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Abstract

Damping in MEMS resonators was studied experimentally and numerically.
Quality factor measurements were periormed on Draper gyroscopes made from
boron doped silicon wafers with varying amount of germanium (0%, 2%, 23%,
30%). The quality factors of gyroscopes with germanium were measured to be
lower than those without germanium, due to increased anelastic damping.
Specifically, the decreased thermal conductivity in the devices with germanium
causes those devices to experience thermoelastic damping of a greater magnitude
than the germanium-free devices. The amount of damping exhibited is found to be
well explained by existing analytical expressions for thermoelastic dissipation in a
beam model. The governing equations of thermoelasticity dictate that the amount
of damping that a resonator undergoes is a function of both material properties as
well as device geometry. Damping will become greatest at operating cycle times
that are of the same scale as the thermal relaxation times of the device material.
Due to the fact that analytical expressions exist for only a few simple geometries,
a finite element model was developed to evaluate thermoelastic damping in more
complicated geometries. The finite element model is demonstrated to be in good
qualitative agreement with the analytical expressions, and is used to analyze the
impact of design modifications such as the addition of fillets and anchors to a
simple beam model. It is shown that depending on the size scale of the resonator
(which dictates the amount of internal damping), these geometric modifications
may either hinder or improve resonator damping characteristics.
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Chapter 1

Introduction

Microelectromechanical systems (MEMS) have been developed to scale down
and integrate technologies that ultimately have lower power requirements, smaller
physical size (and weight), and lower cost than their macroscopic counterparts. Although
many of the devices are constructed using techniques borrowed from integrated circuit
manufacturing, MEMS depart from static structural design through the inclusion of
flexible elements- sensors and actuators whose motions are governed by the electrical and
mechanical properties of the materials used in their construction. Any deviation from the
predictable physical behavior of these moving pieces may be attributed to some change in
their environment, and hence is the basis of various sensing techniques.

Gyroscopes produced at Draper Laboratory sense angular velocity when
micromachined vibrating masses are deflected out of their plane of motion by a Coriolis
force. The amplitude of the out of plane motion is sensed capacitively and is proportional
to the angular rate of rotation. To maintain low energy loss as well as good sensitivity,
the damping of the oscillators must be minimized. Operating the gyroscopes under
vacuum conditions greatly reduces energy loss, but further improvements in performance
must be based on an understanding of the internal damping mechanisms. To this end,
damping measurements were performed on a set of gyroscopes made from different
silicon-based compositions. These measurements clearly established that material
damping was a factor and deserved further study.

Based upon a literature review of damping mechanisms in quartz oscillators,
thermoelastic damping was identified as a leading contributor to energy loss in Draper’s
gyroscopes. The amount of thermoelastic damping present during device operation
depends heavily upon the thermal properties of the doped silicon, which varies markedly
among the materials. Specifically, the thermal conductivity had the greatest variation-
differing by almost a factor of fifteen for two of the materials in the study. Using
analytical expressions developed in papers by Zener and Roukes [1,2,3] for thermoelastic

damping in vibrating beams, it is found that thermoelastic damping offers a good
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explanation of the differences in measured quality factors of the devices under study. Due
to the fact that analytical expressions exist for only a few simple geometries,
approximations must be made in the application of the equations to the gyroscope under
study. This restraint on the use of the damping equations presented the motivation to
develop a general method to calculate thermoelastic damping for an expanded set of
geometries.

Finite element analysis was used to develop a method to evaluate the amount of
damping in more complex geometries. The partial differential equations that govern the
coupling of the strain field and the thermal field were identified along with the
appropriate boundary conditions. These were entered into FEMLAB to be solved over
various three dimensional geometries. The results of these simulations were compared to
the analytical expressions and are found to be in good agreement in regions of maximum
damping. Although finite element analysis has been used in the past to study the coupling
of the elastic and thermal fields that exist in a material [4,5], typical interest has been
limited to static and quasi-static conditions. This work differs from previous research in
that the finite element method was employed to solve for complex eigenvalues of
oscillatory systems undergoing thermoelastic damping. The ratio of the real and
imaginary parts of the eigenvalues is related to the amount of energy lost per radian of
oscillation, and hence determines the quality factor of the resonator. This model may be
used to quickly evaluate the contribution of thermoelastic damping to new MEMS
designs that are still in the developmental stage, and serves as a tool to screen out flawed
designs before they go to processing. This work may be extended to other damping
mechanisms (that are expressible in terms of partial differential equations) to develop a
full suite of models to predict anelastic damping in MEMS.

The goal of this thesis is to present the results of an effort to improve the
performance of Draper’s gyroscope through a study of the impact of materials selection
and beam geometry upon the mechanical quality factor of the oscillator. The thesis
comprises two sections; Section 1 contains four chapters that outline the experimental
portion of this thesis. Chapter 2 provides the reader with an explanation of the
mechanical quality factor (Q) of a resonant structure, Chapter 3 describes Draper's

gyroscope (principles of operation and construction), Chapter 4 details the experimental
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setup and results of Q measurements, zad Chapter 5 uses equations from thermoelastic
theory to explain the difference in measured Q values between different materials used to
construct the gyroscopes.

Section 2 contains 4 chapters, which describe the physics of the damping
mechanism and the development of the finite element model used to predict the amount
of damping in a structure due to thermoelastic damping. Chapter 6 is concerned with
anelastic materials and resulting damping behavior, Chapter 7 provides detail on
thermoelastic damping, Chapter 8 documents the construction of a finite element model
with anelastic behavior, and Chapter 9 discusses the features and resulits of this
simulation.

The thesis ends with a conclusion of the information presented, and also contains

some thoughts on extending the present body of work.
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Section One

This section is designed to provide the reader with a general understanding of the
quality factor measurements of Draper Laboratory's gyroscopes, as well as offer a
cursory explanation of the difference in measured quality factors between gyroscopes
made of different materials. The experimental data clearly identified thermoelastic

damping as an important mechanism, motivating the subsequent numerical studies.

Chapter 2

Mechanical Quality Factor of a Beam

The mechanical quality factor of a resonator is a measure of fractional energy lost
per radian of oscillation- the rate at which kinetic and potential energy are converted to
some other form of (irrecoverable) energy. If the system is driven with a forcing function,
the same amount of energy per radian must be supplied to maintain a steady state
oscillation. If the system is resonating freely, decaying amplitude will result (shown in
Figure 2.1). Equivalently, the quality factor is also a measure of the how sensitive the
amplitude of vibration is to changes in the driving frequency. Therefore, we have two
ways to measure the quality factor of a device: we may measure its amplitude response to
a varying sinusoidal driving force, or we may perform a ring down experiment. In the
latter case, a steady state oscillation is achieved, the driving force is removed, and a

measurement is taken of the decaying amplitude of the vibration.
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Amplitude

1
Time

Figure 2.1: Example of a decaying sinusocid- the dashed line represents the exponential decay

envelope

The equation describing the motion of the damped oscillator shown in Figure 2.1 is seen

to be the product of a sinusoid and a decaying exponential:

(2.1)  x(t)=x, cos(wr)-e™”

x(t) = Position as a function of time

x, = Amplitude of vibration

@ = Angular frequency of oscillation = @,

o, = The resonant angular frequency of the system with no damping

0 =Damping parameter

For systems with small damping (50 @), @ is very close to the undamped resonant
frequency of the system. In this chapter the assumption is made that they are

approximately equal.
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The quality factor is explicitly defined here as the ratio of the total (instantaneous) energy
of the oscillator (kinetic plus potential) to the (instantaneous) energy dissipated per

radian:
(2 2) Q - Eloral
lost- per-radian

It is shown in Appendix 1 that equation 2.2 is equivalent to the ratio of the resonant

frequency w,and the damping parameter § in equation 2.1 (with a factor of two):

E, ),
23 = total = 0
23) © Y

lost- per-radian

In a weakly damped forced system, the amplitude of the oscillation is a function
of the difference of the forcing frequency and the resonant frequency. The amplitude of
vibration will peak near the resonance frequency, and a measure of the width of the peak

at half of the maximum amplitude is related to the quality factor (see Appendix 1):

24) Q=—toa___ Z’w

lost- per-radian

Ao = Width of peak at half maximum

Many of the dynamic MEMS structures incorporate beam elements into the
device design: they are readily formed by standard processing techniques and they have
predictable mechanical behavior. The flexible nature of these elements is exploited in
sensing applications, as various techniques involve a measure of a shift in the frequency
of oscillation'. The equation for the fundamental frequency of a beam in a flexural mode

is given in equation 2.5, and a diagram of a representative vibrating beam is shown in

! The shift in frequency may be related to a change in the axial stress of the beam (which may be caused by
an inertial force) or a change in the mass of the beam (caused by adsorption of a chemical species) as two
examples of sensing applications.
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Figure 2.2. A beam with two clamped ends is shown, but equation 2.5 is also valid for a

beam fixed at only one end.

Direction of
YVibration

Figure 2.2: Diagram of a Vibrating Beam Eiement

25 o= ELa_ | E w, -
pA L 12p I

(7]

0

Resonant angular frequency of the fundamental mode of a beam

E = Young's modulus of the material along the longitudinal axis

! = Moment of inertia about the longitudinal axis
w'h
(I = ETY for a beam of rectangular cross section, # = beam height)

-

p = Density of beam material

A = Area of the cross section of the beam
w = Width of the beam, measured in direction of vibration
L = Length of the beam along the longitudinal axis

a, = A constant determined by the boundary conditions

(a, =4.730 for a beam, 1.875 for a cantilever)
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The quality factor of a micromachined silicon beam may be determined through
capacitive excitation and sensing: with the silicon beam acting as one side of a charged
capacitor, electrodes placed near the beam may induce movement and measure
displacement. This measurement of quality factor requires integrating electrical readout
circuits, and the silicon beam must be doped to give the desired electrical properties.
Optical detection techniques, such as laser Doppler vibrometry, offer an alternative

method of measuring displacement [6].

18



Chapter 3

Draper Gyroscopes

3.1 Device operation

Figure 3.1: Draper Gyroscope

Figure 3.1 shows the layout of a Draper gyroscope, with salient features noted.
Square pads (lighter in color) surrounding the device are electrodes. Not seen explicitly
are two large electrodes under the proof masses that are used to detect out of plane
motion. The large square that defines the central gecometry is approximately one
millimeter on a side.

The two proof masses in the picture are driven out of phase in the plane of the
substrate in the x direction by the outer comb drives. The inner comb structures are used
for sensing motion of the proof mass in the x direction. Each outer comb drive consists of
interdigitated silicon fingers that form two electrodes. With the proof masses grounded, a
time varying voltage is applied to the stationary outer electrodes, setting the proof masses
in motion through an attractive capacitive force. Restoring forces are generated by the
elastic support beams. Since the force between the two electrodes is proportional to the
voltage squared, a DC offset is used to generate motion at the same frequency as the

voltage, given by equations 3.1-3.3:
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3.1) F=Kv?

F =Force acting upon the proof mass from the comb drive
K = A constant of the capacitor

V = Voltage applied to the comb drive
If the voltage input is given by:
(3.2) V(t)=Vp.+V, sin(wr)

The force generated on each proof mass is:

1..,dC 1dC . » 1dC 3 . 2 .2
F =5V' —Jx_ =EI[VDC +VAC sin(an)]” =EE[VDC' + 2VDCVAC sm(ax)-i-VAC sin“(ar)]

1—cos(2ar)

Using the trigonometric relationship: sin*(awr) = >

1dC . 1-cos(2ar)
3.3) =E-d—;-{VDC2 +2V, \V, sin(er)+V, .} l:-——é——-}}

It is seen that this voltage signal generates a force at the voltage input frequency, as well
as twice the input frequency. The input frequency is chosen to force the oscillator at the
desired resonance mode.

In this manner of operation the masses will be pushed in the z direction if there is
a rotation about the y-axis. The force on each proof mass is proportional to the angular
velocity about the y-axis and the linear velocity in the x direction, given by the relation:

(34) F=ma =2m(Qx V)

coriolis

F =Force on the proof mass
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m = Mass of the proof mass

= Acceleration of the proof mass with respect to the frame of the gyroscope

Q

coriolis
Q = Angular rotation of the gyroscope with respect to inertial space
v = Velocity of the proof mass with respect to the frame of the gyroscope

The motion of the proof masses in the z direction can be determined by measuring
the current output from the proof masses- if a constant voltage is maintained between the
proof mass and the electrode under each proof mass, the change in gap distance will
result in a change of capacitance, which will require charge be moved on or off the
masses to maintain a constant voltage. The proof mass-electrode system is modeled as a

pair of parallel plate capacitors:

Q =CV,; = Charge on parallel plates

C= A, = Capacitance of parallel plates, I? is a function of time

V, = Bias voltage between the proof mass and electrode

A = Effective area of the electrodes

£, = Permittivity of free space

The current from the capacitor is defined as the time rate of change of the charge:

_d0_d o, =V34£=V81(ﬁ)
dr dt dt dt\ D

Let D{t)=D, +A(t),itis assumed that A’ D

A = Change in distance from equilibrium

D, = Equilibrium gap size

The current is now seen to be proportional to the velocity of the proof mass:



35) 1=v,ae 9L _VeAL, dD , V,Ae, dA
dt D Do- dt D> dt

The current is converted to a voltage signal through the use of an integrator circuit, which
gives a voltage output proportional to the position of the proof mass. It is desirable to
have the integrator circuit in close proximity to the gyroscope, as the currents generated

are small and may be easily dissipated. Figure 3.2 shows an electrical schematic of an

integrator circuit.
Cs
1
I
O S —
_O Vou
Vs

Figure 3.2: Schematic of an integrator circuit

C, =Feedback capacitor

I = Current from proof mass

V.. = Voitage readout

V, = Voltage bias on the electrode

Here V,,, = [ldr 50 V,,, = [a 484 - Tl ()5 Vpht
, ¢, 0 &’ ep C,D’

In the operation of Draper's gyroscope, the masses are grounded and the
electrodes underneath the two proof masses are oppositely biased. In this mode of

measurement, common out of plane motion of the masses with respect to the substraze is
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rejected, while differential motion relative to the substrate causes the currents from both
proof masses to add constructively. This output signal constitutes a measurement of the
angular rate of rotation about one axis of the device. The full electrical schematic for the

gyroscope is shown ir Figure 3.3.

Cr

—
‘_Z>-——° ACou

inner
Outer right O O Outer
motor motor motor

Sense plate

L—.0 P_sig

inner left
motor

Figure 3.3: Electrical schematic of the gyroscope- proof masses are shown in gray

A similar capacitive measurement from the inner comb electrodes produces a
voltage proportional to the displacement of the proof mass in the x direction. This is
useful for measurements of the quality factors of the gyroscopes oscillating in this
sensing mode. Unfortunately, limitations in our experimental setup prevented this voltage
signal from being used. To generate a signal proportional to the displacement in the x
direction, a carrier signal is used to isolate the desired signal. The carrier is placed on the
inner comb drive and is used to demodulate the output from the integrator circuit coming

from the proof mass.

