Pipe Wall Damage Morphology Measurement Methodology Development
for Flow Assisted Corrosion Evaluation

by
Julio Cesar Ferreira Rangel

B.S. Naval Architecture and Marine Engineering
University of Sao Paulo, Brazil (1991)

SUBMITTED TO THE DEPARTMENT OF NUCLEAR ENGINEERING
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREES OF

NUCLEAR ENGINEERING
and

MASTER OF SCIENCE IN MATERIALS SCIENCE AND ENGINEERING
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February, 1999

© 1999 Massachusetts Institute of Technology
All rights reserved

Signature of the Author __—

27 ~—><=——Prpartment-of Nuelear Engineering
January 15, 1999

Certified by _____
Ronald G. Ballinger
) N Associate Professor of Nuclear Engineering
-~ - Thesis Supervisor
Certified by .
retT T Ronald M. Latanision
Professor of Materials Science and Engineering
/ Thesis Reader
Accepted by
e Lawrence Lidsky
Chairman, Pepartment Committee on Graduate Students
Accepted by

/ Linn W. Hobbs
John F. Elliott Professor of Materials
Chairman, Departmental Committee on Graduate Students

NASSACHUSETTS INSTITUTE
~ OF TECHNOLOGY

! IR




Pipe Wall Damage Morphology Measurement Methodology Development for Flow
Assisted Corrosion Evaluation

by
Julio Cesar Ferreira Rangel

Submitted to the Department of Nuclear Engineering on January 15, 1999 in partial
fulfillment of the requirements for the degrees of Nuclear Engineering and Master of
Science in Materials Science and Engineering.

ABSTRACT

A new mehodology has been developed that allows the evaluation of real-time local pipe
thickness. The methodology was developed for application in the power generation
industry where flow assisted corrosion (FAC) of carbon steel piping is a significant cause
of increased maintenance and plant shut down time. The methodology is non-intrusive
and remote reading and requires only that probes be attached to the outside on the pipe
surface.

Local pipe thickness is determined by attaching probe wires to the outside of a piping
section in a regular array. DC current is then passed through the pipe and the potential
field is measured. The measured potential data is then operated on using the methods
developed in this work to produce a thickness map for the inside wall of the pipe.

The pipe thickness measurement methodology development was carried out in two major
phases. In the first phase the analytical solution was developed for the case where a
known defect was present in a pipe section. The analytical solution to this “forward”
problem was then verified using measurements taken from plate and then piping samples
containing machined-in defects. In the second phase the analytical solution for the case
where one starts only with the potential field data was developed. The solution to this
“inverse” problem was obtained for plate and then piping sections with machined-in
defects. Based on these results an algorithm was developed for pipe thickness maping. In
all cases the machined-in defects were such that 2D morphology was obtained.

The pipe thickness measurement method that has benn developed is capable of detecting
wall thickness reductions of 5% of nominal for a two-dimensional damage pattern. The
methodology ws then applied to the case where a three dimensional defect was present.
In this case the defect was easily detected and localized within the piping. The error in
minimum pipe wall thickness was less than 5% (relative) but defect morphology (shape)
detection was significantly degraded. Further expansion of the analytical solution to 3D
has been done but not tested.

Thesis Supervisor:  Ronald G. Ballinger
Title: Associate Professor of Nuclear Engineering
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CHAPTER 1

INTRODUCTION

1.1 Flow Assisted Corrosion

Flow assisted corrosion (FAC) is a process where the normal protective oxide
layer on carbon steel or low-alloy steel dissolves into a stream of flowing water or
water-steam mixture. As the oxide layer becomes thinner and less protective, the
corrosion rate is increased (Chexal et. al., 1996). The phenomenon is more common
at elbows, turbines, pumps, tube constrictions, and other structural features that alter
flow direction or velocity and increase turbulence. FAC causes a reduction of the pipe
wall thickness unlike forms of local attack, such as droplet impingement. FAC occurs
under both single and two-phase flow conditions. Since water is necessary to remove
the oxide layer, the phenomenon is not observed in superheating conditions.

The main factors influencing FAC are fluid velocity, void fraction and quality,
geometry, fluid temperature, water chemistry and piping material (Cragnolino et. al.,
1988). Susceptibility to FAC depends on the interaction of these variables. The fluid
velocity plays a vital in determining the mass transfer of iron oxide into the fluid
stream. FAC rates increase with increasing fluid velocity and turbulence. There is no
practical threshold velocity below which FAC cannot occur (Chexal et. al., 1996). In
two-phase flow conditions void fraction and steam quality play an important role in

determining the FAC rates. Component geometry also has a direct influence on the
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fluid velocity and mass transfer rate. FAC is more common in components with a
geometry that increases fluid velocity and turbulence. Nonetheless, FAC is
encountered in straight piping, especially when the fluid velocity is high.

Water chemistry has been shown to be an important variable influencing the
stability and solubility of the oxide layer and thus the FAC rate (Cragnolino et. al.,
1988). In Boiling Water Reactors (BWR) no poison is added to control pH and the
oxygen concentration drives the rate of flow accelerated corrosion. Increasing the
oxygen concentration in the water tends to stabilize the oxide layer and, therefore,
decreases the rate of FAC. On the other hand, in Pressurized Water Reactors (PWR),
amines are added to control the pH. The lower the pH, the greater the rate of flow
accelerated corrosion.

Temperature influences the rate of the oxidation and reduction reactions. The
mass transfer rate is a function of temperature and pH.

The chemical composition of the steel has a major effect on the resistance to FAC
in high temperature water or wet stream. Whereas plain carbon steels are extremely
susceptible to FAC, austenitic stainless steels are essentially immune (Cragnolino et.
al., 1988). Many authors have reported that the addition of chromium to steel has a
profound beneficial effect on the resistance to FAC under both single and two-phase
flow conditions. Even at chromium content as low as 1%, the FAC rate can be
reduced by more than one order of magnitude in comparison to plain carbon steels
(Bignold et. al., 1983).

Since FAC results in degradation of the internal pipe wall, it is necessary to

monitor the pipe wall thickness during the plant life. Often, a layer of insulation
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covers most of the susceptible pipeline, at high pressure and temperature. A
monitoring program, using a conventional technique such as ultrasound, can only be
done by shutting down the plant. In this thesis a new measurement technique based
on the direct current (DC) potential drop method is proposed to evaluate the pipe wall

damage in real time without the need to shut down the plant.



1.2 Motivation

Flow Assisted Corrosion is a phenomenon that results in metal loss from piping,
vessels and equipment made of carbon steel. FAC occurs only under certain conditions of
flow, chémistry, geometry and material. Unfortunately, these conditions are common in
much of the nuclear and fossil-fueled power plants. Undetected, FAC may cause leaks
and ruptures. Consequently, FAC has become an important issue, particularly for nuclear
power plants.

Although major failures are rare, the consequences can be severe. In 1986, a high-
pressure condensate line in Virginia Power’s Surry nuclear power plant suddenly burst
and caused the death of four men (Chexal et. al., 1996). In 1995 an(i 1996, two failures at
two different fossil-fired plants caused four fatalities (Chexal et. al., 1996). In addition to
concerns about personnel safety, a major FAC failure can force a plant to shut down and
purchase replacement power at a price approaching a million dollars per day.

A great deal of time and money has been spent developing the technology to
predict, detect, and mitigate FAC in order to prevent catastrophic failures. Plant
personnel conduct inspections in order to prevent an unexpected failure or unplanned
shutdown like the case of the Surry plant. The objective of these inspections is to obtain a
measured value of the wall thickness and to compare it with previous values. With many
forms of degradation, there are several non-destructive evaluation (NDE) methods such
as an ultrasonic test (UT), a radiography test (RT) and an eddy current test (ECT). The
examination process for these methods includes removal of insulation, the layout of an

inspection grid, acquisition of thickness measurement, and input of the data into
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evaluation programs for predicting repair, maintenance and corrective action. Insulation
removal, disposal and replacement can account for higher costs than the actual NDE,
particularly where asbestos insulation is used. The elimination of insulation removal
and/or of a grid production on components prior to examination for FAC can reduce the
cost of inspection by more than 50% (Walker, S.M., 1998). There is a need for
appropriate NDE inspection techniques that can detect corrosion damage without the
extended downtime and expense that occurs during insulation removal and replacement.
A new method of NDE involves the use of the potential drop technique. It was
developed originally for measurement of crack growth in material, but it can be used for
measurements of wall thickness, especially as a practical method for continuous
measurement of thickness. This technique reduces the cost of monitoring piping systems
associated with the removal of insulation, provides a continuous time history that makes
it possible to develop reliable models of corrosion evaluation and does not require space

around the component to be inspected.
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1.3 Objective

The objective of this thesis is to develop an on-line methodology to predict the
pipe wall damage morphology based on the direct current potential drop (DCPD)

technique.
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1.4 Solution Path

Using the direct current potential drop (DCPD) technique the goal was to develop
a new methodology to measure the thickness morphology in a pipe. This method involves
applying a constant direct current (DC) through the pipe, measuring the resulting potential
drop between the voltage probes on the external surface of the pipe, and then using these
data to construct an algorithm to map the pipe wall thickness. First several experiments
were carried out using plates with symmetric defect on the bottom. Then experiments
using pipes with a more likely defect caused by FAC were performed.

The analytic solution is divided into two parts. The first part, called the forward
problem, {nvolves solving the Laplace equation for the electrical potential field of a plate
with a well-defined defect present. Then, a correction term due to the cylindrical
geometry of the pipe is added to this solution. In this problem, one specifies the
(experimentally known) normal current density on the outer measurment surface and
assumes the shape of the inner “corroded” surface is known. Mathematically the forward
problem is a classic linear well-posed problem.

The second part, called the inverse problem, takes measured potential drop data
from a pipe with unknown damage. In this case, the boundary conditions specify the
normal current distribution and the potential distribution over the outer surface, both
known from experimental measurements. The goal of the theory is to then predict the
morphology of the inner corroded surface. Mathematically, although the basic equation
for the potential function is linear, the problem itself is highly nonlinear because of the

transcendental manner in which the basic unknown, the shape of the inner surface, enters
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the equations. Furthemore, specifying two boundary conditions on a single surface for the
Laplacian operator makes the problem ill-conditioned. Small errors in either of the
bounday conditions grow exponetially moving away from the measurement surface.
Therefore, a good deal of care is needed in designing an algorithm that gives stable
results. The inverse calculation is based on the forward calculation; the better the forward

calculations agrees with the actual measurements, the better our inversion will be.
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CHAPTER 2

POTENTIAL DROP TECHNIQUE

Potential drop is a widely used and successful technique that involves measuring
the changes in electrical potential at probes placed across a material containing a defect to
which a direct current (DC) or an alternating current (AC) is applied. This method has
been used to measure crack length during fracture toughness tests, fatigue, stress
corrosion cracking, etc (Dover et. al., 1980). Another more recent application is called
Electrical Impedance Tor_no graphy (EIT), which is a relatively new medical imaging
modality that produces images by computing electrical properties within the human body.

The potential drop technique can be used with either DC or AC. The DC potential
drop (DCPD) method of crack length measurement is a convenient and well-established
technique (Halliday er. al., 1980). A constant current is passed along the specimen
perpendicular to the crack growth direction and a potential drop is measured using probes
placed on either side of the crack. Figure 2.1 ilustrates this technique for a plate with an
edge crack (Dover et. al., 1980). It is assumed that the current connections are on plane
remote from the defect so that a uniform field is set up in the plate. Adjacent to the crack
the field is perturbed and its measurements in this region must be interpreted in terms of
crack depth. For this application, as the crack propagates the resistance, and hence the
measured potential drop, increases due to reduction in uncracked cross sectional area of

the specimen. A potential drop V, across a crack is compared with a reference potential
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drop, Vg, across an uncracked part of the same material. The ratio V, /V, canbe

correlated to the crack length.

The major advantages of the DC method are that it does not rely on advanced
electronics and for certain specimen size and geometry it is a well-known, established
technique. However, it does have the disadvantages of a complex relationship between
potential drop and crack length and the problems inherent in handling low level (milivolt
to microvolt) DC signals including difficulties arising from thermal effects (Watt, K.R.,
1980). These thermoelectric voltages can be a substantial fraction of the total measured
voltage. Since the thermoelectric effect is present even without the input current, it is
possible to account for it by subtracting voltage measurements taken with the current off

from the measurements made with the current on.

\{

Streamlines

Equpctentials

|

Figure 2.1 — DC electrical field distribution for an edge crack specimen (Dover,

et. al., 1980).
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Using AC produces several advantages that can be enjoyed only if the practical
problems of measuring small AC voltages are overcome. The most important difference
between AC and DC is that for the former the current is carried only in a thin layer at the
metal surface. This phenomenon is known as the “skin effect”. Figure 2.2 shows that it is
possible to arrange the AC connections so that the field is uniform in the region adjacent

to the crack (Charlesworth and Dover, 1982).

Equipotentials

Streamines

S / u/ o

A/“ ;’/ A/ TR A

¥

[

\
~
-
-
-

Figure 2.2 — General features of an AC field injected into a flat plate (Charlesworth and

Dover, 1982).

In this case the measured potential difference, between any two points parallel to
the current flow direction, is a linear function of the distance between the points. Thus the
potential is linearly related to the path length between the contact points. The current
required to produce a given field strength at the surface is much less than for DC as the

resistance is higher (the effective cross section carrying the current is much less in the
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case of AC). The skin thickness (8) depends on several material properties and can be

calculated from the following equation (Dover et. al., 1980)

-1
§=umon @1
where u is the relative permeability of conductor, 4, is the permeability of free space,
o is the conductivity of conductor and f is the frequency of AC.

Thé major advantages of the AC technique are the ease of calibration for different
specimen geometries and the lack of size dependence of the technique, coupled with the
ease of amplification of the input signal. The main problems with the technique are those
of lead interaction and electronic stability (Watt, K.R., 1980).

The decision whether to use the AC or DC technique in any particular case
requires careful consideration. However, if the specimen size and geometry are such that
the DC technique is well established, there is no advantage in changing to the AC
method. On the other hand, the AC technique does offer considerable advantages in some
circumstance. The inherently linear response of the method together with a lack of
sensitivity to specimen geometry or size means that crack detection and crack monitoring
can be carried out much more easily on an increased range of specimens.

The EIT is a more recent application using this method. It is a technique for
producing an image of the electrical resistivity profile within a body from measurements
made on the body’s exterior. To make these measurements, an array of electrodes is
attached to the surface of the body. Sets of current patterns are applied through these
electrodes, and the voltages needed to maintain these specified currents are measured and
recorded. These applied currents and measured voltages are then used in a reconstruction

algorithm to produce images that represent approximations to the electrical resistivity
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distribution in the interior of the body. The mathematical models are well described in
several works, especially in those published by Margaret Cheney and David Isaacson
(Cheney et. al., 1990).

For the purpose of monitoring specimen thickness the DCPD method can be used.
A constant direct current (DC) is passed through a specimen and the potential drop
between probes on either side of a defect is measured. The basis of the method is that in a
current carrying body there will be a disturbance in the electrical potential field about any
discontinuity in that body. Therefore, for this application, a constant DC results in a
potential drop across the defected region. Considering a uniform current distribution in

the specimen, Ohm’s law can be used to calculate the potential drop between two points:
[

v=r-1=L"1, (22)
A

where I is the current (Amp), p is the resistivity of the material (€2.m), /is the probe
spacing (m) and A is the cross section area (m?).

For the case of uniform wall thinning Equation 2.2 completely defines the system.
Once the current is known, the potential difference between any two points is sufficient
to calculate the pipe wall thickness. This is called forward problem and can be solved not
only analytically but also using a finite element method. On the other hand, the presence
of a localized defect causes a perturbation in the potential field and a more accurate
analysis must be done. This problem is called inverse problem since, like in the EIT

problem, we are given a set of measurements and need to know the defect morphology.
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CHAPTER 3

EXPERIMENTAL PROCEDURE

A Direct Current Potential Drop (DCPD) system has been developed and used for
experiments. Figure 3.1 shows a schematic diagram of this system. The major
components of the system are as follows: a DC Power Supply as a constant current driver
(model HP6259B, Hewlett Packard), Non-Reversing contactors as alternating DC
producer (model LC1D3210G6, Telemecanique), a Switch/Control Unit (model
HP3488A, Hewlett Packard) as relay set controller, a Multimeter (model HP3457A,
Hewlett Packard) as a data acquisition system and a PC Computer. Figure 3.2 shows a

picture with the experimental apparatus.

Potential Data Cablzs
otentia
Drop Prabes < (1

) 4 e @
_ COr 2
Eé‘;;jsnt \ 11 ° current

Fi :
DC Power - iai
Switching Data Aguisiton
Supply Unit System
[ 14 |
Computsr and
Cantroll=r

Figure 3.1 — DCPD System Schematic Diagram
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Figure 3.2 — Photograph of the Experimental Apparatus. From the bottom to the top of

the rack: DC power supply, switch/control unit and multimeter.

For the experiments using plates, a total current of 10Amp was applied
throughout 15 points on the border of the plate. All current wires were connected to a
common bar in order to ensure an equal distribution of current in each wire. Figure 3.3
shows a picture of one plate used in the experiments. A row of probes 12.7mm (0.5 inch)
apart was arranged along the plate. The potential drop between points is measured for one
polarity of applied current. The polarity is then reversed and the potential drops between
probes measured again. The average of the potential is then computed. In this way
voltages generated due to thermoelectric effects are normalized out. First, a plate
304.8mm (12 inches) long by 203.2mm (8 inches) wide and 19.05mm (34 inch) thick
without defect was used. Then, a slot defect 101.6mm (4 inches) wide (measured from
the center of the plate) and 2 mm high was machined in the same plate. Finally, the same

slot was increased to 4 mm and 6.3 mm deep and new measurements were carried out.
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After these experiments the 6.3mm-height slot defect was modified to a ramp defect.
Figure 3.4 shows a picture of the plate with a ramp defect. In this experiment the total
current used was 20Amp.

For a pipe specimen of 326.4mm (12.85 inches) external diameter and 12.7mm (V2
inch) wall thickness a current of 35Amp was applied to the ends of the pipe test section in
such a manner as to ensure that a uniform current distribution is achieved around the
circumference of the pipe. Figure 3.5 shows one of the pipes used in the experiments. The
current was applied at 26 taps around the circumference of the pipe. The potential probes
were arranged in a one inch-array on the outside of the pipe opposite the defect, which
was located inside the pipe. First, a pipe without defect was used. Then, new
measurements were carried out on an identical pipe with some circular defects on the

inside of the pipe.

Figure 3.3 — Plate with slot defect used during experiments.
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Figure 3.4 - Plate with ramp defect used during experiments.

Figure 3.5 — Pipe without defect used during experiments.
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The data acquisition was carried out using Hewlett Packard devices. A program in
HP Basic language was developed to acquire the data. The data were acquired for a
specific time, for example one minute at each channel and then averaged. A filter was
introduced in order to reject the data that deviated by more than half of a standard
deviation from the average. Appendix A is a listing of the code called “pipe thinning”

that makes the data acquisition.

27



CHAPTER 4

RESULTS AND DISCUSSION

This chapter contains a description of the algorithm developed to predict the pipe
wall damage morphology and the experiment results. First, a solution to the forward
problem for plates with symmetric defect on the bottom is developed. Then a correction
term for the cylindrical geometry is added to the slab solution. The results are compared
with the experimental ones. A three-dimension solution is also developed for a pipe with
a non-symmetric defect. 7

Another section of this chapter describes the solution to the inverse problem. The
results for two-dimensional symmetric defect cases are compared with the experimental

ones. A solution is also developed for a 3D cylindrical non-symmetric defect.

4.1 Solution to the forward problem

4.1.1 Numeric Solution for an infinite plate with slot defect

A general analysis for the electrical field involves a solution of Maxwell’s
equations. The presence of a defect can be modeled as a two-dimensional problem as

ilustrated in Figure 4.1.
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Current out Current in

T l

Figure 4.1 — Schematic model for analysis (2D)

When current flows through a defected material, the electrical field and potential
distribution will reflect the locations and shapes of the defects. The electrical field (E)

is defined as the gradient of the scalar potential (¢),

E=-gradp=-V o, 4.1
I=0.E, 4.2)
divl=V.JI=0, (4.3)

where J is the current density and ¢ is the conductivity of the material (€ — m)™". Thus,
culE=VXE=0, (4.4)
and the Laplace equation is satisfied:
Vip(x,y,2)=0. 4.5)

The boundary conditions for this problem are:

aty=a: Q~_J_=O'.—a£=S(x,z), (4.6)
dy
dg

at y=0: n-J=0c—=P(x,2)), 4.7
dy
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where n is the normal vector, a is the thickness of the plate, S(x, z) and P(x, z) are the

current source and perturbation functions, respectively. Appendix B shows a detailed
description of these functions.

The voltage difference between two points can be calculated from the potential
function as

V(x,y,2)=¢x,5,2) ~ ¢(=x,y,2). (4.8)
In order to get the analytical expression for voltage measurements it is necessary to find
the potential function from the Laplace equation. This function can be found using

Fourier transformation. The final solution to this problem is given by:

k,f
V(x)= 4S°p 2] dk_ TR g 1) 1) = Ty (kx4 D 4 )] - j sinkr_ =, (4.9)

me—p tanhka  kr A 5 " sinh(k, a)
where J is the zeroth order Bessel function, J, is the first order Bessel function, [ is the

distance between the current wire and the center of the plate and c is the spacing
between the current wires at the border of the plate.

Appendix B shows a detailed derivation of Equation 4.9. This equation works
well for an infinite plate (both in the x and z directions). It is necessary to change the
boundary conditions of the problem in order to account for the finite boundaries and

compare the analytical results with the experimental ones.
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4.1.2 Numeric Solution for a semi-infinite plate without defect

Consider a plate with finite dimensions in the z and y directions. Figure 4.2 shows
a schematic view of the slab without defect that has been modeled (assume the dimension

in the x direction is infinite).

:\
=\

Z

Figure 4.2 — Schematic view of a semi-infinite plate without defect (assume infinite in

the x direction).

The new boundary conditions will be:

V1,20
o dg
. :O, ~ = S ’ ’
aZ z=0,w ay y=a p (x Z)

where wis the width of the plate.

Figure 4.3 shows the condition for periodicity of the potential function. Since the

N . d . .
boundary conditions in z require e =0, the potential function has a semi-period

< z=0w
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between [0,w]. In order to use Fourier analysis it is convenient to build a mirror image of

¢ to make it periodic in the interval [0,2w].

‘P
A
f/-‘—-_
[
/ NS
——; — =] =

i W

Figure 4.3 — Periodicity of the potential function

Expanding ¢(x,y,z) as a Fourier series in the z direction and Fourier transformation in

the x direction gives

1 T o nmz. .
(x,y,2) =—— e™ cos(—=) @, (k, y)dk ,
¢ N2 ;’ _'[, w
which automatically satisfies the boundary conditions at z=0 and z =w.

Applying Fourier transformation to the Laplace equation and the new boundary

conditions results in

mﬂZk . ’
. oo 2 k l)
2ip S, ik mz o w ot |
¥, 2) =— e" " cos cosh(k,, y)dk
o(x,y,2) iy Zé.‘[ ( W ) k, o, sinh(k,a) ()

32

(4.10)

4.11)



where [ is the distance from the center of the plate to the current wires at the border of

the plate, z, is the position at the border of the plate of the current wire, &, = lif m#0

and 0, =2 if m=0.
The voltage difference along the centerline of the plate (z = }22) can be evaluated using
Equation 4.8. Thus,

4 (x):¢(x’y=a’zz-;£)—¢(—x,y=a,z=—g),

4p S, sin(k x)sin(k l) m;r M7z, .
= dk . 4.12
Vix)= ,,,Z(‘)'[ k, o, tanh(k, a) 2 ) cos( w ) ( )

In the case of multiple current wires it is necessary to sum all contributions. Thus,

4pS = N T sin(k x)sin(k 1) mru Mz, :
Vix)= 2‘ 2 dk .
(0= 0kl '[o ao,, tanh(k,, a) cos( 2 ) cos( w ke (“13)

where Ny, is the total number of current wires.

The integral of the Equation 4.13 can be solved using complex analysis and this equation

can be rewritten as

N, cos( )cos(m

=Y (I=) =¥ ({+2)

pS w e —e
V(x)= , (4.14)
;_(); O’m ; O-nymn
2.2 2.2
where y,, = mr:’ +n72z' o,=11i n#20and 0, =2 if n=0.
w a

To validate this analysis a numerical evaluation and comparison with the

experimental results becomes necessary. The evaluation of the system was carried out
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using Mathcad (Mathcad7 User’s Guide, 1997). The dominant term of this equation holds

for m = n =0, which gives

4p S, N
V(x)=-B20 Zu (4.15)
wa 2
.2
Equation 4.15 essentially shows that the resistivity for the plate is P x, which
wa

confirms the expected result. Appendix C shows detailed derivation of equations 4.11 and

4.14.
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4.1.3 Analytic Solution for a semi-infinite plate without defect

The problem discussed previously can be interpreted as a two-dimensional one if the

current is considered to be applied uniformly along the z-direction as shown in Figure

3.3. In this case, the current source can be expressed as
SO
S(x)=—[0(x—-1)-5(x+1)].
w

The potential function will be

oo

p(x,y) = [ ¢k, y) dk, and

—o0

R |
Pk, y) == [e™ g(x,y) dx,
2r -,

where @(k,y) is the Fourier transform of ¢(x, y).

The Laplace equation will be

dy?

(o)
ASH

-k*p=0,

and the boundary conditions can be written as

2wl

dy 4=0

IP _ P T

-a';; —'g:‘;e S(x)dx

y=a
Solving the Laplace equation with the boundary conditions above results in

ip S, Te,»kx sin kI
Tw

P(x,y)=— cosh(ky) dk .

k sinh ka

—o0

The potential difference between two points at the surface can be calculated as
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(4.17)

4.18)

(4.19)

(4.20)

(4.21)

(4.22)



V()C) = (O(X, a) - ¢(_x9 a) . (423)

Therefore,

iPSe T e iy SIDKI
Vi) =—L20 [ (b —gmiey SUEoohka) dk .
= Jm € e inn SO R®)

This integral can be solved using complex analysis. The final result is given by the

equation below:

208, x 1. 1-e ¢
V(X) = p S~ ——In (l+x)x ] ' (424)
w o a T =z
Equation 4.24 is an analytic expression for the potential difference between two points at

the surface of a plate without defect. Since the potential is an odd function gives

¢(—=x) =—-@p(x),
S 1. 1- a
l—e ¢

Another way to find an analytic expression for the potential function is using a

table of integrals. Consider Equation 4.22:

P S, Te”“ sin k/

i
,y)=—" h dk .
¢ ) Tw k sinh ka cosh(ky)

Appendix D describes how an expression for the potential function can be derived using a

table of integrals. The final results is

p oshﬂ(l+x)+cosﬂy
@(x,y)=—In = 4. (4.26)
27w cosh = x) +cos zy
a a
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This equation is the two-dimensional potential function for a plate without defect. At the

surface of the plate (y = a) results in

5 OShJZ(l-%-x)_1
@(x) =——%In 4 . 4.27)
2w cosh (Ut -1
a

This equation is similar to Equation 4.25 and it provides the potential at the surface of a

plate without defect. Appendix D presents a detailed derivation of equations 4.22, 4.24

and 4.26.
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4.1.4 Analvtic Solution for a semi-infinite plate with slot defect

Since a formula for the voltage difference on a no defect region has been
developed, the next step is to consider the case of a defect located on the bottom of the

specimen. Figure 4.4 shows schematically a view of a defected plate.

/ Surface S;

Figure 4.4 — Schematic view of a semi-infinite plate with symmeteric defect

(assume infinite in the x direction).

Considering that the current is applied uniformly along the z direction and that the
defect is symmetric, such as a slot, the problem can be treated as a two-dimensional one.

The new boundary conditions for this problem will be:

0
o _. =0, -aﬂ = p S(x),
y

y=a

Q-V(p|S1=O.

