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Abstract
Cell cycle transitions are often triggered by the proteolysis of key regulatory proteins. In
Caulobacter crescentus, the G1-S transition involves the degradation of an essential DNA-binding
response regulator, CtrA, by the ClpXP protease. Here, we show that another critical cell cycle
regulator, SciP, is also degraded during the G1-S transition, but by the Lon protease. SciP is a
small protein that binds directly to CtrA and prevents it from activating target genes during G1.
We demonstrate that SciP must be degraded during the G1-S transition so that cells can properly
activate CtrA-dependent genes following DNA replication initiation and the reaccumulation of
CtrA. These results indicate that like CtrA, SciP levels are tightly regulated during the Caulobacter
cell cycle. In addition, we show that formation of a complex between CtrA and SciP at target
promoters protects both proteins from their respective proteases. Degradation of either protein thus
helps trigger the destruction of the other, facilitating a cooperative disassembly of the complex.
Collectively, our results indicate that ClpXP and Lon each degrade a critical cell cycle regulator,
helping to trigger the onset of S phase and prepare cells for the subsequent programs of gene
expression critical to polar morphogenesis and cell division.

Introduction
Protein degradation is an excellent and rapid mechanism to completely remove undesired
proteins from cells. In bacteria, regulated proteolysis is particularly important when cells
must drastically change their proteome composition without dilution by cell division. In the
α-proteobacterium Caulobacter crescentus, motile swarmer cells differentiate into sessile
stalked cells at the same time they initiate DNA replication and transition from a G1 to S
phase (Fig. 1A). Controlled proteolysis of many proteins is critical for this developmental
and cell cycle transition and involves AAA+ proteases, oligomeric enzymes that harness
ATP hydrolysis to power unfolding and degradation of specific substrates (Sauer & Baker,
2011). One of these AAA+ enzymes is the essential ClpXP protease (Jenal & Fuchs, 1998),
which degrades a number of substrates including CtrA, a master cell cycle regulator. CtrA is
a response regulator with a DNA-binding domain that enables it to regulate the transcription
of nearly 100 genes (Quon et al., 1996, Laub et al., 2002). CtrA also binds directly to and
silences the origin of replication in swarmer cells (Quon et al., 1998). During the swarmer-
to-stalked cell transition, the combined action of CtrA dephosphorylation and proteolysis
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ensures that active CtrA is eliminated, thus enabling the onset of DNA replication and S
phase (Domian et al., 1997) (Fig. 1A).

A complex circuit of regulatory proteins ensures the rapid elimination of CtrA specifically
during the G1-S transition (Tsokos & Laub, 2012, Jenal, 2009). Because ClpXP is present
throughout the cell cycle it was initially assumed that the protease was somehow activated to
degrade CtrA at the appropriate time. However, CtrA proteolysis by ClpXP occurs in vitro
at rates comparable to those observed in vivo (Chien et al., 2007). Thus, the timing of CtrA
degradation in vivo may result from a relief of inhibition rather than being promoted by an
activator or adaptor. Notably, in swarmer cells, immediately before being degraded, CtrA is
bound to DNA, including target promoters and the origin of replication. Whether binding to
DNA influences CtrA degradation is currently unclear.

Although CtrA is abundant and phosphorylated in both swarmer and predivisional cells,
most CtrA-activated genes are expressed predominantly during the predivisional stage (Laub
et al., 2002). These genes are not transcribed in swarmer cells because a small protein called
SciP accumulates specifically in this cell type (Fig. 1A) and binds to CtrA to prevent it from
activating target genes (Gora et al., 2010, Tan et al., 2010). SciP does not, however, prevent
CtrA from binding DNA, so CtrA can still silence the origin of replication in swarmer cells.
The elimination of SciP during the G1-S transition is likely critical to preparing cells for
another round of CtrA-dependent gene expression later in the cell cycle. Consistently, cells
forced to produce SciP at high levels in stalked and predivisional cells fail to activate CtrA
target genes and consequently fail to divide or properly assemble polar organelles (Gora et
al., 2010).

The mechanisms regulating SciP abundance during the cell cycle are largely
uncharacterized. Here, we demonstrate that SciP is degraded by the AAA+ protease Lon
both in vivo and in vitro, and that synthesis of a non-degradable version of SciP leads to
severe cell cycle defects. Further, we find that formation of a SciP:CtrA:DNA complex
helps shield SciP and CtrA from degradation by Lon and ClpXP, respectively, in swarmer
cells. These results suggest that the removal of each component during the G1-S transition
may help drive degradation of the other, thereby accelerating the onset of S phase. Our
results further highlight the prominent role played by regulated proteolysis in driving cell
differentiation processes and cell cycle transitions in bacteria.

Results
SciP binds DNA nonspecifically when complexed with CtrA

SciP does not strongly bind DNA on its own, as judged by electrophoretic mobility assays,
but does form a robust complex with DNA-bound CtrA (Gora et al., 2010). Formation of
this ternary complex requires DNA immediately adjacent to that bound by CtrA indicating
that SciP likely contacts neighboring DNA directly when complexed with CtrA. Similar
results were obtained with three different DNA probes suggesting that the SciP-DNA
interaction is likely not highly sequence specific. However, SciP was subsequently
suggested to bind DNA independently through recognition of a motif with consensus
TGTCGCG (Tan et al., 2010).

