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The real-time detection of explosive compounds and markers for explosive compounds 

represents an ongoing challenge for gas sensor development. Explosive-based weapons 

remain the preferred tools of terrorism and it is likely that this threat will be a continuing 

concern to society for the foreseeable future.[1] It is therefore desirable to develop sensors 

capable of detecting the vapors emanating from explosives. The number of compounds that 

can serve as vapor signatures of explosives is considerable and goes beyond well-known 

highly energetic compounds such as RDX, PETN, and TNT.  For example, nitromethane is a 

common solvent but can be utilized in the formation of explosives mixtures.[2]  Similarly a 

non-explosive vapor marker of some plastic explosives is cyclohexanone, which is used to 

recrystallize the explosive RDX.[3] As a result of its significantly higher vapor pressure, 

residual cyclohexanone is recognized as a marker for RDX based explosives.[4] Several 
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techniques have been used to detect these analytes including ion mobility spectrometry (IMS), 

mass spectrometry (MS), and gas chromatography (GC). Although these methods can provide 

sensitivity and selectivity, the instrumentation is bulky, costly, and can be complex to operate. 

It is therefore desirable to develop low-cost sensors compatible with portable platforms that 

are readily integrated into existing electronic systems. Carbon nanotube (CNT) based 

chemiresistors are an emerging class of sensors that fulfill these requirements and are 

displaying promising performance in a variety of sensing applications.[5,6] CNT chemiresistors 

can be deposited between electrodes by evaporation of dispersions, or can be effectively 

drawn from compressed CNT solids.[7] In order to improve the selectivity of CNT-based 

sensors for certain analytes, functionalization with selectors (groups designed to interact 

selectively with particular molecules) is usually required. This can be done by non-covalent 

functionalization with selector molecules with pendant pyrenes,[8] wrapping with 

functionalized polymers,[9] or by covalent functionalization of the sidewalls or the 

carboxylates found at the termini of oxidized CNTs.[10] A variety of selector types have been 

developed, ranging from chemically synthesized selectors that rely on polarity or acid-base 

interactions to enzymes for greater specificity.[5, 11]  

To create SWCNTs capable of selective detection of nitromethane and cyclohexanone vapors 

we have prepared a family of selectors that should provide specific interactions. Inspired by 

their capabilities for anion sensing in solution, we chose to investigate thiourea, urea, and 

squaramide groups which have been reported to interact strongly with nitrates, carboxylates 

and other compounds that resemble the structure of our target R-NO2 and ketone analytes.[12] 

We chose a two-step attachment strategy. First, amino groups were covalently attached to the 

sidewall of single-walled CNTs (SWCNTs) via thermal aziridination.[13] The resulting NH2-

SWCNTs were then reacted with a second reagent containing the desired selector. This two-

step approach combines an established and reliable CNT functionalization method with the 

flexibility of using pendant amines to attach a variety of groups in the second step. It is 
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important to note that covalent functionalization of the sidewalls disrupts the extended 

electronic states of SWCNTs and thereby increases the base resistance more than a non-

covalent functionalization approach.  An increased base resistance has the effect of lowering 

the sensitivity for the detection of analyte-induced resistance increases.  Nevertheless, with 

modest degrees of functionalization, quality sensors have been obtained from covalently 

functionalized SWCNTs.[10b,14] An important advantage of covalent functionalization is that it 

produces a more durable sensor relative to non-covalent compositions that are prone to 

changes in structure, which can lead to CNT/selector phase separation and decreased sensor 

performance.  

Using the two-step synthetic route, substituted thiourea and squaramide groups were attached 

to the surface of SWCNTs (Fig. 1a). After confirming the successful introduction of the 

selector by X-ray photoelectron spectroscopy (XPS), sensors were fabricated from the 

functionalized SWCNTs by drop-casting the sensing material between two electrodes (Fig. 

1b). The sensor was loaded into an enclosure and a gas stream of either pure nitrogen or 

nitrogen containing an analyte vapor was passed over the device. A constant potential of 0.1 

V was applied across the sensor and the relative current change when switching from pure 

nitrogen to the nitrogen-analyte mixture was recorded. Among the tested sensors, m-CF3-Bn-

TU-SWCNT led to the most pronounced sensing response of 0.9% when exposed to 57 ppm 

cyclohexanone (Fig. 1c) and no clear response was observed for the squaramide-based 

sensors (see supporting information). We attribute the higher performance of m-CF3-Bn-TU-

SWCNT to the more acidic nature of NH protons in thiourea groups relative to those of the 

squaramide, and this increased acidity is further augmented by the electron poor benzyl 

substituent. Additionally, the highly reactive isothiocyanate reagent, which was used to 

introduce this selector, resulted in a higher functional group density of the thiourea groups as 

compared to their squaramide counterparts (see Fig. 1a for functional group densities by 

XPS). 
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Encouraged by these initial results, we investigated related receptors with the goal to further 

improve the sensing performance.  Phenyl substituted selectors were included to probe both 

the effects of steric demand and electron affinity of the substituent. Additionally, we decided 

to investigate a selector containing two thiourea units in close proximity, which could 

potentially lead to a higher binding affinity of the selector to its analyte by chelation.[15,16] 

Selector 9 is synthesized from diamine 5 and isothiocyanate 7 (Fig. 2a). Although thiourea 

units have shown better interactions with analytes in previous studies,[12] it was not clear in 

this particular case if the steric bulk of the sulfur atoms would prevent a planar conformation 

in 9 and thereby compromise the binding of the selector to target analytes. As a result we also 

investigated 8, the urea counterpart of 9.  