The surface Sy can be defined as S, (x, y) = y — A(x) = 0, where A(x) represents the defect

amplitude, and its normal vector as

38



(e, —A’¢,)

n=————
— (1+A,2 )I/Z
where A’=£é.
dx

The boundary condition on the surface will be n- V("Is = (%ﬂ_ A %ﬂj =(. Assuming a
1 y x Sl

small defect amplitude compared to the thickness, that is, A << a, perturbation theory

can be used and the potential function can be written as ¢ = ¢, + ¢,, where ¢, and

@, are the potential functions that account for the non-defect region and the defect region,
respectively.

The Laplace equation holds for each potential function, therefore,
Vg, (x,y) =0,

Vzgol(x, y)=0.

The first problem has the boundary conditions

99,

20 =5.8(x),
3y | . p-S(x)
99| _,

ay ¥y=0

and has been solved previously. Equation 4.27 gives the solution for the potential

function ¢, . Thus

S coshn(l+x)—1
@y () = P20 11 7z'(la— T (4.28)
cosh——x——l
a

Since the potential is an odd function the voltage difference at the surface can be given as
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Osh71(l+x)_

V(0 =L, a

s (4.29)
W cosh 7z~ x) -1

1

a
which is another way to write Equation 4.24.

The second problem has the boundary condition

9%y, (4.30)
N e

and from the boundary condition at the surface S; gives

99 0921 o, (4.31)
dy ox N

Expanding this boundary condition about y =0 and considering only the first order

approximation gives

(a(m A% _A,G%J 0.
y=0

4.
dy dy? ox (4.32)

Consider a rectangular slot with dimensions as shown in Figure 4.5.

........ - /—9 x

Figure 4.5 — Schematic view of a semi-infinite plate with slot defect (assume

infinite in the x direction).
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The slot defect function can be defined as a sum of two step functions with amplitude h.

Therefore,
Ax)=hU(x+A)-U(x-A)],

%xé S WS (x+A) = 5(x— )],

where A is the half-width of the slot and & is the height of the slot.
The potential function that accounts for the defect region using the first order

approximation can be written similarly to Equation 4.17. So,

0, (x,y) = [e™ @, (k,y) dk, and (4.33)

. 17 *
Py =o— ™ g,(x ) dv, (4.34)

—oco

where @, (k,y) is the Fourier transform of ¢, (x, y).

Taking the Fourier transformation of the Laplace equation and solving for the boundary

conditions of equations 4.30 and 4.32 gives

ip Seh . sinkl sin(k —k)A coshk(y—a) e™
?(x,y) = =50 P Hdkd oL stk — 1) boage (4.35)
sinhka (k —k) sinh ka
The potential difference may be calculated as
Vi) =¢,(x,a) - ¢, (-x,a),
2 h . M . ’_ .
v (x) = 2250 pS J.J'dkdk smk? sm(k’ KA s'mkx _ (4.36)
r’ 2 sinhka (k —k) sinhka

Solving the double integral above results in
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T T
cosh— (I + A)cosh— (4 - x)
V,(x)= _p_SO_]Z[Cothl (I-x)In 2a = h
Taw 2a cosh - (x + A)cosh 2= (A —1I)
2a 2a

4.37)
. coshl(ﬂ + Xx) coshf—(;t +1)
coth 2 (1 + x) In——24 2a
2a cosh - (A —I)cosh = (A - x)
2a 2a

]

The total voltage difference is given by the sum of equations 4.29 and 4.37. Therefore,
V(x)=V,(x)+V,(x),

7z(l+x)_1

n n
cosh cosh— ([ + A) cosh— (A —x)
Vo)=L " P Sih [coth—zz—r—(l—x) In——=22 2 -
Tw - Taw a K o,
cosh 1 cosh > (x+ A) cosh > (A=D (4.38)

a
S, cosh == (A + x) cosh 2~ (A+1)
coth—(+x)In 27? 72ra ]
2a cosh—(A—1)cosh— (A1 -x)
2a 2a

This equation gives an analytical solution for the potential difference between two points
at the top surface of the plate shown in Figure 4.5 in the presence of é defect on the back
of the plate. It was developed for a defect with a small slot height compared to the
thickness of the plate (h<<a) and, therefore, is linear with the slot height () . Appendix
E shows a detailed derivation of equations 4.32, 4.35, 4.37.

Since the potential is an odd function with respect to the x direction the potential

function @, (x) can be written as

Sh x COSh—jL(l-F/DCOShE— (A-x) . cosh’ (l+x)cosh£(/1+l)
@) =—L= coth (1) In—242 24— —coth— (1 +2) In—22 20 .
maw cosh— (x+A)cosh— (A —1) 2a cosh—(?t—l)coshl (A-x)
2a 2a 2a 2a
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Figure 4.6 shows a plot of the potential functions ¢, ¢, and ¢, for a particular

slot defect (h =6.3mm and A =50.8mm).

Comparison between the potential functions

o—E—8Ea

-250 080 ps- o008 F 200 250

Voltage (microvolts)

wetoe phil —!

-150 4 —a— phizero |
|

—— phi ’

-200 - s !

260

(1544

Distance from the center to the border of the plate (mm)

Figure 4.6 — Comparison between the potential functions for a plate with slot defect

(h=6.3mm and A =50.8mm).

For large values of x (outside of the current probes region) the electrical field vanishes

and a constant potential function ¢ was expected. Nevertheless, the potential function ¢,

does not go to zero at large values of x. In order to force the potential function ¢, to zero
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the boundary condition at the bottom surface of the plate must be changed. Assume, for a

symmetric defect, that

9%l o, ‘ (4.39)
dy

y=48y

where A, is a parameter (0<A,<a) chosen such that ((o /e L:im = 0. This means that

at infinity the plate is seen as without defect and with a thickness of (a-A,).

In this case the new potential function ¢;* will be

new lP So T ikx sin ki
X, y)=— e
PV =T J ksinhk(a—A,)

coshk(y—A,) dk, (4.40)

h a{l+x) +Cosﬂ (y—4,)
So (a—Ay) (a—A,)

new p
@ (x,y)= In — — . 441
2w cosh (1~ x) +cos r=20)
(a—Ay) (a—4y)

The potential function may be written as ¢ = ¢, + ¢, and, therefore,

A R
The parameter A, may be estimated as

hA

A detailed discussion of this is provided in Appendix E. Figure 4.7 shows the potential

functions considering the new boundary condition at A, . It can be observed that this new

boundary condition fixed the potential function ¢, at large values of x.
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Comparison between the potential functions for the new B.C.
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Figure 4.7 - Comparison between the potential functions for a plate with slot defect

(h=6.3mm and A =50.8mm) using new B.C at A,.
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4.1.5 Analvtic Solution for a semi-infinite plate with smooth defect

Consider a plate with a defect as shown schematically in Figure 4.8. This is a
more likely defect caused by flow-accelerated corrosion, which is called here a

“smooth defect”.

Figure 4.8 — Schematic view of a semi-infinite plate with smooth defect

(assume infinite in the x direction).

In two dimensions, the general problem can be described by the following

equations:
Vip(x,y)=0,
991 _PSors(xy=S(x+1),
Wy W
dp ., J¢
Vol =| a2 =0,
n (pls1 [ay ox ]51
o ... =0.
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The surface S; can be defined as S, (x, y) = y — A(x) =0, where A(x)represents the defect

amplitude, and its normal vector as

(e, =ANe,)
n=—————,
- (1+A32 )1/2
where A’:zé.
dx

The potential function can be written as ¢ = ¢, + ¢, + ¢,, where ¢, is the

potential function for a plate without defect, and ¢, and ¢, are the potential functions
that consider first and second order solution for the defect, respectively.

The solution to the potential function ¢, is given by Equation 4.26:

[+
coshﬂ( %) +cosﬂ 4

P S, a a
@, (x,y) = In . (4.43)
l5) —
W cosh M +cos ry
a a

The next step is to find a solution for the potential function ¢, . The Laplace equation and

the boundary conditions are

Vi, (x,y)=0, (4.44)
9%l o, (4.45)
9 |,eq

Expanding the last boundary condition about y =0 yields to Equation 4.32:

(a(p' +A82(p° -A 84)0] =0, or
¥y=0
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99,
dy

d(, 00,
=—|A—| . 4.46
ax[ ox j‘_o (4.46)

y=0

Equations 4.33 and 4.34 give the potential function ¢, and its Fourier transform @, :

¢, (x.y)= [e™ ¢\ (k, y) dk, and

—o0

R 17
(Pl(k’)’):?i__‘;e “ @, (x,y)dx.

Applying the Fourier transformation to equations 4.44, 4.45 and 4.46 and solving for the

potential function ¢, results in

@, (x,y) = —5>= j dx’ T(A'a_?j In a a . (4.47)
g * ¥ b= | coshTETH) | o T @)
a a

Evaluating this potential function at the surface of the plate (y = a) gives

S 7£(x+x)_‘_1

o h
@ (0] =-—;—_[df;—,—(A%’@] In ( a ;
¥ T x X ) osh” X=X,

1
a

Using trigonometric identity and integration by parts this equation can be simplified to

o, _ = P 'fo J.A(x’)[tanhw+ tanh 1 ~X)j| tanh ox 1) + tanh Ax=x) dx’- (4.48)
T datwy 2a 2a 2a 2a

The final step is to find a solution for the potential function ¢, . The Laplace equation
and the boundary conditions are

Vig,(x,y) =0, (4.49)
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Jdp,

~2 =0, 4.50
il (4.50)
99 _A22 ] _o. (4.51)
dy ox N

Expanding the last boundary condition and considering the second order term gives

d o,
=2 A% 45
ax( ox cho (4.52)

The potential function ¢, and its Fourier transform ¢, are given, by definition, as

99,
dy

y=0

oo

0,(x,y) = [e™ §,(k,y) dk, and (4.53)

. 15 .
Pk, y)=>— Ie “ @y (x,y) dx. (4.54)

Taking the Fourier transformation of equations 4.49, 4.50 and 4.52 and solving for the

potential function ¢, gives

1= 3 90 coshﬂ(x+x)+cosﬂ(y_a)
@, (x,y)= —E—J.dx’ 5—£Aa—l—] In a 4 . (4.55)
o * T M=o | cosh 7> =X +cos mly=a)
a a

Evaluating this potential function at the surface of the plate (y = a) produces

0, (%) _ = L fax AGH22 | anh FEED L aan EE=X) | (4.56)
= 2a o0x 4=0 2a 2a
The term 9—%— can be evaluated as
ox y=0
Py . 3 az 2 i " .2
Qﬂ?— = —1—de {A-a—(%oﬂ- 2£A—,_ ¢2° + d A2 an?J ln{coshﬂ——cosh—@——J . (457
ox |,y 273 dx dx  Jx de’” ox | a a
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The details of this derivation are presented in Appendix F. The integrand has a
logarithmic singularity when x = x, but this singularity is inicgrable if Aand ¢, are

sufficiently smooth. In this case, at the singularity x =x Equation 4.57 becomes

3 2 2 !
&\ AT LA MG g o) @ss)
y=0 T 8x” dx ax" dx" ox y=0 a a

99,
ox

where dxis a small increment about the singularity point. The details of this analysis are

shown in Appendix F. Suppose we have a smooth defect given by the equation below:

tanh eta) +tanh \o2)
A(x) = H s __ A (4.59)
2 tanh(c/ 5)
where %, ¢ and s are parameters shown in Figure 4.9. In this case the parameters are
¢ =101.6mm, s =50.8mm and h=6.3mm.
Smooth Defect
E
E
g
a h
.
™ Cc
300 -250 -200 -150 -100  -50 0 50 100 150 200 250 300
Distance from the center to the border (mm) I@l

S

Figure 4.9 — Smooth defect given by Equation 4.59.
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Evaluating the first and second derivatives of this function with respect to x, as well as

the derivatives of the potential function ¢, with respect to x, the potential function
@,evaluated at y = a may be calculated, which is given by Equation 4.56. This result

added to the potential functions %I and qul\ , gives the solution to the forward

y=a y=
problem for a smooth defect given by Equation 4.59. Appendix F shows the derivations

of equations 4.47, 4.48, 4.52, 4.55 and 4.56.

A program in MATLAB was developed to solve this problem. Appendix G has a
listing of this code called “forward_smooth”. Figure 4.10 shows the result of this analysis
for the defect shown in Figure 4.9. An experimental result to compare with the analytic

one was not performed.

Potential Functions : plate with smooth defect
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Figure 4.10 — Analytic potential functions for a plate with smooth defect
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4.1.6 Correction for the cylindrical geometry

Consider a pipe without defect, which is infinitely long in the z-direction, as shown in

Figure 4.11. The Laplace equation can be rewritten in cylindrical coordinates as
Vip(r,0,Z2)=0,

2 2

ror or r:o6® 9zZ?

?

2 2 2

ot ror rloe’ 9z’

Figure 4.11 — Schematic view of a semi-infinite pipe without defect

Consider the variables below

:r1+r2

r, (mean radius of the pipe), and

a=r,—r (wall thickness of the pipe).
Making the following change of variables, the pipe may be approximated as a plate

and a correction term for the cylindrical geometry can be calculated:
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g==,
o
Z=x

2

0% 1 o r ¢ 9’
+ 9 — 20 3 (f=0.
_dy 0z X
2

Assuming a small wall thickness compared to the mean radius of the pipe, that is

a , .
y —— << r,, the equation above can be approximated as
2

V0 9 Do __13p 209D
dy> 9z> 9x* r, dy r,  0z%

(4.61)

Expanding the potential function to find the cylindrical correction the solution can be
written as

P(x,¥,2) = @ (X, Y) + ¢, (X, ,2), (4.62)
where ¢,(x,y) is the potential function for a non-defect region and ¢_(x,y,z) is the

correction term for cylindrical geometry. Considering first order approximations, the

problem can be stated as

2 2
8@+8%=&
dox dy

. ¢, o __10¢,
ox*  ay* 97’ r, dy

with the boundary conditions
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0P| _ S0P 5(x—1)-5(x+D)],
Wi W
9% _g
dy y=4,
Jg
L =0,
% |,
9% _g
ay y=4

where w=27r,.

The solution for the non-defect region has already been calculated. From Equation 4.40

ipS, Te,.kx sin k/

) =— coshk(y —A,) dk ,
Pl y) =" ksinhk(a—ag) oK~ 40)

—o0

osh 7+ x) +cosZ Y =4,)

p S, (@a-Ay)  (a-Ay)
¢0(X,)’)= ln .
ww cosh ﬂ(l—X) +COS7Z. (y_AO)
(a_Ao) (a_Ao)

For a uniform slot defect the correction term is not a function of z, therefore the problem

can be stated as

¢, g, _ 199,
ox*  dy’ r, dy

wl.,
9. _y.
ay y=4q

Solving this system for the potential function ¢_ gives
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P S, b
ryw [+ x—|1— ). (4.63)

¢.(x,a)=

Appendix H shows the derivation of this equation. From Equation 4.62
¢(‘x7 a) = ¢o (x’ a) + ¢(; (‘x’ a) ’

Tl +x) +cosﬂ (a—Ay)

osh —
p Sy, 1 2 (a—4) a=4,)
=P L -+ 2 . 4.64
o(x,a) 4w {ro [(l X‘ l x|)] T n Sh—ﬂ-—(l;{)—+cosﬂ (G—Ao)} ( )
(a—A,) (a—Ay)

This equation gives the potential function at the surface of a pipe without defect. It was
calculated approximating a pipe as a plate and then making a correction for the

cylindrical geometry. It is valid for pipes with a large ratio between the external radius

and the wall thickness (r,>>a).
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4.1.7 Three-dimensional solution for a pipe with a non-symmetric defect

Consider a pipe similar to that shown in Figure 4.11, but with a non-symmetric

defect in its inner surface. Figure 4.12 shows a schematic view of this pipe.

/:rz\ /,,
\S

Surface S

Figure 4.12 — Schematic view of a pipe with a non-symmetric defect.

Assuming a small wall thickness compared to the mean radius of the pipe, the Laplace

equation is written as

Vo 2p D0 129 20=0)d
oy’ oz7 ox’ ry 9y Yo oz

The potential function can be expressed as

¢(xay92) z¢0(_x, y)+¢1(x’y9z)+¢2(xaysZ)+¢c(x’yaz)’ (465)
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where ¢, (x,y) is the potential function for a non-defect region, ¢, (x, y,z) and

@,(x,y,z) are the potential functions that account for the defect region, and ¢ (x,y,2) is

the correction term for cylindrical geometry.

The basic equations are

azqoo +82§00 _0

e, (4.66)
aalqzl . a;y 2, aazz(gl -0, (4.67)
a;,;z . aazygiz +8;Z¢22 =0, and (4.68)
Vo, g, 9. 199, (4.69)

ox? oy 97’ r, dy
The surface S can be defined as S(R,6,Z)=R—F(6,Z2) =0, where F(6,Z)represents

the defect amplitude. The boundary condition at the surface S is

Jn:Q'Vw‘SZO’
1 oF oF
where n < ¢, ———e¢e, ———e . Thus,
TEERTRO6 5T 9z

dp 1 JoF dp OF d¢ ~0
OR R*0600 0ZdZ ),

Writing the equation above in slab coordinates gives
9@ _ L 2T =0. (4.70)

(ro_l_y_%)Z 0z 9z ox Ox

The defect A(x, z)can be defined as
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A(x,2)=F(6,Z)-r, +% ,
therefore Equation 4.70 can be rewritten as

2
%ﬂ___’o_;_%ﬂgé_%ﬂ%é —0. 471)
y (r()+y_§)2 Z Z X dX

A
Expanding this equation about A =0 produces, for each order of magnitude indicated as

a superscript index, the following equations:

A0 9%l o » 4.72)
ay y=0
1dp, 0 ,, 09
AV T2 ATy =, 473
[ dy ax( ox )]y—o (4.73)
A0 . 9% _g (4.74)
ay ¥=0
Jdp, 0 9, d 09,
20 _ T Ay T Ay =0, .
[ dy 8x( ox ) Bz( 0z ) 10 (4.75)

Appendix I shows how these equations are derived. The boundary conditions at the

external surface of the pipe (y =a) are

99| _Sop [6(x—1)—8(x+1D)], (4.76)
|y W

9% _y. 4.77)
N |,ef

A — (4.78)
dy
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90,

—  =0. 4.79
. (4.79)

The potential function ¢,can be calculated using equations 4.66, 4.72 and 4.76. It has

been solved previously and the solution is given by Equation 4.26. Thus,

7z(l+x)_‘_C ny

0 osh —
@, (x,y)=—=In = a_
2 cosh - x) + oS 7Yy
a a

The potential function ¢, can be calculated using the equations 4.69, 4.74 and 4.79. It

also has been solved previously and the solution is given by Equation 4.63. Therefore,

S
0. (x,a) =L ° [0+ | - 1.
0

4w

Equations 4.67, 4.73 and 4.77 provide the solution to the potential function ¢, . By

definition,

2 nz

¢ (x,y,2) = 261 Yo, (x,y),

N=—o0

2Tz oo

p(x .= Ye " [N, k) dk, (4.80)

—co

where @,, (k,y) is the Fourier transform of ¢,, (x,y).

Applying the Fourier transformation to the Laplace equation and its boundary conditions

and solving for ¢, (x,y) gives

ksink(x—x) N

I VTS

P () k, sinhk, a ox

, (4.81)

y=0

2 , o0 i27L’nz
where k, =k + (5% and A(x,2)= YA, (x) e *
w

n=—oo
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Appendix I shows the derivation of this equation. An analogous approach can be
followed for the potential function ¢, using equations 4.68, 4.75 and 4.78. Appendix I

also shows that

1 =T T ’ Am—n (x’) : ’ a¢ n 2r ’
(/)z,n(x)|y=a = Z Jdk:[qu m[ksm k(x—x )—éxl—,+(7)2m ncosk(x—x)@,1,. (4.82)

Appendix J shows that equations 4.81 and 4.82 can be written in a more convenient form.
Therefore, the potential function ¢, (x, y,z)can be calculated using the following

equations:

-2mmz

=X g,

m=—oc

®,(x,2)

Sn(x,%),

y=0

U RPN
=— ldx A(x ) —
(plm (X) pn ‘J; X (x ) a

X

£

Jdkksmk(x—x)

- ,  for m#0
S (rx)=10 k, sinhk, a
_ﬂ:_tanhﬂ_(x_:ic_) , for m=0
2a 2a

In addition, the potential function ¢, (x,y,z) may be calculated using the equations

below:
> iz_”ﬂ
¢2(x9 Z)Iyza = ze " Q)Zm(x) ’
1 <57, 7, - 0? . 09, 2nr 2 . 0

= dx |dx A A C (—A -0
Pa (%) - ;.,_-[ Jw x A, (x )G{Sm(axq () e )FO = m(axn (X)) e ) »

‘ 2mrw Jdk cos@(x—x ), for m#0
C. (x,x)=4 w y k,sinhk a

0, for m=0
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5 C 0 R cosk (k= x
K, nr(x —x) +jdk e CfOS‘ (xy X ), for
G (x'.x) - w 0 k,sinhk, a
” —lln sinth for
2 2a ’
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4.2 Solution to the inverse problem

4.2.1 Solution for a 2D symmetric defect

Consider a semi-infinite plate with defect as shown in Figure 4.13.

Surface S,

/ Surface S,

Z

Figure 4.13 — Schematic view of a semi-infinite plate with symmetric defect (assume

infinite in the x direction).

The surface S; is the top surface where the current is applied and the surface S, defined

as y = A(x,7), is the bottom surface with defect. Equations 4.1 through 4.5 are valid and
the potential function can be written as @(x,y,2) = ¢, (x,y)+¢,(x,y,z), where ¢, and
@, are the potential functions that account for the non-defect region of the plate and the
defect region of the plate, respectively. In this problem, qo| 5, 28 well as n- Vg0| 5, are given
and we desire to find the contours of n-V¢ =0, or in the other words, the surfaces where

the normal current density (J,) is zero.

Summarizing, this problem is described by the following equations:

Vip(x,y,2)=0, (4.83)
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CUIRE LVCRY T N o (4.84)
|y W
9|, =¢.(x2), (4.85)

where ¢,,(x,z) is the potential given by measurements.

The problem is to find A(x,z)so that J, :p_-Vq)ls =0,where ne< e, —%égx —%—Agz.
2 B X Z
Thus,
00 O0AJdp OJAJde
i i el o8 =0. 4.86
[ay ax ox 0z % ), (4.86)

The first part of this problem, which is the Laplace equation Vip,(x,y) =0 with
boundary conditions Q-V(pol s =P S(x,z) and n- V(00| 5, =0 has already been solved

previously. The solution is given by Equation 4.41:

w(l+x) +COS7Z (y—24,)

osh
P S, (a—-A4A,) (a-Ay)
,y) = 1 : .
Py (x,y) W n — 20— +cos”(y_A°) (4.87)
(a—A,) (a—Ay)

For a two-dimensional case, the second part of the problem can be stated as

Vi, (x,y)=0, (4.88)

with boundary conditions

nVo| _ -9 =0, and (4.89)
y=a ay -
Ol =P =p(x,y=a)=p,(x). (4.90)

Consider a small defect compared to the thickness (A << a). The defect can be

modeled as sum of the first and second order terms, which is
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AGx) = A, () + A, (x) . (4.91)

In a two-dimensional case, Equation 4.86 can be rewritten as

0p 0Adg
99 92921 =o. .
(ay ox Ox Js (4.92)

Expanding the equation above as a Taylor series about y = A, gives

J‘ 99, dx’
£y = g 4+ (4.93)
X)= —, .
1 0 9_%—
0x |4,
9
ox |,_ "
A, (x)=—(4, _A")_a&_' - (4.94)
0x |\,
Equations 4.93 and 4.94 are derived in Appendix K.
From equations 4.33 and 4.34
@, (x.)= [ ¢,(k,y) dk , and (4.95)
2 1 T —ikx
¢ (k,y)=— [ ¢,(x,y) dx, (4.96)
2 Y.
where @, (k,y) is the Fourier transform of ¢, (x, ).
Applying the Fourier transformation to the Laplace equation and to the boundary
condition of Equation 4.89 gives
P _ 2
P ~k'¢, =0, 4.97)
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y=a

The general solution to the Equation 4.97 with the boundary condition above is

¢,(k,y) = B(k)coshk(y—a).

Substituting this solution into Equation 4.95 results in

o0

¢, (x.y)= [e™ B(k)coshk(y—a)dk .

—00

Thus,

oo

L1 je”“ B(k) ksinh k(A, —a) dk .
dy

yeby =
The coefficient B(k) can be defined as

B(k)=¢,(k,a),

B(k) = éj& e, (x,a) dx.

The boundary condition defined by Equation 4.90 is

¢1 v=a = ¢m (X) - ¢)O (X) = ¢s (X) ’

thus

__]_m ~ikx
Bk) =~ fe™ o, (x) dx.

—00

(4.98)

(4.99)

(4.100)

(4.101)

Since the potential measurement ¢, is given by a set of data, Equation 4.101 has to be

calculated numerically. Basically, the problem consists of solving Equation 4.101,

plugging the result into Equation 4.100 and then calculating the defect solution by

solving Equation 4.93. A program in MATLAB was developed to numerically solve this
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system of integrals. Appendix L has a description of the integrals and a listing of this

code, entitled “inverse _first_data”.
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4.2.2 Alternative approach for the 2D inverse problem

The previous solution used the parameter A, to correct the boundary condition at

infinity. Although this approach provides a good result, it introduces a new parameter
that needs to be evaluated iteratively. A solution can also be developed without using the
parameter A, .

Expanding the boundary condition of Equation 4.92 about y =0, the following

equations are obtained for a 2D case:

199, :
— d
Sl
A(x)= 3 7 , 4.102)
9%,
a‘x y=0
99,
a‘x y=0
A, (x)=-A(x) 20 ~— (4.103)
99y
0x |,

The potential function ¢, is given by Equation 4.26. Therefore,

coshﬂ(H_x) -i-0057Z Y
a

a
(- Ty
cosh (=) +cos Y

a a

S
0y (5,y) =220 In
2Tw

From this equation the denominator of equations 4.102 and 4.103 can be evaluated. Thus,

Ig,| _PS, [tanhﬂ(“x)
ox | _, 2wa

¥

+ tanh ﬂ—(l—:ﬁ} .

4.104
2a 2a ( )

The potential function ¢, can be defined as
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~ /A
0,(x,y) = B (x,9) + 9., tanhz—;, (4.105)

where ¢_ = (¢, _(00|v=a)x_’°° is defined so that q’blla =0 as |x| — oo,

The function @,(x,y) satisfies

V25, = - V? tanh%)—c—, (4.106)
a
% =0, (4.107)
Y )=
P, T ] P tanh%j“ (4.108)
By definition,

oo

7 (x,y) = [e* (k. y) dk, and

2 1 i o~
bk, y)=——[e™ Bi(x,y) dx.

—o0

Taking the Fourier transformation of equations 4.106, 4.107 and 4.108 and solving for

the function &, (k,y) gives

2 . (Pwa 1 A (pooa
= +| 6¢- hk(y—a)}, 4.109
“ l{ 7 sinhka {qp 7 sinhka]cos v a)} (4109
where
-
5¢=——jsinkx[(pm—¢0; — 0. tanhﬁ}dx. (4.110)
Ty “ 2a

Equation 4.109 is derived in Appendix M.
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In order to avoid the ill-conditioned part of this solution the short wavelengths must be

suppressed. This can be done introducing a damping factor to the solution above.

Consider
Y 1 Q =
2 ) a ~ N K2
SR ) S Sy |7, V7, Y- coshk(y—a)e ™ ¢, 4.111
o=t 7 sinhka [ 7 sinh ka} (r=a) ( )

where k,, is a damping parameter.
Appendix M also shows that the numerator of the Equation 4.102, called Num(x) , can be

evaluated as

2
22 k

g ak, == = . 2
ne 4+ —2{dk coskr (6§ sinhka)e . (4.112)
Vr !

Num(x) =

Equations 4.104, 4.110 and 4.112 are used to calculate the first order approximation of
the defect given by Equation 4.102.

