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Abstract

The focus of this thesis is manifolds with group actions, in particular symplectic manifolds
with Hamiltonian torus actions. We investigate the relationship between the equivariant
cohomology of the manifold M and the fixed point data of the torus action. We are in-
terested in understanding the topology of the space of T-orbits in M. In particular, we
explore aspects of this topology which are determined by data from the image of a mo-
ment map ® : M — t* associated to the Hamiltonian action. To better understand the
orbit space, we apply the algebraic techniques of equivariant cohomology to the study
these systems further. Equivariant cohomology associates to a manifold with a G-action
a ring H5(M). Much of the topology of the orbit space is encoded in the equivariant
cohomology ring H}(M). In 1998, Goresky, Kottwitz and MacPherson provided a new
method for computing this ring. Their method associates to this orbit space a graph T’
whose vertices are the zero-dimensional orbits and edges the connected components of
the set of one-dimensional orbits. The ring H7.(M) can then be computed combinatorially
in terms of the data incorporated in I'. The strength of this construction is that it makes the
computation of equivariant cohomology into a combinatorial computation, rather than a
topological one.

In the projects described herein, we apply the GKM theory to the case of homogeneous
spaces by studying the combinatorics of their associated graphs. We exploit this theory to
understand the geometry of homogeneous spaces with non-zero Euler characteristic. Next,
we describe how to weaken the hypotheses of the GKM theorem. The spaces to which
the GKM theorem applies must satisfy certain dimension conditions; however, there are
many manifolds M with naturally arising T-actions that do not satisfy these conditions.
We allow a more general situation, which includes some of these cases. Finally, we find
a theory identical to the GKM theory in a setting suggested by work of Duistermaat. As
in the GKM situation, this theory applies only when the spaces involved satisfy certain
dimension conditions.

Thesis Supervisor: Victor Guillemin
Title: Professor of Mathematics
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Chapter 1
Introduction

The focus of this thesis is on manifolds with torus actions, and the relation between the
equivariant cohomology of these spaces and the fixed point data of the torus action. Of
particular interest are symplectic manifolds with Hamiltonian actions. The goals of the
thesis are two-fold. First, we use the theory of Goresky, Kottwitz, and MacPherson to un-
derstand the geometry of homogeneous spaces with non-zero Euler characteristic. Second,
we present several results enlarging the class of manifolds to which this theory applies.

Let M be a compact symplectic manifold equipped with a Hamiltonian action of a torus
T = (S')", and let  : M — t* denote the moment map. The Atiyah Guillemin-Sternberg
convexity theorem ([A],[GS1]) states that the image of the moment map @ is the convex
hull of the image of the fixed points, ®(MT). The image of the moment map is closely
related to the space of T-orbits in M, and we are interested in understanding the topology
of this orbit space. In particular, we would like to understand aspects of this topology
which are determined by “moment data,” such as the image A = ®(M).

We can obtain only partial results in the classification of the orbit space using purely
geometric techniques. If we apply the algebraic techniques of equivariant cohomology to
the study these systems further, we can obtain stronger results. Equivariant cohomology
associates to a topological space M with a G-action a ring Hf,(M). Much of the topology
of the orbit space is encoded in the equivariant cohomology ring H% (M), and it is hence
of great importance to have means of calculating H(M). Over the past 50 years, several
techniques have been proposed to compute Hf,(M). Nonetheless, the general computation
of this ring, even for a Hamiltonian T-space, has not been achieved.

In 1998, Goresky, Kottwitz and MacPherson provided a new method for computing
this ring [GKM]. Their results apply to spaces which are equivariantly formal and the class
of these spaces includes symplectic manifolds with Hamiltonian torus actions. However,
the GKM theory works only when the orbit space satisfies certain dimension conditions:
that the set of zero-dimensional orbits in the orbit space is zero-dimensional and that the
set of one-dimensional orbits is one-dimensional. Their method associates to this orbit
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space a graph I" whose vertices are the zero-dimensional orbits and edges the connected
components of the set of one-dimensional orbits. The strength of their construction is that it
makes the computation of the equivariant cohomology into a combinatorial computation,
rather than a geometric one. The methods described below enable us to extend the GKM
theory to situations in which hypergraphs, not graphs, are the paramount objects. There
are also indications (see [BoGH]) that the graph and hypergraph techniques involved in
this research will have interesting applications to combinatorics and representation theory.

In this thesis, we present several results applying and generalizing this theory. In Chap-
ter 2, we make use of the GKM theory in studying homogeneous spaces by examining the
combinatorics of their associated graphs. In Chapter 3, we give graph theoretic definitions
motivated by the GKM theory, and describe several purely combinatorial results and con-
structions. In Chapter 4, we describe how to weaken the hypotheses of the GKM theorem.
The GKM spaces must satisfy the dimension conditions above; however, there are many
manifolds M with naturally arising T' actions that do not satisfy these conditions. We al-
low a more general situation, which includes some of these cases. Finally, in Chapter 5, we
describe a mod 2 version of the GKM theory for the real loci of symplectic manifolds. As
above, this theory applies only when the orbit space of the action satisfies certain dimen-
sion conditions. In the rest of this chapter, we will present the background necessary for
the remainder of the thesis, and set up the appropriate notation.

1.1 Equivariant cohomology

The results in this thesis are, in large part, concerned with computing the equivariant co-
homology of G-spaces. A standard definition of equivariant cohomology is due to Borel
[Bo]. Let M be a topological space with a continuous action of a group G. We will be
interested in the situation when M is a symplectic manifold, G a compact, connected Lie
group, and the action Hamiltonian. In this situation, if G acts freely on M, then we would
like the equivariant cohomology of M to satisfy

Hg(M) = H*(M/G),

since in this case, the quotient M /G is again a manifold. When M is a compact symplectic
manifold with a Hamiltonian torus action, however, M necéssarily has fixed points, and so
the action is not free. In general, if G does not act freely, then M /G is not necessarily Haus-
dorff, and often not even a topological manifold, so we cannot hope to define equivariant
cohomology in this way. However, the Borel construction produces a manifold which is
homotopy equivalent to M, on which G does act freely. Let EG be the classifying bundle
of G. This space is contractible, and G acts on EG freely. Moreover, M x EG is homotopy
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equivalent to M, and since G acts freély on EG, the diagonal action of G on M x EG is
also free. The classifying space of G is BG = EG/G. For constructions of the classifying
bundle and space, see [GS2, pp. 5-6], [M1], and [M2].

Definition 1.1.1. The Borel space of a space M with a group action G is
Mg := (M x EG)/G = M x¢ EG.

We use the Borel space to define the equivariant cohomology of M.

Definition 1.1.2. The equivariant cohomology of a space M with a group action G is the ordi-
nary cohomology of the Borel space,

Hg(M) := H*(Mg)-

The ordinary cohomology on the right hand side can be thought of as deRham coho-
mology or as singular cohomology. In some cases, we will use Z; coefficients, and in these
cases, it will be necessary to interpret the right hand side as singular cohomology.

It is easy to check that using this definition of equivariant cohomology still yields the
identity

HE(M) = H*(M/G)

when the G action is free.

In ordinary cohomology, the cohomology of a point is just a copy of the coefficient ring.
On the other hand, the equivariant cohomology of a point is

HE(pt) = H*(pt xg EG) = H*(EG/G) = H*(BG).

There are two groups G which we will study in this thesis. The first is the circle G =
51, or more generally the compact torus G = S* x --- x §1. To determine H, (pt), we
must determine BS'. In this case, we observe S! acts freely on $2"~!, but $?"~! is not
contractible. However, if we take the unit sphere inside C*, S acts freely on this space,
and it is contractible. Thus, we may take ES! = §2°~1 and so BS! = CP*®. As a result,

H3 (pt) = H*(BS") = Cla],

where the cohomology class z has degree two. Moreover, since T" = S! x --- x S!, the
classifying space BT™ = CP* x --- x CP*, and so

Hrpna(pt) = H*(BT") = Ciz1,. .., 4],
where each class z; has degree two.
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The other group we are interested in is the 2-primary torus G = Zyor G = Zg x - - - X Zo.
In this case, it is not hard to see that Z; acts freely on the unit sphere in R” by the antipodal
map. If we consider the unit sphere in R®, Z, acts freely on this space and it is contractible,
and hence EZ; = S® and BZ; = RP*. When we are studying Zo-actions, we will be
interested in cohomology with Z, coefficients, wherefore

Hy,(pt; Zy) = H*(BZg; Zs) = Zsz],

where the class z has degree one. Moreover, since Tg = Z X - - - X Zy, the classifying space
is BT = RP* x --- x RP*, and so

H;n? (pt; Zg) = H* (BTIE', Zz) = Zz[:L'l, e ,1‘“],

where each class z; has degree one.
One can also define equivariant de Rham theory, in which one defines equivariant
forms QF, (M) and an equivariant operator

dg : Qg (M) - QFY(M).

The equivariant cohomology is then defined to be the kernel of dz modulo the image. This
is known as the Cartan model for equivariant cohomology, and is detailed in [GS2]. We
will use the Borel model here because we will need to use Z4 coefficients, which we cannot
do using the Cartan model.

1.2 Equivariant formality

The Borel model for equivariant cohomology allows us easily to see that H,(M) is a mod-
ule over H,(pt). There is a natural fibration

M“—— Mg =M xg EG

|

BG
with fibre M. The map 7 induces a map in cohomology,
™ : H*(BG) — H*(Mg),

defining the module structure. We would like to understand the module structure of
H{ (M), and in particular we would like to know when H (M) is a free module over

H(pt).
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We determine the module structure of H,(M) by calculating the Leray-Serre spectral
sequence converging to Hf(Mg). Given the fibration w above, let }{*(M) denote the local
coefficient system on BG associated to this fibration. Then the Ej-term of the spectral
sequence we would like to compute is

EPY = HP(BG; HI(M)).

Definition 1.2.1. We say that M is equivariantly formal if this spectral sequence collapses at the
E, level; that is if
E? = EPA.

When M is equivariantly formal, we have the identity
Hg(M) = H* (M) ® Hg(pt)

as H(pt)-modules. In particular, when M is equivariantly formal, Hg,(M) is a free Hg,(pt)-
module.

F. Kirwan [Ki] and V. Ginzburg [Gi] independently proved that in the symplectic set-
ting, one often has equivariant formality.

Theorem 1.2.2 (Kirwan, Ginzburg). Suppose M is a compact symplectic manifold with a Hamil-
tonian G-action. Suppose further that M admits an equivariant symplectic form. Then M is equiv-
ariantly formal.

1.3 Localization

The main difference between equivariant cohomology and ordinary cohomology is that it
has a much larger coefficient ring, H;(pt). Thus equivariant cohomology is a richer theory
than ordinary cohomology, and this extra structure is given in part by the orbit space of the
G-action. In this section, we explore the module structure of H,(M) over H(pt). We will
closely follow [AB] in terms of exposition. Atiyah and Bott take an algebraic approach to
the localization theorem. This same view is given in [GS2]. In the next section, we will state
the localization theorem in the symplectic setting, as proved by Kirwan in [Ki]. Kirwan's
approach is more geometric, using Morse theoretic techniques.
We will first restrict our attention to the case where G = T is a (compact) torus. Then

Hr(pt) = Clzy,...,z,) = S(tY),

and the variables z; should be viewed as coordinates on the Lie algebra t or its complexi-
fication tc. The support of a module over this ring is naturally a subset of tc.
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Now let MT C M be the set of fixed points of the T-action. The natural inclusion
r: MT < M induces a map in equivariant cohomology,

r* s Hy(M) = Hp(MT).
The localization theorem describes the support of the kernel and cokernel of this map, and
can be stated as follows for tori.

Theorem 1.3.1 (Localization). The kernel and cokernel of the map
r* . Hiy(M) = Hp(MT)

have support in\ ) tc, where K runs over the (finite) set of all stabilizer groups not equal toT. In
particular, both modules have the same rank.

This says that the kernel and cokernel of r* are torsion submodules. In particular, if
M is equivariantly formal, then H}(M) is a free Hy. (pt)-module, and so in this case, r* is
an injection. In symplectic geometry, this result is Kirwan's injectivity theorem, which we
discuss in the next section.

From the localization theorem, one can derive an integration formula. If F' is a con-
nected component of M T letrp : F — M be the natural inclusion and 7F the projection
+F « F x BT — BT. Recall that both m and F have natural push-forward maps,

e+ Hp(M) — Hy(pt),

and
xF . H:(F) — Hy(pt).

When we are using deRham cohomology, the pushforward , can be thought of as in-
tegration along the fibre. Moreover, let vp denote the normal bundle to F' and E(vr) the
equivariant Euler class of the normal bundle. Then we have the following formula relating
the pushforward of a cohomology class to the restriction to the fixed points.

Theorem 1.3.2 (Integration formula). Ifw € H(M ), then after localizing,

T = /Mw = 3 af {ET(IZL;)} (ABBV)

FCMT
Notice that the left hand side is in Hy.(pt). Thus, the sum on the right hand side is a polynomial.

The integration formula has been stated as such by Atiyah and Bott [AB] and Berline
and Vergne [BeV], and is referred to as the Atiyah-Bott Berline-Vergne (ABBV) localization

formula.

16



Thus far, we have considered the case when G = T is a torus. The second case we will
be interested in is the case when G = Z} is a Zs-torus. This is discussed more thoroughly
in [AP, Chapter 3]. We will state the mod 2 localization theorem here for completeness.
The Z coefficients are essential.

Theorem 1.3.3 ( mod 2 Localization). The kernel and cokernel of the map
* * ; * YAR
r* 1 Hyn(M; Zg) — Hin(M%3;Z,)
are torsion submodules. In particular, both modules have the same rank.

In particular, if M is equivariantly formal, then Hz,(M) is a free Hjy(pt)-module, and
so in this case, r* is an injection.

From the mod 2 localization theorem, one can derive a push forward formula. If F
is a connected component of M?%z, let rr : F < M be the natural inclusion and =¥ the
projection 7F : F x BZ? — BZ2. Both 7 and =¥’ have natural push-forward maps, ., :
H3o(M;Z2) — Hzy(pt; Zy) and xF . Hjn(F;Zs) — Hpa(pt;Zo). In the Z; setting, we
must use singular cohomology, and so the push-forward can no longer be thought of as an
integration. Let vr denote the normal bundle to F and E(vr) the equivariant Euler class
of the normal bundle. Then we have the following formula relating the pushforward of a
cohomology class to the restriction to the fixed points.

Theorem 1.3.4 ( mod 2 integration formula). If w € Hz,(M; Z2), then after localizing,

o= 27 (B

FCMT

Notice that the left hand side is in Hig(pt; Z3). Thus, the sum on the right hand side is a polyno-
mial.

We will also refer to this mod 2 integration formula as the Atiyah-Bott Berline-Vergne
(ABBV) localization formula.

1.4 Kirwan’s injectivity and surjectivity

In the 1980’s, Frances Kirwan made a fundamental contribution to the study of Hamilto-
nian torus actions on symplectic manifolds. In [Ki], she proved the following two theo-
rems. The first theorem relates the equivariant cohomology of M to the equivariant coho-
mology of the fixed point sets. In the case of isolated fixed points, this lays the groundwork
for the GKM theorem. When M is a compact symplectic manifold with an equivariant
symplectic form, Kirwan showed that M is equivariantly formal. Thus, H},(M) is a free
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H¢,(pt)-module, and so the following theorem is simply the localization theorem in that
setting.

Theorem 1.4.1 (Kirwan). Let a torus T act on a compact symplectic manifold M in a Hamiltonian
fashion, and let F' denote the set of points fixed by T and r : F — M the natural inclusion. Then
the induced map in equivariant cohomology

r* : Hp(M) — H3(F)
is an injection.

Kirwan’s proof of injectivity studies components ¢ of the moment map, and analyzes
the critical sets of these functions. These are peffect, in fact equivariantly perfect, Morse-
Bott functions. This result is particularly useful when F' consists of finitely many isolated
points. In this case,

H} () = @ Hi(ot)
peF
which is simply a sum of polynomial rings.

A second result of Kirwan's relates the equivariant cohomology of M to the ordinary
cohomology of the symplectic quotient M //T'(\). Suppose that ® : M — t* is a moment
map, and that ) is a regular value of ®. Suppose further that T acts freely on ®~!(}). Then
M//T()) := @ Y()\)/T is a manifold, and in fact M//T(}) inherits a natural symplectic
form. The inclusion

k: O !\ M

induces a map in equivariant cohomology
K"+ Hp(M) — Hp(®7' (X)) = H*(M//T(N).
Kirwan’s theorem states that this map is surjective.

Theorem 1.4.2 (Kirwan). Let a torus T act on a compact symplectic manifold M in a Hamiltonian
fashion, and let X be a regular value of the moment map. Suppose further that T acts freely on
@=1(N), and let k : ®71(X) — M denote the inclusion. Then the induced map in equivariant
cohomology ‘
K* s Hp(M) — Hp (271 (X)) = H*(M//T(N))

is a surjection.

The hypothesis that T acts freely on ®~!()\) can be dropped, but in this case, the sym-
plectic reduction M //T'()\) is an orbifold. The proof of the surjectivity theorem involves
analyzing the critical sets of the map |®|? and using this function as a Morse-Kirwan func-

18



tion. S. Tolman and J. Weitsman have computed the kernel of the map of «* [TW1]. R.
Goldin refined this computation [G].

1.5 The Chang-Skjelbred theorem

Suppose M is a compact, connected symplectic manifold with a Hamiltonian torus action
of T' = T™. Let H be a codimension one subtorus of T and let X be a connected component
of M¥. Then there are natural inclusion maps

X¢ MHC M

TXJ‘ Hj/

ix

inducing a commutative diagram in equivariant cohomology

Hp(X)<— H}(MH) <— H;(M) .

* L]
Tx THl o

H}(XT) < —HH(MT)

We use the notation r for the inclusion M7 < M because the map r* is the restriction
of a class on the manifold to the fixed points. We use the notation ix for the inclusion
XT < MT because the map i% ignores the fixed points not in XT. This differs from the
standard notation, but will be consistent throughout this thesis.

The content of the Chang-Skjelbred theorem is that the image of r* is the same as the
image of .