To test the functional significance of this motif, we examined its effect on SciP binding to a
50 bp fragment of the pilA promoter that binds SciP and CtrA together. We mutated the
sequence GATCGCG, the closest match to the proposed SciP consensus, to GATTTTG
(Fig. S1A). As expected, phosphorylated CtrA (CtrA~P) alone bound both the wild-type and
mutant probes, producing nearly identical shifts (Fig. S1B-C). We then added purified SciP
along with CtrA~P and observed a similar pattern of super-shifting with both probes (Fig.
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S1B), suggesting that the mutated sequence is not required for a SciP:CtrA:DNA complex to
form on this probe. This conclusion is consistent with our previous report that SciP and CtrA
form a complex on a 50 bp probe taken from the fliF promoter that does not include a close
match to the proposed motif (Gora et al., 2010).

To corroborate these results in vivo, we examined a PctrA-lacZ reporter that contains the P1
and P2 promoters of ctrA (Domian et al., 1999) and two instances of the proposed SciP
motif (Fig. S1D). Cells harboring this reporter showed a significant decrease in LacZ
activity when SciP was overproduced, even if the putative motif regions were mutated,
individually or in combination (Fig. S1E). Thus, although SciP could have minor sequence
preferences, it likely does not function through the binding of a specific motif. Instead, our
findings support a model in which SciP binds both CtrA and the DNA in direct proximity to
CtrA, with specificity of the ternary complex ultimately provided by CtrA. We do not,
however, rule out that the proposed motif found in many CtrA-regulated genes (Tan et al.,
2010) is recognized by another DNA-binding protein or by SciP in complex with a different
partner under alternative conditions.

Binding to DNA and SciP stabilizes CtrA against proteolysis in vitro
Because our data indicated that SciP and CtrA form a direct, ternary complex with DNA, we
wondered whether complex formation would affect the stability of each protein. CtrA is
stable in swarmer cells and then rapidly degraded during the swarmer-to-stalked cell
transition (Domian et al., 1997). We hypothesized that DNA binding may contribute to the
stabilization of CtrA, as seen with other transcription factors (Pruteanu et al., 2007). We first
tested the effect of DNA binding on CtrA stability in vitro using a 25 bp DNA fragment
derived from the Caulobacter origin of replication (Cori). Whereas CtrA alone was degraded
rapidly by ClpXP, the inclusion of 5 µM Cori DNA severely inhibited degradation (Fig. 2A).
To assess inhibition quantitatively, we fused CtrA to GFP and measured initial rates of
degradation by monitoring loss of GFP fluorescence. As expected, addition of the 25 bp
Cori fragment inhibited GFP-CtrA degradation with a Ki of ~550 nM (Fig. S2), in
agreement with previously measured dissociation constants of CtrA and DNA (Siam &
Marczynski, 2000).

Previous work demonstrated that overproducing SciP leads to a small, but significant
increase in CtrA stability (Gora et al., 2010). Therefore, we tested whether SciP affects CtrA
degradation in vitro. Adding SciP to CtrA in the absence of DNA had little effect on CtrA
degradation (Fig. 2B). We then tested the effects of adding SciP along with a 50 bp fragment
of the fliF promoter that supports formation of a CtrA:SciP:DNA complex (Gora et al.,
2010). In this case we observed a dramatic stabilization of CtrA (Fig. 2B-C). Notably, these
experiments were done at a concentration of DNA that is insufficient, in the absence of SciP,
to completely inhibit CtrA degradation (Fig. 2B-C), indicating a synergistic effect of SciP
and DNA on CtrA stability. SciP also helped to block the degradation of CtrA bound to a 50
bp pilA fragment. However, SciP did not significantly affect proteolysis of CtrA bound to a
25 bp fragment of Cori (Fig. 2C) consistent with previous results, and those above,
indicating that formation of a CtrA:SciP:DNA complex requires interactions of both CtrA
and SciP with DNA (Gora et al., 2010).

A point mutant of SciP, R35A, which weakens the CtrA-SciP interaction and abrogrates the
ability of SciP to regulate CtrA in vivo (Gora et al., 2010), failed to stabilize CtrA against
degradation in vitro when using the 50 bp fliF probe (Fig. 2D). We also tested another SciP
mutant, R40A, which significantly reduces the growth defects arising from sciP
overexpression, but is less deficient than SciP(R35A) in interacting with CtrA (Gora et al.,
2010). With the 50 bp fliF probe, SciP(R40A) stabilized CtrA to a degree more similar to
wild-type SciP than SciP(R35A) (Fig. 2D). However, with the pilA probe, which shows a
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more dramatic stabilization of CtrA degradation in the presence of SciP (Fig 2C), we found
that SciP(R40A) was worse than wild-type SciP in protecting CtrA from ClpXP degradation
(Fig. 2E). Collectively, these results are consistent with prior observations indicating that the
R35A variant is almost completely deficient in binding CtrA in a yeast two-hybrid assay,
while the R40A variant is compromised to a lesser extent (Gora et al., 2010). Importantly,
we also found that the stabilization of CtrA by wild-type SciP requires the CtrA recognition
site in the DNA as a pilA probe harboring mutations in the CtrA binding sites failed to
stabilize CtrA even in the presence of wild-type SciP (Fig. 2E). Taken together, our data
indicate that SciP stabilizes the binding of CtrA to DNA, which, in turn, leads to the
stabilization of CtrA against degradation by ClpXP.

