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We consider quantum state transfer in a fully connected spin network, in which the results indicate that it
is impossible to achieve high fidelity by free dynamics. However, the addition of certain kinds of noise can be
helpful for this purpose. In fact, we introduce a model of Gaussian white noise affecting the spin-spin couplings
(edges), except those linked to the input and output node, and prove that it enhances the fidelity of state transfer.
The observed noise benefit is scale free as it applies to a quantum network of any size. The amount of the fidelity
enhancement, depending on the noise strength as well as on the number of edges to which it is applied, can be
so high as to take the fidelity close to one.

DOI: 10.1103/PhysRevA.88.032325 PACS number(s): 03.67.Hk, 03.65.Yz, 03.65.Xp

I. INTRODUCTION

A futuristic quantum version of the internet has recently
attracted a lot of attention [1]. Experimental efforts have been
devoted to realize proof-of-principle demonstrations of such
networks in various mesoscopic systems, such as photonic
crystals [2], ion traps [3], and superconducting circuits [4].
Multiuser quantum networks have the final goal of realizing a
number of communication protocols. The study of interacting
qubit (spin-1/2) networks constitutes a good testing ground
to this end. These kinds of networks have been considered as
good candidates for engineering quantum channels, allowing
the faithful transfer of quantum information between nodes [5].
They turn out to be useful because they implement data
buses by simply undergoing free dynamics after an initial
setup. In this way, the possibility of having perfect state
transfer (PST) comes from suitable quantum interference
effects in the coherent dynamics of the network. However,
PST requires the coupling constants to provide the right phase
matching, allowing the perfect transfer of both amplitude
and phase of a quantum state from one node to another.
The conditions for that to happen have been the subject of
intense study; for a review, see [6]. It follows that if these
conditions are not fulfilled, dispersion effects and destructive
interference can make PST impossible. They determine the
loss of information between communicating nodes and, in
some extreme cases, information can even remain localized,
similarly to the Anderson localization effect [7]. Some ways
to circumvent this problem have been developed, e.g., based
on local control of the couplings [8] or on protocols for lifting
the encoding of qubits into multiparticle states [9,10].

Here we take a different approach, namely, since too much
coherence seems to be an obstacle to quantum communication,
we shall exploit the addition of noise to reduce the interference
effects, i.e., employ the latter as lubricant for quantum
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information transmission [11]. This possibility has already
been pointed out in [12] following a series of papers aimed
at showing that noise can foster excitation (i.e., classical
information) transfer (see, e.g., [13]). There, onsite noise
has been considered, that is, noise affecting vertices of a
quantum network. In contrast, we shall consider noise affecting
edges of a quantum network, i.e., intersite couplings. Since
disordered couplings were considered much more deleterious
than disordered frequencies [14], it is unforeseeable that such
kind of noise can lead to benefits as well.

Actually, we investigate the model of a fully connected
qubit network, where each qubit interacts with all the others
with equal strength. First we show that in such a symmetric
setup, destructive interference does not allow PST across a
given pair of nodes. Then we prove that the addition of
Gaussian white noise to spin-spin couplings (edges), except
those linked to the input and output node, is able to enhance
the fidelity of state transfer with respect to the free dynamics of
the fully connected network. It turns out that the noise benefit
increases by increasing the strength of the noise, besides the
number of edges to which it is applied. In the strong-noise
limit, this effect can be explained as a consequence of the
quantum Zeno effect [15]. Remarkably, an enhancement of
the fidelity is observed even far away from the Zeno limit for
intermediate and small values of the noise strength.

II. THE NETWORK MODEL

Consider a simple undirected graph (that is, without loops
or parallel edges) G = (V,E), with set of vertices V (G) and
set of edges E(G). Let V (G) = {1, . . . ,n}. The adjacency
matrix A(G) is defined by [A(G)]kl = 1 if {k,l} ∈ E(G), and
[A(G)]kl = 0 if {k,l} /∈ E(G).