23



3.2 Device Construction

Device layers were grown on silicon substrates for four of the five different
materials used for making the gyroscopes in this study. All four were grown with high
concentrations of boron (greater than 10°° cm™) and varying concentrations of
germanium (0, 2, 23, 30%)°. For the fifth material, boron was diffused into the top layer
of the substrate to a boron concentration similar to that of the other materials. Etch
processes on the top layer of the doped silicon defined the device geometry, which were
anodically bonded (device layer down) to metal-patterned glass substrates. The undoped
regions of the silicon substrates were thinned back to the device layer and the device
parts were released.

Although all the gyroscopes made from the different materials were of similar
design scale, the dimensions of the beams varied slightly from material to material due to

variations in processing the different materials.

* The 23% and 30% germanium compositions were custom epitaxial films provided generously by
collaborator Matt Currie in Professor Fitzgerald's laboratory.
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Chapter 4

Q Measurements and Results

4.1 Experimental setup

Measurements of the quality factors of Draper’s gyroscopes were made at the
wafer level inside a vacuum probe station. The frequency of the forcing voltage on the
outer comb drive for one proof mass was swept up in frequency about the desired
resonance mode and compared to the demodulated output voltage from the proof masses.
Quality factor measurements were performed by measuring the frequency bandwidth at
half the maximum output voltage (Appendix 1).

Figure 4.1 is a schematic of the test setup. The sweep frequency is generated by
the Hewlett Packard 3562A signal analyzer. The carrier signal is generated by the
Hewlett Packard 3310A signal generator. These signals are routed through a test box,
which sends all input and output signals to the vacuum-enclosed gyroscope through a
single shielded cable. Also enclosed in the vacuum chamber are the preamplifiers needed
for the gyroscope outputs. These need to be located close to the readout nodes, and so
they are integrated onto the face of the probe card. The amplified gyroscope outputs are
routed back through the test box, where they can be demodulated and fed back into the
3562A spectrum analyzer. The oscilloscope is used for a reference, to monitor the

gyroscope signal before demodulation (labeled AC out).
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"HP 3310A
B Signal Generator

Output

§ excitation

§ Channel | Channel 2
Tektronix 2465 §
Oscilloscope  §

| Source Channel | Channel2

HP 3562A Dynamic
_ Sial Analr

Vacuum Probe
Station and Gyro

Figure 4.1: Quality Factor Test Setup

4.2 Experimental Procedure

Once the test device wafer is placed on the test platform inside the vacuum
chamber, the chamber is sealed and pumped down to approximately 1 mTorr. This step is
taken to minimize the effects of fluidic damping. All the electronics are turned on for at
least fifteen minutes prior to any measurements being taken; this allows the amplifiers
inside the vacuum chamber to stabilize. (The performance of the amplifiers was noted to
drift as they warmed up- the vacuum conditions prevented them from conducting heat
away as efficiently as they would at atmospheric conditions.) Next the probe card tips are
brought into contact with a test device after aligning the device's electrical test pads with
the contact tips of the probe card. This step is performed by visual inspection through a

26



port in the top of the vacuum chamber- adjustments to the relative position are made by
adjustment of the wafer stage through position controllers on the outside of the chamber.

A Hewlett-Packard 3310 Signal Generator was used to provide a 100kHz, 300
mV (peak to peak) carrier signal that was routed to the right inner motor. A Hewlett-
Packard 3562A Dynamic Signal Analyzer provided a 5S0mV (peak to peak) sweeping
frequency to the outer comb drives to provide the proof mass forcing voltages. Both outer
motors were biased at +5V (in addition to the AC forcing voltage), the left inner motor
was biased to +5V, the electrodes under the proof mass were grounded, and the proof
masses themselves were grounded. (All voltage biases were provided with a power
supply routed through the electronics box.)

Once the resonant mode of interest for a particular gyroscope was identified, one
of two frequency scans was performed. For devices with a quality factor of greater than
50,000 a 1 Hz frequency scan was performed about the resonant frequency. The spectrum
analyzer was set to sample at 5SmHz intervals, and average ten voltage readings at each
interval. For the materials with quality factors of less than 50,000 a 5 Hz frequency scan
about the peak resonance was performed, sampling at 25mHz intervals. For each of these
measurements, the source signal from the spectrum analyzer is compared with the voltage
signal from the proof masses (which should be proportional to the position of the
masses). The ratio of the signal amplitudes and the relative phase of the signals versus the
source frequency are displayed on the spectrum analyzer monitor. Once a frequency
sweep is complete, the bandwidth of the peak at half maximum is measured in addition to
the resonant frequency and the quality factor is calculated using equation 2.4. A sample Q
measurement is shown in Figure 4.2. The circles on either side of the peak are set at the —
3dB points relative to the peak maximum, and the spectrum analyzer determines the peak
frequency (shown as ‘F’) and one half the bandwidth (shown as ‘D" on the right hand

side- it is displayed as negative to relate it to the damping parameter).
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Figure 4.2: Sample quality factor measurement- the ratio of the voltage signals is plotted on top, the
relative phase is shown on the bettom

4.3 Measurement Repeatability

To determine the scatter in the measured Q values, twenty Q measurements were taken
on one device. The average Q was calculated to be 232,000, while the standard deviation
was 4660 or 2%. For each gyroscope Q measurement, at least two measurements were
taken. If these two Q values were not within 1% of each other, a third measurement was.

taken and the measurements were averaged to determine the reported Q of a particular “

gyroscope.

4.4 Experimental Results

Figure 4.1 shows the results of Q measurements for one device taken as a function

of chamber pressure. This plot is shown for illustrative purposes, to demonstrate the
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effect of fluidic damping upon a gyroscope’s operation. At about 10mTorr of pressure the
lead cause of damping shifts from fluidic damping to some other performance limiter. All
the results presented in this section were taken at a pressure of ImTorr or lower to
minimize the fluidic contribution to damping. This was done to isolate the material
damping mechanism for detailed study. (A gap exists in the data between 1 mTorr and 10

mTorr due to difficulties regulating the pressure.)

Pressure vs Q
120000
100000 {- - ¢ o
®e
% 800004 - e
e,
5 60000 | e
] e
[}
£ 400001 - . - - @
20000 § - - e . e
0 ’ : .
0.1 1 10 100 1000
Pressure (mTorr)

Figure 4.3: Plot of the effect of pressure on the measured Q value

The results of the measured Q values for the five different materials under study
are shown in Table 4.1. Approximately ten device, were measured on each wafer, and the
average frequencies and quality factors were recorded. Although the standard deviation in
multiple measurements of the same device might be on the order of a few percent, the
standard deviation of measurements of different devices on the same wafer can be seen to
be up to twenty percent, as is the case for the boron diffused wafer. The average values of
the resonant frequencies and the quality factors were tabulated in an effort to understand
the immediate concern that the devices with a higher germanium concentration have

lower average Q values.
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SiB epi SiGeB 2%  SiGeB 23% SiGeB 30% B-dift
Devices Tested 9 9 9 10 10
verage frequency 12851 13327 10357 10785 12361
verage Q 177,000 62,800 27,100 23,400 219,000
Q standard deviation 10% 18% 6% 10% 20%

Table 4.1: Results of the Q tests for different silicon alloys
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Chapter 5

Effect of Thermoelastic Damping on Measured Q

The gyroscopes produced at Draper Laboratory have high concentrations
(~10*%cm®) of boron incorporated into the silicon lattice to enhance the electrical
conductivity of the base silicon material. The boron serves to increase the number of
charge carriers on the proof masses, which is necessary to generate good current signals
from the proof masses during operation. The 2% Ge SiGeB material has germanium
added to the silicon/boron lattice to help offset the lattice strain in the epitaxial layer
introduced by the high boron concentration. The resulting devices built from this material
exhibit less curvature and better build precision than those built from SiB. However, it
was noticed that the introduction of germanium had a deleterious effect on the measured
quality factor. Devices built from wafers with higher concentrations of germanium were
tested to see if the downward trend in measured Q continued. Inspection of Table 4.1

indicates that this is indeed the case.

Quantity Units SiBepi | SiGeB 2% |SiGeB 23%|SiGeB 30%| B-diff SiValue | Ge Vaiue
e | 2s7E08 | 205608 | 93308 | 35WEWS | 280E00 | 200608 | SH0ETR
reference Si value Int int Int M [8].[9] [9}
oModuius - | N/mT | 1.88E+11 | 1.68EH11] 15411 | 140811 | 160411 | 180EH TH0SEMT:
reference Si value Int Int Int Si value [9) [9}
reference Si value Int Int int Si value [8] [9]
reference Si value Int int int Si value [10]
l reference [11,12] [11,12] [11,12) [11,12) [11,12) [91.[10) 9}

Table 5.1: Properties of the gyroscecpe materials — “Int” means that the property was interpolated
from the pure silicon and germanium properties.

Table 5.1 contains some of the elastic and thermal properties for the materials
tested. Of the parameters listed, the thermal conductivity is seen to vary most
dramatically, differing by a factor of almost fifteen between the materials without

germanium and the SiGeB wafer with 30% germanium. The germanium atoms are
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understood to act as phonon scattering centers, greatly decreasing the thermal
conductivity in the silicon lattice [13]. The fact that the thermal conductivity is greater in
devices with higher quality factors suggests that the damping may be directly related to
the thermal properties of the solid. Zener offered the following equation for thermoelastic
damping in a beam element (vibrating in a flexural mode) in his 1937 paper “Internal

Friction in Solids™:

1 _EX'T, wr.

(5.1 3
Orep P 1+(wr )

E =Elastic modulus
a = Coefficient of thermal expansion

T, = Initial temperature
¢, = Specific heat capacity, at constant pressure

p = Density

The quality factor of a beam element (undergoing thermoelastic dissipation) is
proportional to a damping factor containing thermal and elastic material parameters, and
a frequency function that contains a relaxation time that is proportional to the thermal

diffusivity and the width of the beam:

-

7. =—— = Relaxation time consant
S

= X = Thermal diffusivity

c,p

b = Beam width, as measured in direction of flexural displacement

x = Thermal conductivity



As was mentioned in Chapter 3, the proof mass support beams provide the
restoring forces on the proof masses. As the proof masses are displaced from equilibrium,
each one of the four support beams may be thought of as one half of a beam twice its
length vibrating in the lowest flexural mode. Using expression 5.1, along with measured
beam widths and resonant frequencies, the contribution to the quality factor from
thermoelastic dissipation is calculated for the five wafers is this study. The results are

shown in Table 5.2.

Quantity Units SiB opi | SIGeB 2% |SiGeB 23%|SiGeB 30%| B-diff
Relaxation Time Constant s 9.00E-08 | 7.62E-07 | 1.40E-06 | 1.54E-06 | 7.44E-08
Beam Width m 6.60E-06 | 6.90E-06 | 6.48E-06 | 6.60E-06 | 6.00E-06

Resonant Frequency Hz 12,851 13,327 10,357 10.785 12,361
Thermoelastic Q value 670,000 74,800 40,700 33,000 829,000

Table 5.2: Calculated contributions to the quality factor from thermoelastic damping

The thermoelastic damping values listed in Table 5.2 predict the correct relative
order of the measured Q values for the different wafer materials, but all the Q values in
Table 5.2 are higher than what is observed experimentally. This difference in Q values
may be explained by other forms of damping that are taking place. Unaccounted for are
damping losses caused by anelastic anchors, power loss through proof mass current
dissipation in the operational amplifier’, residual fluidic damping, and possibly other
anelastic mechanisms within the structure, such as dislocation or point defect motion.
Each of these mechanisms has its own associated Q value, and the expression for the

overall Q is (Appendix 1):

1 1 1 1 1

= + + + +...
Qmml QTED th chor Q fluid Qelecmcal

* A calculation was done of the contribution due to the electrical power dissipation. It turns out to predict a
Q value in the billions, and is the same for all devices measured. It is therefore negligible in this
investigation.
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If the assumption is made that all the damping mechanisms besides thermoelastic
damping are similar between the different wafers, we may write the following expression
for the measured Q value:

1 I 1

(5.2) = +
Qloml QTED Qarlm'

When a value of Q. =250,000 is used, it is found that equation 5.2 yields Q values

that are in reasonable agreement with experiment. The calculated and observed values are

compared in Figure 5.1.

Theory va. Deta for MEIB Gyroe from cifierent Matarisls

0 Thaoty
8 Deta

1l '

SBepi SGeB2% SGeB23% SGeB30% Bt

Figure 5.1: Measured Q values versus theory

The fact that the Q.. term may be similar between the different materials is
interesting, and may lead to further improvements in device design. However, the number
is significant in the respect that three of the devices are limited in performance by
thermoelastic damping, having lower Q,,,, terms than @ , . Adding germanium to
offset lattice strain appears to have an adverse effect on quality factor®. The calculation

for thermoelastic damping was straightforward for the gyroscopes used for this study, but
as more complicated designs are introduced the analytical equation for beams will be of

* It is interesting to note that according to equation 5.1, at much higher frequencies of operation, decreasing
the thermal conductivity will resuit in a reduction of thermoelastic damping.
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little use. It is this observation that motivated the development of a finite element model

to evaluate thermoelastic damping in micromachined structures.
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Section 2

The purpose of this section is to present the thecry of thermoelastic damping, and
show the steps that were taken to translate the governing equations into a finite element
model. The finite element model is validated through a comparison to analytical solutions
for a simple beam, and then used to determine the damping in more complicated

geometries.

Chapter 6

Anelasticity and Anelastic Damping

Stresses applied to a perfectly elastic material will result in an instantaneous
equilibrium strain state, by definition. Anelasticity departs from elastic behavior in the
respect that an equilibrium strain state is approached only after a passage of time. (For
both materials the removal of the applied stress results in complete recovery of the initial
state, and in this manner both differ from a viscoelastic material.) While for an elastic
material the elastic modulus is a time-independent constant for a given material, an
anelastic material displays an elastic modulus that is dependent upon time. This time
dependent modulus may be thought of as consisting of two parts: one that describes the
instantaneous deformation (the elastic part) and one that describes the anelastic
deformation (a constant multiplied by some function of time). For a constant applied

stress, the time-dependent strain is given by the equation’:

o
6.1 (1) = —
6.1 (r) £

£(t) = Strain as a function of time

o = Constant applied stress

’ Only one directional component of stress and strain is included in these equations, for simplicity.
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The expression for the time dependent modulus is:

(62) E()=E, -8Ell —exp(-?t-)]. where E, = E, + 6E

4

The bounds on the modulus are the unrelaxed and relaxed moduli.