Cell cycle changes in SciP abundance are controlled post-transcriptionally
Our in vitro results suggested that changes in SciP abundance may influence the degradation
of CtrA in vivo, helping to stabilize CtrA in swarmer cells. Notably, SciP is maximally
abundant in swarmer cells and then rapidly disappears during the G1-to-S transition,
coincident with the time of CtrA degradation (Gora et al., 2010, Tan et al., 2010). We
therefore sought to determine the molecular mechanisms controlling SciP accumulation.

The transcription of sciP is cell cycle-regulated with peak sciP mRNA levels observed in
predivisional cells (Chen et al., 1986). To test whether regulated sciP transcription
contributes to the swarmer-specific accumulation of SciP, we constructed a strain harboring
a deletion of the native sciP and constitutively expressing sciP from the chromosomal xylX
locus. Synchronized swarmer cells from this strain were isolated and released into rich
medium containing xylose. We found that SciP levels were highest in swarmer cells and
then decreased ~30 minutes post-synchronization, although SciP did not completely
disappear, as it does in the wild type (Fig. 3A). Cells constitutively transcribing sciP also
showed higher levels of SciP in predivisional cells than in the wild type.

Our results indicated that regulated sciP transcription has a modest effect on the cell cycle
pattern of SciP abundance. However, SciP levels still dropped significantly during the G1-S
transition suggesting that SciP may also be subject to regulated proteolysis. We therefore
measured the stability of SciP using pulse-chase analysis of cells expressing sciP from a
low-copy plasmid during growth in a minimal medium. Under these conditions, in which the
cell cycle is ~140 minutes, SciP had a half-life of only ~23 minutes indicating it is a
relatively unstable protein and likely being degraded during the G1-S transition when SciP
levels drop (see Fig. 4A). Thus, we sought to identify the protease(s) responsible for SciP
degradation.

SciP is degraded by the Lon protease
Because SciP normally disappears during the G1-to-S transition, concurrent with ClpXP-
dependent proteolysis of CtrA, we first investigated whether ClpXP also degrades SciP. As
both ClpP and ClpX are essential for viability, we assayed SciP levels in cells depleted of
ClpP. Strain UJ199 harbors a deletion of the native, chromosomal clpP gene with a single
copy of clpP under control of the Pxyl promoter at the xylX locus (Jenal & Fuchs, 1998).
This strain was grown in rich medium containing glucose for 6 hours (~four generations) to
deplete ClpP. We then isolated swarmer cells and released them into glucose or xylose to
repress or induce, respectively, clpP. We sampled cells every 30 minutes and examined both
SciP and CtrA by immunoblotting (Fig. 3B). As expected, cells released into glucose failed
to proteolyze CtrA, whereas cells released into xylose had almost completely eliminated
CtrA after ~60 minutes. In contrast to CtrA, SciP levels dropped significantly in both the
xylose and glucose samples by ~60 minutes, although levels remained slightly higher in
glucose (Fig. 3B). These data indicate that cells lacking ClpP can still proteolyze SciP
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during the G1-to-S transition. These data are also consistent with our results showing that
purified ClpXP degrades CtrA three times faster than SciP when both are present at the same
concentration in vitro (Fig. S3).

Because ClpP is the peptidase subunit for both ClpXP and the protease ClpAP, our data
argue against the involvement of either protease in SciP proteolysis. Consistently, we found
that SciP was also eliminated during the G1-to-S transition in synchronized ΔclpA cells
(Fig. 3C).

To test the role of HslUV, another ATP-dependent protease (Rohrwild et al., 1996), we
synchronized a strain harboring a transposon within the hslV coding region, hslV::Tn5, and
monitored SciP levels by Western blotting. SciP was completely eliminated during the G1-S
transition, indicating that HslUV likely does not degrade SciP (Fig. 3C).

We next measured SciP abundance in cells lacking the protease Lon (Wright et al., 1996).
We synchronized Δlon cells and monitored both SciP and CtrA levels during cell cycle
progression. Whereas CtrA was cleared by 30 minutes post-synchronization, SciP was still
present after 30 minutes and maintained throughout the cell cycle (Fig. 3C). Further, pulse-
chase analyses on mixed populations of cells indicated that SciP was significantly stabilized
in Δlon cells compared to the wild type (Fig. 4A). Taken together, these data strongly
suggest that SciP is degraded by Lon in vivo.

We then tested the ability of C. crescentus Lon to proteolyze SciP in vitro. Purified SciP was
rapidly degraded by Lon in vitro, with a half-life of ~12 minutes (Fig. 4B). These findings
support the conclusion that SciP is a direct substrate for Lon in Caulobacter. Although SciP
was stabilized most significantly during the G1-S transition in Δlon cells, levels still
decreased modestly during cell cycle progression in this strain (Fig. 3C), indicating that
other proteases may degrade SciP, but at lower rates.

