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ABSTRACT

A new mehodology has been developed that allows the evaluation of real-time local pipe
thickness. The methodology was developed for application in the power generation
industry where flow assisted corrosion (FAC) of carbon steel piping is a significant cause
of increased maintenance and plant shut down time. The methodology is non-intrusive
and remote reading and requires only that probes be attached to the outside on the pipe
surface.

Local pipe thickness is determined by attaching probe wires to the outside of a piping
section in a regular array. DC current is then passed through the pipe and the potential
field is measured. The measured potential data is then operated on using the methods
developed in this work to produce a thickness map for the inside wall of the pipe.

The pipe thickness measurement methodology development was carried out in two major
phases. In the first phase the analytical solution was developed for the case where a
known defect was present in a pipe section. The analytical solution to this "forward"
problem was then verified using measurements taken from plate and then piping samples
containing machined-in defects. In the second phase the analytical solution for the case
where one starts only with the potential field data was developed. The solution to this
"inverse" problem was obtained for plate and then piping sections with machined-in
defects. Based on these results an algorithm was developed for pipe thickness maping. In
all cases the machined-in defects were such that 2D morphology was obtained.

The pipe thickness measurement method that has benn developed is capable of detecting
wall thickness reductions of 5% of nominal for a two-dimensional damage pattern. The
methodology ws then applied to the case where a three dimensional defect was present.
In this case the defect was easily detected and localized within the piping. The error in
minimum pipe wall thickness was less than 5% (relative) but defect morphology (shape)
detection was significantly degraded. Further expansion of the analytical solution to 3D
has been done but not tested.

Thesis Supervisor: Ronald G. Ballinger
Title: Associate Professor of Nuclear Engineering
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CHAPTER 1

INTRODUCTION

1.1 Flow Assisted Corrosion

Flow assisted corrosion (FAC) is a process where the normal protective oxide

layer on carbon steel or low-alloy steel dissolves into a stream of flowing water or

water-steam mixture. As the oxide layer becomes thinner and less protective, the

corrosion rate is increased (Chexal et. al., 1996). The phenomenon is more common

at elbows, turbines, pumps, tube constrictions, and other structural features that alter

flow direction or velocity and increase turbulence. FAC causes a reduction of the pipe

wall thickness unlike forms of local attack, such as droplet impingement. FAC occurs

under both single and two-phase flow conditions. Since water is necessary to remove

the oxide layer, the phenomenon is not observed in superheating conditions.

The main factors influencing FAC are fluid velocity, void fraction and quality,

geometry, fluid temperature, water chemistry and piping material (Cragnolino et. al.,

1988). Susceptibility to FAC depends on the interaction of these variables. The fluid

velocity plays a vital in determining the mass transfer of iron oxide into the fluid

stream. FAC rates increase with increasing fluid velocity and turbulence. There is no

practical threshold velocity below which FAC cannot occur (Chexal et. al., 1996). In

two-phase flow conditions void fraction and steam quality play an important role in

determining the FAC rates. Component geometry also has a direct influence on the
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fluid velocity and mass transfer rate. FAC is more common in components with a

geometry that increases fluid velocity and turbulence. Nonetheless, FAC is

encountered in straight piping, especially when the fluid velocity is high.

Water chemistry has been shown to be an important variable influencing the

stability and solubility of the oxide layer and thus the FAC rate (Cragnolino et. al.,

1988). In Boiling Water Reactors (BWR) no poison is added to control pH and the

oxygen concentration drives the rate of flow accelerated corrosion. Increasing the

oxygen concentration in the water tends to stabilize the oxide layer and, therefore,

decreases the rate of FAC. On the other hand, in Pressurized Water Reactors (PWR),

amines are added to control the pH. The lower the pH, the greater the rate of flow

accelerated corrosion.

Temperature influences the rate of the oxidation and reduction reactions. The

mass transfer rate is a function of temperature and pH.