We will make us of the Chang-Skjelbred theorem stated in several different ways. The
first way is the standard statement from [CS].

Theorem 1.5.1 (Chang-Skjelbred). The image of r* : Hx(M) — H3(MT) is the set
N ra(HEr(M™)),
H

where the intersection is taken over all codimension-one subtori H of T.

Remark 1.5.2. In fact, the only nontrivial contributions to this intersection are those codimension-
one subtori H which appear as isotropy groups of elements of M. Since M is compact, there are
only finitely many such isotropy groups.

A proof of the Theorem 1.5.1 can be found in [BrV1] or in [GS2]. These proofs are en-
tirely algebraic, and derive the result from localization, Theorem 1.3.1. There is a Morse
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theoretic proof of a second statement of the Chang-Skelbred theorem in [TW2]. This state-
ment uses the notion of the k-skeleton of a Hamiltonian 7'-space.

Suppose M is a compact, connected symplectic manifold with a Hamiltonian torus
action of T™. We will be interested in the orbits of T inside M, and we will refer to them as
follows.

Definition 1.5.3. The k-skeleton M*) of M is the set
M® = {z e M| dm(T - ) < k}
The points of the k-skeleton have stabilizer of dimension at least n — k.

S. Tolman and ]. Weitsman prove a version of the Chang-Skjelbred theorem using
Morse-Kirwan theory to relate the equivariant cohomology of the one-skeleton to the
equivariant cohomology of M.

Theorem 1.5.4 (Tolman-Weitsman). There is a natural inclusion j : MT — M® and combin-
ing this with r : MT — M we get the following maps in equivariant cohomology

Hi(MW) < Hp(M) |

|

Hp(MT)
The images of r* and j* are the same.

The final statement of the Chang-Skjelbred theorem is more algebraic, and is a more
general way to think about one-skeleta and graphs. This statement is due to V. Puppe.
Suppose M is a T-manifold with one-skeleton corresponding to a (hyper)graph I’ = (V, E).
Associate to this a small category C whose objects O are elements of V' U E, and whose
morphisms are f, . between a vertex v and a (hyper)edge e to which it is adjacent.

For every functor 7 : C — Rings taking C into the category of graded rings, there
is a universal ring Rr with maps Rr — F(v) for every vertex such that the following
diagrams commute '

F(v

S

F(e)

Ry
\ F(fuwe)
F(w)

In this situation, the Chang-Skjelbred Theorem can be stated as follows.
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Theorem 1.5.5 (Puppe). If F is the functor taking F(v) = H}(X,), F(e) = Hp(Xe), and
F(fu,e) the restriction map mx : S(t*) — S(¥*), where X, is the connected component of MT
corresponding to v € V and X, the connected component of MX corresponding to e € E for some
codimension 1 subtorus K, then H}.(M) is the universal ring R in this construction.

1.6 Moment maps and graphs

Suppose that (M, w) is a symplectic manifold, and that T" acts on M in a Hamiltonian fash-
ion. Let§ € ¢, and let X; be the symplectic vector field on M generated by the infinitesimal
action of t on M. Then because the action is Hamiltonian, we have

LXEUJ = _d¢E,

and the map ® : M — t* with components ¢¢ is the moment map. This map is determined
up to a constant. In the 1980’s, Atiyah [A] and Guillemin-Sternberg [GS1] independently
proved the following theorem computing the image of ®.

Theorem 1.6.1 (Atiyah,Guillemin-Sternberg). Suppose M is a compact symplectic manifold
with a Hamiltonian torus action of a torus T with moment map ®. Then ®(M ) is a convex polytope,
and is the convex hull of the points ®(MT) which are the images of the fixed points of the T-action.

A version of this theorem has also been proved for nonabelian groups, but in the inter-
est of brevity we do not include it here.

Definition 1.6.2. The polytope A = ®(M) is called the moment polytope of M. The k-skeleton
A®) of A is the image ®(M ) under ® of the k-skeleton of M.

Notice that the 0-skeleton of M consists of the fixed points M T and the 0-skeleton
of A consists of isolated points in t* corresponding to the connected components of MT.
Furthermore, the k-skeleton A(¥) consists of convex subsets of intersections of hyperplanes
of dimension at most k. The 1-skeleton of M naturally has the structure of a hypergraph.

Definition 1.6.3. A hypergraphI" = (V, E) consists of a set V' of vertices and a set E C P(V)
of hyperedges, which are subsets of V.

The hypergraph associated to a moment polytope has vertices corresponding to the
components of the fixed point set MT and hyperedges corresponding to subsets of V'
which lie on a closed submanifolds contained in the 1-skeleton M (1),

Definition 1.6.4. We say that M is a GKM manifold if
H#M T <0
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and
dim(M®) < 2.

The assumption that dim(M(Y) < 2 is a strong one. Let Xz be a component of the
one-skeleton which is fixed by a codimension 1 subtorus H. If dim Xy = 2, then Xy is
symplectomorphic to S? with a Hamiltonian S! = T'/H action with fixed points denoted
{IV, §}. See, for example, [GS2]. In this case, the hypergraph associated to A is particularly
nice: it is a graph. Each hyperedge consists of exactly 2 points. LetI' = (V, E) be the graph
associated to A.

The GKM conditions have a very simple and elegant interpretation in terms of the
isotropy representations of T at fixed points of M.

Theorem 1.6.5. The conditions #M7T < oo and dim(M ™M) < 2 are satisfied if and only if, for
every p € M7, the weights a;p, i = 1,...,d of the isotropy representation of T on T,M are
pair-wise linearly independent, that is for i # j, a; p is not a multiple of o p.

For the proof of this, see [GZ1]. This description gives us some additional structure on
our graph I = (V, E). Each edge e corresponds to a sphere fixed by some codimension 1
subtorus H,. We label each edge e with a weight o, € t* corresponding to how fast T'/H,
is spinning the associated sphere. We now make this precise. We actually think of E as
oriented edges, with each undirected edge appearing twice, one with each orientation. If
e = (z,y) € E, then we will let e™! = (y,z) be the edge with the reverse orientation.
Finally, for every z € V, we let

St(z) := {(z,y)|y € V and (z,y) € E}.
Definition 1.6.6. An axial function is a map
a:E-t

satisfying
1. For every x € V, the weights a(e) for e € St(x) are pairwise linearly independent.
2. The function « is antisymmetric: a(e) = —a(e™?).

3. For every edge e = (z,y) € E, there isa map V. : St(z) — St(y) such that (V)1 =
Ve-1.

4. Each map V. satisfies V¢(e) = e71.
5. Lete = (z,y), d € St(z) and f € St(y) such that f = V.(d). For every such triple,
a(f) — a(d) = c- afe), (1.1)
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for some constant ¢ = cq ¢ 5 depending on d, e, and f.
When the constants ¢ = cq 5 are all integers, we say that o is a GKM axial function.

We will explore the properties of the maps V more closely in Chapter 3. The integrality
condition in the last condition on an axial function is interesting combinatorially for the
following reason.

Theorem 1.6.7 (Guillemin-Zara). Suppose I' = (V, E) is a graph with a GKM axial function
a. Then there is an open manifold M with a torus action such that the corresponding GKM graph
isT.

We can associate a ring to the data I" and « as follows. We define the cohomology of
the pair (T, o) to be

H'(T,0) = {f:V = 8() | /(5) - (®) € a(e) - () V(z,9) =e € E}.

1.7 The Goresky-Kottwitz-MacPherson theorem

Again, there are a few statements of this result, and we will want to use this result in its
various guises. The idea is to derive the GKM theorem from the Chang-Skjelbred theorem
when the connected components of the one-skeleton are two-dimensional. In this case, it
is necessarily true that these components are in fact 2-spheres.

Consider the case in which G acts with isolated fixed points, and dim Xy < 2 for all
Xpg. Then Xy is symplectomorphic to S? with a Hamiltonian S = T/ H action with fixed
points denoted {N, S}. Theorem 4.2.1 gives an explicit description of r*, which was proved
in significant generality in [GKM]. First we find the cohomology of each component X ;.
Suppose first that G 2 S'. In that case,

Xy : H51(5) = H5({N, §})

is the inclusion induced by {N, S} C S2. Itis clear that constant functions are equivariant
classes in degree zero. But dim Hg,(S?) = 1, so these are the only equivariant classes
in degree zero. Moreover, dim H2; (S?) = 2 for < > 0, so this is the only restriction in
equivariant cohomology. Thus, an equivariant class f must satisfy

v _Is

c'T —C-T

€ Clz], (1.2)

where fy and fs are the restrictions of f to the points N and S, respectively, c is a con-
stant, and ¢ - 7 is the weight of the S! action at Ty S?. We have identified the equivariant
cohomology of a point H, (pt) with C[z]. We can think of c as the speed at which S! is
spinning S2.
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Let R be the graded ring H, ({N, S}) subject to the above restriction. The dimension
check above shows that as modules over H}, (pt), HY, (5?) = R. However, the module
structure forces the rings to be equal, so that condition (1.2) is the only condition for f €

im(ry, ).

Suppose now that G = T".

Proposition 1.7.1. Suppose that S? is a Hamiltonian G-spaces for G = T™. Let H be a codimen-
sion 1 subtorus which acts trivially. Then a function f = (fn, fs) € S(t*) ® S(t*) is in the image
of r* : H5(S?) — HEL({N, S}) if and only if

fn — fs € ker(mg),
where g @ S(t*) — S(b*) is induced by the projection t* — h*.
Proof. Because H acts trivially on S2,
Hp (8% = H*(S*) ® S(v"),
and thus
H(5%) = Hu(5%) ® S(v").
But H},(5?) ® S(h*) is precisely the kernel of 7. O

Using this description of H}.(Xy), we have the following corollary due to Goresky,
Kottwitz and MacPherson [GKM].

Corollary 1.7.2 (GKM). Let M be a compact, symplectic manifold with a Hamiltonian action of
a compact torus T. Assume that MT consists of isolated fixed points {p,...,pq} and that each
component Xy of M¥ has dimension 0 or 2 for H C T a codimension-1 torus. Let f; be the
restriction of a class f € H}(M) to the fixed point p;. Let wy : g* — h* be the projection induced
by the inclusion by — g. Then the map

r*: Hy(M) — Hy(M") = @ Hz(pt)
peEMT

has image (f1, ..., f4) such that
mu(fi) = 7u(f;)

whenever {p;,p;} = Xg N MT, where ng : S(t*) — S(b*) is induced by the projection t* — b*.

This theorem can also be stated in terms of graphs and the cohomology ring we defined
above. This is the most combinatorial statement of the GKM theorem, and this is the
description we will use most often throughout this thesis.
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Theorem 1.7.3 (GKM). Let (T, ) be the GKM graph and fixed point data for the Hamiltonian
torus action of T on M. Then H}.(M) injects into Maps(V, S(t*)) with image H*(T', c).

1.8 Summary of main results

In Chapter 2, we will apply the GKM theory to homogeneous spaces. We will compare the
Borel description and GKM description of the equivariant cohomology of a homogeneous
space M = G/K, and we will compute an explicit isomorphism between the two rings.
Then we will explore some additional properties of the GKM theory in the specific case of
homogeneous spaces.

In Chapter 3, we will look at the combinatorics of the GKM theory. We will define
abstract notions such as connections, axial functions, Betti numbers, and cohomology on regular
graphs. We will use the connection to compute generators for the cohomology.

In Chapter 4, we will extend the GKM theory to a situation where the one-skeleton
is four-dimensional rather than two-dimensional. In this setting, rather than a graph, the
one-skeleton of the moment polytope is a hypergraph. We will also explore some of the
notions discussed in Chapter 3 for hypergraphs, and discuss the relationship of these with
symplectic geometry.

Finally, in Chapter 5, we will extend the GKM theory to the real loci of symplectic man-
ifolds. Duistermaat introduced real loci and proved several results relating the topology
of the real locus of a symplectic manifold to the topology of the manifold itself. We show
that similar results hold equivariantly, and using equivariant cohomology, we are able to
strengthen some of Duistermaat’s original results.

Throughout, we will work out several examples in detail.
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Chapter 2

Homogeneous spaces as GKM
manifolds

The fundamental theme in exploiting and generalizing the GKM theory is the study of
graphs and how they correspond to manifolds with group actions. The first goal in this
thesis is to refine the GKM theory in the case when M is a homogeneous space. The sec-
ond goal along these lines is to study the related Cayley graphs, which is discussed in
Chapter 3.

2.1 Preliminaries

Let T be a torus of dimension n > 1, M a compact manifold,
7T:TxM-—->M

a faithful action of T' on M, and M/T the orbit space of 7. M is called a GKM manifold
if the set of zero dimensional orbits in the orbit space M/T is zero dimensional and the
set of one dimensional orbits in M/T is one dimensional. Under these hypotheses, the
union, I' C M/T, of the set of zero and one dimensional orbits has the structure of a
graph: Each connected component of the set of one-dimensional orbits has at most two
zero-dimensional orbits in its closure; so these components can be taken to be the edges
of a graph and the zero-dimensional orbits to be the vertices. Moreover, each edge, e, of '
consists of orbits of the same orbitype: namely, orbits of the form O, = T'/H,, where H, is
a codimension one subgroup of T. Hence one has a labeling

e— H, 2.1)
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of the edges of I' by codimension one subgroups of 7. When the action of T is a Hamil-
tonian action on a symplectic GKM manifold M, then this graph inside the orbit space
is the GKM graph, and the labeling (2.1) is related to the axial function, as discussed in
Section 1.6.

It has recently been discovered that if M has either a T—invariant complex structure
or a T'—invariant symplectic structure, the data above - the graph I and the labeling (2.1) -
contain a surprisingly large amount of information about the global topology of M, namely
the equivariant cohomology ring of M. Knutson and Rosu have shown that the the ring
Kr(M) ® Cis also determined by the above data.

The manifolds M which we will be considering below will be neither complex nor
symplectic; however we will make an assumption about them which is in some sense
much stronger then either of these assumptions. Namely, we will assume that M is a
homogeneous space. Let M be a G space, where G is a compact, semisimple, connected Lie
group with Cartan subgroup T'. We will assume that G acts transitively on a manifold M.
Then there is a simple criterion to determine when M is a GKM manifold with respect to
the induced T-action.

Theorem 2.1.1. Suppose M is a G-homogeneous manifold. Then the following are equivalent.
1. The action of T on M is a GKM action;
2. The Euler characteristic of M is non-zero;
3. M is of the form M = G /K, where K is a closed subgroup of G containing T

As we mentioned above, the data (2.1) determine the ring structure of H}.(M) if M is
either complex or symplectic. This result is, in fact, true modulo an assumption which is
weaker than either of these assumptions; and this assumption - equivariant formality - is
satisfied by homogeneous spaces which satisfy the hypotheses of the theorem. Hence, for
these spaces, one has two completely different descriptions of the ring H}.(M): the graph
theoretical description above and the classical Borel description, of which we will give an
account in Section 2.2.1. In Section 2.2.2, we will compute the graph I of a space M of the
form G/K, with T C K, and show that it is a homogeneous graph, i.e. we will show that the
Weyl group of G, W, acts transitively on the vertices of I and that this action preserves
the labeling (2.1). We will then use this result to compare the two descriptions of H}.(M).

One of the main goals in this chapter is to show that for homogeneous manifolds M of
GKM type, some important features of the geometry of M can be discerned from the graph
I" and the labeling (2.1). One such feature is the existence of a G—invariant almost complex
structure. The subgroups, H,, labeling the edges of I' are of codimension one in T’; so, up
to sign, they correspond to weights, c., of the group T'. It is known that the W —invariant
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labeling (2.1) can be lifted to a W —invariant labeling
e — ae (2'2)

if M is a coadjoint orbit of G (hence, in particular, a complex G—manifold). Moreover,
this labeling satisfies the conditions of an axial function (see Section 1.6). In Section 2.3 we
prove the following result.

Theorem 2.1.2. The homogeneous space M admits a G—invariant almost complex structure if
and only if T possesses a W —invariant axial function (2.2) compatible with (2.1).

This raises the issue: Is it possible to detect from the graph theoretic properties of the
axial function (2.2) whether or not M admits a G—invariant complex structure? Fix a vector
¢ € tsuch that a.(¢) # 0 for all oriented edges, e, of I, and orient these edges by requiring
that a.(¢) > 0. We prove in Section 2.4 the following theorem.

Theorem 2.1.3. A necessary and sufficient condition for M to admit a G—invariant complex
structure is that there exist no oriented cycles in T".

Remarks:

1. M admits a G—invariant complex structure if and only if it admits a G—invariant
symplectic structure; and, by the Kostant-Kirillov theorem, it has either (and hence
both) of these properties if and only if it is a coadjoint orbit of G.

2. By the Goresky-Kottwitz-MacPherson theorem, the graph I' and the axial function
(2.2) determine the cohomology ring structure of M. The additive cohomology of M,
i.e. its Betti numbers, 3;, can be computed by the following simple recipe: For each
vertex, p, of the graph T', let o, be the number of oriented edges issuing from p with
the property that a.(§) < 0. Then

B = 0, if 4 is odd,
z #{p;op = i/2}, ifiiseven.

One question we do not address in this chapter is the question: When is a labeled graph
the GKM graph of a homogeneous space of the form G/K with T' C K? We will provide
some partial answers to this question in Chapter 3.
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2.2 Equivariant cohomology

2.2.1 The Borel Construction

Let G be a compact semi-simple Lie group, T' a Cartan subgroup of G, K a closed subgroup
of G such that
TCKcG,

and let t C € C g be the Lie algebras of T, K, and G.
Let Ax C Ag be the roots of K and G, with A}, C A sets of positive roots, let

Agx = Ag — Axk,

and let Wxg C W be the Weyl groups of K and G. We will regard an element of Wg
both as an element of N(T')/T and as a transformation of the dual Lie algebra t* (or as a
transformation of t, via the isomorphism t* ~ t given by the Killing form). Also, we will
assume for simplicity that G is simply connected and that the homogeneous space G/ K is
oriented.
Now suppose M is a G-manifold. Then the equivariant cohomology ring H7.(M) is
related to the cohomology ring H¢,(M) by

Hi (M) = H5(M) 850y S(E)

(see [GS2, Chap. 6]), where S(t*) is the symmetric algebra of t*. In particular, let M = G/K,
where K acts on G by right multiplication. Then G acts on M by left multiplication and

Hg(M) = Hy(G/K) = S(2)% = 5(t)"x

hence
H3(G/K) = S(t)"% @gpywa S(E*) . (2.3)

This is the Borel description of H}.(G/K). Throughout this paper, unless stated otherwise,
M is the homogeneous space G/K.

