al., 2004). The distinctive

features of juvenile HD cause many investigators to think of it as

a discrete subform of HD that may involve distinctive patholog-

ical processes.

Expanded poly(CAG) HTT leads to production of huntingtin

protein with an equally expanded polyglutamine (polyQ) stretch

near the N terminus. Despite a lack of consensus on the function

of wild-type huntingtin (wtHTT), it is well established through

studies of human tissue, cellular models, and animal models

that mutant polyQ huntingtin (mHTT) exerts a gain of toxic func-
tion through aberrant protein-protein interactions. Inclusions

containing mHTT, wtHTT, ubiquitin, and many cellular proteins

(Hoffner and Djian, 2002) are seen in patients and animal models.

These aggregates are not necessarily toxic, but they are

commonly observedwherevermHTT is expressed. That thesame

aggregatesandcellular toxicity observed in humansarealso seen

inmanymodels,withdrastically different timescales (fromdays in

tissue culture to decades in human HD), accentuates the impor-

tance of expression levels and protein context in cellular

pathology. This is particularly evident in thewide variety of pheno-

typic progression seen in themanymousemodels of HD,which is

the subject of this review.

A mutant HD gene is present in the body of an individual from

conception. The potential for beneficial therapeutic intervention

is therefore present throughout the life of an affected individual.

However, the physiological consequences of the presence of the

HD mutation differ as life progresses. A key issue in utilizing

a mouse model to test therapeutic intervention for HD is to

assess which stage of disease a model corresponds to at any

given point in time. Some strains display neuropathology from

birth and early mortality, while others progress so slowly

that visible phenotypes are not seen until the mice are very old,

and do not present with morbidity. The age of onset of a number

of frequently utilized behavioral and biological measures of

pathology for HD mouse models are summarized in Figure 1.

The first transgenic model of HD in mice was developed in

1996 (Mangiarini et al., 1996) by introducing a fragment of a juve-

nile HD patient’s HTT gene into the mouse genome. Although

these strains (R6/2 and R6/1) were initially designed to study

repeat expansion, these strains displayed motor and metabolic

symptoms, including tremors, lack of coordination (rotarod

balance difficulty), and excessive weight loss, leading to death

at a very early age (�12–14 weeks in the R6/2 line). The rapid and

reproducible progression of HD-like symptomology in R6/2 mice
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Figure 1. Timeline of Behavioral and Neuropathological Symptoms in Selected HD Model Mice
Strains are categorized by color: red indicates N-terminal transgenic, blue indicates full-length transgenic, and green indicates knockin.
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has made this line a mainstay of HD research. However, the limi-

tations of R6/2, the absence of a full-length mutant HTT protein

and the extremely rapid progression of disease led to the devel-

opment of quite a number of other animal models, each with their

own unique genetic and phenotypic characteristics summarized

in Table 1.

Mouse models of HD can be grouped into three categories,

based on the genetic basis of their creation. N-terminal trans-

genic animals are those carrying a small 50 portion of huntingtin,

either human or chimeric human/mouse, at random in their

genome. These animals tend to have the earliest onset of motor

symptoms and diminished life span (Carter et al., 1999; Hodges

et al., 2008; Mangiarini et al., 1996; Schilling et al., 1999, 2004),

thought to be because mHTT pathology is greatly enhanced by

(though maybe not dependent on [Gray et al., 2008]) its proteo-

lytic processing into N-terminal fragments (Graham et al., 2006;

Li et al., 2000); these mouse models are probably a shortcut to

this particularly toxic state.

Transgenic models expressing full-length mHTT also exist,

containing random insertions of the full-length human HTT

gene with an expanded CAG repeat in the form of either YAC

or BAC DNA (Gray et al., 2008; Hodgson et al., 1999; Seo

et al., 2008; Slow et al., 2003). One interesting observation of

the two most commonly used models in this category is the

unexpected age of onset difference (�6 months in YAC128
424 Neuron 69, February 10, 2011 ª2011 Elsevier Inc.
mice and as early as 8weeks in BACHDmice) despite the shorter

repeat length of BACHD mice (97 versus 128).

Several strains in which a pathological-length CAG repeat is

introduced into the mouse huntingtin (Htt) gene have also been

created (so called knockin strains) (Heng et al., 2007; Kennedy

et al., 2003; Levine et al., 1999; Lin et al., 2001; Menalled et al.,

2003, 2002; Shelbourne et al., 1999; Wheeler et al., 1999,

2002). The longest repeat models (140 and 150 repeats) have

motor symptom onset within 6 months, but the shorter models

have little or no observable motor dysfunction for the first year

of life, and no decrease in life span has been reported in any

knockin models. This may properly model the late adult onset

of human HD but does not replicate the impaired quality of life

and inevitable mortality.

Asmanymodels have been brought into use, significant differ-

ences among the models have emerged. It is important to note,

however, that many cross-model studies underline significant

pathological and molecular similarities in the different genetic

models in spite of their inevitable differences (Bennett et al.,

2007; Björkqvist et al., 2008; Ginés et al., 2006; Jenkins et al.,

2005; Kuhn et al., 2007; Luthi-Carter et al., 2002; Menalled

et al., 2000; Southwell et al., 2009; Strand et al., 2007; Walker

et al., 2008; Woodman et al., 2007). In this review we have

focused on specific pathological aspects of HD to compare

and contrast models.



Table 1. Commonly Used Mouse Models of HD

Strain

Name

Transgenic

or Knockin Gene Characteristics Promoter

Repeat

Length

Motor

Symptom

Onset Lifespan

Background

Strain(s) References

R6/2 Transgenic

fragment

Exon 1 of human

HTT gene

1 kb of

Human HTT

�150 6 weeks 10–13 wks C57BL/6xCBA Mangiarini et al., 1996;

Carter et al., 1999

R6/1 Transgenic

fragment

Exon 1 of human

HTT gene

1 kb of

Human HTT

116 18 weeks 32–40 wks C57BL/6xCBA

or C57BL/6

Mangiarini et al., 1996;

Hodges et al., 2008

N171-82Q Transgenic

fragment

First 171 AA of

human HTT (exons 1,

2, part of 3)

Prnp 82 3 months 16–22 wks C57BL/6xC3H/He Schilling et al., 1999;

