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I. INTRODUCTION

In this paper we address the following question: what
asymptotically anti–de Sitter (AdS) spacetimes result from
a finite density of gravitating, charged fermions? While
this question is a natural one in the context of the study of
gravity solutions with the covariant infrared cutoff pro-
vided by AdS, there is also a second set of motivations
coming from condensed matter physics.

There is considerable experimental evidence for the
existence of materials whose electronic structure cannot
be described by Fermi liquid theory, nor by any other
known effective theory. A signature of these exotic
materials is the presence of a well-defined Fermi surface,
without long-lived quasiparticles. More precisely, as in
ordinary Fermi liquids, the electron operator Green’s func-
tion has a zero-frequency singularity located over an entire
surface in momentum space (the Fermi surface). However,
contrary to Fermi liquid behavior, the relative frequency
width of this resonance does not vanish as k approaches the
Fermi surface.

The short life of the quasiparticles indicates that strong
interactions are at play, a fact which stymies conventional
theoretical investigation. The holographic duality [1–3], on
the other hand, provides a different starting point, far from
weak coupling. Hence, the gravitational system we study in
this paper, seen through the eye of the duality, could be a
useful toy model displaying non-Fermi liquid phenome-
nology. In the present scarcity of viable approaches, such a
model would be very valuable even if it has exotic short-
distance physics.

A. Statement of the problem

Our target field theory is a relativistic conformal field
theory (CFT) with a gravity dual, a global U(1) symmetry
(our proxy for fermion number), and a fermion operator
charged under the symmetry (our proxy for bare electrons).
As a gravity dual, we are led to study asymptotically AdS
boundary conditions on gravity coupled to quantum elec-
trodynamics. We want to study the CFT at nonzero U(1)
charge density, so we turn on a chemical potential� for the

U(1) symmetry; this is encoded in the boundary conditions
Atjbound ¼ �.
Wilsonian naturalness suggests that we use the follow-

ing action in the bulk (for a review of the duality from this
point of view, see e.g. Refs. [4,5]):

Z ¼
Z
½Dðg; A; c Þ� exp

�
i
Z

d4x
ffiffiffi
g

p �
R� 2�

�2
� F2

4q2

þ �c ði 6D�mÞc
��

; (1)

where D is a derivative covariant under coordinate trans-
formations and U(1) gauge transformations. We normalize
the gauge field so that the fermion field has unit charge.
This model has been has been investigated in

Refs. [6–17] under various (drastic) simplifying assump-
tions, which we briefly summarize.
The large-N limit in the CFT implies �2� � 1 and

q � 1, and suppresses the fluctuations of the metric and
of the gauge field. References [6–9] worked in the limit
� ! 0, q ! 0 with finite �=q, where the backreaction of
the fermions on the background can be ignored. This
results in the Reissner-Nördstrom extremal black hole
groundstate [18,19], with its AdS2 near-horizon region
and associated zero-temperature entropy.
In this approximation, one finds [9] fermion Green’s

functions of non-Fermi liquid character, of the form

G� 1

!2� þ jkj � kF
: (2)

However, the fact that the backreaction can be ignored
means that the charge and energy density carried by the
fermions is negligible compared to the charge and mass of
the black hole. From the dual point of view, this describes a
system in which the fermions that form a non-Fermi liquid
are only a small fraction of all the degrees of freedom. The
large bath which makes up most of the system has some
issues: the finite zero-temperature entropy and associated
instabilities encourage us to lift the too-strong assumption
that bulk matter fields do not affect the dynamics.
In Ref. [10], the bulk fermions were treated as a charged,

gravitating fluid, in a Thomas-Fermi approximation.
According to Ref. [10], this approximation is valid in the
limit of large fermion mass m2=� � 1, and results in a
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much less exotic IR geometry. However, a fermion with a
large mass is dual to an operator with a large anomalous
dimension, so this large-mass limit leads to a somewhat
unphysical class of field theories. Moreover, the associated
large quantum numbers imply parametrically many Fermi
surfaces in the fermion Green’s function [13].

Reference [16] studied the limit of a large external
magnetic field, where the bulk fermions are effectively
one-dimensional and may be treated using bosonization.

B. This paper

In this work, wewill retain the full quantum nature of the
fermionic field, while treating the path integrals over the
metric and the gauge field in the saddle-point approxima-
tion,1 as is natural at large N. It is reasonable to hope that
bulk fermions with m2=�� 1, which must be treated
quantum mechanically, realize a happy medium between
the too-exotic AdS2 solution, which results from no fermi-
ons, and the classical electron star, which results from
heavy bulk fermions.

The leading contribution to the partition function comes
from the on-shell action, evaluated on the field configura-
tion that solves the equations of motion8<

:D�F
�� ¼ q2J�;

G�� þ�g�� ¼ �2½Tðc Þ
�� þ TðAÞ

���;
(3)

where

J� ¼ h �c��c i; (4)

Tðc Þ
�� ¼ h �c�ð�iD�Þc i; (5)

TðAÞ
�� ¼ 1

q2

�
F��F

�
� � 1

4
g��F��F

��

�
: (6)

The expectation values are computed with respect to the
fermionic field path integral,

h� � �i ¼ 1

Zc

Z
½Dc � � � � exp

�
i
Z

d4x
ffiffiffi
g

p �c ði 6D�mÞc
�
:

(7)

The solution of the saddle-point equations constitutes a
rather difficult problem, because the fermion current and
stress tensor are nonlocal functionals of the background
fields g and A, for which there is no hope of finding an
explicit closed-form expression. In this sense the system
(3) is more similar to an integro-differential system of
equations than to a system of differential equations.

Like for other integro-differential systems, a solution
can be found numerically via an iterative approach.
Starting from some configuration of g and A, one computes

numerically the corresponding fermion current and stress
tensor. Then one uses these to construct a new configura-
tion of g and A via Eq. (3), and repeats the process.
Eventually, one hopes, the process converges to a fixed
point, which is a solution of the system of equations.
Once a solution to the field equations is found, small

perturbations about it can deliver all the correlators of the
dual field theory. This approach was used successfully in
the frozen-geometry approximation (valid when � ! 0)
in Refs. [14,15].
We emphasize that this iterative scheme for solving the

saddle-point equations has two separate parts:
(1) Given a fixed set of currents2 hj�i, hT�

�i, solve
Eq. (3) to find the gauge field A and geometry g.
This is a relatively standard problem, which we treat
in Sec. III.

(2) Given the background A, g, evaluate the currents.
This problem is more difficult and less familiar. We
will lavish a great deal of attention on it, in Sec. II.

In Sec. IV we present our results: the first gravitating
quantum electron stars without a large magnetic field. The
eager reader may safely read this last section first, as
reference to Secs. II and III is kept to a minimum.
Further details can be found in the appendices. Of

particular note is Appendix B, where we describe the
many alluring ways in which one should not approach
the construction of a gravitating quantum electron star.

II. COMPUTATION OF THE FERMIONIC
CURRENTS

A. Regularization and renormalization

In the continuum, the currents are divergent quantities.
They must be regulated and then renormalized while pre-
serving the symmetries of the low-energy theory, that is,
gauge invariance and general covariance [20]. The simplest
way of doing so, at least conceptually, is to use a covariant
regulator. For example, one could set up the problem in
Euclidean space, and use a heat-kernel regulator to define
the bare currents,

J
�
0 ¼ h �c��e�s2 6D2

c i; (8)

T��
0 ¼ h �c�ð�iD�Þe�s2 6D2

c i: (9)

With this choice of regulator, the bare currents have the
following small-s expansion:

J�0 ¼ c1 log
s

LIR

D�F
�� þ J�R þOðs2Þ; (10)

1The neglection of metric and gauge fluctuations, in this
context, is equivalent to the Hartree-Fock approximation.

2For brevity, we refer collectively to the charge current and the
stress tensor as currents.
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T��
0 ¼ c2

s4
g�� þ 1

s2
ðc3G�� þ c4m

2g��Þ

þ log
s

LIR

ðc5Hð1Þ�� þ c6H
ð2Þ�� þ c7m

2G��

þ c8m
4g�� þ c9q

2TðAÞ��Þ þ T��
R þOðs2Þ; (11)

where the coefficients ci are (known) rational multiples of

1=�2, Hð1Þ and Hð2Þ are tensors involving four derivatives

of the metric, and TðAÞ is the Maxwell stress tensor. LIR is
some infrared renormalization scale of choice: changing it
amounts to a finite renormalization of coupling constants,
as described below.

The divergent terms in the series are local functionals of
the background. This is because they come from high-
energy, short-wavelength modes, which are sensitive only
to the local physics. They are geometric objects with all the
necessary symmetries: they are covariantly conserved ten-
sors, with the right dimension, and transform appropriately
under charge conjugation. This is because the regulator is
gauge and diffeomorphism invariant.

By looking at Eq. (3), it is clear that the divergent terms
can be absorbed in the renormalization of the charge q,
the cosmological constant � and Newton’s constant �2,

with the exception of Hð1Þ and Hð2Þ. These renormalize
two higher-derivative corrections to the Einstein-Hilbert
action. In fact,

Hð1Þ�� ¼ 1ffiffiffi
g

p 	

	g��

Z
d4x

ffiffiffi
g

p
R2; (12)

Hð2Þ�� ¼ 1ffiffiffi
g

p 	

	g��

Z
d4x

ffiffiffi
g

p
R��R��: (13)

In the spirit of retaining only the very low-energy physics
of the theory, we will set the renormalized coefficient of
these higher-derivative terms to zero.

After an appropriate renormalization of the couplings,
we are left with the renormalized, finite currents JR and TR,
which is what we take to stand on the right-hand side of
Eq. (3). These quantities receive contributions from the
whole spectrum of modes of the fermionic field, they are
sensitive to the infrared physics, and therefore they are
nonlocal, nongeometric functionals of the background.

Although the regularization and renormalization pre-
scription described above is conceptually very simple, it
proved unfeasible to follow in practice. For various tech-
nical reasons, the heat-kernel regularization, or any other
covariant method like dimensional, zeta function or Pauli-
Villars regularization, turns out not to be well suited for the
numerical computation we require (see Appendix B 1).