A C-terminal tag interferes with SciP proteolysis
To test the importance of regulated SciP degradation to the pattern of SciP abundance and
cell cycle progression, we sought to create a proteolytically stable version of SciP. Because
energy-dependent proteases often rely on terminal sequences for substrate recognition
(Chien et al., 2007, Domian et al., 1997, Griffith et al., 2004, Rood et al., 2012, Shah &
Wolf, 2006), we tagged the N- and C-terminus of SciP with an M2 epitope. We transformed
wild-type cells with low copy plasmids expressing sciP, M2-sciP, or sciP-M2 under the
control of Pxyl. Mixed populations of cells were grown in rich medium supplemented with
glucose to repress the plasmid copy of sciP, synchronized, and released into medium
supplemented with xylose to induce expression. Samples were collected every 15 minutes
for SciP immunoblot analysis (Fig. 4C). Note that we did not induce expression of the
plasmid-borne copies of sciP prior to synchronization, as pre-induction decreased the yield
of swarmer cells for the sciP-M2 strain during synchronization; hence, SciP levels during
early time points reflect the effects of transcriptional induction and proteolysis.

For cells expressing untagged sciP from a low-copy plasmid, along with the chromosomal
sciP, we found that SciP levels were highest in swarmer cells, dropped dramatically by ~30–
45 minutes post-synchronization, and then accumulated again during later stages of the cell
cycle (Fig. 4C), a pattern similar to that seen when the only copy of sciP is expressed from
the chromosomal xylX locus (Fig. 3A). By contrast, for cells producing N-terminally tagged
SciP, we found that SciP accumulated during the early stages of the cell cycle with slightly
higher levels of SciP at the 30 and 45 minute time points compared to cells producing
untagged SciP (Fig. 4C). A similar, but more pronounced effect was seen in cells expressing
sciP-M2, with high levels of SciP-M2 detectable throughout the time course examined (Fig.
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4C), compared to cells expressing untagged sciP, and particularly when compared to wild-
type cells. Our results indicate that a C-terminal M2 epitope likely stabilizes SciP by
interfering with its proteolysis by Lon.

We assayed the in vivo stability of epitope-tagged SciP using pulse-chase analyses of mixed
populations of cells grown in minimal medium. For cells producing M2-SciP or SciP-M2,
we measured half-lives of 36 and 58 minutes, respectively, compared to 23 minutes for the
untagged protein (Fig. 4A). We also found that the degradation of SciP-M2 by Lon in vitro
was dramatically slowed compared to degradation of the wild-type SciP (Fig. 4B). The C-
terminal tag likely did not stabilize SciP by interfering with its function as purified SciP-M2
was still capable of complexing with CtrA in vitro (Fig. S3) and SciP-M2 could still down-
regulate CtrA-dependent genes in vivo (see below). Together, these results support the
conclusion that Lon recognizes SciP through an exposed C-terminus.

SciP and CtrA reciprocally stabilize each other
The formation of a CtrA:SciP:DNA complex can protect CtrA from degradation by ClpXP
in vitro (Fig. 2), and overproducing SciP stabilizes CtrA in vivo (Gora et al., 2010). We
hypothesized that SciP may similarly be protected from Lon-dependent degradation by
interacting with CtrA at target promoters. Indeed, we found that SciP degradation in vitro
was significantly slower in the presence of CtrA and a 50 bp fliF fragment (Fig. 5A-B). This
stabilization was dependent on complex formation as excess DNA or CtrA alone did not
alter SciP degradation by Lon. Moreover, mutants of SciP that do not interact with CtrA
were susceptible to Lon degradation even when both CtrA and DNA were included (Fig.
5C). We also found that SciP was not eliminated as rapidly during the G1-S transition in
ΔcpdR cells in which CtrA remains stable throughout the cell cycle (Biondi et al., 2006,
Iniesta et al., 2006); SciP was still abundant 30 minutes post-synchronization in ΔcpdR cells
but not in wild-type cells (Fig. 3A, C). This result is consistent with a model in which CtrA
normally stabilizes SciP; consequently, ΔcpdR cells, which do not properly clear CtrA
during the G1-S transition, do not clear SciP as efficiently. Taken together, these findings
suggest that SciP and CtrA reciprocally stabilize each other against degradation by Lon and
ClpXP, respectively, when assembled into a DNA-bound complex. Conversely, proteolysis
of each may accelerate degradation of the other during the G1-S transition, contributing to
the robustness and irreversibility of this cell cycle transition.

Regulated proteolysis of SciP is necessary for proper cell cycle progression
To further investigate the phenotypic consequences of producing protease-insensitive SciP,
we expressed sciP-M2 from a low-copy plasmid under the control of a xylose-inducible
promoter in otherwise wild-type cells. This strain was grown in rich medium supplemented
with glucose and then shifted to medium containing xylose, leading to a modest growth
defect relative to a strain maintained in glucose (Fig. 6A). After four hours, cells were also
moderately filamentous and flow cytometry analysis indicated that cells had accumulated up
to four chromosomes per cell, consistent with a defect in cell division (Fig. 6B). In contrast
to sciP-M2, cells expressing untagged sciP or M2-sciP from the same low-copy plasmid
exhibited no significant defects in growth, morphology, or chromosome content (data not
shown).

The phenotypic consequences of producing SciP-M2 from a low-copy plasmid are
reminiscent of those previously reported for cells producing M2-SciP from the same
promoter but on a high-copy plasmid (Gora et al., 2010). To further compare the phenotypes
of these two strains, we examined global changes in gene expression in each strain using
DNA microarrays. Wild-type cells harboring the low-copy sciP-M2 expression plasmid
were induced with xylose for 4 hours and mRNA was then isolated and compared to mRNA
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from identically treated wild-type cells using whole genome microarrays. We directly
compared this expression profile to those obtained previously for cells expressing M2-sciP
from a high-copy plasmid, and for ctrAts and cckAts strains grown at a restrictive
temperature (Gora et al., 2010). For all four strains, we observed a significant down-
regulation of CtrA-activated genes (Fig. 6C).