Schilling et al., 2004

Tg100 Transgenic

fragment

First �3 kb of

human HTT cDNA

Rat NSE 100 3 months

(nonspecific)

Normal C57BL/6xSJL Laforet et al., 2001

HD94 Transgenic

fragment

Chimeric human/

mouse HTT exon 1

TetO + tTA 94 4–8 weeks

(clasping)

Normal C57BL/6xCBA Yamamoto et al., 2000

YAC72 Transgenic

full-length

Full length

human HTT gene

Human HTT 72 16 months Normal FVB/N Hodgson et al., 1999;

Seo et al., 2008

YAC128 Transgenic

full-length

Full length

human HTT gene

Human HTT 120 6 months Normal FVB/N Slow et al., 2003

BACHD Transgenic

full-length

Full length

human HTT gene

(floxed exon 1)

Human HTT 97 (mixed) 2 months Normal FVB/N Gray et al., 2008

HdhQ72,

Q80

Knockin Endogenous murine

Htt gene, expanded

CAG inserted

Mouse Htt 72,80 12 months Normal Mixed 129Sv,

C57BL/6

Shelbourne et al., 1999;

Kennedy et al., 2003

HdhQ111 Knockin Endogenous murine

Htt gene, chimeric

human/mouse exon 1

Mouse Htt 109 24 months

(gait)

Normal Mixed 129Sv,

CD1

Wheeler et al., 1999;

Wheeler et al., 2002

HdhQ94 Knockin Endogenous murine

Htt gene, chimeric

human/mouse exon 1

Mouse Htt 94 2 months

(rearing)

Normal Mixed 129Sv,

C57BL/6

Levine et al., 1999;

Menalled et al., 2002

HdhQ140 Knockin Endogenous murine

Htt gene, chimeric

human/mouse exon 1

Mouse Htt 140 4 months Normal Mixed 129Sv,

C57BL/6

Menalled et al., 2003;

Hickey et al., 2008

HdhQ150 Knockin Endogenous murine

Htt gene, expanded

CAG inserted

Mouse Htt 150 100 weeks Normal Mixed 129Ola,

C57BL/6

Lin et al., 2001;

Heng et al., 2007
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Behavioral Symptoms
HD in patients is characterized by motor, cognitive, and behav-

ioral symptoms, and assays testing these broad categories are

used to measure progression of pathology in HD mice. Motor

phenotypes have been tested in a number of HD model mice,

including limb clasping upon tail suspension, basal activity level,

gait abnormalities, balance beam traversing time, swimming

speed, suspended horizontal beam turning, and latency to

remain on a fixed-speed or accelerating rotarod. The rotarod,

in particular, has proven to be a robust quantitative measure-

ment of balance and coordination deficits for which nearly every

HD model mouse has demonstrated a deficiency. N-terminal

transgenic mice consistently display an early onset of severe

motor symptoms. R6/2 mice swim poorly by 5 weeks of age

and show beam-walking and rotarod deficiencies by 6 weeks,

both of which progressively worsen with age (Carter et al.,

1999). R6/1 mice experience clear rotarod deficiency at 18

weeks (Hodges et al., 2008) with an earlier (13 week) onset of

failure to turn around on a suspended horizontal rod (van Dellen
et al., 2000), and N171-82Q mice display a subtle but progres-

sive rotarod phenotype at 3 months (Schilling et al., 1999).

Full-length transgenic models display delayed motor symp-

toms compared to N-terminal transgenics; YAC72 mice do not

display a significant rotarod phenotype until 16 months (Seo

et al., 2008), while YAC128 mice decline starting at 6–7 months

(Slow et al., 2003; Van Raamsdonk et al., 2005c). BACHD trans-

genics do show a significant reduction in rotarod latency as early

as 4weeks of age, but they do not precipitously decline in perfor-

mance until 28 weeks; this is in contrast to R6/2 rotarod perfor-

mance, which rapidly declines once a difference is measured

(Menalled et al., 2009).

Knockin mice do not always display the characteristic motor

phenotype seen in transgenic models, despite some strains

carrying as many CAG repeats as R6/2 mice (�150) and having

twice the gene dose as most transgenic strains (behavioral

experiments carried out in knockin mice typically use homozy-

gotes). This could reflect differences in chromosomal context,

transgene expression, the chimeric nature of knockinHtt inserts,
Neuron 69, February 10, 2011 ª2011 Elsevier Inc. 425



Neuron

Review
or strain background. HdhQ140 rotarod latency appears at

4 months at 30 rpm on a fixed-speed rotarod (Hickey et al.,

2008), but another group reported no accelerating rotarod

phenotype through 6 months (Dorner et al., 2007), while rotarod

deficits are not seen in HdhQ92, HdhQ111, and HdhQ150 mice

until about 2 years of age (Heng et al., 2007; Menalled et al.,

2009; Trueman et al., 2009).

Cognitive phenotypes can again be measured in many ways,

but tasks based on spatial learning and memory such as the

Morris water maze or T maze (swimming or elevated) have

been used to reveal deficits in initial task learning and relearning

upon parameter changes. Four- to five-week-old R6/2 mice

learn the Morris water maze as well as wild-types when the

platform is visible but display spatial memory deficits when the

platform is hidden, and cannot relearn upon platform movement

as well as wild-type mice. Two-choice swim testing revealed an

earlier deficit in task reversal (6.5 weeks) than for initial visual

learning of the task (10-11 weeks) (Lione et al., 1999). Initial visual

learning deficiency of the two-choice swim test was also found in

YAC128 mice (Van Raamsdonk et al., 2005c), but HdhQ150

knockins displayed no learning deficits on the Morris water

maze (Heng et al., 2007).

Cognitive tests are challenging to standardize as environ-

mental conditions and spatial cues are difficult to replicate

from lab to lab and can influence animals’ performance in behav-

ioral tests. Despite these challenges, these consistent observa-

tions from many different labs demonstrating a clear effect on

cognitive performance in HD model mice suggests that the

cognitive decline commonly observed in HD patients is well rep-

resented by HD model mice.

Neuropathology
Human neuropathology is characterized by a severe loss of stria-

tal volume (in particular the caudate nucleus). Medium spiny

neurons, but not interneurons, are lost, and reactive gliosis is

apparent (Sharp and Ross, 1996). Cortical degeneration is also

prominent in late stages. HTT inclusions in patients are only

found in a small fraction of cells (Gourfinkel-An et al., 1998),

though they are visible in almost all HD patient brains with a clin-

ical grade of at least 2 (Herndon et al., 2009). Within HD model

mice, the progressive neuropathology is unique for each strain,

but they share some commonalities.