Instead, we resorted to point-splitting regularization.
Starting from a point x, we shoot out a geodesic, in a
direction specified by a unit vector t, and we take a point
x0 along it, at a geodesic distance s from x. We then define
the regularized current and stress tensor at x as

J
�
0 ðxÞ ¼ h �c ðx0Þ��c ðxÞi; (14)

T��
0 ðxÞ ¼ h �c ðx0Þ�ð�iD�Þc ðxÞi: (15)

A small-s expansion has been worked out for these
quantities also. However, because the regulator breaks
gauge and diffeomorphism invariance, it involves contrac-
tions of local geometric tensors with the vector t, and the
terms are not covariantly conserved. In the massless case
m ¼ 0 it has the form3

T
��
0 ¼ � 1

�2s4
ðg�� � 4t�t�Þ � 1

16�2s2

�
2

3
ðG�� þ Rt�t�Þ

� 4Rð�

t

�Þt
 þ 4

3
ðg��R
� � R�



�
�Þt
t�

�

� 1

160�2
log

s

LIR

�
Hð2Þ�� � 1

3
Hð1Þ��

�
þ T

��
finiteðtÞ þOðs2Þ: (16)

It is very important to stress that Tfinite, besides being a
nonlocal, nongeometric object, still depends on the vector
t, i.e. on the regularization scheme, and hence cannot be
interpreted as a renormalized quantity. To obtain a well-
defined renormalized stress tensor, it is necessary to pro-
ceed with what is called adiabatic renormalization [20].
Adiabatic renormalization consists in subtracting from

Tfinite an additional, finite counterterm that precisely com-
pensates for all the symmetry-breaking effects of the regu-
lator. To determine what this counterterm is, it is necessary
to compute the bare stress tensor within a derivative, or
adiabatic, expansion: the background is assumed to change
on length scales much larger than the correlation length of
the fermion field, set by the mass m.
Within this approximation, it is possible to compute

all the orders of the expansion (16)—including Tfinite—
explicitly as functionals of the background. They all turn
out to be local terms, made of contractions of geometric
tensors with the vector t. This means that the adiabatic
expansion completely misses the nonlocal, infrared phys-
ics. However, it retains all the symmetry-breaking effects
of the regulator, which affects only local, UV physics.
Therefore, by subtracting from the bare stress tensor T0

its adiabatic expansion, up to and including the finite term,
and taking the limit s ! 0, a well-defined renormalized
stress tensor TR is obtained. When other covariant regu-
larization procedures are feasible, it has been shown that
this approach yields the same renormalized stress tensor
TR, up to a finite renormalization of �, �2 and the other
couplings. The current can be regularized and renormal-
ized according to the same procedure.

3The precise form of the expansion depends on the details of
the point-splitting prescription. This formula is taken from
Ref. [21], and is derived according to the definitions there.
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B. The conformal anomaly and covariant conservation

An important check of the regularization and renormal-
ization prescription we are adopting is the ability to pro-
duce a covariantly conserved stress tensor. In a static
geometry the bare stress tensor, defined by

T��
0 ðxÞ ¼ h �c ðx0Þ�ð�iD�Þc ðxÞi; (17)

is covariantly conserved if x� x0 ¼ ð�t; 0; 0; 0Þ with con-
stant �t. In fact, we have

D�T
�� ¼ @�T

�� þ ��
��T

�� þ ��
��T

��

¼ h �c ðx0Þ ~@��ð�iD�Þc ðxÞi
þ h �c ðx0Þ@Q��ð�iD�Þc ðxÞi þ ��

��T
��

þ ��
��T

��; (18)

and, because the sections do not depend on time, the
derivatives can be promoted to covariant derivatives,

D�T
�� ¼ h �c ðx0Þ ~D��

ð�iD�Þc ðxÞi
þ h �c ðx0ÞDQ ��

ð�iD�Þc ðxÞi: (19)

Using the field equations of motion, it is easy to show that
this quantity is zero. It is also possible to show directly that
the stress tensor computed with the adiabatic expansion is
covariantly conserved, and so is the renormalized stress
tensor.

If another point-splitting prescription is taken—for ex-
ample, one in which �t depends on position—then neither
the bare stress tensor nor the adiabatic stress tensor are
conserved. However, the difference of the two in the limit
s ! 0 is conserved.

Another important check is the manifestation of the
conformal anomaly. In fact, it is well known that, for a
massless field, the trace of the stress tensor on curved
spacetime is not zero, but is proportional to a local geo-
metric functional of the background. Using the equations
of motion, it is easy to show that

T�
�ðx; x0Þ ¼ mh �c ðxÞc ðxÞi þ contact terms; (20)

and it would be natural to conclude that, in the massless
limit, the trace is zero. This is certainly true for the bare
stress tensor. On the other hand, the adiabatic expansion
assumes that the correlation length 1=m is much smaller
than the other length scales, and hence it breaks down in
the massless limit. This becomes manifest as a 1=m diver-
gence in h �c ðxÞc ðxÞi, which cancels the factor of m, and
gives a finite contribution in the massless limit. Since the
renormalized stress tensor is the difference between the
bare and the adiabatic quantity, it also acquires a finite
trace in the massless limit. The trace of the stress tensor
obtained in this way correctly reproduces the conformal
anomaly,

T


 ¼ 1

2880�2

�
� 7

4
R����R

���� � 2R��R
��

þ 5

4
R2 � 3hR

�
: (21)

C. A choice of background

It is not possible to carry out the computation of the bare
currents in a completely arbitrary background, even with
time-translation invariance and spatial-rotation invariance.
Even restricting to an asymptotically anti–de Sitter space is
not enough: some knowledge of the interior is needed.
Therefore, we choose to target a class of metrics,

ds2 ¼ �e2t ðrÞdt2 þ e2rðrÞdr2 þ e2sðrÞd�2
2; (22)

that are smoothly connected to global anti–de Sitter space

ds2 ¼ L2

4
�2 cos

2 �r
2

�
�dt2 þ dr2 þ 4

�2
sin 2 �r

2
d�2

2

�
: (23)

That is, we take r 2 ð0; 1Þ, with es vanishing linearly at
r ¼ 0 and all the sections e� diverging like ð1� rÞ�1 at

r ¼ 1. It is useful to think of the spatial sections of this
class of metrics as 3-balls, with the center at r ¼ 0, and the
edge at r ¼ 1, where the conformal factor diverges.
The spherical spatial sections should be regarded as a

(covariant and natural) IR regulator, which replaces the
artificial hard wall zm employed in Ref. [15], following
Ref. [14]. Such a regulator has been used to good effect
in the analogous problem of charged scalar fields in
AdS [22].4 A noncovariant regulator such as a hard wall
is an obstruction to building a covariant bulk stress tensor.
This regulator has the further virtue (in contrast to the hard
wall) of uniquely specifying the IR boundary conditions on
the bulk spinor fields, simply by regularity.
A further practical reason for this choice is that this class

of spaces is compact from the point of view of the Dirac
Hamiltonian, which therefore has a discrete spectrum and
normalizable eigenfunctions. This is a big advantage for a
numerical computation, which is lost, for example, in
spaces with a horizon in the interior.
We will take the gauge field to have the form

A ¼ �ðrÞdt; (24)

and the chemical potential � sets the boundary condition
for �,

�ð1Þ ¼ �: (25)

From the dual point of view, this choice of background is
analogous to defining the field theory on a sphere of radius
R ¼ esð1ÞL, instead of flat space. The sphere is just an
infrared regulator, whose effect becomes negligible in the
limit � � 1

R .

4We thank Simon Gentle for useful discussions of this point.
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The fermion field is a free field, so all the information is
contained in the Green’s function

Sðx; x0Þ � hc ðxÞ �c ðx0Þi; (26)

which satisfiesffiffiffi
g

p ði� �D�mÞSðx; x0Þ ¼ i	ðx� x0Þ: (27)

The currents, in terms of the Green’s function, are given by

j�ðxÞ ¼ �Tr½��Sðx; x0Þ�; (28)

T��ðxÞ ¼ �Tr½�ð�iD�ÞSðx; x0Þ�: (29)

Specifying to our background, we introduce the
Hamiltonian Dirac matrices,

�t¼�t; �i¼�t�i; ð��Þy¼��; f��;��g¼	��;

(30)

and the covariant derivatives are

Dt ¼ @t þ i�þ e0t
2er

�r; (31)

Dr ¼ @r; (32)

D
 ¼ @
 � e0s
2er

�r�
; (33)

D� ¼ @� � sin

e0s
2er

�r�� � 1

2
cos 
�
��: (34)

Since our background is static, it is advantageous to
move to a Hamiltonian picture by defining

Sðx; x0Þ ¼ ½g�1
4
ffiffiffiffi
et

p �xGðx; x0Þ�t½g�1
4
ffiffiffiffi
et

p �x0 ; (35)

so that G satisfies the equation

ði@t �HÞGðx; x0Þ ¼ i	ðx� x0Þ; (36)

with

H ¼ �i
et
er

�r

�
@r þ e0t

2et
� e0r

2er

�

� i
et
es

�
�
@
 þ �� 1

sin 

@�

�
þ�þmet�

t: (37)

The Hamiltonian H is self-adjoint with respect to the
scalar product

ðc 1; c 2Þ ¼
Z

drd
d�c y
1 ðr; 
; �Þc 2ðr; 
;�Þ: (38)

In our background, only the time component of the
current and the diagonal components of the stress tensor
have a nonzero expectation value. In terms of the
Hamiltonian Green’s function G these are given by

Jt ¼ �fx;x0 Tr½Gðx; x0Þ�; (39)

Tt
t ¼ �ifx;x0 Tr

��
@t þ i�þ e0t

2er
�r

�
Gðx; x0Þ

�
; (40)

Tr
r ¼ �ifx;x0

et
er

Tr

��
�r@r � �r e0r

2er
� �r e

0
s

es

�
Gðx; x0Þ

�
;

(41)

T


¼�ifx;x0

et
es

Tr

��
�
@
��
 cos


2sin

þ�r e

0
s

2er

�
Gðx;x0Þ

�
;

(42)

T�
� ¼ �ifx;x0

et
es

Tr

��
��

@�
sin


þ �
 cos 


2 sin 


þ �r e0s
2er

�
Gðx; x0Þ

�
; (43)

where

fx;x0 ¼ g�1
4ðxÞg�1

4ðx0Þ etðx
0Þ

etðxÞ ; (44)

and all other sections are evaluated at x.