E, = Relaxed Young's modulus (modulus as t —o0)
E, =Unrelaxed Young's modulus (modulus at t =0)

OF = Difference between the relaxed and unrelaxed Young's modulus ( SE >0)

7, = Relaxation time constant, associated with constant stress measurement

The general equation for the anelastic response of a material, where both stress and strain

are functions of time, is given by:

do de
63) o+r.—=Ej(e+7,— e
©3 e TR e D)

7. = Relaxation time constant, associated with constant strain measurement

The fact that it takes some finite amount of time for the material to approach an
equilibrium state for some applied stress is significant in systems with time varying loads,
as it may result in damping behavior. This can be shown with a work integral of the
oscillatory motion. The energy lost in one radian is calculated by the work done to

maintain the oscillation:

1
(64) AW =— ode
) 2z Eﬁ

one-cycle
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It is not proven here, but it is reasonable to assume that an applied sinusoidal stress will
result in a sinusoidal strain, whose frequency is the same as the applied stress, but

possibly shifted by a phase angle:

(6.5a) o(t) =0, cos(an)

(6.5b) £(1)=¢, cos(awrt — @)

Here o, and ¢, are taken to be real, and ¢ is taken be to be positive, meaning that the
stress leads the strain. To estimate the energy lost in terms of the applied strain, £, may

be written in terms of the stress and the relaxed elastic modulus:®

e}
6.6) £ =—=2
(6.6) ¢, I3

b2 4
The integral becomes: AW =L I g
2’: 0

E"- cos(at ) sin(awxt — ¢)d (awe)

Carrying out the integration, an expression is derived for the energy lost per radian:

2

6.7) AW =g£E:-sin(¢)

To find the fractional energy lost, this value is compared with that of the total amount of
stored energy, which is obtained by an integral of the stress applied to the material from

zero to the maximum strain:

rl2
6.8) AW = j ode

0

® This substitution can be made assuming that the difference between the relaxed and unrelaxed moduli is
small, which is a reasonable assumption for certain damping mechanisms, such as thermoelastic dissipation
in silicon.
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Carrying through the integration:

(6.9) AW=%¢0S(¢)+(%J%Sin(¢)

The first term on the right hand side is the maximum energy stored, the second term is the

energy dissipated in the > radians in the integration.

-

The ratio of the energy lost per radian to the maximum stored energy is:

A sin(@)
©6.10) 2V _ 2E = tan(9)
v ~°-c08(¢)
2E

At this point it is useful to identify the equivalence between equation 6.10 and 2.2:

AW E lost-per-radian 1
= = = tan
w E @

total Qanelasnc

Determining the phase angle ¢ determines the quality factor of a resonator experiencing
anelastic damping. To determine ¢, the complex representations of stress and strain may

be substituted into equation 6.3.
6.11) o(t)=0," and £(t) =¢£,e" "™
Now the modulus can be expressed as a complex quantity:

_O_ 0" 0, s
6.12) E—;—m———e
o€ &
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The ratio of €, to &, is not constant, but depends upon the frequency of oscillation and
the phase angle. Substituting the expressions of stress and strain into 6.3, the ratio of £,
to o, and the phase angle can be determined. (The equation 6.3 can be broken into two

equations- real and imaginary- that can be solved to yield the two values.)
The expression for the phase angle is:

(T, —7,)

(6.13) tan(¢)= -
I+wz, 7,

Making the substitution:

(6.14) z'=,/z;r£,

Gives the expression:

(6.15) tan(¢)=[(r" _Tf):‘. dd

Jr.r. | 1+(wr)

Which can be represented as the product of a constant of the material multiplied by a

function of frequency:
tan(@) = A- f(w)

(T, ~7,)
Tdr[

A= = Relaxation strength of the modulus

These relaxation time constants may be related to the relaxed and unrelaxed moduli as

follows:
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From reference [3]:

6.16) E, =ER%

£
So the relaxation strength is:

(7, -1.) = E -E,

6.17) A= Tuz
ro'rs EUER

The expression for the quality factor is now:

6.18) ——=A—2_
Qanela.wic 1 + (m) .

The frequency response is given by the expression:

wT

6.19 = —
6.19) f(w) T @)

It can be seen that the function of frequency has the following high/low freq dependence:

If wr<<l, f(®) > wr

Ifan'>>1,f((o)—->-l—
wr

f(w)is greatest when @7 =1, the peak damping frequency: @, =%

This peak is known as a Debye relaxation peak, and is shown in Figure 6.1.
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Figure 6.1 Debye Relaxation peak (relaxation strength equals one)

The values of the unrelaxed and relaxed moduli as well as the relaxation time
constant 7 are governed by internal parameters that are measures of the state of the
material. To determine the value of the relaxation strength, the contributions to the elastic
modulus must be identified. Any change in internal structure will result in a change in the
elastic modulus. For example, application of stress to a material may change the
equilibrium point defect density, which in turn alters the elastic modulus. The elastic
modulus may also be affected even if the crystal structure is unchanged, as in the case of
uniform expansion of the material. An expression for the total quality factor due to
anelastic damping may be written as the sum of these individual anelastic damping

contributions:

_Z_Elan-per-radim - 1 - 1
(6.20) £ = Z ) =

toral anelasti Qtoml -anelastic
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In general, these different damping mechanisms will have different associated
relaxation strengths and peak damping frequencies. In addition, certain damping
mechanisms (such as dislocation movement) may have broader peaks, reflecting the
different mobilities of the different individual dislocations. Although there may be many
possible different contributions to the anelastic behavior of a material, it is possible that
one damping mechanism dominates the anelastic response for a particular operating
frequency. Determining what loss mechanism dominates in a particular system will
involve calculations of the relaxation strengths and relaxation time constants for all the
known possible damping mechanisms. This is in reality not a trivial task, as many of the
numbers needed for these calculations may not be known for a particular material (such
as the point defect density in a silicon based device after processing) or may be
dependent upon the geometry of the oscillator, in which case a closed formed solution
may not exist. In these cases approximations or even (informed) guesses may need to be
made.

Equally important in developing an understanding of the damping behavior of an
oscillator is the identification of external damping mechanisms. Some of the important
contributors to damping in micro-electromechanical systems are fluidic losses associated
with transfer of kinetic energy to the surrounding medium (air), transfer of kinetic and
potential (elastic) energy to the support structure of the device, conversion of kinetic and
potential energy to heat (which may then be radiated or conducted away), and losses
associated with coupling of the motion to the electrical subsystem (in the case of a
capacitive device). The total quality factor for the oscillator is now a sum of the

contributions to internal and external damping:

1 1 1 1
= + + +...

Qmml Qllllt’/(lﬂu Qﬂu:du loss Qam‘lmr loss

To improve the performance of a damped oscillator, the leading contribution to
damping must be identified and minimized. Since both internal damping and external

damping are a function of the geometry of the device, it would be ideal to develop
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models that evaluate the contribution of the leading damping mechanisms for different
geometries. Finite element analysis is a tool that is useful for numerical evaluation of

physical equations over complex geometries, and offers a way to accomplish this goal.



Chapter 7
Thermoelasticity Theory

7.1 Overview

A material in thermal and mechanical equilibrium subjected to an inhomogeneous
stress state (such as that of a beam during flexural displacement) will develop a
nonuniform temperature field, if the deformation occurs without any heat transport. This
condition will exist when the stress state is applied on a time scale that is very short
compared to the amount of time it would take for the material to reach thermal
equilibrium. Alternately, the stress state may be imposed so slowly such that the material
is in constant thermal equilibrium. A general measure of the ‘time to reach thermal
equilibrium’ can be understood as a relation between the thermal diffusivity of the

material and the distance between the regions of different temperature (diffusion length).

(7.1) i=Dr

| = Diffusion length
D = Diffusivity

7 = Relaxation time

The thermal diffusivity (here represented by the symbol y ) is defined as the ratio of the

thermal conductivity and the volumetric heat capacity.

(12) y=—

Cp

Thermoelastic dissipation occurs in a material when the time scale of the imposed

stress is of the magnitude of the thermal relaxation time. Heat flow between regions of
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different temperature occurs irreversibly, and energy stored elastically in the material is
converted to heat. It is evident that to avoid thermal elastic dissipation occurring in
oscillatory structures, they be must operated at periods different than their associated
thermal relaxation times. The frequency dependent damping behavior may be described
by equation 7.3 (as derived in Chapter 6):

(1.3) LY W
Qanela.m’ l+ ((UT) i
(14) A= E, L
E,E,

(15) E, =(3—‘;) , E,
S

%)
o€ );

The magnitude of the relaxation strength is a measure of the fractional difference
of the relaxed and the unrelaxed elastic moduli, which are interpreted here as the
isothermal and the adiabatic elastic modulus, respectively. We may determine the
difference by understanding the two final equilibrium strain states for the same imposed
stress. The difference in the two final strain states is due to the transfer of heat with the
surroundings. This transfer is necessary to equalize the change in temperature caused by

the application of stress.

(7.6a) o=Es

elastic

(7.6b) O =Ep&,1um.

E,.mc = Elastic strain
£anelanic = é‘¢-Ia.\'n'c +€thermnl = Anelastlc strain
Eperma = CAT = Thermal strain



Equating equations 7.6a and 7.6b, and substituting for £

auelasnc

7.7 E,¢

elastic — E ( +MT)

elastic

Here the expression for AT may be determined by the relation between the change in

stress and the change in temperature, as derived in Appendix 2:

aT ) — a/I;m’r
S

A2.11 —
( ) (aa c,p

T, = Initial temperature

mn

The change in temperature the material experiences to equilibrate with its surroundings is

the same as the temperature change that occurred when stressed, with the opposite sign:

AT = (E)T ) Ao — _(B_TJ O (Assuming the initial stress is zero)
Jo 90 Js

Substituting this result into equation 7.7:

a’T . aT,
E (8 lasnr > 0.) = Rgela.m'c + E R . o
P P

(1.8) E,¢

elastic

Rearrange 7.8 in terms of the difference in the moduli, and rewrite the stress in terms of

the elastic strain:

(19) (E, -E,)= RaT o EaT;L

dp Eelasm Co‘p
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For silicon, the value of the coefficient of thermal expansion is parts per million per
degree Kelvin, making the value of the difference of the magnitudes of the elastic moduli
much smailer than the moduli themselves, at reasonable operating temperatures. Taking
the commonly reported value of elastic modulus to mean the relaxed elastic modulus, the

following approximations are made:
E,=F

The denominator of the expression for the relaxation strength in equation 7.4 is

approximately to:
E,E; =E

The final expression for the relaxation strength, in terms of the thermal and mechanical

material properties:

(7.10) A= e
c,p

All that is need for the expression of the quality factor in equation 7.3 is the value
of the thermal relaxaticn time, 7. For complicated geometries the regions of different
stress may be different distances apart, but for a beam under flexural bending, there will
exist regions of tension and compression at the outside edges of the beam, with the
direction of the temperature gradient across the beam. Thus there is a common length
associated with the varying regions of stress, and the time constant may be related to this
length and the thermal diffusivity. Clarence Zener defined the relaxation time constant in

his seminal paper on internal friction [1]:

-

111 7.=2—
Sl
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This time constant, along with the relaxation strength given in equation 7.10 may be
substituted into equation 7.3 to provide a reasonable approximation of the quality factor

of a vibrating beam element experiencing thermoelastic damping:

1 - Ea- mir___OT. _ (Zener)
c,p l+(wr.)

(7.12)

ted

The frequency to be used is either the resonant frequency of the beam or the frequency
of the forcing function. This work was later extended in a paper written by M. L. Roukes
and Ron Lifshitz [3] to provide an exact solution to the problem. The equation developed

in the paper has the same form as 7.12, with a different frequency function:

|  Ea'T,,| 6 6 (sinhS+sing) PR
7.13) — = it | — 5) | _p |2 &
(13 Qo P I:f' &' (cosh & +cos ) q 2y (Roukes)

An important feature of both equation 7.12 and 7.13 is that the only beam dimension that
explicitly appears in the equations is the width of the beam’.

7.2 Coupled Equations of Thermoelasticity For an Isotropic
Material

The constitutive relation for the material can be combined with force balance and

energy conservation to obtain the coupled dynamics of the system.

The general elastic equation for a material is given by the following expression of force

balance:

7 These equations will be used to evaluate the accuracy of the finite element model. It is stressed that
equation 7.12 is treated as an approximate solution, whereas 7.13 is regarded as exact.
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o, _ 3

F,
d4) <+ = = p—r
(7.14) vV  dx P or’

F, =Force on a small cube of material in the direction of i (wherei=x,y, or z)

V = Volume of cube

0, = Stress on the face of the cube normal to i in the direction of j

x; = Generalized position coordinate
p = Material density

u; = Generalized displacement
Substituting the stress in terms of strain and temperature change with expression (A3.2):

do; o€ a OAT
7.15) —%L C. M _ J.
( ox ZX Hox (A-2v) " ox,

X; k

C,, is used to here to represent the stiffness matrix, not the heat capacity.

.9
Using the definition of strain in terms of displacement: ¢, = %(?’—+-§LJ
x;, ox

Equation 7.15 becomes:

‘7—.

(7.16) p-a-——pvu (2.+;1)V(VCE)+-(——2—VT 0

The thermal dynamics are derived from energy conservation. The loss of energy from a

piece of material is equal to the integral of the emittance over a closed surface that

bounds the piece of material:
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(717) —==- [£.dA

E =Energy

£ = Emittance [ energy / (sec * area ) ]

The surface integral is transformed into a volume integral:

(7.18) & == [E-dA—>- [ (V-&rav

area volume

If the change in energy is only attributed to heat flow, the left hand side of 7.18 becomes:

(7.]9) iﬁ_'-_ii.g:T
dt dr dt

The energy emittance is related to temperature through the Boltzmann transport equation.

Under the relaxation time approximation and in quasi-equilibrium it can be shown that:
(720) &=-x(VT)

x = Thermal conductivity

Substituting 7.20 into 7.18 yields:

dE ”
7.21) —= &°TdV
721 = |

volume

Rewriting the energy in terms of entropy:
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ds
722) T—= AVTdV
( ) dr I

volume
This may be rewritten in terms of entropy per unit volume:

(7.23) T-:-ji = VT

When the constitutive equation for entropy is substituted into 7.23 the usual Fourier Law
is obtained:

oT ». Eal,. | d
(7.24) cp-;— =kV°T - (1—2'"-3[3-(8“ +&, +s3,)]

v = Poisson’s ratio

Equation 7.24 may be written in terms of displacement:

oT aET
7.25) KV’T —cp—— ——init_ V[ﬁ— =0
( ) P oo (1-2v) ot

Equations 7.16 and 7.25 are the coupled thermo-elastic equations that will be used to
build the finite element model.
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Chapter 8

Finite element modeling

8.1 Bulk Behavior

Finite element analysis enables solutions for systems of partial differential
equations to be generated for boundary problems over complicated geometries. A
bounded, solid geometry is represented by a set of nodes occupying the same space
whose individual displacements are.governed by the sum of the forces at each node. The
forces and displacements need not describe actual metion; they may describe a scalar
field such as temperature and the forces may be gradients in concentration of some
quantity. The generalized forces may be generated external to the geometry, such as a
gradient in electrical potential, or they may be imposed by neighboring nodes. A system
of matrices is created to describe the loads, displacements, and reaction forces related by

a stiffness matrix:

{reaction matrix}+{load matrix}={stiffness matrix}{displacement matrix}

A general approach to finding a solution (determining the displacements) is to
supply initial conditions, invert the stiffness matrix, and solve for the displacement
matrix. This method may be used to iterate to static solutions, or study systems that
evolve in time.