Based on the DNA microarrays, we found that the expression of sciP-M2 from a low-copy
vector led to ~3-fold higher sciP mRNA relative to wild-type cells, whereas expression from
a high-copy vector resulted in an ~18-fold increase. However, the down-regulation of CtrA
target genes was comparable in magnitude in each case (Fig. 6C), consistent with our
conclusions that a C-terminal M2 tag stabilizes SciP. These data support a model in which
SciP is normally proteolyzed at the G1-S transition and that a failure to degrade SciP during
this transition (Fig. 4C) prevents the subsequent activation of CtrA-dependent genes in
predivisional cells, thereby disrupting cell cycle progression.

Discussion
Cell cycle regulation of SciP

SciP plays a critical role during the Caulobacter cell cycle by helping to restrict CtrA-
dependent gene expression to the G1, or swarmer cell, phase (Gora et al., 2010, Tan et al.,
2010). SciP is not, however, essential for viability as cells harboring a deletion of sciP can
be generated (Gora et al., 2010); moreover, resequencing of the genome of the ΔsciP strain
did not identify any additional mutations relative to the parent strain CB15N (data not
shown). Nevertheless, cells lacking SciP show a range of severe phenotypes, underscoring
its importance as a cell cycle regulator. SciP is maximally abundant in swarmer cells and
must be eliminated before cells reach the predivisional stage when CtrA is required to
activate an arsenal of genes critical to morphogenesis and cell division (Laub et al., 2002).
Regulated transcription and proteolysis work together to ensure SciP is abundant principally
in swarmer cells. The transcription of sciP is cell cycle-regulated and directly activated by
CtrA leading to maximal expression of sciP in predivisional cells (Chen et al., 1986, Gora et
al., 2010, Tan et al., 2010). SciP protein does not, however, accumulate to high levels until
after cell division, and then accumulates almost exclusively in the daughter swarmer cell,
indicating post-transcriptional control of SciP (Gora et al., 2010). Moreover, cells
constitutively expressing sciP still show cell cycle-dependent changes in SciP protein levels
(Fig. 4C), suggesting other levels of regulation. Here, we demonstrated that SciP is likely
rapidly degraded during the swarmer-to-stalked cell, or G1-S, transition, by the protease Lon
(Fig. 7). Proteolysis allows cells to irreversibly clear SciP, priming cells for a new round of
CtrA-dependent gene expression following DNA replication initiation.

Regulated proteolysis by Lon
SciP is the first direct substrate of Lon identified in Caulobacter. Genetic studies have
previously implicated Lon in the degradation of the cell-cycle methyltransferase CcrM
(Wright et al., 1996), but whether Lon directly degrades CcrM has not been established.
Nevertheless, the Lon protease clearly plays an important role in the degradation of both
CcrM and SciP, and probably other cell cycle regulators. Consistent with such a multi-
faceted role, cells lacking Lon exhibit a variety of cell cycle phenotypes, including moderate
cellular filamentation and the accumulation of up to six chromosomes per cell, as judged by
flow cytometry (Wright et al., 1996). These phenotypes are similar to those resulting from
the expression of non-degradable sciP-M2 in wild-type cells suggesting that a failure to
properly clear SciP at the G1-to-S transition may contribute to some aspects of the
pleiotropic effects of a lon mutant.
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How is Lon activity regulated? Lon is present at relatively constant levels throughout the
cell cycle suggesting that its activity is not regulated through changes in abundance (Wright
et al., 1996). Hence, in the case of CcrM, Lon was suggested to be constitutively active
throughout the cell cycle, with an increase in ccrM transcription in predivisional cells
leading to an accumulation of CcrM by exceeding the proteolytic capacity of Lon. In
contrast, we found that SciP levels drop rapidly during the G1-S transition when there is no
concurrent change in sciP transcription, suggesting that the specific activity of Lon could
increase during this stage of the cell cycle. Polyphosphate can stimulate Lon activity in E.
coli (Kuroda et al., 2001), and could function similarly in Caulobacter, although a recent
study suggested that polyphosphate actually slows the G1-S transition in Caulobacter
(Boutte et al., 2012). However, another cofactor could, in principle, accumulate during the
G1-S transition to activate Lon and stimulate SciP degradation. Alternatively, although Lon
recognizes SciP directly in vitro, an adapter protein could accumulate during the G1-S
transition in vivo that further improves degradation. The binding of SciP to CtrA and target
promoters may also help shield SciP from degradation in swarmer cells (Fig. 5). Finally, it is
also possible that differential localization of Lon during the cell cycle may contribute to
changes in its activity, as suggested for ClpXP (Iniesta et al., 2006).

