

Design, Evaluation, and Management of Flexible Systems

Joshua McConnell, PhD, Presenter

LAI Web Knowledge Exchange Event March 5, 2010

http://lean.mit.edu

© 2010 Josh McConnell 3/5/10 - 1

Increasing system value through flexibility

Webex Presentation for LAI

Joshua McConnell

6 March 2010

- Research overview
 - Motivation and intuition
 - Research questions
 - Findings and recommendations
- Research presentation

Uncertainty can result in future losses and gains, driving the need for flexibility. Some illustrative examples...

Losses can be large in inflexible systems when circumstances change					
Montreal Mirabel Airportover estimated passenger demand resultin					
2 0 8 8 9 0 0 8 9 0 0 0 0 0 0 0 0 0 0 0 0	 Providing overcapacity of 17 million passengers per year; >5x overcapacity Unneeded government expropriation of 81,000 acres; 83% of total Cancelation of all passenger flights and conversion to a cargo only airport Total wasted costs in the billions over decades 				

Flexibility helps mitigate losses or take advantage of gains

Dual-fuel boilers limit loss against energy price fluctuations

Virtual servers allow increased demand to be met quickly and cheaply

SOURCE: Kulatilaka (1993) The Value of Flexibility: The Case of a Duel-Fuel Industrial Steam Boiler; de Neufville (2003) Airport systems: Planning, design, and management

Flexibility is a viable strategy to cope with uncertainty in complex systems

Area of interest for research

SOURCE: Sussman et al (2007) The CLIOS Process: A User's Guide; Sussman (2002) Collected Views on Complexity in Systems; Sussman (2000) Ideas on Complexity in Systems: Twenty Views; McConnell Josh McConnell May 13, 2009 4 (2008) Life-Cycle Flexibility: Designing, Evaluating and Managing 'Complex' Real Options

The research covers three questions about flexibility in complex systems

Focus of this presentation

■ Technical: Can different technologies and technical architectures be designed to create flexibility in complex systems? If so, how do you quantify value created?

System: What are the barriers to designing, evaluating, implementing and managing a flexible system and how can they be overcome?

Process: What type of framework and tools are needed to support the design, implementation and management of a flexible system?

Several changes are needed to design, implement and manage flexibility

Research questions	Research findings	Research recommendations		
Technical: How to create and quantify flexibility in systems?	 Many options exist but are not considered due to a lack of experience, resources and mandate Existing valuation tools are not adequate for complex systems 	 Deploy tools to help designer's and decision makers envision and understand value of flexibility Use tailored combination of system analysis tools and option valuation methodologies 		
System: What are the barriers and how can they be overcome?	 Political considerations increase in flexible systems Existing enterprise and institutional architectures not compatible with flexibility Flexibility destroys value for some stakeholders 	 Create rules to "lock-in" flexibility Change standard operating procedures to mandate and commonly value flexibility Assess options from perspective of multiple stakeholders to determine true system value 		

Contents

- Research overview
- Research presentation
 - Why flexibility and options?
 - Introductory example
 - Research approach
 - Case studies
 - Lessons learned

Flexibility adds value by delaying decisions until information is available

Common questions about flexibility	Some answers
What is flexibility?	 The ability to: Change the future configuration of a system Postpone the adoption of a system configuration until a future date after additional information is available, i.e. uncertainties are resolved
Why use flexibility?	 Flexibility: Allows the system to adapt to future circumstances that are not known ex ante Adds value to the system
Why not use flexibility?	 Flexibility is not free; costs include: Resources (time, upfront costs, capability) to design, implement and manage flexibility Increased system complexity
How to use flexibility?	 Flexibility can be: Added into the system in many places, i.e. technically, financially, management, politically, etc. Operationalized with "Real Options"

Real options can be included into the design of a technical system

Area of interest for research

Option evolution	Description	Emphasis	Examples		
Financial options	 Contract between a buyer and a seller that gives the buyer the right, but not the obligation, to buy or to sell a particular asset at a future date at an agreed price 	 Developing and refining option valuation methodologies 	 Call (put) option – The option holder has the right to buy (sell) IBM shares at \$110/share on May 20, 2009 		
Real options	 Option on a physical, or real, asset; as opposed to a financial asset Originally used in capital budgeting to account for flexibility in decision making 	 Applying options thinking to "real world" systems 	 Option to engage in a multi-stage pharmaceutical research and development program Option to engage in exploration of an oil field 		
Real options "in" systems	 Designing flexibility into the technical specifications, i.e. the technical system is not treated as a "black box" 	 Designing technical architecture to be flexible 	 Option to switch fuel in an industrial steam boiler Option to add additional stories to a parking garage Option to expand a satellite constellation 		

A few basics on option terminology and value

Contents

- Research overview
- Research presentation
 - Why flexibility and options?
 - Introductory example
 - Research approach
 - Case studies
 - Lessons learned

Example: How to design and value a flexible system is the topic of ongoing research

Focus of following slides

Technical: Can different technologies and technical architectures be designed to create flexibility in complex systems? If so, how do you quantify value created?