Then a network of n spin-1/2 quantum particles is realized
by attaching particles to the vertices of G, while representing
their allowed couplings with the edges of G. In this paper,
we consider the XY interaction model so that {k,l} ∈ E(G)
means that the particles k and l interact by the Hamiltonian
[HG]kl = (σX

k σX
l + σY

k σ Y
l ). Here, σX

k , σY
k , and σZ

k denote the
usual Pauli operators of the kth particle, with σZ

k |0〉k = −|0〉k
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and σZ
k |1〉k = |1〉k . Moreover, we consider unit coupling

constant. Then, the Hamiltonian of the whole network reads

HG = 1

2

∑
k �=l∈V (G)

[A(G)]kl

(
σX

k σX
l + σY

k σ Y
l

)
, (1)

and the relative Hilbert space is (C2)⊗n.
The single-excitation subspace is defined as the

span of the vectors {|1〉 := |1〉1|0〉2 · · · |0〉n,|2〉 :=
|0〉1|1〉2 · · · |0〉n, . . . ,|n〉 := |0〉1|0〉2 · · · |1〉n}, where the
vector |k〉 indicates the presence of the excitation on the kth
site and the absence on all the others. In the basis {|k〉}k=1,...,n,
the Hamiltonian (1) has entries [HG]kl = 2[A(G)]kl . In the
following, we restrict our attention to the (n + 1)-dimensional
subspace generated by the single-excitation subspace together
with the vector |0〉 := |0〉1|0〉2 · · · |0〉n, belonging to the null
space of HG.

Let us take i,o such that 1 � i < o � n and indicate with
them the input and output nodes, respectively. We hence
consider a generic qubit state for the ith node,

|ψ〉i = cos
θ

2
|0〉i + eiφ sin

θ

2
|1〉i (2)

(where θ ∈ [0,π ], φ ∈ [0,2π ] and i denotes the imaginary
unit), so that the initial state of the network reads

|ψ(0)〉 = |0〉1 . . . |ψ〉i . . . |0〉n. (3)

The time evolution of the density operator ρ(t) with initial
condition

ρ(0) = |ψ(0)〉〈ψ(0)| (4)

can be described by the master equation

ρ̇(t) = Lρ(t), (5)

where Lρ = −i[HG,ρ]. Clearly, for this kind of Liouvillian
superoperator, we can write ρ(t) = Utρ(0)U †

t with Ut =
e−iHGt . The state of the output qubit after time t is described
by the partial trace over all qubits but the output one, ρo(t) =
Tr �o[ρ(t)]. The resulting reduced dynamics corresponds to an
amplitude damping channel applied to the input state [5],

ρo(t) = M0|ψ〉i〈ψ |M†
0 + M1|ψ〉i〈ψ |M†

1, (6)

with Kraus operators

M0 = |0〉oi〈0|+z|1〉oi〈1|, (7)

M1 =
√

1 − |z|2|0〉oi〈1|, (8)

and

z := 〈o|Ut |i〉. (9)

The fact that the reduced dynamics is described by an
amplitude damping channel is a consequence of the com-
mutativity of the system Hamiltonian (1) with the operator
NG = ∑n

k=1 |k〉〈k| expressing the total number of excitations
in the network.

PST is obtained if the state at the output node ρo(t) is a
perfect reproduction of the input state |ψ〉i. In order to compare
the states of qubits located at different nodes of the network, we
have to map the Hilbert space of the input qubit into that of the
output. Such an identification is obtained by selecting a unitary

transformation V acting on the oth qubit. The input-output
fidelity [16] at time t can hence be defined as

f V
io (θ,φ,t) := i〈ψ |Vρo(t)V †|ψ〉i, (10)

and PST is obtained if there exist an evolution time t and a
unitary V such that f V

io (θ,φ,t) = 1 for all θ and φ. As figures
of merit, we hence consider the average fidelity

FV
io (t) = 1

4π

∫ π

0
dθ sin θ

∫ 2π

0
dφ f V

io (θ,φ,t), (11)

and its maximum over V ,

Fio(t) = max
V

FV
io (t). (12)