A challenge when investigating the performance of different selectors in CNT-based sensors 

is the complex dependence of the sensing response on a variety of contributing factors. Ideally 

the interaction of analyte and selector creates maximal resistance changes, but this 

performance is highly dependent on the selector attachment, their density on the CNT surface, 

and other functionality/structures present in the CNTs that is introduced in the synthesis or 

processing. To separate the effect of CNT attachment from the recognition performance of the 

selector, we performed a 1H NMR binding study with model selectors and cyclohexanone in 

solution. The association constants for cyclohexanone and the model receptors in CDCl3 

obtained from these studies showed a clear advantage of the bidentate thiourea receptor over 

its analogues with only one binding site (see Fig. 2a for the measured association constants). 

Interestingly, the 1H NMR data from the titration experiment with 9 revealed no significant 

change in chemical shift for the NH protons further away from the central benzene ring upon 

addition of cyclohexanone (labeled a and b in Fig. 2a, see supporting information for NMR 

data). The inner NH protons on the other hand (c and d in Fig. 2) experienced a significant 

downfield shift with increasing cyclohexanone concentrations. This suggests that the ketone 

participates in hydrogen bonding with one proton of each thiourea unit in 9 instead of binding 
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to both NH protons of either thiourea group. Unfortunately, no association constant could be 

determined for 8, because the compound displayed very limited solubility in CDCl3, 

presumably as a result of strong intermolecular hydrogen bonding.  

Guided by our initial sensing experiments as well as the 1H NMR binding study, three 

additional selectors were attached to SWCNTs: the urea-based selector with two binding sites 

(Bis-U-SWCNT), its thiourea counterpart (Bis-TU-SWCNT), and the phenyl analogue of m-

CF3-Bn-TU-SWCNT (m-CF3-Ph-TU-SWCNT) (Fig. 2b). Additionally, m-CF3-Bn-TU-

SWCNT, m-CF3-Bn-SQ-SWCNT, and pristine (unfunctionalized) SWCNTs were included 

in further tests for comparison. To expose all sensors to exactly the same conditions, we 

developed a platform for the simultaneous measurement of several sensors. Glass slides 

having sensor arrays were connected to an array potentiostat through an edge connector and 

placed in a custom enclosure fabricated from tetrafluoroethylene. The analyte gas could then 

be applied to all sensors while the current was recorded at a constant potential (see Supporting 

Information for details). 

These sensor arrays were exposed to 57 and 283 ppm cyclohexanone (1.3% and 6.3% of the 

equilibrium vapor concentration at 25°C) as well as 57, 283 and 469 ppm nitromethane (0.1%, 

0.6%, and 1% of the equilibrium vapor concentration at 25°C) for evaluation of the 

chemiresistive properties (Fig. 3a). To determine the reproducibility, two copies of each 

sensor were included on each glass slide and each exposure to the analyte was repeated five 

times. Using this data, the average response of each sensor type to the analytes at each 

concentration was determined (Fig. 3b).[17] The results show that CF3-Bn-SQ-SWCNT and 

Bis-TU-SWCNT are best suited for measurement of nitromethane while Bis-U-SWCNT 

performed best in the detection of cyclohexanone.  The response to 283 ppm cyclohexanone 

was ca. 20% higher when using Bis-U-SWCNT compared to m-CF3-Bn-TU-SWCNT, 

which displayed the best performance in the first round of testing. An increase in sensing 

response to 469 ppm nitromethane of 30% was observed when using Bis-TU-SWCNT 
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compared to m-CF3-Bn-TU-SWCNT. This improvement only required a simple additional 

synthetic step for the preparation of a new selector. One interesting aspect is that pristine 

SWCNTs show a significant response to cyclohexanone and a minimal response to 

nitromethane vapor.  

Upon closer inspection of the sensing traces for each type of functionalized SWCNTs, it is 

evident that the responses of duplicate sensors using the same selector are virtually 

superimposable (see overlay of two sensing traces in each line of Fig. 3a). This high level of 

reproducibility is remarkable considering that no special precautions were taken when 

preparing the sensors other than ensuring the sensors have base resistances that are the same 

order of magnitude.  

To better evaluate selectivity, sensors were exposed to a variety of analytes and the resulting 

responses were analyzed using principle component analysis (PCA). PCA showed clustering 

of the responses for each analyte, which is remarkable considering the high similarity of the 

investigated receptors (Fig. 4a). Adding different classes of selectors to an array is certain to 

improve sensor selectivity and will be investigated in future studies.  

We also have performed initial studies that address sensor-to-sensor reproducibility as well as 

the long-term stability.  These aspects are of critical importance if this platform is to ever be 

considered for commercial applications. The response of three separate sensors based on m-

CF3-Bn-TU-SWCNT to 57 and 283 ppm cyclohexanone was first evaluated shortly after 

their fabrication (Fig. 4b).  The sensor-to-sensor variance, although small, is much larger than 

we observe in our duplicate sensors on a given array.  As a result, it is likely that these 

variations are mainly a result of the experimental setup, which includes the connectors, 

sample enclosure, and gas delivery. Subsequently, one of the devices was retested after 16 

days as well as after 236 days of bench top storage under ambient conditions without special 

precautions (Fig. 4c). The response was reduced after the nearly eight months period, but a 

clear signal upon exposure to 57 ppm of cyclohexanone could still be observed.  We view 
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these results as encouraging and suggest that with further development this sensor platform 

may be capable of producing sensors with small-enough drift to be viable for real-world 

applications. 