FEMLAB is a general-purpose partial differential equation solver capable of
finding solutions to complex eigenvalue problems. This chapter outlines the creation of a
three-dimensional finite element model to determine the quality factor of resonant silicon
structures. The relevant governing physical equations are presented, along with the
necessary boundary conditions to solve for a set of eigenvalues that represent the
complex resonant frequency spectrum of the device. The quality factor is determined
indirectly through the ratio of the real and imaginary parts of the eigenvalue, as shown in
Appendix 1.
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The displacements to be solved for in this model are the positions, velocities, and
temperatures of all the nodes. Since the model is three dimensional, each node therefore
has seven degrees of freedom (three displacement, three velocity, and one temperature).
It is assumed that these quantities are all separable with respect to time and space, and all
oscillate with the same complex frequency. Since it is known that the temperature field is
in general not in phase with the displacements of the nodes, the displacements, velocities,
and temperatures are themselves complex quantities to account for the phase difference.

The partial differential equations that describe the anelastic behavior of the
oscillating structure are in essence an elastic equation derived from balancing forces, and
a heat diffusion equation with a source term. The coupled equations of thermoelasticity as

derived in Chapter 7 for an isotropic material:

d%i ) - aE
8.1 — - uVi-(A+ w)VVI)+ 77‘:0
(8.1 pat_ MV U —(A+)V(VE) =20
(8.2) T —cpdl _ ET,, 590 _

P = Material density

U=i(x,y,z.t)=(Complex) displacement as a function of position and time

E
= Lamé coefficient - 4 =
# # 2(1+v)
A = Lamé coefficient - A = _E_( v )
I+v\i1=-2v

a = Coefficient of thermal expansion

E = Young's modulus

v = Poisson’s ratio

T =T(x,y,z,t) = (Complex) Temperature as a function of position and time
k' = Thermal conductivity

¢ = Specific heat capacity

T

nit

= Initial (uniform) temperature of material
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To somewhat simplify equation 8.1 and 8.2 the following substitution is made:

-aF
8. =
8.3) B a-2n
The equations become:
(8.4) ”3721“ WV = (A+ )V~ VT =0
(8.5) KVT - cp—+,3r, 2% -

nit a t

Vector equation (8.3) is then broken into three scalar equations:
(8.6) u= uf+u_v}+u:lf

u; =u,(x,y, z,t) = Displacement in the i direction as a function of position and time

(8.7a) —z#(aa“ aav" i") (Aﬂ:)(xaa, “gi;"v' aa‘) ,B(faT ] aa-
(8.7b) - jut Z" ;";'ﬁ;:;)—wﬂx}g;;y}fy M) ﬂu‘”)--—}pa;""
(8.7c) ~kﬂ(i§:' Zv“ ‘2 - (i.+/l)(kgax kggy aa:“) ﬁ(k—-)-—kpaa’
(The time derivatives have been moved to the right hand side.)

The associated scalar equations are:

(8.82) —u(%: aayf‘z a"*) (A+ )(i“ +g:;-“+gg‘) 'B(?TZ"“ %—
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2

o’u o’u, az alu azu d'u,
8.8b) — L4+ w2y Y 4 =—p—
A I -t )(3y Al

u,  du, a u. u, u. oT 0%u
8.8c) - : 2 -B(—)=- :
(8.8c) M5+ % ) —(A+ #)(aa aay+a =) ﬁ(az) P37
Heat equation (8.5) becomes:

o°T 9T 9T 0du 0O0u, 9 ou or
89) - BT (=T O OO, pl
B o T N A S A

(Only the time derivative of temperature is moved to the right hand side)

Next it is explicitly assumed that the temperature function and all displacement functions

are separable in terms of position and time:

u(x, 9,20 =0,(x,y,2f@®), T(x,y,2.0)=T(x,y,2)f (1)

Where f(t) = e'“°" = *
The first order time derivatives of displacement and temperature are:

ou, _of

8.10 —L =g ==

(8.10) Faalliw Au, f (1) = Au,

(8.11) ﬂ:fﬂi:ﬂrf«) AT
or ot

The goal is develop a system of eigenvalue equations and solve for lambda. Using

Im{A}

equation 2.3, the quality factor is determined to be: Q = -;-)m
—_— e
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Due to the fact that equations (8.8) and equation (8.9) contain different order time

derivatives, the three elastic equations must be rewritten in terms of six first order time

derivative equations. Three more general displacements are introduced in the process.

The second order time derivatives are rewritten in terms of the first order time derivative

of a velocity:

% - %‘; = Au; where u, = %— is treated as a new independent variable.
2

The elastic equations become:

(8.12a) u =Au

X X

o’u,  du, a’ o’u, aqu u
8.12b) - . L)—(A ! —)=-pAu,
R T T A W s e pGp=-r
8.120)  u, =Au,

’u. u. au du du. du oT
8.12d - L 4 2 A - —)=—pAu_
R T ¥ A A

(8.12¢) i =Au,

’u. u. du. u. du, au
8.12f) -~ - A £ —_—) = lu
N A v irw i ﬂ( )
The heat equation:
o°’T 90T o°T 0

(8.13) —k(

-pT,. (—u +iu +—a—zi: )=—cpAT

8x3+3y2+a:2} ox ' dy ' oz

These are the seven equations needed for the FEMLAB model. While this should work in

theory, due to the fact that the equations are weakly coupled, the model will not converge

to meaningful solutions if entered this way.

57



To adjust the relative magnitudes of the equation terms, it is useful to revisit equations
8.4 and 8.5. The goal in rescaling the equations is to attempt to get all the terms to be
closer in magnitude (and dimensionless). Assuming that the spatial derivatives are of the
same maghnitude, it is considerably simpler to rescale the equations if some of the spatial

derivatives are disregarded for illustrative purposes. Equations 8.4 and 8.5 are written:

8.14 —_—— -9
( ) or’ pax' pax
0°'T cpdT PT. 9 du
®.13) ox~ K ot KX Ox ot
Lett:i’ x:g’ u:uoa, T:T;)T‘
W k

t,9,i,T are all dimensionless quantities, and w,k,u,,T are constants of the model that

are to be determined.

Substitution of these newly defined variables into 8.14 and 8.15 yields the foliowing:

o2 i puk® 3% BTk T _

8.16 ] : 0
(8.16) g == s o
(8-]7) Y;)kz—a.—?:—f—pﬂa—)gj‘__’_ m:’nu“owk_‘?_au

— T 0
o9° K 0T K 3¢ d7
First the terms on the left are simplified:

% _pk® o’ _ BTk oT _

(8.18) : 2 i 0
) 0T° pw 09  pu,w 0@
(8.19) T _cpodl | Blymwd 9 _,

09 «xk’ or  xTk d¢or
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In equation 8.18, the second term will be of the order one if @ = k> . This defines the
y,

usual dispersion relation of the acoustic wave. In equation 10.19, the second term will be

of the order one if W=k’ X . This defines the usual dispersion relation for the thermal
cp
diffusion equation. To satisfy both constraints, specific length and time scales can be

identified: k == pu and w=£,
K 'Y

Equations 8.14 and 8.15 are now written as:

u_o% _ prk af
or 3¢’ P’ FY)
T _of , fLuw d 3 _

8.21 —_—
(8.21) 307 9t KTk opor

=0

(8.20)

We can also specify Ty and up. It is not possible (in general) to define these quantities
ﬁT A -l an d m:mr“()a)
Pu,@’ KT,k

of the ratio of To and uo. This ratio may be chosen such that the cross coupling terms are

such that——— =1. However the two terms may be rewritten in terms

equal to each other. Substituting for » and k and isolating the ratio of Ty and u, the

coupling terms are written:

Bk _ B [_]_ pr (1] and m:,.i.“ow__.M...,w(“))=ﬁrmnﬁ(ﬁ)
T,

2o
pu e pw kT k kk \ T K
0 0 0 P

0

If the coupling terms are set equal to one another, an expression is found for the ratio of

up and Ty:
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_ K
HJcT,

init

Qﬂ |§=

Equations 8.14 and 8.15 are now written as:

% 9% ,r. aT
8.22 ———— i =0
©22) ar° d¢° p cpu op
o’'T of T.. 0 di
8.23 oz ,L"__=
62 o0 af+'8 cpu 99 ot
824) Let E=p [T
cpu

(8.25) ——-———-E—=0

(8.26) — et E——=0

In summary, the scales chosen are:

e Length: x= :’ k-— ou

. T
e Time:t=—, @ w=K£
w K
e Displacement: u =u_i

e Temperature: T = Tf’

e Coupling: -——-= J__
C7:"ll

7;nil
CPH
Using this same technique, we rescale equations (8.12) and equation (8.13):
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The elastic equations become:

(8.27a) u, = Au

[4 [

o’u, ’u, Ou, (A+u) ou, u B u
(St to)- F " "’)--(—)-—Au
d¢° d¢- Yy Y7 T/ a¢a¢ oy

(827c) i, =Au,

4

(8.27b)

o’u, 'u, 0w, (A+u) Ou, Ju, o’u oT
(St e )~EG )=~
dp- 099" Iy 4 O 0p° Oy ’

(8.27¢) u, = Au

v v

(8.27d)

o’u, au +a'u¢, _(,1+ﬂ)(3‘u¢+8'u +a'uv)__( Y

8.27
B0 G g Tov) T a aves awee o) ey~ M

The heat equation:

T T 9T ou_ ou, ou
8.28 AL A I Tt Yy=—AT
(8.28) o 3 o) ‘a¢+a¢ 5

Here ¢,@, and y are the new rescaled spatial coordinates.

The rescaled thermoelastic equations now need to be entered in to the FAMLAB
package. The general form that the FEMLAB eigenvalue solver is the following:

(8.29) V(Vu+au-y)+a-u+p-Vu=d,-A-u

¢, a,y.a, B,d, are all matrices of coefficients. Ais the eigenvalue to be solved for, and u

is the displacement matrix, which contains the eigenvectors that describe the

displacement, velocity and temperature of each node in the model geometry:



Equations 8.27 and 8.28 are translated into FEMLAB with the following matrices (in the
same order that they appear above):

The ¢ matrix is a 7x7 matrix of 3x3 matrices:

TCu €2 Gz G4 €5 Cg €y

Where:
[2+4/u 0 O 0 Afu 0] [0 0 Afu]
cy=| O 1 0l,c,=[1 0 O,c;;=|0 0 ©
. o 01 0 0 of (1 0 0 |
[0 1 0] (1 0 0] [0 0 0]
ca={Mu 0 0|,cy;=|0 2+4/u 0|,cs=|0 0 Au
| 0 0 0] 0 0 1] 01 0 |
[0 0 1] [0 0 o 1 0 0
=] 0 0 Olc,=[0 0 1|,c=]|0 1 0
(Alu 0 0] 0 Au 0 0 0 2+A/u
1 00
c,={0 1 O
0 0 1

All other ¢ submatrices are zero matrices.
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The a'matrix is a 7x7 matrix of 3x1 matrices. The non-zero matrices are:
a27 = [E 0 0] b a47 = [0 E 0] L] a67 = [0 O E]

The y matrix is a 7x1 matrix of 3x1 matrices. There are no non-zero elements in this

model.

The a matrix is a 7x7 matrix of scalars:

©C O ©C O © O -
O O O © © O
S O O O = O O
©C O C OO0 O ©
©cC O - O O O O
©C O © © © © ©

©C © O © © O

The £ matrix is a 7x7 matrix of 3x1 matrices. The non-zero matrices are:

au:["E 0 0]*“74=[0 -E O]*am:[o 0 _E]

The d, matrix is a 7x7 matrix of scalars:

i 0000GOG O
0 -i 0000 O
00 i 00O O
d,=|0 0 0 -i 0 0 0
0000 i 0 O
0000 O0- 0
00 00 00 —i
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The imaginary numbers appear in this matrix to swap the real and imaginary parts
of the eigenvalues that are sought. Because the damping magnitude (real part of the
complex eigenvalue) is much smaller than the resonant frequency (imaginary part of the
complex frequency) for the lightly damped oscillators in this study, the two are swapped
so that FEMLAB may be able to find the eigenvalues more easily. (This is a subtlety of
the program- it searches the real axis, not the imaginary axis, for solutions to the

equations.)
8.2 Boundary Conditions

In these models, there are three types of boundaries that can be used. These are
conditions on the equations that are applied at surfaces of the geometry under study. The
surfaces may be anchored. meaning that there are no displacements at that surface; they
may be free, meaning that there are no normal forces to the surface; certain models may
also employ a symmetry boundary to reduce the model size and computation time.
Creating mirror symmetry in the model is accomplished by choosing a plane where no
displacement is allowed perpendicular to the plane, while motion is unconstrained in the
plane itself. All of these boundary conditions include a zero heat flow condition,
effectively insulating the model geometry. While this may be physically difficult to
realize, it is assumed that the heat transfer to the environment is smail, which greatly
simplifies the analysis.

The boundaries are entered into FEMLAB in the general format:

(8.30) n-(cVu+au-y)+q-u=g-h" -u;h-u=r

Where c,a,y are the same matrices as in equation 8.29, and « is the matrix of
generalized displacement eigenvectors, as before. n is a normal vector to the surface of

the geometry.
In all the boundary conditions for this model, the g,r and g matrices are set to zero.

64



h is a 7x7 matrix of scalars. For a free surface, h is a zero matrix. For an anchored

boundary:

=

It
© © © © O © =
©C O © © O = ©
©C O O C = O O
©C ©C O -~ O O QO
©C O - O © © O
© = O O O © ©

For the symmetry boundary condition for about a plane parallel to the y-z plane:

&

]
O O O © © O -
©C 0 O O O - O
O O O O O OO
©C © © © O O ©
L= = R = I« I o R I
©C 00 C o OO

One of the subtleties of this model lies in the enforcement of the zero-force free
boundary condition. The forces on an element are determined in terms of the local strain,
and the thermal strain generated by local heating must be included in addition to the
elastic strain. The strain of the material is related to the first spatial derivative of the
displacement. In the FEMLAB general equation 8.29, there are two places to calculate
first order spatial derivatives of the displacement matrix through non-zero elements of the
a and S matrices. The thermal contribution to the strain in the bulk can be calculated in

either of these matrices. The difference between the two lies in the fact that the a matrix
is included in the boundary conditions, while the £ matrix is not. For thermal strain to be
included in the stress-free boundary condition in addition to the elastic strain, the thermal
strain must be calculated in the @ matrix. Appendix 3 contains the constitutive stress
strain relations used to determine the force free boundary condition.
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8.3 Material Properties of Silicon

The finite element model developed in the preceding sections was built for a
material that is elastically and thermally isotropic. Silicon however is not. Since our
present study is focused on beams and cantilevers, where stress and strain are developed
along the longitudinal axis of the beam, and temperature gradients exist perpendicular to
the longitudinal axis, choosing the thermal and elastic constants of silicon along those
axes is a good approximation to the anisotropic solution. Specifically, this finite element
model attempts to simulate micromachined beams whose bounding planes are all {100}
planes. A convenient coordinate system to use is three mutually perpendicular axes in the
<100> directions of the material. (Because silicon displays cubic symmetry, the
constants along the three mutually perpendicular directions are the same.) Therefore, this
model uses material properties determined along the <100> directions of silicon and
applies them as if the material were isotropic. The thermal/mechanical properties for the
model (listed below) are from reference [14]. All values are taken at 300K, and no more
than three significant digits were kept for these calculations. It is unlikely that some of
these parameters would actually be this well known for one of our gyroscope materials.
However three significant digits are retained for comparing the finite element model to

the analytical equations).