In order to calculate the second order approximation of the defect given by Equation

4.103 the term %p‘— must be determined. Appendix M shows that this term is given by
S
- K
90 =—2jdk k cos kx 5@——&1—— coshkae * . (4.113)
0x |, 5 7 sinh ka

Equations 4.113 and 4.104 are used to calculate A,(x) given by Equation 4.103. A

MATLAB code called “inverse_second” was developed to numerically solve these
integrals and calculate the defect to a second order of approximation. Appendix N has a

listing of this code.
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4.2.3 Solution for a 3D cylindrical non-symmetric defect

Consider a pipe as shown in Figure 4.12. The surface S can be defined as

S(R,6,Z)=R~-F(6,Z)=0, where F(6,Z)represents the defect amplitude. In slab

coordinates the defect amplitude may be defined as A(x,z) = F(6,Z) -1, + % . The

potential function can be expanded as
@(x,5,2) = @o (£, )+ ¢, (%, ¥, 2) + ¢, (%, ¥, 2) -

The problem is described by the following equations:

2’0 ¢ P 139, 20-%a%

oy? 9z ox’ 1y 0y r P

0P S0P S(x—1)=S(x+1)].
W, W

¢

y=a = ¢m (x’ Z) H
where w=2x r, and ¢, (x,z) is the potential given by measurements.
The problem is to find A(x,z)sothat J, =n- V(pl =0,

F
where noc e, — L9 —a—ligz. Thus,

R36°° oz

9p 1 0Fdp dFdp} _,
OR R*0006 3ZZ |,

Writing the equation above in slab coordinates gives

N
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(4.115)

(4.116)

(4.117)



2
vy o W F¥ETE_ ¥ =0. (4.118)
(r0+y—%)2 dz 07 Ox Ox

A

The first part of this problem, which is the Laplace equation Vi, (x,y) =0 with

=p S(x,z) and n-Ve, . =0 has already been solved

boundary conditions 1V ¢ |

previously. The solution is given by Equation 4.26:

osh nl+x) +cosﬂ—z

P Oy a a
@, (x,y) = In — .
2w osh =) —+COoS Ty
a a

The second part of the problem can be stated as

Vg, (x,y,2) =0, (4.119)

n-vVey _%a =0, (4.120)
y=a ay v

qDlIy:a = wm (x’ Z)_wo(x’a)—wc(x’a) * (4.121)

Consider a small defect compared to the thickness (A << a). The defect can be written as
sum of the first and second order terms, which is
A(x9 Z) = Al (x7 Z) + A2 (x7 Z) .

Expanding Equation 4.118 as a Taylor series about y =0 gives

-8401 0 9,

2 =0, .

| dy ax( ' 8x) =0 (4.122)
(9, 09, . 99 O . 99,

N WA 4 D SR i RS Y ) .
_ax( ? ox TS ox +8z( 2 0 (4123)
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Appendix O shows the derivation of equations 4.122 and 4.123. One can see that from

Equation 4.122

[

2,0y
A1 (x, Z)=

y=0
99,
ox |,

and from Equation 4.123

laz

l:Az—a—iO—+Al%i—‘+ jdx’a%(A % } =0.
A -

The potential function ¢, can be defined as

@,(x,y,2) = @, (x, y,z)+6+5tanh7;—x,
a

where o = —;— [(0("") + 60(—“)]’

1
5= E[co(oo) — p(—=)],

S, ! S,
¢(oo)=|:gpm_p 0 _p O} ,

wa 2ryw

¢(_m)=[¢nl+pSOl+pSol] ,

wa 2ryw

are defined so that q’ﬁ]! =0 as |x| —> 00,

y=a

The function @, (x,y,z) satisfies

Vg =-6V? tanh 22 |
2a
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(4.125)

(4.126)

(4.127)

(4.128)

(4.129)

(4.130)

(4.131)



| g

4.132
| ( )
S
(51[ = =¢m_¢0i - £ Hl+x|—{l—x|]—0'—5tanh—7—z—x-. (4.133)
r=a ¢ dwr, 2a
By definition,
oo i2nnz
P (x,y,2)= Ye ¥ @,(xy), (4.134)
0, (x,y) = [ @, (k,y) dk, (4.135)
. 15 .
¢ (k) === [e™ @, (x,y) dx. (4.136)
21 7,

Taking the Fourier transformation of equations 4.131, 4.132 and 4.133 and solving for
the function ¢,,(k,y) gives

da k* 2 Sa k*?
5 =S +¥Y -6 coshk -a)y, 4.137
Prm l{ " 7k sinhka { " "™ k? sinh kail n (Y )} ( )

m

where
2rm Y
k, =‘/k2+(——~———j , (4.138)
w
1 53 w .2 mz p S Tx
N _ ] i " ke _ 0 b _ _
Y (k)= T :[odx!dz e e {qom ~ %0l ~ or [+ x\ |l = 4] - o — 6 tanh ?a_} , (4.139)

ianZ 1, . =0
{ yom (4.140)

e, -
o, = —J.dz e v = . .
Wy 0, if m=#0
Equation 4.137 is derived in Appendix O.
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In order to avoid the ill-conditioned part of this solution the short wavelengths must be

suppressed. This can be done introducing a damping factor to the solution above.

Consider
2
6 Oa A 6 Oa 2
D, =Is—" +| ¥, ——%+———|coshk, (y—a)e ™ ¢, 4.141
i 7 sinhka [ V4 sinhka} =a) ( )

where k__ is a damping parameter.

Assume

2z m
Ax,2) =Y A, (x)e » , and (4.142)

j agplm dx’
2oy |,
A, (x)= 30 »=0 (4.143)
Zro]
ox |,
The term jdx’é)ﬁﬂ is given by
LA 2
x5 o (zkx—_k—) k_sinhk, a da L'ksmxxz]
jdx’—¢lnl = J.dk e i li“m S+ 5m —kmax € ) (4144)
LA k Jr

The details of this derivation are presented in Appendix O. Equations 4.142 through

4.144 can be used to calculate the first order approximation of the defect given by

Equation 4.124.

Assume

2,
Ay(xz)=Y A, (x)e w . (4.145)
P
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The second order approximation of the defect can be calculated applying Fourier analysis

to Equation 4.125. Appendix O shows that

n —oo

1 o
Azp(x);' aq) A
270

y=0

n w

ﬂa A, '[dk k cos kx

75

cosh ka

sinh ka

e

ks

Y jdk ke™A,,., P, coshk,ae Ko

kZ

max

2

ks

+ iE 22T p J.dx’ Jdk e"kx‘Al(p_n)‘i’n coshk,a e Knse
w —o0

. (4.146)




4.3 Forward problem for a semi-infinite plate without defect

Two expressions were developed that give the voltage difference between two

points at the surface of a plate without defect:

mrwr mnze,
4p S, & N, cos( 2 ) cos( ” ) o V(=X _ o=y (40)
V(x)=—" , and
wa 2:6;’ 0, z& O Ym
[+
s oshﬁ( x)—l
Vi =L, ”(la_ —.
Tw cosh * -1
a

These equations are essentially identical. The first one is a numerical expression
and the second equation is an analytical function. The results of these equations were
compared with those obtained experimentally. Figure 4.14 shows the comparison
between the experimental and analytical results for a rectangular plate (12 inches x 8
inches x % inch). As shown in Figure 3.3 the voltage probes were spaced at 12.7mm (V2
inch) intervals and 15 input current wires (total current of 10 Amp) were attached at the

plate ends, equally spaced 12.7mm (Y2 inch) apart.

76



Potential Difference - plate 3/4" no defect

160
140 r I

—
0

-
n
o

g

Voltage Difference (microvolt)
3

Analytical solution
------ Experimental data

20 |

0 20 40 60 80 100 120 140
Distance from the center to the border of the plate (mm)

Figure 4.14 - Comparison between experimental and analytical results for a

no-defect rectangular plate.

It can be seen that the theoretical result is extremely close to the experimental
one. Although the model assumes a semi-infinite plate, experimentally no end effects
were observed. The uniform current distribution throughout the wires contributed to the
good agreement between the results. The difference between the analytical and

experimental result is mostly due to measurement uncertainties.
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4.4 Forward problem for a semi-infinite plate with a slot defect

When a slot defect, such as the one showed in Figure 4.5, is introduced in the
plate a new term is added to Equation 4.27 in order to consider this defect. Equation 4.38
is the analytical solution for the potential difference between two points on the surface of
a slot-defective plate:

n(l+x)
_pS, T oS

Vix)= In Z0-2
Tw COSh——“'l Taw

a

-1 x coshiz—(l+/l)coshi(ﬂ,—x)
[cothz—(l —x)In a_ 2a _
a

cosh - (x+ A)cosh 7 (A=D1
2a 2a

z coshf—(l+x)cosh£(i+l)
coth— (I +x) In 2”“ fra
2a cosh — (A —1)cosh — (A —x)
2a 2a

]

Several experiments were carried out on a rectangular plate with 304.8mm x
203.2mm x 19.05mm (12 in x 8 in x 3 in). A groove, as described in Figure 4.5, with
dimensions A =50.8mm and % =2 mm was machined in the bottom of the plate. Figure
4.15 shows the experimental data and the analytical result using Equation 4.38. Again, 15
current wires were used, equally spaced at 12.7mm (%2 inch) at the ends of the plate. The
total current was 10 Amp. It can be seen that the analytical result was very close to the
experimental data.

Equation 4.38 was developed considering a small slot height defect compared to
the thickness of the plate (h<<a) and shows a linear dependence of the potential
difference with the height of the slot defect (%). For a 2mm-height slot defect
(approximately 10.5 % of the plate thickness) Equation 4.38 predicts a good result

compared to the experimental data. A change in the slope of the curve for distances
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greater than 50.8 mm (2 inches), which is the half slot length, points out a change in the

resistance of the plate and therefore the presence of a defect.

Potential Difference - plate 3/4" with a 2mmrheight slot defect

Voltage Difference (microvolt)

0 2 4 & 80 100 120 140
Distance from the center to the border of the plate (mm)

Figure 4.15 — Comparison between experimental and analytical results for a

2mm-height slot defect plate.

Figure 4.16 shows the results for a plate with a 4 mm-height slot defect. For this
case, where the depth of the slot was about 21% of the thickness of the plate, the linear
correction for the potential difference given by Equation 4.38 is not enough. The
experimental data are about 3% to 6% greater than the results given by the analytical
solution. It turns out that a second order term correction is necessary to improve the

analytical solution. The changing of the slope for distances greater than 50.8 mm (2
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inches) is more visible since there is a relatively larger decrease in the resistance of the

plate, as compared to Figure 4.15.
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o

[=2]
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80
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Voltage Difference (microvolt)

40

20

Potential Difference - plate 3/4" with 4mm-height slot defect

------- 4mmtheight experimental data

~———— 4rrmrheight analytical solution
y - -+ - Nodefect plate
0 20 40 60 80 100 120 140

Distance fromthe center to the border of the plate (rmm)

Figure 4.16 - Comparison between experimental and analytical results for a

4mm-height slot defect plate.

Finally, a slot with 6.3mm of depth was machined in the plate. Figure 4.17 shows

the comparison between the analytical solution given by Equation 4.38 and the

experimental data. In this case the slot depth is more than 32% of the thickness of the

plate and, therefore, a good agreement between experimental and analytical results was
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not expected. The difference between the experimental data and the analytical solution
varies from 7% to 12%. In this case a second order term correction for the potential
function becomes necessary. The bigger the depth of the slot defect, the greater the

difference between the experimental data and the analytic solution given by Equation

4.38.
Potential Difference - plate 3/4" with 6.3mmrheight slot defect
200
180 -
S R v

160
g 140 - 0
S
£ 190
()}
e
5 100
kS
5 8]
S
% e L T e 6.3mmheight experimental data
= i

40 1 \ 6.3mmrheight analytical solution
20 1 A l wm -~ = No defect plate
0 ; : . : . ;
0 20 40 60 80 100 120 140

Distance from the center to the border of the plate (mm)

Figure 4.17 - Comparison between experimental and analytical results for a 6.3mm-

height slot defect plate.
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4.5 Forward problem for a semi-infinite plate with a ramp defect

Consider a plate with a ramp defect as shown in the Figure 3.4. The plate has
dimensions of 304.8mm x 203.2mm x 19.05mm (12 in x 8 in x % in). The total current
applied was 20 Amp and 15 current wires were used, equally spaced at 12.7mm (2 inch)
at the end of the plate and. In two dimensions this defect can be represented by the

following equations:

Ax)=h for —c<x<c,
A(x)zﬁ(c+s—x) for c<x<c+s,
Z (4.147)
Alx)=—(c+s+Xx) for —c—s<x<-—c,
s
A(x)=0 else.

Figure 4.18 shows a schematic view of the function above. The first derivative of
this function can be easily calculated and the second derivative vanishes for all points.
Equation 4.147 replaces Equation 4.59 in the analytic solution for a semi-infinite plate
with a smooth defect. A code called “forward_ramp” was developed to calculate the

potential at the surface of the plate for this ramp geometry.

A(x)

S C C S

Figure 4.18 — Ramp defect function given by Equation 4.114.

82



Voltage Difference (microvolt)

Figure 4.19 shows a comparison between the experimental data and the analytic result
given by the code “forward_ramp”. The parameters described in the Figure 4.18 for this
experiment are i =6.3mm , ¢ =50.8mm and s =24.6mm . Although the defect depth is
more than 32% of the thickness of the plate the agreement between the two curves is
good. The reason for this better behavior compared to that obtained in Figure 4.17 is not
only because defect is smoother but also because a second order term was considered for

the potential function.

Potential Difference - plate 3/4" with ramp defect
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Figure 4.19 — Comparison between experimental and analytical results for a ramp

defect plate.
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4.6 Forward problem for a semi-infinite pipe without defect

The pipes used during the experiments had a large diameter compared to the wall
thickness, therefore the cylinder was approximated as a plate and Equation 4.28 was used
to estimate the analytic solution. Several experiments were carried out in a pipe with an
external diameter of 326.4mm (12.85 inches), a wall thickness of 12.7mm (0.5 inch) and
609.6mm (24 inches) in length. The total current applied was 35 Amp and 26 current
wires were used at each end of the plate. Figure 3.5 shows a picture of this pipe. Figure
4.20 gives a comparison between the experimental results and the approximated analytic

solution given by Equation 4.28. An average radius was assumed for the calculation.

Pipe without defect: approximating by a plate
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Figure 4.20 — Comparison between experimental and analytical solution

without correction for a pipe with no defect.
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The analytic solution matches well the experimental data only in the center of the
pipe, where the effect of the geometry is less evident. For large distances from the center
of the pipe the difference between the experimental and analytical results can be reduced
using the correction term for the cylindrical geometry given by Equation 4.63.

Equation 4.64 gives the potential function at the surface of a pipe without defect
using the correction term for the cylindrical geometry. It is valid since the pipe has a
large external radius compared to the wall thickness (rp>>a). Figure 4.21 shows a good
agreement between the experimental data and the analytical result given by Equation

4.64.

Pipe without defect: approximating by a plate with correction
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Figure 4.21 - Comparison between experimental and analytical solution

with correction for a pipe with no defect.
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4.7 Inverse problem for a semi-infinite plate with a slot defect

Consider the plate with a slot defect as shown in Figure 3.3. The DCPD
measurements can be used to calculate a series of contour plots of constant plate
thickness. These thickness measurements were derived from Equation 2.2. Figure 4.22
shows these contour plots in two sections. The upper part of the figure shows the contour
plot as experimentally determined. The numbers denote the plate thickness (in milmiters)
for that contour and the thinner the wall, the darker the shading. The lower portion shows
the contour plot with the defect drawn in. Although the depth of the defect is not well
predicted, the presence of the defect is clearly identified in the top figure.

Equatio_n 4.93 calculates the first order of the defect considering a two-dimenéion
case. A MATLAB code described in Appendix L was developed to solve the equation.
Figure 4.23 shows the two-dimension solution from the measurements acquired along the
centerline of the plate. It can be seen that the solution given by the model predicts a
height about 17% greater than the actual value, which represents a plate thickness of
11.7mm. It is a more conservative prediction compared to the thickness shown int the
contour plot. The sharp edges cannot be predicted mathematically but do not represent a
likely defect caused by flow accelerated corrosion. The potential data were collected only

between the current probes.
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Thickness contour plot for a slot defect
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Thickness contour plot for a slot defect
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Figure 4.22 — Thickness contour plot for a slot defect in a plate.
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Defect using the experimental data - kmax = 0.08/mm
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Figure 4.23 — 2D defect solved for a slot plate (A = 50.8mm ,h = 6.3mm ) using

experimental data.

Since the analytical solution has been determined for the potential function at the
surface of the plate, “analytical data” can be generated for any slot. These “virtual” data
can be used, instead of the potential measurements, to solve the inverse problem.
Appendix P describes the code used to solve the inverse problem using “analytical data”.
Figure 4.24 shows the output of this code for a slot defect with the same dimensions

(h=6.3mm and A =50.8mm).



Defect using the "analytical data" : kmax = 0.036/mm
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Figure 4.24 - 2D defect solved for a slot plate (A = 50.8mm ,h = 6.3mm ) using

“analytical data”.

Using the forward problem “analytical data” was generated for long distances
from the current probes where the electrical field vanishes and the potential function ¢,

goes to zero. The model results predict a defect of 6.1mm in height, which is very close
to the real value of 6.3mm.
“Analytical data” can also be produced for a wider slot. Figure 4.25 shows the

solution for a plate with slot defect with 4 = 6.3mm and A =400mm compared to the

real defect.
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Defect using the "analytical data" : kmax = 0.0113/mm
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Figure 4.25 - 2D defect solved for a slot plate (A = 400mm , h = 6.3mm ) using

“analytical data”.

The solution predicts a defect with about 5.6mm of height and a better resolution of the
flat part of the defect. The inverse problem was solved considering only the first order
approximation, which means that the height of the defect could be more accurate if a
second order term were added to the solution.

Figure 4.26 shows the output of the code for a slot defect with h = 2mm and

A =50.8mm.
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Defect using the experimental data - kmax = 0.055/mm
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Figure 4.26 - 2D defect solved for a slot plate ( A = 50.8mm , h = 2mm ) using

experimental data.

This figure shows a predicted defect with a height about 19% greater than the actual
value. It is a good prediction considering that the plate was 12 inches in length and no
data was acquired outside of the current probes.

“Analytical data” can also be produced for this defect slot and compared to the

solution of the real defect. Figure 4.27 shows the solution to be in excellent agreement

with the actual height of the defect.
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Defect using the "analytical data" : kmax = 0.086/mm
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Figure 4.27 - 2D defect solved for a slot plate (A = 50.8mm ,h = 2mm) using

“analytical data”.
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4.8 Inverse problem for a semi-infinite plate with a ramp defect

Consider the plate with a ramp defect as shown in Figure 3.4. Equation 4.93
calculates the first order defect considering a two-dimensional case. A MATLAB code
described in Appendix L was developed to solve the equation. Figure 4.28 shows the
output of this code for a plate with a ramp defect given by Equation 4.114 with

parameters A =6.3mm, ¢ =50.8mm and s =24.6mm.

Defect using the experimental data and first order approximation - kmax = 0.033/mm
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Figure 4.28 - 2D defect soived for a ramp plate using experimental data and first

order approximation.
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Equation 4.103 calculates the defect considering the second order approximation for the
two-dimension case. A MATLAB code described in Appendix N was developed to solve
the equation. Figure 4.29 shows the output of this code for a plate with a ramp defect
given by Equation 4.114 with parameters h = 6.3mm , ¢ =50.8mm and s =24.6mm . The
defect height calculated was about 5% less than the actual one. Since the depth of the
defect represents 33% of the thickness of the plate, the model and real defect are in good

agreement.

Inverse Problem with 2nd order approximation - km = 0.045/mm
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Figure 4.29 - 2D defect solved for a ramp plate using experimental data and second

order approximation.

94



Figure 4.30 shows a comparison of the defect solution using the first and the second order

approximation. It can be seen that by considering the second order term in the calculation

of the defect, the solution better approximates the actual value.

Comparison of the ramp defect results
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Figure 4.30 — Comparison between first and the second order solutions for a ramp

defect.
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4.9 Inverse problem for a semi-infinite plate with a smooth defect

Consider a plate with a smooth defect as shown in Figure 4.9. Using the “analytic
data” calculated by the code “forward_smooth”, as presented in Figure 4.10, the inverse
problem can be solved for this defect. Figure 4.31 shows a comparison between the result
calculated using first and second order approximation and the real defect shown in Figure
4.9. The analytic result gives a good estimate of the depth of the defect. The model also

predicts a better width of the defect compared to the slot and ramp defect cases.

Comparison of the result for a smooth defect
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Figure 4.31 — Inverse problem for a smooth defect given by Equation 4.59.
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4.10 Inverse problem for a pipe with a circular defect

Consider a pipe similar to the one shown in Figure 3.5 with a circular defect on its
inner surface. The original thickness of the pipe wall was 12.7mm (%2 inch). The defect
was 101.6mm (4 inches) in total diameter with a 76.2mm (3 inches) diameter region
having a constant depth of 6.35mm (% inch), as shown in Figure 4.32. This is a more

likely type of defect that resulting from flow-accelerated corrosion phenomena.

Figure 4.32 — AUTOCAD reproduction of a circular defect machined in the pipe.
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Figure 4.33 shows the contour plots of constant pipe thickness using the DCPD
measurements. The upper part of the figure shows the contour plot by itself. The lower
portion shows the contour plot with the defect draw in. A current density of 0.28
Amp/cm” (35Amp total) was used in this experiment. Although the assumption of
constant current density is a weak one, the presence of the defect is clearly identified by
the dark shaded region in the top figure.

The depth of the defect is not well predicted by these contour plots. Solving the
inverse problem from the DCPD measurements can refine this result. Figure 4.34 shows a
two-dimension solution from the measurements acquired along the centerline of the
circular defect. Although the evaluation of the depth of the defect is better, the solution is
not as good as to that shown for the ramp-defect case in Figure 4.30. In the 7slot and ramp
defects, the defects were independent of the z direction. However, in this case the defect
is no longer independent of the z direction. A three-dimensional solution for the pipe
defect is required to obtain better resolution of the defect morphology. Nevertheless, the
application of the methodology developed in this work allows for a significant refinement

and improvement of predicted pipe thickness.
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Central defect in the pipe
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Figure 4.33 — Thickness contour plot for a circular defect in a pipe.
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2D defect for the centerline of the pipe - kmax = 0.084/mm
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Figure 4.34 — 2D defect solved for the pipe using experimental data.
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CONCLUSION

A new methodology, based on the direct current potential drop technique, has
been developed to measure the pipe wall damage morphology caused by flow assisted
corrosion or any other phenomenon that results in wall thinning. The methodology has
been confirmed using plate and pipe with a well-defined defect present.

This new non-destructive evaluation technique allows the real-time determination
of the evolution of pipe wall thickness and damage morphology. In the actual field the
data will be in the fo;’ln of the potential drop measurements for an array of probes placed
on the outside diameter of the pipe. First, the algorithm determines the presence of a
defect and then, assuming that a defect is detected, it develops the morphology of the
defect. The method is capable of detecting wall loss greater than 5% of nominal wall

thickness of the pipe.
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FUTURE WORK

The methodology developed was tested in two-dimensional cases for a well-
defined defect. Although the algorithm for three-dimensional evaluation has been
developed it was not tested. Interesting future work, then, would be testing this algorithm
for the circular defect that was shown in the pipe. Then, the algorithm can be used to
evaluate the pipe wall thickness and damage morphology for a real defect caused by flow
assisted corrosion (FAC).

Because FAC is common in components with geometry that increases fluid
velocity and turbulence, it is recommended to develop similar methodology for other
geometries than pipes. Building algorithm for elbows, for example, would be a valuable
addition.

Finally significant computer work must be done to present the results. For
applications in the field conversion of all codes to FORTRAN and developing an
interface for the data acquisition is necessary. Moreover, a graphical user interface using

Visual Basic could be developed to show the wall damage morphology.
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APPENDIX A

This appendix is a listing of the program “Pipe Thinning” developed in HP Basic
for acquiring potential difference measurements. This program sets up the channels for
voltage reading, assigns the switch controller to inverter the current and filters the data to

neglect a deviation by more than half standard deviation from the average.

5 ! Program Pipe Thinning

10 ! by

15 ! P.STAHLE

20 !

25 OPTION BASE 1

26 DIM File$[20]

30 COM /Screen_data/Ht,Wd,Ih,Iw
35 COM /Devices/@Dvm

36 INPUT "ENTER FILE NAME" File$
37 CREATE File$,1

40 ASSIGN @F TO File$

45 INTEGER G(0:5)

50 GESCAPE CRT,3;G(*)

55 Ht=.75*G(3)
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60 Wd=G(2)

65 CLEAR SCREEN

70 CLEAR7

75 ASSIGN @Dvm TO 722 ! DIGITAL VOLT METER

80 ASSIGN @SwtTO 710 ! SWITCH CONTROLLER

85 !

90 ASSIGN @Main_panel TO WIDGET "PANEL";SET ("VISIBLE":0)
95 CALL Panel_build(@Main_panel,"Main Panel")

100 STATUS @Main_panel;RETURN ("INSIDE HEIGHT":Ih,"INSIDE WIDTH":Iw)
105 !

110 ONKEY 1 LABEL " HALT" GOTO Halt

115! ON KEY 2 LABEL " TAKE READING" GOTO Take_reading

120 !

125 ASSIGN @Cht TO WIDGET "STRIPCHART";PARENT @Main_panel
130 Chart_build(@Main_panel, @Cht,-1.E-5,-3.E-5,1,"","")

135 CONTROL @Cht;SET ("CURRENT AXIS":"Y","AUTOSCALE".0)
140 CONTROL @Main_panel;SET ("VISIBLE":1)

145 CONTROL @Cht;SET ("CURRENT AXIS":"X","RANGE":2000)
150 OUTPUT @Swt;"SLIST200-209,300-309,400-409,500-509,0"

155 Nrows=10

160 !

165 Take_reading:!

170 !
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175

180

185

190

195

200

205

210

215

220

225

230

235

240

Timer=60

!

OUTPUT @Dvm;"RESET"

OUTPUT @Dvm;"TERM REAR"

OUTPUT @Dvm;"NDIG 6"

OUTPUT @Dvm;"NPLC 100"

OUTPUT @Swt;"CLOSE 100"

Crnt$="POSITIVE"

FOR Chnl=1 TO 40!

GOSUB Monitor

OUTPUT @Swt;"STEP"
Volt=FNEnter_volts(Timer)
CONTROL @Cht;SET ("POINT LOCATION":TIMEDATE,"VALUE":Volt)

OUTPUT @F USING

"4(K,"",""),K"; DATE$(TIMEDATE), TIME$(TIMEDATE), Volt,Chnl,Crnt$

245

250

255

260

265

270

275

280

DISP DATE$(TIMEDATE), TIMES(TIMEDATE), Volt,Chnl,Crnt$
NEXT Chnl
OUTPUT @Swt;"STEP"
OUTPUT @Swt;"OPEN 100"
OUTPUT @Swt;"CLOSE 101"
Crnt$="NEGATIVE"
FOR Chnl=1 TO 40!

GOSUB Monitor
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285 OUTPUT @Swt;"STEP"

290 Volt=FNEnter_volts(Timer)

295 CONTROL @Cht;SET ("POINT LOCATION":TIMEDATE,"VALUE":Volt)
300 OUTPUT @F USING
"4(K,"",""M),K";DATES(TIMEDATE),TIME$(TIMEDATE),Volt,Chnl,Crnt$
305 DISP DATES$(TIMEDATE), TIMES$(TIMEDATE),Volt,Chnl,Crnt$
310 NEXT Chnl

315 OUTPUT @Swt;"RESET"

320 Halt: !

325 ASSIGN @FTO *

330 LOCAL 710

335 LOCAL 722

340 CLEAR7

345 STOP

350 Monitor:!

355 SELECT Chnl

360 CASE 1

365 OUTPUT @Swt;"CMON 2"

370 CASE 11

375 OUTPUT @Swt;"CMON 3"

380 CASE 21

385 OUTPUT @Swt;"CMON 4"

390 CASE 31
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395 OUTPUT @Swt;"CMON 5"

400 END SELECT

405 RETURN

410 The_end: END

415 !