System: What are the barriers to designing, implementing and managing a flexible system and how can they be overcome?

Process: What type of framework and tools are needed to support the design, implementation and management of a flexible system?

A simple example* shows value of building flexibility into a system (1/2)

* Example based on Zhao and Tseng (2003) Valuing Flexibility in Infrastructure Expansion

A simple example* shows value of building flexibility into a system (2/2)

* Example based on Zhao and Tseng (2003) Valuing Flexibility in Infrastructure Expansion

Example: Identifying and overcoming barriers to flexible systems is a topic of ongoing research

■ Technical: Can different technologies and technical architectures be designed to create flexibility in complex systems? If so, how do you quantify value created?

System: What are the barriers to designing, implementing and managing a flexible system and how can they be overcome?

Process: What type of framework and tools are needed to support the design, implementation and management of a flexible system?

Several issues appear when applying options and to complex systems

Real options in theory

The option holder...

...has the right, but not the obligation...

...to take some action...

...now or in the

future...

...at a pre-

determined cost.

Real options in practice

Fragmentation of stakeholders: designer, evaluator, purchaser, owner, manager

Prevention of or forced option deployment due to politics

Need for multiple actions over

Changing actions and time

multiple domains

Changing costs

horizons

Flexibility in transportation

Many diverse stakeholders with unique and contradictory goals; difficulty in design and decisions

Politics, economics and budgetary constraints prevent changes in the system

Actions often outside the domain of agencies, e.g. transportation agencies' operating systems

Decades long system use; system decisions continually delayed; technology shifts

Costs underestimated; full system and stakeholder costs not evaluated

Contents

- Research overview
- Research presentation
 - Why flexibility and options?
 - Introductory example
 - Research approach
 - Case studies
 - Lessons learned

A life-cycle approach needs to be taken for options in complex systems

Compared to financial options, options in complex systems require:

- Multi-disciplinary approach, i.e., technical, financial, management, stakeholder management
- Activities and iterations over multiple time-scales
- Long-term planning and management

The research was structured to address all issues of flexibility in systems

Josh McConnell May 13, 2009 | 19 SOURCE: McConnell (2008) Life-Cycle Flexibility: Designing, Evaluating and Managing 'Complex' Real Options

Contents

- Research overview
- Research presentation
 - Why flexibility and options?
 - Introductory example
 - Research approach
 - Case studies
 - Overview
 - Scope
 - ITS description
 - Technical analysis
 - System analysis
 - Lessons learned

Two case studies helped better understand flexibility in complex systems

Focus of this presentation

Case study 1: Boeing Blended Wing Body				
Research focus	Tools used			
 Technical architecture of common sub-systems 	 Existing Boeing design analysis 			
 Value of flexibility from commonality 	 Aviation industry system dynamics Scenario & Monte Carlo analyses ROA 			
 Challenges of flexibility in global, private enterprises 	 Document review Stakeholder interviews 			

Case study 2: Houston tra	insportation network
Research focus	Tools used
 Technology impact of Intelligent Transportation Systems (ITS) 	 Transportation network & demand models
 Value of flexibility from ITS 	 Transportation network & demand models Scenario & Monte Carlo analyses ROA
 Challenges of flexibility in regional public and private enterprises 	Document reviewStakeholder interviews

Case studies used to:

- Explore value of including flexibility in a system's technology/technical architecture
- Explore systemic effects through quantitative models
- Improve understanding of "real world" challenges and constraints

The research scope includes technical and enterprise/institutional issues

Institutional Architecture: Federal, state, and local governments and agencies

Extended Enterprise Architecture: Houston region stakeholder interactions **Political:** Land developers: **Enterprise Architecture** Developer City of Houston associations **Technical Architecture & Technology:** Transportation network and ITS **Commercial:** Models for Basic ITS Elements Chamber of Traffic Commerce Management Satellite Positioning and Centers Citizen: Citizen transportation and Roadside Incident Detection Communications property right coalitions Roadways with Vehicle Sensing **Environmental:** Houston Sierra Club Probe and Smart Vehicles n-Vehicle Information nd Route Guidance

- Tx Legislature
- Harris Country

Planning:

- Houston MPO
- Management Districts

Transportation:

- USDoT
- TxDOT
- MFTRO
- TranStar
- Harris Country Infrastructure

Technical hypotheses:

- ITS can create flexible transportation networks
- Valuation requires ROA and network analysis
- ITS has inherent value and flexible value

System hypotheses:

- Major challenges are come from multiple stakeholders and their interactions, more than in non-flexible systems
- A portfolio of strategies is needed

How can ITS capabilities create flexibility and how can it be valued?