In summary, we have developed SWCNT-based gas sensors with sensitivity to cyclohexanone 

and nitromethane, two compounds relevant for the detection of explosives. These resistivity-

based sensing schemes have great potential as a result of simple fabrication, miniaturization, 

and facile integration into electronic circuits. Guided by initial sensing tests and 1H NMR 

binding studies, improved selectors were synthesized and attached to SWCNTs to provide 

superior sensing performance.  As a result, schemes involving the covalent attachment of 

selectors have promise for the systematic development of sensors for a wide range of analytes.  

The sensors showed a very high level of reproducibility between measurements with the same 

sensor and across different sensors of the same type. Furthermore, they exhibit promising 

long-term stability suitable for practical applications.  

 
Experimental 
 
Materials and Synthetic Manipulations: Synthetic manipulations were carried out under an 

argon atmosphere using standard Schlenk techniques. Single-walled carbon nanotubes were 

purchased from Southwest Nanotechnologies (SWeNT® CG100). All other chemicals were 

purchased from Sigma Aldrich and used as received. NMR spectra were recorded on Bruker 

Avance-400 spectrometers.  

XPS Measurements: XPS spectra were recorded on a Kratos AXIS Ultra X-ray Photoelectron 

Spectrometer. The samples were drop-cast onto SiO2/Si substrates for the measurements.  

NH2-SWCNT: SWCNTs (150 mg, 12.5 mmol C) were added to a flame dried Schlenk flask. 

3-azidopropan-1-amine (6 g, 60 mmol) and 1,2-dichlorobenzene (30 mL) were added. The 

mixture was sonicated for 15 min and then equipped with a reflux condenser and stirred at 

160 °C for 42 h. The solvent was distilled off and the residue was washed on a 0.2 µm 
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fluoropore filter membrane with CH2Cl2, methanol, ethanol, water, methanol, and hexanes. 

The product was dried in vacuo. N/C ratio by XPS (based on N 1s vs. C 1s): 16.7% 

(functional group density: 8.3%). 

m-CF3-Bn-TU-SWCNT: NH2-SWCNT (20 mg) were sonicated for 15 min in ethanol (15 mL). 

1-(isothiocyanatomethyl)-3,5-bis(trifluoromethyl)benzene (256 mg, 1.0 mmol) in ethanol 

(5 mL) was added dropwise at 0 °C. The mixture was stirred for 48 h. The solid was collected 

by filtration and the product was washed on a filter with ethanol, CH2Cl2, methanol, water, 

methanol, and hexanes and subsequently dried in vacuo. Functional group density based on F 

1s and C 1s signals by XPS: 45 CNT carbon atoms per functional group. Other thiourea 

derivatives were obtained following a similar procedure (see supporting information). 

m-CF3-Bn-SQ-SWCNT: NH2-SWCNT (17.5 mg) were sonicated for 15 min in ethanol 

(15 mL). 3-(3,5-bis(trifluoromethyl)benzylamino)-4-ethoxycyclobut-3-ene-1,2-dione (319 mg, 

0.87 mmol) in ethanol (15 mL) was added. The mixture was stirred for 48 h at r.t. and 

subsequently for 48 h at 40 °C. The solid was collected by filtration and the product was 

washed on a filter with ethanol, CH2Cl2, methanol, water, methanol, and hexanes and 

subsequently dried in vacuo. Functional group density based on F 1s and C 1s signals by 

XPS: 131 CNT carbon atoms per functional group. Other squaramide derivatives were 

obtained following a similar procedure (see supporting information). 

m-CF3-Ph-TU-SWCNT: NH2-SWCNT (20 mg) were sonicated for 2 min in 15 mL THF. 1-

isothiocyanato-3,5-bis(trifluoromethyl)benzene (271 mg, 1.0 mmol) was added and the 

mixture was stirred at r.t. for 3 days. The solid was collected by filtration and the product was 

washed on a filter with ethanol, CH2Cl2, methanol, water, methanol, and hexanes and 

subsequently dried in vacuo. Functional group density based on F 1s and C 1s signals by 

XPS: 180 CNT carbon atoms per functional group. 

Methyl 3,4-bis(3-(3,5-bis(trifluoromethyl)phenyl)ureido)benzoate 8: 6 (2.81 g, 11.0 mmol) 

was added to 5 (831 mg, 5.0 mmol) in 30 mL THF. The mixture was stirred at r.t. for 24 h 
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after which the solvent was removed in vacuo. The crude product was recrystallized from 

DCM (100 mL) and dried in vacuo. Yield: 2.17 g (3.2 mmol, 64%). 1H NMR (400 MHz, 

DMSO-d6, δ): 9.95 (s, 1H), 9.78 (s, 1H), 8.55 (s, 1H), 8.39 (s, 1H), 8.09 (d, 4H, J = 18.4 Hz), 

8.03 (d, 1H, J = 1.2 Hz), 7.93 (d, 1H, J = 8.8 Hz), 7.76 (dd, 1H, J = 8.4 Hz, 2.0 Hz), 7.61 (d, 

2H, J = 8.4 Hz), 3.81 (s, 3H). 13C-NMR (100 MHz, DMSO-d6, δ): 166.3 (s), 154.0 (s), 153.1 

(s), 142.5 (s), 142.1 (s), 138.0 (s), 131.4 (q, J = 32.5 Hz), 131.3 (q, J = 32.5 Hz), 129.9 (s), 

127.6 (s), 127.3 (s), 125.4 (s) 123.9 (q, J = 271.1 Hz), 123.9 (q, J = 270.9 Hz), 123.1 (s), 