Young's modulus = 130 GPa

Poisson’s ratio = 0.280

Thermal conductivity = 156 [ W / (m*K) ]
Coefficient of thermal expansion: 2.62e-6 / K

Density: 2330 kg / m’

Specific heat (at constant pressure) = 713 [ J / (kg*K) ]

It is apparent upon inspecting the matrices used for the FEMLAB model that two
numbers are needed for this simulation at this point- the ratio of the Lamé coefficients
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and the coupling coefficient Z, both determined by the material properties of the

oscillator:

(8.31) = =ﬂ _.7.:.%. —aF ,,,,,2(1+V) mu J2(1+V) - _0.0462
cop (1-2v) (1-2v)

)

. |

832 A lxvil-2v) v oo,
P E 1-2v

2(1+v)

These are the values that are used in all the simulations of this study.

8.4 Finite Element Models

The models that were studied are all variations of a doubly clamped simple beam.
First, a study of mesh density was performed to provide some insight as to the
convergence of the calculations of quality factor, as well as what calculations may be
performed in a reasonable amount of time on a desktop computer. Next, the beam was
simulated in the lowest fiexural mode for comparison to the analytical results of Zener
and Roukes. This provided a validaticn of the model’s utility for modeling thermoelastic
damping. This same beam was then simulated in the second resonant flexural mode to
determine the impact on the quality factor.

Two variations on the doubly clamped beam were simulated- the addition of
anchors, and also the addition of anchors and filiets. These geometries were used to try to
understand the effect of these approximations to support structures that exist in the actual
device structure. Thie figures below show the gcometries modeled. The shaded portions

show the faces that are held immobile.
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Figure 8.1: Simple beam

Figure 8.2: Beam with anchors

-10 -20

Figure 8.3: Beam with anchors and fillets
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The basic beam dimensions (the beam dimensions without the anchors and fillets)
used in these simulations were set at a constant ratio of five units wide, three units thick,
and fifty units long. The ten to one ratio of length to width was chosen to compare the
results of our studies to those of Roukes’ paper, in which the quality factor for various
sized beams (with the same length to width ratio) were calculated. In both these
simulations and Roukes’ calculations it is assumed that the beam vibrates in the direction
of the width dimension. The width to height ratio was set to give the beam a similar
number of mesh elements in both directions perpendicular to the longitudinal beam axis,
but not more height than necessary, as it would add to the computational load.® Because
the thermal gradients across the width of the beam are the cause of the damping behavior,
it is necessary to have enough mesh elements across the width to capture this effect.
Although no comparable gradients exist across the height of the beam during oscillation,
the height of the beam contributes indirectly to the damping behavior through
compression/tension of the material due to the Poisson ratio.’ It is expected that a beam
with a much greater relative height dimension would not exhibit as much strain in that
dimension (due to plane strain conditions), and would therefore have a different quality
factor.

The anchor dimensions used in the modeling were chosen through trial and error
to include most of the stress and temperature distribution that extended into the anchor
structure in order to capture the physical effects of their presence. The height of the
anchor was chosen to be the same as that of the beam, each anchor extended two beam
widths in the longitudinal direction of the beam axis, and each anchor extended past both
sides of the beam a distance equal to one beam width. These models were run with three
sides of each anchor held motionless (the three sides of the anchor rectangle not attached
to the beam). In the simple beam model, the two end planes of the beam were held
motionless.

Fillets were added to the geometry to smooth out the intersection between the

beam and the anchors. Five models were run with the fillets, the radii of which were

® FEMLAB uses tetrahedral elements of roughly similar size to mesh three-dimensional geometries.
Therefore the linear density of elements is not adjustable along the different beam dimensions.

® This effect is actually what complicated attempts at producing a two dimensional thermoelastic model in
order to reduce the computational load.
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added in increments of 10% of the beam width. These models were constrained to
movement at the anchor faces in the same way as the anchor model with no fillets.

Due to the rescaling of the thermoelastic equations used in the FEMLAB model,
the dimensions and resonant frequencies of a modeled oscillator must be rescaled to

match actual dimensions. This is done using the equations from the rescaled equations:
T=wt, ¢=kx

These equations are used to compare this finite element model to the analytical results of
Zener and Roukes presented in Chapter 7. Using the material parameters for silicon, the

value of @ and k are calculated to be:
k==Jpu  49710m", w=H-232.10"H-
K K

The value of & is used to scale the real size into model dimensions. The value of @ is
used to scale the expected resonant frequency using equation 2.5. This allows FEMLAB
to solve for the resonant mode of interest.

To reduce the computational requirements for the models, symmetry conditions
were used in all models whose resonant frequency mode exhibited mirror symmetry
about a plane coincident with the cross section of the middle of the beam. This was the
case for all of the beam models except for the simple beam vibrating in the second

resonant mode. The reduced geometry meshes used are shown below.

Figure 8.4: Half beam mesh
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Figure 8.5: Half beam with anchor mesh
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Figure 8.6: Half beam with anchors and fillets mesh - note the rounded edges niear the

intersection of the beam and the ancher
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Chapter 9

Finite Element Analysis Results and Discussion

9.1 Model Validation

All of the simulations were performed on a desktop computer with a 2 GHz
Intel® Pentium® 4 processor running Microsoft® Windows® 2000 with FEMLAB®
version 2.2,

Using the thermoelastic FEMLAB model developed in Chapter 8, an initial study
was cond .cted to determine how the number of mesh elements used in the beam model
affects the calculated quality factor. It is expected that the simulation will become more
accurate as the number of mesh elements increases, approaching the limit of a continuous
model. Limited computational ability imposes the upper limit on the model accuracy: for
all of these simulations the upper limit on the number of mesh elements was
approximately fifteen hundred, with approximately five hundred associated nodes. Such a
simulation requires one gigabyte of random access memory to run, although the
simulation usually produces a result in only a few minutes.

The simple beam half-geometry was used to study the convergence of the
calculated Q values. The scaled geometry was specifically chosen to represent the actual
geometry of a device operating near peak damping ( @z =1). This was done for two
reasons. First, the model experiences convergence problems if the ‘device’ is operating at
a frequency that is too far from the damping peak. Good results are obtained for
approximately three orders of magnitude in frequency on either side of the damping peak
for this model'’. For frequencies farther away, the simulation is able to identify the
resonant frequency of operation, but the damping term becomes nonsensical due to

numerical instability calculating the (change in the) temperature field. The second reason

' Results are obtainable farther away from the peak, but the model equations must be rescaled.
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that the mesh study was performed near the peak damping frequency was to check the
magnitude of the damping to make sure that it was approximately what the analytical
model predicis for a maximum damping frequency. The expression for the minimum Q

(corresponding to the maximum damping) is given by:

©.1) 1 _Eal, wr i
Qled Ca l+(0)1':)"

1 Ea’T
ar. D, — o —=
ted 2Cd

With the substitution of the values for silicon from Chapter 7, this expression gives a

minimum Q value of approximately 12,400.

FEMLAB has a mesh feature that lets the user specify the mesh density in general
terms. The options range from extremely coarse to extremely fine. Although the finer
meshes were too fine to be able to run for this model, nine meshes of varying mesh
element sizes were run. The average mesh element volume as a percentage of the total

beam volume was recorded as well as the corresponding Q values; the results are shown

in Figure 9.1.
Q vs. Average Megh Elements Volume- 3D TED Mode!
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Figure 9.1: Calculated Q convergence with decreasing mesh element volume
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This plot shows that as the average mesh element volume is decreased towards
zero, Q increases and looks as if it will intersect the y-axis at a Q of approximately
16,400. The predicted Q value from equation 9.1 is 15,600. As the mesh density is
increased, the calculated Q value drops and begins to level off. In the range of meshes
studied, the higher quality factors that were calculated oniy varied by about 1%. As will
be discussed, some difference is to be expected between the Q values of the finite
element model and the analytical prediction of equation 9.1.

The beam size dimensions were then scaled up and down about the peak damping
frequency. The length to width ratio is held fixed at 10. Thus, the fundamental mode
frequency is inversely proportional to beam width in this experiment. The calculated
quality factors from the finite element model were compared to those from the analytical
expressions of Roukes and Zener (equations 9.23 and 9.24) for the same size beams.
Figure 9.2 is a plot of calculated Q versus beam width: Figure 9.3 is a plot of the relative

error in the finite element model in terms of Roukes" anaiytical expression for Q."'

" The beam widths in these figures scale down to nanometer dimensions- this is done only to compare the
different calculations, not to imply this behavior would hold at that scale.
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Comparison of Analytical Expressions to Finite Element Analysis

T T T T

10 Y

-8 L i i i ad. sadal
10° 10° 107 10°* 10° 10 10 10
Beam width (m)

10

Figure 9.2: Comparison of finite element model and analyticzl expressions. The length to
width ratio is held fixed to 10, so that scaling the beam width corresponds to
scaling frequency. Since the frequency is proportional to width over length
squared, the smaller widths in this figure have higher frequency fondamental
modes. The solid line is Zener’s calculation; the dashed line is Roukes
formulation; the ‘x’ marks represent finite element results.
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Difference Betwoen Aralytical Theory and Finite Element Anelysis

, in Percent of Theory
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Figure 9.3: Difference (in % of analytical value) of finite element model and analytical
expression of Roukes, for the same case studied in Figure2. The difference is

calculated as (Q ouxes~Qainite clesornt)’ Qroukess

Qualitatively, Figure 9.2 shows that the finite element model is in reasonable
agreement with the analytical expressions; it displays the same high frequency and low
frequency dependence, as well as damping magnitude. Also, the finite element model
deviates from the low frequency (large beam width) damping values predicted by Zener
in the same manner as Roukes does. Both the finite element model and Roukes’ analysis
differ from Zener's through the inclusion of thermal gradients in the longitudinal
direction in addition to the transverse thermal gradients, which become important at
longer time scales. However, the calculations are not in quantitative agreement. It can be
seen from Figure 9.3 that there is a constant 10% difference between the finite element
calculation of quality factor and the calculation from Roukes’ equation for thermoelastic

Q at high frequencies (small beam widths). At low frequencies there is an increasingly
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large discrepancy between the finite element and the analytical expression of Roukes.
Various contributions to the discrepancy between the calculations may be thought as
contributing to either the resonant frequency term or the damping term of the quality
factor.

The finite element model predicts a different resonant frequency for a particular
beam size than does Roukes’ formula. This is easily verified by building a three-
dimensional finite element elastic beam model (with no damping) and comparing the
resonant frequency of the fundamental flexural mode to equation 2.5, which is used in the
analytical expressions of quality factor. For the relative beam dimensions under study
used, the difference in resonant frequencies is about 6%. FEMLAB predicts a value for

the resonant frequency that is less than the analytical value. Since the quality factor is

defined as % , this deflates the quality factor predicted by the finite element model

relative to the analytical expression for the same beam dimensions. If the constant 6%
error were accounted for, it would shift the curve in Figure 9.3 up, increasing the relative
error for small beam widths while decreasing it at large beam frequencies.

Although the contribution to the resonant frequency was determined to be off
consistently by 6% relative to the analytical expressions for all frequencies, the relative
error displayed in Figure 9.3 is seen to be frequency dependent. This behavior is
attributed to the damping term of the quality factor. Figure 9.4 displays the calculated
damping contributions from Zener's analytical expression as well as those from the finite
element model. Figure 9.5 shows the relative error between the two calculations. It is
interesting to note that both models agree qualitatively in that the damping becomes
constant at high frequencies. This implies that the resonators always have the same decay

envelope at high frequencies, independent of operating frequency.
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Demping Psrametars for FEM and Zener
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Figure 9.4: Damping parameters from analytical theory and the finite element model
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Figure 9.5: Difference (in % of theoretical value) of damping in the finite element model and Zener’s
analytical expression
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The low frequency discrepancy between the calculations might be due in part to
longitudinal currents that exist in the finite element model that are neglected in the
derivation of the analytical expressions. Thermal gradients in the longitudinal direction
exist over length scales over of a quarter of the beam length. This corresponds to an
independent Debye peak at a lower frequency, since the characteristic thermal length

length

rather than

scale is 1en4gth

. Below the Debye peak studied here, the secondary

peak may be apparent. This possibility should be investigated in further studies.

It is believed that most of the difference in the calculated quality factors is due to
slightly different boundary conditions between the two models. In the finite element
model, the material at the ends of the beam is held immobile- there can be no transverse
strains with an applied load. In the aralytical derivations, this condition is relaxed. The
relaxed boundary conditions are more difficult to enforce in FEMLAB, which is why the
different, slightly more realistic boundary conditions were enforced. This leads to
different temperature distributions calculated from the two beam models, and ultimately
different dam »: ~g factors. Material near the end of the finite element beam is deformed
more volume-v. “-¢ than the material at the ends of the analytical model. This results in
higher thermal gradients (and currents) existing at the ends of the finite element beam,
causing increased damping. This effect may be offsetting other effects near the relaxation
peak, explaining why the magnitude of damping is almost exactly in agreement with the
analytical expressions of damping. If the material at the ends of the beam in the finite
element model is allowed to relax in the height dimension, it is seen that at all
frequencies the calculated quality factor increases between 8% and 20%. It is difficult to
relax the material in the width dimension using FEMLAB, but it is believed that doing so
would result in an even greater increase in the calculated guality factor.

At this point, the finite element model is determined to be a good indicator of the
magnitude of thermcelastic damping for a simple structure. It is evident that more study
is needed to determine (more quantitatively) the exact origin of the difference in
calculated quality factors. However, due to the accurate qualitative behavior of the finite

element model, calculations were carried out to determine the quality factor of beams
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resonating in the second flexural mode, and several modifications to the beam were made

in order to understand the impact of the geometrical changes.

9.2 Second Flexural Resonance Mode

The simple beam model was used to compare the quality factor of a beam
vibrating in its second flexural mode to the quality factor of the same beam vibrating in
the fundamental flexural mode. The same relative dimensions were used as in the model
validation, a 5:50:3 width to length to height ratio for all the simulations. As shown in
Figure 9.6, a similar Debye relaxation peak is produced for both modes. It is interesting
that operating the same size device in the second flexural resonance mode has the effect
of either increasing or decreasing the damping, depending on which side of the
fundamental flexural Debye peak the device is operating. The key is the relationship
between the operating frequency and the Debye peak frequency for a particular mode. If
the damping peak cannot be shifted using different material parameters (the effect
explored by the addition of germanium to the silicon lattice) or device geometry, the

resonant mode may be chosen to optimize performance.