2.2.2 The GKM Description

In the following sections, we will show that homogeneous space M = G/K satisfying the
hypotheses of Theorem 2.1.1 is a GKM space, and we will compute its GKM graph. We
will then relate the the GKM description of the equivariant cohomology ring of M to the
Borel description given above. '
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Equivariant formality

The S(t*)-module structure of the equivariant cohomology ring H7.(M) can be computed
by a spectral sequence, as discussed in Chapter 1. We want to show that this spectral
sequence collapses at the E2 level. Indeed, if M = G/K, with T C K, then,

H%(M) =0, (24)

(see [GHYV, p. 467]), and from this it is easy to see that all the higher order coboundary op-
erators in this spectral sequence have to vanish by simple degree considerations. Hence M
is equivariantly formal. One implication of equivariant formality is a version of Kirwan's
injectivity theorem for homogeneous spaces. We will prove this here, as Kirwan's theorem
only applies to symplectic manifolds with Hamiltonian actions.

Theorem 2.2.1. The restriction map
™ H¥(M) — Hp(MT) (2.5)

induced by inclusion r : MT < M is an injection.

Proof. By alocalization theorem of Borel (see [Bo] or [GS2]), the kernel of (2.5) is the torsion
submodule of H}(M). However, if M is equivariantly formal, then H7.(M) is free as an
S(t*)-module, so the kernel has to be zero. O

Thus, as in the symplectic case, H}.(M) imbeds as a subring of the ring

Hy(MT)= @ S). : (2.6)
zeMT

We will give an explicit description of this subring in Section 2.2.3.

The Euler characteristic

It follows from (2.4) that, if M is a homogeneous space of the form G/K, withT C K, then
the Euler characteristic of M is equal to

x(M) = Z dim H%(M).

In particular, the Euler characteristic is non-zero. It is easy to see that the converse is true
as well.

Proposition 2.2.2. If M = G/K and the rank of K is strictly less than the rank of G, then the
Euler characteristic of G/ K is zero.
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Proof. Let h be an element of T with the property that
{hY ;—00 < N < 00}

is dense in T'. Suppose that the action of h on G/K fixes a coset goK. Then 9o lhgo € K,
i.e. h is conjugate to an element of K and hence conjugate to an element h; of the Cartan
subgroup T of K. However, if the iterates of h are dense in T', so must be the iterates of
h1 and hence T; = T. Suppose now that h = exp¢&,¢ € t. If h has no fixed points, then
the vector field £5s can have no zeroes and hence the Euler characteristic of M has to be
Zero. o

The fixed points

We prove in this section that the action of 7' on M is a GKM action. Hence, we must show
that

1. M7 is finite; and
2. For every codimension one subgroup H of T, diim M¥ < 2.

We will show that if M is of the form G/K, with T C K, then it has the two properties
above, and we will also show that it has the following third property:

3. For every subtorus H of T and every connected component X of M¥, XT £ §.

It is well known that these properties hold for the homogeneous space O = G/T.
The first two properties can be checked directly (see [GZ1], and the third property holds
because O is a compact symplectic manifold, the action of T' is Hamiltonian, and every
Hamiltonian action has a fixed point. Therefore, to prove that M satisfies properties 1-3, it
suffices to prove the following theorem.

Theorem 2.2.3. For every subtorus H of T, the map
O=G/T-G/K=M (2.7)

sends O onto MH.,

Proof. Let po be the identity coset in M and go the identity coset in O. Let h be an element
of H with the property that ’
{hY ; —00 < N < o0}

is densein H. If p = gpy € MH, then g~'hg € K;s0 g 'hg = ata™!, witha € Kand t € T.
Thus hga = gat and hence hq = g, where ¢ = gagy. But under the map (2.7), ¢ is sent to
Po, SO q is sent to gapy = gpo = p. O
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In particular, Theorem 2.2.3 tells us that the map OT — M7 is surjective. However,
0T = Ne(T)/T = W,

so MT is the image of W = Ng(T)/T in G/K. But Ng(T) N K = Ng(T), the normalizer
of T in K, so
(Ne(T)NK)/T =Wk ,

and hence we proved:

Proposition 2.2.4. There is a bijection
M T ~ Wga / Wk ;

in particular, Wg = Ng(T)/T acts transitively on MT.

The one-skeleton

Next we compute the connected components of the sets M¥, where H is a codimension
one subgroup of T. Let X be one of these components. Then X7 # §, since the action
of T/H on O is Hamiltonian and Of — M# is surjective. Moreover, since M is simply
connected, it is orientable, and hence every connected component of M# is orientable. So,
if X is not an isolated point of M H then it has to be either a circle, a 2-torus, or a 2-sphere,
and the first two possibilities are ruled out by the condition XT # 0. We conclude:

Theorem 2.2.5. Let H be a codimension one subgroup of T and let X be a connected component
of MH. Then X is either a point or a 2-sphere.

Remark 2.2.6. By the Korn-Lichtenstein theorem, every faithful action of S on the 2-sphere is
diffeomorphic to the standard action of “rotation about the z-axis”. Therefore the action of the circle
S = T/H on the 2-sphere X in the theorem above has to be diffeomorphic to the standard action.
In particular, #XT = 2.

We now explicitly determine what these 2-spheres are. By Theorem 2.2.3, each of these
2-spheres is the conjugate by an element of Ng(T') of a 2-sphere containing the identity
coset pg € M = G/K; so we begin by determining the 2-spheres containing po.

The space g/

The tangent space Tp, M can be identified with g/¢, and the isotropy representation of T
on this space decomposes into a direct sum of two-dimensional T-invariant subspaces

TpoM = &Vjq) , (2.8)
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labelled by the roots modulo +1,
o€ AG,K/ +1. (29)

One can also regard this as a labelling by the positive roots in Ag x; however, since this set
of positive roots is not fixed by the natural action of Wy on Ag kK, this is not an intrinsic
labelling. (This fact is of importance in Section 2.3, when we discuss the existence of G-
invariant almost complex structures on M.) Now let H be a codimension one subgroup of
T, let h C tbe the Lie algebra of H, and let M be the set of H-fixed points. Then

TPOMH = (TPOM)H .

Hence, if X is the connected component of M containing py, and if X is not an isolated
point, then (T, M) has to be one of the Vla)'s in the sum (2.8). Hence the adjoint action of
H on g/t has to leave V|, pointwise fixed. However, an element g = exp ¢ of T' acts on Vig]

xolg) = (cosa(t) —sina(t)) ’ (2.10)

by the rotation

sina(t) cosa(t)

so the stabilizer group of V[, is the group
Ho={g€T; xal9) =1}. (2.11)

Let C(H,) be the centralizer of H, in G and let G, be the semisimple component of
C(H,). Then G, is either SU(2) or SO(3), and since G,, is contained in C(H,), Gapo is
fixed pointwise by the action of H. Moreover, since G, ¢ K, the orbit G,py cannot consist
of the point py itself; hence

Gopo = X . (2.12)

The Weyl group of G, is contained in the Weyl group of G and consists of two elements:
the identity and a reflection, 0 = o,, which leaves fixed the hyperplane ker a C ¢, and maps
a to —a. Therefore, since a € Ak, 0apo # po, and hence pg and o,pg are the two T-fixed
points on the 2-sphere (2.12).

Now let p = wpg be another fixed point of T', with [w] € Wg/Wk. Let a be a represen-
tative for w in Ng(T') and let L, : G — G be the left action of a on G. If X is the 2-sphere
(2.12), then the 2-sphere L,(X) intersects M7 in the two fixed points wpy and wo,py, and
its stabilizer group in T is the group

aHpa ' = wHow™ = Hyq , (2.13)
where H, is the group (2.11).
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The GKM graph of M

This concludes our classification of the set of 2-spheres in the one-skeleton of M. Now note
that if X is such a two-sphere and H is the subgroup of T stabilizing it, then the orbit space
X/T consists of two T-fixed points and a connected one dimensional set of orbits having
the orbitype of T/H. Thus these X’s are in one-to-one correspondence with the edges
of the GKM graph of M. Denoting this graph by I', we summarize the graph-theoretical
content of what we have proved so far.

Theorem 2.2.7. The GKM data associated to the action of T on the homogeneous space M = G /K
consists of a graph T" with the following additional structure.

(1) The vertices of T are in one-to-one correspondence with the elements of Wg /W ;

(2) Two vertices [w] and [w'] are on a common edge of T if and only if (w'] = [wo,] for some
a € AG, K/

(3) The edges of T containing the vertex [w] are in one-to-one correspondence with the roots,
modulo X1, in the set Ag k;

(4) If o is such a root, then the stabilizer group (2.1) labelling the edge corresponding to this root
is the group (2.13).

In particular, the labelling (2.1) of the graph I can be viewed as a labelling by elements
[@] of Ag/ £ 1. We call this labelling a pre-axial function.

The connection onT’

One last structural component of the graph I' remains to be described: Given any graph, I,
and vertex, p, of ', let E, be the set of oriented edges of I' with initial vertex p. A connection
on I is a function which assigns to each oriented edge, e, a bijective map

Ve:Ep — By,

where p is the initial vertex of e and ¢ is the terminal vertex. Every GKM graph has a
natural connection. For the graph I' described in Theorem 2.2.7 this connection is the
following. Let e be the oriented edge of I" joining [w] to [wo,]. If €' € Ej is the oriented
edge joining [w] to [wos), then V(e') = €, where €” is the edge joining [wo,] and [wo,0s].
This connection is compatible with the pre-axial function (2.1) in the sense that, for every
vertex p, and every pair of oriented edges, e,e' € E,, the roots labelling e, ¢/, and " =
V.(€') are coplanar in t*.
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Simplicity

A graph is said to be simple if every pair of vertices is joined by at most one edge. Most
of the graphs above do not have this property. There is however an important class of
subgroups, K, for which the graph associated with G/K does have this property.

Theorem 2.2.8. If K is the stabilizer group of an element of t, then the graph T is simple.

Proof. A root o € Ag is in Ag if and only if the restriction of « to the subspace tVx of tis
zero. Let a,6 € Ag k such that a # £6, and let 0, 05 be the reflections of t defined by «
and 4. Then o, # o5 and the subspace of t fixed by 0,05 is the codimension 2 subspace on
which both a and § vanish. If 0,05 € Wk, then this subspace contains t"x, 50 o and § are
both vanishing on t"¥, contradicting our assumption that a,§ ¢ Ak. d

Another way to prove Theorem 2.2.8 is to observe that M = G/K is a coadjoint orbit
of the group G. In particular, it is a Hamiltonian T-space and T' is the one-skeleton of its
moment polytope.

2.2.3 The GKM definition of the cohomology ring

We recall how the data encoded in the GKM graph determines the equivariant cohomology
ring H4(M). The inclusion r : MT — M induces a map in cohomology

r* : Hy(M) — Hp(MT) = Maps(MT, §(t*)) = Maps(Wg/Wk, S(t*)) ,

and the fact that M is equivariantly formal implies that r* is injective. Let H*(T', @) be the
set of maps
f:We/Wg — S(t) (2.14)

that satisfy the compatibility condition:
f([woa]) = f([w]) € (we)S(¥") . (2.15)

for every edge ([w], [wos]) of T.
The Goresky, Kottwitz and MacPherson theorem [GKM], Theorem 1.7.3 asserts that

Hp(M) =~ r*(Hp(M)) = H*(T, @) .

In the next section we construct a direct isomorphism between this ring H7.(M) and the
Borel ring given in (2.3).
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2.24 Equivalence between the Borel picture and the GKM picture

From the inclusion, r, of MT into M, one gets a restriction map
*: Hy(M) — H3(MT) ; (2.16)

and, since M is equivariantly formal, i* maps Hy(M) bijectively onto the subring H7I" of
Hx(MT). However, as we pointed out in Section 2.2.1,

Hp(M) = 8() 7 ®g(pywe S(£) 5
so, by combining (2.16) and (2.3), we get an isomorphism
K : SE)VE ®@g(pywe S(*) = HE(T) - (2.17)

The purpose of this section is to give an explicit formula for this map. Note that since
MT is a finite set,

Hy(MT) = P Hi(p) = @ S(t') =Maps(MT,S(t")) .
peMT pEMT

Theorem 2.2.9. On decomposable elements, f1 ® fa, of the product (2.3),
K(fi1 ® f2) = g € Maps(MT,S(t")) , (2.18)
where, for w € Wg and p = wpg € M7T,
9(wpo) = (wfi)f2 . (2.19)

Proof. We first show that (2.18) and (2.19) do define a ring homomorphism of the ring (2.3)
into H*(T', ). To show that (2.19) doesn’t depend on the representative w chosen, we note
that if wpy = w'py, then o = w(w')~! € Wk. Thus

g(w'pe) = (W' f1) f2 = (wo f1) f2 = (wf1) f2 = g(wpo) ,
since f; € S(t*)"Wk. Next, we note that if f € S(t*)Vc, then

K(fif ® f2) =K(f1 ® ffa2),

since
w(fif)fa= (whi)(wf)fz = (wfr)ff2.

Thus, by the universality property of tensor products, K does extend to a mapping of the
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ring (2.3) into the ring Maps(MT, S(t*)). Next, let o be a root and let o € Wy be the
reflection that interchanges o and —a and that is the identity on the hyperplane

h={{et; a(()=0}.

Suppose that p and p’ are two adjacent vertices of I with p’ = op. To show that g =
K(f1 ® f2) isin H*(T', o), we must show that the quotient

g(p") — g(p)

(0]

is in S(t*). However, if p = wpy, then

9(®') — g(p) = (owfr —wfr)fa ,

and since o is the identity on b, the restriction of the polynomial wo f; to b is equal to the
restriction of the polynomial w f; to h; hence

g(pl) _g(p) € S(t*) )

Finally, we show that the map K defined by (2.18) and (2.19) has the same equivariance
properties with respect to the action of the Weyl group W¢ as does the map (2.17). Note
that under the identification (2.3), the action of W on Hy}.(M) becomes the action

w(fi® f2) =fiewf,

since in the right hand side of (2.3), the first factor is H5 (M), so W acts trivially on it. In
particular,the ring of Wg-invariants in H}.(M) is

S(E)VE @y S = ()X
which is consistent with the identifications

HE(M) = S(¢*) = S(¢)"Wx = Hyp(M)"e (2.20)

On the other hand, the action of W on the space
Hi(MT) = Maps(M™, S(t*))

is just the action

(wg)(p) = w(g(w™'p)) ;
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so0 to check that the map K defined by (2.18) and (2.19) is Wg-equivariant, we must show
that if

g=K(fi®f) andg”=K(fi®wf),

then for all points p = opo,

9" (p) = (wg)(p) .
However,
g*(p) = (e fi)(wfz) = w((w™ o f1) f2) = wg(w™'p) = (wg)(p) .

Let us now prove that the map K coincides with the map (2.17). We first note that X is
a morphism of S(t*)-modules. For f € S(¢*),

K(fi® fof) = K(f1® f2)f -

Thus, it suffices to verify that K agrees with the map (2.17) on elements of the form f; ® 1.
That is, in view of the identification (2.20), it suffices to show that C, restricted to S(t*)V« ®
1, agrees with the map (2.17), restricted to Hj-(M)"e. However, if f € H}j(M)We, then
r*f € Hx(MT)We, so it suffices to show that 7* f and K(f ® 1) coincide at py, the identity
coset of M = G /K. This is equivalent to showing that in the diagram below

Hy(M) — Hy (M) — Hi(po)

| |

S(E*)WK S(E*)WK

the bottom arrow is the identity map. Howéver, the bottom arrow is clearly the identity
on S°(¢*)X = C and the two maps on the top line are S(¢*)¥-module morphisms. O

2.3 Almost complex structures and axial functions

2.3.1 Axial functions

A G-invariant almost complex structure on M = G/K is determined by an almost complex
structure on the tangent space T,,, M,

Jpo : TpoM ~ g/t — g/t.
For an arbitrary point gpy € M, the almost complex structure on
TyPoM = (dLg )Po (Tpo M )
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is given by
Jopo ((dLg)py (X)) = (dLg)po (Jpo (X)) ,

for all X € g/t. This definition is independent on the representative g chosen if and only if
Jpo is K-invariant. Therefore G-invariant almost complex structures on G/K are in one to
one correspondence with K-invariant almost complex structures on g/¢.

If M = G/K has a G-invariant almost complex structure, then the isotropy representa-
tions of T on Tj,, M is a complex representation, and therefore its weights are well-defined
(not just well-defined up to sign). Let

TpoM =g/t = PV
[9]

be the root space decomposition of g/¢. Then V}4) is a one-dimensional complex represen-
tation of T; let § € {4} be the weight of this complex representation:

expt- Xz = eﬁ(t)X'g , foralltet.

Thus, the map
s:Agx/tl = Mgk, s([0]) =36, (2.21)

is a Wk-equivariant right inverse of the projection Ag x — Ag,x/{£1}. Let Ay C Ag x
be the image of s.

The existence of a map (2.21) is equivalent to the condition
woa#—a , forallw € Wg , a € Agx = Ag — Ak, (2.22)

hence (2.22) is a necessary condition for the existence of a G-invariant almost complex
structure on M. We will see in the next section that this condition is also sufficient.

We can now define a labelling of the oriented edges, Er, of the GKM graph T, as follows.
Let [w] € W /Wi be a vertex of the graph and let e = ([w], [wos]) be an oriented edge of
the graph, with § € Aq. This edge correspbnds to the subspace V|, (see (2.13)) in the
decomposition

Ti)M = @ Viws »
dEAQ

and the G-invariance of the almost complex structure implies that T acts on V[, 5 with
weight wé. We define o : Er — t* by

a([w], [wos]) = wé , forall § € Ag,w € Wg . (2.23)

Theorem 2.3.1. The map « : Er — t* has the following properties:
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1. If ey and ey are two oriented edges with the same initial vertex, then a(e;) and a(eg) are
linearly independent;

2. If eis an oriented edge and e~ is the same edge, with the opposite orientation, then a(e™!) =

—afe);

3. If e and €' are oriented edge with the same initial vertex, and if €' = V(¢€'), then a(e") —
a(e') is a multiple of o(e).