D. Adiabatic expansion

We now show how the Green’s function, and hence the
bare currents, can be computed within a small derivative—
or adiabatic—expansion [23].
To outline the idea behind the computation, it is useful to

consider the simpler problem

½�r2 þm2 þ VðxÞ�Gðx; x0Þ ¼ 	ðx� x0Þ: (45)

We take V to be varying slowly compared to the correlation
length 1=m, and we expand VðxÞ about x0. Then, Eq. (45)
can be written symbolically as

½G�1
0 þ A�G ¼ 1 (46)

with

G�1
0 ¼ �r2 þm2; (47)

A ¼ V;iðx0Þðx� x0Þi þ 1

2
V;ijðx0Þðx� x0Þiðx� x0Þj þ � � � ;

(48)

and it is formally solved by a series in A,

G ¼ G0

X1
n¼0

ð�AG0Þn: (49)

The matrix products in this series actually stand for
convolutions, so it is useful to go to momentum space,

Gðx; x0Þ ¼
Z

}dkeik�ðx�x0ÞGðk; x0Þ; (50)

where }k � dk
2� . So,
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G�1
0 ¼ k2 þm2; (51)

A ¼ V;iðx0Þi@ki �
1

2
V;ijðx0Þ@ki@kj þ � � � : (52)

Using the identity

@kiG0 ¼ �2kiG
2
0; (53)

we have

Gðk; x0Þ ¼ G0 þ ð2iV;iki � V;iiÞG3
0 þ ð4V;ijkikj

þ 2V;iV;jÞG4
0 � 12V;iV;jkikjG

5
0 þ � � � ; (54)

where we have retained terms involving up to two deriva-
tives of the potential. Now we revert to position space.
We have

Z
}dkeik�sG0ðkÞ ¼ 1

ð2�Þd2 Fd�2ðs; mÞ;

Fnðs;mÞ ¼
�
m

s

�n
2
Kn

2
ðmsÞ;

(55)

where si ¼ xi � x0i and s ¼ ffiffiffiffiffiffiffiffi
sisi

p
, and we use the identities

Z
}
dkeik�sGn

0ðkÞ ¼ � 1

2mðn� 1Þ
@

@m

Z
}
dkeik�sGn�1

0 ðkÞ;
(56)

Z
}dkkie

ik�sfðkÞ ¼ �i@si

Z
}dkeik�sfðkÞ (57)

to carry out the Fourier transform. The final result is

ð2�Þd2Gðx; x0Þ ¼ Fd�2 �
�
1

4
V;isi þ 1

12
V;ijsisj

�
Fd�4

�
�
1

24
V;ii � 1

32
V;iV;jsisj

�
Fd�6

þ 1

96
V;iV;iFd�8 þ � � � : (58)

Then we can expand in series for small s, and we have,
for d ¼ 4,

ð2�Þ2Gðx; x0Þ ¼ 1

s2
þm2

4
L�m2

4
� 1

24
V;iim

2 þ 1

48

V;iV;i

m4

þ 1

8
V;isiLþm4

32
s2L� 1

96
V;iis

2L

þ 1

24
V;ijsisjLþOðs2Þ; (59)

where L ¼ logm2s2=4þ �E. A structure similar to that of
Eq. (16) starts to be apparent.

A computation along the same lines can be carried out
for the fermionic Green’s function

�
i@t þ i

et
er

�r

�
@r þ e0t

2et
� e0r

2er

�
þ i

et
es

�
�
@


þ �� 1

sin 

@�

�
���met�

t

�
G ¼ i	: (60)

It involves the same steps, including the integrals (after
Wick rotation), but is algebraically much messier. In fact, it
is necessary use a computer algebra system, and we found
it advantageous to specify the direction of point splitting
from the beginning. Once the Green’s function is found,
the currents can be computed by taking the opportune
derivatives. The result is reported in Appendix A.
As an alternative to the method described, there are also

covariant ways to carry out the adiabatic expansion [21],
which, however, are more difficult to implement on the
computer.

E. Computation of the bare currents

We compute the bare currents by expanding the Green’s
function on a basis of eigenfunctions of the Dirac
Hamiltonian H. The problem can be reduced to one
dimension by exploiting translational invariance in the
time direction, and the spherical symmetry of the spatial
sections.
In order to exploit the spherical symmetry, we must

introduce spinor spherical harmonics. For the two-sphere,
they are solutions of the eigenvalue equation�

�2ð�i@
Þ þ �1 1

sin 

ð�i@�Þ

�
Y‘mð
;�Þ ¼ ‘Y‘mð
;�Þ:

(61)

The spectrum is quantized, with ‘ 2
fþ1;�1;þ2;�2; . . .g, and m labels the degeneracy 2j‘j
of each eigenspace. The spinor harmonics are orthonormal
and complete,Z

d
d�Yy
‘mð
;�ÞY‘0m0 ð
;�Þ ¼ 	‘‘0	mm0 ; (62)

X
‘m

Y‘mð
;�ÞYy
‘mð
0; �0Þ ¼ 	ð
� 
0Þ	ð���0Þ; (63)

and they also satisfy (note that the sum runs only over the
degeneracy index m)

X
m

Yy
‘mð
;�ÞY‘mð
;�Þ ¼ ‘

2�
sin ð
Þ; (64)

X
m

Yy
‘mð
;�Þ�2ð�i@
ÞY‘mð
;�Þ ¼ sign‘

‘2

4�
sin ð
Þ; (65)

X
m

Yy
‘mð
;�Þ�1

�i@�
sin 


Y‘mð
;�Þ ¼ sign‘
‘2

4�
sin ð
Þ:

(66)
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We organize the Dirac matrices as

�r ¼ 1 � �2; �
 ¼ �2 � �3;

�� ¼ �1 � �3; �t ¼ 1 � �1;
(67)

and we exploit this direct product structure to write

Gðx; x0Þ ¼
Z

}!e�i!ðt�t0ÞX
‘m

½Y‘mð
;�ÞYy
‘mð
0; �0Þ�

�G!‘ðr; r0Þ; (68)

where G!‘ is the Green’s function of a simple one-
dimensional differential operator,

ð!�H‘ÞG!‘ðr; r0Þ ¼ i	ðr� r0Þ; (69)

with

H‘ ¼ �i�2 et
er

�
@r þ e0t

2et
� e0r

2er

�
þ ‘

et
es

�3 þ�þmet�
1:

(70)

H‘ is a self-adjoint operator, with an orthonormal and
complete set of real eigenfunctions. In the class of back-
grounds we are considering, the spectrum is discrete, and
we label it with an index n,

H‘c n‘ðrÞ ¼ !n‘c n‘ðrÞ: (71)

Then we have

Gðx; x0Þ ¼
Z

}!
ie�i!ðt�t0Þ

!�!n‘

X
n‘m

½Y‘mð
;�ÞYy
‘mð
0; �0Þ�

� ½c n‘ðrÞc y
n‘ðr0Þ�: (72)

We perform a Wick rotation, and we take the point
splitting to be along the imaginary time direction, i.e.
t� t0 ¼ 	is. Then we symmetrize with respect to the
sign of s and we have

Gðx;x0Þ¼X
n‘m

�n‘ðsÞ½Y‘mð
;�ÞYy
‘mð
0;�0Þ�

�½c n‘ðrÞc y
n‘ðr0Þ�; (73)

where

�n‘ðsÞ ¼ 1

2
sign!n‘e

�js!n‘j: (74)

Now we substitute in the expression for the currents.
To keep things as easy as possible, we let r ¼ r0, 
 ¼ 
0,
� ¼ �0, that is, we do not point split in the other direc-
tions. Using the spinor harmonics identities, and the reality
of wave functions, we have

Jt ¼ 1

etere
2
s

X
n‘

j‘j
2�

�n‘ðsÞc y
n‘ðrÞc n‘ðrÞ; (75)

Tt
t ¼ 1

etere
2
s

X
n‘

j‘j
2�

�n‘ðsÞð�!n‘ þ�Þc y
n‘ðrÞc n‘ðrÞ;

(76)

Tr
r ¼ 1

etere
2
s

X
n‘

j‘j
2�

�n‘ðsÞ eter c
y
n‘ðrÞð�i�2Þc 0

n‘ðrÞ; (77)

T


 ¼ T�

� ¼ 1

etere
2
s

X
n‘

j‘j
2�

�n‘ðsÞ ‘2
et
es

c y
n‘ðrÞ�3c n‘ðrÞ:

(78)

With these manipulations, the computation of the bare
currents has been reduced to the problem of diagonalizing
the one-dimensional Hamiltonian H‘ and carrying out the
mode sums above. Both tasks can be carried out numeri-
cally, and the second is feasible especially thanks to the
exponential suppression of the high-energy modes, due to
the factor �n‘ðsÞ.

F. Diagonalization of the Dirac Hamiltonian

Let us now show how the Hamiltonian H‘ can be diago-
nalized numerically. The spectrum and the eigenfunctions
must be computed with very high accuracy, and efficiently.
Using a finite-differences discretization of the Hamiltonian
is not sufficient for the purpose. It is necessary to resort to
spectral methods [24], which consist in approximating the
eigenfunctions with polynomials of high degree, instead of
a set of values on a uniformly spaced grid. This allows a
better representation of the derivative operator, and yields a
spectrum and eigenfunctions accurate to order e�n, where
n is both the degree of the approximating polynomial and
the rank of the matrix to be numerically diagonalized. This
should be compared with the accuracy of finite-differences
methods, which is only polynomial in n.
In order to use spectral methods, the metric must be

further specified. In fact, the background (22) possesses
residual reparametrization invariance, which we use to
impose the constraint etðrÞ ¼ erðrÞ, so that the metric takes
the form

ds2 ¼ 1

�2ðrÞ ð�dt2 þ dr2 þ �2ðrÞd�2
2Þ; A ¼ �ðrÞdt:

(79)

Demanding a space with the same asymptotics as global
AdS, we take

�� r; �� b0r
0; for r ! 0; (80)

�� a0ð1� rÞ0; �� 1� r

L
; for r ! 1; (81)

�ð�rÞ ¼ ��ðrÞ; �ð�rÞ ¼ �ðrÞ; �ð�rÞ ¼ �ðrÞ:
(82)

HOW TO CONSTRUCT A GRAVITATING QUANTUM . . . PHYSICAL REVIEW D 88, 066006 (2013)

066006-7



The reparametrization invariance could be used to im-
pose a different constraint instead of er ¼ et, leading to
different asymptotics of the sections. However, this choice
has the big advantage that all the terms in the Hamiltonian

H‘ ¼ �i�2@r þ ‘

�ðrÞ�
1 þ�ðrÞ þ m

�ðrÞ�
3 (83)

are analytic for r 2 ½0; 1�. This is crucial for the possibility
of using spectral methods.