Comparison of First and Second Flexural Modes
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Figure 9.6: Comparison of the quality factor of beams in the first and second flexural mode
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9.3 Beam with anchors

The simple beam is a crude approximation of a i-al beam structure, which cannot
be isolated from its surroundings so completely. The addition of anchors to the ends of
the beam allows the strain and temperature gradients to extend into the anchor material,
somewhat diminishing the magnitude of the relative fields. A finite element model was
run for the same beam geometry, with and without anchors to study the effect of the
anchor supports. The geometry was chosen to coincide with the region of peak damping;

the scaled width of the beams was fifty units. The results are shown in Table 9.1.

Calcuiated Eigenvalue
Model Real part (Damping) Imaginary part (Resonant Freq.) Q
Beam no anchors -6.01E-08 1.95E-03 16,300
Beam with anchors -4.49E-08 1.74E-03 19,400

Table 9.1: Calculated eigenvalues of a beam with and without anchors

The addition of the anchors increases the quality factor of the beam by almost
20%. It is interesting to note that although the resonant frequency decreased with the
addition of the anchors (due to an effective lengthening of the beam), the damping
decreased (in magnitude) much more percentage-wise with the addition of the anchors,
ultimately raising the quality factor. This reduction of strain near the anchor/beam
boundary is seen to have a beneficial effect on the quality factor, confirming that relaxing
the volumetric strain near the ends of the beam increases the performance of the

resonator.

9.4 Beam with anchors and fillets

Fillets may be added to a resonator design to reduce strain at the anchor/beam
interface. To study their effect on thermoelastic damping, fillets were added to the
beam/anchor model and the quality factor was calculated for various sized fillets, given in
Table 2.1 as a percentage of the beam width. The quality factor is seen to steadily

decrease with the addition of larger fillets, which is the result of an increase in the
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magnitude of the damping that outpaces the decrease in the resonant frequency. It is
relatively simple to understand that the resonant frequency increases as the beam length
effectively decreases. However, the damping behavior is a bit more complicated. As the
effective beam width increases near the beam/anchor junction, the effective relaxation
time for damping in that region increases, pushing this resonator system closer to the
peak damping frequency. Since the relaxation time is proportional to the beam width
squared, this effect scales rapidly with fillet radius. The balance of these effects is such
that the increased damping outpaces the change in frequency, and the overall Q drops
with larger fillets, for this geometry. At very low frequencies, the two effects would work

together to raise the Q.

Csiculated Eigenvalue
Fillet radius (% width) Real part (Damping) Imaginary part (Resonant Freq.) Q

0 -4.49E-08 1.74E-03 19,400
10 -4.58E-08 1.76E-03 19,200
20 -4.78E-08 1.79E-03 18,700
30 -4.98E-08 1.83E-03 18,400
40 -5.20E-08 1.87E-03 18,000
50 -5.43E-08 1.91E-03 17,600

Table 9.2: Effect of fillets on quality factor



Chapter 19

Conclusions

10.1 Summary of Experimental Results

To improve the performance of gyroscopes manufactured at Draper Laboraiory,
the dependence of the quality factor (Q) upon gyroscope material was studied to identify
material related damping issues. Quality factor measurements were performed on
gyroscopes made from five different silicon-based materials- two containing no
germanium and three with varying amounts of germanium. Gyroscopes made from the
two materials that did not contain germanium had higher measured quality factors than
the three wafer materials that contained 2%, 23%, and 30% germanium. The added
germanium atoms are understood to reduce the local symmetry of the silicon structure
and act as phonon scattering centers, reducing the thermal conductivity of the bulk
material. It was shown that the thermal conductivity is a key parameter in thermoelastic
damping, and this fact was use to explain our data. The results of the quality factor

measurements are shown in Table [0.1.

SiB epi SiGeB2%  SiGeB 23% SiGeB 30% B-diff
Devices Tested 9 9 9 10 10
Average frequency 12851 13327 10357 10785 12361
Average Q 177,000 62,800 27,100 23,400 219,000
standard deviation 10% 18% €% 10% 20%

Table 19.1: Results of the quality factor measurements for gyroscopes made from five different wafer
materials

10.2 Development of a Finite Element Model

The fact that thermoelastic dan-ping is a performance limiting mechanism for
Draper Laboratory’s gyroscopes motivated the development of a finite element model to
evaluate damping in simple resonant structures that are typical in MEMS design. The
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finite element model displays the same qualitative predictive behavior as the analytical
works of Zener and Roukes [1,2,3] for thermoelastic damping in a beam vibrating in a
flexural mode. Figure 10.1 shows the amount of damping (here labeled as inverse Q)
predicted by the finite element moJdel in comparison to the analytical works of Zener and
Roukes for thermoelastic damping in a beam of varying width. In this study, the length of
the beam is fixed to be ten times the width.

. Comparison of Analytical Expresstons to Finste Elsment Analysis
10 ~r T Y ~ T

10° 10 10’ 10° 10° 10 10’ 10
Beam wxth (m)

Figure 10.2: Comparison of finite eleinent mode! and analyticzl expressions. The fength to
width ratio is heid fixed to 10, so that scaling the beam width corresponds to
scaling frequency. Since the frequency is proportionai to width over length
squared, the smaller widths in this figure have higher frequency fundamental
medes.

The discrepancy between the Q factors calcuvlated from the finite element model
and the analytical equations is primarily caused by the slightly different houndary
conditions between the different models. However, more investigation is needed to
precisely determine the expected difference between the models. The model is therefore
currently limited to order of magnitude damping calculations. Due to the fact that many
different damping mechanisms may be competing during a particular device's operation,
this model is still valuable in the respect that it produces an answer to the question, “Is

this device design limited in performance by thermoelastic damping?” Also, because the
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finite element model is in good qualitative agreement with theory, and is understood to be
very sensitive to the boundary conditions, it underscores the fact that slight variations in

device processing may be responsible for very different measured quality factors.
10.3 Implications for MEMS

Resonators with high quality factors are required in sensing applications to
maintain low energy loss and high sensitivity. The finite element model developed in this
thesis is useful for evaluating the magnitude of thermoelastic damping in genmetries that
are more complicated than those that can be described by existing analytical equations.
This allows for an evaluation of the performance of a device before it is manufactured,
potentially saving both development time and cost. This type of analysis lead to the
following suggestions for improvement of Draper’s gyroscopes: it is desirable to keep the
germanium content low, the support beam width narrow, and the fillet size minimal to
maintain a high quality factor.

The work contained in this thesis may be extended to other materials whose
behavior is governed by multiphysics equations, such as thermoelectrics, ferroelectrics,
and shape memory alloys. The finite element method is useful for evaluating the behavior

of MEMS constructed from these materials, such as RF devices.
10.4 Future work

The finite element model developed in this thesis is an elastically and thermally
isotropic model. This simplified the model development, but limited its scope of
predictive power to simple structure elements where the stress is developed primarily
along the <100> crystal direction in silicon. More complicated designs will require an
anisotropic model for more accurate predictions of damping behavior.

Thermoelastic damping was identified as a leading source of damping in some our
Draper Laboratory’s gyroscopes, but other device designs may be found to be

performance limited by other anelastic damping mechanisms. A suite of models could be
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developed to predict other anelastic behavior such as damping due to point defect motion,
dislocation motion, and grain boundary friction.
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Appendix 1
Expressions for Quality Factor

In this appendix, several different equivalent expressions for Q are derived. These
expressions are related to each other by the fractional amount of energy lost per cycle of
oscillation. In addition to providing deeper insight, the equivalent formulas illustrate
different ways to measure Q.

The definition of Q is the ratio of the total energy of the oscillator to the energy
lost per radian of oscillation (it is assumed here that the system is highly underdamped,

and that the total energy is approximately constant compared to the change in energy):

E

— 1otal
Q E

lost per radian

From Chapter 2:

=20 973

Aw = Bandwidth at half the maximum amplitude

@, = Resonant frequency

6 = Damping parameter

The force balance expression for a one-dimensional oscillator with no damping is given

by:
(Al.1) m¥+kx=0
x = x(t)= Position as a function of time

87



m = Mass

k = Spring constant

The solution is x(t) = x, cos(wt + ¢) where @ = i\/'--l-E
m

x, = Amplitude of vibration

The phase angle and the plus/minus sign are dropped for simplicity:

(AL.2) x(t)=x,cos(an), w=w, = \/z
m

For an oscillator with damping, we add a term proportional to the velocity:
(Al.3) mi+bi+kx=0

b = Damping constant
It becomes easier to find a solution for the frequency in terms of the spring constant,
damping constant and mass if we write the displacement test solution as complex
number:
(A1.4) x(1)=x,cos(at) = x(¢)= x " (x, is real)

Substituting back into (A1.3) and solving for the frequency:

—ib+\-b* + dmk
-2m

(AlS) w=

For systems with smail damping we make the approximation: b ° 4mk
Expression (A1.5) becomes:
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—ib+f
(AL.6) w=—'b-:—‘-,'ﬂk—=i—lz-i\/z—>i5:two
-2m 2m m

Whered = —b—
2m

Substituting the frequency given by A1.6 back into expression A1.4 and taking the .eal

part, it is verified that the expression of motion for a damped oscillator is:
(AL7) x(t)=x, cos(@ 1) e

The quality factor for this system:

E

-— otal
Q E,

lost per radian

The total energy is given by:

1 -
= KEM =-’—ma) X,

E

101l

(Assume that this is almost constant over the cycle)

The energy lost is determined by the integral of the damping force over a distance moved

in one radian of oscillation:

-

de , Y% (dx
E st per radian = I Fimpdx = j b;d.&‘= !b(};) dt

one radian one radian

. . dx
Substitute: x = x, sin(wr), = = x, Wcos(ar)
t
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Ve bwx,’
E,, =bw x, I sin” axdt =-—-;-f‘—
b 2

The end result:

1o,
—mw’x,’
(A1.8) —Luoa =2 ="2-9
lost per radian : waoz b

If the system represented by (A 1.3) includes a sinusoidal forcing function the expression

becomes:
(AL.9) mi+bx+ke=F(1)
Here the forcing function is written as:
(AL10)F(1)=F,e" (F, isreal)

@, = Drive frequency
The position may now be out of phase:
(ALLD) x(t)=x "

Substituting (A1.10) and (Al.11) into (A1.9):

>

m—., (x,e )+ bg—( x e/ 4 k(x,e"“ " )y=F ¢
- !

dt

Simplifying and relating the real and imaginary parts:
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-mx,w,’ +kx, = F,cos ¢
a,bx, =F, sing

The expressions may be combined with the trigonometric identity: sin’ ¢+ cos’ ¢ =1

Solving for x,:

0

X, = 172

' [(A -mw,’ ): + (a)db)z]

Rewriting in terms of the undamped resonant frequency and the damping parameter:

o

m[(a),f -w,S’ ): +4(w,8) ]”:

X =

0

Figure A.1 shows a general plot of the amplitude versus driving frequency.

Amplitude

Frequency

Figure A.1: Oscillator amplitude versus driving frequency

91



To find the resonant frequency of the damped system (the frequency at which maximum
amplitude occurs), the derivative of this expression is taken with respect to the driving
frequency, set equal to zero, and yields the following:

For weak damping, the expression for the amplitude close to the resonant frequency is:

X0

[(0,-0) +&°]"

x, (@)=

1 . . o
Atw=w 10, x, = 7 X SO that the half-maximum width of the resonance peak is twice

delta: Aw =24, which is what makes the various expressions of the quality factor

equivalent:

E oy per radian TAw 28

If a Q measurement is made of an oscillator where the displacement is proportional to a
voltage output, the ratio of the voltages at maximum and half maximum displacement

may be expressed in dB:

10log

Vietr man

——

—Vm—]da =10log(2)dB = 3B



Multiple Damping Terms

If there is more than one damping constant, due to different contributions to the damping,

the force balance expression may be written as:
mi+(b +b, +b,..)x+kx=mi+Bx+kx=0

The quality factor may then be written as:

The total Q is then seen to add like parallel resistors in an electrical circuit:

1 B (b+b,+b, +..) b b, b, 1 ] 1
= = 2 = b3 = — b — .
O MO, ma, m@, mo, ma, o O O

(el o




Appendix 2
Thermodynamic Relations

An unconstrained material with a positive coefficient of thermal expansion will
expand upon heating, resulting in thermal strain. A fully constrained material will
generate internal stresses to accommodate the thermal strain. In this manner it is evident
that the mechanical properties of the solid (relating stress and strain) are coupled with the
material's thermal properties. It is this coupling that also dictates that a material stressed
adiabatically will experience a change in temperature, whose magnitude is determined by
thermodynamic relations.

The first law of thermodynamics relates the energy of a system in terms of
conjugate work variables. Although an expression may not be known for the total energy,

energy differentials are easily describable, such as the differential of the free energy:
(A2.1) dg =—sdT -edo

g = Gibb’s free energy per unit volume

T = Temperature

s = Entropy per unit volume

This system contains two conjugate pairs: stress and strain, temperature and
entropy. Any one of these variables can be related to any of the other two, such that an
expression for temperature may be written as a function of stress and entropy. Therefore

the differential change in temperature my be written as:

(A2.2) dT=(a—T) dd+(£] ds
90 Os
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It is convenient to express temperature as a function of the stress and entropy
because we are considering a system where no heat may be exchanged with the

surroundings, such that the ds contribution to the differential is zero:
(A2.3) ds=-dT£. d0=0-ds=0
Equation 7.3 reduces to:

(A2.4) dT = (BTJ
Jo

. aT . . . .
To determine the value of (——— , we substitute variables into an expression from
o N

differential calculus.

Using the relation:

136 -

It may be written:

oT \ ( oo os
) Z =
(A23) (aa] (as ),(arl

The second term in A2.5 is determined by rewriting A2.1.

ag] do

og
A2.6) d JT
(A2.0) dg = (ar),, +[aa,,

Where it is understood that:
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e = (3)
27 [ L) =5, (2] -
A ’(ar,‘ 3 ), €

Noting the following two derivatives are equivalent:

dg _ og

.8 =
(A2 )araa oooT

The second term in A2.5 is determined to be the coefficient of thermal expansion.

(5,
aT ),

The third derivative *¢rm in expression A2.5 is just the definition of heat capacity at

os
A29) | —
(A29) ( o )

constant stress:

Js c.p
A2.10 _—] =g
(219 (arl 7,

¢, = Heat capacity at constant stress [energy / (volume * K) ]
T, = Initial temperature [ K ]

p = Density

Finally, the first term in A2.5 is found.