119.8 (s), 118.7 (s), 115.2 (s), 52.7 (s). HRMS calc. for C26H16F12N4O4 [M+H]+: 677.1053, 

found: 677.1073. [M+H]+ 

Methyl 3,4-bis(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)benzoate 9: 7 (2.98 g, 11.0 

mmol) was added to 5 (831 mg, 5.0 mmol) in 30 mL THF. The mixture was stirred at r.t. for 

22 h after which 7 (1 g, 3.7 mmol) was added. After stirring for two additional hours, the 

solvent was removed in vacuo. The crude product was washed with hexanes and DCM. Yield: 

941 mg (27%). 1H-NMR (400 MHz, DMSO-d6, δ): 10.39 (s, 1H), 10.32 (s br, 1H), 10.02 (s, 

1H), 9.91 (s br, 1H), 8.17 (d, 2H, J = 4.4 Hz), 8.06 (d, 1 H, J = 1.6 Hz), 7.91 (dd, 1 H, J = 8.4 

Hz, 2.0 Hz), 7.76 (s br, 2H), 7.74 (d, 1H, J = 8.4 Hz), 3.88 (s, 3H). HRMS calc. for 

C26H16F12N4O2S2 [M+H]+: 709.0596, found: 709.0611. [M+H]+ 

Bis-U-SWCNT: NH2-SWCNT (20 mg) were sonicated for 5 min in ethanol (15 mL). 9 (709 

mg, 1.0 mmol) was added and the mixture was refluxed for 4 days. The solid was collected by 

filtration and the product was washed on a filter with ethanol, water, ethanol, CH2Cl2, and 

hexanes and subsequently dried in vacuo. Functional group density based on F 1s and C 1s 

signals by XPS: 130 CNT carbon atoms per functional group. 

Bis-TU-SWCNT: NH2-SWCNT (20 mg) were sonicated for 5 min in ethanol (15 mL). 8 (676 

mg, 1.0 mmol) was added and the mixture was refluxed for 4 days. The solid was collected by 

filtration and the product was washed on a filter with ethanol, water, ethanol, CH2Cl2, and 
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hexanes and subsequently dried in vacuo. Functional group density based on F 1s and C 1s 

signals by XPS: 100 CNT carbon atoms per functional group. 

Device preparation: Glass slides (VWR Microscope Slides) were cleaned by ultrasonication 

in acetone for 10 min, and after drying they were subjected to UV radiation in a UVO cleaner 

(Jelight Company Inc.) for 3 min. Using an aluminum mask, layers of chromium (10 nm) and 

gold (75 nm) were deposited leaving a 1 mm gap using a metal evaporator purchased from 

Angstrom Engineering with home built aluminum shadow masks.  

Pristine SWCNTs were added to CH2Cl2 at a concentration of 1 mg per 5 mL, NH2-SWCNTs 

were added to ethanol and all other functionalized SWCNTs were added to 1:1 mixtures of 

CH2Cl2/iso-propanol at the same concentration. The samples were sonicated for 2 min (bath 

sonicator). Volumes of 1 µL of the respective SWCNT dispersion were drop-cast between the 

gold electrodes until a resistance of 5-20 kΩ was achieved. 

Sensing measurements: The devices were enclosed in a homemade TeflonTM gas flow 

chamber for sensing measurement. The low concentration gas mixtures were produced using a 

KIN-TEK gas generator system[18]. A trace amount of analyte generated by heating the 

analyte is mixed with a nitrogen stream (oven flow), which can be further diluted with 

nitrogen (dilution flow). Calibration measurements were performed by placing the analyte in 

the oven flow for set amounts of time and determined its weight loss. 

Electrochemical measurements were performed using a PalmSens handheld potentiostat 

(PalmSens Instruments) for single device measurements or an EmStat-MUX handheld 

potentiostat (PalmSens Instruments) for array measurements. A constant bias voltage of 0.1 V 

was applied across the device, while current vs. time was measured. During the measurement 

the volume of gas flow over the device was held constant and switched between nitrogen and 

analyte/nitrogen.  

NMR binding studies: The receptor was dissolved in CDCl3 at a concentration of 0.01 M (for 

1-4) or 2.5 mM (for 9) and a 1H NMR spectrum was measured. Subsequently, cyclohexanone 
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was added to achieve a ratio of cyclohexanone to the receptor of 0.1, 0.3, 0.5, 0.7, 0.9, 1.0, 3.0, 

5.0, 10.0, 15.0, 20.0, 25.0, and 50.0 (for 1-4) and 0.1, 0.3, 0.5, 0.7, 0.8, 1.0, 2.7, 4.4, 8.4, 12.5, 

16.6, 20.7, 24.7, 40.4, and 144 (for 9). A 1H NMR spectrum was recorded after every addition 

and the chemical shifts of the protons were recorded. Using the software package 

WinEQNMR2 with the chemical shifts of the NH and aromatic protons (for 1-4) or proton at 

the 4-position of the CF3-substituted phenyl group in 9 (labeled e’ in Fig 2a), association 

constants were determined.  
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Figures:  
 

 
Figure 1. (a) Functionalization of SWCNTs with selectors. aFunctional group density is 
determined by X-ray photoelectron spectroscopy. bBased on O 1s and C 1s signals in the 
product compared to NH2-SWCNT; cBased on F 1s and C 1s signals (b) Schematic 
representation of resistivity-based SWCNT gas sensor. (c) Response of sensor based on m-
CF3-Bn-TU-SWCNT to 57 ppm cyclohexanone. 
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Figure 2. (a) Model compounds for 1H NMR binding study with cyclohexanone. Association 
constants and errors of 1-4 are based on shifts of two aromatic and two NH protons; 
association constant and error of 9 is based on proton e. (b) Functionalized SWCNTs with 
selectors based on 1H NMR binding study. 
 