420 SUB Time_delay(T)

425 TI=TIMEDATE

430 IF TIMEDATE-T1>T THEN

435 SUBEXIT

440 ELSE

445 GOTO 430

450 ENDIF

455 SUBEND

460 Chart_build: SUB Chart_build(@Charts,@W,REAL Yorg,Yrng,Traces,Titl$, YIbl$)
465 OPTION-BASE 1

470 INTEGER G(0:5)

475 GESCAPE CRT,3;G(*)

480 STATUS @Charts;RETURN ("INSIDE HEIGHT":G(3),"INSIDE WIDTH":G(2))
485 CONTROL @W;SET ("X":0,"Y":0)

490 CONTROL @W;SET ("WIDTH":G(2),"HEIGHT":G(3))

495 CONTROL @W;SET ("CURRENT AXIS":"X","DIGITS":5,"NUMBER
FORMAT":"CLOCK24")

500 CONTROL @W;SET ("ORIGIN":TIMEDATE,"RANGE":43200)
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505

510

515

520

525

530

535

540

545

550

555

560

565

570

575

580

585

590

595

600

605

610

615

CONTROL @W;SET ("AXIS LABEL":"Time")
Crtid$=SYSTEMS$("CRT ID")
IF Crtid$[7;7]="C" THEN
CONTROL @W;SET ("BACKGROUND":11,"TRACE BACKGROUND":1)
END IF
CONTROL @W;SET ("CURRENT TRACE":0,"POINT CAPACITY":1500)
CONTROL @W;SET ("SHARED X":1,"TRACE COUNT":Traces)
CONTROL @W;SET ("MINIMUM SCROLL":0)
CONTROL @W;SET ("CURRENT AXIS":"Y","ORIGIN":Yorg,"RANGE":Yrng)
CONTROL @W;SET ("AXIS LABEL":YIbl$)
CONTROL @W;SET ("SHOW GRID":;I)

SUBEND

!

SUB Panel_build(@P,AS$)
OPTION BASE 1

COM /Screen_data/Ht,Wd,Ih,Iw

CONTROL @P;SET ("X":0,"Y":0)
CONTROL @P;SET ("WIDTH":Wd,"HEIGHT":Ht)
CONTROL @P;SET ("TITLE":A$)

SUBEND

!
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620 !

625 ! CODE TO READ AND FILTER THE RESULTS
630 !

635 DEF FNEnter_volts(Timer)
640 COM /Devices/@Dvm

645 DIM V(100)

650 I=-1

655 T=TIMEDATE

660 LOOP

665 I=I+1

670 ENTER @Dvm;V(])

675 EXIT IF TIMEDATE-T>Timer
680 END LOOP

685 CALL Filter(V(*),Vfiltered,I)
690 RETURN Vfiltered

695 FNEND

700 !

705 SUB Filter(X(*),X_filtered,N)
710 Mean=SUM(X)/N

715  Xsum=0.

720 FORI=1TON

725 Xsum=Xsum+(X()-Mean)"2

730 NEXTI
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735

740

745

750

755

760

765

770

775

780

785

790

795

800

805

810

Sigma=SQR(.1111111111*Xsum)

Test=.5*Sigma

Incr=.1*Sigma

Testing:!

Xsum=0.

Nsum=0

FORI=1 TON
IF ABS(X(I)-Mean)>Test THEN GOTO 785
Xsum=Xsum+X(I)
Nsum=Nsum-+1

NEXTI

IF Nsum=0 THEN
Test=Test+Incr
GOTO Testing

END IF

X_filtered=Xsum/Nsum

815 SUBEND
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APPENDIX B

This appendix describes the numerical solution for an infinite plate with slot

defect using Fourier transformation. From equations 4.5, 4.6 and 4.7,

Vip(x,y,2)=0 (B.1)
d
5?3 =p S(x,2), (B.2)
2
. |
_éi‘i = p P(x,2). (B.3)
V150
By definition,
2\ l TT (ik x+ik,z)
w(kx,kz,y):gjjgo(x,y,z)e kD g (B.4)
1 %%, st e
0x 3,y = [ [Pk, y) eV dk k. (B.5)

—co—

8

where @ is the Fourier transform of ¢ and ky, k; are the variables in the frequency
domain.

Applying the Fourier transformation to Equation B.1 results in

2 A
%y%—k%ﬁ:o, (B.6)

where k> =k2+k”.

Applying the Fourier transformation to equations B.2 and B.3, the boundary

conditions change to
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aty=a: Qﬂ:pﬁwﬂhy (B.7)
dy

A

aty=0: Qﬂ:pﬁwﬂ@L (B.9)
dy

where S§ and P are the Fourier transform of S(x,z) and P(x,z) , respectively.
The general solution for Equation B.6 is
@(k,y) = Acoshky + Bsinh ky, (B.9)

and after applying the boundary conditions

ok, y) ———[S cosh ky — Pcoshk(y—a)]. (B.10)
k sinh ka

Plugging this equation into Equation B.5 results in

o(x,y,2) = [S cosh ky — Pcoshk(y —a)] e ™ 9 dk dk_. (B.11)

J. J‘ksmh ka

To solve Equation B.11 it is necessary to find the functions Sand P . Using the
L . S .
definition of the current source function as §(x,z) =—, the Fourier transform of S can
ar

be found:

o _ 1 77 (ik x+ik,z)
S—E‘H‘S(x,z)e dxdz . (B.12)

—o0—0a

Figure B.1 shows a schematic view of the wires attached to the plate. At this time,

the problem is being modeled as one wire on each end of the plate.
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Zoom view of the wire
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currentin
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Figure B.1 — Schematic view of plate with the round wires.

Considering only the input current wire on the right border of the plate, the following
change of variables is helpful:

x=1+pcos6,

z=psiné6 ,

dxdz=pdpdb,

k. =kcosa,

k., =ksina,

where [ is the distance between the current wire and the center of the plate and r is the

radius of the wire.
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The argument of the exponential of Equation B.12 can be expressed as
i(k,x+k,z)=ilkcosa (I+ pcos6)+ksina (psin6)],
i(k,x+k,z)=ilklcosa + kp (cosa cos6 +sina sin 6)],
i(k,x+k,z)=1lkicosa + kpcos(a - 6)], (B.13)

and substituting Equation B.13 into Equation B.12 produces an expression for $ ,

considering only the current wire located on the right border of the plate:

2xr
S _—_LJ'J'_SL pliklcosecrikpeos@-o)l 5 do

right 2
27 oy
R odg 2
S =22 [ [ p dp do
right 2 : (B.14)
27t gy

Using the definition of the zero order Bessel function,

1 i tkp cos
Jo(kp)=5;£e’°ﬂ ‘4o, (B.15)
gives
k! r
A e S
S =——> [ 1o (kp) pdp (B.16)
Tr 0

Making another change of variables,
w=kp,
dw=kdp,

Equation B.16 can be expressed as

R lk lS
=— j] (wywdw |
rt

right
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iklcosa
S

right —

J, (kr), (B.17)

kr

where J; is the first order Bessel function.

For the outlet current wire on the left border of the plate, a similar change of

variables is necessary:

x=—(+ pcosb),
z=psing,
dxdz=-pdp dé6.

With similar results:

. S e—iklcosa
S et =7l°—‘—7{r—“11(’<’”), (B.18)

and therefore, the total source current function can be calculated as

~ A

S o =S rigth S left >
R So e iklcosox e—ikl cosa
ol = - J, (kr)
ol g \: kr kr : ’
A .S, sin(klcoso
8 o =20 2 SHEERD 5 1) (B.19)

To find the function P it was assumed the defect in the material is given by a

. . . . . . X -
Gaussian distribution type with parameters Py and A, that is, P(x,z) = F,—e Az .

Using the Fourier transformation the function P can be calculated as:

p= 5_17[— ]o TP(x, 2) e dxdy

~—00—00



2

-—00

pP= € Teik:zdz ]i%x e_)%z ™ dx ,

P,N2r T ox %Hk,x
> 5(kz)_J; Ze dx.

P=

Applying the following change of variables:

x
&=
dx=Ad¢,

the P function will be

pP= FN2m 5(kz)‘[/1§' e—{2+ikx}.{déa’
2r .
5_ bover h kA kA gkt KR
b= 2 6(k5)/1:[(§+17“’7)6 2 e 4 4L,
. P2 _BE ok
p=2=0 71‘5(](-)/16 - J(C+ikxl—ikxl)e(§ 2)d§’.
272’ < e 2 2

This integral can be simplified through another change of variables,

kA
u - —1 5
4 2
thus
. P42 R kA
p==2 ﬂé‘(kz)/le 4 J.(u+i e du,
2r o 2
. P2 2
=BV sy ae s Jmikd
2n ) 2
A P _‘lﬁ
P=i—Y%6k,)e * k.

%
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Now, the voltage difference between two probes can be calculated. Substituting

equations B.19 and B.22 into Equation B.10 gives

S s KA
Pk, y) = P I:Zi_ism(klcosa) }

J, (kr)cosh ky — Sk)e * kA*coshk(y—a)|-
ksinhka| 7 kr (krycoshky 12/ (ke * kA coshk(y—a)

Substituting this expression into Equation B.5 a general expression for the potential
function can be calcuated:

s ea . kA s
(%, y,2) =—2—1; I ksi:h = [2:‘% S‘“(ki;““) Jy(krycoshky - i—z-}—é(k ye & kB coshk(y- a)} o DLk

Evaluating this function at the centerline of the plate (z =0) and at the surface of the

plate (y = a) results in

R

S, sin(klcos &) J, (kr)cosh ka——2- (k) e e kxll’ziie—ik,\xdkxdkz

plxy= az—o)——ijsmhka{ T 2/

Finally, recalling Equation 4.8 and substituting the expression above obtained for ¢

gives

V(x,y=a,z=0)=V(0)=¢(x,y=0a,2=0)-p(-x,y=0a,2=0), (B.23)

oo oo «tk.).' ik x k222
_ o ik ) 21S0 . Jl(kr) ; P — N
V(ix)= ££ ~——————k o {cosh ka sin(kl cos @) - i =7 —2-8(k,) e k A% |
k2t
V(x)==— i dek dk sink, x cosh ka ﬁsin(kl cos &) Jitkr) S(k,)e T g | (B29)
el * k sinh ka T kr N /

This integral can be separated into two parts: the first part takes into account only

the non-defected region of the specimen. The second part considers the effect of a defect
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with a Gaussian distribution. These integrals will be represented as I1 and 12,

respectively. Thus,

Vi)=I1-12. (B.25)
The first integral is
n=2 1 [dk,dk, SIEE ke 20 singkicosar) L)
T k sinh ka T
f1=25P X3 Sinkx Gk cosa) D). (B.26)
T k tanh ka kr

—00—00

If we change variables,
k, =kcosa,

k, =ksina,

dk, dk, =k dk da,

the integral becomes

(B.27)

I1=

25,0 F % sin(kxcos @) sin(kl cosx) J,(kr)
oL | [ dkda Lk
ooy tanh ka kr

From trigonometric relations

sin(a) - sin(b) = %[cos(a —b)—cos(a+b)], and

COSﬂ :_;_(eiﬂ +e—iﬁ) ,

therefore,

S

2w o0
07p jjdk dacos[kcosa(x—l)]—cos[kcosa(x+l)] J, (kr)
ooy,

tanh ka kr

I1=

2
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= cos[k cosa(x—1)]—cos[kcosa(x+1)] J,(kr)

25
[1=2208 j j dk dor ’
) tanh ka kr
277o0 ,kcosa(x-l) +e—ikcosa(.t—l) __eikcosa(x+l) %e—ikcosa(H)] J] (kr) . (B28)
tanh ka kr

00

Recalling the definition of the zero order Bessel function in Equation B.15 11 becomes

48,p % T, (kr) e
== jtanhka {7, k(e = D)1= J [k (x+ D)1} (B.29)

The second integral, represented by 12, is

12=2 fak de, 2K Do 5oy kR,
ksinh ka 2/

—00—00

Pp T k, .
P [akde, S5 50 ye ¢ k. (B.30)
g ksinh ka
Recalling that
k=qk>+ k: , and by definition
[ £k NSk )dk, = £ (0),
the following expression for 12 is obtained:
2 e K2
i) =.1_DO/1_3P J' dk_dk ﬂlkx_ Tk,
nQA Zeo
P 2 o0 2/12
12=bt oy Snkx TE (B.31)

722% . " sinh(k a)

Substituting equations B.29 and B.31 into Equation B.25 the final expression for

voltage difference will be:
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k22

J sink x o

(B.32)

450,0 J (kr) _
V(X)_ /4 Jtanh ka kr {J [k(x l)] / [k(x+l)]} 0 Sll’lh(k Cl)

This expression considers the current coming in for a single wire and coming out
for another single wire, as shown in Figure B.1. The next step, in order to provide a more
uniform current distribution along the plate, is to model the specimen with multiple
wires. Figure B.2 shows a schematic view of this model.

Defining z,, =mc, where cis the spacing between current wires, the following change of

variables will be necessary:
x=1+pcos6,

7=z, +psinG,

k., =kcosa,
k.=ksina,
dxdz=pdpdé6,

and the argument of the exponential of Equation B.12 can be written as

i(k. x+k,z)=ilkcosa (I + pcos6)+ksina(z, + psin6)],
i(k x+k_ z)=ilklcosa+kpcos(@—6)+(ksin o)z, 1. (B.33)

Analogous to Equation B.14, the function S considering only the current wires located

on the right border of the plate (current coming in) will be:

A 1 = i i —8)+ikz,, si
ngm :_2_ Z J‘J‘ o [klcosa+ ikp cos(a—6)+ kzmsna]p dp d@_ (B.34)
iR €
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Zoom view of the wire
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Figure B.2 — (a) Schematic view of the model with multiple wires;

(b) top view of the plate.
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Developing this equation in the same way as was done for the single current wire case an

expression similar to Equation B.17 results:

R S ikl cosa

e ikz,, sin
Srigw =7 1 (kr) ze . (B.35)

m=—oo

Finally, taking account of the current wires on the left border of the plate, where the

current is coming out, gives

S

total

S, sin(klcoso) i
=2i =0 T T2 T (k) ) e B.36
T kr ,,,Zm ( )
Since the model with multiple wires does not change Equation B.31, only the

contribution of the non-defect region to the voltage difference measurements changes.

This term is represented by V, (x) and, similarly to Equation B.26, it can be expressed as

28,p sink x J, (kr) 4
Vo(x)= ° dk .dk , ———— sin(kl S plmsing B.3
(x)= e Z jj . sin(kl cos o) ——— p (B.37)

e e * ktan

Making the same change of variables as before results in

Vo(x) =

o 27 oo kx J k ikz, si
S | J o SKECOS D) o cos oy I pieasns g 3
F it tanh ka kr

Using the same approach as Equation B.27 the equation above can be written as

lk cos a(x-1) + e—ik cos a(x—I) _ eik cos {x+1)

_ mikcosa(+]) :
e ] Jl(kr) eikz,,, sinar (B39)

Viix)=
() = tanh ka kr

i dek da'
m=—e () 0

The following change of variables simplifies the above expression:

a=k(x-1),
b= kmc,
3 =acosa+bsina. (B.40)

Equation B.40 can be written as
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coso + sina |,
b? a’
1+— 1+—

a b

- b .
and defining tan ¢, = — results in
a

y=va’+b* cos(a+4,), (B.41)

= \/kz(x—l)2 +k*m’c® cos(ar+4,).

Recalling the definition of the Bessel function in Equation B.15
2z
jeiq}kz(x—l)zﬂczmzcz cos(a+¢0)da ,

0

Jo (\/k2(x—l)2 +k*m*c? )= —

27

and finally the contribution of the non-defect region to the voltage difference

measurements can be expressed as

V,(x )_4S°p 2] dk J}E':r) ok (x=D? +m2c?) =T (k| (x+ D> +m2c?)]. (B.42)

me—  tanh ka

The total potential difference will be

4Sﬂp e \/*2—2— J__Tf sink x "3
J 2
v ZJtanhka i Lotk (x=D7 +m’e?) = Jy(kyl(x+ D"+ me)) = j .

it 5 smh(k a)

which is the expression for Equation 4.9.
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APPENDIX C

This appendix describes the numerical solution for a semi-infinite plate without

defect using Fourier transformation. From Equation 4.10

o(x,y,2) = [ cos("™=) g, k, y)dk
e w

&l
i{ngl

n

Taking the Fourier transform of the Laplace equation:

°Q, n’r* ),
R _(k2+ i )%:o

w

) 2.2
. n’r .
and calling k, =k?* +—=—, the Laplace equation can be expressed as
w

9’9,

The general solution to this equation is
¢, (k,y)= A, cosh(k,y)+ B, sinh(k,y).

The boundary conditions require

?ﬁ =Bk, =0— B, =0 and
dy o

Qﬂ =Ankn sinhkna=,0§(k,y)s
dy

y=a

where S (k, y) is the Fourier transform of S(x,z).

Equation C.1 can be written as
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0(x,y,2) = N 2 j cos( % )A cosh(k, y)dk .

1n=0 —oo

From the boundary condition

ﬂ(ﬂ] =p S(x,z),and
N ) .

from the Equation C.5

é(/_’] a :J—_;_—i Te cos( )A k, sinh(k,a) dk .

ay y= T n=0 "o

These equations give

o0

j = cos(Z2YA k. sinh(k,a) dk = p S(x,2).
w

n=0 _o

In order to calculate the coefficient A, from the equation above, again apply

Fourier analysis. Multiplying both sides of Equation C.6 by

2w o
mimnz —ik
jcos———dz je X dx
. w

the left-hand side becomes

1 &7 nm , ¥ omm T o
LHS =—) |e™ cos(—>)A k,sinh(k,a)dk |cos——dz |e™**dx,
= Zj == ( j — j

LHS = 2 jA k, sinh(k, a)dk jcos(—-—) cos———dz J. kX gy

F i

Observe that

i 74 2w if n=m=0

=Icos ,

5 w if n=m#0
Il=wo 0,

nmn ?
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where Oy is the Kronecker delta and 6, =1 if n#0 and 0, =2 if n=0.The other
integral is

2= j e gy =2 S(k— k), (C.9)
thus Equation C.7 can be rewritten as

LHS = 2 jdk A,k, sinh(k,a) 1112,

‘V T n=0 "

and substituting equations C.8 and C.9 into the equation above results in

LHS = Ak, sinh(k, a)2r 6(k —k Ywo, 6, dk,
7l
1
LHS = A k. o, sinh(k,a)2r w, C.10
e (10
2.2
where k2 =k + n 75
w

In addition, the right hand side of Equation C.6 becomes
2w mnz o0 .
RHS = p [cos——dz [e™**dx S(x,2). (C.11)
0 w Zeo

Recalling that to make ¢ periodic a mirror image in the z direction was built, the current

source can be expressed as
S, (x,2) = Slo(x=Dé(z—2 )+ (x=Db(z 2w+ 2,)—0(x+D8(z—2) = (x+1)6(z-2w+z,)]-

The subscript k denotes one wire at position k. Rewriting Equation C.11 results in:

2w oo

RHS = p‘[ _[S (x, z)cos——e X dxdz

—o0

> mnz ik mra(2w—z i miz i mr(2w—z
RHS = p S,[e™' cos —=%+¢™*' cos —(———Q—e""cos —=k _ ™! cos ——(—-—"—)—],
w w w w
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. ma(2w— man mnz
and noting that cos——(—zﬁ—2 = cos[2mx - ad: 1= cos k
w w w

gives

RHS = p S,[2¢*! cos T2k —26™7 cos Tk ],

w w
RHS =-2p S, cos-n&(e”‘" —e7*y,
w
RHS =—4ip S, cos = sm(k . (C.12)

From equations C.10 and C.12 the coefficient Amcan be calculated:

—4ip S, cos "k sin(k 1)

(C.13)

Alﬂ =
\2r7 wk, 0, sinh(k,a)

Substituting Equation C.13 into Equation C.5 an expression for the potential function can

be derived:
4zp So cos( )sm(k D
o(x,y,2) =— cos( Lid cosh(k, y)dk ",
mz{)_‘[ \/271' wk, o, sinh(k,a)
. w k1)
2ip S, & R o cos( ” )sm( ‘
X, y,2)=— e cos cosh(k, y)dk , C.14
pxy,2) === Zj ) T sty o) (C.14)

which is Equation 4.11.

Now the voltage difference along the centerline of the plate (z = —;ﬁ) can be evaluated as

V (x):go(‘x’y:a?zz%)_¢(_x’y=a,zzg),

4p S, & 7 sin(k x)sin(k 1) mm maz, ., -
Vix)= k . .
(x) > ] o a2 Jeos(— (C19)

m=0 ™ m“~ m
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In case of multiple current wires it is necessary to sum all contributions. Thus,

4p Sya 7 osin(k x)sin(k 1) mm mnz, ., -
Vi) =——— cos cos dk C.16
) w Z(‘);_‘[kﬂ,aam tanh(k,,a) ( 2 )cos( w ) ( )

where Ny, is the total number of current wires.
The contribution of the current wires for the semi-infinite plate can be analyzed

separately. From Equation C.16 for m #0:

N, 1 N, imnzk _‘.Vflﬂzk
dcosTEE) =S (e M e ). (C.17)
k=1 w 243

From a geometric progression:

r —-r
St

K K+1
=1 l"——l

k

and considering that w= (N, +1)c and z, = kc, where cis the spacing between the

current wires, Equation C.17 can be written as

N, miz 1 imer iT —imz _iT
SeosTey = (v ). (C.18)
pa w 25 = i
eV —1 e v —1
Let b= —ﬂ—c, S
w
N imm = —imn _iﬂ
w 1 w w
Yooy =L+ L,
k=1 w 2 -
e ¥ -1 e v —1
N, mﬂzk 1 ezmn’ ezb e—imﬂ: e—zb
cos = —(— ,
Z’ ( w ) 2( b1 b _q )
Mo omm, 1[2cosb—-2—2€osm7r+2cos(m7r—b)]
Ecos( )=— ,
o 2 2-2cosb
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N,
Y cos(2EL) =~ L1+ cosmr). (C.19)

k=1 w 2

This equation is only valid for M s om When 7 =on ,thatis m = 2w ,or m=0
w w c

Equation C.17 becomes

N N

W mm W .
Y cos(—=2) =3 (") =N,,.
= w k=1

The next step is to focus on the integral of the Equation C.16. Rewriting that

integral for m =0 as

[= Ta’k sin(kx) sin(kl)

ka tanh ka
[=2 J- dk sin(kx) sin(kl)
ka tanh ka

0
and letting u = ka,
- sin(Zx)sin(2 1)
a a

du

0

I =

2
a u tanh u

We can rewrite this integral as

2% u u 1 1 1

I =— | dusin(—x) sin(—! —_t . C.20
a-([ . (ax) (a ){u tanhu uzJ ( )

Consider

. 2 sin(-Lix) sin(ﬁl)

P==fdu—"3"——9 (C.21)
ay, U

~ 2% u u 1 1

I =— | dusin(—x) sin(—1 e c.22
a;[ (ax) ' (a )[utanhu uJ ( )
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therefore, Equation C.20 can be rewritten as
I=1+T. (C.23)
From tables (Gradshteyn and Ryzhik, 1994) Equation C.21 can be expressed as

sin(2 x) sin(2 1)
a

du—-=4 ==—=—. C.24
¢ u’ al2a a* ( )

I=

2
a

St— 8

Recalling that

sin(kx) - sin(kl) = %[cos k(l—x)—cosk(l+ x)],

gives
~ 17 u u 1
I=— j du[cos— (I - x)— cos—(I + x)il{ - -7] . (C.25)
as a a utanhu u
Making the following change of variables,
I - [+
o= al B ﬁ = __x,
a a
Equation C.25 can be expressed as
T=Lgre j du(e™ —e"/’")[ ! —%} (C.26)
a 3 utanhuy u

where Re means the real part of a complex variable.
Let u = yi. Using the following relationships:

iv —iy

sinh(iy) =i- S =isiny,
2i

iy —iy

cosh(iy) = 32—6 = cosy,

tanh(iy) = sy _ itany,
cosy
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evaluating this integral along the dashed contour defined in Figure C.1 and using

Cauchy’s theorem gives

I =1Re i§(e‘“"’ —e'ﬁy)[ ! ——1—2}1)). (C.27)
a

The pole contribution at y =0 cancels and the only contribution come from poles
aty=nn.

Let y=nzn+9d,with n>1 and small J then

siny=sin(nz +d)=Jdcosnn,

cosy=cos(nn+4d)=cosnzn,

tany =20 .

Figure C.1 - Closed contour

Equation C.27 becomes

- oo 0 -amx _ —prw
7 =—lReiZJd§(i——e——),
a n=t o I’Lﬂ'5
- . 0 ( —onrw —ﬁnﬂ.')
I =——Rei) i ,
a n2=1 nrw
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7= % i , (C.28)

1=2.ry . (C29)
a

This equation only holds for m = 0. Similarly, the integral of the Equation C.16 can be

evaluated for m # 0. In this case

2,2
mi7
b
w?

k:=k*+
and

I J.dk sin(kx) sin(kl) ’
k,a tanhk, a

1 = 2] a SO SR,
o k,atanhk a

I—ZTdksin(kx) sin(kl) ! ] (C.30)
. k atanhk,a kZa® kla®| '

Equation C.30 can be separated into two parts:

K sin(kx) sin(kl)
n=2[dk o
0 kgt + 5
w

b

2 T . sin(kx) sin(kl)
A

w2

o k'+

and from tables (Gradshteyn and Ryzhik, 1994) the integral above can be expressed as

2 1 w | o  Pun
n==2 2l e,
a® 4 mxw
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LTI Iy
e v —-e

== — . (C.31)

The second integral can be expressed as

K 1 1
12 =2 | dksin(kx) sin(kl - ,
J; (fex) sin ){kma tanhk,a kiaJ

% 1 1
12 = |dk {cosk(l —x)—cosk(l+ - ,
Z‘). lcosk(t = ( x)][kma tanhk,a kiaz}

12=Re [dk [¢* — "0 ] ! L ) (C.32)
A k,atanhk,a k,a )

Letting k£ = y i and evaluating this integral along the dashed path defined in Figure C.1

results in

12=Re ifdy [0 -0 )[ 1 : )

k,atanhk,a kZa®

12=Re i dy [0 -0+ ] ! _ 1 .(C.33)

2 2 2 2 2.2 2
m*r’a® 2 2 m*rta s, mMma 5,
>——y~a” tanh =y a W2 ya

w w

The integrand is real only for 0 < y < mz and vanishes for y — oo . Thus,

I2=—Rei ]: dy [e‘.V(l—X) _e—y(1+x)] 1 1 . (C34)

Py 2.2 2
mm 2 2 m2ﬂ2a2 2 2 mzﬂ'za- 2 2 MTa
" ya®— 5 tan,/ya” — > ya —

w

Contribution only comes from poles at

2.2 2

y a —T+n2ﬂ: with n>1.
w
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m’r’a’
Let ,|y’a’ ————=nr+0d withd <<1,
w

therefore,

2.2 2
m’rw’a
tan\[yzaz———2——=5,
w

Equation C.34 can be expressed as

Yo U=3) =Y (1+3)
:'—RC LZJ.dé [e y ] nr ? -
kS 7-55 " mim? nir?
a 2 + 2
w a
o (L =X) =Y {1+X)
T l [e Y — g Jm
2=—-Re zz ] ’
2 2.2
n=1 75 + nmw
W2 612
[e Youn (1=X) e*)’um(lﬂ)]
2 ’
- il
2 + 2
w a
o0 =Y =) =y, (I+x)
T [e Ynn —g mn ]
==y : (C.35)
a = ymn
Combining equations C.31 and C.35 gives
'117[ mnr
(I-x) —(l+x) _y
I _ w e v —e Vv T 2 [e Von ({=X) —e )rzxn(l+x)]
—_— 2 _— b
2(1 mn a2 n=1 Ynm
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=Y (I=x) = Ymo (I+X) oo [ =V (I=X) =Y (145)
VA e Ymo —e mo V.4 [e mn — g mn ]
I= += , (C.36)
Ymo a =1 Y on

m7m
where y,, =——

Equation C.36 is valid only for m # 0 and can be rewritten as

_.Ymn(l_x) — o Y (I+x)

T ~¢€ e
[ =" , (C.37)
a2 ; O-nymn

where 6, =1 if n#0and 6, =2 if n=0.
Returning to Equation C.29 a general formula for any value of m can be built. Tt

was shown that for m =0

= (e ¢ —e * )
a’? a &= nrw ’
7z- i a —e a
1=Elas 3 .
a = nr
L a
T r 00 e~y0,, U-x) __e-yo,,(l+x)
== x+2( A (C.38)
a L n=l1 Yon

(e—,VOn (I-x) _e—yo,,(l+x)>
— 2x and, therefore, Equation C.38 can be

However, as n —> 0,
yOn

written as

T
I=?‘ze

n=0 O-n yOn

—Yon(I=x) _

e_y()n (l+x))

(C.39)

Combining equations C.37 and C.39 a general expression for the integral of the Equation

C.16 is derived. So, for any value of m
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oo =Yy {[=X) _e—.vm(l+x)

/4 4
I =— , (C.40
a ; O, Yon )

where 0, =1 if n#0and0,=2 if n=0.