The chemical composition of the steel has a major effect on the resistance to FAC

in high temperature water or wet stream. Whereas plain carbon steels are extremely

susceptible to FAC, austenitic stainless steels are essentially immune (Cragnolino et.

al., 1988). Many authors have reported that the addition of chromium to steel has a

profound beneficial effect on the resistance to FAC under both single and two-phase

flow conditions. Even at chromium content as low as 1%, the FAC rate can be

reduced by more than one order of magnitude in comparison to plain carbon steels

(Bignold et. al., 1983).

Since FAC results in degradation of the internal pipe wall, it is necessary to

monitor the pipe wall thickness during the plant life. Often, a layer of insulation
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covers most of the susceptible pipeline, at high pressure and temperature. A

monitoring program, using a conventional technique such as ultrasound, can only be

done by shutting down the plant. In this thesis a new measurement technique based

on the direct current (DC) potential drop method is proposed to evaluate the pipe wall

damage in real time without the need to shut down the plant.
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1.2 Motivation

Flow Assisted Corrosion is a phenomenon that results in metal loss from piping,

vessels and equipment made of carbon steel. FAC occurs only under certain conditions of

flow, chemistry, geometry and material. Unfortunately, these conditions are common in

much of the nuclear and fossil-fueled power plants. Undetected, FAC may cause leaks

and ruptures. Consequently, FAC has become an important issue, particularly for nuclear

power plants.

Although major failures are rare, the consequences can be severe. In 1986, a high-

pressure condensate line in Virginia Power's Surry nuclear power plant suddenly burst

and caused the death of four men (Chexal et. al., 1996). In 1995 and 1996, two failures at

two different fossil-fired plants caused four fatalities (Chexal et. al., 1996). In addition to

concerns about personnel safety, a major FAC failure can force a plant to shut down and

purchase replacement power at a price approaching a million dollars per day.

A great deal of time and money has been spent developing the technology to

predict, detect, and mitigate FAC in order to prevent catastrophic failures. Plant

personnel conduct inspections in order to prevent an unexpected failure or unplanned

shutdown like the case of the Surry plant. The objective of these inspections is to obtain a

measured value of the wall thickness and to compare it with previous values. With many

forms of degradation, there are several non-destructive evaluation (NDE) methods such

as an ultrasonic test (UT), a radiography test (RT) and an eddy current test (ECT). The

examination process for these methods includes removal of insulation, the layout of an

inspection grid, acquisition of thickness measurement, and input of the data into
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evaluation programs for predicting repair, maintenance and corrective action. Insulation

removal, disposal and replacement can account for higher costs than the actual NDE,

particularly where asbestos insulation is used. The elimination of insulation removal

and/or of a grid production on components prior to examination for FAC can reduce the

cost of inspection by more than 50% (Walker, S.M., 1998). There is a need for

appropriate NDE inspection techniques that can detect corrosion damage without the

extended downtime and expense that occurs during insulation removal and replacement.

A new method of NDE involves the use of the potential drop technique. It was

developed originally for measurement of crack growth in material, but it can be used for

measurements of wall thickness, especially as a practical method for continuous

measurement of thickness. This technique reduces the cost of monitoring piping systems

associated with the removal of insulation, provides a continuous time history that makes

it possible to develop reliable models of corrosion evaluation and does not require space

around the component to be inspected.
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1.3 Objective

The objective of this thesis is to develop an on-line methodology to predict the

pipe wall damage morphology based on the direct current potential drop (DCPD)

technique.
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1.4 Solution Path

Using the direct current potential drop (DCPD) technique the goal was to develop

a new methodology to measure the thickness morphology in a pipe. This method involves

applying a constant direct current (DC) through the pipe, measuring the resulting potential

drop between the voltage probes on the external surface of the pipe, and then using these

data to construct an algorithm to map the pipe wall thickness. First several experiments

were carried out using plates with symmetric defect on the bottom. Then experiments

using pipes with a more likely defect caused by FAC were performed.