(A2.11) (—a-z-) =_\90
s



Appendix 3

Stress-Strain Relations

The constitutive stress-strain equation for an isotropic material is:

(A3.1) ,=Y > 5,0, +oATS,
k!

£ = Strain vector

S, = Compliance matrix

O = Stress vector
6, = Kroenecker delta
Expanded in (simplified) matrix form:

~ o —

£, I -v -v 0 0 0 o,
&y -v 1 -v 0 0 0 O
£ -v -v 1 0 0 0 (o
G ¥ |+aAT
Y=| E{O0O O 0 2(1+v) 0 0 Tas
Vs 6 0 O 0 2(1+v) 0 7,
RGN 0 0 0 0 0 20+v) || 7,
The stress state may be solved for:
aAT
(A3.2) 0, = C &, ~——0,
tf ZZ ikl ki (l"‘2V) y
C,, = Stiffness matrix
Expanded in matrix form:
(I1-v) 4 v 0
d+vY1=-2v) (1+vil=-2v) (I+vX1-2v)
v (1-v) v 0
(0, ] (+v)l-2v) (1+vX1=-2v) (d+vii-2v)
O v v (I1-v) 0
[ =F (+vX1-2v) A+vXI=-2v) (1+vX1-2)
75 0 0 1
. 2(1+v)
L Bz 0 0 0 '
21+v)
0 0 0 0
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Appendix 4
FEMLAB Model Code

A sample code to generate a model of thermoelastic damping in a beam with two fixed
ends is shown below. This code generates the geometry, supplies the boundary
conditions, specifies the mesh density, and finds the eigenmode of interest. It outputs the
real and imaginary parts of the eigenvalue, and displays a figure of the flexural mode and
temperature profile on a slice through the beam. (This code was generated automatically
FEMLAB. The user interface was used to set up the model, which was then saved as this

*m" file.)

% FEMLAB Model M-file
% Generated 15-Apr-2002 12:33:46 by FEMLAB 2.2.0.183.

ficlear fem

% FEMLAB Version

clear vrsn;
vrse.name="FEMLAB 2.2';
vrsn.major=0;
vrsn.build=183;

fem.version=vrsn;
% Recorded command sequence

% New geometry 1

fem.sdim={"x',"y','z'};

% Geometry

tmp=rect2(0,250,0,50,0);

gl=extrude(tmp, 'Distance',30,'Scale’,[1;1],"Displ’,[0;0],'Wrkpin',[0 1 0:0 ...
01;000]);

clearsfcp

objs={gi};
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name={'"EXT1'};
s.objs=objs;

s.name=name;

objs={};
name={};
f.objs=objs;

f.name=name;

objs={};
name={};
c.objs=cbjs;
c.name=name;
objs=(};
name={};
p-objs=objs;

p-name=name;

drawstruct=struct('s',s,'f".,f,'c',c,'p',p);
fem.draw=drawstruct;

fem.geom=geomcsg(fem);
clear appi

% Application mode 1
appl{1}.mede=fipdec3d(7,'dim’,{'u’,'u_t','v','v_t','w",'w_¢t'.)T",'u_t', ...
w_t_tv_t'v_t_t',)'w_t'w_t_t','T_t'},'sdim",{'x",'y’,'z'},'submode’, ...
'std','tdiff",’on');
appl{1}.dim={"u",'u_t','v','v_t',)'w','w_t','T"'u_t"/u_t_t','v_t','v_ t t', ..
'w_t','w_t_t',)'T_t'}s

appl{1}.form="coefficient';

appi{1}.border="off";

appl{1}.name="3D TED';

appl{1}.var={};

appl{1).assign={"abscuix';'absculx';'abscu2x'; 'abscu2x';'abscu3x'; 'abscu3x's; ...
‘abscudx';'abscudx';'abscusx';'abscusx'; abscubx';'abscubx's abscu7x'; ...
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‘abscu7x';'absgalx';'absgalx';'absga2x';'absga2x's 'absga3x'; 'absga3x’; ...
'absgadx';'absgadx';'absgaSx';'absgaSx';'absga6x’'; 'absga6x';'absga7x’; ...
'absga7x';'absulx';'absux'; 'absu2x’;'absu_tx';'absu3x';'absvix';'absudx'; ...
‘absv_tx';'absuSx';'abswx';'absubx';'absw_tx';'absu7x';'absTx'});
appl{1}.elemdefauit="Lag2';
appi{1)}.shape={'shlag(2,''u"")','shlag(2,"'u_t"")','shlag(2,"'v""y', ...
'shlag(2,"'v_t"")','shlag(2,"'w")','shlag(2,"'w_t"')','shlag(2,"T"")'};
appl{1}.sshape=2;
appl{1}.equ.da={{{'1'},{'"0'},{"0'},{"0'},{*0'},{'0'},{"0'};("0'1,{'1'}, ...
{OLIOL0 LU LU L0 LU0 L' 1L '0L(0'1L,{'0°),{°0'); ...
(0L L0 LU L{'0'L{'0'L{"0 {0 LU0 L{"'0' 1, {'0'},{'T'), ...
{'0LUOL{0L{C LU0 L 0L LU L'0'):{'0'},{'0'),{'0'), ...
{0L{'0L{"0L{"1'})s
appl{1}.equ.c={{{'1'},{'0'},{'0'},{'0'},{"0"},{"0'},{'0'};{"0'},{'1"}1,{'0'}, ..
{0 L{OLIOL{0 {0 L0 LU ' L0 L0 L0 L{'0°)5{°0'), ...
{'0LUOLII' L0 L{'0 L{'0'):{"0'),{'0'},{"0'L,{"0"},{"1'},{'0'}, ..

{'0' 10 L0 L{"0°)L,{°0' 1 {"0'L{" 1" 1,{'0'}5{"0'L,{"0'1,{"0'},{"0'}, ..
{0L{0L{'1'H)
appl{1}.equ.al={{{'0';'0';'0'},{'0';'0';'0'},{'0;'0';'0'},{"0';'0';"0'}, ...
{'0'5'0'5'0'},{"0'5°0';'0'},{"0'5"0'5'0'};{"0'5'0;'0'},{"0';°0";°0" },{'0'; ...
0300050105050, {10050, (05050 (00 .
0LL0510°50L{10'510'5 0,100,000, 10°5 050, .
{10°5'0'5'0'15{"0'5'0'5°0'1,{'0'5°0'5'0"),{'0'5"0''0'1,{"0':"0'5°¢"),{'0'; ...
00,0500 L1050 0B (105050, 00, 10'50's ..
0L{10510'5'0'),'0'5'0'0'), 1050510, (10'50°5°0')510'5'0'50') .
(0/5°050),{10'5'0'5°0'),{'0'5°0%50°L,{10'5'0'50°,{'0°5'05'0°,('0' ..
OFOBL0H00L{05 00,1075 050),(05050'),{0'50'; .
000050105050 )
appl{1).equ.ga=({{'0'5'0 0 ;{'0'5'0''0' ;0" 050 10" €'50'); .
(050500500000 N;
appl{1}.eqube=({{'0'3'0''0'},{'0'3'0''0','0'5'0''0°),{10''0'5'0'), ..
(05°0°5°0'),'0'5°0%0'), 05050 (105705 °0'), (05050, 0 ..
0005050, {10500, {1005 '0'), 1000 ('0°0's .
0L{10510'5°0L,(10'5'0"50),'050°5'0'), (105050, {10°5'050), .
(10°5°0%5°0')5{10'5'0'5'0',{'0'570'5'0'L{'0°5'0'5'0'),'0'50°5"0'), {10 ..
00RO 00010 050,000, 0'50';
0110510501000, (10510510, (10505 '0')5(10°5°6750'), .
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{'0'5'0%5°0'},{°0'5'0'5'0'1,{'0'5'0"5'0"},{'0'5°0'5°0"},{"0";'0'5'0'},{"0'; ...
'0';'0'};{'0';'0';'0'},{°0'5"0';'0'},{"0'5'0';°0°},{"0";'0'5'0"},{"0";'0"; ..
'0'},{'0'5'0'5'0'},{'050°5'0'}} )5
appl{1}.equ.a={{{"0'},{"0'},{"0'},{'0'},{'0'},{'0'},{'0'}5{"0'},{'0'},{"'0"}, ...
{'0L{'0'L{"0L{"0'} {0 L,{"0' 1L {'0' L {'0' 1L {'0'L,{"0',{'0'}5{'0'), ...
{'0'},{"0'1,{'0'1,{'0'},{"0'},{"0'};{'0'},{'0'1,{'6"1,{"'0'},{'0'},{'0'}, ...
{'0'}:{"0'L,{"0'1L,{'0'L,{'0'},{"0'},{'0'},{"0'}5{°0',{'0°},{"0'},{"0'}, ...
{0 L0 L{"'0' )}
appl{1}.equ.f=({{"'1I':{"':{"I'LE{'VE{ LT BT )
appl{1}.equ.weak={{{'0'};{"0'};{'0'};{'0'};{"0'};{'C'};{'0'}}};
appl{1}.equ.dweak={{{"0'};{"0'};{"0'};{'0'};{"0'}5{'0'};{"0'}}};
appl{1}.equ.constr={{{'0'};{'0°'};{'0'}5{"0"};{'0'};{"0'};{’0'}}};
appl{1}.equ.gporder={{4;4;4;4:4:4;4}};
appl{1}.equ.cporder={{2;2:2;2;2;2;2}};
appl{1}.equ.shape={1:7};
appl{1}.equ.init={{{'0'}5{"0'};{"0'};{'0'}5{"0'};{'0'};{"0'}}};
appl{1}.equ.usage={1};

appl{1}.equ.ind=1;
appl{1}.bnd.q={{{'0'},{"0'},{'0’},{"0'1,{'0"'},{"0'},{'0'}:{"0'},{'0'},{'C'}, ...
{0 L{"0'L{"0'},('0'}5('0'},{'0'),{°0'},{'0'}1,{'0'1,{"0'},{'0'};{'0'}, ...

{0 LU0 L{0'L('0'L,{"0°),{"0° (0"}, L,{"0'},("0" 1, "0 ,{'0'), ...
{'0'}:('0'L,{'0' 1L, {'0'},{"0°},{"0"},{'0'},{'0' }5{"0' 1, {'0'},{"0'}, (0"}, ...
{"0'L{'0'L,{"0'}})s
appl{1}.bnd.g={{{'0'};{'0'};{'0"'};{"0'};{'0'};{"0'};{"0' }};
appi{1}.bnd.h={{{'1'},{'0'},{'0'},{"0'},{"0"},{"0' L,{'0'};{'0'},{'1'}1,{'0"}, ...
{0 L{'0'L{"'0'L{'0'}:{"0'L,{"0"},{'1'},{'0'L,{'0'L,{" 0", ('O} (°0'), ...
{'0'},{"0'},{"1')},{"0'},{"0"1,{"0'}5{'0'},{"0'},{"0'},{"0'},{"1'},{'0"}, ...
('0'}5{"0'}{"0'1L,{'0'L,{'0'},{"0" L {'1'},{"'0'};{°0'},{'0'},{"0'}.{"0"}, ...
{'0LU0L{'1'})s
appl{1}.bnd.r={{{'0'}3{"0'};{'0'};{'0'};{"0°'}:('0'};{"0'}}};
appl{1).bnd.type={'dir'};
appl{1}.bnd.weak={{{'0'};{'0'};{'0'};{"0'};{"0'}5{'0'}5{"0'}}};
appl{1}.bnd.dweak={{{'0'};{"0'};{"0'};{'0'};{"0'}5{'0'};{'0'}}};
appl{1}.bnd.constr={{{"0'};{"0'};{'0'};{'0'};{'0'}5{"0'};{'0'}}};
appl{1}.bnd.gporder=({0;0;0;0;0;0:0});
appl{1).bnd.cporder={{0;0;0;0;0;0;0}};

appl{1}).bnd.shape={0};
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appi{1}.bnd.ind=ones(1,6);
appl{1}.edg.weak={{{'0'};{'0'};{"0'};{'0'}5{"0'};{"0'};{'0'}});
appl{1}.edg.dweak={{{'0'};{'0'};{"0'};{"0'}5{'0'};('0'};{'0"}}};
appl{1}.edg.constr={{{'0'};{'0'};{'0'};{"0'}5{'0'};{'0");{'0'}}};
appl{1}.edg.gpo: der={{0;0;0;0;0;0;0}};
appi{1}.edg.cporder={{0;0;0;0;0;0;0)};
appl{1}.edg.shape={0);

eppl{1}.edg.ind=ones(1,12);
appi{1}).pnt.weak={{{'0'};{"0'};{'0'}:{'0'};{'0'};{'0'};{'0'}} };
appl{1}.pnt.dweak={{{'0'};{'0'}:{'0'};{'0'};{'0'};{'0'};{'0'}}};
appl{1}.pnt.constr=({{'0'};{'0'};{'0'};{"0'};{"'0'};{'0'}5{"0'}});
appl{1}.pnt.shape={0};

appl{1}).pnt.ind=ones(1,8);

fem.appl=appl;

% Initialize mesh
fem.mesh=meshinit(fem,...
'Out’, {'mesh'),...
'jiggle', ‘on',...
'Heurve', 0.40600000000000002,...
‘Heutoff,0.01,...
‘Hgrad', 1.3999999999999399,,..
‘Hmaxfact',0.69999999999999994,...
'Hmax', {[],zeros(1,0).zeros(1,0).zeros(1,0),zeros(1,0)});

% Problem form

fem.outform="ccefficient';

% Differentiation
fem.diff={'expr'};

% Differentiation simplification

fem.simplify="'on";

% Point settings

clear pat
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pot.weak={{{'0'};{'0'};{'0';;{'0';('0'}:{'0'};{"0' )}
pnt.dweak={{{'0'};{"0'};{"0'};{'0'};{"0'}5{"0'}5{'0'}}};
pat.constr={{{'0'};{"0'1;{"0';{'0'};{"0"1;{"0'}; (0" }} };
pnt.shape={0};

pnt.ind=ones(1,8);

fem.appl{1}.pnt=pnft;

% Edge settings

clear edg
edg.weak={{{'0'};{'0'};{"'0'};{'0'};{'0'};{"'0'};{"0'}}};
edg.dweak={{{'0'};{'0'};{"0'};{'0'};{'0'}5{"0'}5{"0'}}};
edg.constr={{{'0'};{"0'};{'0'};{"0'};{'0'};{'C'};{'0' }}}5
edg.gporder={{0:0;0;0;0;0;0}};
edg.cperder={{0;0;0;0;0;0;0}};

edg.shape={0};

edg.ind=ones(1,12);

fem.appi{1}.edg=edg;

