Improving Enterprise Decision-Making: The Benefits of Metric Commonality

LAI Knowledge Exchange Event

Alissa H. Friedman
ahf9@mit.edu
Massachusetts Institute of Technology
October 7, 2010
Agenda

- The Motivation for Improvement
- Research Concept & Questions
- Literature Review
- The Case Study
 - Background
 - Research Design
 - Findings
 - Insights, Reflections, and Impacts
- Answering the Research Questions & Future Work

http://lean.mit.edu
The Motivation for Improvement
Research Concept & Questions
You have successfully developed a product for a big customer with a production contract spanning decades! As time goes by, you market your product to even more customers:

How do you manage, and make internal decisions on, external data, to better improve the product?
Each external stakeholder (customer) is unique
- Values, strategic objectives
- Different uses of same product
- Different sets of performance metrics
- Capabilities (technology, knowledge)
- Leadership involvement
- Rules and regulations

Potential results
- Misallocation of improvement money
- Lack of customer communication
- Increased time to make decisions

Motive for Improvement: The Burning Platform

How does one improve this program?
A metric is something quantifiable that is used to help drive a decision (Blackburn, 2009)

The reuse of assets that were specifically developed to meet the needs of other products (Boas, 2008)

To maximize the value of a product, while containing its impact on cost to manufacturer, the user and the society to a minimum (Prasad, 2000)
Research Concept: Commonalizing External Performance Metrics

Do the right job … by tracking the product or service performance measures that stakeholders value, and basing the right decisions off of them

Do the job right … by using an optimal number of common metrics at the right phase in the operating life cycle for all customers

(Drucker, 1963)
Research Questions

• Can the concept of commonality be applied towards metrics?
• How efficient and effective is commonalizing metrics in assessing performance?
• How do metrics change over an operating life cycle?
Literature Review
Literature Review: Leading up to the Status Quo

• Literature review topics:
 – Importance of metrics
 – Why there is divergence: metric selection mistakes
 – Avoiding mistakes: proper metric selection
 – Avoiding mistakes: performance measurement system (PMS) frameworks
 – Updating an already-existing PMS
 – Applying commonality to PMS frameworks
PMS Frameworks

• What is a performance measurement system?
 – Set of metrics used to quantify both the efficiency and effectiveness of actions (Neely et al, 2005)
 – Collections of financial and non-financial performance indicators that managers use to evaluate their own or their unit’s performance or the performance of their subordinates (Tuomela, 2005)

• Lots of frameworks – thorough reviews in Blackburn (2009) and Mahidhar (2005) theses

• Overall limitation: little or no connection of external performance metrics driving internal decision-making
Updating an Already-Existing PMS

• Fairly unexplored territory
 – Little or no consideration is given for existing measurement systems that companies may have in place (Medori, 1998)
 – Businesses rarely want to design PMS’ s from scratch. Usually managers are interested in eliminating any weaknesses in their existing system (Neely et al, 1994)

• Medori and Steeple (2000) take note and try to address this issue for performance of a manufacturing company
 – Performance measurement “audit” with internal stakeholders
 – Identified alignment, gaps, and false alarms (Schmenner and Vollman, 1994)
Applying Commonality to PMS Frameworks

• **Commonality**: the reuse of assets that were previously developed to meet the needs of another product and, in some cases, from the reuse of assets that were specifically developed to meet the needs of multiple products (Boas, 2008)

• Lots of literature of commonality in product development, but not in metrics
 – Specifically, external metric commonality
The Case Study
The Case Study: Background

- Technical product; operating for decades, will continue to operate for decades
- Originally developed for large, domestic customer
- Product marketing led to contracts with other unique customers (all international)
- Soon, only international customers will operate the product
- Frustratingly harder to manage, and make the right decisions to improve, the 2500+ product line as ONE product

100% international (non-primary) customers over next ~20 years
The Case Study: Research Design

- **Mixed-method**: qualitative and quantitative data
- **Triangulation**: use of three data sets (three different viewpoints) within same research problem dimension
 - Artifact review (historical data): quantitative
 - Expert interview data: qualitative and quantitative
 - Customer interview data: qualitative and quantitative

Research Question Defined

- **Artifact Review**
 - 1st Round of Customer Interviews
 - Part 1: Based on Yin’s case study design
 - Creation of current state analysis

- **Diagnose Areas of Improvement**
 - Identify Benefits of Proposal
 - Part 2: Shift focus from problem to solution
 - Motivation for change