The eigenfunctions, however, are not analytic at r ¼ 1.
To have a good polynomial approximation, the nonanalytic
behavior at the boundaries must be determined and
factored out. For r ! 0, retaining only the leading terms,
we have

H��i�2@r þ ‘

r
�1; c ðrÞ � a1

a2

� �
r
; (84)

and there are two solutions:

a1 ¼ 0; 
 ¼ ‘ or a2 ¼ 0; 
 ¼ �‘: (85)

The first solution is normalizable for ‘ > 0, the second for
‘ < 0. For r ! 1 we have

H��i�2@rþ mL

1� r
�3; c ðrÞ� b1

b2

 !
ð1� rÞ�: (86)

There are two solutions:

b1 ¼ �b2; � ¼ mL or b1 ¼ b2; � ¼ �mL:

(87)

The first solution is normalizable for mL>�1=2, the
second for mL< 1=2.

Finally, we notice that the Hamiltonian has parity
symmetry,

�3Hð�rÞ�3 ¼ HðrÞ; (88)

and hence the eigenfunctions can be taken to have definite
parity,

c ð�rÞ ¼ 	�3c ðrÞ: (89)

We can collect all this information by writing the nor-
malizable5 eigenfunctions as

c ðrÞ ¼ rj‘jð1� r2ÞmL�ðrÞ; (90)

where �ðrÞ is analytic at r ¼ 0 and at r ¼ 1 and it satisfies

�ð�rÞ ¼ �signð‘Þ�3�ðrÞ; �1ð1Þ þ�2ð1Þ ¼ 0:

(91)

Therefore, � can be well approximated by a polynomial,
and we can construct a complete basis of spinors
with polynomial components that satisfies the boundary
conditions and parity constraints:

�aðrÞ ¼
þQa�1ð1ÞQaðrÞ
�Qað1ÞQa�1ðrÞ

 !
odda;

‘ > 0;

�aðrÞ ¼
�Qað1ÞQa�1ðrÞ
þQa�1ð1ÞQaðrÞ

 !
even a;

‘ > 0;

(92)

�aðrÞ ¼
�Qað1ÞQa�1ðrÞ
þQa�1ð1ÞQaðrÞ

 !
odda;

‘ < 0;

�aðrÞ ¼
þQa�1ð1ÞQaðrÞ
�Qað1ÞQa�1ðrÞ

 !
even a;

‘ < 0;
;

(93)

where the Qa are polynomials, such that Qa has degree
a 2 f0; 1; 2; . . .g and the same parity as a. Since H‘ is self-
adjoint with respect to the scalar product

hc 1jc 2i ¼
Z 1

�1
drc y

1 ðrÞc 2ðrÞ

¼
Z 1

�1
drr2j‘jð1� r2Þ2mL�y

1 ðrÞ�2ðrÞ
� ð�1; �2Þ; (94)

we take the polynomials Qa to be orthogonal with respect
to the same scalar product,

ðQa;QbÞ ¼ ha	ab: (95)

These may be constructed from the Jacobi polynomials
as follows:

Q2aðrÞ ¼ P
ð2mL;j‘j�1

2Þ
a ð2r2 � 1Þ; (96)

Q2aþ1ðrÞ ¼ rP
ð2mL;j‘jþ1

2Þ
a ð2r2 � 1Þ: (97)

Now we cast the differential operator H‘ to a rank-n
matrix Hab, by projecting it to the Hilbert space

spanned by the first n elements of the basis c aðrÞ ¼
rj‘jð1� r2ÞmL�aðrÞ. We have

Hab ¼ hc ajH‘jc bi
¼
Z 1

0
drr2j‘jð1� r2Þ2mL

�
1

2
ð�a2�

0
b1 ��a1�

0
b2

��0
a2�b1 þ�0

a1�b2Þ þ ‘

�ðrÞ ð�a2�b1 þ�a1�b2Þ

þ m

�ðrÞ ð�a1�b1 ��a2�b2Þ

þ�ðrÞð�a1�b1 þ�a2�b2Þ
�
: (98)

Even when using orthogonal polynomials, the basis
c a turns out to be not orthogonal because it involves
linear combinations of polynomials of different degree.
Therefore, it has a nontrivial overlap matrix

5Here we consider the case mL>� 1
2 . The other case mL<

þ 1
2 is equivalent.
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Gab ¼ hc ajc bi ¼
Z 1

0
drr2j
jz2mð�a1�b1 þ�a2�b2Þ:

(99)

Given the matrices H, G, the approximate eigen-
functions of H‘ are obtained by solving the generalized
eigenvalue problem

Hv ¼ !Gv: (100)

Since H is Hermitian and G is Hermitian and positive
definite, the eigenvalues! are real and the vectors v form a
basis. The matrixU that has the eigenvectors v for columns
satisfies6

U?
iaGabUjb ¼ 	ij; U?

iaHabUjb ¼ !i	ij: (101)

Therefore,!i are the approximate eigenvalues of the Dirac
Hamiltonian H‘, and the corresponding approximate
eigenfunctions are given by

c iðrÞ ¼ rj
jð1� r2ÞmUia�aðrÞ: (102)

The question remains of how to compute the matrix
elements Gab and Hab. By using the recursion relation
for the polynomials Qa, it is possible compute analytically
the quantities

ha ¼ ðQa;QaÞ; Kab ¼ ðQa;Q
0
bÞ � ðQ0

a; QbÞ; (103)

with which it is then possible to directly compute Gab and
the matrix elements of the kinetic term of the Hamiltonian.
The terms involving �, � and � instead can be reduced
to the form ðQa; fðrÞQbÞ. We compute them [25] by
expanding Qa, Qb over approximate eigenfunctions of
the position operator r, also called cardinal functions.
These are polynomials Ci such that

ðCi; CjÞ ¼ 	ij; ðCi; rCjÞ ¼ ri	ij: (104)

They can be obtained as linear combinations of the poly-
nomials Qa by diagonalizing the matrix

Rab ¼ ðQa; rQbÞffiffiffiffiffiffiffiffiffiffi
hahb

p ; (105)

which can be computed analytically, again using the
recursion relation. Let V be the orthogonal matrix that
diagonalizes R: VyRV ¼ r. Then

QaðrÞ ¼
ffiffiffiffiffi
ha

p
VaiCiðrÞ; (106)

and we have

ðQa; fQbÞ ¼
ffiffiffiffiffi
ha

p
UaiðCi; fðrÞCjÞUbj

ffiffiffiffiffi
hb

p
: (107)

Now the operator r inside f is acting against an approxi-
mate eigenfunction, and we have

ðQa; fQbÞ ’
ffiffiffiffiffi
ha

p
UaifðriÞUbi

ffiffiffiffiffi
hb

p
: (108)

This approximation becomes an equality if the function f
is a polynomial and the total degree of QaQbf is less than
2n. Otherwise it allows for an error, which is exponentially
small in n, provided f is analytic over the interval ½�1; 1�.
Using this approximate integration, the matrix elements of
Hab can be computed.

G. Near-boundary singularity

It is well known from the literature on Casimir energy
[26] that quantum fields in spaces with a boundary have
peculiar behavior. This issue is very relevant to the prob-
lem at hand, because AdS is a space with a boundary. It
turns out that the boundary at r ¼ 1 causes the currents to
approach their s ¼ 0 profile in a nonuniform way, more or
less like

fðr; sÞ ¼ r
1
s for 0< r < 1 (109)

approaches its limit fðr; 0Þ ¼ 0.
The top panel in Fig. 1 exemplifies this phenomenon. It

shows the charge density � � �4Jt in pure AdS geometry,
with an electric potential7

� ¼ V

16
ð15r2 � 5r4 þ r6Þ: (110)

The charge density is plotted at nonzero s, but after the
adiabatic expansion has been subtracted, so it has a finite
limit as s ! 0. On the left, � is shown as a function of r, for
several values of s (the bluer the smaller). On the right � is
shown as a function of s, for several values of r (the bluer
the closer to the boundary). The r-profiles approach
nonuniformly a limiting flat curve. We find that this kind
of behavior is present whenever �0ð1Þ � 0. Intuitively, it
can be explained as a layer of charge at r ¼ 1 induced by
the electric field at the boundary through vacuum
polarization.8

Although the s ! 0 limit is well defined and finite, the
fact that it is approached nonuniformly makes it extremely
hard to reach in practice. In fact, the computational cost
grows exponentially as s decreases, because more and
more wave functions must be retained to compute the
bare currents. This would put beyond reach the computa-
tion of the currents near the boundary.
Fortunately, the contribution to the current that comes

from the boundary conditions, and that vanishes nonuni-
formly at s ¼ 0, can be computed analytically and sub-
tracted. The plot at the bottom of Fig. 1 shows � after the
subtraction of

�� ¼ �0ð1Þ
6�2s

�
3

�
1þ 4

z2

s2

�
tan�1

�
s

2z

�
� s

z

�
1þ 6

z2

s2

��
;

z ¼ 1� r: (111)

6Note that U is not unitary.

7This potential has �0ð1Þ � 0, �00ð1Þ ¼ �ð3Þð1Þ ¼ 0.
8This layer is a fictitious, finite-cutoff effect that disappears as

s ! 0, but was mistaken for a real effect in Ref. [15].
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the nonuniform singularity has been removed. This coun-
terterm correctly accounts for the finite-s effect of the
boundary conditions, without altering the s ! 0 limit,
because it vanishes at s ¼ 0 for any r 2 ½0; 1Þ. After this
subtraction, the limit s ! 0 is easily and safely taken by
extrapolation.

There are also nonuniform singularities in the stress

tensor, when �ð3Þð1Þ � 0 or, for m � 0, singularities pro-

portional to �0ð1Þ and �ð3Þð1Þ. For each of these singular-
ities, a boundary counterterm like Eq. (111) must be and
has been derived.