Focus of following slides

■ Technical: Can different technologies and technical architectures be designed to create flexibility in complex systems? If so, how do you quantify value created?

System: What are the barriers to designing, evaluating, implementing and managing a flexible system and how can they be overcome?

Process: What type of framework and tools are needed to support the design, implementation and management of a flexible system?

ITS is a new, low cost alternative for improving transportation systems

Combining traditional infrastructure and rolling stock...

...with ITS technologies...

Inherent value of ITS

...yields a transportation system that...

- Increases effective capacity
- Focuses on operations instead of capacity expansion
- Costs less during deployment
- Provides flexibility

ITS provides many opportunities for flexibility in transportation systems

Example on following pages

Option to	Option description	ITS option example
Delay	 Right to postpone a decision 	 Right to deploy ITS technologies to defer traditional infrastructure investments
Abandon / Sell	 Right to discontinue or sell a project 	 Right to end specific types of ITS services— i.e. real time traffic information
Expand / Contract	 Right to increase or decrease the size of a project 	 Right to enable new capabilities—i.e. laying fiber during construction for to-be-determined future use
Grow / Shrink	 Right to increase or decrease the scope of a project 	 Right to add new services—i.e. electronic tolling tags also used to measure traffic congestion
Switch	 Right to change to a different project 	 Right to change functions—i.e. cameras switch between traffic congestion, accident management or security functions

ITS technologies are one of several alternatives for alleviating congestion

Traditional approach for relieving congestion

Traffic congestion is a common condition...

...requiring a decision on alternatives to improve the situation

 Traditional infrastructure expansion

- ITS capabilities, e.g. traveler information or management systems
- "Do nothing"

Josh McConnell May 13, 2009 | 26

Ignoring flexibility, ITS usually not as effective as capacity expansion

With flexibility, ITS improves system value (1/2)

With flexibility, ITS improves system value (2/2)

Simplified real options analysis

	high dema	nd	p = .6	\$50M - \$2	4M = \$26M	* .6 = \$15.	5M					-1	option = \$13M
Infrastructure								ex NPV =					- F +
							9	\$6M					
	low deman	ld	p = .4	\$0M - \$24	M = -\$24M	* .4 = -\$9.6	;						EX NPV (ITS +
													infrastructure) =
													\$6 5M
		high dema	and	p = .6		\$3.3M + \$8	50M - (\$1.5M	M +\$29M) =	\$22.8M * .	6 = \$13.7N			φ0.5ivi
ITS option											FX NPV =		Option volue -
											\$13M		 Option value = \$13M - \$6.5M =
						\$0 +\$0 - \$1	1 5M = -\$1 4	5M * 4 = -\$	6M		φτσινί		
		low dema	nd	n = 4		ψυ τψυ - ψ	1.9W - 91.0	JIVI	. VIVI				90.0IVI
		IOW GEHIA		p+									
												┤▌ .	Option cost = \$5N
	high dema	nd	p = .6	-\$17M - \$	0M = -\$17N	A * .6 = -\$1	0M						- F
Do nothing								EX NPV =					
								-\$10M					
	low deman	ld	p = .4	\$0 - \$0 =	\$0 * .4 = \$0							1' -	
												$\left \right\rangle$	Option viable as
													value > costs

Option valuation in complex systems needs more sophistication (1/2)

Input 1 . . . Input n

Input data feeds...

- Flexibility evaluated as a function of:
 - traffic conditions
 - managed lane types
 - enterprise architectures
- Scenarios, demand models and Monte Carlo analysis used to define inputs

...into a network model...

Network model analysis calculates monetized values for:

- Time savings from congestion relief
- Revenues raised from new tolls

...with results analyzed by ROA

- Probability distributions created for EX NPV with and without flexibility
- Flexibility value calculated as difference in expected means*

* NPV of flexibility = NPV of project with flexibility – NPV of project without flexibility Tufano and Moel 1997, Clemons and Gu 2003, Greden et al. 2005, Miller 2006

Option valuation in complex systems needs more sophistication (2/2)

Network demand model

Model characteristics

- Regional model of Houston area
- Same model and base predictions as used by local MPO
 - Network
 - Traffic demand
 - Mode split
 - Time of day and locations
- Used to understand and quantify
 - Travel behavior across the region
 - Presence of managed lanes
 - Managed lane design and operations
 - Enterprise architectures

System level analysis is needed to:

- Calculate system level values—i.e. improving traffic conditions on one corridor may worsen conditions on other corridors creating sub-optimal conditions
- Resolve system level interactions—e.g. enterprise architecture effects technical performance, i.e. private or public ownership of toll facilities and differing revenue goals
- Remove simplifying assumptions

What are the difficulties in using ITS to create flexibility and how can these be overcome?