- **Conduct Expert Interviews**
 - 2nd Round of Customer Interviews
 - Part 3: Address internal and external stakeholder voices
 - Creation of initial solution

http://lean.mit.edu
The Case Study: Artifact Review

% Common Metrics Scoring

Across 7 customers | Across 6 customers | Across 5 customers | Across 4 customers | Across 3 customers | Across 2 customers | Across 1 customer
0% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90%

Artifact Review

1st Round of Customer Interviews

Diagnose Areas of Improvement

Identify Benefits of Proposal

Conduct Expert Interviews

2nd Round of Customer Interviews

Research Question Answered

http://lean.mit.edu

© 2010 Alissa H. Friedman, Massachusetts Institute of Technology
LAi Knowledge Exchange Event – October 7, 2010
The Case Study: Customer Interviews, Round 1

Unique databases

Capability (technological or knowledge)

Longer history → more “robust”

Leadership involvement

“Some things never change”

Country restrictions

Metric Divergence

1st Round of Customer Interviews

Diagnose Areas of Improvement

Identify Benefits of Proposal

Conduct Expert Interviews

2nd Round of Customer Interviews

Research Question Defined

Research Question Answered

http://lean.mit.edu

© 2010 Alissa H. Friedman, Massachusetts Institute of Technology
LAI Knowledge Exchange Event – October 7, 2010
The Case Study: Customer Interviews, Round 1

- Common performance and metric definitions
- Increased customer information sharing and communication
- Best-in-class initiatives (to use for other product lines)
- Easier to determine root causes for adverse performance
- Budget planning purposes

Adoption to change
- Export control issues
- Lack of “uniqueness”
The Case Study: The Tie to the Bottom Line

Customers track high-level metrics but use different measurement systems.

Each metric does not have a standard definition.

Conferences show different metrics and presentation formats.

Unknown if/how metrics change throughout operational life cycle.

Tracking the right, common high-level metrics

With standardized definitions

At the right time in operational life cycle

Less time spent interpreting data

Increased customer communication

Identification of proper product improvement programs

More reputable product developer

Increased product performance

Lower maintenance costs

Cost savings

Research Question Defined

Artifact Review

1st Round of Customer Interviews

Diagnose Areas of Improvement

Identify Benefits of Proposal

Conduct Expert Interviews

2nd Round of Customer Interviews

Research Question Answered

http://lean.mit.edu
The Case Study: Expert Interviews

- Eleven experts spanning component design, safety, and project
- Recommended metrics satisfy voice of customer AND individual responsibilities
- Total of 99 recommended metrics (45% reduction from historical data)
- 5 metrics >50% agreement, total 10 metrics >25% agreement

http://lean.mit.edu
The Case Study: Expert Interviews

- Of the 99 recommended metrics, 53% should be measured throughout the life cycle, and 47% should be measured at different points throughout the lifecycle.

- 90% of the most “value-added” (ie – top ten) metrics should be recorded throughout the product’s life cycle.

http://lean.mit.edu

© 2010 Alissa H. Friedman, Massachusetts Institute of Technology
LAI Knowledge Exchange Event – October 7, 2010
The Case Study: Expert Interviews

Artifact Review

1st Round of Customer Interviews

Diagnose Areas of Improvement

Identify Benefits of Proposal

Conduct Expert Interviews

2nd Round of Customer Interviews

Research Question Answered

http://lean.mit.edu

© 2010 Alissa H. Friedman, Massachusetts Institute of Technology
LAI Knowledge Exchange Event – October 7, 2010

23
The Case Study: Customer Interviews, Round 2

• Small sample size, n = 4 customers interviewed
 – 4 customers represent >80% of product population
• Metric generation: “what five to ten [product] performance metrics do you consider most important to address your job’s CTQ’s?”
• Total of 28 recommended metrics. Total of:
 – 100% customer agreement = 1 metric
 – 75% customer agreement = 3 metrics
 – 50% customer agreement = 8 metrics
 – 25% (individual) customer agreement = 28 metrics
The Case Study: Customer Interviews, Round 2

• The issue lies in the Question/Metric!