Proof. The first assertion is a consequence of the fact that the only multiples of a root « that
are roots are ta.

If e is the oriented edge that joins [w] to [wo;] and that is labelled by wé € wAg, then
ale™) = (wos)(0) = —wd = —a(e™?).

Finally, if e joins [w] to [was] and if € joins [w] to [wo,] (with 4,y € Ag), then €” joins
[wos] to [woso,], and

a(e") — ale) = wosy — wy = w(osy — ) = —(7,8)wd = —(v,8)a(e) .

O

Equivalently, Theorem 2.3.1 says that a : Er — t* is an axial function compatible with
the connection V.

2.3.2 Invariant almost complex structures

As we have seen in Section 2.3.1, (2.22) is a necessary condition for the existence of a G-
invariant almost complex structure on M = G/K; in this section we show that it is also a
sufficient condition.

Theorem 2.3.2. If the condition
wa;é—a y foralleWK, aEAG,K=Ag—AK,
is satisfied, then M admits a G-invariant almost complex structure.

Proof. Consider the complex representation of K on (g/t)c = gc/tc and let
(8/8c = PV
J
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be the decomposition into irreducible representations; (g/¢)c is self dual, hence
DVi=6/c= (/e =DV, =DV
g J J

Therefore V; = V, for some £. If a is a highest weight of V;, then condition (2.22) implies
that —a is not a weight of V;; however, —a is a weight of V}, hence V; # V;. Therefore

@/0c=PWV;eV;) =UaT

J

as complex K-representations, and this induces a K-invariant almost complex structure
J:g/t— g/t

as follows: If z € g/¢, then there exists a unique y € g/¢ such that z+iy € U, and we define
J(z) = y. As we have shown before, this is equivalent to the existence of a G-invariant
almost complex structure on M. O

An alternative way of proving Theorem 2.3.2 is to observe that the condition (2.22) is
equivalent to the existence of a Wi-equivariant section s : Ag x/£l = Agk. Let s be
such a section and let Ay C Ag — Ak be the image of s. Then (see (2.8))

o/t= D Vi

aclg

and one can define a K-invariant almost complex structure J by requiring that for each

J ( Xa ) = <X“°‘) : (2.24)
X_o -X,

2.4 Morse theory on the GKM graph

a € Ay, J acts on Vig] by

2.4.1 Betti numbers

Henceforth we assume that M admits a G-invariant almost complex structure, determined
(see (2.24)) by the image Ay C Ag,k of a section s : Ag x/+1 = Ag k. Let I" be the GKM
graph of M and let

a:Er—>t*

be the axial function (2.23). Then the edges whose initial vertex is the identity coset in
Wga/Wk are labelled by vectors in A.
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Let ¢ € tbe aregular element of t, i.e.
0(¢)#0 , foralld € Ag Ct".

For a vertex [w] € W /Wk, define the index of [w] to be

indw)(§) = #{e € By ; a(e)(§) <0},

and for each k£ > 0, let the kth Betti number of I' be defined by

Br(T) = #{[w] € Wg/Wk ; indjy) = k} .

The index of a vertex obviously depends on £, but the Betti numbers do not. This is shown
in [GZ1], and we will prove this abstractly for graphs in Chapter 3.

In general these Betti numbers are not equal to the Betti numbers
Bor(M) = dim H**(M)

of M = G/K; however, we show in the next section that there is a large class of homo-
geneous spaces for which they are equal. One should note that 84 (M) is the dimension
of the ordinary cohomology of M as a vector space, while Bx(I') counts the number of gen-
erators of degree 2k of the equivariant cohomology ring of M, as a free module over the
symmetric algebra S(t*).

2.4.2 Morse functions

Let £ € t be aregular element.

Definition 2.4.1. A function f : Wg/Wg — R is called a Morse function compatible with ¢
if for every oriented edge e = ([w],[w']) of the GKM graph, the condition f([w']) > f([w]) is
satisfied whenever a(e)(¢) > 0.

Morse functions do not always exist; however, there is a simple necessary and sufficient
condition for the existence of a Morse function. Every regular element { € t determines
an orientation o¢ of the edges of I': an edge e € Er points upward (with respect to £) if
a.(¢) > 0, and points downward if a.(§) < 0. The associated directed graph (I, o¢) is the
graph with all upward-pointing edges. :

Proposition 2.4.2. There exists a Morse function compatible with £ if and only if the directed
graph (T, o¢) has no cycles.
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2.4.3 Invariant complex structures

In this section we show that the existence of Morse functions on the GKM graph, which is
a combinatorial condition, has geometric implications for the space M = G/K.

Theorem 2.4.3. The GKM graph (T', ) admits a Morse function compatible with a reqular £ € t
if and only if the almost complex structure determined by o is a K-invariant complex structure on
M. Moreover, if this is the case, then the combinatorial Betti numbers agree with the topological
Betti numbers. That is,

Br(T) = Bar(M)

Proof. Let f : Wg/Wgk — R be a Morse function compatible with ¢, and let [w] be a vertex
of the GKM graph where f attains its minimum. If we replace £ by w™!(¢) and f by
(w™1)*f, then the minimum of this new function is py. Thus, without loss of generality, we
may assume that the minimum vertex [w] is the identity coset in W /Wk. Then

Ao = {6 € Ag,k; 6(§) >0},

hence A is the intersection of Ag, x with the positive Weyl chamber determined by ¢. Let

p=tco (P o) -

§€Ap

Then p is a parabolic subalgebra of gc, hence the almost complex structure determined by
a is actually a complex structure.

If G is the simply connected Lie group with Lie algebra gc and if P is the Lie subgroup
of G¢ corresponding to p, then

M =GJ/K =G¢/P,

hence M is a coadjoint orbit of G. Then M is a Hamiltonian T-space and the GKM graph of
M is the 1-skeleton of the moment polytope, and therefore the combinatorial Betti numbers
agree with the topological Betti numbers.

On the other hand, if the almost complex structure is integrable then p is a parabolic
subalgebra of gc and M = G/K C g* is a coadjoint orbit of G. Let ® : G/K — g* be the
moment map, that is inclusion as coadjoint orbit. For a generic direction { € t C g, the
map f : Wg/Wk — R given by

F([w]) = (2([w]), &)

(with Wg/Wg — G/K — g*) is a Morse function on the GKM graph compatible with
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2.5 Examples

2.5.1 Non-existence of almost complex structures

Let G be a compact Lie group such that gc is the simple Lie algebra of type B;. Let a;, a1 +

(42 ajt+on 20, +ol, [oaz]

o [az] [oz2 +200 1]

[Gal]

Figure 2-1: The weights of SO(5) and graph for the homogeneous
space SO(5)/(SU(2) x SU(2)).

az be the short positive roots and let ap, a3 + 20, be the long positive roots. Let K be
the subgroup of G corresponding to the root system consisting of the short roots. Then
tc = Dy = A; x A; and K ~ SU(2) x SU(2). The quotient Wg/Wk has two classes: the
class of 4, € Wk and the class of g4, € Wg — Wk.

The GKM graph I' has two vertices, joined by two edges, and the edges are labelled by
(o], [a2 + 201] € Agk/*]l. f w = 04;40,00; € Wk, then way = —ap and ay € Ag k,
hence one cannot define an axial function on I'. In this example, G/K = S*, which does
not admit an almost complex structure.

2.5.2 Non-existence of Morse functions

Let G be a compact Lie group such that gc is the simple Lie algebra of type G,. Let a1, a1 +
ag, and 207 + a3 be the short positive roots and let az,2a3 + 301, e + 3a; be the long
positive roots. Let K be the subgroup of G corresponding to the root system consisting of
the short roots. Then ¢c = A; and K =~ SU(3). The quotient W /Wk has two classes: the
class of 04, € Wk and the class of 04, € Wg — Wk.

The GKM graph I" has two vertices, joined by three edges, and the edges are labelled
by [a2], [2a2 + 3], [a2 + 3] € Ag, x/*1. There are two Wi-equivariant sections of the
projection Ag x — Ag,x/*£1, corresponding to {2, as+3a1, —2az—3a;1} and {—ag, —az—
301,20 + 3aq }. If

Ag = {012, az + 3ay, —2a — 3a1} )

then the axial function is shown in Figure 2-2 and there is no Morse function on I': the
corresponding almost complex structure is not integrable. In this example, G/K = S5,
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Figure 2-2: The weights of G5 and graph for Go/SU(3).

which admits an almost complex structure, but no invariant complex structure.

2.5.3 The existence of several almost complex structures

Let G = SU(3) and K = T. Then the homogeneous space G/K is the manifold of complete
flags in C3. The root system of G is A, with positive roots a1, oz, and a; + a2 of equal
length. The Weyl group of G is Wg = S3, the group of permutations of {1,2,3}, and
Wgk =1,hence Wg/Wx = Wg = Ss.

The GKM graph is the bi-partite graph K33 : it has 6 vertices and each vertex has 3
edges incident to it, labelled by [e1], [@2], and [@; + a2]. There are 22 possible Wk -invariant
sections, hence eight G-invariant almost complex structures on G/ K. If

Ao = {a1,a2,a1 + a3},

then the corresponding almost complex structure is integrable and there is a Morse func-
tion on I' compatible with { € t such that both a;(¢), and a3(£) are positive. This Morse
function is given by f(w) = £(w) where ¢(w) is the length of w. In this case, this is the
number of inversions in w. However, if

Ay = {al,aZa_al - a2} )

then the corresponding almost complex structure is not integrable and there is no Morse
function on (T', a) : for every vertex w of T', there exist three edges e;, ez, and e3, going out
of w, such that

ael +aez+aea=0,

hence there is no vertex of I' on which a Morse function compatible with some ¢ € t can
achieve its minimum.
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Figure 2-3: Two choices of almost complex structure for SU (3)/T.
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Chapter 3
Graphs and equivariant cohomology

In Chapter 2, we explored the ramifications of the GKM computation of equivariant coho-
mology for homogeneous spaces G/K. In this chapter, we combinatorialize the geomet-
ric concepts discussed in Chapters 1 and 2. We will be particularly interested in Cayley
graphs, as they are the combinatorial analogue of homogeneous spaces.

3.1 Preliminaries

In this section, we summarize basic definitions and results about graphs from [BoGH]. In
that paper, the goal is to give a combinatorial interpretation to the Betti numbers defined
below. We will examine these definitions in greater detail for homogeneous graphs.

When a graph I" comes from a GKM manifold, there is one additional structure on the
graph that is of fundamental importance. This is the axial function. When we try to strip the
geometry from this picture, and try to make purely combinatorial definitions, we describe
the structure of an axial function in two pieces: a connection and an axial function.

3.1.1 Connections and geodesic subgraphs

Let T' = (V, E) be a graph with finite vertex set V and edge set E. We will assume that
I’ has no multiple edges and no loops. In the previous chapter, there were examples of
non-simple graphs arising in geometry. However, for convenience, we will restrict our
attention here to simple graphs. We count each edge twice, once with each of its two
possible orientations. When z and y are adjacent vertices we write e = (z,y) for the edge
from z to y and e~ = (y, z) for the edge from y to z. Given an oriented edge e = (z,y),
we write z = ¢(e) for the initial vertex and y = 7(e) for the terminal vertex.

Definition 3.1.1. The star of a vertex =, written St(z), is the set of edges leaving z,
St(z) = {e| t(e) = z}.
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The star of a vertex is the combinatorial analogue of the tangent space to a manifold
at a point. In the manifold setting, the tangent space breaks up into weight spaces, each
corresponding to one of the edges e € St(z).

Definition 3.1.2. A connection on a graph T' is a set of functions Vg, or V,, one for each
oriented edge e = (z,y) of T, such that

1. Vg : St(z) — St(y),
2. Vg (z,y) = (y,x), and
3. Viga) = (Viey) ™

It follows that each V,, ) is bijective, so each connected component of I' is regular: all
vertices have the same valence. Every regular graph has at least one connection, and often
many. Henceforth we will assume I" comes equipped with a specified connection V. In
the geometric picture, the connection is built into the definition of axial function. From the
combinatorial point of view, it is interesting to study the connection itself. The connection
will be of particular use in Section 3.2.2.

Definition 3.1.3. A 3-geodesic is a sequence of four vertices (z,y, z, w) with edges {z, y}, {y, 2z},
and {z,w} for which V, .)(y,z) = (2,w). We inductively define a k-geodesic as a sequence of
k + 1 vertices in the natural way. We may identify a geodesic by specifying either its edges or
its vertices, and we will refer to edge geodesics or vertex geodesics as appropriate. The three
consecutive edges (d, e, f) of a 3-geodesic will be called an edge chain.

Definition 3.1.4. A closed geodesic is a sequence of edges e1, . . . , en, such that each consecutive
triple (e;, €i+1, €i+2) is an edge chain for each 1 < i < n, modulo n.

A little care is required to understand when a geodesic is closed, since it may in fact
use some edges in St(z) multiple times. It is not closed until it returns to the same pair of
edges in the same order. That is analogous to the fact that a periodic geodesic in a manifold
is an immersed submanifold, not an embedded submanifold. The period completes only
when it returns to a point with the same velocity (tangent vector).

Remark 3.1.5. Because there is a unique closed geodesic through each pair of edges in the star of a
vertex, the set of all closed geodesics completely determines the connection on I'. We will sometimes
use this fact to describe a connection.

We define totally geodesic subgraphs of a graph by analogy to totally geodesic sub-
manifolds of a manifold.

Definition 3.1.6. Given a graph I with a connection V, we say that a subgraph (Vo, Eg) =T C T
is totally geodesic if all geodesics starting in Ey stay within Ej.
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This definition is equivalent to saying that a totally geodesic subgraph I’y is one in which,
for every two adjacent vertices z and yinT,

V(z,y) (St(.'r) N Ey) C E,.

Suppose now that P = {e1,...,en} is any cyclein I': 7(g;) = t(€i+1) modulo n. Then
following the connection around P leads to a permutation

VP=Ve,.°"‘°Vex°Veo

of St(z).

Definition 3.1.7. The holonomy group Hol(T,) at vertex = of T is the subgroup of the permu-
tation group of St(z) generated by the permutations V p for all cycles P that pass through z.

It is easy to see that the holonomy groups Hol(T';) for the vertices z in each connected
component of I' are isomorphic. When T is connected and d-regular we call that group the
holonomy group of I' and think of it as a subgroup of S,.

3.1.2 Axial functions

We described in Section 1.6 how a graph arising from a GKM manifold has associated to
it an axial function, namely an assignment of a vector to each oriented edge e. We will not
repeat this definition here, but refer the reader to Defintion 1.6.6. It follows immediately
from the definition that the images under « of all geodesics of I' are planar. What matters
about the axial function is the direction of a(e) in R™ \ {0}, not its actual value. We consider
two axial functions « and o' to be equivalent if

a(e) o(e)
llee)ll — [le’(e)ll

for all edges e. Notice that « is not equivalent to —q.

Ife = (z,9) is an edge, we will denote a(e) by a(z,y), rather than using two sets of
parentheses. We picture an edge chain as a succession of vectors joined head to tail in their
plane, as shown in the figure below. A picture of an equivalent axial function will show
vectors with the same orientations, but different lengths.

Definition 3.1.8. An immersion of Tya)isamap F: V — R™ such that
a(z,y) = F(y) - F(z).

Our picture of an immersed vertex chain (z,y, z,w) is shown below. Here, the end-
points of the vectors do make sense, as the vertices are points in R,
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For an axial function «, the edges a(d) and a(f) must lie on the same side of a(e) in

o)
a(d) alf) or afd) afe)

afe)

Figure 3-1: This shows how we picture the axial function on an
edge chain.

F(x) F(w)
o (x,y) a(zw)
F(z)
Fy) oz )

Figure 3-2: This shows how we picture the axial function on an
immersed vertex chain.

the plane in which they lie.

Definition 3.1.9. An axial function o is k-independent if for every x € V and every k edges
ei,...,ex € St(x), the vectors afer),...,a(e;) are linearly independent. By assumption, « is

2-independent.

Theorem 3.1.10. If the axial function « is 3-independent, then it determines the connection.

Proof. Let d and e be edges with 7(d) = ¢(e). Then 3-independence implies that there
is only one edge f with 7(e) = «(f) and and «(f) in the plane determined by a(d) and

a(e),

Definition 3.1.11. The product of two graphs I'1 = (V1, E1) and T'y = (Va, E») is the graph

with vertex set V. = V1 x Va. Two vertices (z1,y1) and (z2, y2) are adjacent if and only if

'=Tr1 xTy = (V,E),

1. 21 = z9 and {yl,yz} € Ey; or

(2) Y1 = Y2 and {1111,562} € E;.

Suppose now that each I'; is equipped with a connection V; and axial function ¢; :
E; — R%. Then we can define a connection V on I in a natural way by specifying the
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closed geodesics as the closed geodesics in each component and some closed geodesics of
length 4 which go between I'; and I's.
The figure below shows one each of the two kinds of geodesics for the example in

£

Figure 3-3: This shows the product of two graphs, showing one
geodesic of each type.

which T’y is a 3-cycle and I'p is an edge.

We define an axial function a : E — R 12 by

a((z1,4), (2, 42)) = (e1(z1,72), 02(y1, ¥2)),

where (by definition) o;((z,z)) = 0. We leave it to the reader to check that V is a well-
defined connection, and that « is indeed an axial function compatible with V. Note that
this generalizes the example of the hypercube, which is an n-fold product of an edge.

3.1.3 Betti numbers

Suppose I is a graph with a connection V and an axial function o mapping edges to R".
The images under « of the chains in I" are planar; we will study how those chains wind
in their planes. To that end choose an arbitrary orientation for each such plane P. Then
whenever a(e) € P the direction a(e)* is a well defined direction in P. (If « is immersible
then a(e)* is a well defined vector in p.)