Lon is a AAA+ protease that is widely conserved throughout the bacterial kingdom. In E.
coli, Lon is responsible for degrading unfolded proteins as well as several key regulators,
including the transcription factor SoxS and the cell division inhibitor SulA (Melderen &
Aertsen, 2009, Mizusawa & Gottesman, 1983, Griffith et al., 2004). Although the rules for
Lon substrate specificity are still poorly defined, Lon is thought to recognize hydrophobic
patches in unfolded proteins and the N- or C-terminus of the substrates SoxS and SulA,
respectively (Shah & Wolf, 2006, Ishii et al., 2000, Gur & Sauer, 2008). The stabilization of
SciP by the addition of a C-terminal M2 epitope (DYKDDDDK) strongly suggests that the
free C-terminus of SciP (RTTRIQQYR) is recognized by Lon in Caulobacter. Alternatively,
addition of the M2 epitope may block degradation by masking electrostatic interactions with
the C-terminus that are needed for recognition of SciP by Lon, or by forcing the C-terminus
to adopt a non-native secondary structure.

Disassembly of the CtrA-SciP-DNA complex during the G1-S transition
SciP interacts directly with CtrA bound at target promoters (Fig. 7). Although SciP has a
recognition helix, it binds DNA only weakly on its own, requiring CtrA to form more stable
contacts with DNA. Thus, SciP likely does not recognize and bind specific sites on the
chromosome like canonical transcription factors do, and instead is mainly recruited to the
promoters of CtrA-regulated genes through its direct interaction with CtrA. In this sense,
SciP functions as a cofactor, or regulator, of CtrA.

The formation of a complex between SciP and CtrA is critical for downregulating CtrA-
activated genes in swarmer cells. This complex also promotes the stability of both proteins
by protecting each from degradation by their respective protease (Figs. 2, 5). Their mutually
enforced stabilization likely means that the degradation of either protein will facilitate
degradation of the other (Fig. 7). Hence, the complex may be rapidly disassembled and
degraded in a more switch-like fashion. Which protein gets degraded first is not yet clear.
Notably though, SciP did not disappear as rapidly, or to the same extent, in ΔcpdR cells in
which CtrA is not properly degraded at the G1-S transition (Fig. 3). Having SciP
degradation contingent on the degradation of CtrA could be beneficial as it would help
prevent a scenario where the premature removal of SciP allows CtrA to inappropriately
activate gene expression in swarmer cells.

Mutual protection from degradation will, of course, only apply to CtrA and SciP proteins
that are bound in a complex on DNA. The binding of CtrA and SciP is strongly promoted by
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their binding to DNA that contains a CtrA binding site (Fig. 2E). However, CtrA and SciP
may also bind at other sites in the chromosome, even transiently, and such ternary
complexes could also protect both proteins from degradation. Nevertheless, given their high
concentrations in swarmer cells, not all SciP and CtrA will be complexed, and the
unassociated proteins would remain susceptible to proteases. However, additional
mechanisms exist that ensure CtrA is rapidly degraded only during the G1-S transition (Abel
et al., 2011), and similar mechanisms could exist for SciP as well.

In sum, our results indicate that Caulobacter cells rely heavily on regulated proteolysis of a
transcription factor complex to drive the G1-S transition. The degradation of CtrA by ClpXP
enables a new round of DNA replication to initiate, while the degradation of SciP by Lon
ultimately primes the cell for CtrA-dependent gene expression following replication
initiation and the reaccumulation of CtrA.

Experimental procedures
Bacterial growth conditions

Strains used are listed in Table S1. Caulobacter strains were grown in rich (PYE) or minimal
(M2G) media and supplemented with 0.2% glucose or 0.3% xylose, as indicated. ML1750
was grown in PYE supplemented with xylose, synchronized, and released into PYE
supplemented with glucose or xylose. ML1990, ML1991, and ML1992 were grown in PYE
supplemented with glucose and oxytetracycline, synchronized, and released into PYE with
glucose or xylose, as indicated, and oxytetracyline. UJ838, UJ199, LS2382, ΔcpdR, and
hslV::tn5 were grown in PYE. UJ199 was depleted and synchronized as previously reported
(Jenal & Fuchs, 1998). All synchronies were performed in a 50% Percoll gradient in 50 mL
Falcon tubes.

Cloning, mutagenesis, and strain construction
Primers used for strain construction are listed in Table S2. To construct the plasmid pENTR-
Pxyl-sciP the Pxyl promoter was amplified from pHXM-DEST using the primers Pxyl_F and
Pxyl_R, sciP was amplified from genomic DNA using the primers sciP_F and sciP_R, and
the two pieces were fused together by splice overlap extension PCR. The fused construct
was cloned into pENTR through TOPO cloning (Invitrogen). The plasmid pENTR-Pxyl-
sciP-M2 was constructed by TOPO cloning a PCR fragment amplified from pLX-sciP using
the primers Pxyl_F and sciP_M2_R. The low-copy plasmids with Pxyl-sciP (pLX-sciP) and
Pxyl-sciP-M2 (pLX-sciP-M2) were constructed by LR recombination of pENTR-Pxyl-sciP
and pENTR-Pxyl-sciP-M2 into the destination vector pMR20-DEST as described previously
(Skerker et al., 2005). The low-copy plasmid with Pxyl-M2-sciP (pLXM-sciP) was
constructed by LR recombination of pENTR-sciP into pLXM-DEST. Expression plasmids
were electroporated into CB15N and Δlon electrocompetent cells.