 Basili’s (2000) Goal-Question-Metric Approach

• Customers share same goal

• Yet the question (how to characterize the goal) and metric (quantitative data that addresses question) vary
The Case Study:
Customer Interviews, Round 2

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Experts</th>
<th>Customers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information freshness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-going peer support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transparency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credibility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demonstrates value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative Advantage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well documented</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tailorable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low barrier of entry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compatibility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trialability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variety of Incentives</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average (0 to 3)
The Case Study: Findings

<table>
<thead>
<tr>
<th>Metric Set</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historical</td>
<td>10</td>
</tr>
<tr>
<td>Expert</td>
<td>10</td>
</tr>
<tr>
<td>Customer</td>
<td>28</td>
</tr>
<tr>
<td>Historical / Expert</td>
<td>18</td>
</tr>
<tr>
<td>Historical / Customer</td>
<td>33</td>
</tr>
<tr>
<td>Customer / Expert</td>
<td>31</td>
</tr>
<tr>
<td>All 3</td>
<td>35</td>
</tr>
</tbody>
</table>

Maybe metric commonality can exist – look deeper into results
The Case Study: Findings

Metric Population Set

<table>
<thead>
<tr>
<th></th>
<th>Historical Expert</th>
<th>Historical Expert</th>
<th>Historical Customer</th>
<th>Expert Customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Metrics in Set</td>
<td>35</td>
<td>18</td>
<td>33</td>
<td>31</td>
</tr>
<tr>
<td>Number of Shared Metrics</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Percentage</td>
<td>3%</td>
<td>11%</td>
<td>15%</td>
<td>23%</td>
</tr>
</tbody>
</table>

Number of Metrics in Agreement with "X" Number of Customers

<table>
<thead>
<tr>
<th>Number of Metrics in Agreement with "X" Number of Customers</th>
<th>0 Customers</th>
<th>1 Customer</th>
<th>2 Customers</th>
<th>3 Customers</th>
<th>4 Customers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Customers</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 Customer</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2 Customers</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3 Customers</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4 Customers</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Metric commonality **CAN exist!**
The Case Study: Recommendations

1. Engage leadership
2. Generate common list of metrics, with standard set of definitions
3. Create a “pull” database system
4. Use common templates for metric presentations during product conferences
5. Be patient, be energetic, be supportive
The Case Study: Recommendation 1

- Engage leadership
 - Tie common metrics to bottom-line measures
 - Predict benefits over time (quantitative)
 - Include examples of success (Nike, CAST)
The Case Study: Recommendation 2

- Generate common list of metrics, with standard set of definitions
 - Begin with this research as a starting point
 - Great venue to start discussions: product conferences
 - Make sure the right stakeholders are in the room
 - Follow the goal-question-metric approach
 - Perform “metric audit” to identify metric alignment, false alarms, and gaps
The Case Study: Recommendation 3

• Create a “pull” database system
 – Integrated project team between IT, customers, and developers to create a user-friendly system to place data into, and pull data from
 – Opportunity to understand the customer technological capabilities and challenges
 – Aim for a self-sustaining database (addresses an adoption attribute)
 – Still a barrier for this case study is export control; unsure at moment how to work through this.
The Case Study: Recommendation 4

• Use common templates for metric presentations during product conferences
 – Base template information off of the current common metrics between customers and experts
 – This can be used as interim step while adopting a metric commonality decision-making model – if improvements are seen during conferences using a common template, this is a good starting point
The Case Study: Recommendation 5

- Be patient, be energetic, be supportive
 - This adoption process will NOT happen overnight! Could take 1-2 years, at minimum
 - Don’t lose faith! Need the right leadership supporting the process, understand expected outcomes, and continuously engage stakeholders
 - Continuously improve model so it becomes a best-in-class initiative across the industry
Insights, Reflections, and Impacts

- The importance of the voice of the customer
- The link between metrics and strategic planning
- A new PMS framework
- The connection to lean thinking
- The importance of adoption
- Business strategy creation
Insights, Reflections, and Impacts

- The importance of the voice of the customer
 - Highlighted in the case study by:
 - Common metric sets (Venn Diagram reference)
 - Adoption attribute assumptions
 - Recommendation of IPT

- Understanding VOC → “co-creation” of VOC

 “In this co-creation process, the firm and the customers do the asking, listening, observing, and experimenting: that is, the firm and the customers engage in learning. The subject of study is customer needs/wants and firm needs/wants. The process results in the firm and customers knowing more about the needs/wants of the customer and the firm. Finally, after the process is complete, the firm and the customers figure out the goods and services that will be developed (or performed) by the firm and those that will be developed (or performed) by the customers.”