The analytic solution is divided into two parts. The first part, called the forward

problem, involves solving the Laplace equation for the electrical potential field of a plate

with a well-defined defect present. Then, a correction term due to the cylindrical

geometry of the pipe is added to this solution. In this problem, one specifies the

(experimentally known) normal current density on the outer measurment surface and

assumes the shape of the inner "corroded" surface is known. Mathematically the forward

problem is a classic linear well-posed problem.

The second part, called the inverse problem, takes measured potential drop data

from a pipe with unknown damage. In this case, the boundary conditions specify the

normal current distribution and the potential distribution over the outer surface, both

known from experimental measurements. The goal of the theory is to then predict the

morphology of the inner corroded surface. Mathematically, although the basic equation

for the potential function is linear, the problem itself is highly nonlinear because of the

transcendental manner in which the basic unknown, the shape of the inner surface, enters

16



the equations. Furthemore, specifying two boundary conditions on a single surface for the

Laplacian operator makes the problem ill-conditioned. Small errors in either of the

bounday conditions grow exponetially moving away from the measurement surface.

Therefore, a good deal of care is needed in designing an algorithm that gives stable

results. The inverse calculation is based on the forward calculation; the better the forward

calculations agrees with the actual measurements, the better our inversion will be.
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CHAPTER 2

POTENTIAL DROP TECHNIQUE

Potential drop is a widely used and successful technique that involves measuring

the changes in electrical potential at probes placed across a material containing a defect to

which a direct current (DC) or an alternating current (AC) is applied. This method has

been used to measure crack length during fracture toughness tests, fatigue, stress

corrosion cracking, etc (Dover et. al., 1980). Another more recent application is called

Electrical Impedance Tomography (EIT), which is a relatively new medical imaging

modality that produces images by computing electrical properties within the human body.

The potential drop technique can be used with either DC or AC. The DC potential

drop (DCPD) method of crack length measurement is a convenient and well-established

technique (Halliday et. al., 1980). A constant current is passed along the specimen

perpendicular to the crack growth direction and a potential drop is measured using probes

placed on either side of the crack. Figure 2.1 ilustrates this technique for a plate with an

edge crack (Dover et. al., 1980). It is assumed that the current connections are on plane

remote from the defect so that a uniform field is set up in the plate. Adjacent to the crack

the field is perturbed and its measurements in this region must be interpreted in terms of

crack depth. For this application, as the crack propagates the resistance, and hence the

measured potential drop, increases due to reduction in uncracked cross sectional area of

the specimen. A potential drop Va across a crack is compared with a reference potential

18



drop, VO, across an uncracked part of the same material. The ratio V, /V can be

correlated to the crack length.

The major advantages of the DC method are that it does not rely on advanced

electronics and for certain specimen size and geometry it is a well-known, established

technique. However, it does have the disadvantages of a complex relationship between

potential drop and crack length and the problems inherent in handling low level (milivolt

to microvolt) DC signals including difficulties arising from thermal effects (Watt, K.R.,

1980). These thermoelectric voltages can be a substantial fraction of the total measured

voltage. Since the thermoelectric effect is present even without the input current, it is

possible to account for it by subtracting voltage measurements taken with the current off

from the measurements made with the current on.

-Streanotinps

Eqaupc entials

Figure 2.1 - DC electrical field distribution for an edge crack specimen (Dover,

et. al., 1980).
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Using AC produces several advantages that can be enjoyed only if the practical

problems of measuring small AC voltages are overcome. The most important difference

between AC and DC is that for the former the current is carried only in a thin layer at the

metal surface. This phenomenon is known as the "skin effect". Figure 2.2 shows that it is

possible to arrange the AC connections so that the field is uniform in the region adjacent

to the crack (Charlesworth and Dover, 1982).

-4s0

d

Figure 2.2 - General features of an AC field injected into a flat plate (Charlesworth and

Dover, 1982).

In this case the measured potential difference, between any two points parallel to

the current flow direction, is a linear function of the distance between the points. Thus the

potential is linearly related to the path length between the contact points. The current

required to produce a given field strength at the surface is much less than for DC as the

resistance is higher (the effective cross section carrying the current is much less in the

20



case of AC). The skin thickness (6) depends on several material properties and can be

calculated from the following equation (Dover et. al., 1980)

J = (y Uo a ;r f) 2, (2.1)

where u is the relative permeability of conductor, uo is the permeability of free space,

o is the conductivity of conductor and f is the frequency of AC.