These counterterms can be obtained using an approach
similar to the adiabatic expansion, assuming that the length
scale over which the background varies is much larger than
both the distance z ¼ 1� r from the boundary and the
point-splitting separation s. Using the simple example

½�@2z �r2 þ Vðz; xÞ�Gðz; x; z0; x0Þ ¼ 	ðz� z0Þ	ðx� x0Þ;
(112)

we can expand for small z and small x� x0, and write the
previous equation as

½G�1
0 þ A�G ¼ 1; (113)

with

G�1
0 ¼ �@2z �r2; (114)

A ¼ Vð0; x0Þ þ V;zð0; x0Þzþ V;ið0; x0Þðx� x0Þi þ � � � :
(115)

The Green’s function is given by

G ¼ G0

X1
n¼0

ð�AG0Þn; (116)

but, in this case, G0 must account for the boundary con-
ditions on the fields at z ¼ 0. For example, for Dirichlet
boundary conditions,

G0ðz; x; z0; x0Þ ¼ 2
Z

}q}d�1p
sin ðqzÞ sin ðqz0Þeipðx�x0Þ

q2 þ p2
:

(117)

Because there is no translational invariance, it is better to
stay in position space in the z direction, so we write

G0ðz; x; z0; x0Þ ¼
Z

}
d�1pGpðz; z0Þeipðx�x0Þ; (118)

where

Gpðz; z0Þ ¼
(� 1

p sinh ðpzÞe�pz0 for z < z0;

� 1
p sinh ðpz0Þe�pz for z > z0:

(119)

Let us consider the contribution of the term V;zð0; x0Þ to
the Green’s function G. We have

�Gðz; x; z0; x0Þ ¼ �
Z

}d�1peipðx�x0Þ



Z 1

0
d�Gpðz; �ÞV;z�Gpð�; z0Þ: (120)
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FIG. 1 (color online). Near-boundary behavior of the charge density, before (top) and after (bottom) the subtraction of a boundary
counterterm. On the left the radial (r) dependence is plotted, and the regulator (s) dependence is encoded in the color; vice versa on the
right. After the subtraction the convergence in s is completely uniform in r and the extrapolation to s ¼ 0 is robust.
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For simplicity, we let z0 ¼ z and we have

�Gðz; x; z; x0Þ
¼ �V;z

Z
}
d�1peipðx�x0Þ z

4p3
½1� ð1þ pzÞe�2pz�

¼ V;zz

4�2

�
log

�
4z2

s2
þ 1

�
þ 2

z

s
tan�1 s

2z

�
; (121)

where the last result is specific to d ¼ 4, and where
s ¼ jx� x0j.

If we expand this expression at small s, we find the
divergent term

�Gðz; x; z; x0Þ � �V;zz

4�2
log

s2

4z2
: (122)

This term was already obtained from the adiabatic expan-
sion. It is the second term in Eq. (59), with m2 replaced by
V;zz. In fact, VðzÞ is locally a mass term m2ðzÞ, and

the current expansion is reproducing the divergence
m2ðzÞ log s through its series expansion about z ¼ 1.

If we subtract both this logarithmic divergence and the
Oðs0Þ term, we obtain a quantity that vanishes as s ! 0,

�Gðz; x; z; x0Þ ¼ V;zz

4�2

�
log

�
1þ s2

4z2

�
þ 2

z

s
tan�1 s

2z
� 1

�
;

(123)

and which would be a boundary counterterm for the coin-
cidence limit of the Green’s function. Unfortunately, this
example is limited in that this expression vanishes uni-
formly, so this counterterm is not necessary. However, by
the same means but more complicated algebra, it is pos-
sible to compute the counterterm (111), which instead is of
crucial importance.

III. SOLUTION OF EINSTEIN’S EQUATIONS

Given an electromagnetic current and a stress tensor
with enough symmetries (‘‘cohomogeneity one’’), the
solution of Einstein’s and Maxwell’s equations is a rela-
tively standard problem. Let us briefly describe the method
we used.

With the ansatz

ds2 ¼ 1

�2ðrÞ ð�dt2 þ dr2 þ �2ðrÞd�2
2Þ; A ¼ �ðrÞdt;

(124)

the equations (
D�F

�� ¼ q2J�;

G�� þ�g�� ¼ �2T��

(125)

become

8>>>>>>>>>>><
>>>>>>>>>>>:

�4
�
�00 þ 2�0

� �0
�

¼ q2Jt;

�2
�
2�00
� � 4�0�0

�� þ �02�1
�2 � 2 �00

� þ 3 �02
�2

�
� 3

L2 ¼ �2Tt
t;

�2
�
� 4�0�0

�� þ �02�1
�2 þ 3 �02

�2

�
� 3

L2 ¼ �2Tr
r;

�2
�
�00
� � 2�0�0

�� � 2 �00
� þ 3 �02

�2

�
� 3

L2 ¼ �2Ts
s;

(126)

where L is the radius of the asymptotic AdS geometry, that
is, � ¼ �3=L2. Because of spherical symmetry, we have
T



 ¼ T�
�, and we defined Ts

s � T


 ¼ T�

�.

The first equation is simply Gauss’ law; it is a linear
equation, and does not require further discussion. The
three Einstein’s equations are not independent, because
the Einstein tensor is covariantly conserved, that is,
D�G

�
� ¼ 0 identically. This fact constrains the stress

tensor to be convariantly conserved too,

Tr
r;r þ

�
2
�0

�
� 3

�0

�

�
Tr

r þ �0

�
Tt

t þ 2

�
�0

�
� �0

�

�
Ts

s ¼ 0;

(127)

and this reduces the independent components from three
to two.
We demand that �ð0Þ ¼ 0 (regularity in IR) and

�ð1Þ ¼ 0 (asymptotically AdS in UV). This sets the coor-
dinate location of the center of the space (r ¼ 0) and the
boundary (r ¼ 1). It is useful to expand the equations near
these two points to understand the asymptotic behavior of
the sections. In order to do so, some knowledge of the
behavior of the stress tensor is needed, which can be
inferred by computing them explicitly in a few sample
backgrounds. Based on this, we can assume that the stress
tensor is analytic at the boundary, and that Tt

tð1Þ ¼
Tr

rð1Þ ¼ Ts
sð1Þ. This is due to the symmetry of AdS space,

which forces the stress tensor at the boundary to be simply
a correction to the cosmological constant. This correction
comes from the high-energy modes, and hence is indepen-
dent of �, so we absorb it directly into �. The next three
derivatives vanish, so we have

�2Tt
t ¼ t4ð1� rÞ4 þOð1� rÞ5; (128)

�2Ts
s ¼ s4ð1� rÞ4 þOð1� rÞ5; (129)

and

�ðrÞ ¼ a0 � ð1� rÞ2
2a0

þ a3ð1� rÞ3 þ
�
a0L

2

4
ðt4 � s4Þ

þ 1

24a30

�
ð1� rÞ4 þOð1� rÞ5; (130)
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�ðrÞ ¼ 1� r

L
� ð1� rÞ3

6a20L
þ b4ð1� rÞ4 þ

�
L

10
ðt4 � 2s4Þ

þ 1

120a40L

�
ð1� rÞ5 þOð1� rÞ6: (131)

At the center we have

�ðrÞ ¼ r� 1

6b20

�
1

L2
þ �2Ts

sð0Þ � 2

3
�2Tt

tð0Þ
�
r3 þOðr5Þ;

(132)

�ðrÞ ¼ b0 � 1

2b0

�
1

L2
þ 1

2
�2Ts

sð0Þ � 1

6
�2Tt

tð0Þ
�
þOðr4Þ:

(133)

Moreover, since the equations are symmetric under
r ! �r, we can take � to be odd and � and � to be
even, provided that the currents are also even. Since the
currents are even when the sections have definite parity
[see Eq. (89)], this assumption is self-consistent.

The constants a0, a3, b0 and b4 are not fixed by the series
expansion. They are four integration constants, which take
a precise value in the unique solution that matches the two
expansions at the edges. The constant a0 is related to the
radius of the sphere of the boundary theory, whereas a3
and b4 are related to the expectation value of the
boundary stress tensor [27,28], as described in Sec. IV
[see Eq. (137)].

On a more practical level, we solve the equations using
spectral methods. We represent the sections �, � and� as
polynomials of moderate degree. There is some freedom in
choosing what basis to use for the space of polynomials.
We use Chebyshev polynomials of the appropriate parity as
a starting point, and we find it important to take linear
combinations, so that each basis element satisfies

�0ð1Þ ¼ 0; �ð1Þ ¼ 0; �00ð1Þ ¼ 0; �ð1Þ ¼ 0:

(134)

The condition �00ð1Þ ¼ 0 is particularly important for the
stability of Newton’s method.

IV. RESULTS AND DISCUSSION

Let us briefly recapitulate the setup. We are considering
a quantum fermionic field in interaction with classical
gravity and a classical U(1) gauge field, in asymptotically
anti–de Sitter spacetime. The class of backgrounds we are
considering is described by the following ansatz9:

ds2 ¼ 1

�2ðzÞ ½�dt2 þ dz2 þ �2ðzÞd�2
2�; A ¼ �ðzÞdt:

(135)

The AdS boundary is at z ¼ 0, where the conformal factor
�ðzÞ � z=L, and L is the radius of the asymptotic AdS
geometry. We assume that spacetime ends smoothly at
z ¼ zm, and the spatial sections can be visualized as
3-balls with center at z ¼ zm and edge at z ¼ 0. Global
AdS is a metric of this class, with � ¼ sin z

L , � ¼ L cos z
L ,

zm ¼ �L
2 .

From the dual point of view, we are considering a
2þ 1-dimensional conformal field theory, defined on a
sphere of radius R ¼ �ð0Þ. This CFT has a global U(1)
symmetry, for which we turn on a chemical potential � ¼
�ð0Þ, and a fermionic operator charged under the U(1)
symmetry, whose correlation functions we wish to study.
The model depends on four dimensionless parameters:

q, �=L,mL,�R. The U(1) coupling q, the gravity coupling
�=L and the fermion mass mL should be thought of as
parametric labels (like the number of species of fields)
specifying the dual CFT. Then, for a given CFT, dimen-
sionless quantities depend on � and R only through the
combination �R.
The duality allows the computation of several CFT

quantities, particularly the U(1) charge density �b, the
energy density �b, the pressure pb, and the fermion spectral
function. The thermodynamic responses are given by10

�b ¼ ��0ð0Þ; (136)

�b ¼ 1

R
�ð3Þð0Þ � L

3
�ð4Þð0Þ; (137)

pb ¼ � 1

2R
�ð3Þð0Þ þ L

3
�ð4Þð0Þ: (138)

For what concerns the spectral function, it is important
to notice that the CFT is defined on a sphere, and hence the
spectrum of the many-body Hamiltonian is discrete, and
single-particle states are labeled by the partial wave num-
ber ‘. Consequently, the fermion spectral function

Að‘;!Þ ¼ X
�

½jh�jcy‘ jgdij2	ð!� E�Þ

þ jh�jc‘jgdij2	ð!þ E�Þ� (139)

is composed of a discrete set of delta functions that track
the many-body eigenvalues. However, for �R � 1 the
effect of the infrared regulator R becomes negligible, and
the flat-space spectral function is recovered. In fact, in this
regime, one can identify ‘=Rwith a continuous momentum

9These coordinates are related to the coordinates in Eq. (22) by
a rigid rescaling t ! zmt, z ! zmð1� rÞ. The discussion of the
results is slightly more transparent in these coordinates.