In order to optimize over V , let us set V =
u|0〉io〈0|+v|0〉io〈1|−v∗|1〉io〈0|+u∗|1〉io〈1|, with u,v ∈ C,
|u|2 + |v|2 = 1, which yields

FV
io (t) = 1

2
+ Re(zu2)

3
+ |z|2

6
(2|u|2 − 1). (13)

It follows that the optimal choice is u = e−i/2 arg z, which
accounts for a local phase shift on the output qubit [5], and
gives

Fio(t) = 1

2
+ |z|

3
+ |z|2

6
. (14)

A. The complete graph

A complete graph K is such that every two vertices are
adjacent. For this graph, following Ref. [17], we can easily
prove the impossibility of PST for n > 2, that is,

max
t

Fio(t)

{= 1, n = 2
< 1, n > 2.

(15)

The Hamiltonian (1) associated to K has the following
components, in the basis {|k〉}k=1,...,n of the single-excitation
subspace:

[HK ]kl =
{

0, if k = l

2, if k �= l.
(16)

Its eigenvalues are λ1 = (2n − 2) (with single degeneracy) and
λ2 = −2 (with degeneracy n − 1). The eigenvector with single
degeneracy is |ℵ〉 = n−1/2 ∑n

k=1 |k〉, hence,

Ut = |0〉〈0| + e−iλ2t

n∑
k=1

|k〉〈k| + (e−iλ1t − e−iλ2t )|ℵ〉〈ℵ|.

(17)

That allows us to evaluate

|z|2 = 2

n2
[1 − cos(2nt)]. (18)

Looking at (14), we realize that the above quantity must be
equal to 1 in order to have state transfer with unit fidelity.
Then, Eq. (15) immediately follows.

III. ADDING THE NOISE

Given that PST cannot be achieved in a complete graph
K , one can devise strategies to increase the fidelity (12),
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eventually taking it close to 1. Here we resort to the most
counterintuitive mean, i.e., the addition of noise. We take our
cue from the fact that in certain settings, PST can be achieved
if the link between the ith and oth qubits is removed from the
complete graph [17,18]. Then, besides the Hamiltonian (1) for
a complete graph K , which by virtue of adjacency matrix (16)
can be written as

HK = 2
∑

k<l∈V (K)

(|k〉〈l|+|l〉〈k|), (19)

we consider the addition of the following stochastic
Hamiltonian:

Hm(t) =
∑

k<l∈Wm(K)

ξkl(t)(|k〉〈l|+|l〉〈k|), (20)

where ξkl(t) are identical and independent Gaussian white
noise terms, with

〈ξkl(t)〉 = 0, 〈ξkl(t)ξk′l′(t
′)〉 = 2ηδkk′δll′δ(t − t ′), (21)

and η � 0 measures the strength of such noise. Furthermore,
Wm(K) ⊂ V (K) is a subset of m � n − 2 vertices not contain-
ing i and o. That is, the Hamiltonian Hm(t) randomly couples
a subset of m qubits but does not act on the input and output
qubits. Hence, it gives rise to m(m − 1)/2 noisy edges not
adjacent in i and o vertices.

Notice that due to the symmetry of HK , the reduced
dynamics on the ith and oth qubits, generated by the total
Hamiltonian HK + Hm(t), does not depend on the way the
m qubits are chosen. Then, in the interaction picture, the
dynamics is governed by the equation

ρ̇I (t) = −i
[
HI

m(t),ρI (t)
]
, (22)

where

ρI (t) = eiHKt ρ(t) e−iHK t (23)

and

HI
m(t) = eiHKt Hm(t) e−iHK t . (24)

Equation (22) can be formally solved as

ρI (t) = ρI (0) − i

∫ t

0

[
HI

m(t ′),ρI (t ′)
]
dt ′. (25)

Inserting such a solution back into (22), we get

ρ̇I (t) = −i
[
HI

m(t),ρI (0)
] −

∫ t

0

[
HI

m(t),
[
HI

m(t ′),ρI (t ′)
]]

dt ′.