Returning to Equation C.16 an analytical expression for the voltage difference at

w. )
7= 5 is derived:

mrm mnz,
cos(——) cos( ) %) _ =Y (+0)

4pSa°°N"' T <

m

‘ mrm mnz,
4p S, < w, €os( 5 ) cos( ” ) w g Im =D _ g mym (14
V=L TS s ,

m=0 k=1 O'm n=0 Gn Y mn

which is Equation 4.14.
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APPENDIX D

This appendix describes the analytic solution for a semi-infinite plate without defects

using Fourier transformation. Consider equations 4.19, 4.20 and 4.21:

2’9

k*9=0,
oy’ 14
9| .
ay y=0
L - J.e""k‘S(x)dx.
oy|,_, 27

The general solution to Equation D.1 is
¢ = Acosh(ky).

From the boundary condition at the surface (y = a)

99 _p fe S0 (850x =1y 8(x + D}dx.
dy - 2 ¢ w

a@ _p So T ik

o i je [6(x—1)—8(x +)ldx,

y=a —e

el =pSo [e® — ],
oy i 2mw

90 S g,

oy Tw

y=a

The derivative of Equation D.4 with respect to y is
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8_(p = Ak sinh ka, (D.6)
dy i

and combining equations D.5 and D.6 determines the constant A . Thus,

ipS,
Tw

Ak sinh ka=-

sinkl,

_Ip S, sinkl

A= .
wk sinh ka

(D.7)

Substituting this constant into Equation D.4 gives

ipS, sinkl

O Wk sinh ka

cosh(ky). (D.8)

Entering this result into Equation 4.17 results in

ipSy 7 am sSinkl
p(x,y) =222 i ST
Tw

—o0

h dk , D.9
k sinh ka cosh(ky) (D9

which is the expression for Equation 4.22.

This allows the potential difference between two points at the surface to be calculated as

V(x)=¢(x,a) - ¢(—x,a). (D.10)
Therefore,
ipSy T we e SInkl
Vix)=——— —e —————cosh(ka) dk ,
(x) Tw _'[o(e )ksinhka (ka)

2p S, Tsinkxsinkl i
7w * ktanhka

=

Vix)= D.11)

This integral has been evaluated before using complex analysis. Thus,

(l-x)nm (I+x)nm

2 haid a - a
V(=230 B 5 e d
Tw | a ~ nr
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(I-x)nm (I+x)nrm

2pS0x+2pSoie ¢ —e
wa TW n

Vix)=
Consider the series

K= ge"’” .
Now consider the following integral

J = Tda'K ‘
Substituting Equation D.13 into Equation D.14 g_gives

doe™",

n=l

R 3 8

. |eo

—on

= an oo

e (4
PO Sl I -
n=l —H n=l N

o

which is the series that appears in Equation D.12.

Evaluating the series of the Equation D.13 gives

Substituting this result into Equation D.14 results in
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J==In(l—-¢€%).

Using this result and Equation D.12 gives

208, x 2pS,| =om
V= 2PS0X 2P el " @ yoln(—e
a wTw L
M _(l—x)mt
208, x 2pS l—-e @
Vix)= P27 _ £ 2 In (+onr |’
wa Tw Lol
L l-e ¢
_(-nr
208,|x 1, 1l—e @
V(x)— p o l U+ |?
w a T -
1-e ¢
which is Equation 4.24.

Since the potential is an odd function it can be expressed as

_(l—x)lr
S 1. 1- a

(D(X) = —pw 0 -g-— ;[—h] —“"—e sy
l—e ¢
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There is another way to find an analytic expression for the potential function. Consider

Equation D.9:

ipSy T 4 Sinkl
,y )=—— | ™ —————cosh dk .
vy == J sinh a oS )

A table of integrals may be used to find a new expression for this function. So, the

equation above can be rewritten as

p S, 7sinkx sinkl
, V)= cosh dk ,
P ) Tw ;’; k sinh ka (k)
o . 0kl
o(x,y) = 2p S, Jsmk'xsm cosh(ky) dk . O.18)
zw  ksinhka
Knowing that

sin kx sinkl = %[oos k(l—x)—cosk(l+x)],

2 k(I —x) , k(I +x)

—1+2sin

sinkxsinklz—;—[l—%in 1,

(D.19)

sin kx sin kl:sin2 ﬂl‘gﬁ—Sinz k(l_x) ’

and substituting Equation D.19 into Equation D.18 gives

2p S, T cosh(ky) [Sinz k+x) o k(= x):l g
2

P == ) Y sinhka

0
Making the following change of variable
¢=ka,

the potential function will be

o cosh(lf) _
o(x, y) = 2250 a [szé(ux)_smz«:(z x)}ia

Tw sinh 2a 2a
o &sinh&
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It can be seen from tables (Gradshteyn and Ryzhik, 1994) that

T ., coshfxdx 1.  cosh2arm+cospfr

jsm ax— —=—In

0 sinhx x 4 1+cos fr
Therefore,

+ p—
20 S 1 cosh Z(+x) +cos zZy cosh mi=x) + cosﬂ
o(x,y) = P OZ In a - a__n a . a
w I+cos =2 1+cos 22
a a

[+
osh 7+ x) +cos§—y

P S, a a
P(x,y) = In — ;
2rw cosh = x) +co ry
a a

which is the expression for Equation 4.26.
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APPENDIX E

This appendix describes the steps necessary to get equations 4.32, 4.35 and 4.37
that are part of the analytic solution for a semi-infinite plate with slot defect. Consider

Equation 4.31:

dp ,,0¢
—~Z _AN—= =0. E.1
(ay ox J& ED

The first term of this equation my be approximated as

0p(x,y)| _990)  , 3'0(x0) A 0p(x0)

S oy’ 2
a(”(% y)l - a¢0 (x,0) + (8(01 (x,0) LA §00(X 0>) + (Aa o, (x, 0) A2 az¢o (x,O)) +_éz__a2¢1 (x,0) i
dy l 5 dy dy dy* oy* 2 ay? 2 oy’

The second term of Equation E.1 can be expressed as

A’ agp(‘x’ y)

: aqoo(x,()) 99, (x, 0) (Do
+( )1
ox

=A
s, [ ox ox axay

Substituting these results on the boundary condition of Equation E.1 produces, for each

order of magnitude indicated as a superscript index, the following equations:

A(°)=a—¢‘l =0;
9 |0

AD (a¢l+Aazqf’ Aa%} =0;
y dy ox 0
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Considering only the first order approximation (A”) the boundary condition can be

expressed as

09, 9@, 99,
A —A -0, E2
( dy i dy* ox » E-2)

which is Equation 4.32.

Now consider equations 4.33 and 4.34:

@, (x,y) = [e™ §,(k,y) dk, and (E.3)

b, (k,y) =~ [e™ o(x, ) dx, (E4)
2r

where @,(k,y) is the Fourier transform of ¢, (x, y).
The general solution to the Laplace equation with the boundary condition of Equation
4.30 will be

@, (k,y)=Bcoshk(y—a). (E.5)

Consider the terms of the equation E.2:

99, (x,0) _

~jdk ¢™ Bk sinh ka,
dy .

2 . oo .
A2 (x0) _ ipSeh e sin ki

2 sinh ka

dk ,
dy”* Tw

oo

_A’ ang(x’O) :_A' p SO J‘eikx .Sln kl dk )
ox 7w °,  sinhka

Therefore Equation E.2 can be rewritten as

o

ip S,A ‘]e,.,ak sinkl_ P 5S, Te

Tw -, sinh ka Tw -,

we SIN KL

- jdk ¢™ Bk sinh ka — dk=0. (E.6)

sinh ka
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Multiplying this equation by J‘e'"‘"‘ dx the unknown coefficient can be calculated. The

—o0

first term, I, , of Equation E.6 may then be reduced as follows:

I, =—ojdk e™ Bk sinhka Te""‘*dx,

—o0

I, == [¢*** Bksinhkadudk ,

I, =27k Bsinhka. (E.7)

The second term, I, of Equation E.6 can be reduced as follows:

1, =-P3 jeikxk—M— dk [ e A dx,

Tw sinh ka

—o0

1, =5 [ KK g oiinqy (x4 ) - U (o= D ke,
Tw *  sinhka 3

__ip Soh ]ik sinkl dkj‘e,‘(k_k')x dx
" zw Y sinhka ’

_ lp Sol’l ]"dk k sin kl e"(k_k’)i _ e—i(k_k')}L

I, = ,
- 7w *  sinhka itk—k)

;o 2ip Syh ja’k k sinkl sin(k —k )A . (E.8)

g Tw sinhka (k—k)

Finally the third term, I, of Equation E.6 may be reduced as follows:

s = -
[, =-£ fe™ sin kI dk [N e dx,
7w - sinhka

I, =

P hS, ]‘1 sin kl
Tw sinh ka

—oo

dk j [S(x+A)—8(x—A)] e %dx,
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1= P hS, T sin kI [e7 R _ gitOAy 1

Tw sinh ka

—co

/ _2ip hS, ]‘1 sin kl
. Tw sinh ka

—o0

sin(k —k )A dk . (E.9)

Adding equations E.7, E.8 and E.9 the coefficient B can be calculated.

, . 2ipS.h
— 27 k'Bsinh k'a — =220 Ja= :
7w sinhka (k-k) Tw

. . _ ’ 2 h < 3 )
ksinkl sin(k =k )4 _2ip hS, |28 Gk — k)2 dk =0,
sinh ka

—~c0

s s 1 2 : : k _ : . o .
27 k Bsinh ka = - 223 faw ksin kL sintk—k )2 | 2ip hS, fsin ki
7w =, sinhka (k—k) Tw sinh ka

o0 —oo

sin(k —k"A dk »

27 k Bsinhk'a = 2ip Soh Jdk sin kI §1n(k—k )/1[1— k -1
Tw sinh ka k—k

—o0

27 Bsinh kg = — 2ip Syh Idk sin kI sxyn(l'c—k A ,
Tw (k—k )sinh ka

oo

_ipS,h 1 ]“ g Skl sintk—k)A
7*w sinhka Y sinhka (k—k)

B = or

switching k' by k results in

B(k)=—lp2SOh . 1 Jdk §1nk? sm(lf —k)ﬂ- (E.10)
n°w sinhka ©  sinhka (k —k)
Substituting this result into Equation E.5 gives
R ip Soh coshk(y—a) T, - sinkl sin(k —k)A
b, (k,y) = L2t NI =) 7 Sl (E.11)
Tow sinh ka

sinhk'a (k' —k)
An expression for the potential function ¢, (x, y) can be obtained substituting Equation

E.11 into Equation E.3. Thus,

sink’l sin(k —k)A coshk(y—a)e™
sinhk'a (k —k) sinh ka

 ipSht .
¢1(X,Y)~“—ijdk dk

—oo—00

: (E.12)

which is the expression for Equation 4.35.
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The potential difference may be calculated as

V1 (x) =, (x» a) - (01(_-7(, a) s

V09:2p&ﬁTTﬂ”%sﬂnklﬂmk—kﬂlﬁnm.
‘ w33 sinhk'a (k —k) sinhka

Consider the integrals

7= IJ.dkdk' .smkl sm(k’ -k)A s.mkx ’
s sinhk a (k —k) sinhka

sinkl sinkx
sinh k a sinh ka

K= Dj]:dk dk’

—oo—o00

cos(k —k)A.
It can be seen that
i
J=jKdA.
0

Evaluating the integral K gives

K= jjdk dk’ §1nk? §1nkx [coskAcosk A—sinkAsink 1],
i sinh k a sinh ka
K= J.Jdk dk’ sink ! sinkx coskAcosk A,

sinh k a sinh ka

—00—00

T .sink (I+A)+sink (I-A) sink(x+A) +sink(x— A1)
K =|\|dk dk - i
'0[ ;)[ sinhk a sinh ka

It can be seen from tables (Gradshteyn and Ryzhik, 1994) that

K= (21)2 [tanh e (x2+ 2 tanh 2+ A) + tanh 2(x=4) tanh (1= +
a

a 2a 2a 2a
T(x+A) canh T(l—A) + tanh (x—A) tanh m(l+ 1)]

2a 2a 2a 2a

tanh

Making the following change of variables
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Equation E.15 can be rewritten as

K= (_2’?_)2 [tanh( + §) tanh( B + 8) + tanh(cr — §) tanh( S — 6) +
a
tanh(cr + 6) tanh( S — €) + tanh(cx — 8) tanh( 3 + 6)]

Substituting this equation into Equation E.14 gives
= i

2a 2a
J= (5”—) j d6 tanh(cx + 6) tanh(S + 6) + (-z’i) | d6 tanh(a - ) tanh(B - 6) +
a a 0
(E.16)

zrj_ lr/l
2a

(~—) j d6 tanh(cr + 6) tanh( S — 6) + (—) jde tanh(cx — 6) tanh( 3 + 6)

Consider the first term of Equation_E.16, represented by J, :

7:}.
2a

J, = (—) jde tanh(er + 6) tanh( B + 6) .

Let

Therefore,

ml ﬁ+a

J, _(——) j d¢ tanh(¢ — v) tanh(g +v) .
a

,B+a
2

Knowing that

sinh(¢ —v)sinh(¢ +v) = % (cosh2¢ — cosh 2v), and
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cosh(¢ —v)cosh(g +v) = % (cosh 2¢ + cosh 2v),

gives
zri ﬂ+a
(_) j p cosh 2¢ + cosh 2v — 2 cosh 2v
fra cosh 2¢ + cosh 2v ’
2
ml ﬂ+a
2cosh2v
—(—) j pll- .

Fra cosh 2¢ + cosh 2v

2

Making & =2¢ , the previous equation becomes

—+ﬁ+a

(_) J. 2cosh2v
fe ~ cosh2¢ +cosh2y ™’
/1 7+ﬁ+oz h 2
T cosh 2v
=~ [dE ’
sie  cosh& +cosh2y
”—l+ﬂ+a dg
2= —cosh o :
( )[ (f-o) ﬁ-[a cosh§+c0sh(,3—a’)]

It can be seen from tables (Gradshteyn and Ryzhik, 1994) that

I dx = cosecha[ln cosh xra_ Incosh Al a] ,
cosha +cosh x 2
thus,

A

cosh(=—+ f3)
= ()2~ coth(f - )lin—24——1n 22 by
a 2a cosh (2_ +a) cosha
a
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- c:osh(”—/1 + B)coshx
J, =~ coth(B - o) In——24 ),
2a 2a cosh(—g— +a)cosh
a

ﬂ 7x
- cosh— (I + A) cosh—

: T 2a 2a
J, =(-—){=~=—-coth—( —x)In
! (2a){2a Za( %) 2

cosh— (x+ A) cosh L
2a 2a

Now, consider the second term, J, , of Equation E.16:

i

2a
7, =(Z) [d6 tanh(a - 6) tanh( B - 0),
2a 3

P

2a
7, =) [d6 tanh(6 - o) tanh(6 - ).
2a 3,

Let
b+a
oy - ,
¢ >
v=ﬁ_a
2
Therefore,
A Bra
T 2
J,=(2=) [dgtanh(p-v)tanh(g +v),
2 e,
2
o _fra
T2t 2cosh 2v
J,=() |dgli- .
2a _fe, cosh 2¢ + cosh 2v

2

Making & =2¢, gives

158

(E.17)



ﬁ—(,/3+oc)
a

dg

T . .7A
Ty = cosh(8 - a) _(ﬂ[ )

T TA 2a

cosh(ﬂ —a)cosh B

J,= (z—a){z —coth(f—a)ln

T TA 2a

cosh(ﬂ— — B)coshax
2a

b,

cosh 2 (A—-x) cosh;—l

a.

b4
J, =(—){——coth—(—x)In
2 (2a){2a 2a( )

Consider the third term, J, , of Equation E.16:

)

2a
J, = (%) [ d6 tanh(ar + 6) tanh(8 - 6),
i 0

7l

2qa
J; =~ (=) | d6 tanh(cr + 6) tanh(6 - B)
2a 3

Let
b—-a
=6 - ,
¢ 2
V=ﬂ+a
2
Therefore,
T p-a
p 2a 2
Ty =~) [ ¢ tanh(g —v) tanh(g +1),
4 -(—’%5)
m e
Tt 2cosh 2v
Jy==(=) [deli- .
2a ja, cosh 2¢ + cosh 2v

2
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cosh2- A- l)coshE
2a 2a

]

cosh& +cosh(f—a) ™’

(E.18)



Making & =24 , the previous equation becomes

ﬂ-(ﬁ—a)
a

T A dé
=~ T —cosh
I (Za)[2a cosh(fi + ) _(/J_a) cosh§+cosh(ﬂ+04)]’

- cosh(—@ + o) cosh
J, =—(Z)ZE ~coth(f + ) In fz‘i }
2a 2a cosh(;— - fB)cosh
a

- x cosh z (A + x)cosh L

——){—2——coth§—(l+x)ln 7‘; 2a,

2a 2a a cosh— (A —1) cosh—@
2a 2a

Jy=—

Finally, consider the last term, J, , of Equation E.16:

)

2a
J, =) [ d6 tanh(cr - 6) tanh( B+ ),
2a

L2

I, =— (l)fde tanh(6 — @) tanh(8 + B) .
2a

Let
b—o
=6+ ,
¢ 2
V:ﬁ+a
2
Therefore,
. p-o
pu a2
Ty == [ dg tanh(¢ —v) tanh(g +v),
(__.

2 )
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. b

et 2cosh 2v
J,=—() [dgn- .

200 5, cosh 2¢ + cosh 2v

2
Making & =2¢, gives
/’L -’—?'-+(ﬂ—a) d§

T T

] =—\—)|— = h +06 ’
4 (2a)[2a cosh(5 +2) (ﬂ-L) cosh§+cosh(ﬂ+a)]

" cosh(ﬂ + [)coshor
7, =~ 2~ coth(B + ) In 2% b,
2a° 2a cosh(j— —a)cosh B
a

A . coshi(l + l)coshE
W~ coth Z- (1 + x) In—24 2a4 (E.20)
2a 2a T 7l
cosh— (A4 — x) cosh—

2a 2a

_”_
2a

Jo=—(

An expression for the integral J can be obtained by adding equations E.17 through E.20.

Thus,
x . cosh z (I + A)cosh ad - x cosh . (A—x)cosh Ll
J =~ ycothZ-(l—x) In fra 2}; —(Zycoth—(I-x) In 2;; 22
2a 2a cosh—~(x+ A)cosh— 2a 2a cosh— (A —1)cosh—
2a 2a 2a 2a
i - cosh - (A +x)cosh 7= - - cosh 2~ (A +1)cosh =
+ ()coth 2= (1 + ) In——22 20+ (eoth =+ ) In 2 Za
2a 2a cosh— (A ~1)cosh— a 2a cosh—(A—x)cosh—
2a 2a 2a 2a
¥/ n /4 n
cosh—(I + A)cosh— (A —x) cosh——(A + x)cosh— (A +1)
J= —<§”—) cothzl(l - x) In—24 2a +(Zycoth 2= (1 + x) In—28 2a
a a

coshi(x-rﬂ.)coshl(/l—l) a coshi(ﬂ—l)cosh—ﬂ—(ﬂ.—x)
2a 2a 2a 2a

From Equation E.13

2p Syh

2

Vi(x) =

J s
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thus,

bid T
cosh— (I + A)cosh— (4 — x)
V(=250 feom ?”- (-x)In 27;‘ 2a -
Taw a cosh——(x+i)cosh£(/l—l)
2a 2a

. cosh£(2,+x)cosh£(/1+l)
coth—( +x) In 27;1 i'a
2a cosh— (4 —1)cosh— (4 — x)
2a 2a

]

which is the expression for equation 4.37.

Now consider equations 4.40 and 4.41:

now iPSy T i sin k!
7 ,Y) =— e coshk(y—A,) dk,
o (%.7) Tw '[ ksinhk(a—-A,) O )

cosh A+ x) +cos 2P T 2) =4,)
pS, I (a—A4Ay) (a-A,) .
7(l - x) +cos”(y_A°)
(a—Ay) (a—-A,)

P (x,y) =
osh

The potential function may be written as ¢ = ¢, + ¢, and, therefore,

new

O =@y + 0 — @,

(E.21)

(E.22)

(E.23)

The parameter A,may be estimated. At large x evaluated at y = a Equation E.23 can be

approximated as

(l+x)
(a=4g)
new . p SO hle ’
(N N 5 r(x-I) °
. Tw
e(a—Ao)
wnew — p SO !
0 ~ .
v=a  wla—Ay)

Also, the potential function ¢, in this region can be approximated as
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Z(1+x)

PSS, e
2 y=a "mln a(x=1) ’
e a
pS,1
Pol 0 = W;) - (E.25)

Analogously, the potential function ¢, at y = a for large values of x can be approximated
as

b4 k4 L3 %
—(+Ad) —(x-1 —(A —(A+
Za( A e?a(x ) 20( +x) 2a( D

o] =~ p S,h 1 I € ,
= 2raw L) Za-n Za-ny LZe-n
e2a eZa eZu ela
S,hA
A (E.26)
a’w

The parameter A, is such that
(005 0.

Thus,
pSol+pSOh/1_ pSy!

wa a’w  wla-4A,)’
l l
p SO (1+ h/,l ) - p SO ,
wa al w(a—A,)
Lag Pty L
a al a—A,
A
Laetly Loty
a al a a
h

Ao = Tﬂ > (E.27)

which is the expression for Equation 4.42.
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APPENDIX F

This appendix describes the steps necessary to get the equations that are part of

the analytic solution for a semi-infinite plate with smooth defect. Consider equations

4.33 and 4.34:

oo

o(x, ) = [e* §,(k,y) dk , and

—o0

) 1
(k. y) == [e™ ¢,(x,y) dx.
21 -,

Taking the Fourier transformation of equations 4.44, 4.45 and 4.46 gives

2 A
9" P,

ayZ B kz@l =0,

0P| _ 0.

9y |-,

9y L e_”“‘dx,{i(A%)} .
oy o 2T, ox  odx ]

The solution to the Equation F.3 is
@,(k,y)=Bcoshk(y—a).

The derivative of this equation with respect to y is

A

¢,
9y

=k Bsinhk(y—a).

Evaluating this expression at y =0 and replacing it in Equation F.5 results in
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(F.4)
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(F.6)



-k Bsinhkaz——l—_[e'ik"'dx ——(Aa%) ,
2r

Lox  dx ],
T i d

B=e L Jerax 9 (22 9] | (F.7)

27 k sinhka ? Lox ox "],

Substituting Equation F.7 into Equation F.6 gives
R coshk(y—a) 7 99,

k,y)=———— dx A— . F.8
hk.y) 27 k sinh ka -[o [ax ( ox o 4= E8)

Replacing this equation in Equation F.1 gives

_ 1 % e COShk(y—a) I —ikx s a aQ)O
¢l(x,y)——§;_£e ———————dk:’;e dx I:g(A—,—) yzo,

k sinh ka ox
kmry COShK(y=a)[ 9 99
_ dk d k( x) _C..O_S._———- 9 5
o (x,y) = J J. ksinhka |ox ( ox B y=0

@ (x,y) =—£J a'k_[ dx’ sinkx sin kx’ M-——a)[imaﬂ)] ,
d 0 0 ax y=0

k sinh ka ox’
2%, 00, T ) . ., .coshk(y—a)
Jy)=—=|dx| =A==~ dk sin kx sin kx ———=—=
Pl y) 7[;'; * | Ox ( ox )_) 0'([ k sinh ka

oo

¢1(x,y>=—% fax 0 (229 [ a

coshk(y— a)rsin2 k(x+x) —sin? k(x —x)
5 Lox  ox "]

k sinhka

1.

Making the following change of variable
¢ =ka,

the potential function ¢, becomes

ry-—a , :
___(Aagooi] Oj cosh( a ) -2§(x+x)_sin2§(x "x)].

- [sin
dox  Ox 0% &sinh & 2a 2a

5=

<pl<x,y>=——de[
42 0

It can be seen from tables (Gradshteyn and Ryzhik, 1994) that
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% ., coshfxdx 1 cosh2am+cospfr
Jsm ax— —=—In .
sinhx x 4 1+cos fr

0

Therefore,
o (x, y>=—%jdx [?(Aa—g)} In——+ ( o ) p - it (F.9)
0 X A y=0 COSh .___{—x -+ COS __y..—a
a a

which is the expression for Equation 4.47.

Evaluating this potential function at the surface of the plate (y = a) results in

P (x)l yea ——Z%J- [.87 (4 aio ):I " E(xq x) ’
0 w0 cosh 2241

a
but

cosh(2) +1=2cosh® &

therefore,

osh? w(x+ x’)

15,9 09 2a
(x),_ =——]dx !:“'T(A—',l)] In , ,
@ }»““ 2%;’; ox x| cosh? T(x —x)
2a
z(x+x)
1 y=a ’ :
: ax S = cosh (x —x)
2a
Integrating by parts gives
2.0 =-—_[[d 2 2% )} {tanhw+tanhm—_x2} (F.10)
- 4=0 2a 2a

Deriving Equation 4.43 with respect to x gives

166



9%y _P5 [tanh z0+x) | tanh———ﬂ(l — X):l
2aw ’

2a 2a

thus,

7(l+x) (x—x)

+ tanh

2= 1 1anh FE 9 4 anh
a a 2a

o, (x jA( H[tanh

4aw

This is the expression used for Equation 4.48.

Now consider equations 4.49, 4.50 and 4.51:

V2¢2 (x,y)=0,
9%l _g
dy ’

Expanding the last boundary condition and considering the second order term gives

2 23 2
09, O’ N gy 00,000 |
oy ay: 2 o’ ox oxdy |

—%2_ Aa qDl_A2 a (a¢70) Aawl_AA’azgoO:l =0

9y ox* 2 ox’ ox 0xdy o
_8& = A 82% +A’§_¢_l

Y |,z ox’ ox |

0, 99,

9 [ Ly .

dy =0 (ax( ax) =0

This is the expression for Equation 4.52.