N-terminal transgene strains display neuropathology at or

prior to symptom onset. In contrast to patients, neuron loss is

somewhat minimal, but R6/2 brains decrease in weight as

much as 20% with enlargement of the lateral ventricles (Mangi-

arini et al., 1996). They demonstrate neuronal intranuclear inclu-

sions (NIIs) as early as at birth (Stack et al., 2005), though NIIs

are typically reported in this strain around 3–4.5 weeks (Davies

et al., 1997; Meade et al., 2002; Morton et al., 2000), significantly

prior to onset of easily observed symptoms. Inclusions were

found in the cortex, striatum, cerebellum, spinal cord, and hippo-

campus, and progressively increase in prevalence and size

(Meade et al., 2002). Despite this, chimera studies suggest that

medium spiny neurons (MSNs) bearing large inclusions can

survive for almost a year (Reiner et al., 2007) when surrounded

by wild-type cells. R6/2 MSN dendritic diameters and spine

density also decrease with age (Klapstein et al., 2001).
426 Neuron 69, February 10, 2011 ª2011 Elsevier Inc.
R6/1 mice share most of the R6/2 pathology but at a later age.

NIIs appear by 9 weeks (Naver et al., 2003), and R6/1 mice also

show minimal gliosis (Yu et al., 2003) and similar dendritic spine

atrophy by 8 months (Spires et al., 2004). Apoptotic and necrotic

cells are rarely seen in the striatum of R6/2 and R6/1 mice,

despite significant atrophy and ventricular enlargement; instead,

electron micrographs contain so-called dark neurons, displaying

condensation of the cytoplasm and nucleus without the chro-

matin fragmentation and nuclear blebbing characteristic of

apoptosis (Yu et al., 2003). In contrast, 3-month-old N171-82Q

mice do demonstrate cortical and striatal apoptotic neurons,

with reactive gliosis by 4 months. Note that in old (22–30 week)

R6/2 chimeras, gliosis is apparent in regions densely populated

in transgenic neurons (Reiner et al., 2007), and particularly old

R6/2 animals (17 weeks) show astrocytes with processes envel-

oping degenerating neurons (Turmaine et al., 2000). Therefore,

the signals necessary to develop gliosis in R6/2 mice may be

present, but the mice may die before glial recruitment and

activation. N171-82Q mice also presented with striatal degener-

ation and ventricular enlargement by 17 weeks (Gardian et al.,

2005) and NIIs in many brain regions (cortex, hippocampus,

cerebellum, and striatum among others) by late endstage of

6.5 months.

NIIs are not seen until far after symptom onset in full-length

transgenic HD lines. YAC128 mice display behavioral symptoms

at 12 months, and striatal neuron loss of �15% is seen by this

time (Slow et al., 2003) along with increased intranuclear HTT

staining of certain brain structures (Van Raamsdonk et al.,

2005a). However, NIIs did not show up until 18 months of age

and only populated �30% of striatal neurons and �5% of

cortical neurons. NIIs were absent in the YAC128 hippocampus,

a site of NII staining in endstage R6/20s (Morton et al., 2000). In

the other distinct full-length transgenic strain, BACHD mice

also display atrophy of the cortex and striatum by as much as

30% at 12 months (Gray et al., 2008), with 14% of striatal

neurons with the aforementioned dark morphology. Interestingly

and as opposed to R6mice, inclusions (over 90%) were extranu-

clear and were more common in the cortex than striatum,

a feature reminiscent of adult onset HD.

R6/2 chimaeras suggest that inclusions themselves may be

neither toxic nor markers of cells about to die, and a strain arising

with a spontaneous mutation in the YAC128 transgene [termed

Shortstop (Ss) for its early termination] provides further evidence

to this end (Slow et al., 2005). The mutation truncated the trans-

gene after exon 2, providing a product with 128 glutamines and

an expected and observed protein size similar to that encoded

by the R6/2 transgene. NIIs are particularly common (90% of

striatal, cortical, and hippocampal cells) and appear earlier in

Ss mice versus YAC128s; however, Ss mice had no obvious

phenotype at all ages examined. Why this strain is free from

the early onset behavioral symptoms one would expect in what

is essentially an N-terminal transgene HD model is still under

investigation.

Knockin mouse neuropathology, as with their symptoms,

usually occurs very late in life and is minor in comparison to

transgenic strains. HdhQ72-80 mice demonstrate loss of brain

weight by 16 months (Shelbourne et al., 1999), while NIIs are

primarily seen in striatal MSNs. Knockins with 94 repeats
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demonstrate striatal NIIs by 18 months (Menalled et al., 2002),

while HdhQ111 mice show NII appearance at an earlier age

(10 months), and mHtt nuclear accumulation is evident at

a very early (6 weeks) age (Wheeler et al., 2000). HdhQ150

knockins lose as much as 40% of striatal volume and neurons

by 23 months, but significant gliosis and NIIs appear by 10–14

months (Heng et al., 2007; Lin et al., 2001; Tallaksen-Greene

et al., 2005; Yu et al., 2003). Degenerating neurons are not

apoptotic in this strain, though occasional dark neurons are

encountered. Knockin mice with 140 CAG repeats display rela-

tively early onset striatal NIIs and neuropil aggregates (4 months)

becoming progressively stronger in other brain regions aswell by

6 months (Menalled et al., 2003). These data do not imply that

knockin brains only present with abnormality in old age, as

HdhQ111 embryos demonstrate impaired neurogenesis as early

as embryonic day 13.5 (Molero et al., 2009).

Protein context clearly influences neuropathology and symp-

toms in HD, as other polyglutamine disorders such as SBMA,

DRPLA, and the various spinocerebellar ataxias (reviewed in

Yamada et al., 2008) produce distinct vulnerable neuronal pop-

ulations and motor symptoms. Posttranslational modifications

influence progression, as ablation of caspase-6 cleavage sites

within the YAC transgene yields a mouse that demonstrates no

behavioral symptoms or striatal atrophy along with a delay in

mHTT translocation to the nucleus (Graham et al., 2006). Also,

while only 17 residues lie N-terminal to the polyQ repeat in

human HTT, these play a role in neuropathology; phosphomi-

metic mutations of serines 13 and 16 prevent aggregation and

symptom onset in parallel BACHD lines (Gu et al., 2009).