Insights, Reflections, and Impacts

- The link between metrics and strategic planning

<table>
<thead>
<tr>
<th>Metric Set</th>
<th>Total # Metrics</th>
<th>Top # Metrics</th>
<th>Top Metric Criteria</th>
<th>Remaining Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historical</td>
<td>181</td>
<td>10</td>
<td>>=50% customer agreement</td>
<td>171</td>
</tr>
<tr>
<td>Expert</td>
<td>99</td>
<td>10</td>
<td>>=25% expert agreement</td>
<td>89</td>
</tr>
<tr>
<td>Customer</td>
<td>28</td>
<td>8</td>
<td>>=50% customer agreement</td>
<td>20</td>
</tr>
</tbody>
</table>

Are any of these necessary to make the right decisions?
Insights, Reflections, and Impacts

• A new PMS framework
 – Common metric creation through a “pre-audit”
 – External stakeholder (customer) as primary data source
 – Individual instead of group input

Part 1:
• Based on Yin’s case study design
• Creation of current state analysis

Part 2:
• Shift focus from problem to solution
• Motivation for change

Part 3:
• Address internal and external stakeholder voices
• Creation of initial solution

http://lean.mit.edu

© 2010 Alissa H. Friedman, Massachusetts Institute of Technology
LAI Knowledge Exchange Event – October 7, 2010
Insights, Reflections, and Impacts

- The connection to lean thinking

1. How can I understand the way my organization currently operates within its larger context?
 Artifact review
 Initial set of customer data

2. How can I define and evaluate the future possibilities for a more efficient and effective enterprise?
 Diagnosis of improvement opportunities
 Benefits of metric commonality

3. What are the most effective strategies and tactics to achieve these future possibilities for my enterprise?
 Effective strategies and tactics determined from expert interviews, 2nd round of customer interviews

4. How can I best manage the enterprise change process?
 Adoption attributes
 Metric trending over time
• The importance of adoption

<table>
<thead>
<tr>
<th>Adoption Attribute</th>
<th>Expert</th>
<th>Customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Three</td>
<td>Information Freshness</td>
<td>Information Freshness</td>
</tr>
<tr>
<td></td>
<td>Ongoing Peer Support</td>
<td>Credibility</td>
</tr>
<tr>
<td></td>
<td>Transparency</td>
<td></td>
</tr>
<tr>
<td>Bottom Three</td>
<td>Variety of Incentives</td>
<td>Variety of Incentives</td>
</tr>
<tr>
<td></td>
<td>Compatability</td>
<td>Ongoing Peer Support</td>
</tr>
<tr>
<td></td>
<td>Trialability</td>
<td>Low Barrier of Entry</td>
</tr>
</tbody>
</table>

There is some alignment already: information freshness in top three, variety of incentives in bottom three

But still, gaps between experts and customers … need to align!
Business strategy creation

- Strategy 1: sell product to potential buyers with “optimal list of performance metrics”
 - Another data set in comparing “apples to apples”
 - Provides the customer with a “starting point”

- Strategy 2: offer performance metrics as part of “remote diagnostics” package
 - Customer does not need to worry about additional resources to record the metric data
 - Developer has access to customer data all the time
Answering the Research Questions

Future Work
Answering the Research Questions

• Can the concept of commonality be applied towards metrics?
 – YES!
 – Results of data analysis:
 • Historical/Expert = 11%
 • Historical/Customer = 15%
 • Expert/Customer = 23% (!!!)

“The key to having a successful set of metrics is pairing down your database to the vital few key metrics that are linked to your success.” (Brown, 1996)
Answering the Research Questions

• How efficient and effective is commonalizing metrics in assessing performance?
 – Qualitatively: metric commonality improves both
 • Effectiveness
 – All customers tracking the right things of which to base decisions
 • Efficiency
 – All customers tracking the same things
 – Less time needed to interpret data and make decisions
Answering the Research Questions

• How do metrics change over an operating life cycle?
 – Based off of expert interviews
 • 53% of all metrics should be tracked across entire life cycle
 • 47% of all metrics should be tracked during varying phases of life cycle
 • TOP TEN METRICS: 90% of these metrics should be tracked across entire life cycle
Future Work

• How much commonality is too much commonality?
• Quantitative benefits of metric commonality
 – “You can save ‘X’ million dollars over ‘Y’ years…”
• Expand the knowledge!
 – More aerospace case studies
 – Studies in other fields … healthcare?
 – Perhaps a study that focuses on organizational performance
 rather than product performance
Questions?
Backup
Blackburn’s (2009) PMS Framework Typology