The potential function ¢, and its Fourier transform ¢, are given, by definition, as
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o0

0,(x, )= [e" ¢, (k. ) dk, and (F.17)

—o0

. 17
Drk,y)=—— [ 9, dv. (F.18)

The Fourier transformation of equations F.13, F.14 and F.16 are

0% R
8y22‘ -k*@, =0, (F.19)
99| _p, (F.20)
dy y=a .
09, 1T i, | O, 00,

= =— Fdx | —(A—— . F.21
ay | _ 27[_’[6 * [ax ( ox ) _ E21)

y=0 ¥=0

The solution to Equation F.19 is
@,(k,y)=Ccoshk(y—a). (F.22)

The derivative of the equation above with respect to y is

A

29,
dy

=k Csinhk(y—a).
Evaluating this expression at y =0 and replacing it in Equation F.21 gives

—k Csinhka = € J‘e"”“' dx{—a—, (A%)] ,
27 2 ox =0

ox
C= ————l_—— j e ™ dx i,(Aai?) ) (F.23)
27 k sinhka =, ox  ox "],

Substituting Equation F.23 into Equation F.22 results in

R coshk(y=a) 7 _w, | @ ., 00,
k,y)=———"—"—"—"— dx| —(A=—)| . ,
P2 (k) 27 k sinh ka -[ ¢ [ax (@ ox ) (F:24)

oo ¥=0
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Replacing this equation in Equation F.17 gives

1 % wcoshk(y=a) 7 w1 O 00
\y)=—— = dk dx | —(A—- .
#:(%7) 27[_'[6 ey LA PiCrep »

~00

Using the same algebra as for ¢, , the potential function ¢, is found to be:

—+ ’ —_
ma+x) w(y-a)

1= [ 2 90, cosh - -
0, (x,y)= —‘2-— de ‘a—(A*a—‘ In ; , (F.25)
g * X =0 cosh (x —x) +cos ry-a)
a a

which is the expression for Equation 4.55.

Evaluating this potential function at the surface of the plate (y = a) gives

1= [a 09 coshM+l
09, = =57 s [‘a—’(A'a_?)} e o |
0 * * Ao osh 2 =2 4y
a
m(x+x)
o h———=
17,9 .0 o8
0.0, =[x {Tma—q"?)} P
) Ty X > S osh ﬂ(xz—x)
a
Integrating by parts yields
0, (0] = Jax AGH22 | ann FE D | PEZX) | (F.26)
= 2ay ox |, 2a 2a
which is the expression for Equation 4.56.
The term % must be evaluated. From Equation F.9
X y=0
oshﬂ(x-*-x,)-z—cosﬂ.(y"a)
17,0 .0
qo‘(x’y):_?ijdx [g(Aﬁ%)} In—r - Y - )
0 y=0 osh 22X =0 4 oY E
a a
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and changing the integration variable results in

(x +x n(y—
S (x +x) cos (y—a)

1 ]3 20 h +
@ (x,y)=—=—|dx |:——‘ (A= ):l In a. a . (E.27)
2z, ox  ox |, cosh w(x —x) + cos n(y—a)
a a

Evaluating the first derivative of this function with respect to x gives

m(x +x) n(y—a)
. - h
LGN Y {__(Aa%)} I PR I P
ox 27 s, ox ox "], 0x cosh T(x —x) + cos 7(y—a)
a a

It can observed that

—af{ln[cosh mx+x) + cos ﬂ—(y——a-)-] - ln[coshj—rg—:—xl + cos zy=a) ]} =
ox a a

a a
_i{ln[coshw +cos Mjl n ln[cosh T(x —x) + cos T(y—a) :l}
ax a a a P

Replacing this identity in Equation F.28 gives

éﬂf:——l—_[dx” —a—:(A-aif?) i In| cosh 7x )+cos”(y_a) +1nf cosh mx _x)+cos”(y—a)
ox 2z dx  ox ., 0x a a a a

0

and integrating it by parts

— (A a¢? )} {ln{cosh Zx ¥x) +cos 7y a)} +ln[cosh mx —x) +cos (y= a)}}
y=0 a

LIy
ox 27 ox  ox a a a

Evaluating the expression above at y = 0 gives

= Lj [— (A 9P ):| {ln{cosh ﬂ—(x——'—_x—) — 1} + ln{cosh M - 1}} )
=0 27 ox ox’ =0 a a

99,
ox

but

cosh(2a) —1=2sinh* &
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therefore,

o Y , » N ,
-a-ﬁ =—1—-J.dx“ o (AQ(’;?)} ln\:4sinh2 zx +x) sinh? #x —x) )i| ,
y=0

x|, 27y Llax* Ox 2a 2a
o [ A2 B .
9] L | a2y | 2sinn ZELE) gipp ZE 22| (F.29)
ox |,y 27y |ox ox | 2a 2a
Knowing that

sinh a sinhb = %[cosh(a +b) —cosh(a - b)],
Equation F.29 can be rewritten as

99,
ox

o 2 » ,2
=L dx’ o - (Ai?—‘,’) In| cosh - —cosh - | . (E.30)
2 ox? ox | ., a a )

y=0

The integrand has a logarithmic singularity when x = x, but this singularity is

integrable if Aand ¢, are sufficiently smooth. Figure F.1 shows a schematic view of the

singularity.

ox éx
| | ]

X

(s

Singularity point

Figure F.1 — Schematic view of the singularity in Equation F.30

Consider Equation F.30 as
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a 1 x +68 72
—2‘— de f(x)In cosh——cosh— (F.31)
0x |, T s a

. : d
where f(x )= l:aa -(A E)q)? )} and dx is a small increment about the singularity point.
X X y=0

Expanding near x =x +&, where ¢ is a small term, results in

fGD)=f(x),

Tx r(x + rx nf .. mwx
cosh = cosh—(———Q = cosh——+ —ésmh————.
a a a a a

Substituting these expansibns into Equation F.31 gives

S 2
99, _21_ [ fx )ln{*smh—*}
-8

ox y=0

99, 1 ¢ )
— — |d&é f(x )[ln(—smh ——)+l E?
ox y=0 2 J;

B 2 ' 8¢
99 L riy] 28 (%5 sinh® 7 + 2 aé 1n§2},
ox |, 27 i a a 0

B K &
990~ L vy 26 inCsinh T2 +4[dé g |,
ox |, 27 i a a :
9% _ L ry] 260 InCsinh TNy +4(Sx 1n§x—5x)i|,
ox |, 27 i a a

0x |,

9, ~—7z_—f( ){m(@ sinh 25 ) —2}

do| G| 97 (9%, (”_5"51 h—) -2 (F32)
ax y=0 V4 a_xz ax ¥=0

This equation replaces Equation F.30 at the singularity x =x .
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2

The term { o - (AQQ)—?)
ox*? X

:l can be rewritten as
y=0

& (AaifnT o {a Aa%jl ,
y=0

Laxz” 0x s B ox | ox”  ox’
=Y 7] 3 2 2

I_ (2 9%, =\:Aa ?§+2d§a?;+dﬁa¢9} . (F.33)
| ox? ox o ox dx ox dx” ox =0

Substituting Equation F.33 into Equation F.30 gives

99
ox’

o 3 2 2 » .2
- dx’ Aa ¢3° +2£Z}:a ¢2° + d Azaqo? In| cosh 2 —cosh 2|, (F.34)
27, ox” dx 9x”  dx ox y0 a a

y=0
which is the expression for Equation 4.57.

Substituting Equation F.33 into Equation F.32 gives the equation above evaluated at the

singularity x = x . So,

3 2 2 ’
99 éf[Aa 0o 44000\ 4 ﬁaq"?} {ln(@sinhﬂ)z —2}, (F.35)
ox y=0 4 ox dx ox dx ox =0 a a
which is Equation 4.58.

From Equation 4.43 the derivatives of the potential function ¢, with respect to x can be

evaluated. Therefore,

_aqog _ P tanh————”(l-'-x )+tanh~————”(l_x ) , (F.36)
ox o 2aw 2a 2a
0* S ’ —x

Dol LT gﬂ[sec p FEEx) o2 ®X) )}, (F.37)
x|, 4aw 2a 2a

3 2 " » " R
J (o:) =_p5+ﬂ sech’ rl+x )tanh Zl+x) +sech’ 7l —x )tanh rl—x ):l. (F.38)
ox |, da’w 2a 2a 2a 2a

Consider the defect given by Equation 4.59.
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tanh Ec_—t—_x_) + tanh (c=x)

_ s s
Alx) =k 2tanh(c/s) ’ (7.39)

The first and second derivatives of this function with respect to x must be calculated in

order to substituted into equations F.34 and F.35. Thus,

a___h sechz(c—i’f)—sechz(c‘x)], (F.40)
dx 2 stanh(c/s) s s
d*A h ,,C+X c+x ,,C—X c—x}

= sech tanh —sech tanh . F.41
dx*  2s* tanh(c/s)li ( s ) ( s ) ( s ) ( ) ) ( )

Equations F.34 through F.41 are used to calculate the potential function ¢, evaluated at

y =a, which is given by Equation F.26.
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APPENDIX G

This appendix contains a listing of the code “forward_smooth”, which was
developed to solve the forward problem for a plate with a “smooth defect”. This code

includes the subroutines “calcphione” and “calcphi2”.

% PROGRAM FORWARD_SMOOTH

function smooth_forward

clear

global Iprobe w 1 a rho curr deltax x
global xp0 numcol numxp deltaxp

global h ¢ s i x2p0 deltax2p numx2p

input(‘enter with the length of probe in x direction : Iprobe (mm)=");
input(‘enter with the width : w (mm) =');

input(‘enter with the defect height : h (mm) =");

input('enter with the defect width : ¢ (mm) =);

input('enter with the length :I (mm) =";
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input(’enter with the thickness :a (mm) =),

input(’enter with the resistivity :tho (micro_ohm*mm) =);
input(enter with the current : curr (amp) =7);

input(’enter with the increment in xprime : deltaxp (mm) =);
input(enter with the increment in xdouble_prime : delta2xp (mm) =));
input(enter with the parameter s : s (mm) =),

input(enter with the increment in x : deltax (mm) =));

numcol = lprobe/deltax +1;
numxp = (2*])/deltaxp+1;

numx2p = (2*1)/deltaxp+1;

for i=1:1:numcol,
x(i)= (-lprobe/2)+deltax*(i-1);
numl = sinh((pi/(2*a))*(1+x(1)));
denl = sinh((pi/(2*a))*(I-x(1)));
phizero(i) = ((rtho*curr)/(pi*w))*log(numl/denl)
[phione] = calcphione(xp0);
[phi2] = calcphi2(xp0,x2p0);

phi(i) = phizero(i) + phione(i) + phi2(i);

end

plot(x,phi, b-’,x,phizero,r--))
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title("Potential functions versus distance: plate with smooth defect’)
xlabel('Distance from the center to the border of the plate (mm)’)

ylabel(’Potential (microvolt)’)
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Yo SUBROUTINE CALCPHIONE

function [phione]= calcphione(xp0)
global w1 arho currdeltaxphcs

global xp0 numxp x i

xp=xp0;

sumxp = 0;

for j=1:numxp,
varl = tanh((pi/(2*a))*(I+xp))+tanh((pi/(2*a))*(I-xp));
var2 = tanh((pi/(2*a))*(x(i)+xp))+tanh((pi/(2*a))*(x(1)-xp));
var3 = (h/(2*tanh(c/s)))*(tanh((c+xp)/s)+tanh((c-xp)/s));
prod = varl*var2*var3;
sumxp = sumxp + prod;

xp = Xp + deltaxp;

end

phione(i) = (rtho*curr*deltaxp*sumxp)/(4 *a*a*w);
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% SUBROUTINE CALCPHI2

function [phi2]= calcphi2(xp0,x2p0)
global w1arho curr deltaxphcsi

global xp0 numxp x i numx2p x2p0 deltax2p

xp=xp0;

sumxp = 0;

for j=1:numxp,
sumx2p = 0;

x2p =x2p0;

for k=1:numx2p,

aux = Xp - X2p;

if (aux==0)
indice = j;
incremxp = 0.001;

varl = (h/(2*tanh(c/s)))*(tanh((c+xp)/s)+tanh((c-xp)/s));
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var2 = -

(pi*pi*curr*rho)/(4*a*a*a*w))*[((sech(pi*(l+xp)/(2*a)))"2)*tanh((pi/(2*a))* (I4+Xp))+...
((sech(pi*(1-xp)/(2*a)))"2)*tanh((pi/(2*a))*(I-xp))];

var3 = (h/(2*s*tanh(c/s)))*[(sech((c+xp)/s))"2-(sech((c-xp)/s))"2];

vard = ((pi*curr*rho)/(4*a*a*w))*[(sech((1+xp)*pi/(2*a)))"2-(sech((l-
Xp)*pi/(2*a)))"2];

var5 = -(h/(s*s*tanh(c/s)))*[((sech((c+xp)/s))"2)*tanh((c+xp)/s)+((sech((c-
xp)/s))"2)*tanh((c-xp)/s)];

var6 = ((rho*curr)/(2*a*w))*[tanh((pi/(2*a))*(1+xp))+tanh((pi/(2*a))*(1-xp))];

deriv2xp = varl*var2+2*var3*vard-+var5*var6;

excessao = (1/pi)*incremxp*derinxp*[(log((l;i/a)*incremxp*sinh(pi*xp/a)))’\Z—Z];

x2p =x2p + deltapr;
end

if (aux~=0)

var7 = (h/(2*tanh(c/s)))*(tanh((c+x2p)/s)+tanh((c-x2p)/s));

varg = -
((pi*pi*curr*rho)/(4*a*a*a*w))*[((sech(pi*(14+x2p)/(2¥a)))*2)*tanh((pi/(2*a))*(1+x2p))+
((sech(pi*(I-x2p)/(2*a)))*2)*tanh((pi/(2*a))* (I-x2p))];

var9 = (h/(2*s*tanh(c/s)))*[(sech((c+x2p)/s))"2-(sech((c-x2p)/s))"2];

var10 = ((pi*curr*rho)/(4*a*a*w))*[(sech((1+x2p)*pi/(2*a)))*2-(sech((l-

X2p)*pi/(2*a)))"2};
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varll = -(h/(s*s*tanh(c/s)))*[((sech((c+x2p)/s))"2)*tanh((c+x2p)/s)+((sech((c-
x2p)/s)) 2)*tanh((c-x2p)/s)];

varl2 = ((tho*curr)/(2*a*w))*[tanh((pi/(2*a))*(1+x2p))+tanh((pi/(2*a))*(1-x2p))];

deriv2x2p = var7*var8 + 2*var9*varl0 + varl1*varl2;

prodl = deriv2x2p*log((cosh((pi/a)*xp)-cosh((pi/a)*x2p))"2);

sumx2p = sumx2p + prodl;

X2p = x2p + deltax2p;

end

end

dphildxp = (1/pi)*deltax2p*sumx2p + excessao;

varl3 = (h/(2*tanh(c/s)))*(tanh((c+xp)/s)+tanh((c-xp)/s));
varl4 = tanh((pi/2*a)*(x(1)+xp))+ tanh((pi/2*a)*(x(i)-xp));
prod2 = dphildxp*varl3*varl4;

sumxp = sumxp + prod2;

Xp = Xp + deltaxp;

end

phi2(i) = (1/(2*a))*deltaxp*sumxp;
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APPENDIX H

This appendix describes the derivation of Equation 4.63, which is the cylindrical

correction for the potential function. Consider the equations below:

Q. P 190,

ox* oy’ r, oy

0] _,
dy i ’
9. _o.
ay y=4g

Let ¢, (x,y)=K(y—a)p,(x,y)+¥..

Thus,

Vi, = K[(y—a)V2¢)0 +2V(y—a)Vo, +(00V2(y—a)]+ A O

Vg, = 2k 9% L vry

dy
Choosing K = L , Equation H.1 can be written as
"o
-a
<0c(x,y)=—(y . )coo(x,y)+‘Pc(x,y)-
0

The function ¥, (x,y) satisfies the Laplace equation, therefore

V¥ (x,y) =0,
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The boundary conditions are

at y=A,: —ai—& =0, (H.3)
dy  2r, s,

at y=a: I 99 | . (H.4)
dy 2r, e

Consider

¥ (x,y) = j e (k,y) dk,

‘i’c (k,y)= L J‘e;ik"‘Pc (x,y) dx.
2r Y,

The Laplace equation changes to

220
9%y

— k'Y, =0.

The general solution for this equation is

‘i’c(k,y) = Acoshk(y—a)+ Bcoshk(y—A,). (H.5)
Thus,
v
aa ¢ =kAsinhk(y—a)+kBsinhk(y—A,).
Yy
From Equation H.3
. I .
"kASlnhk(a—AO) :—¢0(A0) s
2r,
A=- 1 Dy (89)
2r0ksinhk(a—A0)(p0 o
From Equation H.4
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kBsinhk(a—A) =2Lgbo(a),
7

0

l A
B= - ®o
2ryksinhk(a—A,)

(a).

Substituting these results into Equation H.5 gives

1

Pk, y) = 5 hk(y —Ag) — Py (Ag)cosh k(y - a)]. H.6
(k) 2r0ksinhk(a—A0)[%(a)Cos (y—244) =P (Ag) coshk(y —a)] (H.6)
From Equation 4.40

R ip S, sin kl

k,y)=-— coshk(y—A,).

Go kY = = k(= Ay (Y~ A)
Thus,

A ip S, coshk(a—A,) sinhkl

¢0(a)=_p 2 . 0) s

w ksinhk(a—A,)
R ip S sinh kl
Po(Bg) = —2-20

mw ksinhk(a—A,)
Substituting the equations above into Equation H.6 results in

ip Sysinkl

Y (k,y)=-
() 27 wryk” sinh® k(a—A,)

[coshk(a—A,) coshk(y—A,)—coshk(y—a)]. (H.7)

Evaluating this equation at the surface (y = a) gives

ip S, sinkl
27 wr, k2

¥ (k,a)=- (H.8)

By definition

V.(r,y) = [, (k,y) dk,

—00
oo

¥ (x,a)= [, (ka) dk,

—oo

184



and substituting Equation H.8 into this equation results in

LIJC(_x,a) - _ lp SO J‘e,']a Slnzkl dk,
27 wr, k

—o0

Y. (x,a)= dk .

P S, Tsinkxsinkl

27 wr, k*

—oo

It can be seen from tables (Gradshteyn and Ryzhik, 1994) that

oo

Jsinkasinkb dk = ra if a<b
k* m  if a>b

~oo

or Twlgfm—%dk'zgﬂb+a|—\b—al].

Therefore,
_ PS5 i
Y (x,a) = Sor, ﬂl+xt [l xl]
From Equation H.2

¢.(x,a)="¥_ (x,a),
therefore,

¢(x,a)=¢,(x,a)+¢ . (x,a),

osh

(1 +x) +Cos

(H.9)

T (a—-Ay)

1 (a-A,)

(a—Ay)

pS, 2
va) =220 L o -|r - o]+ =1
plea) =Tl x|]+nncoshz(l—x>+

os” (a—Ay)

(a—Ay)

which is the expression for Equation 4.63.
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APPENDIX I

This appendix describes the derivation of equations 4.72 through 4.75, 4.81 and

4.82, which are parts of the forward 3D solution for a pipe with a non-symmetric defect.

Consider Equation 4.71:
99 ___n  99dA dpdAl
dy (r,+ y— 2y dz 0z ox ox
A
Expanding this equation about A =0 gives
2 2 23 2 2
a_(p+Aa ¢+é_a¢_ "o a_A(Qﬂ+AM)_Qé(a_¢+

dy oy 2 oy’ 4y dz 0z 0ydz” ox ox

ro+y—
(ro+y >
Knowing that

@(x%,9,2) = Qo (X, )+ ¢, (X, Y, 2) + ¢, (x,¥,2) + ¢ (x,¥,2)

(LL)

A2y o 12

0xdy

and substituting it into Equation 1.2 produces, for each order of magnitude indicated as a

superscript, the following equations:
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op, d ,, 00
AV (A2 =0;
[ dy 8x( ox )] N

A 9’p, 0Adp, 0A 99,

A® {—(¢2+¢C)+Aa Py

2 dy> 0dz dz Ox Ox

AD . 99,

=0,
9 |,

A(z) . lia(pz _Aaz(pl _A82¢1 __a_Aa(Dl __a_éa%

dy ox? 9zt 0z

-—(A —(A

A |90 0 (z901 9
' dy odx ox  0dz 0z

These are equations 4.72 through 4.75.

Now consider the equations:

82(01 +a2¢1 +az¢l =0’
ox* 9y 97’

dp, 9 a(Po

ga _9 =0,
{ dy 8x( ox ) -0
90l o,

W |,

By definition,

2/1' 27 nz.

?/(x,y,2) = Ze Y, (x%y),

n=-oco

27 nz oo

99,

=O,
dz Ox oOx jlv=o

)] =0.
y=0

0y =Y " [eNp, (k) de,

n=—o0 —o0

@, (x,y) = Jdk elk" D, (k,y),
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Ox 0xdy

1.4)

} :O,
y=0

1.5)

(1.6)

@7

(1.8)
1.9)

(1.10)



where @,, (k,y) is the Fourier transform of ¢,,(x, y).

Fourier analysis may solve Equation 1.9 after multiplying both sides by

[_2m7[2

Te-”‘* dxfe v dy. 111)
0

—o0

The right hand side becomes

RHS = OJie""k"‘ dx Te_[znfz dz ieg’"ﬁ ]"e%M (k. y) dk.,
- > —_—

I oo . w 2mrz 2xnz
_ —ikx ke T
RHS = e e“dx |e e
n=—oo .

—c0 0

dz [ ¢, (k,y) dk,

2—n(n-—m)z

RHS = i ]: o KT g Tei w dz ]:(ﬁln (k,y) dk . (1.12)
== _o 0 —oo

We know that

j e gy =27 S(k—k ), and

—oo

nm °

w .2z

i—(n—-m)z
Je w dz=wo
0

therefore, Equation 1.12 will be
RHS =27 w @, (k). (L.13)

The left-hand side of Equation 1.9 becomes

w 2mm

LHS = Te‘”‘" dx Je_l voodz @ (x,7,2).

0

27 ng

dz Zel Y@L (xy),

LHS = ]:ew'k'x dx Te_ﬂﬂl;rz

0
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w 2mrz 2wng

LHS = i ]oe“*'* dx e v e dzgy,(xy),
n=—o _ 0

—2£ n-m)z
LHS =%, fe* dx[e " dig, (),
LHS = w [e™** dx ¢, (x, 7). (L14)

Recombining equations 1.13 and 1.14 gives

27w P, (k) =w [ dx g, (x, ),

2 ’ 1 T —ik x
k)= [dre™ g, (7). (L15)

Can also apply Fourier analysis to the boundary condition of Equation 1.4 after

multiplying both sides by

]oe-"’“ dx Te"'zmvf s (1.16)
—00 0

Therefore, the left-hand side becomes

2m77: 2mr z 27 nz

LHS = 2 j ik dxj elT ?,, (x)lyz0 dz ,

9y =",

tas=2-% j - g j I 0 (), d

dy =
y=0 ’

o T -
LHS = —a—y—w:‘;e “dx g, (x)[

LHS = 272 | (1.17)
dy

y=0
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Assume

Zfrnz

A(x,z) = zA (e v . (L18)

Nn=—co

The right hand side of Equation 1.4 will be

w 2mﬂ¢ a a(D
RHS = |e™ d voodz | — (A2 ,
.[ * ! ¢ (ax( ox )l,:o

—oo

w 2m7r z

RHS = Zj "“a’x_[ vodr | 2 gy
Z (A (x)e o —) |
y=0

N=—00 o0

A=—00 _o0

> % w2z n—m
RHS = 2 Je'"‘” de'elW( 8 [ (A, (x) 9Py )} ,
5 ox =0

RHS = wojdx ek [-—(Am( ) 8% )} ,
e y=0

and integrating by parts

RHS =wi [dxk e™ A (o2 (L19)

0x

y=0

Recombining equations 1.17 and .19 gives

PRCLL TS R wi[deke™ A () 9%
dy

ox

y:O —o0 y=0

a gbl m

L Tavke™ A (%) 9P
dy

o 2T ox

(1.20)

y=0

Applying the Fourier transformation to the Laplace equation gives

°P,, am’n’ ),
a;/" ——[k2+—w2—)golm=0 121

dm’rm?
2
w

and calling k2 =k* + , the Laplace equation can be expressed as
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9’

lm___k2 2

P o @ =0. 1.22)

The boundary condition at the surface changes to

a(’blm

=0. 1.23
% (1.23)

The general solution to this equation is
¢, (k,y)=A, coshk, (y—a). (1.24)

Thus,

P _p A sinhk (y-a),

ay n m m
a—‘ol—m— =k A sinhk,a. ‘ (1.25)
dy -

Substituting Equation 1.25 into Equation 1.20 determines the coefficient A . So,

~k,A, sinhk,a=—— [dxke™ A, (x) 9
27

ox 1=
A=t L j dxk e™ A (x) (1.26)
" ork, smhk a:, ax 4=0
Substituting this result into Equation 1.24 produces
o, (k,y) = U jdxk e A (x) =% 9% coshk (y—a). (1.27)
27L'k smhk a 0x |,

Finally, substituting this equation into Equation 1.10 gives

——L——jdxke-"“ A, (x) Lo 9%y
k,sinhk, a ox

—~00

coshk,(y—a),

y=0

i T
0, (%) = 'EE_[,dk e
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, coshkm(y—a)

—_—i_” T tk(x x)
0, (x,y) = 2ﬂ_£dk idx A, (x) 22

., cosh km (y—a)

ksink(x—x)A, (x
nSinhk a ( ) ()

golm('x?y) ~ jdk J-d
Evaluating this equation at y =a gives

Q)Im X v=a

2

y=0

—jdk_[ . ksink(x— X)A (x)%
k, sinhk,a " ox’

which is the expression for Equation 4.81.