■ Technical: Can different technologies and technical architectures be designed to create flexibility in complex systems? If so, how do you quantify value created?

System: What are the barriers to designing, evaluating, implementing and managing a flexible system and how can they be overcome?

Process: What type of framework and tools are needed to support the design, implementation and management of a flexible system?

Options in complex systems require managing many divergent stakeholders and types of interactions

Transaction cost economics

* Figure modified from Epstein and O'Halloran (1999) Delegating Powers: A Transaction Cost Politics Approach to Policy Making Under Separate Powers

SOURCE: McConnell (2008) Life-Cycle Flexibility: Designing, Evaluating and Managing 'Complex' Real Options Josh McConnell May 13, 2009 33

Interdisciplinary solutions are needed to address issues with flexibility

During option life-cycle	many issues arise	but several potential solutions exist
Capability	 Designers and decision makers not familiar with flexibility or real options analysis 	 Educate stakeholders on benefits; provide training
building	 Tools not available for flexible design or evaluation 	 Determine needed tools; align with enterprise architecture, incentives and capabilities
	 Flexible designs appear "foreign" to enterprises 	Designate and empower championsShow quantitatively value derived from flexibility
Design	 Flexibility used to resolve or postpone politically contentious issues, i.e. option to postpone decision 	 Design option with inherent value, e.g. ITS Lock in decision rules ex ante
	 Cost for option a function of the stakeholder 	Perform life-cycle valuation along all dimensionsAccount for stakeholder costs and compensation
Evaluation	 Stakeholders don't see value in flexibility 	 Tailor ROA process and outputs to the organization Translate outputs into standard metrics used
Implemen- tation	 Flexibility creates uncertainty for non-option holders 	 Evaluate flexibility with respect to all stakeholders Accommodate stakeholders when possible, e.g. transparent decision rules, period for public comment, compensation, relax rules
	 Lack of information for option exercise 	Budget for operations in initial designDeploy options capable of self monitoring, e.g. ITS
Manage- ment	 No political will to exercise an option 	 Lock in decision rules "Spin off" option to appropriate stakeholder

Contents

- Research overview
- Research presentation
 - Why flexibility and options?
 - Introductory example
 - Research approach
 - Case studies
 - Lessons learned

Lessons learned: flexibility requires more effort and resources than just new design and valuation techniques

Multi-disciplinary analysis needed	 Flexible systems require multi-disciplinary analysis; increased sophistication needed
Life-cycle planning necessary	 Significant resources and capabilities are needed for flexible systems; life-cycle planning required ex ante
Active system management required	 Flexible systems' need for active management is not aligned with current enterprise or institutional architectures; changes to mission and standard operating procedures needed
Multi-stakeholder analysis desirable	 Flexibility destroys value for some stakeholders; multi-stakeholder view is needed
Clear decision rules need to be locked-in	 "Flexibility" is often the continuation of political debates; ability to exercise and subsequent valuation is affected

SOURCE: McConnell (2008) Life-Cycle Flexibility: Designing, Evaluating and Managing 'Complex' Real Options Josh McConnell May 13, 2009 36

Bio on Josh McConnell

My research, training and professional experience are interdisciplinary

Research

- Research includes:
 - Technical system design
 - Financial evaluation
 - Enterprise architecting
 - Policy and stakeholder analysis
- Research tools used:
 - System dynamics, network analysis
 - Real options analysis
 - Scenario analysis
 - Stakeholder interviews
 - Case studies
- Resulted in award of PhD from MIT, academic articles, book and book chapters

Training

 PhD in Technology, Management and Policy (1/3 engineering, 1/3 MBA, 1/3 public policy

- Masters degrees in:
 - Public policy
 - Aeronautics & Astronautics
 - Mechanical Engineering

Experience

- Management/business experience:
 - Senior consultant with supply chain consultancy
 - Senior consultant with McKinsey & Co.
- Policy experience
 - Adjunct consultant with IDA
 - Summer intern with US DoS London Embassy
- Technical experience
 - Engineer with NASA
 - Engineer with Draper Laboratory
 - Summer intern with Los Alamos, Kistler Aerospace