<table>
<thead>
<tr>
<th>Structural</th>
<th>Procedural</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Performance Prism (Neely et al., 2001)</td>
<td>A Framework for Factors Affecting Evolution (Kennerly et al., 2003)</td>
<td>Extended Enterprise Balanced Scorecard (Structural) and Procedural Frameworks (Folan et al., 2005)</td>
</tr>
<tr>
<td>European Foundation for Quality Management – EFQM (Jackson, 2001)</td>
<td>Define-Measure-Analyze-Implement-Control (De Feo et al., 2005)</td>
<td></td>
</tr>
<tr>
<td>PSM’s Measurement Construct (McGarry et al., 2001)</td>
<td>GQM (Basili et al., 1994)</td>
<td></td>
</tr>
<tr>
<td>Value Stream Mapping (Murman et al., 2002)</td>
<td>Steps to Metric Selection</td>
<td></td>
</tr>
</tbody>
</table>

Structural = typology-based
Procedural = methodology for establishing the system
Both = structural and procedural
<table>
<thead>
<tr>
<th>Performance Measurement Framework</th>
<th>Strengths</th>
<th>Weaknesses</th>
<th>The Performance Prism</th>
</tr>
</thead>
</table>
| Strategic measurement and reporting technique (SMART) | • Integrates strategic objectives with operational performance measures.
• Aggregates financial and non-financial measures across various functions and business units. | • Does not capture measures with respect to all stakeholder values.
• Does not provide any mechanism to identify causal relationships between measures across functions or levels.
• Does not explicitly integrate the concept of continuous improvement.
• May promote local optimization due to functional approach | • Has a much more comprehensive view of different stakeholders (e.g. investors, customers, employees, regulators and suppliers) than other frameworks.
• Provides visual map causal relationship map of measures for individual stakeholders. | • It offers little about how the causal relationships between the performance measures are going to be realized.
• There is little or no consideration is given to the existing systems that companies may have in place. |
| The Balanced Score card | • Scorecard approach to integrate strategic, operational, and financial measures.
• Focus on linkages and strategy maps
• Most widely accepted | • The linkages between the measures are presumed and unidirectional.
• Explicitly focuses on customers but leaves other stakeholders implicit.
• No deployment system that breaks high-level goals down to the sub-process level. | |
| European Foundation for Quality Management | • Contains self assessment tools
• Focuses not only on the results, like the balanced scorecard, but also on the drivers of success | • Enterprise performance management is broader than quality management.
• Loosely defined framework with no supporting process of implementation. | • Provides a systematic process of assessing the existing performance measurement system and adapting to the changing internal and external environment.
• Design against people, process, system, technology | • Does not consider stakeholders as one of the factors affecting the measurement system. |

http://lean.mit.edu
© 2010 Alissa H. Friedman, Massachusetts Institute of Technology
LAI Knowledge Exchange Event – October 7, 2010
The Case Study: Diagnose Improvement Areas, Identify Commonality Benefits

<table>
<thead>
<tr>
<th>Improvement Opportunity</th>
<th>Benefits of Metric Commonality</th>
<th>Tie to the Bottom Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customers track similar high-level metrics but use different measurement systems.</td>
<td>Tracking the same high-level metrics will reduce variation in what is analyzed. Less variation in data means more accurate assessments of the data. Less time will be needed to interpret the data, as well as more clarity of what root causes drive the high-level metric behavior. Communication between customers will increase. Identification of the right corrective actions will be recommended.</td>
<td>Cost savings.</td>
</tr>
<tr>
<td>Each tracked metric does not have a common definition across all customers.</td>
<td>Less metric variation and uncertainty reduction in data interpretation. Less time will be needed to interpret data.</td>
<td>Cost savings.</td>
</tr>
<tr>
<td>Conference presentations show varied metric information using varied presentation formats.</td>
<td>If the same information and same formats are used, then less time and effort is needed to interpret the data presented. The communalization of what is presented will allow the customers to better share information between other customers, initiating a “best in class” work flow, as well as an increase in universal product knowledge. The program manager can also use this information better to determine what improvement programs should be implemented to improve the product’s performance.</td>
<td>Performance improvement should decrease maintenance costs.</td>
</tr>
<tr>
<td>Lack of understanding in how metrics change over the course of the product’s operation.</td>
<td>Tracking the right metrics at the right time leads to a better understanding of product performance throughout its lifecycle, and therefore improvement money can be spent on the right programs at the right time.</td>
<td>Increased performance and decreased maintenance costs.</td>
</tr>
</tbody>
</table>