The major advantages of the AC technique are the ease of calibration for different

specimen geometries and the lack of size dependence of the technique, coupled with the

ease of amplification of the input signal. The main problems with the technique are those

of lead interaction and electronic stability (Watt, K.R., 1980).

The decision whether to use the AC or DC technique in any particular case

requires careful consideration. However, if the specimen size and geometry are such that

the DC technique is well established, there is no advantage in changing to the AC

method. On the other hand, the AC technique does offer considerable advantages in some

circumstance. The inherently linear response of the method together with a lack of

sensitivity to specimen geometry or size means that crack detection and crack monitoring

can be carried out much more easily on an increased range of specimens.

The EIT is a more recent application using this method. It is a technique for

producing an image of the electrical resistivity profile within a body from measurements

made on the body's exterior. To make these measurements, an array of electrodes is

attached to the surface of the body. Sets of current patterns are applied through these

electrodes, and the voltages needed to maintain these specified currents are measured and

recorded. These applied currents and measured voltages are then used in a reconstruction

algorithm to produce images that represent approximations to the electrical resistivity
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distribution in the interior of the body. The mathematical models are well described in

several works, especially in those published by Margaret Cheney and David Isaacson

(Cheney et. al., 1990).

For the purpose of monitoring specimen thickness the DCPD method can be used.

A constant direct current (DC) is passed through a specimen and the potential drop

between probes on either side of a defect is measured. The basis of the method is that in a

current carrying body there will be a disturbance in the electrical potential field about any

discontinuity in that body. Therefore, for this application, a constant DC results in a

potential drop across the defected region. Considering a uniform current distribution in

the specimen, Ohm's law can be used to calculate the potential drop between two points:

V = R -I 1 I , (2.2)
A

where I is the current (Amp), p is the resistivity of the material (Q.m), I is the probe

spacing (m) and A is the cross section area (M2).

For the case of uniform wall thinning Equation 2.2 completely defines the system.

Once the current is known, the potential difference between any two points is sufficient

to calculate the pipe wall thickness. This is called forward problem and can be solved not

only analytically but also using a finite element method. On the other hand, the presence

of a localized defect causes a perturbation in the potential field and a more accurate

analysis must be done. This problem is called inverse problem since, like in the EIT

problem, we are given a set of measurements and need to know the defect morphology.
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CHAPTER 3

EXPERIMENTAL PROCEDURE

A Direct Current Potential Drop (DCPD) system has been developed and used for

experiments. Figure 3.1 shows a schematic diagram of this system. The major

components of the system are as follows: a DC Power Supply as a constant current driver

(model HP6259B, Hewlett Packard), Non-Reversing contactors as alternating DC

producer (model LClD321OG6, Telemecanique), a Switch/Control Unit (model

HP3488A, Hewlett Packard) as relay set controller, a Multimeter (model HP3457A,

Hewlett Packard) as a data acquisition system and a PC Computer. Figure 3.2 shows a

picture with the experimental apparatus.

Data Cables
Potential
Drop Probes

Current CurrentLeads I I I Curn

DC Power Switching sData Aquisiton
Supply unit ' system

Computer and
Controller

Figure 3.1 - DCPD System Schematic Diagram
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Figure 3.2 - Photograph of the Experimental Apparatus. From the bottom to the top of

the rack: DC power supply, switch/control unit and multimeter.