(26)

By taking the average over noise realizations, accounting
for (21), and returning back to the Schrödinger picture, we
get the master equation [19]

L(ρ) = −i[HK,ρ] − Dm(ρ), (27)

with

Dm(ρ) = −η
∑

k<l∈Wm(K)

(
LklρL

†
kl − 1

2
L
†
klLklρ − ρ

1

2
L
†
klLkl

)
,

(28)

and Lindblad operators

Lkl = |k〉〈l| + |l〉〈k|. (29)

It is worth noticing that the Hamiltonians (19) and (20)
commute with the total number of excitations in the network,
NG = ∑n

k=1 |k〉〈k|. We could hence expect that the reduced
dynamics can be expressed in a form analogous to (6).
However, the average over the noise realization induces
dephasing [as it is evident from the double commutator at the
right-hand side of (26)], and thus the reduced dynamics will
be a combination of an amplitude damping and a dephasing
channel,

ρo(t) = M0+|ψ〉i〈ψ |M†
0+ + M0−|ψ〉i〈ψ |M†

0−
+M1|ψ〉i〈ψ |M†

1, (30)

where

M0± =
√

1 ± λ

2
(|0〉i〈0|±z|1〉i〈1|), (31)

M1 =
√

1 − |z|2 |0〉i〈1|, (32)

and λ � 0. For this kind of map, we have

FV
io (t) = 1

2
+ λ

Re(zu2)

3
+ |z|2

6
(2|u|2 − 1), (33)

which, similarly to (14), yields

Fio(t) = 1

2
+ λ|z|

3
+ |z|2

6
. (34)

IV. THE RESULTING FIDELITY

We are now going to relate λ, z, hence the fidelity Fio(t), to
the noise strength η and quantify the effect of the noise.

A. Four-node network

To have a clear picture of the effect of noise, let us consider
the above model in the simplest configuration, i.e., a four-node
fully connected network. Without loss of generality, we may
consider nodes 1 and 2 as the i and o, respectively, and the
noise is added to the 3-4 edge. In this case, the dynamics can
be explicitly solved, yielding the following expressions for the
parameters of the maximum average fidelity (34):

|z|2 = 2e−ηt/4

{[
cosh

(
pt

4

)
+ η

p
sinh

(
pt

4

)]

− 4 cos(2t)

[
cosh

(
qt

4

)
+ η

q
sinh

(
qt

4

)]}
− 3

2
,

(35)

and

λz = eit−ηt/4

2

[
cosh

(
qt

4

)
+ η

q
sinh

(
qt

4

)]
− e−it

2
, (36)

with

p =
√

η2 − 256, (37)

q =
√

η2 − 64. (38)

In Fig. 1, it is plotted (34) using (35) and (36). It can be seen that
at the time 3π/2, the fidelity increases with η well beyond the
maximum value it takes at η = 0. It is also worth noticing that
the transition from purely imaginary p,q to real p,q changes
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FIG. 1. (Color online) Average fidelity Fio for state transfer
between nodes 1 and 2 of the network with n = 4 vs (dimensionless)
time t and (dimensionless) strength of the noise η acting on the
edge 3-4.

trigonometric to hyperbolic functions in (35) and (36), making
the behavior of Fio(t) monotonically increasing vs η up to
reaching the unit value, which is a phenomenon that will be
discussed in the next section.

B. Strong-noise limit

In this section, we discuss the fidelity of the state transfer
in the limit of strong noise η � 1. In the interaction picture,
the dynamics arising from (27) is described by the equation

ρ̇I (t) = DI
m(ρI (t)), (39)

where

DI
m(ρI (t)) = eiHKt Dm(ρI (t))e−iHK t , (40)

and ρI (t) is given by (23).
One can easily realize that (28) leaves invariant the

following subspace: S = span{|0〉,|i〉,|o〉}. In the strong-noise
limit, the dynamics of the non-Hamiltonian term (28) is
much faster than the Hamiltonian one, hence we can look
at the latter as an adiabatic correction of the former. As a
consequence, if the network is initialized in a state belonging
to the invariant subspace S, it will remain inside it during
all of the time evolution. The initial state (2) belongs to
S and it will evolve inside the instantaneous steady space
St = span{|0〉,eiHK t |i〉,eiHK t |o〉}, that is,