While inclusions are a historic histological hallmark of HD,

evidence continues to mount that their presence does not corre-

late with toxicity, as seen in chimaeric R6/2 or in Ss mice. The

theory that inclusions represent a sequestration site for mHTT,

while smaller oligomers mediate toxicity, is consistent with

neuropathological data in mice but is hard to prove with causa-

tive data. It represents an intriguing therapeutic option though,

that perhaps altering aggregation kinetics by accelerating mac-

roaggregation or reducing oligomerization would slow toxicity.

Cell Autonomous versus Nonautonomous Pathology
Neurodegeneration in HD affects multiple brain regions, but

striatal degeneration has been the focus of much of the research

field for two reasons: the massive loss of neurons suggests

a particular vulnerability of striatal MSNs and, more specifically,

the characteristic motor phenotype is classically attributed to the

early loss of one of two nearly identical arms of the corticostriatal

loop, the indirect (striatopalladial) pathway. Nevertheless, recent

research suggests that multiple cell types in the brain contribute

to pathology. Driving an expanded poly(CAG) HTT fragment in

glial (GFAP+) cells also induces many features in common with

other mouse models of HD (clasping, failure to keep on weight,

rotarod phenotype, and premature death), albeit at a later time

than is common for models expressing N-terminal transgenes

in neurons (Bradford et al., 2009). This is interesting when one

considers the stark phenotype of the N171-82Q mice, whose

N-terminal transgene is driven primarily in neurons by the prion

promoter (Schilling et al., 1999). However, a conditional model

of HD suggests that expression of mutant HTT in multiple cell
types is required for motor symptoms. A lox-STOP-lox poly

(CAG) HTT exon 1 strain mated to Nestin-Cre mice (pan-

neuronal expression) induced a behavioral phenotype at

6 months of age, but mating it to Emx1-Cre (cortical pyramidal

cell expression) (Gu et al., 2005) or Dlx5/6-Cre mice (striatal

MSN expression) produced EM48+ aggregates in the expected

brain regions but no observed motor phenotype; the animal’s

short life spanmay limit phenotypic progression in thesemodels.

Taken as a whole, we can see that mutant HTT can cause neuro-

pathology (aggregate formation at the least) in nearly every

neuronal or glial cell in which it is expressed, and while MSN

expression plays a large role, cells other than MSNs can

contribute tomanifest disease in mice. This has particular impor-

tance from a therapeutic perspective, as it suggests that drugs

that by default cannot affect neurons (e.g., the target enzyme

is not expressed in neurons) should not a priori be set aside.

Excitotoxicity
An important and unanswered question in the HD field is what

mediates the specific vulnerability of striatal MSNs, leaving stria-

tal interneurons, glia, and other brain regions less damaged. The

observation that kainic acid (KA), a structural analog of the excit-

atory neurotransmitter glutamate, produced striatal degenera-

tion reminiscent of HD (Coyle and Schwarcz, 1976) while sparing

dopaminergic projections suggested overactivation of postsyn-

aptic glutamate receptors damages MSNs. Another glutamate

analog, quinolinic acid (QA), was later tested (Beal et al., 1991,

1986) and produced a similar lesion as KA, but spared cholin-

ergic interneurons, making it a particularly similar animal model

for HD. These experiments brought forward the excitotoxicity

hypothesis, that MSNs in HD are sensitive to overactivation of

glutamate receptors (specifically NMDA receptors) resulting in

excessive Ca2+ and other ionic influx and selective death.

Excitotoxicity was later assayed in genetic HDmouse models.

R6/1 and R6/2 mice injected presymptomatically (18 weeks and

6 weeks, respectively) displayed marked resistance to excito-

toxic lesions compared to wild-type littermates (Hansson et al.,

1999); this resistance was progressive with age. N171-82Q

mice displayed resistance to intrastriatal QA administered at

15 weeks (Jarabek et al., 2004), and asymptomatic shortstop

mice are also QA resistant (Slow et al., 2005), but this phenotype

is not ubiquitous among the N-terminal transgene strains.

TgHD100 mice, which express the N-terminal 1/3 of HTT with

100CAGs at about 30%endogenous levels, display no alteration

of QA lesion size (Petersén et al., 2002). Older R6mice have five-

fold higher basal levels of Ca2+, suggesting that resistance might

be the result of compensatory mechanisms (Hansson et al.,

2001). Modest protection from mHTT is observed upon decorti-

cation or administration of glutamate release inhibitors, gluta-

mate transporter upregulators, mGluR5 antagonists, and

mGluR2/3 agonists (Miller et al., 2008; Schiefer et al., 2002;

Schiefer et al., 2004; Stack et al., 2007). YAC mice display early

QA sensitivity but a progressive loss of sensitivity, becoming

resistance toQA in 10month YAC128mice (Graham et al., 2009).

In at least four HD mouse models, there is consistent resis-

tance to excitotoxic stress, either presymptomatic (R6/1, R6/2,

and N171-82Q) or after symptom onset (YAC128). The nature

of the resistance phenotype is still under investigation but may
Neuron 69, February 10, 2011 ª2011 Elsevier Inc. 427
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be mediated by adjustments to higher basal Ca2+ levels (Hans-

son et al., 2001) combined with decreases in dendritic spine

density and length (Klapstein et al., 2001; Spires et al., 2004).

All told, we see that MSNs are particularly vulnerable to exces-

sive Ca2+ influx, but that, over time, the neurons compensate

for this to a certain extent. However, even the loss of normal glu-

tamatergic afferents increases neuronal survival, suggesting that

despite tolerance to acute excitotoxic insult, corticostriatal

glutamate signaling still contributes to neuropathology in HD.

Mitochondria and Energy Imbalance
Neurons, requiring very high metabolic ATP synthesis for main-

tenance of membrane polarization, are sensitive to perturbations

of mitochondrial activity. Rodent MSNs seem particularly sensi-

tive. Chronic systemic administration of a low dose of succinate

dehydrogenase inhibitor 3-nitropropionate (3-NP) in rats induced

a massive loss of MSNs but relative sparing of interneurons and

dopaminergic afferents (Beal et al., 1993). The toxicity of 3-NP in

rats is significantly ameliorated by dietary creatine supplements

(Matthews et al., 1998), a compound that also improved survival,

rotarod latency, weight, and neuronal atrophy in R6/2 (Ferrante

et al., 2000) and N171-82Q mice (Andreassen et al., 2001).