Now consider the equations:

', 0’0, 'y
ox? oy’ 97’ ’
09, 9 991, 9 99
99 2 22| o,
[ay ( ax) az( az)yzo
9% _g.
Y |,y
By definition,

27 nz.
(02()( y’z)—ze Cozn(x,y),
27tnz oo

0, y.0)= Y 7 [,k y) dk,

n=-—o0 —o0

@y, (X, ¥) = _[dk e'kxgbzn(k’)’),

where @,, (k,y) is the Fourier transform of ¢,, (x,y).
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(1.28)

ox’ 4=0

(1.29)

(1.30)

(1.31)

(1.32)



A Fourier analysis of the boundary condition of Equation 1.6 can be performed after

multiplying both sides of the equation by

2mr

]oe-“‘* dxfe" v dz. (1.33)
—c0 0

Therefore, the left-hand side of Equation 1.6 becomes

2mnz
LHS = j "‘dej v a9
0y |,o0
w 2mnz .27 nz

ZJ' ~ik'x dxj v ¢2n(x)|y=o dz,

n=—o0 _,

LHS-—a——wj ”"‘dx%m(x)i y=0 °

LaS = 2720 (1.34)
dy -
The right hand side of Equation 1.6 will be
2mr
- il d ,0p,. 0 L 0@
RHS = [e™** dx vood | — (A=) +— (A= } ) 1.35
J -(!‘ [ax( ax) 8z( az)_,:o (133
Consider the first term of the equation above as
oo . w _ﬁmﬂz a¢
RHS, = [e™* dx [e [— (AL )] : (136)
s 2 ox ",

Assuming

ﬂnpz

A(x,z2)= iAp(x) e v

p=—oco

and replacing Equation 1.8 in the Equation 1.36 gives
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oo

oo o ) w 2mrz a '_27rpz a {272'712
RHS, = 2 z '["‘ *dx _([ w dz{a—;(Ap(x)e w 5;6 v (Dm(x)ﬂ .:0’

p=—co n=—o0

oo oc

RHSI — J —ik'x dx JdZ{a [A (x) el—(P m+n)z aa_xq)ln(x)J} ,
—o00 }:O

p-——oo n=-—oco

RHS, =wi ]:dx e [%( men (X) 2= %,(x)j] , and
y=0

N=—00 _o0

integrating by parts results in

RHS, =iy, [dxke®™ A, (0% (137)
i : ox 40
Now consider the second term of Equation 1.35 as
oo " w _i2mﬂ a(ol
RHS, = [e™* dx Je —(A SR (1.38)
a ! 0z ",
Using the same approach as was done before gives
w 2m7r4 27rp4 i27r nz
RHS, = z Z j ik x de W |:8 (A (x)e e aie it q)ln(x)ﬂ ,
p=-o0 n=—co 2 =0
00 oo oo " w _l,2mlrz a B i2—”—lz—z— a iM
RHS, = e Tdxle v dze,(x) A (x)—| e ¥ —e " |,
: p;x, ":z; _J; ;‘; @ I-V‘O 2 oz| 0z
00 w  2mrz r ox . 27
S i i 0| =2 ni X
RHS, = e dx|le v dzo,(x) A (x)=—|e * e ™ |,
=2 Y [ P, 8,95 - }
IR —ik x i 27 ni 0 ,'21(1,4,,,)3
RHS,=Y Y [e™ dxfe * dzg,(x) _ A,x e ,
p=—een=— o 0 ’ <
o0 w 2mn z
- ik x —f 2 l— +n)z
RHS, = z z J‘e-m dxje v dz ¢1n(x)|v A, (x) 7T ni 2w (n+p)z (p+n)z ’
PE—00 N=—00 o 0 iy w
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27 ni 2w (n+ p)l tz—(p+n—m)z

RHS,= 3 Y j "”dxjdzqom(X)I A, () ’

w

P=—00 R==0 _o0

7L'n27rm

RHS, = —w 2

n=—o0

jd A, 00,0 (1.39)

Adding equations 1.37 and 1.39 gives

RHS = wzn_z—;ldxk e A, (%) (2“ yzo—wn; 27;" mm jd A (00, (0]
RHS =w Z jdxzk e A, (x )a“""|y=0 2’;’" 27 | jdx A0, (), }
RHS =w j dx e+ 2 ik'A_(x )a(pl"‘y:O _2ZEm2n s e, ":0} ‘ (140)
Equating equations 1.34 and 1.40 produces

?JIW% . =w Iodx e ng [ ik A,_,(x) (p; !_\:0 _2mm2izn A, (x)(ﬂm(X)l ),=0:| ,
a%;m_ . =~21;;[odx o 2 { ik'A_(x) ag’;" L 2’; m 2’; “A,L (D, (x)jy:o}. 1.41)

Analogous to Equation 1.22 the Laplace equation will be
0’ 2 A
9 P _y2 4, =o0. (142)
dy*
The boundary condition at the surface changes to
a A
PPl 9. (1.43)

The general solution to this equation is

@, (k,y)=B, coshk, (y—a). (L44)

195



Thus,

9w _y B sinhk, (y—a),
dy

a@Zm

~k, B, sinhk,a. (1.45)
dy

y=0

Equating equations 1.45 and 1.41 gives the coefficient B, . So,

T Ky d 2 2
—k,B, sinhk, a——- [axe™ Y [zk A, (%) (”1"] MR A (0, (2] y_o} :
o y. -
—oo n=—oo y=0
1 - 8(0 2rm27wn
B = [dxe™ ik'A,_ (x Ln - A X , OF
m 27[ k Slnh k a _£ "‘E—M |: m-—n( ) iy=0 m-n (x)¢lu( )‘ y=0}
switching k by k gives
an 2rm 2w n
B =————— |dxe™ ikA Il - A X X .
m 27r k Slnh k a J; nz; { m- I’l a |),=0 m—n( )q)ln( )I y=0
Substituting this result into Equation 1.44 we have
N 1 T k= a(p | 2rm 27 n
= == | dx e kA 71 - A Wk (vea) ] -
q)..m 272' km Sinh kma _J; X e ’Z:o ‘:l n— n(‘x) |y=0 W W m—-n(‘x)(pln y:()] cos m.(y a):l

Finally, substituting this equation into Equation 1.32 results in

— 1 T ikx COSh km(y_a) —ikx’ ¢ln
P =5 j dk e ——22—— [dx’ e 3 kA, ()=

2, ' ’
- (i)- mn Am—n ()C )¢1n (x )\O}
w

k, sinhk,a =, o 0
__ o) coshk, (y—a) a("m 3 2z ., , .
¢2m - jdk -J;dx k sinh kma ,,Z kAm n( ) . ( w ) mnAm—n (x )¢ln (x )10

1 . coshk, (y—a) a(p1 2r :
, =— {dk _— ksink x A 2+ (—) mncosk(x—x)A, _
Pom 2 _J; _~[ k, sinhk, a ,,_z‘ (=), ax |, ( w )'m (X=2) B il

Evaluating the expression above at y =a gives
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LT T B ()
T X jdk_jmdx

N=—0_co

2 (X)

[k sink(x—x) 28 1 (FT20 0 cosk(x —x’)q;ln}
ox w

k, sinhk, a v=0

which is the expression for Equation 4.82.
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APPENDIX J

This appendix shows how equations 4.81 and 4.82 can be written in a more

convenient form. Consider Equation 4.81:

1% % ksink(x=x), .00,
X =— |dk |dx A, (x) 0 ’ 1
@1 ( )y:a 275_-[ ‘[, k, sinhk, a n( " x |y=0 (J.1)
2.2
where k2 =k’ +4m27L'
w

Consider

1 7 . ksink(x—x)

T, (x,x)=—|d : 12
m(LX) =70 £ k_sinhk_a 7.2
So,
oo , , a ,
P, = [dx A, () Pl 1, x). (1.3)
’ - 0x |,
Equation J.2 can be written, for m # 0 ,as
T, (rx) =~ [die ERECEX) 04
.4

5 k, sinhk a

In addition, for m = 0 Equation J.2 can be evaluated as

. 1 7, sink(x—x)
T.(x,x)=— |dk ———=
10 () 2z _J; sinh ka
ot x) = [dk SRECZE),

Ty sinh ka

It can be seen from tables (Gradshteyn and Ryzhik, 1994) that

198



% sin ax /4 Ta
J : dx = —tanh—,
» sinh bx 2b 2b

therefore,

. 1z T(x—x)
T, (x,x )=——tanh——,
o ) 7 2a 2a

T (x—x)

> J.5)

T (x,x)= L tanh
2a

Equations J.3 through J.5 represent an alternative form of expressing Equation 4.81.

Now recall Equation 4.82:

k, sinh k,a

71"“”—m

@, (x )IM =—2 jdkj ~——"—‘ﬂ[k sin k(x — x)a¢"’ ( ”)zm ncosk(x—x')(oln}
w

y=0

Consider the terms that appear in this equation. Assume

s, :27171

n

1n y=0 * (J6)

Thus,

T m—n ('x ) q)]n
Do (X y=a j :[g k su‘lh k {k sin k(x X )

+(—2£)m cos k(x—x')SZH:l . 3d7D
w

0

From Equation 1.28

,coshkn(y—a)ks, : ,
k, sinhk a " ox’

) J.8)

y=0

0oy =5 Jak Jds

thus,

coshka k= x) A, (x) 2

> ]9
k, sinhk,a ox 19

0, (0|, = 517; Tdk de

¥=0

Substituting Equation J.9 into Equation J.6 results in
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_27zn 1 jdk J- . coshk,a 29,

———" &k sink'(x —x)A (x = J.10
w 21 k. sinhk,a ¢ DA )Bx 4=0 (-10)
So,if n=0 then §,, =0.
Observe that
Esink (r —x) A,GO2] =A% D cosk (x5,
ox |, 0x |, Ox
. .9 : ]
Esink'(r-x) A 22 =LA ()22 cosk'(x —x7) |-
ox |, ox ox |,
’ ' Z J.11)
cosk (x —x) iﬁAn(x”)a&
ox 0x |,
Substituting this result into Equation J.10 gives
nt, . %,. coshk,a 0 o1
S, =—— |dk |dx  ———2—cosk (x —x A ! . J.12
2 w _J; _-[, k, sinhk, a ( )L) (* ) },zj (-12)
Observing that
coshk a=coshk a—sinhk a+sinhk,a=e™* +sinhk,a,
and that the integral above is even in k', Equation J.12 may be rewritten as
-k P P
s, = jdk jdx ._a_A ) a¢0| e fcosk(x —x)  coskx =x)| (113
|y=0 k,sinhk, a ;

It can be seen from tables (Gradshteyn and Ryzhik, 1994) that

J» cosax — K, (ab),
0

x+b

therefore, in Equation J.13
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2(x —x)n

Idk'COSk ix -Xx) :J.dk' cosk (x —x ) =K{
0 a 0 k‘2+(2nﬂ'

2
» )

] (J.14)

w

Using the result above in Equation J.13 for n # 0 gives

e

Consider the second term of Equation J.7, represented by ¢5” (x)l . Thus,

27(x —x)n

207, .| 9 . 09,
S,, =——— [dx" | =—=A -2
’ J {ax" %

oo ~kya (v
J"'J‘dk' e cosk (x —x )}_ (1.15)
0

w k, sinhk, a

a:——Zjdkj —a—nﬁ(’;—)a( ym cosk(x—x)S,, - (J.16)

goZm) ( )

n=—00 _og

Substituting Equation J.15 into Equation J.16 results in

(2) —_ m-—n ('x) _a_ " 2?_0_ .
oo = 'Z;Jdkjdx jdx oy a{Gu s A () == . coskx=x) — (J.17)
where
. . 2 T o0 , -—k,}a : R
G, (x\x)=K,| | ZE —x ) + [di £ cosk (x =¥ ) (.18)
o k,sinhk a
Calling
Cm(x,x’) _ 27 m_[dk cosk.(x—x )
o k,sinhk a (J.19)
Equation J.17 can be rewritten as
ol 2n [0, (200

(02;11 (X) y=a - de Am -n (x )G ax" A"(x ) ax" =0 (JZO)

Recall Equation J.8:
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_COSh_k_(Z__.‘i)_k sink(x—x’) An(x‘) _8_40_0

P (%.7) = ———J‘dk jd k, sinhk,a ox

n y=0
thus
9, 1 %, 7, .coshk,(y-a),, , . 0
“fn =~ | dk |dx ——2——"k* cosk(x—x)A —2 J21
ox j j k,sinhk,a ( ) A0 0x |, 02
Evaluating the equation above at y =0 gives
T, hk . ,
9P =—1—jdk [ax _COSNEAG 42 cosk(x—x)An(x)a& (1.22)
ox |, 27w L k,sinhka ox |,
Consider n =0. In this case,
99y =__ [ ak jd COShk“kcosk(x—x’) Ao(xi)aﬂ (J.23)
0x |, sinh ka ox |,

Observe that the integrand of Equation J.23 will be

I1 =k cothka cos k(x—x')A0 (x) %&
X

b

y=0

I1 =cothka ——-Q—,(sink(x—x’)AO(x’)a—% Y+ sink(x — x) A( )B%
ox 0x |, ox

)

J.24)

Substituting this result into Equation J.23 gives

_ T jdx’ cothka sin k(x—x) 2= A, (') 220
4=0 2;7; E)x ax

00,
0x

y=0

The new integrand can be rewritten as

2

=0

12 = coth kasin k(x — x‘)i,Ao(x') Q?-?—
ox ox
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12 =cothka {—L—a—,[(cosk(x——x’) —cos kx)—a—,Ao(x') 8(09 1-
k ox ox 0x |,
cosk(x—x)—coskx_ 9° .0
EokxmX)meoskn 9 a2
k ax ax y=0
Entering this result into Equation J.24 gives
o w0 N 2
9| __ 1 Jak fdx cothka Cosk(x—x ) coskx ~ A (x) 0P|
ox 420 2 2 k ox’ 9x |,
oo o0 _ . ’ 2 i i
9l L Tg fax" coth ka coskx - cosk(x=x) | Ay (x) 9%, (7.25)
ox 0 2Ty - k ox’ ox y=0
Now consider the integral
szdk coskx—cosk(x—x) coth ka .
5 k
Recalling that
2 k(x—xv)

coskx —cosk(x—x') =—2sin> %+2sin

gives

F=2fk [ng} coa

0

Let & = ka . Thus,

o -, E(x=x) . ;& x| coth
F—2_([dff |:sm 5 sin 2ai|_____§ -

It can be seen from tables (Gradshteyn and Ryzhik, 1994) that

T ., coshbxdx 1
Jsm ax— —=—]
3 sinhx x 4 1+cosbr

0 cosh27z a+cosbrw

therefore,
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T(x—x)

p(»4
cosh——~+cosmw cosh—+cosm

F:lln a —In a
2 1+cosm 1+cosm

cosh FE=X) 4

F==In a ,

coshE—l
a

s 2
Sinh E(x__-x_)

Felp|— 28 | (J.26)
. X
sinh —

2a y

Substituting this result into Equation J.25 results in

, 2
o mx—x)
o h———
NI N Y e
C M ‘-"=° sinhaﬂzc—
a
- , 2
99y =.J;.jd o’ A x )aq’0 In| sinn ZE=X) | 3.27)
ax y=0 ar e a y=0 2a

Consider n # 0 in Equation J.22. The integrand of this equation can be written as

]3=Mk2 cosk(x—x) An(x‘)a—q)(,)- ,
k,sinhk a 0x |,o9
I3 = EOt—hk—a k? cosk(x~— x)A (x) s
k, ax 0
13 = cothk,a _i k sink(x—x +ksink(x-x')—a—,An(X’)a£?
k ox x |, ox ox 1=0

Entering this result into Equation J.22 gives
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1 % <,
= E;_Mdk -J;dx

cothk,a

aq)ln
ox

ksink(r—x)-2a, ()22 (7.28)
ox 0x

n }':0

y=0
This new integrand can be written as

74— cothk,a

b

y=0

: . d .. 00,
ksink(x—x)—A —
sink(x x)ax L(x) 3

n

2

}—cosk(x—x') 8'2 A, (x) B(p? }
ox |,

ox

I4=cothk,,a _a_ cosk(x—x‘)—-a—,A,.(x!)?&
k ox ox dx

i

y=0

Substituting this result into Equation J.28 produces

I, . cothk .
9t oL gk Jax S cosk(x-x) I a2
ax y=0 2 e e kn ax, ax y=0
but
cothk,a .. cosk(x—x)|e™ +sinhk,a
cosk(x—x)= k sinhk, a ’
cothk,a cosk(x—x) = cosk(x—x) N cosk(x—x)| e
i k, k, sinhk,a |
Thus,
oo oo 4 _ —k,a 2 .
op,| __1 ’fdx"[dk cosk(x—x) +cosk(x x) e d A (x )ai? (1.29)
ox |,y T % k, k, sinhk,a | gx' ax |,

From the result of Equation J.14

00 2 g ” o0 oy —k,a
99, _ 1 J‘dx’ ) _a, ) i(o_o K, 2n(x —x )n +Idk cosk(x—x) 'e ’
ox |,og Tl Ox 0xX {00 w : k, sinhk,a
9| __1 fax 8“2 A )22 6. (J.30)
ox |, T ox 0x |,
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Consider the first term of Equation J.7, represented by ol (x)l . Thus,

SATRPR 9
P ()| _, =51-Zj [ ax —’"—”—(k—){ksin k(x—x) L) } : (1.31)
= o

k sinh X

Entering Equation J.30 into equation above results in

Lt ll( ) i3 N T ” 82 » a¢ | > "
(1) _______ k _ 0
(ph(x)]y:" Z"J‘dkjd ok a{ sin k(x x):[odx e A (x)) ax‘,IFOG,,(x,x )}

0l oS Far Tax Tak 2o g ke x) A (1) 220 oy (332)
Pon (X, = — ’Zm—[ﬁdx —J;dx _([dk T sinh k.q ksin k(x—x) -z A, (x) o FoG,,(x ,x)
Calling

ksmk(x x)
S (x,x)=|dk , J.33

(5 %) = J k, sinhk, a 3339
the Equation J.32 can be rewritten as
Py (x) =——1—i de'de” O A (x")aif? (x)G, (x, xS, (x,x)- (J.34)

2m y=a 7[2 = s ax»-2 n ax o m n m
Note that for m =0
S, (x x’):TdkMﬁiﬁ=ltanhi(x-x’)- (1.35)

o ! sinhka  2a  2a
Adding equations J.20 and J.34 gives
0, (x)| =__1__i]idx']x 9 (x)G,(x,x)S, (x,x)—

m y=a 7[2 =~ s a n2 o m n

jdx jdx A ()G e 12 a 2%
= w ox ox y=0
1 &G, T . d2 .. 0p 2T n ] . 09
Pon (X ¥=a _—-;Z_—;’I‘:Z«:[’dx _J;dx Alll—ll (X )Gll[Sm(ax_..zAn(x )g’—?-}mo)-’_ Cm(-a—;—:An(x )ﬁ) .

where S_,C, and G, are given by equations J.33, J.19 and J.18, respectively.



APPENDIX K

This appendix describes the derivation of equations 4.93 and 4.94, which are the
solution for a 2D symmetric defect considering the first and second order approximation,

respectively. Consider the equations below:

¢(x, ) =@y (x, )+ ¢, (x,y), (K.1)
A(x) = A, (x)+A,(x), and (K.2)
dp 0Adg

99 _oa =0. K.3
oy ox ox |, (K3)

After expansion of Equation K.3 as a Taylor series about y = A, the first term is

2 A 3223

T2 T B NN R C Y cfl ,

Wlicar Ve, |y, 2 W,

o9l _9% {?_ﬂ)rm A 2? } +{A2a %o (A, - )a il RCLE! az(ﬂ ’

ay y=A(X) ay y=4, ay y y=4, ay 2 ay; y=4,

2

dg  _ 99 +Fﬁ+(A] —Ao)a—@‘l} {Aza P 1 (A, -A )a—(”—l} . (K4)
Vlyoar W lyes, L N, oy’ W,

And the second term is

2
9A 9¢)| 8(A+A)8(p+(A A)a(p ,
0x 0% |,z ox ox oxdy | _,
9000 3590 [38, 39, 9A 9g, 34, @& a2
0x Ox|,_n, Ox Ox|._, | Ox dox Ox ox 8x 0xdy | _ Ao,
JA d¢ dA, 09, [0A, 0, A, 99,
— 7 ~ Ll 0 + K.5
0x Ox|,,, Ox ox|._ | ox ox * dx ox ()
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Substituting the results obtained from equations K.4 and K.5 and into Equation K.3

produces, for each order of magnitude indicated as a superscript index, the following

equations:

A . d 9P|

=0;
dy

::Ao

A(l) :l:%'_*_(A] _Ao)a—(i0j| ___aAl agoO
ay y=4,

dy dx Ox |, ’
1) 0 L) }

AV L = (A = A) = ; K.6
dy N axl:( : ,0) 0x |, (K5

0% 0%, [BA dp, OA, dp
A(’l) 1A Z ro A A _ 2 0 1 1 =O,
l: 2 oy? o o) 2] . ox ox " dox Ox

0% 0%p, [BA, dp, OA, 9
A? | A, —Z% A —-A - = ¢ 1 i =0,
[ ? ox? ~( ) } N ox Ox Ox oOx

CRA PN SN )a‘/" = 0. (K.7)
ox ox y=tg
From Equation K.6 the first order defect A, (x) can be calculated. Thus,
A(x)=A, + ———— 20—, K.8
() =4 30, (K.8)
ox y=4¢

which is the expression for Equation 4.93.

From Equation K.7 the second order defect A,(x) can be calculated. Therefore,
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99,

ox
A, () =—(A, = Ag)—7—, K.
2 1 0 Q_?g_ ( )

0x

y=Ag

which is the expression for Equation 4.94.
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APPENDIX L

This appendix describes the code developed in MATLAB to solve the inverse
problem in two-dimensions considering only the first order term of the defect, that is,

A,(x) . The code, called “inverse_first_data”, includes a subroutine called “calcphis2d”
that calculates the experimental potential data ¢ (x) that accounts for the defect region.
The experimental potential data ¢_(x) is calculated as
@, (x)=¢,,(X) = ¢, (x), (L.1)
where ¢, (x) is the measurement potential data at the surface and ¢, (x) is the known

analytical potential function for a non-defect region. This function is given by Equation

4.69

h 7(l+x) +cos ny
(a-A,) (a—Ay)

S
Qp(x,y) = P 2 In

_ (L.2)
27w sh zl=x) +cos Y
(a—Ay) (a—A,)
The defect in two-dimensions is given by Equation 4.93

( ?.ﬁ dx’
A(x)=Ay+2= 1 L3
- + it S 0 , .
(X 0 90, (L.3)
ax y=4A,y

where x,_. is an initial position chosen such that we do not have negative values of

init

210



A, (x) . The numerator in Equation L.3 is given by Equation 4.100

= Tef“ B(k) ksinhk(A, —a) dk . (L.4)

=8y =

90,
dy

The coefficient B(k) is given by Equation 4.101

17
B<k>=5;_£e “ g, (x) dx.

This expression can be discretized as

B(k,) = %Zws (x;) e, (L.5)

where x; are the positions where we have data measurements and ¢ (x;) are the

corresponding potential measurements calculated using the subroutine “calcphis2d”.

Substituting Equation L.5 into Equation L.4 results in

99,
dy

- __A_xz jdk @, (x;) " ksinhk(a —A,). (L.6)
2 5. ‘

y=4g

The numerator of Equation L.3, represented by Num(x) , is given by

Num(z) = | %@—

Kinit

dx”,

)::AO
Knax

Num(x) = ——%Z jdk @, (x) [ =" ]sinhk(a-A,),
J

_kmax

kmax . .
Num(x) = _%Z(ps (xj) J.dk [elk(X‘xj) _ ezk(xmu-x;)] [ek(a—Ao) _ e—k(a—Ao)]‘ (L.7)
i

_kmax

It can observed that a maximum value to the parameter k, called k_,, , was chosen in

order to solve the integral. This parameter will be responsible for the stability of the final

solution. Factoring Equation L.7 results in
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~kla=Bg=i (G =x})] 1
?

kmax
jdk [ek[a—Aoﬂ'(x—xj)] _ ek[a—Ao-(-i(x,»,,,v,—xj)] _ e—k[a—Ao—i(,\:—xj)] +e

Ax
Num(x) =——==3"0,(x;)
w20

‘max

kxn;ux(a_AO+i(x—xj N _ e_kmax(a'AO'H'(x_xj )] ekmax(a_AO'*'i(ximl_x J N _ e—kmax(a-AO+i()Qntl—'tj )

Ax e
Numx)=—-— > @) { : .
4i 5 a—4 +i(x—x;) a—8y+i(x,,—x;) L3
Hnax(@Bo—10x;))  kpaa—Ag—i(x=x;)) e @=L =i (Xini=x))  kmad @80~ (%i—X;)) ( ’ )
. e —e € -e }
a—A—i(x—x;) a—28y—i(x,;,~X;)

Rearranging the terms of Equation L.8 and after some algebra gives

@,(x;)
P +(x— x;)

Num(x)= —%;{ A q [(a—Ag)coshk,, (a—Ay)sink,, (x—x;) <(x— xj)sinhkmax(a —Ag)cosk,, (x—x;)]— (L9)

o, (x))
[@=A0) + (X —%,)]

[(a—Ag)coshk, (a—Aysink,, (x,, —x;) = (%, = x;)sinhk,, (a - &) cosk, (%, — )1}
The denominator of Equation L.3, represented by Den(x) , can be easily calculated as

sinh{———ﬂ L+ X)ji sinh{—-—ﬂ. (- x)}
_pS, (@a-A)] (a—4,)

ray  2WA cosh{———jz Gis x)} +1 cosh{————ﬂ U x)} +1
(a—-Ay) (a—A4Ay)

99,
ox

Den(x) = (L.10)

Now the defect A, (x) can be calculated substituting equations L.9 and L.10 into the

following expression:

Num(x)

A (x)= A+ Dot

The code “inverse _first_data” is listed below.
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7

Yo PROGRAM INVERSE_FIRST_DATA
%o

function inverse_first_data

clear

global lprobe w 1 a rho curr deltax x

global x0 nimag numcol kmax new_x

global xinit new_x delta0

input(enter with the length of probe in x direction : Iprobe (mm)=);
input(enter with the width of the plate: w (mm) =7);

input(’enter with the length of the plate: 1 (mm) =7;

input(’enter with the thickness of the plate :a (mm) =);

input(enter with the resistivity of the material: rho (micro_ohm*mm) =);
input(’enter with the current : curr (amp) =);

input(enter with the potential measurements matrix: phim (microvolt) =);
input(enter with the increment in x : deltax (mm) =);

input(enter with the initial position in x : X0 (mm) =7);

input(enter with the maximum value of k : kmax (1/mm) =);

input(Center with the parameter delta0 : delta0 (mm) =);

xinit= input(enter with the inferior limit of the integral: xinit (mm) =7;
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nimag= sqrt(-1);
numcol = lprobe/deltax +1;

[phis2d] = calcphis2d(phim,x0);

for j=1:1:numcol,

x(j)= (-lprobe/2)+deltax*(j-1);
end
new_x=-x0:2.54:x0;

size_new_x=length(new_x);

for i=1:size_new_X,
sum = 0;

suml = 0;

for j=1:numcol,
varl = (delta0-a)*cosh(kmax*(delta0-a))*sin(kmax*(new_x(i)-x(j)));
var2 = (new_x(i)-x(j))*sinh(kmax*(delta0-a))*cos(kmax*(new_x(i)-x(j)));
var3 = (delta0-a)*cosh(kmax*(delta0-a))*sin(kmax*(xinit-x(j)));
vard = (xinit-x(j))*sinh(kmax*(delta0-a))*cos(kmax*(xinit-x(j)));
var5 = (phis2d(j)/(((delta0-a)"2)+(new_x(i)-x(j))"2))*(varl-var2);
var6 = (phis2d(j)/(((delta0-a)"2)+(xinit-x (j))*2))*(var3-var4);
var7 = var$ - var6;

sum = sum + var7;
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end

num1 (i) = (deltax/(pi))*sum;
den(i) = ((tho*curr)/(2*(a-delta0)*w))*( (sinh((pi/(a-

delta0))* (I+new_x(i))))/(cosh((pi/(a-
delta0))*(I+new_x(i)))+cos(pi*deltad/(a-delta0))) + (sinh((pi/(a-delta0))*(l-
new_x(i))))/(cosh((pi/(a-delta0))* (I-new_x(i)))+cos(pi*delta0/(a-delta0))));
deltal(i)= (deltaO+num1(i)/den(i));

end

defect]l = deltal

plot(new_x,defectl,-’)

title('Defect Mapping using the experimental data - kmax = /mm’)
xlabel('distance from the center to the border of the plate (mm)’)

ylabel('defect (mm)’)
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G SUBROUTINE CALCPHIS2D

9% This subroutine calculates phis(x,y=a) using phim(x,y=a), which
% is the measurement potential at (X,y=a), and phizero(x,y=a)

% that is the potential function for a non-defect region on the

% surface (y=a).All the potential are in microvolts.

% The position of the first value of x is defined as x0, which is

% the closest point to the current wires in the negative direction of

% x. The unit for x0 is mm.

function [phis2d]= calcphis2d(phim,x0)
global w1 arho curr deltax

global x0 numcol phim delta0

% numcol is the number of columns in the grid of measurements, which is

% the number of points in the x direction.
x=x0;
for j=1:mumcol,

numl= cosh((pi/(a-delta0))*(1+x))+cos(pi*a/(a-delta0));
den1= cosh((pi/(a-delta0))*(l-x))+cos(pi*a/(a-delta0));
varl=log(numl/denl);
var2=((rho*curr)/(2*pi*w))*varl;

phizero(j)= var2;

newphis2d(j)= phim(j)-phizero(j);

X = X + deltax;

end
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APPENDIX M

This appendix describes the derivation of equations 4.109, 4.112 and 4.113, which
are part of the alternative solution for a 2D symmetric defect considering the first and the

second order approximation. Consider the equations below:

A

a—(@‘-—k%ﬁl = 2= [ V2 tanh T dx, (M.1)

dy 2 -, 2a

LI — (M.2)

ay =a

2 1 % —ikx T X

=—le™ - —¢@_tanh— |dx. M.3

8 =5 [com #4l,., ~ . tanh — ] (M.3)
Defining

0P = ——ljsin kx [(om - qz)o] _ —@,_ tanh ﬂ} dx, M.4)

T y=a 2a

Equation M.3 may be written as

6| =idp. (M.5)
Observe that

2
V2 tanh 2% = azt hZx
a ox 2a
5 nx 7 0d 2T X
V*®tanh—— =——sech™ —,
2a 2aox 2a
V2 tanh 22X = - ”; sech? 2 tann 22
a 2a a a
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Therefore Equation M.1 can be rewritten as

azél 245 ¢ EM —ikx QE.X T X
-k =12 |e™ sech” ——tanh—— dx. M.6
dy’ O = j 2a 2a (M.6)

—o0

The right hand side of the equation above can be solved. Thus

RHS = 2=" J —ikx sech2—-tanh—a’x

4a® 2a 2a
sinh —
RHS = “x dx
0 cosh’ ==
2a
nx
Let y=—,so0
Y 2a
2 h
RHS =i %= jsm(ky—“— SRy gy
a 7 cosh’y

Solving this integral by parts yields

T k
RHS = —igo—‘”fcos(Zka y) —dy.
Ty T cosh” y

It can be seen from tables (Gradshteyn and Ryzhik, 1994) that

]‘ cosax ar
oo o
2b
therefore,
RHS = 2= K4 (M.7)
n sinhka

Substituting this result into Equation M.6 gives

82(3 k2§5" P k*a

. M.
oy’ 7 sinhka (M8)
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The general solution to the equation above is

+ A, coshk(y—a).