DI
m(ρI (t)) = 0. (41)

Denoting by

P (t) := eiHKt P (0) e−iHK t (42)

the instantaneous projector onto St , the adiabatic dynamics
is governed (in interaction picture) by the following equation
[20]:

ρ̇I (t) = −i[�(t),ρI (t)], (43)

where

�(t) := i[Ṗ (t),P (t)]. (44)

By substituting

Ṗ (t) = i[HK,P (t)], (45)

we obtain

�(t) = 2P (t)HKP (t) − HKP (t) − P (t)HK. (46)

Finally, coming back to the Schrödinger picture, we get

ρ̇(t) = −i[H̃K,ρ(t)], (47)

where

H̃K := P (0)HKP (0) + [1 − P (0)]HK [1 − P (0)]

= 2
∑

k<l �∈Wm(K)

(|k〉〈l|+|k〉〈l|). (48)

Equation (48) shows that the effect of a strong noise acting
on the edges associated to the subset Wm(K) of m vertices is
to effectively remove the qubits belonging to Wm(K). That is,
due to the Zeno effect, the strong noise decouples the m qubits
from the rest of the network. As a result, the fully connected
network of size n is mapped into a fully connected network of
size n − m. Notice that from (14) and (18), one deduces that
the state transfer fidelity in a fully connected XY network is a
decreasing function of n. It hence follows that the Zeno effect,
by effectively reducing the size of the network, leads to an
enhancement of the state transfer fidelity [21]. In the extreme
case in which the noise acts on edges adjacent on all qubits but
the input and output ones, one reaches PST. In fact, in such a
case, the initial state (2) will evolve into

|ψ(t)〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
(cos t |i〉 + i sin t |o〉), (49)

giving z = i and λ = 1. Notice that this result does not depend
on either m or n. Indeed, this is a consequence of the fact
that all pairs of adjacent nodes interact with the same coupling
constants in the Hamiltonian (1) and, in a fully connected
network, each site is equivalent to another.

C. Weak-noise limit

When the noise strength η is much smaller than the coupling
parameter [assumed to be 1 in (19)], the density operator can
be expanded in powers of η. By truncating the expansion to
the first order, we get

ρ(2)(t) = r(0)(t) + ηr(1)(t). (50)

Substituting this expression into the master equation with
Liouvillian (27), we obtain the equations

ṙ(0)(t) = −i[HK,r(0)(t)], (51)

ṙ(1)(t) = −i[HK,r(1)(t)] − Dm(r(0)(t)). (52)

Moving to the interaction picture [see (23) and (40)], these
equations become

ṙ I
(0)(t) = 0, (53)

ṙ I
(1)(t) = DI

m(r(0)(0)). (54)

They can be easily solved with initial state (2). Then a
straightforward calculation shows that the reduced density
matrix of the output qubit is as in Eq. (30) with

|z|2 = |β|2 + ηξ1 , (55)

λz = |β|2 + ηξ2 , (56)
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where

β = eit

n
(e−int − 1), (57)

and

ξ1 = m{b3|β|2 + b4[β ′∗β + |β|2m] + b5[β ′β∗ + |β|2m]

+ b6[|β ′|2 + |β ′β|2m2 + |β|2m2]

+ b7[β ′∗ + |β|2(m2 + n − 1)]

+ b8[|β ′|2 + |β ′β|2(m2 + n − 1)m2(n − 2)

+ |β|2m(m2 + n − 1)]} + c.c., (58)

ξ2 = m[b1β + b2β
′ + b2βm], (59)

with

β ′ = eit

n
(e−int + n − 1), (60)

and

b1 = (n − 3)2
∫ t

0
dτββ ′∗,

b2 = (n − 3)2
∫ t

0
dτ |β|2,

b3 = (n − 3)2
∫ t

0
dτββ ′∗|β ′|2,

b4 = (n − 3)2
∫ t

0
dτ (β2β ′∗2 + |β ′|2|β|2),

(61)

b5 = (n − 3)2
∫ t

0
dτ |β|2|β ′|2,

b6 = 2(n − 3)2
∫ t

0
dτRe(ββ ′∗)|β|2,

b7 = (n − 3)2
∫ t

0
dτβ|β|2β ′∗,

b8 = (n − 3)2
∫ t

0
dτ |β|4.

