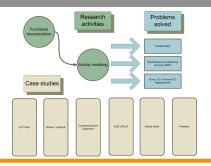


Finding opportunities for commonality across complex systems: A study of unmanned aircraft systems

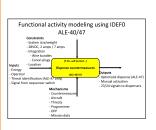
MIT ESD Ph.D. Program

Thesis advisor: Warren Seering Committee: Olivier deWeck, Missy Cummings, Eric Rebentisch

Start date: September 2005
Research Group: Lean Product Development, Lean Advancement Initiative Col David Long, US Air Force, Ph.D. Candidate


Motivation / Problem

- The DoD is making large investments in acquiring combat capability through acquisition of UASs
- In order to meet combatant commanders' requirements for The Long War (Global War on Terrorism), services have increased the quantities and types of UASs fielded
- Many contractors and program offices have independently developed and fielded systems with overlapping functionality
- The GAO and OSD have directed that commonality be increased so that cost savings are realized
- As more systems are fielded, logistics tails for independent systems must be maintained at costs of inventory, transportation, training, repair, and more
- Literature focus is on developing commonality from "clean sheet" designs for product families instead of the case of increasing commonality across existing architectures and systems


Key Question(s)

- How can opportunities for commonality be discovered across multiple systems?
- How can decisions be made to determine the technical applicability of a proposed system as a replacement for a current system?
- How do stakeholders impact the implementation of commonality across systems?

Methodology

The Research

- · Developed taxonomies for identifying functions across systems
- Functional decompositions of systems performed and multiple levels compared to find common modules
- Systems characterized through activity modeling using IDEF0
- Comparisons performed by calculating differences between activity model generated matrices and analyzing differences
- Stakeholders identified and mapped to their interests related to commonality
- Commonality solution developed by screening technically feasible solutions with stakeholder preferences

Hypothesis: Driving commonality across complex systems requires a rigorous process to implement and realize the benefits

Preliminary Results

- Method for finding commonality opportunities has been developed and tested by the researcher in several domains
- The functional decompositions can be mapped to physical instantiations and compared across systems
 - Specifications can be compared to determine suitability of physical modules into another system

			Category of	Delta	Primary	Cost
Collapsed Delta ICOMs			Delta	resolution	Stakeholder	estimate
	Parameter(I)		Severe, Major,	PM, EN, Prime		
Attribute	Metric	Value	Minor, None	and/or OEM		Future growth
Operator	Automatic		Minor	All	Operator	VIIIIIIIIII
	semi-automatic	Yes	Minor	All	Operator	<i>777777777</i>
Signal	Threat ID	Yes	Minor	All	Operator	
	Sequencer to dis	- 1	Minor	CEM	EN, Prime, OEM	<i>/////////////////////////////////////</i>
Weight	Pounds	-8	Minor	EN	EN, Prime	mmm
Payload	Advanced CM	Yes, 0-80	Minor	All	Operator	<i>/////////////////////////////////////</i>
Aircraft sequenc	Group A wires	- 1	Major	Prime	Maintenance	\$14K each + install
	Group A Connec	12-pins	Severe	Prime	Maintenance	
Dispense	Chaff	Optimized	Minor	All	Operator	<i>VIIIIIIIII</i>
	Flares	Optimized	Minor	All	Operator	<i>mmm</i>
	Advanced	Optimized, 1, 2,	Minor	All	Operator	VIIIIIIIII
	Automatic	Yes	Minor	All	Operator	mmm
Mission data	Adaptive	Yes	Minor	All	Maintenance	VIIIIIIIII

Remaining Research

- Transition from researcher-led method applications to practitioner-led studies
 - · Evaluate method from observer status
- Future Research
- Formalize cost estimating analysis to improve financial estimates
- · Automate comparisons of systems

Wrap Up

- · Expected Contributions
- Process to allow DoD system program managers to identify opportunities for commonality with other complex systems
- · Areas for future consideration:
 - · Communication systems
 - · Ship management
 - · Aircraft engines