R6/2, HdhQ92, and HdhQ111 striatal mitochondria become

progressively desensitized to Ca2+ depolarization over time by

3, 12, and 3 months of age, respectively (Brustovetsky et al.,

2005). Total forebrain mitochondria also show increase in

Ca2+-buffering capacity in 12 week R6/2 and 12 month

YAC128 mice prior to permeabilization, though no difference

was seen in 16 week HdhQ150 mice (Oliveira et al., 2007) at an

age when subtle gait abnormalities are visible (Lin et al., 2001).

These observationsmay be indicative of progressive compensa-

tion to heightened baseline Ca2+ levels in agedHDmouse striatal

neurons, perhaps also mediating QA resistance. Mitochondrial

biogenesis deficiencies may be a contributing factor, as PGC-

1a, a positive regulator of mitochondrial biogenesis, is reduced

in both human HD samples and 12 month HdhQ140 striatal

MSNs (but is elevated in interneurons) (Cui et al., 2006). Distur-

bances of mitochondria in HD are perhaps not surprising, given

neuronal ATP requirements, and the data demonstrate that

mHTT can perturb mitochondrial calcium sensitivity.

The hypersensitivity of MSNs to a mitochondrial poison,

combined with the mouse mitochondrial perturbations and

a general metabolic deficit in HD patients, strongly suggest

that both CNS and peripheral symptoms of HD are influenced

by altered mitochondrial function.

Electrophysiology
Many motor and behavioral symptoms in HD arise from the

massive loss of MSNs, and the motor symptoms that acute

3-NP and QA toxicity produce are reminiscent of advanced

HD. However, many mouse models of HD demonstrate almost

no neuronal death. That neurons can be intact but still clearly

malfunctioning, combined with the cognitive and memory defi-

cits seen in most patients, suggests that synaptic abnormalities

may be significant in HD pathology.

Disturbances in long-term potentiation (LTP) and long-term

depression (LTD) are presented as evidence of a synaptic plas-

ticity dysfunction, and such abnormal responses to LTP and
428 Neuron 69, February 10, 2011 ª2011 Elsevier Inc.
LTD are seen in almost all mouse HD models. Asymptomatic

heterozygous HdhQ72-80 mice displayed impaired hippo-

campal LTP between 8 and 14 months of age (Usdin et al.,

1999), as did YAC46 and YAC72 by 6 months (Hodgson

et al., 1999); R6/2 averaged from 5 weeks to endstage (Murphy

et al., 2000). HdhQ92 and HdhQ111 displayed impairment at 2

months old and 4–6 months old, respectively, and HdhQ140

mice at only 8 weeks old (Simmons et al., 2009). LTD was also

abnormal in R6/2 s (Murphy et al., 2000) and R6/1 s (Cummings

et al., 2007; Cummings et al., 2006). LTP or LTD deficits have not

been reported in BACHD mice, but reduction in high-amplitude

mEPSCs of MSNs at 6 months (Gray et al., 2008), as well as

cortical synaptic alterations at the same age (Spampanato

et al., 2008) demonstrate somecorticostriatal circuitry impairment

in this strain as well. As impaired performance at cognitive tasks

such as the Morris water maze or T maze is seen in R6/2 s (Lione

et al., 1999) and YAC128 (Van Raamsdonk et al., 2005c) animals,

aswell as somatosensory associativememoryproblems inR6/1 s

(Cybulska-Klosowicz et al., 2004), the LTP and LTD impairments

probably represent behaviorally relevant plasticity deficits.

Because these phenotypes exist in mice that recapitulate many

HD patholgic features but without massive neuronal loss, these

studies suggest that in spite of the massive loss of neurons in

HD, it is likely that defects within existing neuronal circuits

contribute to early behavioral symptoms.

CAG Expansion
The CAG repeats within human HD and mouse HD models are

prone to mutation, both in the germline and in somatic tissue.

Germline expansions are more common in males (Wheeler

et al., 2007), correlating with baseline mutant repeat length,

and are thought to occur during mitosis, based on the very

high percentage of sperm found with mutated alleles (averaging

over 80%) (Leeflang et al., 1999).

R6/2 mice are notoriously prone to intergenerational CAG

repeat expansion (Morton et al., 2009). This has prompted

many labs studying this strain to adopt a selective breeding

strategy using only breeders with the desired number of repeats.

R6/1 mice are almost as prone to expansions as R6/2 s (Mangi-

arini et al., 1997), but contractions are also seen, notably an R6/1

substrain with 89 CAG repeats that demonstrates a later onset of

neuropathology andmotor symptoms than standard R6/1 s (Vat-

savayai et al., 2007). Interestingly, in spite of the fact that CAG

repeat length is the strongest correlate for age of onset in HD,

R6/2 substrains carrying anywhere from 150 to over 400 repeats

have demonstrated that in this transgene and background,

higher CAG lengths strongly correlate with a later age of onset

(Morton et al., 2009), perhaps because of changes in mHTT

subcellular localization. Knockin mice also demonstrate inter-

generational CAG repeat-length instability, with more mutations

seen in mice with higher repeat lengths (HdhQ92, HdhQ111) and

higher rates in males (Ishiguro et al., 2001; Shelbourne et al.,

1999; Wheeler et al., 1999). We are not aware of germline insta-

bility in YAC HD model mice, but BACHD mice do not expand

because of the alternating CAA-CAG repeats of the transgene

(Gray et al., 2008).

Somatic poly(CAG) instability is also observed in most HD

model mice; that BACHD mice display symptoms despite the
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absence of CAG instability demonstrates that somatic expan-

sions are not required for neuropathology. However, knockins

(HdhQ111) lacking DNA mismatch repair enzyme Msh2 had de-

layed intranuclear mHtt accumulation with absence of somatic

CAG repeat expansion (Wheeler et al., 2003). Msh2 knockout

R6/1 mice also lacked somatic expansion (Manley et al., 1999).