 
Figure 3. (a) Sensing response of an array of SWCNT devices to nitromethane and 
cyclohexanone vapor at different concentrations. Data from two different sensors with the 
same type of functionalized SWCNTs are overlaid on each line.  The traces appear in most 
cases as a single trace as a result of the excellent sensor to sensor reproducibility. (b) Average 
sensing response and standard deviation over 4 peaks and two devices for each analyte and 
type of SWCNT. One pristine SWCNT device displayed an unusually high noise level and 
was therefore omitted to calculate the values for pristine SWCNT sensors.  
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Figure 4. (a) Principal component analysis of sensing response to different analytes using two 
sensors each based on Bis-U-SWCNT, Bis-TU-SWCNT, m-CF3-Ph-TU-SWCNT, m-CF3-
Bn-TU-SWCNT, and m-CF3-Bn-SQ-SWCNT. (b) Sensing response of three different 
devices prepared with m-CF3-Bn-TU-SWCNT to 57 ppm and 283 ppm cyclohexanone. 
Averages and errors are based on four measurements per analyte concentration and all three 
devices. (c) sensing response of one device prepared with m-CF3-Bn-TU-SWCNT to 57 ppm 
and 283 ppm cyclohexanone, directly after device fabrication, after 16 days and after 236 
days of storage under ambient conditions without additional precautions.  
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Supporting Information 
 

Materials  

SWCNTs were received from SouthWest NanoTechnologies (CG-100, >90% carbon content, 

lot # CG100-000-0012) and used without further purification. All solvents were of 

spectroscopic grade unless otherwise noted. Unless specified, all chemicals were of reagent 

grade and used as received. 

General Methods and Instrumentation 

XPS spectra were recorded on a Kratos AXIS Ultra X-ray Photoelectron Spectrometer. 

Optical micrographs were recorded using a Leica DMRXP optical microscope with an 

attached Sony DXC-970MD camera. Scanning electron microscope (SEM) images were 

obtained on a JEOL 6700 scanning electron microscope. All synthetic manipulations were 

carried out under an argon atmosphere using standard Schlenk techniques unless otherwise 

noted.  
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Synthesis 

 

Figure S 1. Synthesis of thiourea and squaramide functionalized SWCNT. 
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3-azidopropan-1-amine. 3-azidopropan-1-amine was synthesized following a literature 
procedure[13]. Note: Molecules with a high density of azide groups are potentially explosive 
and particular caution has thus to be used, especially when isolating azides[19,20]. Before 
synthesizing the compound on the described scale the molecule was prepared on small scale 
and the explosive hazard has been evaluated (shock, heat). 65.6 g (0.3 mol) 3-
bromopropylamine hydrobromide were dissolved in 200 mL H2O and added to 39.0 g (2 
equiv) sodium azide in 160 mL H2O. The mixture was refluxed for 15 h and subsequently 
cooled in an ice bath. Afterward, it was poured into 400 mL diethyl ether containing 24 g 
NaOH (2 equiv). The organic phase was separated and the aqueous phase was extracted twice 
with 100 mL Et2O. The combined organic phases were dried over MgSO4, filtered and stored 
in solution. A small aliquot was concentrated for characterization by NMR. The concentration 
in solution was determined by 1H-NMR to be 0.3 M using toluene as an internal standard. 
Yield: 470 mL of 0.3 M solution (47%). 1H-NMR (CDCl3, 400 MHz): δ = 3.33 (t, 2H, J= 6.6 
Hz); 2.76 (t, 2H, J= 7.0 Hz); 1.68 (quin, 2H, J= 6.8 Hz); 1.17 (s, broad, 2H). 13C-NMR 
(CDCl3, 100 MHz): δ = 49.2, 39.4, 32.6. 

1-(isothiocyanatomethyl)-4-(trifluoromethyl)benzene 12. 11 (0.81 g, 4.60 mmol) was 
dissolved in 5 mL absolute EtOH. While stirring, CS2 (3.50 g, 46.0 mmol) and Et3N (0.47 g, 
4.60 mmol) were added. After stirring for 60 min., the solution was cooled on an ice bath, 
precipitating dithiocarbamate. Once cooled, a solution of Boc2O (0.98 g, 4.50 mmol) in 1 mL 
absolute EtOH and a solution of DMAP (17 mg, 0.14 mmol) in 1 mL absolute EtOH were 
added. After stirring at 0 ˚C for 5 minutes, the reaction mixture was warmed to r.t. The 
mixture was stirred until evolution of gas had completed and was then concentrated. The 
product was purified by flash silica chromatography (DCM, gradient to 2% MeOH) elutes 
product first. Yield: 0.544 g (2.51 mmol, 55%). 1H-NMR (400 MHz, CDCl3): δ 7.63 (d, 2H, J 
= 8.0 Hz), 7.42 (d, 2H, J = 8.4 Hz), 4.77 (s, 2H). 13C-NMR (100 MHz, CDCl3): δ 138.4 (s), 
134.0 (s broad), 130.9 (q, J = 32.5 Hz), 127.3 (s), 126.2 (q, J = 3.8 Hz), 124.0 (q, J = 270.5 
Hz), 48.4 (s). 