Throughout this section we will assume « is 2-independent. That is, no two edges in
the star of a vertex of I' are mapped by « into the same line in R*. Thus any two edges at
a vertex determine a unique plane, which we have assumed is oriented.

Recall that a vector £ € R \ {0} is a regular value if foralle € E, £ [ a(e). In this case,
we will call £ generic. We can define the index of a vertex and Betti numbers of a graph in
an identical fashion to our definitions for homogeneous spaces in Chapter 2.

Definition 3.1.12. The index of a vertex x € V with respect to a generic direction £ is the number
of edges e € St(z) such that
ale) - € < 0.

We call those the down edges. Let B;(§) be the number of vertices x € V such that the index of =
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is exactly i.

Theorem 3.1.13. IfI" is a graph with connection V and an axial function o, then the Betti numbers
Bi do not depend on the choice of direction €.

Proof. Imagine the direction ¢ varying continuously in R”. It is clear from the definitions
above that the indices of vertices can change only when ¢ crosses one of the hyperplanes
a(z,y)t. Let us suppose that (z,y) is the only edge of I' at which the value of the axial
function is a multiple of a(z,y). Then at such a crossing only the indices of the vertices
and y can change. Suppose ¢ is near a(z,y)*. Since a is an axial function, the connection
mapping St(z) to St(y) preserves down edges, with the single exception of edge (z,y)
itself. That edge is down for one of z and y and up for the other. Thus the vertices z and y
have indices i and i + 1 for £ on one side of a(z, y)* and indices i + 1 and i on the other.
Thus the number of vertices with index i does not change as ¢ crosses a(z, y)*. If there are
several edges of I' at which the axial function is a multiple of a(z,y), the same argument
works, since by the 2-independence of «, none of those edges can share a common vertex.

O

Henceforth we will assume « is inflection free. The motivation for the following defi-
nitions comes from Morse theory.

Definition 3.1.14. When the ;(§) are independent of £, we call them the Betti numbers of T (or,
more precisely, the Betti numbers of the pair (T, ) ).

The following proposition is the combinatorial version of Poincaré duality.

Proposition 3.1.15. When the Betti numbers of a graph are independent of the choice of £, then
Bi(T) = By—i(T) fori =0,...,d.

Proof. Choose some ¢ with which to compute the Betti numbers of I'. Then simply replace
€ by —¢, and a vertex of index 7 becomes a vertex of index d — i. O

Definition 3.1.16. Given a generic {, a Morse function compatible with ¢ on a graph with
an axial function aisa map f : V — R such that if (z,y) is an edge, f(z) > f(y) whenever
Ol(.’L', y) ’ E > 0.

There is a simple necessary and sufficient condition for the existence of a Morse func-
tion compatible with £. Recall that Proposition 2.4.2 says that a Morse function compatible
with £ exists if and only if there exists no closed cycle (ey,...,e,) withe; = e,, in T for
which all the edges e; are “up” edges. We prove this here.

Proof of Proposition 2.4.2. The necessity of this condition is obvious since f has to be strictly
increasing along such a path. To prove sufficiency, for every vertex p, define f(p) to be the
length N of the longest path (e1,...,en) in I' of up edges 7(enx) = p The hypothesis that
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there is no cycle of up edges guarantees that this function is well-defined, and it is easy to
check that it is a Morse function. O

Remark 3.1.17. One can easily arrange for f in the above proof to be an injective map of V into
R by perturbing it slightly.

When «a is immersible, so that a(z,y) = f(y) — f(z), then we can define a Morse
function on I by setting m(z) = f(z) - £ for any generic direction {. Then m(z) increases
along each up edge. The vertices with index i resemble critical points of Morse index i in
the Morse theory of a manifold. We call the g; Betti numbers because when a graph we are
studying is the GKM graph of a manifold, the 3; indeed correspond to the Betti numbers
of the manifold, and they are the dimensions of the cohomology groups of the manifold.

Remark 3.1.18. When an inflection-free 2-independent axial function is projected generically into
a plane, it retains those properties, so the Betti numbers of I' can be computed using a generic
direction in a generic plane projection. In most of our examples « is immersible. In these cases we
are of course drawing a planar embedding of I'. Thus the figures in this paper are more than mere
suggestions of some high dimensional truth. They actually capture all the interesting information
about T'.

Definition 3.1.19. The generating function 3 for the Betti numbers of T is the polynomial
n -
Bz) =) Biz".
=0

Remark 3.1.20. When T is d-regular, 3 is of degree d. The sum of the Betti numbers, $(1), is just
the number of vertices of I’

Remark 3.1.21. It is clear that By > 0 if a Morse function exists, because the vertex at which the
Morse function assumes its minimum value has no down edges.

We can relate the Betti numbers of the product of two graphs to the Betti numbers of
the two multiplicands as follows. The proof is left to the reader.

Proposition 3.1.22. Let I" and A be graphs with Betti numbers generated by Pr(z) and Ba(z)
respectively. Then the generating function for the Betti numbers of the product graph T' x A is the
polynomial product

Pr(z) - Ba(z).

In [BoGH], the following theorem relates the Betti numbers and the cohomology ring
H*(T, a).
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Theorem 3.1.23. Suppose I' is a graph equipped with a connection V, a 3-independent axial func-
tion o : E — R", and a £-compatible Morse function f. Suppose further that each two-face of T
has zeroth Betti number equal to 1. Then the dimension of H" (T, o) is given by the formula

ZT: (" - i oo 1) 4. 3.1)

£=0

3.2 Graphs and equivariant cohomology

3.2.1 Equivariant classes

Let S be the polynomial ring in the variables z = (z,...,z,) and S* the k'h graded com-

n+k—1) )

ponent S: the space of homogeneous polynomials of degree k. S* has dimension ("1*7

LetI' = (V, FE) be a regular d-valent graph with connection V and axial function « :
E — R*. Then for every edge e, of I' we will identify the vector, a(e) € R", with the linear
function a,(z) = a(e) - z so we can think of a, as an element of S'. Finally, forgand h € S
we will say that
g=h moda

when g — h vanishes on the hyperplane, a(z) = 0.
In Section 1.6, we defined the equivariant cohomology H*(T', o) of a graph with an
axial function.

ljeﬁnition 3.2.1. Let m be the numbers of verticés of I'. An m-tuple of polynomials
€S, peV
is an equivariant class if for every e = (p,q) € E
9p = 9q mod . (3.2)

Henceforth we will write < g > for such an m-tuple. We say that this class has degree k if for all
D, gp € S¥, and we note that the set of all equivariant classes of degree k is H*(T', ).

It’s clear that every equivariant class is in the space
oo
H*(T,a) = @ H*(T,0).

k=0

Moreover this space is clearly a graded module over the ring S. That is, if < g, > satisfies
(3.2) then for every h € S, so does < hg, >. More generally, if < g, > and < h;, > satisfy
(3.2) then so does < g, - hy >. So H*(I', ) is not just a module, but in fact a graded ring,
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and S sits in this ring as the subring of constant classes
gp = g for all p.

In this section we describe some methods for constructing solutions of the compatibil-
ity conditions (3.2). These methods will rely heavily on the ideas that we introduced in
Sections 3.1.1 and 3.1.2.

Let F : V — R" be an immersion of I'. If we identify vector F(p) with the monomial

fp(:l,')=F(p)-:lJ

then (3.2) is just a rephrasing of the identity (1.1), so < f, > is an equivariant class of
degree 1. More generally if

k
p(z) = Y pi()7

=0
is a polynomial in z whose coefficients are polynomials in z = (z1,...,2,) then the m-
tuple of polynomials
k
<Y pilz)fy > (3.3)
=0

is an equivariant class. The class < fp > itself corresponds to thecasek = 1,pp =0, p; = 1.

3.2.2 The complete graph

In one important case this construction gives all solutions of (3.2). Namely let K4, =
(V, E) be the complete graph on n 4 1 vertices with the natural connection. Then every
immersion F : V — R" defines an axial function compatible with that connection by
setting

a(p,q) = F(q) — F(p) (3.4)

for every oriented edge e = (p, ¢). We will prove

Theorem 3.2.2. If the axial function (3.4) is two-independent, every equivariant class can be writ-
ten uniquely in the form

k
<gp>=<) _pi(@)fy > (3.5)
=0

for some polynomials p;.

Proof. By induction on n. Let {p1,...,pn+1} be the vertices of V, and let < g, > be an
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equivariant class. By induction there exists a polynomial

k
p(2) = Zpizi
i=0

with coefficients in § such that p(g,,) = fp, for i = 1,...,n. Hence the n + 1-tuple of
polynomials

<fp—plgp) >n

is an equivariant class vanishing onpy, . . . , p,. Therefore, by (3.2) and the two-independence
of the axial function (3.3)

fou —0(9gp.) = h H(gpn — 9p;)

i<n

for some polynomial & € S. Let

qa(z) = h H(z = 9pi) -

i<n

Then

q(gpn+1) = fpn+1 - p(gpn+1)
and

q(gp;) = 0

for i < n. Thus the theorem is true for #V = n + 1 with p replaced by p + g.

The uniqueness of p follows from the Vandermonde identity

1 gp ... 931_ 1
det | i o i [ =Tow — 9>
- >
1 9, --- 9p. 1 23
the right-hand side of which is non-zero by the two-independence of the axial function

(3.3).
O

3.2.3 Holonomy and equvariant classes

The complete graph is the only example we know of for which the methods of the previous
section give all the equivariant classes. In this section we describe an alternative method
which is effective in examples in which one has information about the holonomy group
of the graph I'. To simplify the exposition below we will confine ourselves to the case in
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which the axial function a is exact.

Let pg be a vertex of I'. The holonomy group, Hol(T',) is by definition a subgroup of
the group of permutations of the elements of St(pg), so if we enumerate its elements in
some order

e € St(pg) i=1,...d

we can regard Hol(T';,) as a subgroup of the permutation group S; on {1,...,d}. Let
q(21,...,24) be a polynomial in d variables with scalar coefficients. We will say that q is
Hol(T'p,) invariant if for every o € Hol(I'p,)

q(za(1)7 R ’Za(n)) = q(Zl, R ,zn) .

Now fix such a q and construct a polynomial assignment < g, > as follows. Given a path,
7 in I" joining pg to p the connection gives us a holonomy map

Vi St(po) — St(p)
mapping ed,..., el toey,...,eq. Set

gp = qae, (), ..., 0 (). (3.6)

The invariance of q guarantees that this definition is independent of the choice of y. Let us
show that < g, > satisfies the compatibility conditions (3.2). Lete = (p,q). The map I"

Vp : St(p) — St(q)
maps ey, ...,eq to e}, ..., e, and by the exactness of o
Qe = ae; mod a, .

Hence

q(ae);- .-, ag) = q(@ey, .- e,) mod ae.

If the holonomy group is small this construction provides many solutions of (3.2). Even
if Hol([',,) is large this method yields some interesting solutions. For instance if q is a
symmetric polynomial in 2y, . .., 24, (3.6) is a solution of (3.2).

3.2.4 Totally geodesic subgraphs and equivariant classes

A third method for constructing solutions of (3.2) makes use of totally geodesic subgraphs.
Whenever I'y = (W, Ey) is a totally geodesic subgraph of degree j then for every p € Vj,
St(p) is a disjoint union of St(p, I'p) and its complement, which we can regard as the tangent
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and normal spaces to T'y at p. Let

9% =[] ale), (3.7)

eJ_Po

a homogeneous polynomial of degree d — j. By the results of Section 3.2.3, the assignment
< gp > sending p — g,, is an equivariant on Vo, and we can extend this class to V by setting

9p =0 (3.8)

forp € V — V,. Then (3.7) and (3.8) do define an equivariant class on V. Clearly the
compatibility conditions (3.2) are satisfied if ¢ — (p, q) is either an edge of Vg or if p and ¢
arebothin V —V;. If p € Voand ¢ € V — V} then a(p, ¢) is one of the factors in the product
(3.7); so in this case the condition (3.2) is also satisfied.

It is hence of great importance to compute the holonomy and totally geodesic sub-
graphs in our examples, which we do in the following section. An interesting question is
when the above constructions give complete sets of generators for i (T, ).

3.3 Examples

3.3.1 The complete graph

Let M = CP™! be complex projective n —1 space, the set of all (complex) lines in C". Then
T™1 acts naturally on M, and M is a GKM space. The associated graph is the complete
graph K, on n vertices.

Our standard view of K, embeds with vertices the standard basis vectors in R". That
embedding is a regular simplex in the r, — 1-dimensional subspace £z; = 1. The exact axial
function is determined by assigning to each vertex the difference between its end points.
The following figure shows a part of the connection determined by that axial function for
K4: it moves edges across the triangular faces.

x

Figure 3-4:  This shows the connection we defined above on the
graph K. : ‘

When we think of K} just as an abstract 4-regular graph we find that it has 10 different
connections (up to graph automorphism). But in each of these connections other than the
standard one there is at least one geodesic of length at least 4, so none of those connections
has a 3-independent immersion. So we will study only the standard view.
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Proposition 3.3.1. The geodesics of Ky, are the triangles. The connected totally geodesic subgraphs
are the complete subgraphs.

Proof. Tt's clear that the geodesics are the triangles. Let I'y be a connected totally geodesic
subgraph and p and g two vertices of I'g. Then transporting edge e = (p, q) along a path
in 'y from p to ¢ we eventually reach a triangle containing g. At that point the image of e
transports to an edge of I'g so e must have been part of I'y to begin with. O

It’s easy to compute the holonomy of K.
Proposition 3.3.2. Hol(Kp,) = Sp_1.

Proof. If you follow the connection along triangle (p,q,r) from p back to itself you inter-
change (p, q) and (p,r). Thus the holonomy group acting on St(p) contains all the trans-
positions. O

Proposition 3.3.3. The Betti numbers of K, are invariant of choice of direction £ and are (1,1, ...,1).

Proof. The geodesics are triangles, hence convex. hence inflection free, so the Betti numbers
are well defined. Let £ = (1,2,...,n). Then the number of down edges at the vertex
corresponding to the i** coordinate vector is the number of j’s less than i. O

3.3.2 The Johnson graph

Let M be the k-Grassmannian Gr(k,n), the set of all (complex) k-dimensional subspaces
of C*. The n — 1-dimensional torus T acts on M, and this is a GKM action. The associated
graph J(k, n) is the Johnson graph.

Definition 3.3.4. Given a set A and an integer k < # A, we define the Johnson graph J(k, A) to
be the graph with vertices corresponding to k-element subsets of A, with two vertices S1,Sy € V
adjacent if #(S1NSy) =k — 1.

If A; and A have the same cardinality, then J(k, A;) is isomorphic to J(k, A3). We will
denote J(k, {1,...,n}) by J(k,n). Notice that J(k,n) is an k - (n — k)-regular graph.

The easiest way to describe the natural connection on J(2, 4) is to describe its geodesics.
They are the triangles Q U {a}, Q U {b}, Q U {c} for k — 1 element sets Q and distinct a, b, ¢
and the planar squares Q U {a, b}, QU {b,c}, QU {c,d}, Q U {d, a}, for k — 2 element sets Q
and distincta, b, ¢, d.

The triangles are actual faces of the polytope. The squares are more like equators, as in
the picture of the octahedron J(2,4) below.

We can also define the connection itself on J(k,n). Let S; and S2 be two adjacent
vertices in J(k,n). We think of the edge pointing from S; to S as an ordered pair (4, j),
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Figure 3-5: This shows the connection we defined on the Johnson
graph J(2,4).

wherei € §1\ Sz and j € Sz \ S1. Thus the edge (i, j) corresponds to removing i from S
and adding j to get Sy. Here we show the Johnson graph J(2, 4).

/’{1’2}\

2,3} {2,4
/ (3.4) \
(1,3} # &{1,4}

T (1,5} (1,4} T
{1,2} {1,2}
l (1,4} 1,3} J

2.3) % 2.4
{3,4}
N wsr”

Suppose S; and S, are adjacent vertices in the Johnson graph J(k, n), via the pair (i, 5).
Then the natural connection on J(k,n) is defined as follows.

a,i) a€ Sy, b€ Sy,

(
Vs.,6,5)(ab) = (a,0) a €52 b¢&Sy,
S1,(8,)\% (.7, a) a & Sy, be Sy,
(j,b) a & S2,b¢ S

Using the connection of J(k, n) given above, we can determine all of the totally geodesic
subgraphs of J(k,n).

Proposition 3.3.5. IfI'g is a totally geodesic subgraph of T' = J(k,n), then
o= J(EI,AI) Xoene X J(er,A’ra),

where the A; are subsets of {1,...,n} of size a; > ¢;, and {1,...,n} is the disjoint union of the
A;.
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Proof. Letpy = Sp C {1,...,n} be a vertex of I'g. Then the edges in E,,|r, form a subgraph
of the complete bipartite graph with partite classes Sp and S§ = {1,...,n} \ Sp. Consider
the connected components of this subgraph, and label them I'}°,... ,I'?°. Let A; be the
vertex set of ['7°. Then for any vertex p = S C {1,...,n}, we claim that #S N A4; = ¢; is
independent of S. Since Iy is connected, there is a path from Sy to S. Furthermore, because
Ty is totally geodesic, there is a path which is minimal. That is, if (i1, j1),. .., (i¢, je) is the
path from Sy to S, then {i1,...,4}N{j1,. .., je} is empty. To prove this, we need to consider
two cases. First, consider the path in I’y

s g ) g

Then Vg, 4,0)(b,c) = (a,c) is an edge from S to S3, in I'g because it is totally geodesic.
Thus, we can avoid adding b and then removing it. Next, consider the path in I’y

5, @ g @) o
Then Vg, 4,0)(c,a) = (c,b) is an edge from S; to S3, in T'g because it is totally geodesic.
Thus, we can avoid removing a and adding it back again. Hence there is a path from Sy

to S which is minimal. Thatis, S = (So \ {%1,...,%}) U {J1,...,Je}, where a minimal path
from Sy to S is

SO (il)jl) Sl (1:2,_7'2) .. (it’jl) Sl — S

By assumption, {i1,...,%} N {j1,.-.,J¢} is empty. But then using the connection, we can
push any edge (i, jo) back to the very same edge (i, jo) going out of Sp, and so this edge
is in I'g because it is totally geodesic. Thus, in our bipartite graph, we have i, connected to
jo foralla = 1,...,£. Thus, #S N A; isthe same as #Sy N A;, for all .. And so #S5 N A4; is
independent of our choice of S in I'y.

