Converting a Linear Program to Standard Form

Cleaver, an MIT
Beaver

Linear Programs in Standard Form

We say that a linear program is in standard form if the following are all true:

1. Non-negativity constraints for all variables.
2. All remaining constraints are expressed as equality constraints.
3. The right hand side vector, b, is non-negative.

An LP not in Standard Form

maximize

$$
\begin{aligned}
z=3 x_{1}+2 x_{2}-x_{3}+x_{4} & \\
x_{1}+2 x_{2}+x_{3}-x_{4} \leq 5 ; & \text { not equality } \\
-2 x_{1}-4 x_{2}+x_{3}+x_{4} \leq-1 ; & \text { not equality, and negative RHS } \\
x_{1} \geq 0, x_{2} \geq 0 & x_{3} \text { and } x_{4} \text { may be negative }
\end{aligned}
$$

And ...

Yes. I'm repeating some of the material from Lecture 4. But, I'm also adding some new material.

Tim, the turkey

Converting Inequalities into Equalities Plus Non-negatives

Before

$x_{1}+2 x_{2}+x_{3}-x_{4} \leq 5$

To convert a " \leq " constraint to an equality, add a slack variable.

After

$\mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3}-\mathrm{x}_{4}+\mathrm{s}_{1}=5$
$s_{1} \geq 0$
s_{1} is called a slack variable, which measures the amount of "unused resource."

Note that $s_{1}=5-x_{1}-2 x_{2}-x_{3}+x_{4}$.

$$
\begin{gathered}
\text { Before } \\
x_{1}+2 x_{2}+x_{3} \geq 7
\end{gathered}
$$

To convert a " \geq " constraint to an equality, add a surplus variable.

After
$x_{1}+2 x_{2}+x_{3}-s_{2}=7$
$s_{2} \geq 0$
s_{2} is called a surplus variable, which measures the amount of excess.

Note that $s_{1}=7-x_{1}-2 x_{2}-x_{3}$.

Transforming Max to Min

How can one convert a minimization problem to a maximization problem?

$$
\begin{array}{ll}
\text { Example: } & \text { Minimize } \quad z=3 x_{1}+2 x_{2} \\
& \text { subject to "constraints" }
\end{array}
$$

Has the same optimum solution(s) as

> Maximize $\quad v=-3 x_{1}-2 x_{2}$ subject to "constraints"

And ...

Tim

Getting Rid of Negative Variables

Before
$\operatorname{Max} \quad \mathrm{z}=3 \mathrm{x}_{1}+4 \mathrm{x}_{2}+5 \mathrm{x}_{3}$
s.t. $\quad 2 x_{1}-5 x_{2}+2 x_{3}=7$ other constraints
$\mathrm{x}_{1} \leq 0, \mathrm{x}_{2} \geq 0, \mathrm{x}_{3} \geq 0$

After

$$
\begin{gathered}
\max \mathrm{z}=-3 y_{1}+4 x_{2}+5 x_{3} \\
-2 y_{1}-5 x_{2}+2 x_{3}=7 \\
\text { other constraints } \\
y_{1} \geq 0, x_{2} \geq 0 x_{3} \geq 0
\end{gathered}
$$

Transformation: replace x_{1} by $y_{1}=-x_{1}$; and require that $y_{1} \geq 0$.

If y_{1}, x_{2}, x_{3} is an optimal solution for the transformed problem, then $-y_{1}, x_{2}, x_{3}$ is an optimal solution for the original problem.

Other constraints?

Why did we writing "other constraints on the previous slide? It doesn't seem to add anything.

Ollie,
the computationally wise owl.

Transforming variables that may take on negative values.

$$
\text { Before } \quad \begin{aligned}
\max z= & 3 x_{1}+4 x_{2}+5 x_{3} \\
& 2 x_{1}-5 x_{2}+2 x_{3}=7 \\
& \text { other constraints } \\
& x_{1} \geq 0, x_{2} \text { is unconstrained in sign, } x_{3} \geq 0
\end{aligned}
$$

The transformation here is a little more complex. We use the fact that a real number can be expressed as the difference of two non-negative numbers (in an infinite number of ways). For example, -5 can be written as $0-5$ or as 1-6 or as 2-7 etc.

We replace x_{2} by $x_{2}=y_{3}-y_{2}$; and require that $y_{2} \geq 0, y_{3} \geq 0$.

After

$$
\begin{gathered}
\max z=3 x_{1}+4\left(y_{3}-y_{2}\right)+5 x_{3} \\
2 x_{1}-5 y_{3}+5 y_{2}+2 x_{3}=7 \\
\text { other constraints } \\
x_{1}, y_{2}, y_{3}, x_{3} \geq 0
\end{gathered}
$$

If $x_{1}, y_{2}, y_{3}, x_{3}$ is an optimal solution for the transformed problem, then $x_{1}, y_{3}-y_{2}, x_{3}$ is an optimal solution for the original problem.

Last Slide

Remember that the major reason we do this is because the simplex method starts with a linear program in standard form. But it turns out that this type of transformation is useful for other types of algorithms too. Perhaps we shall see their usefulness some time later in this course.

Cleaver