1-(isothiocyanatomethyl)-3,5-bis(trifluoromethyl)benzene 14. 14 was prepared from 13 
following the same procedure as described for 12.: 0.461 g (1.62 mmol, 35%). 1H-NMR (400 
MHz, CDCl3): δ 7.84 (s, 1H), 7.76 (s, 2H), 4.87 (s, 2H). 13C-NMR (100 MHz, CDCl3): δ 
137.2 (s), 136.1 (s broad), 132.7 (q, J = 33.5 Hz), 127.2 (q, J = 3.7 Hz), 123.1 (q, J = 271.2 
Hz), 122.6 (m), 48.1 (s).  

3-ethoxy-4-(methylamino)cyclobut-3-ene-1,2-dione 17. 16 (0.57 g, 3.34 mmol) was 
dissolved in 15 mL DCM in water-free conditions. A solution of 15 in THF (1.78 mL, 2.0 M) 
was added while stirring under Ar atmosphere. After stirring for 18, the mixture was filtered, 
and the filtrate was washed with 35 mL 1N HCl (aq). The organic layer was dried with 
Na2SO4, filtered and concentrated. The product was isolated by flash silica chromatography 
(DCM to elute diethylsquarate, then DCM/MeOH 98:2). Yield: 0.315 g (2.03 mmol, 61%). 
The 1H-NMR spectrum shows 2 full sets of peaks, due to a high rotation barrier around the C-
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N bond (ratio isomer 1 to isomer 2: 3.8). 1H-NMR (400 MHz, CDCl3): Isomer 1: δ 7.31 (s 
broad, 1H), 4.65 (q, 2H, J = 6.8 Hz), 3.06 (d, 3H, J = 4.8 Hz), 1.35 (t, 3H, J = 6.8 Hz). Isomer 
2: δ 6.66 (s broad, 1H), 4.57 (q broad, 2H, J = 6.8 Hz), 3.19 (s broad, 3H), 1.30 (t broad, 3H). 
13C-NMR (100 MHz, CDCl3): δ 189.8, 182.8, 177.8, 173.4, 69.8, 31.4, 16.0. HRMS calc. for 
C7H10NO3 [M+H]+: 156.0655, found: 156.0669. [M+H]+ 

3-ethoxy-4-((4-(trifluoromethyl)benzyl)amino)cyclobut-3-ene-1,2-dione 18. 16 (0.57 g, 
3.34 mmol) was dissolved in 15 mL DCM in water-free conditions, and a solution of 11 (0.61 
g, 3.51 mmol) in 3.5 mL DCM was added while stirring. After stirring for 18 h, the mixture 
was filtered, and the filtrate was washed with 35 mL 1N HCl (aq). The organic layer was 
dried with Na2SO4, filtered and concentrated. The product was isolated by flash silica 
chromatography (DCM to elute diethylsquarate, then DCM/MeOH 98:2). Yield: 0.506 g (1.48 
mmol, 44%). Two isomers were obtained (ratio isomer 1 to isomer 2: 3.3). 1H-NMR (400 
MHz, CDCl3): Isomer 1: δ 7.94 (s broad, 1H), 7.54 (d, 2H, J= 7.6 Hz), 7.39 (d, 2H, J = 7.6 
Hz), 4.69 (d, 1H, J =6.4 Hz), 4.65 (s broad, 2H), 4.61 (d, 1H, J =5.2 Hz), 1.36 (t, 3H, J =6.4 
Hz). Isomer 2: 7.54 (d, 2H, J = 7.6 Hz), 7.39 (d, 2H, J = 7.6 Hz), 6.93 (s broad, 1H), 4.82 (s 
broad, 2H), 4.69 (d, 1H, J =6.4 Hz), 4.61 (d, 1H, J =5.2 Hz), 1.36 (t, 3H, J =6.4 Hz). 13C-
NMR (100 MHz, CDCl3): δ 189.7 (s), 183.0 (s), 178.1 (s), 172.7 (s), 141.4 (s), 130.4 (q, J = 
32.3 Hz), 128.1 (s), 126.0 (q, J = 3.7 Hz), 124.1 (q, J = 270.5 Hz), 70.2 (s), 48.1 (s), 15.9 (s). 
HRMS calc. for C14H12F3NO3 [M+H]+: 300.0842, found: 300.0853. [M+H]+ 

3-((3,5-bis(trifluoromethyl)benzyl)amino)-4-ethoxycyclobut-3-ene-1,2-dione 19. 19 was 
prepared from 16 and 13 as described for 18. Yield: 0.320 g (0.87 mmol, 26%). Two isomers 
were obtained (ratio isomer 1 to isomer 2: 2.3). 1H-NMR (400 MHz, CDCl3): Isomer 1: δ 7.81 
(s, 1H), 7.76 (s, 2H), 7.53 (s broad, 1H), 4.75 (q, 2H, J =7.2 Hz), 4.73 (s broad, 2H) 1.41 (t, 
3H, J = 7.2 Hz). Isomer 2: δ 7.81 (s, 1H), 7.76 (s, 2H), 5.91 (s broad, 1H), 4.92 (s broad, 2H), 
4.75 (q, 2H, J =7.2 Hz), 1.41 (t, 3H, J = 7.2 Hz). 13C-NMR (100 MHz, CDCl3): δ 189.7 (s), 
182.9 (s), 178.5 (s), 172.5 (s), 140.0 (s), 132.5 (q, J = 33.3 Hz), 128.3 (q, J =2.8 Hz), 123.2 (q, 
J = 271.1 Hz), 122.3 (m), 70.5 (s), 47.6 (s), 15.8 (s). HRMS calc. for C15H11F6NO3 [M+H]+: 
368.0716, found: 368.0729. [M+H]+ 