For the experiments using plates, a total current of 1OAmp was applied

throughout 15 points on the border of the plate. All current wires were connected to a

common bar in order to ensure an equal distribution of current in each wire. Figure 3.3

shows a picture of one plate used in the experiments. A row of probes 12.7mm (0.5 inch)

apart was arranged along the plate. The potential drop between points is measured for one

polarity of applied current. The polarity is then reversed and the potential drops between

probes measured again. The average of the potential is then computed. In this way

voltages generated due to thermoelectric effects are normalized out. First, a plate

304.8mm (12 inches) long by 203.2mm (8 inches) wide and 19.05mm ( inch) thick

without defect was used. Then, a slot defect 101.6mm (4 inches) wide (measured from

the center of the plate) and 2 mm high was machined in the same plate. Finally, the same

slot was increased to 4 mm and 6.3 mm deep and new measurements were carried out.
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After these experiments the 6.3mm-height slot defect was modified to a ramp defect.

Figure 3.4 shows a picture of the plate with a ramp defect. In this experiment the total

current used was 20Amp.

For a pipe specimen of 326.4mm (12.85 inches) external diameter and 12.7mm (1/2

inch) wall thickness a current of 35Amp was applied to the ends of the pipe test section in

such a manner as to ensure that a uniform current distribution is achieved around the

circumference of the pipe. Figure 3.5 shows one of the pipes used in the experiments. The

current was applied at 26 taps around the circumference of the pipe. The potential probes

were arranged in a one inch-array on the outside of the pipe opposite the defect, which

was located inside the pipe. First, a pipe without defect was used. Then, new

measurements were carried out on an identical pipe with some circular defects on the

inside of the pipe.

Figure 3.3 - Plate with slot defect used during experiments.
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Figure 3.4 - Plate with ramp defect used during experiments.

Figure 3.5 - Pipe without defect used during experiments.
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The data acquisition was carried out using Hewlett Packard devices. A program in

HP Basic language was developed to acquire the data. The data were acquired for a

specific time, for example one minute at each channel and then averaged. A filter was

introduced in order to reject the data that deviated by more than half of a standard

deviation from the average. Appendix A is a listing of the code called "pipe thinning"

that makes the data acquisition.
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CHAPTER 4

RESULTS AND DISCUSSION

This chapter contains a description of the algorithm developed to predict the pipe

wall damage morphology and the experiment results. First, a solution to the forward

problem for plates with symmetric defect on the bottom is developed. Then a correction

term for the cylindrical geometry is added to the slab solution. The results are compared

with the experimental ones. A three-dimension solution is also developed for a pipe with

a non-symmetric defect.

Another section of this chapter describes the solution to the inverse problem. The

results for two-dimensional symmetric defect cases are compared with the experimental

ones. A solution is also developed for a 3D cylindrical non-symmetric defect.

4.1 Solution to the forward problem

4.1.1 Numeric Solution for an infinite plate with slot defect

A general analysis for the electrical field involves a solution of Maxwell's

equations. The presence of a defect can be modeled as a two-dimensional problem as

ilustrated in Figure 4.1.
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Current out

/\
Current in

4/

/\ a

z x

Figure 4.1 - Schematic model for analysis (2D)

When current flows through a defected material, the electrical field and potential

distribution will reflect the locations and shapes of the defects. The electrical field (_)

is defined as the gradient of the scalar potential ((p),

E = -grad (p = -V (p,

J = (T. E,

div J = V .J = 0,

where J is the current density and T is the conductivity of the material (Q - m)-'. Thus,

curl E = V x _E = 0, (4.4)

and the Laplace equation is satisfied:

V 2 9P(x, y, z) = 0 . (4.5)

The boundary conditions for this problem are:

at y =a:

at y =0:

n-J =(7. - = S(x, z),
j y

n -J= - = P(x, Z),

(4.6)

(4.7)
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where n is the normal vector, a is the thickness of the plate, S(x, z) and P(x, z) are the

current source and perturbation functions, respectively. Appendix B shows a detailed

description of these functions.

The voltage difference between two points can be calculated from the potential

function as

V(x, y, z)= (x, y, z) - P(-x, y, z). (4.8)

In order to get the analytical expression for voltage measurements it is necessary to find

the potential function from the Laplace equation. This function can be found using

Fourier transformation. The final solution to this problem is given by:

V(x)=4Sp $ dk J1(kr) [J(k (xl)2 +m2 c Jok (x±1)2 +m~c2) _%ob dk sink~x k -$ , (4.9)
rc , tanhka kr ,z2x 2' sinh(ka)

where JO is the zeroth order Bessel function, Ji is the first order Bessel function, I is the

distance between the current wire and the center of the plate and c is the spacing

between the current wires at the border of the plate.