Artifact Review | 1st Round of Customer Interviews | Diagnose Areas of Improvement | Identify Benefits of Proposal | Conduct Expert Interviews | 2nd Round of Customer Interviews | Research Question Answered

http://lean.mit.edu © 2010 Alissa H. Friedman, Massachusetts Institute of Technology
LAI Knowledge Exchange Event – October 7, 2010
Customer Interview Questions (Round 1)

- What is your [enterprise’s] process of recording raw metric data (types or numbers of databases used)?
- How did the current [product] metric recording process come to fruition? How was it developed, how have things changed along the way, and how much influence into the system did you have vs. [the product developer’s] influence?
- What are your methods of recording data (spreadsheets and databases vs. observations, field reps to record information, etc.)?
- How long have you been recording [product] metrics?
- How would [product] metric standardization benefit the way you run your [enterprise]? What improvements would you like to see currently in your system?
- What are your concerns in standardizing [product] metric data?
- Do your [product] metrics measure your key processes? What are your key processes?
- Are your strategic objectives driven by your [product] metrics? What are your strategic objectives?
- How often are [product] metrics assessed and re-evaluated?
Expert Interview Questions

Addressing Role of the Developer via [Product] Metrics through a Life Cycle:
What [product] performance measures do you believe are most effective in [helping you better do your job] when the [product] is first entered into service?

What [product] performance measures do you believe are most effective in [helping you better do your job] when the [product] is in the middle of its operating life (prime production)?

What [product] performance measures do you believe are most effective in [helping you better do your job] when the [product] is preparing to be phased out?

Effectiveness of Metric Commonality:
What do you believe is the optimal percentage of common [product] performance metrics across all customers that would result in maximum efficiency of understanding [product] performance?

What is your confidence interval of your answer above?

Motivating Factors for Commercializing Metrics:
What data would you need to see to convince yourself that metric commonality is the right approach to managing [product] performance?

How much customer / developer interaction do you believe is necessary to determine these measures? What other stakeholders do you believe would need to be involved in this process?

What incentives or incentive structures should be in place to motivate the concept of metric commonality across customers?

Other:
Tasked you what else you believe is important to the customer outside of [VOC #1] and VOC #2. What [product] performance measures would you think should be in place to track this parameter?

Are there other programs you have worked on that you believe have a strong framework in determining proper [product] performance metrics? How successful do you believe those other programs are?

Do you have other comments or concerns you would like to discuss?
Modified Adoption Questions

<table>
<thead>
<tr>
<th>Metric Category</th>
<th>Must-Be</th>
<th>One-Dimensional</th>
<th>Attractive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well documented
You are provided with documentation and training on how to adopt metric commonality principles for your enterprise.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Trialability
You can pilot the recording of the common metric set and, depending on its success, can implement this model as more of a standard</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Low barrier of entry
The transition between the way you record metrics now and the proposed way you should record metrics is not overly complex.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Transparency
There is easy access, as a product community, to this common metric data.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Demonstrates value
There is a clear link between this new model and its assumed value (higher performance and lower maintenance costs).</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Variety of Incentives
The use of the new model includes personal incentives, or increases your job performance.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Tailorable
There is still opportunity for the metrics to be customized for your enterprise’s particular needs.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Information freshness
The recorded data is updated at a predetermined periodic basis so that it continues to help drive decisions.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Relative Advantage
It has an advantage over the current metric recording process</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Compatibility
It is compatible with your enterprise’s current operating environment.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>On-going peer support
It is a supported system (such as support provided through knowledgeable field representatives or IT experts if an IT-enabled system is developed).</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Credibility
It is based on a method, approach, tool, or standard that has already proven itself to be valuable</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
Section 1:
What are your job’s largest critical-to-qualities (CTQ’s)?
How does tracking [product] performance integrate with your business objectives?
How did you create the list of [product] performance metrics you currently track?
What do you do with the [product] metrics once you record them?

Section 2:
What five to ten [product] performance metrics do you consider to be most important to address your job’s CTQ’s? Why?
Open discussion on data review (not listed in thesis)

Section 3:
From your standpoint, what are advantages and disadvantages to adopting metrics that other customers already use?
What sort of data would you want to see that would convince yourself that commonalizing metrics would benefit your [enterprise]?
What would improve, or incentivize, adoption of metric commonality?
Open discussion on adoption survey (Appendix C)
Are there other attributes we did not review that you believe should be considered when trying to adopt the model of metric commonality?