1-methyl-3-(4-(trifluoromethyl)benzyl)thiourea 1. 11 (175.2 mg, 1.0 mmol) and 10 (73.1 
mg, 1.0 mmol) were each dissolved in 10 mL DCM. The solutions were combined and stirred 
at r.t. for 48 h. The product was isolated by flash silica chromatography in DCM:MeOH 97:3. 
Yield: 226.2 mg (0.91 mmol, 91%). 1H-NMR (400 MHz, CDCl3): δ 7.53 (d, 2H, J = 8.4 Hz), 
7.36 (d, 2H, J = 8.0 Hz), 6.57 (s broad, 2H), 4.72 (s, 2H), 2.89 (d, 3H, J = 4.0 Hz). 13C-NMR 
(100 MHz, CDCl3): δ 182.9 (s broad), 141.9 (s), 130.0 (q, J = 32.3 Hz), 127.8 (s), 125.8 (q, J 
= 3.8 Hz), 124.2 (q, J = 270.4 Hz), 47.9 (s), 30.9 (s broad). HRMS calc. for C10H11F3N2S 
[M+H]+: 249.0668, found: 249.0689. [M+H]+ 

1-(3,5-bis(trifluoromethyl)benzyl)-3-methylthiourea 2. 13 (243.2 mg, 1.0 mmol) and 10 
(73.1 mg, 1.0 mmol) were each dissolved in 10 mL DCM. The solutions were combined and 
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stirred at r.t. for 48 h. The product was isolated by flash silica chromatography in 
DCM:MeOH 97:3. Yield: 266.4 mg (0.84 mmol, 84%). 1H-NMR (400 MHz, CDCl3): δ 7.71 
(s, 1H), 7.71 (s, 2H), 6.72 (s broad, 2H), 4.83 (d, 2H, J = 1.2 Hz), 2.88 (d, 3H, J = 1.2 Hz). 
13C-NMR (100 MHz, CDCl3): δ 183.2 (s broad), 140.9 (s), 132.0 (q, J = 33.2 Hz), 127.8 (s), 
123.3 (q, J = 271.1 Hz), 121.6 (m), 47.6 (s), 30.8 (s broad). HRMS calc. for C11H10F6N2S 
[M+H]+: 317.0542, found: 317.0543. [M+H]+ 

1-methyl-3-(4-(trifluoromethyl)phenyl)thiourea 3. p-Trifluoromethylphenylisothiocyanate 
(203.2 mg, 1.0 mmol) was dissolved in 10 mL dry THF. 15 was added as a solution (1 mL 2.0 
M, 2.0 mmol) via syringe. The solution was stirred at r.t. for 24 h and the product was isolated 
by flash silica chromatography in DCM:MeOH 98:2. Yield: 195.3 mg (0.83 mmol, 83%). 1H-
NMR (400 MHz, CDCl3): δ 8.20 (s broad, 1H), 7.68 (d, 2H, J = 8.4 Hz), 7.35 (d, 2H, J = 8.0 
Hz), 6.20 (s broad, 1H), 3.16 (d, 3H, J = 4.8 Hz). 13C-NMR (100 MHz, CDCl3): δ 181.7 (s 
broad), 139.9 (s), 128.8 (q, J = 32.8 Hz), 127.5 (q, J = 3.8 Hz), 124.5 (s), 123.8 (q, J = 270.6 
Hz), 32.4 (s). HRMS calc. for C9H9F3N2S [M+H]+: 235.0511, found: 235.0527. [M+H]+ 

1-(3,5-bis(trifluoromethyl)phenyl)-3-methylthiourea 4. p-Trifluoromethylphenyl-
isothiocyanate (271.2 mg, 1.0 mmol) was dissolved in 10 mL dry THF. 15 was added as a 
solution (1 mL 2.0 M, 2.0 mmol) via syringe. The solution was stirred at r.t. for 24 h and the 
product was isolated by flash chromatography in DCM:MeOH 98:2. Yield: 196.1 mg (0.65 
mmol, 65%). 1H-NMR (400 MHz, CDCl3): δ 8.44 (s broad, 1H), 7.76 (s, 2H), 7.69 (s, 1H), 
6.24 (s broad, 1H), 3.12 (d, 3H, J = 4.8 Hz). 13C-NMR (100 MHz, CDCl3): δ 181.8 (s broad), 
138.9 (s), 133.3 (q, J = 34.0 Hz), 124.6 (s), 122.9 (q, J = 271.4 Hz), 120.0 (m), 32.2 (s). 
HRMS calc. for C10H8F6N2S [M+H]+: 303.0385, found: 303.0370. [M+H]+ 

Me-TU-SWCNT. 10 mg NH2-SWCNT were sonicated for 15 min in 8 mL ethanol. 36.7 mg 
(0.5 mmol) 10 in 3 mL ethanol were added dropwise at 0 °C. The mixture was stirred for 48 
h. The solid was collected by filtration and the product was washed on a filter with ethanol, 
CH2Cl2, methanol, water, methanol, and hexanes and subsequently dried in vacuo. Functional 
group density based on O 1s and C 1s signals by XPS: 58 CNT carbon atoms per functional 
group. 

p-CF3-Bn-TU-SWCNT. 20 mg NH2-SWCNT were sonicated for 15 min in 15 mL ethanol. 
217 mg (1.0 mmol) 12 in 5 mL ethanol were added dropwise at 0 °C. The mixture was stirred 
for 48 h. The solid was collected by filtration and the product was washed on a filter with 
ethanol, CH2Cl2, methanol, water, methanol, and hexanes and subsequently dried in vacuo. 
Functional group density based on F 1s and C 1s signals by XPS: 45 CNT carbon atoms per 
functional group. 