Appendix B shows a detailed derivation of Equation 4.9. This equation works

well for an infinite plate (both in the x and z directions). It is necessary to change the

boundary conditions of the problem in order to account for the finite boundaries and

compare the analytical results with the experimental ones.
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4.1.2 Numeric Solution for a semi-infinite plate without defect

Consider a plate with finite dimensions in the z and y directions. Figure 4.2 shows

a schematic view of the slab without defect that has been modeled (assume the dimension

in the x direction is infinite).

/
y

A111 a

x

w

Z

Figure 4.2 - Schematic view of a semi-infinite plate without defect (assume infinite in

the x direction).

The new boundary conditions will be:

=0,

= 0,

a O =0,
y Sx)

L9 =S(x,z),
z=w

where w is the width of the plate.

Figure 4.3 shows the condition for periodicity of the potential function. Since the

boundary conditions in z require -
az=,

= 0, the potential function has a semi-period
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between [0,w]. In order to use Fourier analysis it is convenient to build a mirror image of

(p to make it periodic in the interval [0,2w].

)

W

/

W

Figure 4.3 - Periodicity of the potential function

Expanding p(x, y, z) as a Fourier series in the z direction and Fourier transformation in

the x direction gives

(x Z)= 1 e e""
V72y== _ f

cos(n ) c p, (k, y)dk ,
W

which automatically satisfies the boundary conditions at z =0 and z = w.

Applying Fourier transformation to the Laplace equation and the new boundary

conditions results in

P(x, y, z) 2ip So f eikx

W 0m=O

cos( )sin(k'l)
cos( ) . cosh(k, y)dk',

w kmo, sinh(kma)
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where I is the distance from the center of the plate to the current wires at the border of

the plate, Zk is the position at the border of the plate of the current wire, oi =1 if m # 0

and on =2 if m=0.

w
The voltage difference along the centerline of the plate (z = -) can be evaluated using

2

Equation 4.8. Thus,

w w
V (x)=qp(x,y=a,z=-)-yo(-x,y=a,z=-),

2 2

V(x)=po f s x sin(k 1) cos( )cos( )dk.
mrW -W m k , tanh(kma) 2 w

In the case of multiple current wires it is necessary to sum all contributions. Thus,

V(x)=4p Sa sin(k cos(M )cos( dk
7a m=O k=1 k,nacm tanh(kma) 2 w

(4.12)

(4.13)

where Nw is the total number of current wires.

The integral of the Equation 4.13 can be solved using complex analysis and this equation

can be rewritten as

mit mffZk
O N,, cos( ) cos( ) e. e--Y,(l-x) -e , (I+x)

V(x)= P I , 2 W I _ - __

wa m= k=1 n n=O Un Ymn

(4.14)

where yn,, =
2 2 2 2

2 + 2 n
W a

n # 0 and on =2

To validate this analysis a numerical evaluation and comparison with the

experimental results becomes necessary. The evaluation of the system was carried out
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using Mathcad (Mathcad7 User's Guide, 1997). The dominant term of this equation holds

for m = n = 0, which gives

V(x)=4 So N x. (4.15)
wa 2

2 p
Equation 4.15 essentially shows that the resistivity for the plate is x, which

wa

confirms the expected result. Appendix C shows detailed derivation of equations 4.11 and

4.14.
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4.1.3 Analytic Solution for a semi-infinite plate without defect

The problem discussed previously can be interpreted as a two-dimensional one if the

current is considered to be applied uniformly along the z-direction as shown in Figure

3.3. In this case, the current source can be expressed as

S(x) =-[S(x -l)-3(x +l)].
w

The potential function will be

(p(x, y)= fe" p(k, y) dk, and

2(k, y)=

(4.16)

(4.17)

f e-"" (x, y) dx , (4.18)

(4.19)

where ^(k, y) is the Fourier transform of q (x, y).