% Boundary conditions

clear bnd
bnd.q={{{"0"}.{'0'},{"0'},{"0'},{"0'},{"0'},{'0'};{'0'},{"0"},{'0 },{'0'}, ...
{'0'1L{'0'},{"0'{'0° 1, {"0°),{"0'},{'0'1,{"0'},{'0"},{'0'}5{"0"},{"0'}, ...
{'0'L{"'0'L{"0'},{"0°},{"0'}:{'0'},{'0'},{'0'},{'0'},{'0'},{"0'},{'0'}; ...
{'0'}L,{'0'L{"0'L,{'0'},{'0°},{"0"},{'0"}5{"0'},{'0'},{"0"},{"0"},{'0"}, ...
{'0'L{'0' L {{"0'},{"0' 1, {'0"},{"0' 1,{'0' L, {*0' 1. {"0'}5{'0"1,{'0"},{'0"}, ...
{'0'1L,{'0'},{'0'},('0'1:{°0'},{'0'},{'0°},{"0'},{'0'},{'0°},{'0'}5{"0"}, ...
{'0'L{'0'L{'0'L{"0' L {'0'},{"0"}5{"0',{"0'},{'0°'},{"0°}.{'0'},{'C"}, ...
{'0'}:{'0'L{'0'},{'0°}L,{"0" ), {'0'L,{"0'},("0"}5{"0°},{"0°},{"0"},{'0'}, ...
{'0'},{"0'),{"0'}},{{"0'},{"0"}1,{"0'1,{'0°},{"0'},{"0'},{'0'}5{"0',{'0"}, ...
{'0'L{0'L{0L{'0' 1L, {'0'}:{'0'},{'0'},{"0'},{'0°}.{"0'},{'0'},{'0'); ...
{'0'},{"0'),{"0"},{"0'},{"0"}1,{'0"},{'0'};{'0°}.{"0'},{'0'},{"0'},{'0'}, ...
{'0'},{"0°)5{"0'1,{'0'},{"0'},{"0"}1,{'0'},{'0'},{"0'}5{"0'},{"0'},{'0'}, ...
{'0'}L,{"0'L,('0'},{"0'}}};
bnd.g={{{'0'};{"0'};{'0'};{"0'}s{"0'};{"0'1s{"0'}},{{"0'};{'0'}5{°0"}5{"0'); ...
{'0'1{"0' (0 {{°0' s (°0° 5{'0"}5{"0°}5{'0° )5 {'0° 15 (" 0" 1} )5
bnd.h={{{'1'},{"0'},{'0'},{'0'},{'0'},{'0'},{"0'};{'0'},{'1'},{'0'},{"0"}, ...
{'0'L{'0'L{'0' s {'0'L{'0' ), {"1" 1 {'0' 1, {'0'1,{"0°},{'0'}3{'0'}.{"0'}, ...
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COLUTLEO L0 L0 5(°0°)L,{'0°)1L,{0'),{"0').("1'),{'0'1,{'0'); ...
{'0'L{0L{'0'L(0'}{0'){" V' L{"0'1:(0'),{'0°},{"0'},('0'},{"0'), ...
(OULECILIH{0L{0'){"0'},{"0" L, {'0'L,{"0'),{"0'}:{'0°1,{'0'},{"0'}, ...
{01 {'0'L{0L{'0'):{°0'L{'0°1,('0'},{"0'),{'0'},{"0'),{'0'}5{'0"), ...
{'0'L{'0'L{"0'L,{'0'1L{'0'},{"0"}5{"0'1,{'0'1,{'0°},{'0'},{'0'}.{"0"), ...
('0'L{'0'L{'0'),{"0'},('0'L,("0'){"0' 1, {*0'}; ('O L, {'0'L,{'0°),{'0'), ...
{0L{0LLON{' 1L0){'0'LE0'L,{'0').{'0' 1L, {'0' ) ('0'}('1'), ...
{'0'L{0L{'0L,{'0')L,('0'}:{°0'),('0°1,{"0'},{'0'L{"0'L,{'0'1.{'0'); ...
{'0'L{'0' L0 L0 L0 LE0L{'0'):(°0'),{'0'),{"0')L{'0'},{'0°), ...
{'0'1{'0'}5{'0°},{"0'},{"0'},{"0"},('0'}1.{"0"),{"0'}:{'0"},{'0'},('0'}, ...
('0'L{'0°),{'0'},{"'0'}}}s
bad.r={{{'0'};{"0'}5{"0'}5{"0'};{"0'}: (*0'}:{"0'} L,{{'0'};{"0'}: {'0'}: {'0'); ..
(OB L0 {0 :{0' {00 {00 ) )
band.type={'dir','dir','dir'};
bnd.weak=({{'0'};{'0'};{"0'};{"0'};{"0'};{'0'}s{"0'}}1,{'0'};{"0'};{'0"}; ...
(OB LB 1L{{'01:{'0')5{70°):{'0°):("0');('0° (0"}

bnd.dweak=({{'0'}:{'0'}:{"0"};{"0'};{"0'}5{"0'};{"0"} }.{{'0'}:{'0'}:{'0'}; ...

{01 0LE{0 B0 L0 L{C L0 {0 B0 {0 {0 ) )
bad.constr={{{'0'};{"0°'};{"0'};{'0'};{'0'}5{"0'}5{"0'}1,{{'0'}:{'0"};{'0"}; ...
{0E{0LE{0 L0 N0 L0 L0 {0 L0 :{'0'):{'0' ) )
bnd.gporder=({0;0;0;0:0;0:0},{0;0;0;0:0;0:0},{0;0:0;0:0:0;0});
bnd.cporder={{0:0;0;0;0;0;0},{0:0;0;0:0:0;0},{0;0;0;0;0:0;0} };
bnd.shape={0,0,0};

bnd.ind={122223];

fem.appl{1}.bnd=bnd;

% PDE coefficients

clear equ
equ.da={{{"i'},{"0'L{'0'}1,{'0'},{'0'},{"0"},{(*0'}; ('O}, {"-i"),{'0'},{"0"), ...
{'0'L,{'0°1('0'}5('0'},{'0"},{"'i"},{"0°).{'0"},{'0°},{'0'}5{"0"),{'®"), ...
{"O'L{-1'LU0'L{'0')'0'}:{'0°},{"0"},{"0°),{"0" 1,{"i'1,{'0'},{"0'}): ...
{'0'LU0L{0 L0 L0 L{'-i'),{'0'}:{"0'},{'0°},( "'}, {'0'),{'0"), ...
{"OL{-i')s
equ.c={{{"0'},{'0'},{'0'},{"0'},{"0'1,{'0'},{"0'}:{"3.273":"1';'1"},{'D"}, ...
{'6','1.273','0';'1','0",0";'0",'0",'0"},{'0'},{'0",'0",'1.273";'0",'0", ...
00 0L L0 B0 LUOLIOL 0L LN V)(O,
'1','0''1.273','0','0';'0','0','0'},{"0'},{'1';'3.273';'1'},{"0'},{'0','?", ...
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'0';'0','0,'1.273';'0','1','0'},{'0'},{'0'}5{'0'1,{'0'},{"0'},{"0'},{"0'}, ...
{10'1,{10'5:{'0,70",'1';'0',10,'0''1.273,'0','0°},{'0"},{'0",'6",'0'; ...
'0','0','1';'0,'1.273','0'),{"0'},{'1';'1";'3.273'},{"0'},{'0'};{'0'}, ...
(OLLOLLOLLOLLOLITI;
equ.ai={{{'0";'0';'0'},{'0';'0';°0'},{'0';°0";"0'},{'0";'0';'0"},{"0";'0"; ...
'0'},{'0'5'0'5'0'},{'0';'0%;'0"}5{"0'5'0'5'0'},{"0'5°0'5'0'},{"0'5'0'5'0"}, ...
{'0'5'0%5'0'},{'0';'0'5'0'},{'0;°0";"0'},{"-coup';'0';'0'}5{'0';'0';'0'}, ...
{0'5'0'5'0'},{'0';'0";'0'},{"0'5"0'5°0'},{'0';'0';°0},{'0';'0';'0'},{'0'; ...
'0';'0'}5{'0"5'0";'0'},{'0;°0';'0' 1,{"0'5'0'5'0'},{"0'5'0'5'0°},{"0'5'0"; ...
'0'},{'0'5'0';'0'},{'0';"-coup';'0'}5{°0';°0'5'0'},{'0':°0';0'},{'0'5°0'; ...
'0'},{'0'5'0;'0'},{"0'5'0'5'0'},{"0'5'0";'0"},{'0';°0'5°0'}5{'0;0';'0'}, ...
{'0'5'0'5'0'},{'05°0"5'0'),{'0;'0"5"0"},{'0';°0';°0"},{"0";'0';"0"},{"'0'; ...
'0';'-coup'};{"0';'0';0'},{"0'5'0';'0'},{'0'5'0';0'},{"0'5'0';'0'},{"0'; ...
'0'5'0'},{'0'5'0'5°0'1,{"0°5°0";'0°} }};
equ.ga={{{'0';'0':"0'};{"0';'0";'0"}5{"0;'0";'0"}5{'0';"0'5'0'}5{"0";'0"; ...
'0'}5{°0'5'0'5'0'}5{"0'5'0';'0"}}};
equ.be={{{'0;"0;"0'},{'0';'0"5'0'},{"0'5'0";'0'},{'0';"0";'0'},{'0';"0’; ...
'0'},{'0;'0'5'0'},{"0'5"0'5'0'}5{'0';'0;°0"},{'0";'0":'0'},{'0'5"0";'0'}, ...
{10'5'%';'0'},{'0';'0":'0'},{"0'5"0'5°0'},{'0';'0';'0' }5{'0":'0";°0"},{"0'; ...
'0';'0'},{'0'5'0"5"0'},{"0'5'0°5'0"},{"0'5'0";'0'},{'0";"0'5'0"},{'0';'0'; ...
'0'}3{'0'5'0'5'0'},{"0'5'0";'0' 1,{"0'5'0';'0'},{'0'5"0°5'0'},{"0'5"0"5'0"}, ...
{'0';0'50"},{'0":'0"5'0'}5{"0'5'0';"0"},{°0'5'0";°0"},{'0":'0';'0"},{'0'; ...
'0'5'0'},{'0'5'0'5°0},{"0';°0';'0'},{'0':'0'5'0' }5{'0';°0';'6'},{'0'5'0"; ...
'0'),{10'5'0'5'0'},{10'5°0'50'1,{10'3'0'5'0'},{10'50'5'0'},{10'5'0';'0'); ...
{'9';'0':'0'},{'coup';'0';'0'},{'0';'0';"0'},{'0';'coup';'0'},{'0';'0'5'0'}, ...
{'0'5'0';'coup'}1,{'0':°0';'0'} }};
equ.a={{{'0'},{"1'},{'0'}L,{"0'},{"0°'},{"0'},{"0'}s{"0'},{"0"},{'0'},{"0"}, ...
{'0'5{"0'},{"0'}5{"0'},{'0"1,{"0"},{"1'},{"0'},{"0'},{'0'}5{"0'},{"0'}, ...
{'0L{'0'L{'0 L0 L{0 {0 L0 L {0 HL{'0'L{'0' L' 1'},{'0'); ...
{'0'),{°0°},{'0'),{'0"},{"0°},{"0"},{'0'}5{"0'},{'0'},{'0'},{'0'},{'0"), ...
{"0'L{'0' N}

equ.f={{{'0'};{'0'};{’0'};{'0’ s {0’ ("0 }: ("0’ 1} )
equ.weak={{{'0'};{"0'};{"'0'};{"0°'};{"0'};{"0'};{'0'}} )
equ.dweak={{{'0'};{'0'};{"0'};{'0'};{"0°};{"0'};{'0'}} };
equ.constr={{{"0'};{'0'};{"0°'};{'0'}5{'0'};{'0'};{"0'} }};
equ.gporder={{4;4;4;4:4;4:4}};

equ.cporder={{2;2;2;2;2;2;2}};
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equ.shape={1:7};
equ.init={{{'0'};{"0'};{'0'};{"0';('0'};('0"};("0' 1} }s
equ.usage={1};

equ.ind=1;

fem.appl{1}.equ=equ;

% Internal borders
fem.appl{1}.border="off";

% Shape functions
fem.appl{1}.shape={'shlag(2,""u"")’,’shlag(2,""u_t")','shlag(2,"v'")','shlag(2,"v_t")','shlag(2,"'w'")",'shia
g(z’v 'W_t' ')','shlag(Z,"T")'};

% Geometry element order
fem.appl{1}.sshape=2;

% Differentiation rules

fem.rules=(};

% Define variables
fem.variables={'coup’', 0.046199929939999998 };

% Multiphysics

fem=multiphysics(fem);

% Extend the mesh
fem.xmesh=meshextend(fem,'context’,'local’,'cplbndeq’,'on’,'cplbndsh’,'on');

% Evaluate initial condition
init=asseminit(fem,...
‘context’,'local’,...
'init’, fem.xmesh.eleminit);

% Solve eigenvalue probiem
fem.sol=femeig(fem....
‘eigfun’, ‘fleig'....
‘eigpar’, {1,0.00197)....
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'stop’, 'sn'y..

'n', init.u,..
'jacobian’,'equ’,...
'report’, ‘'on’,...
'context’,'local’,...
'sd', ‘off',..
'nulifun’,'finullorth’,...
'blocksize’,5009,...
'solcomp",{'T",'v','u_t','v','v_t','w','w_t'},...
'linsolver','matlab’,...
‘method’, 'eliminate’,...

‘out’, 'sol');

% Save current fem structure for restart purposes
femO=fem;

% Plot solution

postplot(fem,...
'geomnum’,l,...
‘context’,'local',...
‘tetdata’,{'T",'cont’,'internal'}....
'tetfacestyle','interp’,...
'tetedgestyle’,'none’,...
‘tetkeep’,1,...
'tetkeeptype','random’,...
'tetmap’, 'jet’,...
'tetmaxmin’,'off",...
'tetbar’, 'on’....
'deformdata’,{{'u’,'cont','internal'},{"v','cont',"internal'},{'w','cont'."internal'}},...
‘deformmaxmin’,'off",...
'deformauto’,'on’',...
'geom’, ‘on’....
'geomcol’,'bginv',...
'refine’, 3,...
'contorder’,2,...
'phase’, 0,...
‘lightmodel','pheng’,...
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‘lightreflection’,' default’,...

'transparency’,l,...

‘view', [-37.500000000600007 29.999999999999986],...

‘title’, 'Lambda(1)=90.00195435+6.01107e-008i Tetrahedron: T (T) Displacement: [u (u),v
(V)W (W)] 'seee

‘'soinum’, 1,...

‘renderer’,'zbuffer",...

‘'scenelight’,’off",...

‘carnlight’,'of",...

‘campos', [-736.07791986613643 -1054.5979588418452 807.93757635768509],...

'camprojection’,’'orthographic',...

'camtarget’,[100 35 15],...

‘camup’, [0 0 1]....

'camva’, 20.921046564263793,...

‘axispos',[-0.25750000000000001 -0.29749999999999999 {.55 1.6299999999999999]....

'axisequal’,'on'....

'axis', [-50 25¢ -10 80 -10 40]....

‘axisvisible','on’....

‘grid', 'on'...

'scenelightpos',[-736.07791986613643 -1054.5979583418452 807.93757635768509))
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