Thus, we need only consider the case that the bipartite graph given by edges at Sy in T’y
is connected. Call this bipartite graph I'?°. To prove the proposition, it is sufficient to show
that this is the complete bipartite graph with partite classes Sy and S§. Suppose i € Sp and
j € S§. We want to prove that there is an edge (¢, j) in I'”°. Because the bipartite graph is
connected, we have a path

J1 Jo Je=17

\. .

N

1=1 19 Y]

where i, € Sg and j, € S§. We proced by induction on £. Suppose ¢ = 2. Then we have the
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path
J1 Ja=1

N

1;=’L'1 12

and we want to show that (4, j) is an edge. We can now think of a piece of 'y as isomorphic
to a subgraph of J({i1, i3, j1,j2},2). Using the path, we have the following solid edges in
J(2,4)0. and we want to show that the dashed edge is also in J(2, 4)o.

/iz,jl}/) t, ii}\ i\{iz,jz\

N\

{i1, 51} N {i1, 42}

fiy 1} @2}

N\

N
AN
AN
o N
{i2,51} , {i2, 2}
{jl)j2}

But now using our connection and the fact that I'y is totally geodesic, we have the following
sequence of edges in I'y.

1. Vi in),G,50) (82, 51) = (i2,81) € By, ;)
2. Vi i) (i 01) (820 92) = (d2, J2) € By, 53
3. Viig i h(iz,a) (12,11) = (J2,%1) € Eyjy o)
4. Vi, ia) Gaiin) U2, 81) = (i1, 52) € Eg, 5y
5. ViirithGsiz) (81, J2) = (81, 52) € Eiy i)

But this last equality tells us precisely that the dashed edge in the diagram above is indeed
an edge in the subgraph I'y.
Now suppose that / is greater than 2. So we have the path

J J2 Jje=173.

NN

’i=7:1 12
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But we proved above that we actually have an edge from i, to jo. So we have the path
J2 Js Jje=17,

NN

1=10 13

which has length ¢ — 1. Thus, by induction, we now have an edge from i to j. This com-
pletes the proof of the proposition. O

We can also compute the holonomy of J(n, k). We do not include the proof here.

Proposition 3.3.6. Hol(J(n,k)) = Si X Sp—k.

3.3.3 The dihedral group D,

Let D = D be the group of symmetries of the regular n-gon: the dihedral group with 2n
elements. Then D is a reflection group of type Iz(n), following the notational conventions
of Humphreys [Hu]. It is generated by two reflections, and contains = reflections and n
rotations. If we let A be the set of reflections in D, then the Cayley graph I' = (D, A) has
vertices corresponding to elements of D. o € D is connected to 7o for every 7 € A. Just
half the vertices of I" correspond to symmetries that preserve the orientation of the n-gon,
and o preserves orientation if and only if 7o reverses it. Thus the graph is bipartite. The
only n-regular bipartite graph on 2n vertices is K, 5.

D, has a natural holonomy free connection defined just as for the permutahedron,
using the reflection generating one vertex from another as the label for the corresponding
edge. The natural embedding of D, as the vertices of a regular 2n-gon produces an exact
axial function with inflection free geodesics for that connection.

Ds is K33 and also the permutahedron S3; discussed above. The figure below shows
two more examples.

This class of graphs is particularly interesting because D, = K, 5 is the graph associ-
ated with a minifold only when n = 1,2, 3,4, 6. This is precisely when D, is a Weyl group.
Thus, these provide examples where combinatorics may go further than differential geom-
etry.

We will leave as an exercise the following Betti number count.

Proposition 3.3.7. The Betti numbers of K, are invariant of choice of direction § and are
(1,2,...,2,1).
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Figure 3-6: This shows the Cayley graphs for (a) Ds and (b) Ds.
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Chapter 4

S! actions and equivariant
cohomology

4,1 Preliminaries

As in the introduction, we will use the following notation. Suppose M is a compact, con-
nected symplectic manifold with a Hamiltonian torus action of ' = T™. Let H be a codi-
mension one subtorus of T and let X be a connected component of M. Then there are
natural inclusion maps

X¢ MHC M

inducing maps in equivariant cohomology

Hp(X) <— Hj(M") ~— Hp(M) .

S Pl

Hp(XT) < —=H} (M)

The GKM theorem is concerned with the case when each component X has dimension at
most two. We will be concerned with the case when the dimension of X is at most four.

4.2 Reduction to the study of circle actions

It has long been a “folk theorem” that, for a Hamiltonian torus action on a symplectic
manifold, the associated equivariant cohomology is determined by S! actions on certain
submanifolds. Recently, Tolman and Weitsman [TW2] used equivariant Morse theory to
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prove that the cohomology is determined by that of the one-skeleton, the subspace given by
the closure of all points whose orbit under the torus action is one-dimensional. Here we
use the Chang-Skjelbred theorem, Theorem 1.5.1, to make this folk theorem precise.

Theorem 4.2.1. A class f € H}(MT) is in the image of r* if and only if

i (f) € rx (Hp(X))
for all codimension-1 subtori H C T and all connected components X of M, where i, restricts a

class to the fixed points of X and r7% is restriction to the fixed points for each component X.

Proof. By Theorem 1.5.1, f € im(r*) if and only if f is in the intersection over all codimension-
1 subtori H of r}; (H%(M¥)). Equivalently,

f €@ B (X)),
H X

where the direct sum is taken over all connected components X of M. Letkx : H(X) —
H}(MH) be the map which extends any class on X to 0 on other components of M. Let
kxr : HA(XT) = H3(MT) be the same map on the fixed point sets. Then

ri (€D HI (X)) = P rk o kx (HF (X))
X X

As kxr or% =} o kx, we have that f is in im(r*) if and only if

f € @ kxr o rk (Hi(X)), 4.1)

X
for all H. Now note that i o kyr = id. Because the connected components X are disjoint,

we can now apply 7% to (4.1) to get

ix(f) € rx(Hr(X)), (4.2)

for every H and X. However, since @ y i% is an injection, we can apply @ x kxr to (4.2)
to get (4.1). Thus, (4.2) and (4.1) are equivalent. This completes the proof. a
This result provides another proof for Theorem 1.5.4 of Tolman and Weitsman [TW2].

Definition 4.2.2. Let N C M be the set of points whose orbits under the T' action are 1-dimensional.
The one-skeleton M) of M is the closure N.

Tolman and Weitsman show that the image of r* : H:(M) — H3(MT) is equal to the
image of the cohomology of the one-skeleton. This assertion is Theorem 1.5.4 of Section 1.5.
We will give its proof now.
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Proof of Theorem 1.5.4. Because T acts effectively, N consists of points fixed by some codimension-
1torus H C T butnotby all of T, i.e.

N =|JM"\MT
H

where the union is taken over all codimension-1 tori H C T'. As noted above, this is a finite
union over all codimension-1 H which appear as isotropy subgroups of points in M. Then
N = Uy M¥, and the inclusion vy : M# < M factors through the inclusiony : N — M
for each codimension-1 torus H in T'. It follows that the induced maps in cohomology also
factor. Furthermore, there is an inclusion

k
Hi(N) < @ Hr (M),

=1

where H;,i = 1,...,k are the codimension-1 tori which appear as isotropy subgroups of
T. Theorem 4.2.1 implies that the map r* : H}(M) — Hx(MT) factors through the map

k k
D riom - D HHM™) — Hy(MT)
=1

i=1

But then 7* must factor through j* : H}(N) — H3(MT). O

Now suppose that M T consists of isolated fixed points. Then

Hy(MT) = @) S(¢)
peMT

and any f € H5%(MT) isamap f : MT — S(t*). Furthermore, as X and X7 have trivial H
actions, we can rewrite Theorem 4.2.1 in the following way.

Theorem 4.2.3. Under the above hypotheses, the image of r* is the set of f : MT — S(t*) such
that

% (f) : XT = S(t)
is in the image of
ri : Hy(X) » Hp(XT) = € S(t),
peXT

where % restricts a class to the fixed points of X and r% is restriction to the fixed points for each
component X.
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4.3 An extension of a theorem of GKM

When the one-skeleton has pieces of dimensions 2 and 4, we can still have a GKM-like
theorem.

First, let X be a compact, connected symplectic four-manifold with an effective Hamil-
tonian G = S! action with isolated fixed points X " =A{py,... ,Pd}- Then the equivariant
cohomology can be computed as follows.

Proposition 4.3.1. Let X be a compact symplectic 4-manifold with an S* action as above. The
map r* : Hg (X) = Hg (X 5%Y induced by inclusion is an injection with image

fi

{(f1,- ,fd)eeas )| fi — fj € z- Cla], Z eS( )% (4.3)

where of and oy are the (linearly dependent) weights of the S = S isotropy action on T, X.

Proof. The map r* is injective because M is equivariantly formal. We know that the f; must
satisfy the first condition because the functions constant on all the vertices are the only
equivariant classes in degree 0, as dim Hg, (M) = 1. The second condition is necessary as
a direct result of the ABBV localization formula. Notice that this condition gives us one
relation in degree 2 cohomology. A dimension count shows us that these conditions are
sufficient. As an S(s*)-module, H§(X) = H*(X) ® H(pt). Thus, the equivariant Poincaré
polynomial is

PP (X) Q1+@-2)2+th) QA+ +t*+...)
= 1+ (d-1) +dt*+ - +dt*™ +

As H%(X) is generated in degree 2, the d — 1 degree 2 classes given by the (fi,..., f4)
subject to the ABBV condition generate the entire cohomology ring. Thus we have found
all the conditions. O

We now prove a slightly more general proposition. Let 7 be the map S(g*) — S(b*).

Proposition 4.3.2. Let X be a compact symplectic 4-manifold with a Hamiltonian G action with d
isolated fixed points. Suppose further that there is a codimension-1 subtorus H which acts trivially.
The map r* : H5(X) — HY(XC) induced by inclusion is an injection with image

(- ,fd)eeasm*)m f; € ker(rr), z /i

=1 2

S(g")}, (4.4)

where o and o, are the (linearly dependent) weights of the G isotropy action on Tp, X.
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Proof. As in the case where X = §2,
HG(X) = Hg /g (X) ® S(b*).

Again, choose a complement L to H, and write S(I*) = C[z]. Then H / g(X G) can be
identified with @, xe = C[z]. By Proposition 4.3.1, we have f € Hg (X G) is in the image
of r*H}(X) — H(XC) if and only if the first component of f in @D, cxc = Clz] satisfies
the conditions (4.3). But then f must satisfy the conditions (4.4). O

We now discuss the more general case, which extends the result due to [GKM] (Corol-
lary 1.7.2). Suppose that M is a compact, connected symplectic manifold with an effective
Hamiltonian G action. Suppose further that this G action has only isolated fixed points
MG = {p1,.-.,p4} and that dim Xy < 4 for all H C G and Xy a connected component of
MH, as above. As before, let f; € HX(pt) denote the restriction of f € Hy (M) to the fixed
point p;. The equivariant cohomology of M can be computed as follows.

Theorem 4.3.3. The image of the injection r* : Hi(M) — HE (M) is the subalgebra of functions
(fma cee afpd) € @:—i:l S(g*) which satisfy

! fi; s ]
j=1 ;‘lj—;-‘,;; € S(g*) l,f{Pi];---apil} =Xg and dim Xy =4

{ WH(fp,-J.)=7TH(fp.'k) lf{pilv"’pit}zxg

for all H C G codimension-1 tori, where ai" and a;" are the (linearly dependent) weights of the G
action on Tp,-j Xu.

Proof. By Theorem 4.2.1, im(r*) consists of (f1,..., fz) which have certain properties re-
stricted to each Xy. Proposition 4.3.2 lists these restrictions for each Xy of dimension
4. The conditions for Xy of dimension 2 are stated in the GKM theorem. A quick check
shows that these are exactly the conditions listed above. O

4.4 Hypergraphs and equivariant cohomology

The goal of this section is to survey some results relating equivariant cohomology and hy-
pergraphs. The Chang-Skjelbred theorem says that in the symplectic setting, in order to
understand equivariant cohomology of Hamiltonian T-spaces, we need only understand
the equivariant cohomology of hypergraphs. The GKM theorem states that under certain
dimension restrictions, we need only consider graphs. The generalization given in Theo-
rem 4.3.3 allows us to begin extending our understanding of equivariant cohomology of
graphs to hypergraphs.
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We first restrict our attention to the case when M has isolated fixed points. In The-
orem 4.3.3, we relaxed the condition that the one-skeleton be two-dimensional, and we
were still able to compute the equivariant cohomology in this case. There is another ap-
proach to this situation, given by the work of Y. Karshon [Ka]. Karshon proves that every
Hamiltonian S* action on a 4-manifold with isolated fixed points necessarily extends to a
T? action.

Theorem 4.4.1 (Karshon). Every four-dimensional, compact Hamiltonian S*-space with isolated
fixed points comes from a Kéhler toric variety by restricting the action to a sub-circle.

This idea of extension will be key in studying hypergraphs. When we can extend a
Hamiltonian S-action to a T?-action on M, we are able to find the embedded spheres
inside M, which allows us to define the S! equivariant cohomology of M as the projection
of the T? cohomology, by restricting to the sub-circle isomorphic to the original S!. We
must show some amount of care, however. S. Tolman has shown that there is one sense in
which a higher dimensional analogue of Theorem 4.4.1 is not true.

Theorem 4.4.2 (Tolman). There exists a compact 6-dimensional symplectic non-Kihler manifold
M with a Hamiltonian T?-action with isolated fixed points. In particular, the T?-action is not the
restriction of a T3-action on M, and M is not a toric variety.

However, consider the case when there is a Hamiltonian S! action on a compact sym-
plectic 6-manifold, with isolated fixed points. In this case, if we could extend the S!-
action to a T2-action, the one-skeleton of the 72 action would necessarily be at most 4-
dimensional, and so we could compute its equivariant cohomology. Ultimately, we are left
with the question, when does a Hamiltonian $*-action with isolated fixed points extend to
a T2-action? The answer is unknown both for six-dimensional manifolds and in general.
Accordingly, we will analyze the combinatorics of this situation.

Suppose I' = (V, E) is a hypergraph. That is, V' is a set of vertices and E C P(V) is
a set of hyperedges, which are subsets of V. If p € e, then we say p is incident to e. Our
hypergraphs have the additional property that for every e € E, #e > 2 and for every pair
of hyperedges e and f,

0
Notice that a graph is a hypergraph where all the hyperedges have size exactly 2. The

enf= {{p} forsomep € V, or

hypergraphs with which we are concerned are all regular in the sense that the tangent
space to a fixed point has a fixed dimension 2n, and so there are exactly n isotropy weights
at each vertex. To make this precise, we define multiplicity and valency.

Definition 4.4.3. Given a hyperedge e € E, we associate to e a positive integer
mult(e) < #e —1,
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its multiplicity.

Remark 4.4.4. In the manifold setting, the multiplicity is half the dimension of the corresponding
submanifold in the one-skeleton.

We require that mult(e) > 2 if #e > 3. Now we are ready to define regularity for
hypergraphs.

Definition 4.4.5. Given a vertex v in V, its valency is

val(v) = Zmult(e).

edv
A hypergraph T is regular if val(v) = val(w) for every v,w € V.

Remark 4.4.6. Geometrically, the valency of a regular hypergraph is half the dimension of the
corresponding T-manifold.

We will be particularly interested in regular hypergraphs which have multiplicities at
most than 2. In this case, the one-skeleton has dimension at most 4, and so using Theo-
rem 4.3.3, we have a recipe for its equivariant cohomology. Additionally, when a hyper-
graph comes from a manifold, each hyperedge is labeled with a codimension one subgroup
Te C T which fixes the corresponding submanifold in the one-skeleton.

As a result of the Chang-Skjelbred Theorem, we need only be able to compute the
cohomology of a hyperedge. In other words, to iterate a principle of Sue Tolman’s, the
computation of equivariant cohomology for torus actions always reduces to the computa-
tion of equivariant cohomology for circle actions. At this point, then, we will restrict our
attention to the combinatorics of hyperedges, since these are precisely the manifolds with
circle actions that we must understand. A hypergraph that is a hyperedge has a vertex set
V and one hyperedge which is the set of all the vertices. Accordingly, let= =e = (V,{V})
be a hyperedge with multiplicity m. Geometrically, each vertex will have associated to it
m weights corresponding to the T'/T, action. Thus, these weights will sit naturally in t}.
Combinatorially, suppose we have an assignment of m non-zero vectors in t* to each ver-
tex p in V, for some vector space t. For each p € V, we will denote the m vectors assigned
top by v1,...,vn. The v;’s need not be distinct. Let

Ac={(pvi)|peV,i=1,...,m}
In this case, we make the following definition.

Definition 4.4.7. Given a hyperedge e = (V,{V'}), and vector assignment as above, a weight
pairing is an involution U : A, — A, such that for every p € V, ¥((p, v;)) = (g5, —v;) € Ae for
somep # q; € V,and #{q; | j = 1,...,m} = m. The associated graph to this weight pairing
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W is the graph with vertex set V and edge set (p,q) € E whenever ¥((p,v;)) = (g, v;) for some i
and j.

We are trying to mimic the geometry of the following. Suppose S = S* acts on M with
corresponding hypergraph =. Geometrically, we are looking for a torus 7' containing S as
a closed subgroup which acts on M in a GKM fashion. In this case, suppose 7 : t* — s* is
the natural projection induced by inclusion s C . Then we can compute

Hg(M) = n(Hp(M)),
since we understand Hy.(M) via the GKM theorem.

Definition 4.4.8. Suppose = is a hyperedge with a vector assignment o of vectors in a vector space
s* and weight pairing ¥. A graph extensionI's of £ = e = (V, {V'}) is the graph with vertex set
V. =V and edge set E, = {{p,q} | ¥(c}, ) = off}.