The Laplace equation will be

2 - k 2= 0,

and the boundary conditions can be written as

ao = 0 ,
ay 1=0

= f e~"" S(x)dx.
Jy 21-

Solving the Laplace equation with the boundary conditions above results in

ip S0  a
(x, y) = So fe

)T W %

(4.20)

(4.21)

(4.22)
sin ki
Ssin k cosh(ky) dk.

k sinh ka

The potential difference between two points at the surface can be calculated as
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(4.23)V(x) = f (x, a) - q(-x, a).

Therefore,

V(x)=- iP s (e"" -e"") sin k1 cosh(ka) dk.- ;1% h
IL _VV

This integral can be solved using complex analysis. The final result is given by the

equation below:

V(x) =2p So x -1 n
w a )T

(1-x)7r

l-e "
___ ]

l- e a

(4.24)

Equation 4.24 is an analytic expression for the potential difference between two points at

the surface of a plate without defect. Since the potential is an odd function gives

(C(-x) = - (x) ,

qp(x) = I X [ In
w a zf

(1-x)7r

l e a

1-e a

(4.25)

Another way to find an analytic expression for the potential function is using a

table of integrals. Consider Equation 4.22:

9x, y) = - fe sinh ka cosh(ky) dk .
)T W k sinh ka

Appendix D describes how an expression for the potential function can be derived using a

table of integrals. The final results is

<p(x, y)= P S n 
2zc w

c (l+x) z y
cosh +cos

a a (4.26)
cosh + Cos z Y

a a
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This equation is the two-dimensional potential function for a plate without defect. At the

surface of the plate (y = a) results in

cosh -z(1+ 1 x

p(x)=P In a . (4.27)
2)rw cosh - 1

a

This equation is similar to Equation 4.25 and it provides the potential at the surface of a

plate without defect. Appendix D presents a detailed derivation of equations 4.22, 4.24

and 4.26.
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4.1.4 Analytic Solution for a semi-infinite plate with slot defect

Since a formula for the voltage difference on a no defect region has been

developed, the next step is to consider the case of a defect located on the bottom of the

specimen. Figure 4.4 shows schematically a view of a defected plate.

y

a

Surface Si
z

Figure 4.4 - Schematic view of a semi-infinite plate with symmeteric defect

(assume infinite in the x direction).

Considering that the current is applied uniformly along the z direction and that the

defect is symmetric, such as a slot, the problem can be treated as a two-dimensional one.

The new boundary conditions for this problem will be:

(PL± =0 , = p S(x),
y=a

n -Vrpns, = 0.

The surface Si can be defined as S, (x, y) = y - A(x) = 0, where A(x) represents the defect

amplitude, and its normal vector as
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(eV - A'ex)

(1+A'20

where A'= -.
dx

The boundary condition on the surface will be n -V(pi = a -A' =0 -. Assuming a
s a y ax 1

small defect amplitude compared to the thickness, that is, A << a , perturbation theory

can be used and the potential function can be written as (p = po + (p, where qO and

q, are the potential functions that account for the non-defect region and the defect region,

respectively.

The Laplace equation holds for each potential function, therefore, -

V 2 y 0 (x, y) =0,

V 29 1(x, y)=0.

The first problem has the boundary conditions

-q p .S(x),
Dy

aD(y0  =0,
ay yV=O

and has been solved previously. Equation 4.27 gives the solution for the potential

function qo . Thus

n l+ x)
cosh -

o (xW In a (4.28)
2r w cosh Z4-x) 

a

Since the potential is an odd function the voltage difference at the surface can be given as
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0 cosh7(l+x) I

K ( In a
Z W cosh Z(l-x) -1'

a

which is another way to write Equation 4.24.