FIG. 2. (Color online) Density plot of the quantity � vs n and
(dimensionless) t for η = 0.01 and m = n − 2. Lighter regions
correspond to smaller values of � (with blank corresponding to 0).

FIG. 3. (Color online) Density plot of the quantity � vs m(m −
1)/2 and (dimensionless) t for η = 0.01 and n = 10. Lighter regions
correspond to smaller values of � (with blank corresponding to 0).

The maximum average fidelity can then be computed us-
ing (34). Let us introduce the following quantity:

�(t,m,n,η) := max[Fio(t ; m,n,η) − max
t

Fio(t ; m,n,0),0].

(62)

If it becomes strictly positive for some t , it is a signature of
noise benefit also in the weak-noise regime. In Fig. 2, we show
the density plot of � vs n and t for η = 0.01 and m = n − 2,
i.e., all edges affected by noise except those adjacent on the
i and o nodes. As can be seen, dark regions corresponding to
greater-than-zero values can be found for any n in a range of
t guaranteeing ηt � 1. Similar results can be found for larger
values of n as well.

Interestingly, if we reduce the number of noisy edges, the
benefit of noise persists up until m = 2, i.e., one noisy edge,
as can be seen in Fig. 3. Moreover, the magnitude of � does
not significantly change with m. Only the width of the time
window, over which � > 0, increases with m.

V. CONCLUSION

We have considered the problem of quantum state transfer in
a fully connected qubit network. Although PST is not allowed
in the single-excitation subspace under XY dynamics, we have
shown that the addition of noise facilitates the communication
of quantum states over the network’s nodes. In particular, we
have proved that the addition of Gaussian white noise to spin-
spin couplings (edges), except those linked to the input and
output node, enhances the fidelity of state transfer with respect
to the free dynamics. For strong noise, this can be seen as a
consequence of the Zeno effect, that is, the introduction of
a strong noise acting on a certain subset of qubits decouples
them to the rest of the network. As a matter of fact, the effect of
a strong noise acting on edges adjacent on m qubits is to map
the fully connected network of size n into a smaller one of size
n − m. Since the state transfer fidelity of a fully connected
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XY network is a decreasing function of the network size,
the presence of a strong-noise term makes the transfer more
favorable. Remarkably, the benefit of the noise shows up as
soon as the noise is introduced, although for small values of
the noise strength, the positive effect is tiny. Moreover, the
advantage introduced by the noise can be considered as scale
free in the sense that it persists independently of the network’s
size (although the amount of the effect may depend on n). It
is worth remarking that the strategy put forward is effective
even if the noise terms are introduced with different strengths
ηkl , depending from the edge. Vice versa, we suspect that
colored noise would not be useful. This is because in the case
of non-Markovian dynamics there is usually a back flow of
information to the system from the environment which tends
to restore quantum interference. The latter is the main obstacle
for qubit transfer in a highly connected network. However, this
aspect should be more deeply explored in future studies.

As for possible physical realizations, we could mention
a network of ions trapped in cavities connected by fibers.
The addition noise on the links between the qubits can be
artificially introduced into fibers by suitable rotators [22].
Also, a fully connected network could be implemented with
superconducting qubits, as envisaged in [23]. Here the noise
should be added on the harmonic-oscillator circuit elements
mediating the couplings. Finally, we believe that the results
found might also have implications in quantum biological
complexes where transport phenomena are strongly affected
by noise [24], and quantum gravity where the lattice structure
of the spin system is not fixed [25].
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