10The result for �b and pb requires holographic renormalization
as described in Ref. [28].
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label k, and the delta functions merge into a continuum.
Hence, the regime �R � 1 is of the greatest interest.
Holographically, the location of the delta functions in the
k-! plane coincides with the spectrum of the bulk Dirac
Hamiltonian.

As an example of how the continuum is approached,
consider Fig. 2. The plots refer to a frozen global AdS
geometry, with a self-consistently determined gauge field,
and display the location of the delta-function peaks of the
spectral function. As �R increases, a continuum emerges
in the light cone !2 > k2, outside of which a number of
isolated bands remain. These results agree with our pre-
vious findings in Ref. [15], but here they have been derived
with far greater care for all the regularization and renor-
malization issues, therefore giving an important check of
the correctness of our previous work. For an interpretation
see Ref. [15].

Moving to the more interesting case of a dynamic met-
ric, Fig. 3 shows the profiles for�ðzÞ,�ðzÞ and�ðzÞ in a set
of self-consistent solutions. Without loss of generality, we
set �L ¼ 1. Then, by dialing zm, we are able to vary the
radius R of the boundary sphere. If R< 3

2L, the fermions

do not contribute any charge or energy density, and hence
the background is given by global AdS geometry with
constant electric potential,

ds2 ¼ L2

R2sin 2 z
R

�
�dt2 þ dz2 þ R2cos 2

z

R
d�2

2

�
;

A ¼ 1

L
dt:

(140)

This is because the spectrum of the Dirac Hamiltonian in
global AdS is discrete and gapped, the lowest positive-
energy state being !0 ¼ 3

2R . If the electric potential is

smaller than this threshold, no charge is induced in the
bulk. From the dual point of view, the infrared regulator

opens a gap of order 1=R in the spectrum of charged
excitation, and hence the system is incompressible for
sufficiently small R. The critical solution R ¼ 3=2 is
shown with a dashed line in Fig. 3.
As R goes beyond the critical value, the fermions start

contributing nonzero charge and energy density, which
then backreacts on the gauge field and the geometry.

FIG. 2 (color online). Example of the spectral function: �2=L2 ¼ 0:0, q2 ¼ 4:0, mL ¼ 0:0. Compare with Fig. 3 of Ref. [15]. Only
discrete values of k ¼ ‘=R carry spectral weight, but here lines are shown as if k were a continuous variable. The difference is
negligible as �R ! 1.
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FIG. 3 (color online). Self-consistent profiles for �2=L2 ¼ 0:1,
q2 ¼ 1:0, mL ¼ 0:0.
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The expectation is that, at large R, the background would
approach some asymptotic, R-independent behavior, at
least for z � zm. What we discover instead is that rather
soon R stops growing as zm is increased and, more or less at
the same point, the iterative algorithm becomes unstable
and fails to converge. A notable feature of this instability is
that, iteration after iteration, the value �ðzmÞ grows beyond
bounds, suggesting that the system would like to develop a
horizon in the interior.

Close to the instability, the present method of solution is
not reliable enough to determine whether there is an actual
singularity or merely an algorithmic problem, but it gives
some indications that the first option is the correct one.
Therefore, to better investigate the issue, we solve the
problem in the same setup, but within the Thomas-Fermi
approximation (previously used with spherical spatial ge-
ometry in Refs. [29,30]). The results are shown in Figs. 4
and 5.11 It is manifest that �ðzmÞ diverges at a finite value
of zm, over the whole range of q

2 and �2=L2 that we have
explored, indicating the presence of an actual singularity.

The points in the right plot display the approximate loca-
tion of the onset of the instability of the iterative algorithm,
and agree quite well with the phase boundary determined
by the Thomas-Fermi approximation.
Based on these results, we conclude that our model

develops a physical singularity as zm increases, such that
�ðzmÞ diverges at a finite value of zm. While this phase
transition may be interesting in itself, it precludes the
possibility of studying the large-�R limit with the current
method of solution. In fact, the geometry at �R � 1 is
likely to have a zero-temperature horizon or some other
singularity in the interior, and this would cause the Dirac
operator to be noncompact. While it may be possible to
generalize the current method of solution to a Hamiltonian
with a continuous spectrum, it is beyond the scope of the
present article.
The accuracy with which the Thomas-Fermi approxi-

mation is able to predict the location of the numerical
instability raises questions on its regime of validity.
According to Ref. [10], the Thomas-Fermi approximation
is justified in the regime mL � 1, but we find it to be a
good description even atmL ¼ 0. In Fig. 5 we compare the
currents computed within the Thomas-Fermi approxima-
tion against the exact ones, in a self-consistent background.
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FIG. 4 (color online). Location of the phase transition in the Thomas-Fermi approximation. Left: �ðzmÞ against zm. From red to blue,
q2 ¼ 0:2, 0.4, 0.6, 0.8, �2=L2 ¼ 0:1,mL ¼ 0:0. Right: The critical zm as a function of q2. The points show the approximate location of
the numerical instability. From red to blue, �2=L2 ¼ 0:01, 0.05, 0.1, 0.5, mL ¼ 0:0.

2 4 6 8
z L

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035
,p,

5 10 15
z L

0.005

0.010

0.015

0.020

0.025

0.030

0.035
,p,

5 10 15 20
z L

0.005

0.010

0.015

0.020

0.025

0.030

0.035
,p,

FIG. 5 (color online). Comparison of the Thomas-Fermi approximation (dashed line) against the exact answer (solid line). q2 ¼ 1:0,
�2=L2 ¼ 0:1, mL ¼ 0:0. From left to right, zm=L ¼ 8, 16, 20.

11Note that the IR geometry of these Thomas-Fermi solutions
still satisfies the boundary conditions (132) and (133); it is not a
Lifshitz geometry as in the Poincaré case.
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It is apparent that, as zm grows, the Thomas-Fermi
approximation becomes better. On the other hand, the
approximation should be consistent if locally

jrkFðxÞj
k2FðxÞ

� 1; (141)

which in the current setup (mL ¼ 0) translates to

1

��2

d

dz
ð��Þ � 1: (142)

This condition breaks down if � diverges, as we have seen
happens at a finite critical value of zm. Near this critical
value, it is not possible to reliably compute the exact
answer, so we have no way of verifying this breakdown.
We may summarize our present understanding of the
Thomas-Fermi approximation by saying that it is inade-
quate at small zm, it improves at larger values, and probably
breaks down near the critical zm.

We end this paper with a discussion of possible future
directions.

(i) The phase transition that we observe in the
Thomas-Fermi approximation certainly deserves
further investigation, and currently lacks a clear
holographic interpretation. We emphasize that it is
a zero-temperature phase transition different than the
one described in Ref. [13]. It appears to be a
confinement-deconfinement transition [3,31] driven
by the fermion density.

(ii) It would be very important to develop a better
understanding of the regime of validity of the
Thomas-Fermi approximation.

(iii) In order to explore the large-�R regime, which is
of the greatest physical interest, it may be necessary
to generalize the methods presented in this paper to
situations in which the Hamiltonian is not a
compact operator. On the other hand, it may be
sufficient to replace the radius of the sphere
with some other infrared regulator that is better
behaved.

(iv) To gain complete control over the approximations
made in solving the model, it would be important
to estimate the amplitude of the fluctuations of
the metric and the gauge field, which have been
neglected (in the Hartree-Fock approximation).
This amounts to computing the current-current
correlators. The same information could also be
used to substitute Newton’s method to the current
naive iteration algorithm, allowing for a faster
and more stable solver. This would probably
allow us to explore values of zm closer to the
critical point.

(v) In holographic duality, we are accustomed to inter-
preting the radial dependence of (bosonic) bulk
fields as encoding running couplings in the dual
quantum field theory (QFT) (along with some infor-
mation about the quantum state). The holographic
interpretation of the quantum state of the bulk fer-
mion fields poses an interesting question of princi-
ple for holographic duality. It appears to provide a
concrete example of the ‘‘quantum renormalization
group’’ described in Refs. [32–34].
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APPENDIX A: ADIABATIC EXPANSION
OF THE CURRENTS

Here we write the explicit adiabatic expansion for the
currents, in the background

ds2 ¼ 1

�2ðrÞ ½�dt2 þ dr2 þ �2ðrÞðd
2 þ sin 2
d�2Þ�;

(A1)

where the currents are defined by

j�ðxÞ ¼ �Tr½��Sðx; x0Þ�; (A2)

T��ðxÞ ¼ �Tr½�ð�iD�ÞSðx; x0Þ�; (A3)

with

ffiffiffi
g

p ði� �D�mÞSðx; x0Þ ¼ i	ðx� x0Þ; (A4)

and x ¼ ðt; r; 
;�Þ, x0 ¼ ðt	 is; r; 
;�Þ. Symmetrized
over the sign of s,

�2

�4
Jt ¼ � 2�

s2
þ L

�
�0�0

3�
þ�00

6

�
���00

6�
� �0�0

6�
���02

12�2

þ �

12�2
� �0�0

6�
��00

12
� 1

3
�3 þOðs2Þ; (A5)
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�2

�4
Tt

t ¼ 6

s4
þ 1

s2

�
�00

6�
þ �02

12�2
� 1

12�2
þ 3�2

�
þ L

�
�ð4Þ

120�
� �002

240�2
þ �04

240�4
þ �ð3Þ�0

120�2
� �02�00

60�3
� 1

240�4
þ 1

12
�02

�

þ �ð4Þ

120�
� �ð3Þ�0

60��
� �00�00

40��
þ 17�00�02

720��2
þ�2�00

12�
� �002

240�2
� �ð3Þ�0

60��
� �02�00

144�2�
� 11�0�03

360��3
þ 3�02�02

160�2�2

þ 17�0�0�00

360��2
þ��0�0

3�
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240�4
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� �0�00�0

72�2�
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þ �00

144�2�
� �02

288�2�2
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240�4
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þ �ð3Þ�0

80�2
� 23�02�00

720�3
þ 1

6
��00 þ 1

24
�02 þ�4

4
þOðs2Þ; (A6)
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�4
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þ 1
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� �02
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��2
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�002

240�2
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240�4
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240�4
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�4 þOðs2Þ; (A7)
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�4 þOðs2Þ: (A8)

APPENDIX B: HOW NOT TO CONSTRUCT
A GRAVITATING QUANTUM

ELECTRON STAR

In the course of developing the method of solution we
described, we encountered many approaches that seemed
natural choices, but revealed themselves to be complete
blunders. We briefly describe them here as a warning to any
person that would get involved in this kind of problem in
the future.