Moreover, suppose that a. extends to an axial function G, on I's with 7, : t* — s*. Then the
map T, extends to a map w, : S(t*) — S(s*). We define the hypergraph cohomology of e to be

H*(e,ae) = {ﬂ'e(f) | fe H*(FE,de)}-

The ring H*(I'z, &) is well-defined, since I's is a graph with axial function é.. Note that H* (e, a)
depends on our choice of extension.

We give H*(e, ) a ring structure by point-wise multiplication. A product of two maps
will still satisfy the above conditions since 7 is a ring morphism. Also, notice that H*(e, «)
contains S(s*) as a subring, the ring of constant maps from V to S(s*). Thus, H*(e, ) is a
module over S(s*).

The goal of defining this abstract hyperedge cohomology ring is that when our hy-
pergraph corresponds to some symplectic manifold with a Hamiltonian torus action, this
hypergraph cohomology ring should coincide with the equivariant cohomology ring of the
manifold. If there is a submanifold X in the one-skeleton, and the S! action extends to a T*
action which is a GKM action, then there is an extension of the hyperedge corresponding to
X in the fashion described combinatorially above. In fact, if X is a four-dimensional man-
ifold, and the extension is the one given in Theorem 4.4.1, then this definition agrees with
the recipe given in Theorem 4.3.3. The remaining open question is when a Hamiltonian S*
action on M?" with isolated fixed points extend to a T2 action.

Thus far in this Chapter, we have relaxed the second of the GKM hypotheses, concern-
ing the dimension of the one-skeleton. It is also possible to relax the first of the conditions,
concerning the fixed point sets. H. Li has some results classifying semi-free Hamiltonian
S! actions on symplectic 6-manifolds [L].
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4.5 Examples

Here we demonstrate the use of Theorem 4.3.3 in computing equivariant cohomology. In
the first example, we compute the S'-equivariant cohomology of CP? with a Hamiltonian
circle action. In the second, we calculate the T2-equivariant cohomology of CP3. Finally,
we find the equivariant cohomology of a two manifolds obtained by symplectic reduction.

4,51 S! action on CP2.

Consider CP? with homogeneous coordinates [2g : 21 : 22]. Let T = S1 act on CP? by
et . [20:21:29) = [e‘wzg 121t eiazg].

This action has three fixed points: [1:0:0],[0:1:0]and [0:0: 1].
The weights at these fixed points are

Fixed point  Weights
p1=[1:0:0 =z,2z,
p2=[0:1:0] -—z,z,
p3=1[0:0:1] -2z, —=z,

where we have identified t* with degree one polynomials in C[z]. As cohomology ele-
ments, these are assigned degree two. The image of the equivariant cohomology H, (CP?)
in H ({p1,p2,p3}) = @?:1 Clz] is the subalgebra generated by the triples of functions
(fla fa, f3) such that

fi — f; € z- Clz] for every i and j, and

H  fo, fs
2—$2 _$_2+@ EC[:L‘]

4,5.2 T? action on CP3.

We use the cohomology computed above to compute the T2-equivariant cohomology of
CP3.

The second example we consider is a T? action on CP3. Consider CP? with homoge-
neous coordinates [zg : 2 : 22 : z3]- Let T2 act on CP3 by

(ewl,ewz) J20:21: 221 23] = [e_w‘zg 2y €012, ei92z3].

This action has four fixed points, [1:0:0: 0], [0.: 1:0:0,[0:0:1:0]and [0:0:0:1].
The image of the moment map for this action is show in the figure below. |
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Figure 4-1: This shows the image of the moment map for T2 acting
on M = CP3, as described above.

The weights at these fixed points are

Fixed point Weights
p1=[1:0:0:0] z,2z,x + vy,
p2=1[0:1:0:0] -T,%,Y,
p3=[0:0:1:00] -2z,—-z,y—ux,
p4=[0:0:0:1 —-z-—vy,—y,z—vy.

Theorem 4.3.3 tells us that the image of the equivariant cohomology H,(CP?) in

4
Hyo ({p1,p2,p3,p1}) = P Clz, 1]
=1
is the ring of functions (f1, f2, f3, f4) such that

fi— fj € (z)-Clz,y] foreveryi,j€ {1,2,3},

Zf# - i_g éf% € (C[x,y],
fi—fi € (y+z)-Clz,y],
f2 - f4 € (y) 'C[xayL
fa—fs € (y—2z) Clz,y]
0
x+y \; y-x

Figure 4-2: This shows an equivariant class of H}., (CP3), shown as
an element of the equivariant cohomology of the fixed points.
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4.5.3 S! action on an S'-reduction of SU (3) /T.

Let O), be the coadjoint orbit of SU(3) through the generic point A € t*, the dual of the
Lie algebra t of the maximal 2-torus T in SU(3). Recall that T acts on O} in a Hamiltonian
fashion, and (one choice of) the moment map

B :0), — t*

takes each matrix to its diagonal entries. Equivalently, ®r is the composition of the inclu-
sion of O, into su(3)* and projection of su(3)* onto t*.

We compute the equivariant cohomology of M = O, //H, the symplectic reduction of O
by a circle H chosen such that the reduced space is a manifold. Let H C T be any copy of
S! which fixes a two-sphere in O). Then the moment map &g : O, — h* for the H action
is the map @7 followed by the projection 7y : £ — h* induced by the inclusion h — t. The
symplectic reduction at y by H is by definition

M = O,//H := d3'(u)/H,

where p is a regular value for ® 5. Note that there is a residual T/H =2 S? action on M. We
use Theorem 4.2.1 to calculate the the corresponding equivariant cohomology of M.

h.

Ilu
P pN@ r, —

Figure 4-3: On the left is the image of the moment map for T acting
on O). The cut through the moment polytope for O, corresponds
to the symplectic reduction of Oy, by H at p, for some choice of h+.

One can easily see that there are four fixed points of this action, which we denote by p;
fori=1,...,4. For each p;, @;1 (p;) lies on a two-sphere in O}, denoted S,-Z, which is fixed
by a a subgroup H; = S! of T. Note that H; is complementary to H in T

The weights of the T'/H action on the tangent space T, M are determined by the T
action on Siz. Let n; and s; be fixed points of the T' action on Sf. Note that the condition
that u be a regular value of &g ensures that 7' (p;) # n;, s;. Furthermore, by assumption
the set ®7 (p;) is point-wise fixed by H;. Thus in the reduction, the T/H action on T, M is
isomorphic to the H; action on this space.

Denote the weights of the T" action on Tr,,0), by ta;, ay, and a3 = £(a; +a2), where
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the signs depend on i. The weights of the H action on the reduction M are determined by
projecting the o; to b;*.

At p1, the weight a3 projects to 0 and the other two weights both project to the generator
z of S(h,*) = C[z]. Similarly, at p; the weights are z and —z, at p3 they are z and —z and at
p4 they are both —z. The image of the moment map ®y : M — §*, with weights, is shown

in Figure 4.5.3.
Points pl p2 P3 p4
Weights x -x -X X
X x x X

Figure 4-4: The image of the moment map for the T'/H action on
M = O, //H, with the weights for the isotropy action on the tangent
space of the fixed points.

Finally, this tells us that the equivariant cohomology of M is

Hiu(M) = {f:V >Cla]|fi-fjez Ca,
Loh By M.

Notice that this computation leads us to the T/ S'-equivariant cohomology of M = 0, //S*
for a coadjoint orbit of SU(n), as the submanifolds that appear are identical to those shown
the above SU(3) case.

4.5.4 T? action on an S'-redution of SU(4)/T

Let M = O) be a 12-dimesional coadjoint orbit for SU(4). Then the moment polytope for
the T2 action on M is a truncated octahedron. Let H C T be any copy of S! which fixes a
two-sphere in O). Then the moment map ®g : Oy — b* for the H action is the map @7
followed by the projection 7x : t* — h* induced by the inclusion h < t. Let u be a regular
value for 5. Then the symplectic reduction at p by H is

M = O,//H := 5 (u)/H.

Note that there is a residual T/H = T? action on M. Moreover, the moment polytope for
this T? action is simply 75" (). In the first figure below, we show the moment map image
for M, with n5;' (1) shaded. Next, we show the moment polytope for M//S! for some
choice of 1 and A in the second figure below.

This reduction satisfies the dimension restrictions of Theorem 4.3.3, since each compo-
nent of the 2-skeleton of M is 6-dimensional, so each component of the 1-skeleton of the
reduction M//S? is 4-dimensional. Thus, we can use Theorem 4.3.3 to calculate the the
corresponding equivariant cohomology of M//S?.
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Figure 4-5: This shows a cut corresponding to an S* reduction of the
T3 action on SU(4)/T.

Figure 4-6: This shows the hypergraph associated to an S* reduction
of the T action on SU(4)/T, with isotropy weights.

In general, if M is a GKM manifold, and if the two-skeleton of a 7" manifold is at most
6-dimensional, then we can apply Theorem 4.3.3 to an S!-rection of M.
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Chapter 5

Real Loci

5.1 Preliminaries

Atiyah observed in [A] that if M is a compact symplectic manifold and 7 a Hamiltonian
action of an n-dimensional torus T' on M, then the cohomology groups of M can be com-
puted from the cohomology groups of the fixed point set M7 of 7. Explicitly

N
H*(M;R) = > H'%(F;R), (51)
i=1

where the F; are the connected components of M T and d; is the Bott-Morse index of F;.
This result is also true in equivariant cohomology:

N N
Hy(M;R) = Y Hy %(F;R) = > H*~%(F; x BT;R). (5.2)
i=1 i=1

This is a consequence of Atiyah’s result and equivariant formality for Hamiltonian 7'-
manifolds, as discussed in Chapter 1.

In [Du], Duistermaat proved a “real form” version of (5.1). Leto : M — M be an
anti-symplectic involution with the property that

00Ty = Tyg-100. (5.3)

Definition 5.1.1. Let X = M7 be the fixed point set of o. We call X the real locus of M.

The motivating example of this setup is a complex manifold M with a complex conju-
gation o. Duistermaat proved that components of the moment map are Morse functions
not only for M, but also for X, and used this to compute the ordinary cohomology of X.

Theorem 5.1.2 (Duistermaat). Suppose M is a symplectic manifold with a Hamiltonian torus
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action T and an anti-symplectic involution o. Let X = MY denote the real locus of M. Then

N
4 e
H*(X;Z2) =Y H*" 7 (F;Zy), (5.4)

=1

where FY are the real loci of the fixed point sets of M, and the d; are the indices of the fixed point
sets F;.

The Z4 coefficients are essential here; the theorem does not hold with real coefficients.
The first result in this chapter is an equivariant analogue of (5.4) similar to the equiv-
ariant analogue (5.2) of Atiyah’s result (5.1). By (5.3), the group

Tr={g€T|g*=id} = (Z)" (5.5)

acts on X and we will prove

N
Hp (X;Z) = ZHTR (FS 3 Zg). (5.6)

The idea of the proof will be to derive (5.6) from (5.4) by a simple trick.

The isomorphisms (5.1), (5.2), (5.4), and (5.6) are all isomorphisms in additive cohomol-
ogy. We also consider below the ring structure of Hy, (X ; Z3). We first note that our results
thus far, combined with a theorem of Allday and Puppe, suffice to prove that X is equiv-
ariantly formal. The second main theorem of this chapter will be a Z; version of the GKM
theorem for the manifold X. We define the one-skeleton of the real locus to be the set

XD ={zreX|#(Tr-z) <2} (5.7)

Assume in addition to the above that M” = X7 and the real locus of the one-skeleton is
the same as the one-skeleton of the real locus. We will call a manifold with these properties
a mod 2 GKM manifold. Let r : XT™® — X be the natural inclusion map. As a result of
equivariant formality and localization, the map

o Hp (XZ2) — Hp (X2, (58)

is injective, and by factoring through the one-skeleton, we achieve the desired analogue
of the GKM theorem. This completely determines the ring structure of H}, (X;Z,). This
theorem was proved independently by Schmid [S] using different techniques from ours.
In Chapter 4, we generalized the GKM result to the case where the one-skeleton has
dimension at most 4. Assume in addition to the dimension hypothesis that M7 = XT&
and the real locus of the one-skeleton is the same as the one-skeleton of the real locus. We
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will call a manifold with these properties a mod 2 GH manifold. The third main result in
this chapter is a Z3 version of Theorem 4.3.3 for the real locus X.

We reémphasize that Duistermaat’s techniques only apply to additive cohomology.
Since we are able to obtain results concerning the ring structure of the equivariant coho-
mology and its relationship to ordinary cohomology, we also obtain statements about the
ring structure of the ordinary cohomology as well. Indeed, in many cases, Duistermaat’s
isomorphism (5.4) turns out to give a ring isomorphism. (See Corollaries 5.5.7 and 5.5.8
to Theorem 5.5.6 and Corollaries 5.6.6 and 5.6.7 to Theorem 5.6.5.) When describing these
ring isomorphisms, we will make use of the following notation. The symbol

H?*(M;Z,)

will denote the subring

P H*(M;Z2) C H*(M; Zs),
endowed with a new grading wherein a class in H%(M; Z,) is given degree i (and similarly
for equivariant cohomology). Then under suitable hypotheses, the additive isomorphism
of Duistermaat becomes an isomorphism of graded rings.

In Section 5.7.2, we discuss an application of the results of this chapter to string theory.
The Zs-equivariant cohomology ring of T" with Z; coefficients classifies all possible ori-
entifold configurations of Type II string theories, compactified on T". We explain how to
compute this cohomology ring.

5.2 Additive equivariant cohomology

We will first prove the equivariant analogue of Theorem 5.1.2, computing the additive
structure of the equivariant cohomology of X.

Theorem 5.2.1. Suppose M is a symplectic manifold with a Hamiltonian action T of a torus T™ =
T and an anti-symplectic involution o. Let X = M denote the real locus of M. Then the group
Tr acts on X, and the Tr-equivariant cohomology of X with Z; coefficients is

N4
Hy (X;Zy) = Y Hyp *(F7;Z). (5.9)

1=1

Proof. Consider the product action of 7" on

M x (€ x...xCY,

n

in which each S! factor acts by multiplication on the corresponding factor of C?. This is a
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Hamiltonian action. If (¢1,...,¢,) = ® : M — R" is the moment map associated with 7,
then the moment map of this product action is ¥ = (¢1, ... ¢,), with

Pi(m, 210, ,21,ds - -+ 2d,d) )+ Z |z 4|2

Leta = (a1,...a,) € R". Ifa; > sup(¢;) for every i, then ¥~1(a) and M x §2¢-1 x...x §2d-1
are equivariantly diffeomorphic, so the reduced space

Mg = M/[T" = "/’_l(a)/Tn

is diffeomorphic to M xn (§24-1 x - .. x §24-1), Moreover, there is another action of 7" on
M x C? x - - x C?, namely 7 coupled with the trivial action on (C?)”. Since this commutes
with the product action, it induces a Hamiltonian action of 7" on M,.q. In addition, one
gets from o an involution

(m,z1,...,24) = (o(m),z1,...,29)

of M x C¢ x --- x C¢. This induces an anti-symplectic involution & on M,.q. Thus, one can
apply Duistermaat’s theorem to M4 to get a formula for the cohomology of the space

MZ =X xgp (471 x -+ x §971)

re

in terms of the cohomology of the spaces
Z8 = F7 x1 (8% 1 x -+ x 8971 = Ff x (RP%! x ... x RP471).

Now F? x BTy is obtained from Z¢ by attaching cells of dimension d and higher. So, for
fixed k, the sequence H*(Z¢; Z,) stabilizes as d grows large, and moreover is equal to the
equivariant cohomology of X. Thus one obtains from (5.1.2) the following real analogue:

di
Hy (X;Zo) =Y Hyp * (Ff;Z9),

where Tp = Zg X -+ + X Zo. O

A similar result is obtained by Schmid under slightly different hypotheses in [S], using
techniques from equivariant Morse theory.
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5.3 Equivariant formality
As a result of Theorem 5.2.1, we have the inequality
dimg, H*(X; Z3) < dimg, H*(X™®; Z,).

But Theorem 3.4.10 of [AP] claims the opposite inequality, with equality if and only if X is
equivariantly formal. Thus, we conclude the following.

Theorem 5.3.1. The equivariant cohomology Hr, (X, Zs) is a free module over Hy, generated in
dimension zero. Moreover, as an Hy, module, Hr_;iR(X , Z3) is isomorphic to

Hi, ®z, H(X; Zs). (5.10)

This is proved in [BiGH] by a direct computation of the appropriate spectral sequence,
but in the interest of brevity, we do not include this computation here.

54 The Chang-Skjelbred theorem in the Z; setting
As a result of the mod 2 localization theorem, the kernel and cokernel of the map
r*: Hip (X;Z2) > Hy (X™;Z,)

are torsion submodules. As a result of the collapse of the spectral sequence proved in the
previous section, then, r* is an injection. In the case of the original manifold M, the Chang-
Skjelbred theorem [CS] identifies the image of this map. They note that an analogous result
holds for a 2-torus action with Z, coefficients, and indeed, since localization holds over Z,,
this is straight forward.

Theorem 5.4.1. Suppose that Hy, (M,Z,) is a free Hy, -module. For a subgroup Hg < TR, let
Ty : MTR)" — MHR denote the inclusion. Then we have

rHR (M, Zo) = [ T Hi (MP%;Z)).
Hg<TRr
|Hg|=2"~1

We omiit the proof here. The reader may find a proof in [BiGH].
Now suppose that Zg, is a connected component of MF® for some subgroup Hy of Tk
of order |Hg| = 2"~ L. Let 77y, De the inclusion

. 7Ir
T'ZHR : ZHR — ZHR )
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L

of the fixed points of Zpy into Zpg. Letrz,  be the inclusion
rzay ¢ 2k — MR
of the fixed points of Zp, into all of the fixed points. Then we have the following corollary

of Theorem 5.4.1.