X

A
~

1

.o @0
A(k)=iop—i .
(6 ¢ 7 sinhka
Replacing this result into Equation M.9 gives
=~ . ¢ooa 1 A wwa
=1 +| 69— coshk(y—a);,
“ {E sinh ka l:(p 7 sinh a} (¥ >}

which is the expression for Equation 4.109.
k2
K

Now consider Equation 4.111:
]cosh k(y—a)e

! +[5¢— a
V3

sinh ka

2 d@..a
=1
@ 7 sinhka

The numerator of Equation 4.102 can be represented by Num(x) . Thus,

o 91

ay

Num(x) = jdx’ Ta’k e
e =0

—o0

can be evaluated as

The term 9_(0_1
9y |,
20| 95 1 -+
Y I =——i[( p-T=2 )ksinhka}e ,
|, 9y - 7 sinhka
3¢ EF: k -
98 29— (5@ k sinh ka - (”“’aJe b
| dy - T
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M.9)

=i
“ n sinhka
From the boundary condition of Equation M.5 the constant A; can be calculated. Thus

M.10)

M.11)

M.12)

(M.13)



Substituting Equation M.13 into Equation M.14 results in

kZ
Num(x) = —i J.dx Jdk e™ {S(p ksmhka—kqo aje ki
4

—o00

X oo ik’ =
Num(x)=—i J.dx’—aii—, Jdk ii—(&?) i (D;a Je b

I

Num(x) = — jdk eikx(é‘(f) sinh ka _Mje_k_ﬁ. )
o0 T

x2 - k2

Num(x) =~ [ dk ¢** (5 sinh ka)e B + [dk e =2 e 5 (M.14)
- i b2
Calling the second integral of Equation M.14 Numl(x) results in

k2

Numl(x) = Jdk e™ $-a e b
e y/

Numl(x) =

—o0

Let k =k,¢ , thus

Numl(x) = jdg L
( k,,,x) K2 x*
Numl(x) = j dcel ) e 4,
Numl(x) = L= e‘ki‘*xz (M.15)
Y . .

Substituting this equation into Equation M.14 gives

kz K22

Num(x) = - jdk o (5 sinhka) e & + L=

4

T :
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2
s #
QW akm e_

Num(x) = " —2[ dk coskx (6 sinh ka) e | (M.16)
N ’

which is the expression for Equation 4.112.

From Equation 4.105

o0p, _ 99, " Y., Sechzﬂ

= M.17
ox ox 2a 2a ( )

K

and by definition

=

B (x,y) = [e §,(k,y) dk.

—o0

@, (x,y)= 2ijdk (ﬁl (k, y)sin kx
0

Thus,

o0

9 _ 2i [ dk &, (k. y) keoskr . (M.18)
o0x :

Substituting Equation M.11 into Equation M.18 results in

12

}coshk(y—a)ek'%' . (M.19)

~

%=—2Jdkkcoskx A . ! +[5@——¢—°f— .
X 0 7 sinhka 7z sinhka

It can be seen from tables (Gradshteyn and Ryzhik, 1994) that

oo

2
jx.cos 9 dx = —jg—zsec nre,
- sinhbx 4b 2b
therefore,
0P Vg T T L
W - e ecn? ZE o[ dk kosks 59 ——2=9_lcoshk(y—a)e ™ . (M.20)
ox 2a 2a 7 sinh ka

From Equation M.17
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99| - 8(,7)1| I
ox l,»:o ox | 0 24 2a°

evaluating Equation M.20 at y = Oand substituting into the result above gives

k2

= 2[dk kcoskx 5p——2=2_|coshkae & | (M.21)
o 7 sinh ka

99,

ox

y=0

which is the expression for Equation 4.113.
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APPENDIX N

This appendix contains a listing of the code “inverse_second” developed in
MATLAB to solve the inverse problem in two-dimensions considering the second order
term of the defect, that is, A,(x). The code includes the subroutines “calcdeltaphihat”,

“calcintnum” and “calcdphildx”.

% PROGRAM INVERSE_SECOND

function inverse_second

clear

global lprobe w 1 a rho curr deltax x
global xp0 numcol numxp deltaxp

global i phim phi_inf kmax deltak km k

input('enter with the length of probe in x direction : lprobe (mm)=");
input('enter with the width : w (mm) =");
input(‘enter with the length :1 (mm) =");

input('enter with the thickness :a (mm) =");
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input(enter with the resistivity :rho (micro_ohm*mm) =7;

input(’enter with the current : curr (amp) =);

input(enter with the potential measurements matrix: phim (microvolt) =7);
input(enter with the increment in xprime : deltaxp (mm) =);

input(enter with the increment in k : deltak (1/mm) =);

input(enter with the maximum value of k : kmax (1/mm) =7);

input(enter with the increment in x : deltax (mm) =);

input(enter with the parameter phi_infinite : phi_inf (microvolt) =7;

input(enter with the para:rheter km : km (1/mm) =7);

xp0= 0;

numcol = Iprobe/deltax +1;
numxp = 5*l/deltaxp+1;

cont =1;

for k=0.01:deltak:kmax,
[deltaphihat] = calcdeltaphihat(xp0);
vec_deltaphihat(cont) = deltaphihat;
vec_k(cont)=k;

cont= cont + 1;

end
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for i=1:1:numcol,
x= (-Iprobe/2)+deltax*(i-1);
[intnum] = calcintnum(vec_k,vec_deltaphihat,x);
num= (phi_inf/sqrt(pi)) *km*a*exp(-(km*x/2)"2)-intnum;
den= (rho*curr/(2*w*a))*(tanh(pi*(14+x)/(2*a))+tanh(pi*(1-x)/(2*a)));
deltal = num/den;
[dphildx] = calcdphildx(vec_k,vec_deltaphihat,x);
delta2 = -deltal*dphildx/den;
defect1(i) = deltal;
defect2(i) = deltal + delta2

new_x(i) = x;

end

plot(new_x,defect2,b-)

title('Inverse Problem with 2nd order approximation - km =/mm))

xlabel(’Distance from the center to the border of the plate (mm)’)

ylabel("Defect (mm)’)
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% SUBROUTINE CALCDELTAPHIHAT
%
% This subroutine calculates the Equation 4.110.

function [deltaphihat]= calcdeltaphihat(xp0)
global w a numxp deltaxp phim

global xp0 k rho curr 1 phi_inf

xp = xp0;
sumlxp =0;

sum2xp = 0;

for j=1:numxp,

if (xp<=140)

n=24+j;

num1 = sinh(pi*(I+xp)/(2*a));

denl = sinh(pi*(l-xp)/(2*a));

varl = (tho*curr/(2*pi*w))*log((num1/den1)"2);
var2 = phi_inf*tanh(pi*xp/(2*a));

var3 = phim(n) - varl - var2;

226



prodl = sin(k*xp)*var3;
sumlxp = sumlxp + prodl;

xp = Xp + deltaxp;

end
if (xp>140)
varl = phi_inf*tanh(pi*xp/(2*a));
var2 = phi_inf - varl;
prod2 = sin(k*xp)*var2;
sum2xp = sum2xp +prod2;

Xp = Xp + deltaxp;

end

end

deltaphihat = -(1/pi)*deltaxp*(sumlxp+sum2xp);

227



% SUBROUTINE CALCINTNUM

% This subroutine calculates the second term of the Equation 4.112.

function [intnum]= calcintnum(vec_k,vec_deltaphihat,x)

global a vec_k vec_deltaphihat km x

size_k = length(vec_k);

for ind=1:size_k,

varl = cos(vec_k(ind)*x)*sinh(vec_k(ind)*a);

var2 = exp(-(vec_k(ind)/km)"2);

interf(ind) = vec_deltaphihat(ind)*varl*var2;

end

intnum = 2*trapz(vec_k.interf);
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% SUBROUTINE CALCDPHIIDX
%o This subroutine calculates the Equation 4.113.
function [dphildx]= calcdphildx(vec_k,vec_deltaphihat,x)
global a vec_k vec_deltaphihat km x phi_inf i
size_k = length(vec_k);
for ind=1:size_k,
vara = (phi_inf*a)/(pi*sinh(vec_k(ind)*a));
varb = vec_deltaphihat(ind) - vara;
varc = exp(-(vec_k(ind)/km)"2);
interf(ind) = vec_k(ind)*cos(vec_k(ind)*x)*cosh(vec_k(ind)*a)*varb*varc;

end

dphildx = -2*trapz(vec_k,interf);
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APPENDIX O

This appendix describes the derivation of equations 4.122, 4.123, 4.137, 4.144

and 4.146 which are parts of the solution for a 3D cylindrical non-symmetric defect.

Consider the equations below:

S
(”(xv)’az):(Po(x,)’)+¢1(X,y,Z)+ P 2 [‘l‘i"X!—ll—xl],

4 wr,
Alx,z) = A (x,2) +A,(x,2),
do__ ® dpdn 3| g
3 d 0z ox ox|
y (r0+y—%)2 Z 02 X dx A

Expanding the first term of Equation O.3 about A =0 gives

99
ay

2
A a(p0+

+
2 ay? 2 oy?

2 2
{a% £ 2007, 9% 4, I
s dy  dy dy dy

Expanding the second term of Equation 0.3 about A =0 gives

oAl _ 99,04,

(r0+y_%)2 0z 9z 9z 02

y=0
A

Finally, expanding the last term of Equation O.3 about A =0 gives

{_Eﬂﬂa_ﬂ _|_209A_, 9°Adp
dx Ox |, dx ox  oxay dy |
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[_B_(pgé] :[_ 00, 08,99, 3, gy 3, _, A, 8%} . 0.6
A 0

ox ox dx ox Ox ox Ox oOx ' 9xdy 9y

Substituting equations O.4 through O.6 into Equation O.3 produces, for each order of

magnitude indicated as a superscript, the following equations:

A® . 9% _g. 0.7

AV =
| Oy ox*  ox ox |
AD Q(P_t_ﬁ_( laﬂ) =0: (0.8)
dy ox ox |
N -C 3%p, A, OA dp, 0OA,d 3%A, 3¢, A, 9
AP | A, ¢1+A2 $o B Py OA 0P, 0B, 09, _A | 99, 04, ¢lj| -0,
0

dy? 2 9y’ 0x ox  ox ox "oxdy dy 9z oz

A {_AI 2%, A 320, A, %0, _aA1 dp, dA, dp, 0A 8(/)1] 0.
0

ox? ' 972 ox> Ox dx Odx ox 0z Oz
0 a(p o7
A® . —(4A, SOG4 A T+ = A, L =0. 09
[ax( ox ' ox ( 0z ©9

Equations O.8 and 0.9 correspond to equations 4.122 and 4.123.

Now consider the equations:

0,(5, 9, 2) = B, (5 3, 2) + P(e2) + (=) | {co(oo) - (p(—oo)} canh £X (0.10)
2 2 2a
S, 1
¢(oo) = [@m - qDO a ——pz_o_} s
W .
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S, 1 S, 1
¢<w)=[¢m—p o' _ L% } , (0.11)
wa 2rgw |
] S, 1
P(—=) =0, — ¢, . +u_i\ ,
L 2ryw e
i ! !
P(—) =@, + P50, P } : (0.12)
L wa 2ryw e
Thus,
~ X
(pl(x,y,z)=¢1(x,y,z)+o+5tanh2—, (0.13)
a
where
1 .
o= 5[(p(°<>) +@(~)], and (0.14)
1
5= 5[(/)(%) — p(—o)]. (0.15)
Observe that (ﬁ1|v:a =0 as |x| —> o0,
The function @, (x,y,z) satisfies
Vg, =-6V* tanh 2% | (0.16)
2a
99| o, (0.17)
% |y=q
3| = —g) L S [+ -[i- o]~ o - 5 tann ZZ. (0.18)
y=a ¢ 4wr, 2a
By definition,
haid ,-E’T_"_E
P x,y=Ye * 0,0xy), (0.19)
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(01,1 (-x’ )’) = Jdk eikxqbln (ka )’) s (020)

. 17 .
%(k,y)=g je “ 0 (x,y) dx, (0.21)

where @,, (k,y) is the Fourier transform of ¢,, (x,y).
Equation O.16 gives

2~ 2~ 2~
o qi‘ £ (/;‘ +a ¢2’1 +8V? tanh 22 =0.
0x dy 0z 2a

Substituting Equation O.19 into the equation above results in

n w 2a

2 2 2 2rnz
2[§2+§2_(2”"H¢]"e v +5V* anhZE =0, (0.22)
X y -

A Fourier analysis of the equation above can be performed after multiplying both

2rmz
i

1% ~
sides of the equation by ——jdz e v . Therefore, Equation O.22 becomes
W

2 2 2
sz +aay2 —(Z”W’"j }pm +8 V2 tanh%f:O, (0.23)

where

WL (] m=0
o, =—1—sz6 voo= f :
wy 0, if m#0

Can also apply Fourier analysis to Equation 0.23 after multiplying both sides by

1% ,
gy jdx e ™ . Therefore, equation 0.23 becomes
7z —o0

2 o0
I:aay2 —knzt:‘ élm +5m % de e—ikx VZ tanh;—;—;i :O b (024)
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2
where k,, =\/k2 +(2_7r_n1} .
w

Observe that

2
V? tanh 22 = J > tanhﬂx,
2a  0x 2a
V? tanhﬂ—xz—ﬂ—-g—sechzﬂ,
2a 2aox 2a
Vv? tanhﬂ X o 7[-2 sech’ il xtanhﬁ x.
2a 2a 2a 2a

Therefore Equation O.24 can be rewritten as

2 A o0
9P 2 —§ 5”je-*‘ sech? 2  tanh 2% dx.

oy* SR P 2a 2a

—00

The right hand side of the equation above can be solved. Thus

RS =5, 7 [e sech® ZX tanh 2=

4a* 2a 2a
e sinhﬁ
RHS = —i8,, 22 [ sin kx ——2%— dx
0 et
2a
nx
Let y=—,s0
Y 2a
. 0T 2a_ sinhy
RHS =-id,, ——Jsm(ky——) —dy.
as, 7~ cosh’y

Solving this integral by parts yields

2ka k
y)

dy .
7 " cosh’y Y

RHS =-io,, éJcos(
4 0
It can be seen from tables (Gradshteyn and Ryzhik, 1994) that
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© cosax ar
j——-d
0

2

cosh™bx 952 ginh 2Z

therefore,
k?
RHS =—i5 o _ka (0.26)
7 sinhka
Substituting this result into Equation O.25 gives
0°9, 5 k’a
—m _ k2o =—if, — . 0.27
oy’ nPin 7 sinh ka (©.27)

Taking the Fourier transformation of equations O.17 and O.18 gives
a A
Pl =, (0.28)

N | ‘
?, SR dxjdz e o e, -0, —ﬁo—ﬂl +x| =1 —xl]—O'— Stanh 221, (0.29)

M= 2w Y " ¢ 4wr, 2a
Defining

27[ 2rmz
i _ W ~ikx 1 o Z_x_

Y, (k)= vl jdxjdz e e {(pm Po|, . [ll+x| |l x{]- o — 6 tanh > }, (0.30)

Equation O.29 may be written as

=i¥ (k). (0.31)

é)lm v=a
The general solution to Equation O.27 is

da k*
" r k? sinhka

@, =1 + A coshk, (y—a). (0.32)

From the boundary condition of Equation O.31 the constant A, can be calculated. Thus

Sa k*

Ak)=i¥ (k)-id .
() n (k) " 7 k2 sinhka

(0.33)
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Replacing this result into Equation 0.32 gives

Sa k?
7 k2 sinhka

b =is da Kk’
M k2 sinhka

J{i ¥ (k)-i6, ]coshkm(y—-a),

Sa k’ . Sa k’
D =130, +| ¥, (k)-o
Pim { " 7 k2 sinhka { » 0 On T S ka

}cosh k,(y-— a)} ,

which is the expression for Equation 4.137.
In order to avoid the ill-conditioned part of this solution the short wavelengths must be

suppressed. This can be done introducing a damping factor to the solution above.

Consider
Sa K [ Sa & o~
D =010 +¥ -6 coshk (y—a)e "=},
P " z k. sinhka [ " " mkl sinhka} n(y=@)
k2

- o =

O, =1 &_._52__*_ Yo o—-— -é'a coshk, (y—a)e Ko , (0.34)
7t sinhka 7 sinhka

where k__ is a damping parameter.

Assume
2Em,
Ay(x,2) =Y A, (x)e v, and (0.35)
J‘a¢lm dx'
200 |
By () == : (0.36)
99y
ox 4=0

The numerator of the equation above, N(x), can be calculated as

X

N(x) = j

—00

a qplm

dx’,
dy o

y=0
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N(x) = jdx j dk &' aa(p;, )

9,
N(x) = de ——(_J;dk m ;0}1)

}

th
N(x) = jdk - agy""

—00

y=0

From Equation O.34

2

A k;l
9P =i|i‘~i’m _9, da }k sinhk, (y—a)e S

dy 7 sinhka
99 5, 8 o
Pom| p o 2 k,sinhk ae &
Y | 7 sinhka

Substituting Equation 0O.38 into Equation O.37 results in

ikx _ k:’:lx
N(x) = j dk——[‘i‘m Oy _0a }km sinhk ae ‘=

7 sinhka

2

L (e |
N(x)= —Jdk e[ K2 |:‘Pm 6, da ] k, sinhk, a

L]

7 sinhka k

- [ka—'i’?’] . k sinhka . 6ac ["’“ '32}
N(x) = - j dk e\ Fee ) Im nZ 45, jdk el )
T

m k

Consider the second term of the integral above:

1=5,2¢ j dk e (kL] .

Let k =k, ¢ . Thus,
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da
=6, —k__e
m\/; max

Substituting this result into Equation 0.39 gives

2

o PANLT E : _EM]
N(X)=—J.dke[ k‘;“*]‘l’ m M+ 5 —k e[ ¢

m m max ?
k

which is the expression for Equation 4.144.

Consider Equation 4.125:

00, op, ¢ ,.0 o1
A, 24+ A T+ |dx —(A, — =0 0.40
{2ax+lax+;[ox8z(laz o ( )
Assume
iﬂz
A(x2)=D A, (e v . (0.41)
p

A Fourier analysis of Equation O.40 can be performed after multiplying both sides of the

i27rpz

1y, -
equation by — sz e v
w 0

The first term of Equation O.40, represented by /1, becomes

_l,27t pz

w
b

1% o0
IN=—\|dz A, -2
w'([ 252 ox

y=0
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139, 2y, pzes
I=——4 -OXP’A (%) jdze e :
1 a¢0 27r(p p)
IN=— A dze % ,
w ax v—Og (X)J. ‘
n= aagio A,, (%) (0.42)
y=0

The second term of Equation O.40, represented by /2, becomes

2
_2mprz

12=ijdza,aﬁ
Wy ox 4=0

! 142,99 5 S
=;;Alm(x) .([dz —a—xl e e ,

1 v 3| A,
=;§A1m(x) ‘Idza—xl e . (0.43)

y=0
From Equation O.13

9% _ a£+ 6% secn?ZX
ox  ox 2a 2a°

= 2Enz
%=Ee w —a¢1"+5— hzn

ox = ox 2a’

o 27rnz
CU R s R LN (0.44)
X |,y rew ax |, 2a 2a

Substituting Equation 0O.44 into Equation O.43 gives

+ éf—sec h? ”_’f},
2a

2a

Zn'(m—p)Z o0 l,27rnza
=T 00 fde o [Ze s

n=-—oo

y=0

12=A, (x)5—sec h? 2—+ ZAI(H) (x)aq""

n=—oco

y=0
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9

_ /4 »TX I ke o A
12=A4,, (x)5—2;sech E + n;cAl(p-n)(x):[edk e” ik ¢, =0

/A nXx
I2=A S ——sech*=—=—
1 (%) 2a 2a

_ha

5 ~ 2
2A1( (%) jdk e™ kg = .5 .+ ¥, - 0 _5 2 coshk,ae ‘=
- 7 sinhka 7 sinh ka

n=—o0

2

Ky

0, :
12=A, (x)5 sechz—z—— ZAI(p_n)(x) j dk ™ k { oa }coshkna e foo

Pl 7T sinh ka
: o ka
-A dk ™ ——
”’(x)_-[o ¢ 7 sinhka
Observe that
% .. O ka 20 a7 kcoskx T T x
-A dk ™ ———=-A, (x dk =—A (x)d—sech® =——
”’(x)_[o ¢ remnka Dt J sinh ka (D0 2a

Thus,

ky

S, :
ZAl(p n)(x)Jdk e k [‘P _% da }coshknae Kiox

7 sinh ka

n=—oo

kl

ZAW N (x)jdk ke W e coshk,a +

n=—co

kl
da . | coshka| =~

A — |dk e™ k Hiax
1p () T _J; ¢ |isinhka} ¢

2

K k
0 a coshka ‘;z—
max

12= [dk k™|~ S Ay ()W, € B coshk,a+ A, (x) =

n=-—oco

(0.45)

7 sinhka

The third term of Equation O.40, represented by I3, becomes

27t z
:—3; JJ dz e ‘f dx — E (Al aa(il jyzo’

—o00)
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27rpz

:%” dze  w dx—(ZAlmU a(i ]

—o00)

1 _2mpz o AP e AR
—J.J‘ dzdx e v —az ZAlm(x)e w a—ze Y (/’m} )
m =0

w —o000 n=-o0

X w M l.27rm l27rnz
I3 = ——__[0'([ dzdx e v %;Alm(x)e w in;mszvne Yo, y:OJ’

2” ,27r(m~4-n)Z
:__ “. P [22 27 (m+n) 27 nAm(x) A o, y=o}

-mo w

o ) 27 (m+n— )Z
13=“i JJ dzdx{zz T ijvnAlm(x) e p Prn y=0}

—oo() w
Al

/

h 2rp2rn
IBZ—J’ dJC[Z W W 1(1,_,,)(x) ¢1n

n

w 7t sinh ka 7 sinh ka

—o00 —oo n

kz
T é 5 O e
I3=_ij ,fdk e™ dx Zﬂpzﬂn Aypem (X) { - .5a +l:‘1’,, -— '5a }Coshk,,ae k"‘“}}:
w
/

X kz
13=-iy, Zpn J dx.[dkelkxAx(p-m(x){é‘ o4 +li‘i’n—§i -5a }Coshk,,ae "3*“},

- w w sinh ka 7 sinh ka

—oo

o k2
13_—12 2mp2mn j dx jdk Apry W, € = coshk aw (0.46)
w
)

Substituting equations 0.42, 0.45 and 0.46 into Equation 0.40 and solving for A, (x)

gives
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N oo

)

28N [k koos ke SR
ﬂ. —oo

sinh ka

2T n

_iZ

n

%—Bj;dxldk e A

w

\

which is the expression for Equation 4.146.
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APPENDIX P

This appendix contains a listing of the code “inverse_first_analytic” developed in
MATLAB to solve the inverse problem for a slot defect in two-dimensions using

“analytical data”. The code includes the subroutine “calcnewphil”.

% PROGRAM INVERSE_FIRST_ANALYTIC

function inverse_first_analytic

clear

global Iprobe w 1 a rho curr deltax x
global x0 nimag numcol kmax new_x

global xinic h ¢ new_x delta0

input(‘enter with the length of probe in x direction : Iprobe (mm)=");
input(‘enter with the width : w (mm) =");

input(‘enter with the defect height : h (mm) =";
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input(’enter with the defect width : ¢ (mm) =);

input(’enter with the length :1 (mm) =7);

input(’enter with the thickness :a (mm) =);

input(enter with the resistivity :tho (micro_ohm*mm) =);
input(enter with the current : curr (amp) =);

input(’enter with the increment in x : deltax (mm) =);
input(enter with the initial position in x : X0 (mm) =),
input(enter with the parameter delta0: delta0 (mm) =);
input(’enter with the maximum value of k : kmax (1/mm) =);

xinic= input(’enter with the inferior limit of the integral: x1 =);
nimag= sqrt(-1);

numcol = lprobe/deltax +1;

[newphil] = calcnewphil(x0);

for j=1:1:numcol,

x(j)= (-lprobe/2)+deltax*(j-1);

end

new_x=-x0:12.7:x0;

size_new_x=length(new_x);
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for i=1:size_new_x,

sum = 0;

for j=1:numcol,

varl = (delta0-a)*cosh(kmax*(delta0-a))*sin(kmax*(new_x(i)-x(j)));

var2 = (new_x(i)-x(j))*sinh(kmax*(delta0-a))*cos(kmax*(new_x(i)-x(j)));
var3 = (delta0-a)*cosh(kmax*(delta0-a))*sin(kmax*(xinic-x(j)));

vard = (xinic-x(j))*sinh(kmax*(delta0-a))*cos(kmax*(xinic-x(j)));

var5 = (newphil(j)/(((delta0-a)"2)+(new_x(i)-x(j))*2))*(varl-var2);

var6 = (newphi(j)/(((delta0-a)"2)+(xinic-x(j))A2))*(var3-var4);

var7 = var5 - vare;

sum = sum + var7/;

end

num1(i) = (deltax/(pi))*sum;

den(i) = ((rho*curr)/(2*(a-delta0)*w))*( (sinh((pi/(a-
delta0))*(I+new_x(i))))/(cosh((pi/(a-delta0))*(14+new_x(i)))+cos(pi*delta0/(a-delta0))) +
(sinh((pi/(a-delta0))*(1-new_x(i))))/(cosh((pi/(a-delta0))*(I-new_x(i)))+cos(pi*deltal/(a-
delta0))));

deltal(i)= (delta0+numl(i)/den(i));
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end

defectl = deltal

plot(new_x,defectl,b’)

title('Defect using the "analytical data" : kmax = /mm’)
xlabel(’distance from the center to the border of the plate (mm)’)

ylabel(’defect (mm)’)
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% SUBROUTINE CALCNEWPHII

function [newphil]= calcnewphil(x0)
global w1a rho curr deltax hc

global x0 numcol x delta0

% numcol is the number of columns in the grid of measurements, which is

% the number of points in the x direction.

x=x0;

for j=1:numcol,

num1= cosh((pi/(a-delta0))*(1+x)-1);
denl= cosh((pi/(a-delta0))*(1-x)-1);
varl=log(num1l/denl);

var2 = ((rtho*curr)/(2*pi*w))*varl;
newphizero = var2,;

num?2 = cosh((pi/a)*(1+x))-1;

den2 = cosh((pi/a)*(1-x))-1;

var3 = log(num?2/den2);
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phizero = ((tho*curr)/(2*pi*w))*var3;

num3= cosh((pi/(2*a))*(1+c))*cosh((pi/(2*a))*(c-x));
den3= cosh((pi/(2*a))*(x+c))*cosh((pi/(2*a))*(c-1));
vard= coth((pi/(2*a))*(1-x))*log(num3/den3);

var5= -((rtho*curr*h)/(2*pi*a*w))*var4;

num4=’ cosh((pi/(2*a))*(x+c))*cosh((pi/(2*a))*(c+1));
dend= cosh((pi/(2*a))*(c-1))*cosh((pi/(2*a))*(c-X));
var6= coth((pi/(2*a))*(1+x))*log(num4/den4);

var7= ((rho*curr*h)/(2*pi*a*w))*var6;

phil = var5 + var7;

newphil(j) = phizero + phil - newphizero;

x=x+deltax;

end
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