HdhQ72-80 knockins also display prominent striatal, cortical,

and cerebellar expansions, and HdhQ150 animals show somatic

expansions as early as at 4 months of age. (Kennedy et al., 2003;

Kennedy and Shelbourne, 2000).

The phenotype of BACHD mice clearly demonstrates that

somatic CAG expansion is unlikely to be a major driving force

in early disease onset. A possible propensity to cancer that could

arise from reducing the activity of mismatch repair proteins also

demands caution in exploring this specific pathway for HD

therapy. Nevertheless, the mouse Msh2 ablation studies and

correlation of expansions to patient samples demonstrate that

somatic expansion may contribute to HD.

Transcriptional Dysregulation
Abnormal interactions between mHTT and transcription factors

may play a prominent role in neuropathology, and, as they are

expected to be quite pleiotropic, it suggests both an intriguing

explanation for the wide-ranging systems disrupted in HD

neurons as well as a promising target for therapy. The reduction

of neurotransmitter receptors in the HD striatum (Glass et al.,

2000; Pavese et al., 2003; Weeks et al., 1996) is one of the

earliest observed symptoms, and mHTT is known to interact

with or sequester numerous transcription factors (Boutell et al.,

1999; Dunah et al., 2002; Huang et al., 1998; Nucifora et al.,

2001; Steffan et al., 2000). The advent of more advanced

transcriptional profiling in the last 10 years along with a bevy of

mouse models of HD have provided ample opportunity for

assaying this dysregulation and attempting therapies.

Microarray transcriptional profiles were compiled for R6/2

mice both before (6 weeks) and after (12 weeks) onset of overt

motor symptoms. Approximately 1.5% of transcripts displayed

altered levels at each age, with a majority (75%) displaying

decreased expression (Luthi-Carter et al., 2000). Many of these

transcriptional changes were verified in N171-82Q mice though

they were not shared by YAC72 mice (Chan et al., 2002). Further

analysis from this group demonstrated that 12-week-old R6/2,

16-week-old N171-82Q, and 12-month-old animals modeling

DRPLA (a disorder resulting from polyglutamine expansion in

the Atrophin-1 gene) all show significant overlap of cerebellar

profiles (Luthi-Carter et al., 2002). That cerebellar tissue and

also laser-capture microdissected interneurons (Zucker et al.,

2005) of R6/2 mice demonstrate transcriptional dysregulation

suggests that this phenomenon is not unique to the cells most

vulnerable to degeneration, nor are inclusion-bearing cells

more prone to transcriptionally altered neurotransmitter receptor

levels (Sadri-Vakili et al., 2006). What has been particularly

striking is the significant similarities in transcriptional profiles of

most genetic HD mouse models tested, both among each other

and with human HD. Simultaneous profiling of R6/1, R6/2,

HdhQ150, HdhQ92, and YAC128 mice demonstrated that every

model correlated significantly with every other model and with

humanHD,with the caveat that the strains had to be aged appro-
priately (Kuhn et al., 2007). Other studies have reached similar

conclusions (Hodges et al., 2008; Strand et al., 2007).

Given that the global transcriptional changes are more

commonly downregulations than upregulations in HD model

mice (Luthi-Carter et al., 2000) and that there are altered

chromatin dynamics associated with repressed transcription

(increased methylation and decreased acetylation) (Stack

et al., 2007), it has been investigated whether general modifica-

tions to histone dynamics in the form of histone deacetylase

(HDAC) modulation could be therapeutic. Suberoylanilide hy-

droxamic acid (SAHA) and sodium butyrate, two HDAC inhibi-

tors, both caused a delay in motor symptom onset in R6/2

animals, though SAHA was toxic. (Ferrante et al., 2003; Hockly

et al., 2003). HDAC inhibitors 4b and valproate alleviated loco-

motor deficits in R6/2 and N171-82Qmice, respectively (Thomas

et al., 2008; Zádori et al., 2009). N171-82Q mice demonstrated

marked improvement in life span, striatal atrophy, and histone

methylation:acetylation ratio upon administration of HDAC inhib-

itor phenylbutyrate after symptom onset, an important result for

a disease in which not every carrier chooses to know their gene

status and may only initiate treatment after overt symptoms are

detected (Gardian et al., 2005). In order to limit the off-target

effects of a general HDAC inhibitor, drugs with tighter specificity

are needed aswell asmore focused targets. Recently, R6/2mice

have been bred to strains carrying either homozygous (if not

lethal) or heterozygous deletions in HDACs to parse out

which HDACs are the best modifiers of pathology. So far

HDAC7 has been discounted as a potential modifier (Benn

et al., 2009), but HDAC4 does show some promise (G. Bates,

personal communication).

The similarity in transcriptional profiles between many aged

HD model mice and patient samples suggests a fundamental

consequence of mHTT on basal levels of transcription either by

direct interaction with transcription factors, attempts at compen-

satory changes, or both. That this phenotype is directly quantifi-

able in mice and correlates so strongly with patient samples

supports its utility as a biological measure for pathology.

From Preclinical to Clinical Treatment of HD
As we have discussed above, mouse models give insight into

many aspects of pathology observed in HD patients. That said,

the central question in front of us is how can mouse models

best be used to develop therapeutic intervention for HD.

Candidate-based approaches and success in mouse models

have resulted in many drug trials progressing from preclinical

mouse work to patients. The authors direct the readers to three

excellent reviews: Li et al. (2005) and Gil and Rego (2009)

enumerate the trials conducted in the R6 lines, and Mestre

et al. (2009) provide a detailed summary and discussion of pub-

lished HD clinical trials. Of those treatments tested in rodents,

many have made it to clinical trials; nine trials passing the Mestre

et al. (2009) criteria (randomized, placebo-controlled, symptom-

atic therapy with at least10 participants), plus the combination

remacemide/coenzyme Q10 trials, are listed in Table 2. The

majority of these selected clinical trials were aimed at safety

and tolerability, rather than efficacy, so it comes as little surprise

that no improvement in clinical outcome was seen for most. To

date, only tetrabenazine (TBZ) has demonstrated a reduction
Neuron 69, February 10, 2011 ª2011 Elsevier Inc. 429



Table 2. Selection of Drugs Tested in Both HD Model Mice and in Clinical Trials with HD Patients

Drug Animal Model Animal Dosage Animal Duration Animal Effect Patient Dosage Patient Duration Patient Effect References