1. Other regulators

We began our investigations by looking at the problem
with a frozen metric [15]. In this case, only the charge
density is needed. The charge density is a mildly divergent
quantity, and hence not very sensitive to the regularization
and renormalization procedure.

In our preliminary work, we discretized the Dirac
Hamiltonian using finite differences, and we considered a
planar instead of spherical boundary. To avoid dealing with
a continuous spectrum, we terminated the geometry with
an artificial hard wall, following Ref. [14]. In this case the
partial wave number ‘ is replaced by the transverse

momentum k, and the radius R of the sphere is replaced
by the distance of the wall from the boundary.
In this setup, the lattice spacing a provides a natural

cutoff on the high-frequency modes. The contribution of
each k mode to the charge density is finite in the limit
a ! 0, because positive-frequency and negative-frequency
modes make contributions with the opposite sign. The sum
over the k modes is logarithmically divergent, but it can
easily be regulated with a hard cutoff on the momentum k.
A change in this cutoff is equivalent to charge
renormalization.
For the charge density this regularization and renormal-

ization scheme works just fine, but it is not recommendable
to use it when the geometry becomes dynamical. First of
all, a hard-wall termination of the geometry makes little
sense when Einstein’s equations are involved, so a geo-
metric infrared regulator is needed. This is why we intro-
duced the spherical geometry.
Second, the contribution of each k mode to the energy

density is not finite in the limit a ! 0, because positive-
frequency and negative-frequency modes make contribu-
tions with the same sign. One needs to carry out some kind
of subtraction to get rid of this infinity. But it is not obvious
how to determine the counterterm. Since the infinity is
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strongly tied to the lattice physics, there is no procedure
analogous to the adiabatic expansion that can give analytic
information about the divergences. Moreover, even if one
were able to obtain a finite subtracted quantity, it is not
clear whether it would be a meaningful quantity, i.e.
whether the subtraction procedure succeeded in restoring
general covariance.

Understanding the importance of general covariance as a
guidance for the regularization and renormalization proce-
dure, it is tempting to use a covariant regulator. For ex-
ample, one can try the heat-kernel regulator

J
�
0 ¼ h �c��e�s2 6D2

c i; (B1)

T��
0 ¼ h �c�ð�iD�Þe�s2 6D2

c i: (B2)

When using this regulator, all divergences are propor-
tional to local geometric objects. The renormalization
procedure consists in simply subtracting them, and general
covariance is preserved throughout the process. In practice,
one would expand over eigenfunctions of 6D,

6Dc nðxÞ ¼ 
nc nðxÞ; (B3)

and write

J
�
0 ¼ X

n

�c n�
�c ne

�s2
2
; (B4)

T
��
0 ¼ X

n

�c n�
ð�iD�Þc ne

�s2
2
: (B5)

Unfortunately, this approach has several problems. First
of all, the operator 6D is not self-adjoint when the real time
component � of the gauge field is nonzero. Consequently,
the numerical diagonalization of 6D is problematic. Second,
the label n stands for the momenta in the time, radial and
transverse directions. It is not possible to carry out the sum
over any of these momenta analytically, even though there
is time-translational invariance and translational or spheri-
cal symmetry along the transverse directions. Therefore,
the sum over n truly is at best a double sum, with each term
involving the diagonalization of a non-Hermitian matrix,
and a summation over the eigenfunctions. Moreover, the
momentum in the radial direction is continuous, because
the operator 6D is noncompact at the boundary of AdS, so it
is necessary to introduce a hard-wall infrared regulator
near the boundary. It is apparent that this is not quite the
way to go.

A more promising approach is to use a Pauli-Villars
regulator. One introduces a number of additional fictitious
spinor fields, with appropriately chosen masses Mi and
statistics �i (bosonic spinor fields may be needed), so
that their contribution to the currents exactly cancels the
contribution of the physical field at large energy. Explicitly,

j
�
0 ðxÞ ¼ Tr½��Smðx; xÞ� þ

X
i

�iTr½��SMi
ðx; xÞ�; (B6)

T��
0 ðxÞ ¼ Tr½�ð�iD�ÞSmðx; xÞ�

þX
i

�iTr½�ð�iD�ÞSMi
ðx; xÞ�: (B7)

The masses and statistics can be found by studying the
problem in flat space. In this case one has for the stress
tensor

T��
0 ðxÞ ¼

Z
ddpp�p�

�
1

p2 þm2
þX

i

�i

1

p2 þM2
i

�
:

(B8)

With an appropriate choice of �i and Mi, the integral can
be made convergent. For example, in two dimensions one
can take

�1 ¼ �2 ¼ �1; �3 ¼ 1;

M1 ¼ M2 ¼ M; M3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2 �m2

p
:

(B9)

Clearly the currents diverge in the large-M limit, but the
coefficients of the divergent terms in a series expansion are
local geometric objects because this regulator is manifestly
covariant. These terms can be subtracted, yielding well-
defined renormalized currents.
A Pauli-Villars regulator makes it possible to express the

currents in terms of the Dirac Hamiltonian. Introducing a
set of eigenfunctions of the Dirac Hamiltonian

H‘;Mi
c n‘i ¼ !n‘ic n‘i; (B10)

we have, for example,

Ttt
0 ðxÞ¼

1

2

X
n;‘

X
i

�ic
y
n‘iðxÞ½abs!n‘i��ðxÞsign!n‘i�c n‘iðxÞ;

(B11)

where we have includedm in the list of the massesMi. The
sum is convergent by construction, so the contribution of
the higher-frequency modes is less and less important. The
problem has been reduced to a single sum, each term of
which involves the diagonalization of a handful of
Hermitian matrices, and a summation over their eigenfunc-
tions. This is a marked improvement over the heat-kernel
regulator.
Unfortunately, the suppression of high-frequency modes

is only polynomial. This makes it necessary to compute a
great number of terms in the ‘ and n sum, and hence to
diagonalize matrices of large size. Eventually, because of
this reason, we choose to resort to point-splitting regula-
tion, which yields exponential suppression of the high-
energy modes.

2. Parallel transport

The point-separated expressions

J
�
0 ðxÞ ¼ h �c ðx0Þ��c ðxÞi; (B12)
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T��
0 ðxÞ ¼ h �c ðx0Þ�ð�iD�Þc ðxÞi (B13)

may look awkward to the careful reader, because the
spinors c ðxÞ and �c ðx0Þ do not transform in a complemen-
tary way under gauge transformations and diffeomor-
phisms, and hence the bare currents are not tensors. One
may be tempted to introduce a more covariant expression,

J�0 ðxÞ ¼ h �c ðx0ÞPðx0; xÞ��c ðxÞi; (B14)

T��
0 ðxÞ ¼ h �c ðx0ÞPðx0; xÞ�ð�iD�Þc ðxÞi; (B15)

where P is the spinor parallel transport, satisfying�D�Pðx; x0Þ ¼ 0;

Pðx; xÞ ¼ 1:
(B16)

While there is certainly nothing wrong in doing so, it is
not necessary, the reason being that the subtraction of the
adiabatic expansion cancels all the covariance-breaking
effects of the regulator. To show this explicitly, let us
assume the covariant definitions (B14), and show that the
parallel transport has no effect after subtraction of the
adiabatic expansion. Let us consider the U(1) current. We
have

J
�
0 ðxÞ ¼ �Tr½��Sðx; x0ÞPðx0; xÞ�: (B17)

The propagator Sðx; x0Þ diverges as x0 approaches x, and we
have12

Sðx; x0Þ ¼ 1

s3
S3ðx; x0Þ þ 1

s2
S2ðx; x0Þ þ � � � þ S0ðx; x0Þ;

(B18)

where s2 ¼ ðx� x0Þ�ðx� x0Þ� and the Si have a finite

limit as s ! 0. On the other hand, Pðx; xÞ ¼ 1, so

Pðx; x0Þ ¼ 1þ sP1ðx; x0Þ þ s2P2ðx; x0Þ þ � � � : (B19)

Therefore, the portion of the current that depends on P and
that does not vanish as s ! 0 is

J
�
0 ðxÞjP ¼ � 1

s2
Tr½S3P1� � 1

s
ðTr½S3P2� þ Tr½S2P1�Þ

� ðTr½S3P3� þ Tr½S2P2� þ Tr½S1P1�Þ:
(B20)

This expression depends only on the divergent terms of S,
which are captured in full by the adiabatic expansion.
Therefore, after subtraction of the adiabatic expansion
and the limit s ! 0, there is no dependence of P left, and
the result is the same as if it had not been included from the
beginning.

Besides complicating the algebra unnecessarily, the in-
clusion of the parallel transport has another undesirable
consequence. As shown in Sec. II B, if the point splitting is

in the time direction, with constant coordinate separation,
the bare stress tensor is covariantly conserved. This prop-
erty is lost if the parallel transport is included. Obviously it
is restored by the regularization and renormalization pro-
cedure, but there is some advantage in having it throughout
the process.