The pBAD-lon plasmid was constructed by digesting pBAD33-lon with NdeI and SbfI and
ligating in a PCR product containing C. crescentus lon amplified from CB15N genomic
DNA using the primers lon_F and lon_R and digested with NdeI and SbfI.

Constructs for production of SciP variants were constructed by LR recombination of
pENTR-sciP variants into pHIS-DEST (Skerker et al., 2005). A His6-tagged GFP-CtrA
(pHIS-GFP-CtrA) was constructed by amplifying ctrA from genomic DNA using primers
(CtrAforRI and CtrArevXhoI) to install EcoRI and XhoI sites flanking ctrA. After
purification and restriction, the insert was used to replace pdeA in vector pENTR-GFP-PdeA
(Rood et al., 2012) generating pENTR-GFP-CtrA. An expression construct was generated
by LR recombination of pENTR-GFP-CtrA into pHIS-DEST (Skerker et al., 2005).
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Plasmids harboring the ctrA promoter were derived from pctrA290 (Domian et al., 1999).
Mutations were introduced using the primers listed in Table S2 to create pctrA290-mut1,
pctrA290-mut2, pctrA290-mut1+mut2. Plasmids were transformed into ML1748 to create
ML1994-ML1997.

DNA templates containing CtrA binding sites were generated by mixing equal
concentrations of oligonucleotides derived from the origin of replication or from promoters
of CtrA-regulated genes. Pairs of complementary oligonucleotides, listed in Table S2, were
heated at 95 °C for 10 minutes in 100 mM KCl and cooled slowly to facilitate annealing.

Immunoblots
Cell pellets were resuspended in the equivalent of 50 µL 1 X SDS sample buffer per 1 mL of
OD 0.15 culture. 10 µL of lysate was resolved on a 12% gel (Bio-Rad) run at 130 V for 1 hr
at room temperature. Samples were transferred to PVDF membrane and probed as described
previously (Gora et al., 2010).

Flow cytometry
Samples were analyzed as described previously (Chen et al., 2009).

Pulse-chase analyses
SciP stability was assayed as previously described (Gora et al., 2010) with the following
modifications. The various sciP alleles in strains ML1990, ML1991, ML1992, and ML1993
were induced through the addition of xylose for 30 minutes immediately before the pulse-
chase. Samples were immunoprecipitated using 2 µL of SciP anti-sera for 2 hrs at 4 °C.

DNA microarray analysis
Microarray analyses were conducted as previously reported using custom Agilent oligo
arrays (Gora et al., 2010). Expression experiments were performed in duplicate and results
averaged.

Protein purifications
For purifications of SciP from E. coli, overnight cultures were diluted into LB with
ampicillin (100 µg/ml), grown for 2–3 hours at 37 °C, and then induced with 0.4 mM IPTG.
After 3 hours, cells were spun down at 5000 rpm for 15 minutes. Pellets were resuspended
in lysis buffer (50mM Tris pH 8.0, 300mM NaCl, 10mM imidazole, 10% glycerol, 5mM β-
mercaptoethanol) and frozen at −20 °C. Cells were then thawed on ice before being lysed by
high pressure disruption using a Microfluidizer (Microfluidics, Newton, MA). Following
clarification by centrifugation at 15,000 g, lysate was applied to a 1 mL Ni-NTA column
pre-equilibrated with lysis buffer at room temperature. The column was washed with 20
volumes of lysis buffer, followed by elution with 6 column volumes of elution buffer
(50mM Tris pH 8.0, 300mM NaCl, 300mM imidazole, 10% glycerol, and 5mM β-
mercaptoethanol). Purity was assessed by SDS-PAGE / Coomassie staining and samples
containing the desired protein were pooled, concentrated, and aliquoted before being frozen
at −20 °C. ClpX, ClpP, and CtrA were purified as previously described (Chien et al., 2007)
(Rood et al., 2012). Caulobacter Lon was expressed from plasmid pBAD-lon in a ΔLon E.
coli strain (ER2566) and purified following the protocol for purification of E. coli Lon (Gur
& Sauer, 2009).