Corollary 5.4.2. Suppose that Hy, (M, Zs) is a free Hy, -module. A class
f € Hy, (M™;Z,)
is in the image of r* if and only if

"7y (f) € 2y (Hiy (Zrre; Z2))

for every subgroup Hg of Ti of order |Hg| = 2"~ and every connected component Z g, of M,

Proof. The proof is identical to the proof of Theorem 4.2.1 in Chapter 4. It follows directly
from Theorem 5.4.1. - O

Remark 5.4.3. In his thesis [S], C. Schmid proves the injectivity of r* directly, using equivariant
Morse-Kirwan theory. Thus, one is left to wonder if a mod 2 version of Kirwan's surjectivity
(Theorem 1.4.2) holds. This is addressed in [GH3].

5.5 A real locus version of the GKM theorem

The goal of this section is to prove an analogue of the GKM theorem (Corollary 1.7.2) for
the real locus X of M. The proof will require two hypotheses on X, namely

X = pmT » : (5.11)

and
X0 =xnmMW, (5.12)

where M(1) is the one-skeleton of M and X(! the one-skeleton of X. We will begin by
analyzing these conditions and their implications, much in the way that we analyzed the
implications of the GKM conditions in Section 1.6. Let Z7, be the weight lattice of T'. By the
mod 2 reduction of a weight & € Z7, we mean its image « in Z7,/2Z7. We will prove a real
analogue of Theorem 1.6.5.

Theorem 5.5.1. Suppose M satisfies the hypotheses of Theorem 1.6.5. Then the conditions X Tk =
MT and X = X 1 MO are satisfied if and only if, for every p € M7, the mod 2 reduced
weights, o p, are all distinct and non-zero.
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Proof. Let Y be a connected component of M®. Then Y is a T-invariant symplectic sub-
manifold of M, and the action of T" on it is Hamiltonian, so it contains at least one T-fixed
point p. However, the hypotheses above imply that the linear isotropy action of Tg on T, M
has no fixed points other than the origin. Hence, dim(Y’) = 0 and Y = {p}. This argument
applies to all the connected components of Mk, hence the connected components are just
the fixed points of 7', and thus XT® = M7,

The proof that X() = X N M) is similar. Let Hg be a subgroup of Tk of index 2, and
let Y be a connected component of M Hr, Then Y is a T-invariant submanifold of M, and

because g o 7y = 74-1 00, it is also o-invariant. Letp € Y be a T-fixed point, and let
T,M=Vi®- 0V

be the decomposition of T, M into the 2-dimensional weight spaces corresponding to the
&; p. By the hypotheses on the reduced weights «; ;, either

(T, M) = {0},
in which case Y = {p}, or
(T, M)H* = V; = T,Y (5.13)
for some i. Let x; be the character of T associated with the representation of T on V; and
let H = ker(x;). Then Hg C H and

(T,M)® =V,

Thus, by (5.13), Y is the connected component of M containing p, and in particular, Y is
contained in M. Thus,
Yo CxnmM®.

Applying this argument to all index 2 subgroups Hg of Tk and all connected components
of the fixed point sets of these groups, one obtains the inclusion

xWcxnm®,

The reverse inclusion is obvious. This completes the proof. 0O

The theorem above motivates the following definition.

Definition 5.5.2. If M is a GKM manifold, and if for every p € M7, the mod 2 reduced weights,
a; p, are all distinct and non-zero, we will say that M is a mod 2 GKM manifold.

This definition imposes some rather severe restrictions on the manifold M. For in-
stance, the cardinality of the set of mod 2 reduced weights, Z%./2Z7, is 2". Therefore,
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since the reduced weights ¢; , are distinct and non-zero for : = 1,. .., d, we must have that
d < 2™ — 1. Hence,
dim(M) = 2d < 2" — 2. (5.14)

For example, if n = 2, then dim(M) < 6.

There are also relatively few compact homogeneous symplectic manifolds (i.e. coadjoint
orbits) are mod 2 GKM manifolds. Consider coadjoint orbits of the classical compact
simple Lie groups associated with the Dynkin diagrams A,, B, C, and D, Let ¢;, for
i = 1,...,n, be the standard basis vectors of R". The positive roots associated to the
Dynkin diagram A,, consist of

€ —€j, 1 <J;

so their mod 2 reductions are distinct and non-zero. However, for B, C,, and D,, this
list of positive roots contains

g —¢gjandg; +¢€5, 1< 7,

so we conclude

Theorem 5.5.3. Each coadjoint orbit of SU(n) is a mod 2 GKM space. Howeuver, for other com-
pact simple Lie groups, no maximal coadjoint orbit can be a mod 2 GKM space.

On the other hand, on a more positive note, one has
Theorem 5.5.4. If M is a non-singular toric variety, it isa mod 2 GKM space.

Proof. If M is a non-singular toric variety, the weights &; ,, ¢ = 1,...,n, are a Z-basis for
7%, so their images in Z1,/2Z5. are a Z; basis of Z%./27Z5.. O

We will now prove a real locus version of the GKM theorem with Z, coefficients. Recall
from Chapter 1 that Corollary 1.7.2 of GKM characterizes the image of r* : H}.(M;C) —
H%(MT;C) in terms of the weights of the isotropy representations of T on the tangent
spaces at the fixed points.

To prove an analogue of this for the real locus of a symplectic manifold, we must first
compute the Zy-equivariant cohomology with Z, coefficients of RP!. Recall that S! acts
onCPl by 8:[z: z1] = [, : ¢'921]. This is a Hamiltonian action, with respect to the Fubini-
Study symplectic form on CP!. Furthermore, complex conjugation is an anti-symplectic
involution on CP!, with fixed point set RP!. There is a residual action of Z, on RP! = §1
which reflects S! about the y-axis.

Lemma 5.5.5. Let N and S denote the fixed points of the Z action on RP!. Then the image of the
map
r* : Hy, (RPY;Zy) — Hj, (N;Zy) ® Hy, (S;Z2)
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is the set of pairs (fn, fs) such that
fN+ fs € z- Zy[z].
Proof. 1t is clear that the constant functions are equivariant classes in
H},(RP'; Zy).

Furthermore, we know that dim Hg 2(M1 ; Z) = 1, and so these are the only equivariant
classes. Finally, dim H}, 2(M1 1 Zo) = 2 for i > 0, and so indeed, the condition stated is the
only condition of pairs (fn, fs) € Hz,(N;Z2) ® H; (S;Z2). O

We now state and provea mod 2 version of the GKM theorem.

Theorem 5.5.6. Suppose M is a mod 2 GKM manifold. An element
f € Hi(X™Zy)

can be thought of as a map f : Vo — Zs[z1, . .., zy], and such a map f is in the image of r* if and
only if, for each edge e = {p,q} of T

fp - fq € Qe - Zz[ml, e ,:l:n],
where o, € Zo|x1,. .., Ty is the image of the weight é..
Proof. The result follows immediately from Corollary 5.4.2 and Lemma 5.5.5. O

The results of this section and the previous section have been proved independently by
Schmid [S]. Schmid uses an equivariant Morse theoretic approach, and consequently the
proofs are quite different.

As aresult of equivariant formality, we get two corollaries of Theorem 5.5.6 concerning
the relation between the ring structure of the cohomology of M and the cohomology of X.

Corollary 5.5.7. Suppose that M is a GKM manifold and a mod 2 GKM manifold. Then there is
a graded ring isomorphism
HF'(M;Zs) = Hy, (X;Zo).

Corollary 5.5.8. Suppose that M is a GKM manifold and a mod 2 GKM manifold. Then there is
a graded ring isomorphism
H*(M;Zy) = H*(X; Zo).

Note that this last corollary strengthens Duistermaat’s original result from an isomor-
phism of vector spaces to an isomorphism of rings.
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Remark 5.5.9. Some of the results of this section, including Theorem 5.5.6, are valid not only for
the real locus X of a Hamiltonian T-manifold, but more generally for any compact Tr-manifold X
which satisfies the following properties:

1. X is equivariantly formal;
2. Xk is finite; and

3. the weights of X satisfy the properties of a mod 2 GKM manifold.

5.6 Extending the real locus version of the GKM theorem

In Chapter 4, we generalized Corollary 1.7.2 to the case where the one-skeleton has dimen-
sion at most 4. The goal of this section is to prove a real version of that theorem with Z,
coefficients. Again, we require the hypotheses that the (Z;)"-fixed points of the real locus
are the same as the T-fixed points of M as in (5.11); and that the real locus of the one-
skeleton is the same as the one-skeleton of the real locus, as in (5.12). Finally, we require

#MT < o0,

and
dim(MW) < 4.

If a manifold satisfies these last two hypotheses, we will say that it is a GH manifold. These
hypotheses have a nice interpretation in terms of the isotropy representations of T at the
fixed points of M.

Theorem 5.6.1. The conditions #M7T < oo and dim(M(M) < 4 are satisfied i and only if the
weights a; p of the isotropy representation of T on T, M have the property that every three span a
vector subspace of dimension at least two.

These hypotheses on M have real analogues, namely that #X < oo and the one-
skeleton X)) of X is at most 2-dimensional. We will state without proof the following
real analogue of Theorem 5.6.1.

Theorem 5.6.2. Suppose that M satisfies the hypotheses of Theorem 5.6.1. If the conditions X T® =
MT and X = MM 0 X are satisfied, then for every p € M7, the mod 2 reduced weights o,
are all non-zero, and each element of S((Tr)*) = Zs[z1, . . ., zn) appears no more than twice.

The proof of this theorem is nearly identical to that of Theorem 5.5.1. The hypotheses of
this theorem, although weaker than those of Theorem 5.5.1, still impose restrictions on the
manifold M. The cardinality of the set of mod 2 reduced weights is 2. Since the weights
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are non-zero, and each weight can appear at most twice,
d<2-(2" -1),

and so
dim(M) =2d <2-(2-(2" — 1)) =2""2 4.

For instance, if n = 2, dim(M) < 12. We will now show an example where the condition
that the reduced weights be non-zero is not satisfied.

EXAMPLE 1. Consider CP? with homogeneous coordinates [z : 21 : 22]. Let T = S! act on
CP? by
0

e [z0:21: 20) = [6 P2 : 21 : €¥2y)].

This action has three fixed points: [1: 0:0],[0:1:0]and [0:0: 1].
The weights at these fixed points are

Fixed point Weights
pr=[1:0:00 =z,2z
p2=[0:1:00 -z,z
p3=1[0:0:1 -2z,-zx

where we have identified t* with degree one polynomials in C[z]. As cohomology ele-
ments, these are assigned degree two. Using Theorem 4.3.3, we can compute the S! equiv-
ariant cohomology of CP? as follows. The image of the equivariant cohomology H}, (CP?)
in
3
H:({p1,p2,p3}) = P Cla]
i=1
is the subalgebra generated by the triples of functions (f1, f2, f3) such that

fi — f; € © - Clz] for every i and j, and

h fa, fs
ﬁ_ ?'FE EC[:B]

However, when we try to compute the Z; equivariant cohomology of RP?, the real locus
of CP%, we run into a problem. The mod 2 reduced weights are given in the table below.

Fixed point Weights
p1=[1:0:0] z,0,
p2=[0:1:0] z,z,
p3=[0:0:1 0,z.
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The problem with this Zj action on RP? is that it no longer has isolated fixed points. There
is an entire RP! which is fixed by this Zj action. Thus, we cannot compute the Z, equiv-
ariant cohomology of RP2 using these methods. o

We make the following definition, analogous to the definition of mod 2 GKM mani-
folds given in Section 5.5.

Definition 5.6.3. Suppose that M is a GH manifold, and furthermore that X™ = MT and
XM = MM 0 X. In this case, we will say that M isa mod 2 GH space.

We can use results of Chapter 4 to compute the (Z;)" equivariant cohomology of a
mod 2 GH manifold. We now prove mod 2 analogues of Proposition 4.3.2 and Theo-
rem 4.3.3.

Lemma 5.6.4. Let M be a compact, connected symplectic 4-manifold with an effective Hamiltonian
S action with isolated fixed points MS' = {py,...,p4}. Suppose further that M isa mod 2 GH
manifold with real locus X . The map

r* : Hy (X3 Z9) — Hy (X% Zy)

induced by inclusion is an injection with image

d fi— fj € T Zoy[z],
{(fl, .y fa) € ﬂ?zﬂa’] ;1:1 Ei%*; € Zofe] [’ (5.15)

where o} and o are the linearly dependent weights of the Zs isotropy representation on Tp, X. (In
this case, of = oy = z.)

Proof. The map r* is injective because X is equivariantly formal. We know that the f; must
satisfy the first condition because the functions constant on all the vertices are the only
equivariant classes in degree 0, as dim HJ ,(X;Z2) = 1. The second condition is necessary
as a direct result of the Z, version of the localization theorem proved in Section 5.4. Notice
that this condition gives us one relation in degree 1 cohomology. A dimension count shows
us that these conditions are sufficient. As an S((Z2)*)-module, H; (X;Z;) = H*(X;Z3) ®
Hj (pt; Zs). Thus, the equivariant Poincaré polynomial is

PEr(X) Q+@d-2t+t3) - (1+t+t2+...)
= 14+(d—-1)t+dt>+--+dt" +---.

As Hj (X;Z,) is generated in degree 1, the d — 1 degree 1 classes given by the (f1, ..., fa)
subject to the localization condition generate the entire cohomology ring. Thus we have
found all the conditions. O
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We now prove the mod 2 analogue of Theorem 4.3.3.

Theorem 5.6.5. Suppose that M isa mod 2 GH manifold with T fixed points fixed points MT =
{p1,...,pa}- Let f; € Hy, denote the restriction of f € Hy, (X) to the fixed point p;. The image of
the injection r* : Hy, (X) — H}R(XTR) is the subalgebra of functions (fi,..., f4) € le Hp,
which satisfy

* * . T
WHR(fij) = WHR(fik) !f{pil,-.. ’pil} = ZHI;
E_li:l Ptj € H;"R if{pila- . ,Pi,} = ZI:Z;'R and dlmZHR =14
2

f
o
ala

for all subgroups Hyg of Tk of order |Hg| = 2"~ and all connected components Zg, of X ¥r, where
of and o are the (linearly dependent) weights of the Tr action on Ty, Ziyy.

Proof. This follows immediately from Corollary 5.4.2 and Lemma 5.6.4. O

There are two immediate corollaries in this setting, analogous to Corollaries 5.5.7 and
5.5.8.

Corollary 5.6.6. Suppose that M is a GH manifold, and that MT = X™® gnd M n X = xX(1),
Then there is a graded ring isomorphism

HF"(M;Zs) = Hf, (X Zo).

Corollary 5.6.7. Suppose that M is a GH manifold, and that MT = X™® gnd MM n X = X,
Then there is a graded ring isomorphism

H*(M;Zy) = H*(X; Z3).

5.7 Examples

5.7.1 Toric varieties

The equivariant cohomology of a Kéahler toric variety can be computed in two different
ways. On the one hand, we can use the GKM theory discussed above to compute the equiv-
ariant cohomology in terms of the polytope A associated to the variety. On the other hand,
following Danilov [D], one can compute the equivariant cohomology ring directly, as a
polynomial ring over Chern classes of normal bundles associated to certain codimension-
one subvarieties, modulo a certain ideal.

Similarly, the equivariant cohomology of real toric varieties can be computed in two
ways. Since the real points of a Kéhler toric variety are a real GKM space, we can compute
the corresponding equivariant cohomology in terms of the graph underlying A. On the
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other hand, this is also a polynomial ring in the Stiefel-Whitney classes for the real toric
variety. This alternate computation has been discussed in [DJ].

5.7.2 An application to string theory

Consider the Z; action on T™, which reflects each copy of S'. Then the equivariant coho-
mology ring
Hz,(T"; Z2)

classifies all possible orientifold configurations of Type II string theories, compactified on
T™. See Section 3 and Appendix C of [dB] for more details. Yang-Hui He pointed this
example out to us. Using the results of Section 5.5, we can now compute this equivariant
cohomology.

First, we recognize T™ as the real locus of M = CP! x ... x CP! = (CP')". This space
M has a natural T™ action, where the ith copy of S! acts in the standard fashion on the
ith copy of CP!. We can compute the (Zy)"-equivariant cohomology of this space quite
easily. The GKM graph associated to (CP!)" with the T™ action described above is the
n-dimensional hypercube. The vertices correspond to the binary words of length n. Two
binary words are connected by an edge if they differ in exactly one bit. Suppose v and w
differ in exactly the ith bit. Then the weight associated to the edge (v, w) is z;. Thus, when
n = 3, the GKM graph and weights are shown in the figure below.

X3
X2 ‘
X1
Figure 5-1: This shows the GKM graph and the weights for (CP!)3.

Notice that the reduced weights are all non-zero and are distinct in Z1/2Zr. Thus, we
can apply Theorem 5.5.6 to compute

Hg o (T Zg).

That is, the equivariant cohomology is the set of functions f : V — Zj[z1, ..., z,] such that
for every edge (v, w) € E, we have

f) + f(w) € zi - Zo[z1, ..., Tn].
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We can now consider the copy of Zj, sitting diagonally inside (Z3)™. This copy of Z,
acts on T™, and this is the action that originally interested physicists. We can now compute
the Zy-equivariant cohomology simply by projecting

71 S(((Z)™)*) = Zolz1, - . ., Tn] = Zo[z] = S((Z2)*)
where z; gets sent to z. Then
Hy (T™ Z2) = w(Hz,)n (T™; Z2)).

573 T2 on SO(5)/T

Let M = SO(5)/T. Then T? acts on M by right multiplication. This is a Hamiltonian
action, with moment polytope shown below. We can use the GKM recipe to compute

y-X y y+x
X

Figure 5-2: This shows the GKM graph and the weights for the 72
action on SO(5)/T.

the equivariant cohomology. Moreover, there is a natural involution on M, induced by
complex conjugation. However, the real locus X = M? does not satisfy the mod 2 GKM
conditions, since at each vertex, it has weights z +y and z —y, which are equivalent modulo
2. Tt does satisfy the weight restrictions of a mod 2 GH space, but it does not satisfy the
restriction on one-skeletons. Thus, we also cannot use the results of Section 5.6 to compute
the equivariant cohomology of the real locus.

This is a simple enough example that one can compute the equivariant cohomology
directly. However, there are more complex examples for which we still do not know how
to compute the equivariant cohomology.
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