Cannabidiol 3-NP Rat 5 mg/kg daily From 12 weeks

for 5 days

a 10 mg/kg daily 6 weeks drug,

15 weeks obs.

n.s. Sagredo et al., 2007;

Consroe et al., 1991

Creatine R6/2 2% in chow

ad lib

From 21 days 18% improved

survival

8 g daily 16 weeks drug,

24 weeks obs.

n.s. Ferrante et al., 2000;

Hersch et al., 2006

Ethyl-EPA YAC128 1% in chow

ad lib

From 7 months 44% improved

rotarod

2 g daily 6 or 12 months

drug

n.s. Van Raamsdonk et al., 2005b;

Huntington Study Group

TREND-HD Investigators, 2008

Fluoxetine R6/1 20 mg/kg daily 10 to 20 weeks b 20 mg daily 4 months drug n.s. Grote et al., 2005;

Como et al., 1997

L-carnitine N171-82Q 250 mg/kg,

5x/week

From 6 weeks 15% improved

survival

45 mg/kg daily 1 week drug,

4 weeks obs.

n.s. Vamos et al., 2010;

Goetz et al., 1990

Minocycline R6/2 5 mg/kg daily From 6 weeks 13% improved

survival

200 mg daily 8 weeks drug n.s. Chen et al., 2000;

The Huntington Study Group 2004

Remacemide R6/2 0.007% in

chow ad lib

From 21 days 16% improved

survival

200 or 600 mg

daily

6 weeks drug n.s. Ferrante et al., 2002;

Kieburtz et al., 1996

Remacemide + CoQ10 R6/2 0.007% Rem,

0.2% CoQ10

in chow ad lib

From 21 days 32% improved

survival

600 mg each

daily

30 months drug n.s. Ferrante et al., 2002;

The Huntington Study Group, 2001

Riluzole R6/2 10 mg/kg daily From 21 days 10% improved

survival

200 mg daily 8 weeks drug n.s. Schiefer et al., 2002;

The Huntington Study Group, 2003

Tetrabenazine YAC128 5 mg/kg,

33/week

From 2 months �60% improved

rotarod

Up to 100 mg

daily

12 weeks drug 3.5 UHDRS units

improvement

Wang et al., 2010;

The Huntington Study Group 2006
aNo behavior tested; reduced striatal lesion size and some transcript reduction.
b n.s. on rotarod; protected against degeneration in dentate gyrus.
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of motor symptoms in both mice and patients (Frank, 2009; Hun-

tington Study Group, 2006; Tang et al., 2007; Wang et al., 2010),

and though the mouse studies showed a reduction in striatal

atrophy and motor symptoms, reduced neurodegeneration has

not been documented in human patients on TBZ.

A current challenge to therapeutic development in HD is the

identification of validated targets for HD therapy. Currently, there

is only one such target: huntingtin itself. Reduction in levels of

expression of HTT should be beneficial to HD patients if they

can be achieved. Mouse models strongly support this conten-

tion. Early work in conditional, reversible models of HD (Yama-

moto et al., 2000) demonstrated that silencing of the mutant

locus, even relatively late in pathology, results in not only halting

of disease progression but reversal of some pathologic

sequelae. More recently, two studies have shown that reduction

of mutant HTT levels in the brain of model mice, either by

reducing translational output of HTT via viral siRNA delivery

(Boudreau et al., 2009) or increasing protein clearance of HTT

by intrabody (intracellular antibody) expression (Southwell

et al., 2009), has a beneficial effect on behavior and neuropa-

thology in HD model mice. The demonstration of a therapeutic

benefit of these approaches in mouse models suggests that

these approaches could benefit patients as well. Perhaps

equally importantly, these studies give confidence that if new

validated targets are identified, mouse models will be valuable

in assessing how effective therapeutic intervention against these

targets might be.

However, refinements in the measurements of pathology are

needed to make the most out of mouse model studies. In the

last few years, clinical studies (volumetric MRI and functional)

have begun to provide useful measures to characterize HD

progression prior to the point in disease formally designated by

functional decline as onset. The modeling of this period (pre-

manifest HD) requires the development and validation of a set

of measures in the mouse that clearly correspond appropriately

to the progression of HD during this period in the human; for

example, imaging modalities such as MRI are being minaturized

for use in HDmodel mice (Sawiak et al., 2009; Zhang et al., 2010)

and show promise. We don’t yet have this correspondence well

established in the mouse for several reasons. First, and perhaps

foremost, many of the findings on premanifest HD are quite

recent. Second, assay strategies, particularly at the biological

level, may require deeper insight into the mechanisms of molec-

ular pathology in premanifest HD, including more powerful

transcriptional and translational profiling; for example, modern

transcriptional profiling by RNaseq will provide additional insight

as it allows linearity over a greater range of transcript levels than

arrays provide.

The mouse models of HD demonstrate a clear pathology, and

while some of the phenotypes (rotarod latency for example) have

limited direct relation to measurable patient symptoms, many

others (transcriptional profile changes) bear striking resem-

blance to patients. What the field now has is a collection of

mousemodels suited to study one ormore of the different stages

of human disease, a collection of measurable phenomena in

these mice (many of which are directly relatable to patient symp-

toms), and demonstration that targeting the protein at the root of

the pathology will effectively reduce or delay the symptoms.
Continued studies of the mice give us a tremendous opportunity

to use a mammalian nervous system under similar stresses to

HDpatients, identify therapeutic candidates relevant to a specific

disease stage, and test therapies with the knowledge that it is

possible to at least partially rescue the cells from the toxic insult

of mHTT. It is hopefully only a matter of time before such studies

yield one or more therapeutics that effectively reduce neuropa-

thology in patients.
REFERENCES

Andreassen, O.A., Dedeoglu, A., Ferrante, R.J., Jenkins, B.G., Ferrante, K.L.,
Thomas, M., Friedlich, A., Browne, S.E., Schilling, G., Borchelt, D.R., et al.
(2001). Creatine increase survival and delays motor symptoms in a transgenic
animal model of Huntington’s disease. Neurobiol. Dis. 8, 479–491.

Bates, G., Harper, P., and Jones, L. (2002). Huntington’s Disease, Third Edition
(New York: Oxford University Press).