In vitro degradation assays
Protein degradation was monitored using SDS-PAGE as before (Rood et al., 2012). For
ClpXP degradation reactions, the concentrations were as follows, unless otherwise noted:
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0.2 µM ClpX6, 0.4 µM ClpP14, 4 mM ATP, 75 µg/mL creatine kinase, 5 mM creatine
phosphate in H-buffer (25mM HEPES-KOH pH 7.4, 100 mM KCl, 10% glycerol, 10mM
MgCl2, 10 mM β-mercaptoethanol). For Lon degradation reactions, concentrations of the
components were the same as above, but with 0.5 µM Lon hexamer as the protease and Lon
degradation buffer (25 mM Tris pH 8.0, 100 mM KCl, 10 mM MgCl2, 1 mM DTT).
Proteolysis was also monitored by fluorescence, as previously described (Rood et al., 2012).
Degradation of a GFP-CtrA fusion was measured via loss of fluorescence over time at 30
°C. Final concentrations in these assays were: 0.2 µM ClpX6, 0.4 µM ClpP14, 4 mM ATP,
75 µg/mL creatine kinase, 5 mM creatine phosphate, 50 nM GFP-CtrA, and 1 µM SciP.
Concentrations of DNA were varied over the ranges reported in the figures. Typical reaction
volumes were 20 µL and were monitored with a Spectramax M5 (Molecular Devices) plate
reader with 440 nm / 510 nm excitation / emission settings and an emission cutoff set at 495
nm.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic of the Caulobacter cell cycle
The timing of CtrA and SciP accumulation is indicated with black bars.
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Figure 2. CtrA is protected from ClpXP degradation when bound to DNA
(A) Time courses of 1 µM CtrA degradation by ClpXP in the presence or absence of 5 µM
DNA containing a CtrA binding site derived from Cori (25 bp in length). (B) Time courses
of 1 µM CtrA degradation by ClpXP in the presence of 1 µM PfliF (50 bp fragment) and 5
µM SciP, as indicated. (C) Degradation of GFP-CtrA was measured as a function of DNA
concentration for fragments from Cori, PfliF, and PpilA with or without 1 µM SciP. (D) Time
courses of CtrA degradation (3.2 µM) by purified ClpXP in the presence of 5 µM wild-type
or mutant SciP and 5 µM PfliF. Quantification of CtrA levels over time are shown on the
right. (E) Degradation of CtrA (0.5 µM) by ClpXP with wild-type (PpilA) or mutant
(PpilA-CtrAmut) probe at 10 µM (when added) and SciP or SciP(R40A) at 10 µM.
Quantification of CtrA levels over time are shown on the right.
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Figure 3. SciP is an unstable protein whose degradation in vivo depends on Lon
(A) Swarmer cells expressing sciP constitutively (cells harboring Pxyl-sciP and grown in the
presence of xylose) were isolated and allowed to proceed synchronously through a single
cell cycle. SciP and CtrA levels were assessed using Western blotting at the time points
indicated (top blots) and compared to synchronized wild-type cells. (B) A clpP depletion
strain was grown in rich medium with xylose and then washed and resuspended in rich
medium with glucose for 6 hours to deplete ClpP. Cells were then synchronized and released
into rich media with glucose or xylose, as indicated, and samples were taken at 30 minute
intervals for Western blot analysis with CtrA and SciP antisera. (C) Cultures of ΔcpdR,
ΔclpA, hslV::Tn5, and Δlon were each synchronized and cells released into fresh media
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with samples taken every 30 minutes for Western blot analysis of CtrA and SciP levels, as
indicated.
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Figure 4. A C-terminal tag on SciP disrupts degradation by Lon
(A) Pulse-chase analysis of SciP stability in the strains indicated. Wild type or Δlon cells
producing the indicated version of SciP from a xylose-inducible promoter on a low-copy
plasmid were grown in minimal media and pre-induced with xylose for 30 minutes. Each
experiment was performed in duplicate or triplicate and error bars indicate standard error of
the mean. (B) Time courses of degradation of SciP (0.5 µM) or SciP-M2 (1 µM; note that
purified SciP-M2 stains poorly) by purified C. crescentus Lon (0.5 µM). Graph indicates
averages of triplicate experiments fit to single exponential decay curves; error bars are
standard deviations. (C) Cells producing untagged or M2-tagged versions of SciP from a
xylose-inducible promoter were grown in the presence of glucose, synchronized, and then
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released into fresh medium containing xylose. Samples were taken every 15 minutes for
Western blotting with an anti-SciP antibody. Note that the linker between M2 and SciP is
shorter when the epitope tag is C-terminal to SciP leading SciP-M2 to run closer to native
SciP.
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Figure 5. Degradation of SciP by Lon is inhibited by formation of a SciP:CtrA:DNA complex
(A-B) Time courses of SciP degradation by Lon. CtrA and a PfliF probe were added, as
indicated. CK is creatine kinase used for ATP regeneration. Graph indicates averages from
time courses performed in triplicate; error bars are standard deviations. (C) Time courses of
degradation of SciP mutants by purified Lon in the presence of PfliF fragment with or
without CtrA, as indicated. When noted, SciP variants, CtrA, and PfliF are present at 5 µM.
Lon is present at 0.5 µM.
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Figure 6. Stabilization of SciP affects cell cycle progression
(A) Growth curve for cells harboring a low-copy plasmid with sciP-M2 driven by a xylose-
inducible promoter and grown in the presence of glucose or xylose. (B) DIC micrographs
and flow cytometry profiles for cells from panel A. (C) The expression levels of CtrA-
regulated genes were measured by DNA microarrays in cells induced to produce SciP-M2
from a low-copy plasmid relative to an uninduced control. Ratios for each gene were
compared to those generated previously for cckAts and ctrAts strains grown at a restrictive
temperature for 2 hours, a strain producing M2-SciP from a high-copy plasmid, and a sciP
depletion strain grown in restrictive conditions (Gora et al., 2010). Log expression ratios are
represented as colors based on the legend shown.
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Figure 7. Regulated proteolysis of CtrA and SciP during the Caulobacter cell cycle
A schematic of the Caulobacter cell cycle is shown along with the approximate timing of
G1, S, and G2 phases. The abundances of phosphorylated CtrA (CtrA~P) and SciP during
the cell cycle are indicated by blue shading and red stripes, respectively. In swarmer cells,
SciP binds phosphorylated CtrA to block CtrA-activated gene expression. During the G1-S
transition, CtrA~P and SciP are degraded by ClpXP and Lon, respectively. The subsequent
accumulation of phosphorylated CtrA, but not SciP, in predivisional cells enables the
activation of CtrA target genes.
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