Me-SQ-SWCNT. 20 mg NH2-SWCNT were sonicated for 15 min in 15 mL ethanol. 155 mg 
(1.0 mmol) 17 in 15 mL ethanol were added. The mixture was stirred for 48 h at r.t. and 
subsequently for 48 h at 40 °C. The solid was collected by filtration and the product was 
washed on a filter with ethanol, CH2Cl2, methanol, water, methanol, and hexanes and 
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subsequently dried in vacuo. Functional group density based on O 1s and C 1s signals by 
XPS: 108 CNT carbon atoms per functional group. 

p-CF3-Bn-SQ-SWCNT. 20 mg NH2-SWCNT were sonicated for 15 min in 15 mL ethanol. 
299 mg (1.0 mmol) 18 in 15 mL ethanol were added. The mixture was stirred for 48 h at r.t. 
and subsequently for 48 h at 40 °C. The solid was collected by filtration and the product was 
washed on a filter with ethanol, CH2Cl2, methanol, water, methanol, and hexanes and 
subsequently dried in vacuo. Functional group density based on F 1s and C 1s signals by 
XPS: 152 CNT carbon atoms per functional group. 

Device preparation 

 

Figure S 2. Devices for array measurements. (a) Schematic drawing and photograph of 14 

devices on a glass slide; (b) photograph of glass slide with 14 devices contacted via an edge 

connector. Openings in the edge connector were covered with epoxy to provide a gas tight 

seal. 

Optical microscopy and SEM analysis of devices 

Devices were analyzed by optical microscopy and scanning electron microscopy (SEM). 

Optical microscopy showed an inhomogeneous structure of the SWCNT film containing large 

aggregates of CNTs (Figure S 3a). SEM confirmed this film structure at low magnification 

(Figure S 3b) and showed SWCNT bundles at higher magnification (Figure S 3c-f). 
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Figure S 3. Micrographs of SWCNT devices. (a) Optical micrograph; (b)-(f) scanning 

electron micrographs at different magnifications.  

Initial sensing results 

Devices were exposed to 57 ppm cyclohexanone in an experiment as described above. 
Sensing traces are displayed in Figure S 4. The best performance of ca. 0.9% current change 
upon exposure to the analyte was achieved using devices based on m-CF3-Bn-TU-SWCNT. 
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Figure S 4. Sensing responses of devices with different types of SWCNTs to 57 ppm 

cyclohexanone, applied for 30 s starting at 50, 150, and 250 s. 

 

NMR binding studies 
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Figure S 5. NMR binding study of 9 and cyclohexanone in CDCl3.  
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Figure S 6. 1H NMR Spectrum of 3-azidopropan-1-amine (CDCl3) 

 

Figure S 7. 13C NMR Spectrum of 3-azidopropan-1-amine (CDCl3) 
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Figure S 8. 1H NMR Spectrum of 12 (CDCl3) 

 
Figure S 9. 13C NMR Spectrum of 12 (CDCl3) 
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Figure S 10. 1H NMR Spectrum of 14 (CDCl3) 

 
Figure S 11. 13C NMR Spectrum of 14 (CDCl3) 
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Figure S 12. 1H NMR Spectrum of 17 (CDCl3) 

 
Figure S 13. 13C NMR Spectrum of 17 (CDCl3) 
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Figure S 14. 1H NMR Spectrum of 18 (CDCl3) 

 
Figure S 15. 13C NMR Spectrum of 18 (CDCl3) 
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Figure S 16. 1H NMR Spectrum of 19 (CDCl3) 

 
Figure S 17. 13C NMR Spectrum of 19 (CDCl3) 
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Figure S 18. 1H NMR Spectrum of 1 (CDCl3) 

 
Figure S 19. 13C NMR Spectrum of 1 (CDCl3) 
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Figure S 20. 1H NMR Spectrum of 2 (CDCl3) 

 

Figure S 21. 13C NMR Spectrum of 2 (CDCl3) 
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Figure S 22. 1H NMR Spectrum of 3 (CDCl3) 

 

Figure S 23. 13C NMR Spectrum of 3 (CDCl3) 
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Figure S 24. 1H NMR Spectrum of 4 (CDCl3) 

 

Figure S 25. 13C NMR Spectrum of 4 (CDCl3) 
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Figure S 26. 1H NMR Spectrum of 8 (DMSO-d6) 

 

Figure S 27. 13C NMR Spectrum of 8 (DMSO-d6) 
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Figure S 28. 1H NMR Spectrum of 9 (DMSO-d6) 

 

Figure S 29. XPS analysis of NH2-SWCNT 
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Figure S 30. XPS analysis of Me-TU-SWCNT 

 

Figure S 31. XPS analysis of p-CF3-Bn-TU-SWCNT 
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Figure S 32. XPS analysis of m-CF3-Bn-TU-SWCNT 

 

Figure S 33. XPS analysis of Me-SQ-SWCNT 
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Figure S 34. XPS analysis of p-CF3-Bn-SQ-SWCNT 

 

Figure S 35. XPS analysis of m-CF3-Bn-SQ-SWCNT 
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Figure S 36. XPS analysis of m-CF3-Ph-TU-SWCNT 

 

Figure S 37. XPS analysis of Bis-U-SWCNT 
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Figure S 38. XPS analysis of Bis-TU-SWCNT 
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