Beal, M.F., Kowall, N.W., Ellison, D.W., Mazurek, M.F., Swartz, K.J., and
Martin, J.B. (1986). Replication of the neurochemical characteristics of
Huntington’s disease by quinolinic acid. Nature 321, 168–171.

Beal, M.F., Ferrante, R.J., Swartz, K.J., and Kowall, N.W. (1991). Chronic qui-
nolinic acid lesions in rats closely resemble Huntington’s disease. J. Neurosci.
11, 1649–1659.

Beal, M.F., Brouillet, E., Jenkins, B.G., Ferrante, R.J., Kowall, N.W., Miller,
J.M., Storey, E., Srivastava, R., Rosen, B.R., and Hyman, B.T. (1993). Neuro-
chemical and histologic characterization of striatal excitotoxic lesions
produced by the mitochondrial toxin 3-nitropropionic acid. J. Neurosci. 13,
4181–4192.

Benn, C.L., Butler, R., Mariner, L., Nixon, J., Moffitt, H., Mielcarek, M.,
Woodman, B., and Bates, G.P. (2009). Genetic knock-down of HDAC7 does
not ameliorate disease pathogenesis in the R6/2 mousemodel of Huntington’s
disease. PLoS ONE 4, e5747.

Bennett, E.J., Shaler, T.A., Woodman, B., Ryu, K.-Y., Zaitseva, T.S., Becker,
C.H., Bates, G.P., Schulman, H., and Kopito, R.R. (2007). Global changes to
the ubiquitin system in Huntington’s disease. Nature 448, 704–708.

Björkqvist, M., Wild, E.J., Thiele, J., Silvestroni, A., Andre, R., Lahiri, N.,
Raibon, E., Lee, R.V., Benn, C.L., Soulet, D., et al. (2008). A novel pathogenic
pathway of immune activation detectable before clinical onset in Huntington’s
disease. J. Exp. Med. 205, 1869–1877.

Boudreau, R.L., McBride, J.L., Martins, I., Shen, S., Xing, Y., Carter, B.J., and
Davidson, B.L. (2009). Nonallele-specific silencing of mutant and wild-type
huntingtin demonstrates therapeutic efficacy in Huntington’s disease mice.
Mol. Ther. 17, 1053–1063.

Boutell, J.M., Thomas, P., Neal, J.W., Weston, V.J., Duce, J., Harper, P.S., and
Jones, A.L. (1999). Aberrant interactions of transcriptional repressor proteins
with the Huntington’s disease gene product, huntingtin. Hum. Mol. Genet. 8,
1647–1655.

Bradford, J., Shin, J.-Y., Roberts, M., Wang, C.-E., Li, X.-J., and Li, S. (2009).
Expression of mutant huntingtin in mouse brain astrocytes causes age-depen-
dent neurological symptoms. Proc. Natl. Acad. Sci. USA 106, 22480–22485.

Brustovetsky, N., LaFrance, R., Purl, K.J., Brustovetsky, T., Keene, C.D., Low,
W.C., and Dubinsky, J.M. (2005). Age-dependent changes in the calcium
sensitivity of striatal mitochondria in mouse models of Huntington’s Disease.
J. Neurochem. 93, 1361–1370.

Cannella, M., Gellera, C., Maglione, V., Giallonardo, P., Cislaghi, G., Muglia,
M., Quattrone, A., Pierelli, F., Di Donato, S., and Squitieri, F. (2004). The gender
effect in juvenile Huntington disease patients of Italian origin. Am. J. Med.
Genet. B. Neuropsychiatr. Genet. 125B, 92–98.

Carter, R.J., Lione, L.A., Humby, T., Mangiarini, L., Mahal, A., Bates, G.P.,
Dunnett, S.B., and Morton, A.J. (1999). Characterization of progressive motor
deficits in mice transgenic for the human Huntington’s disease mutation.
J. Neurosci. 19, 3248–3257.
Neuron 69, February 10, 2011 ª2011 Elsevier Inc. 431



Neuron

Review
Chan, E.Y.W., Luthi-Carter, R., Strand, A., Solano, S.M., Hanson, S.A.,
DeJohn, M.M., Kooperberg, C., Chase, K.O., DiFiglia, M., Young, A.B., et al.
(2002). Increased huntingtin protein length reduces the number of polyglut-
amine-induced gene expression changes in mouse models of Huntington’s
disease. Hum. Mol. Genet. 11, 1939–1951.

Chen, M., Ona, V.O., Li, M., Ferrante, R.J., Fink, K.B., Zhu, S., Bian, J., Guo, L.,
Farrell, L.A., Hersch, S.M., et al. (2000). Minocycline inhibits caspase-1 and
caspase-3 expression and delays mortality in a transgenic mouse model of
Huntington disease. Nat. Med. 6, 797–801.

Como, P.G., Rubin, A.J., O’Brien, C.F., Lawler, K., Hickey, C., Rubin, A.E.,
Henderson, R., McDermott, M.P., McDermott, M., Steinberg, K., and Shoul-
son, I. (1997). A controlled trial of fluoxetine in nondepressed patients with
Huntington’s disease. Mov. Disord. 12, 397–401.

Consroe, P., Laguna, J., Allender, J., Snider, S., Stern, L., Sandyk, R.,
Kennedy, K., and Schram, K. (1991). Controlled clinical trial of cannabidiol in
Huntington’s disease. Pharmacol. Biochem. Behav. 40, 701–708.

Coyle, J.T., and Schwarcz, R. (1976). Lesion of striatal neurones with kainic
acid provides a model for Huntington’s chorea. Nature 263, 244–246.

Cui, L., Jeong, H., Borovecki, F., Parkhurst, C.N., Tanese, N., and Krainc, D.
(2006). Transcriptional repression of PGC-1alpha by mutant huntingtin leads
to mitochondrial dysfunction and neurodegeneration. Cell 127, 59–69.

Cummings, D.M., Milnerwood, A.J., Dallérac, G.M., Waights, V., Brown, J.Y.,
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B.E., Metzler, M., André, V.M., Slow, E.J., et al. (2009). Differential suscepti-
bility to excitotoxic stress in YAC128 mouse models of Huntington disease
between initiation and progression of disease. J. Neurosci. 29, 2193–2204.

Gray, M., Shirasaki, D.I., Cepeda, C., André, V.M., Wilburn, B., Lu, X.-H., Tao,
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