3. WKB instead of adiabatic expansion

It is tempting to try to use the WKB approximation to
determine the high-energy behavior of the eigenfunctions
of the Dirac Hamiltonian. If that were possible, one could
subtract the high-energy behavior directly in the mode
sum, for example,

Jt ¼ 1

etere
2
s

X
n‘

j‘j
2�

½c y
n‘ðrÞc n‘ðrÞ � cWKBy

n‘ ðrÞcWKB
n‘ ðrÞ�;

(B21)

and compute the renormalized currents directly as an alto-
gether finite sum, without the need for any other subtrac-
tion or limit, provided that the subtraction can be shown to
preserve general covariance. This program works when the
background is spatially uniform, and depends on time, but
it fails when there is nontrivial spatial dependence.
The issue can be demonstrated (by replacing the Dirac

equation) with the more familiar Schrödinger equation, in
more than one dimension. It arises even if the Schrödinger
operator (i.e. the potential) depends only on one variable r.
So we consider

�r2c ðr; yÞ þ ðVðrÞ � EÞc ðr; yÞ ¼ 0: (B22)

Translation invariance in y—the proxy for the QFT spatial
slices, of which there can be more than one for the present
discussion—and the linearity of Eq. (B22) allow us to
Fourier decompose,

c ðr; yÞ ¼ eikyc ðrÞ; (B23)

so that

� c 00ðrÞ þ ðVðrÞ þ k2 � EÞc ðrÞ ¼ 0: (B24)

For E � VðxÞ þ k2 we may use a WKB ansatz,

c ðrÞ ¼ Nffiffiffiffiffiffiffiffiffi
qðxÞp exp

�
i
Z r

�1
qðr0Þdr0

�
; (B25)

and qðrÞ must satisfy

q2ðrÞ � ðE� k2 � VðrÞÞ � �

�
3

4

q0ðrÞ2
qðrÞ2 � q00ðrÞ

2qðrÞ
�
; (B26)

where � ¼ 1 is a bookkeeping parameter. The WKB ap-
proximation treats the last two terms as an approximation
by writing

qðrÞ ¼ q0ðrÞ þ �q1ðrÞ þOð�Þ: (B27)

Solving order-by-order in � gives

12There are also logarithmic divergences, which do not matter
for the following.
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q0ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� k2 � VðrÞ

q
;

q1ðrÞ ¼ 1

8

V 00ðrÞ
q0ðrÞ3

þ 1

32

V 0ðrÞ2
q0ðrÞ5

:
(B28)

In this approximation, the contribution to the particle
density from a given mode is

jc ðr; yÞj2 ¼ N
qðrÞ ¼

N
q0ðrÞ � �

N q1ðrÞ
q20

								�¼1

¼ N
�

1

q0ðrÞ �
1

8

V 00ðrÞ
q0ðrÞ5

þ 1

32

V 0ðrÞ2
q0ðrÞ7

�
: (B29)

Now assume for argument that V and V0 vanish at
r ! 	1, so that the states at large r are plane waves,
which we can take to be incoming,

p ¼ qð�1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� k2

p
: (B30)

One can verify by putting the system in a box that the
correct integration measure (for adding up the contribu-
tions of the modes to the total density or total energy) isZ

}k� } � p �
Z dk

2�

dp

2�
; (B31)

so we can label the states by ðE; kÞ rather than ðp; kÞ. So

q0ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � VðrÞ

q
(B32)

and, for example, the (heat-kernel) regulated energy
density is

"ðr; yÞ ¼
Z

}k� } � pEðk; p; rÞjc ðr; yÞj2e�sEðk;p;rÞ;

(B33)

with

Eðk; p; rÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ p2 þ VðrÞ

q
(B34)

and

jc ðr; yÞj2 ¼ N
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � VðrÞp � 1

8

V 00ðrÞ
ðp2 � VðrÞÞ5=2

þ 1

32

V 0ðrÞ2
ðp2 � VðrÞÞ5=2

�
: (B35)

This expression has a nonintegrable singularity when
p2 ! VðrÞ. This is to be expected, since the WKB approxi-
mation is valid in the limit p2 � VðrÞ.

The problem for our purposes is that we need to integrate
over p. We could consider restricting the integral to large
jpj>M. But this excludes a slice of the integration region
that includes very high-energy modes, and hence modifies
the s dependence of the integral. The problem is that the
singularity from the breakdown ofWKB is present not only
for small k2 þ p2, and one cannot exclude it without ex-
cluding high-energy modes.

The point then is that no matter how large E is, there are
still modes of large enough k to cause the WKB approxi-
mation to break down.
One can attempt a higher-dimensional generalization of

WKB. Unfortunately, this does not work because WKB in
higher dimensions (at least as we understand it) is non-
local. Suppose we want to solve

�r2c ðr; yÞ þ ðVðr; yÞ � EÞc ðr; yÞ ¼ 0 (B36)

and substitute

c ðr; yÞ ¼ Aðr; yÞ exp
�
i
Z ðr;yÞ

1
~qð ~rÞ � d~r

�
: (B37)

We arrive at the system of equations8>>><
>>>:

1
Ar2Aþ ðE� V þ ~q2Þ ¼ 0;

~r � ðA2 ~qÞ ¼ 0;

@rqy � @yqr ¼ 0;

(B38)

where the last equation ensures that the phase in Eq. (B37)
does not depend on the path. The amplitude Aðr; yÞ, how-
ever, depends on the potential Vðr0; y0Þ at arbitrarily distant
points.
We note in passing that this problem seems to present an

obstruction to a systematic implementation of the expan-
sion studied in Ref. [17].

4. Localization of eigenstates of
the lattice Dirac Hamiltonian

In this section we explain why it is necessary to use the
point-splitting regulator s in addition to the lattice regu-
larization of the Dirac operator. One might consider simply
using a lattice regularization of the Dirac Hamiltonian,
with near-neighbor derivatives, or some improvement
thereof, for example using spectral methods. However,
only a fraction of the eigenstates of the resulting lattice
operator have anything at all to do with the continuum
limit. This fact is visible in a plot of the eigenvalues versus
mode number (Fig. 6, top left) and of the successive
differences between eigenvalues (Fig. 6, top right), for a
1þ 1-dimensional case. In the middle of the spectrum, the
dispersion is linear and agrees with the expected slope in
the continuum (straight line). Further, the eigenstates come
in pairs consisting of a left-mover and a right-mover, as one
expects from plane waves in the continuum. Away from the
middle of the spectrum, we find only one-dimensional
representations of the parity operator. We observe that
there is a sharp boundary where the degeneracy ends.
That this is a sharp ‘‘mobility edge’’ in the spectrum,

separating extended and localized states, can be seen as
follows. A measure of localization is the inverse participa-
tion ratio (IPR), defined as

IPR k½c � ¼
Z

dxjc ðxÞj2k
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for a normalized wave function
R
dxjc ðxÞj2 ¼ 1. The

results can be seen in Fig. 6. A sample localized wave-
function is shown in Fig. 7, along with the curvature well in
which it is localized.

Leaving out the localized modes would make it impos-
sible to resolve the identity, and one cannot construct
smooth sources without them. The problem of central
interest to us is the four-dimensional bulk Dirac operator,
with translation invariance in the QFT spatial directions.
Each momentum mode satisfies a 1þ 1 Dirac equation
(with a complex k-dependent mass). Therefore, this same
problem persists for us in higher dimensions.

More explicitly, we consider a massless Dirac field in the
geometry

ds2 ¼ ftðzÞdt2 þ fzðzÞdz2 þ fxðzÞd~x2

with electrostatic potential �. It will be useful to write
vielbeins e2� � f�. (Below wewill take d ¼ 0, z ’ zþ 2�

is a circle and ft, fz are chosen to be periodic, and� ¼ 0.)
In terms of

�ðz; ~x; tÞ ¼ e�i!tþi ~k� ~x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

etQ
�¼t;z; ~x e�

s
c ðzÞ

the Dirac equation ð 6DþmÞ� ¼ 0 can be written as
Hc ¼ !c . In this basis, the Dirac Hamiltonian (at fixed
k) is self-adjoint with respect to the usual inner product,

ðc 1; c 2Þ ¼
Z

dzc ?
1 ðzÞc 2ðzÞ:

It is convenient to study a different basis, where deriva-
tives of the metric do not appear,

�ðz; ~x; tÞ ¼ e�i!tþi ~k� ~x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ezQ
�¼t;z; ~x e�

s
~c ðzÞ;

in which the Dirac equation ð 6DþmÞ� ¼ 0 can be written

as ~H ~c ¼ ! ~c , where ~H has no derivatives of e�. We have

~c ¼
ffiffiffiffiffi
et
ez

s
c ;

and therefore

~H

ffiffiffiffiffi
et
ez

s
c ¼ !

ffiffiffiffiffi
et
ez

s
c ;

FIG. 6 (color online). In this example, ft ¼ 1þ :3 cos zþ :2 cos 2z, fx ¼ 1þ :4 cos z� :2 cos 2z. n ¼ 249 sites. In the first plot, the
line represents the continuum dispersion. The second plot shows successive differences of eigenvalues; the zeros in this plot indicate
eigenvalues that come in pairs related by parity, as is true of all modes in the continuum. Note the presence of several bands of parity-
paired states.

FIG. 7 (color online). A plot of the curvature (orange, thick) in
the example above, along with one of the visibly localized
eigenfunctions (blue, thin).
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which means

H ¼
ffiffiffiffiffi
ez
et

s
~H

ffiffiffiffiffi
et
ez

s
¼

ffiffiffiffiffi
et
ez

s
|{z}
W

ez
et

~H|{z}
Ĥ

ffiffiffiffiffi
et
ez

s
|{z}
W

: (B39)

HereW is diagonal in position space, and Ĥ is a Hermitian matrix, free from derivatives of e�, with whichH is isospectral.

Explicitly, with k ¼ 0,

H ¼
�m

ffiffiffiffiffi
ft

p þ� �
�
ft
fz

�
1=4

@z
�
ft
fz

�
1=4

�
ft
fz

�
1=4

@z
�
ft
fz

�
1=4

m
ffiffiffiffiffi
ft

p þ�

0
B@

1
CA ¼ W

�m
ffiffiffiffiffi
fz

p þ�
ffiffiffiffi
fz
ft

q
�@z

@z m
ffiffiffiffiffi
fz

p þ�
ffiffiffiffi
fz
ft

q
0
B@

1
CA:

A straightforward way to put this operator on the lattice is simply to replace c ðzÞ with a column vector of values at
equidistant points c ðziÞ, and to replace

: �@z

@z :

 !
�

: B

Bt :

 !

with

B ¼ 1

�z

�1 1 0 0 0

0 �1 1 0 0

0 0 �1 1 0

0 0 0 �1 1

0 0 0 0 �1

0
BBBBBBBB@

1
CCCCCCCCA
: (B40)
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