The second problem has the boundary condition

Dy ,

ay -va
= 0 ,

and from the boundary condition at the surface Si gives

( a ' -1 0. (4.31)
y a DxS

Expanding this boundary condition about y = 0 and considering only the first order

approximation gives

r Dy1 Dy
+A

Dy Dy2
A D 0

Dx
A)Y=O

= 0.

Consider a rectangular slot with dimensions as shown in Figure 4.5.

/

a x

Figure 4.5 - Schematic view of a semi-infinite plate with slot defect (assume

infinite in the x direction).
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The slot defect function can be defined as a sum of two step functions with amplitude h.

Therefore,

A(x) = h[U(x + A) - U (x - A)],

dAdA= h[J(x + A) - (5(x - /1)] ,
dx

where A is the half-width of the slot and h is the height of the slot.

The potential function that accounts for the defect region using the first order

approximation can be written similarly to Equation 4.17. So,

cpi (x, y)= fe" (p, (k, y) dk, and (4.33)

(4.34)

where (^ I (k, y) is the Fourier transform of p, (x, y).

Taking the Fourier transformation of the Laplace equation and solving for the boundary

conditions of equations 4.30 and 4.32 gives

p,(x, y)=- PSohfdk
T 2w

d sin k'l sin(k' -k)A cosh k(y - a) e""

sinh k'a (k'- k) sinh ka

The potential difference may be calculated as

2p Soh
VWx= fdfkAdk' sin kI sin(k- k)A sin kx

sinh k'a (k -k) sinh ka

Solving the double integral above results in
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p Soh if
V, (x)= - [coth -(l - x) ln

7r a w 2a

coth - (l + x) In
2a

cosh (l + A) cosh (7r x)
2a 2a

cosh (x+ A)cosh 1-l)
2a 2a

7c if
cosh (A +x)cosh (A+l)

2a 2a 1

cosh " (A - l)
2a

cosh )T (A - x)
2a

The total voltage difference is given by the sum of equations 4.29 and 4.37. Therefore,

V(x) =V 0 (x)+V,(x),

cosh + - p cosh (l+1)cosh A(-x)
V(x)= P 0 In a _ [coth- (l -x) In 2a 2a

1cosh - a w 2a cosh -- (x+1) cosh - (/I -1)
a 2a 2a (4.38)

coth -(l+x) In
2a

cosh )- (A + x) cosh -(+ 1)
2a 2a

cosh -(A -l)cosh -- (-x)
2a 2a

This equation gives an analytical solution for the potential difference between two points

at the top surface of the plate shown in Figure 4.5 in the presence of a defect on the back

of the plate. It was developed for a defect with a small slot height compared to the

thickness of the plate (h << a) and, therefore, is linear with the slot height (h). Appendix

E shows a detailed derivation of equations 4.32, 4.35, 4.37.

Since the potential is an odd function with respect to the x direction the potential

function (p, (x) can be written as

cosh (l +A.)cosh- (A -x)
coth"(I-x)In 2a 2a -coth--(l+x) In

2a cosh- (x+A)cosh- (A-1)
2a 2a

cosh- (A+x)cosh- (A+ 1)
2a 2a

cosh- (2-l)cosh- (A-x)
2a 2a
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Figure 4.6 shows a plot of the potential functions ( , q and (, for a particular

slot defect (h = 6.3mm and A = 50.8mm).

Comparison between the potential functions

-2

dolA

200 -

150 -

100 -

50 -

100 150 200 2!5050
-50

-100-

-150 -

-200 -

Distance from the center to the border of the plate (mm)

Figure 4.6 - Comparison between the potential functions for a plate with slot defect

(h = 6.3mm and A= 50.8mm).

For large values of x (outside of the current probes region) the electrical field vanishes

and a constant potential function (p was expected. Nevertheless, the potential function p,

does not go to zero at large values of x. In order to force the potential function (, to zero
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the boundary condition at the bottom surface of the plate must be changed. Assume, for a

symmetric defect, that

ay V-A0

=0, (4.39)

where A 0 is a parameter (0<A 0 <a) chosen such that ((' - ew X = 0. This means that

at infinity the plate is seen as without defect and with a thickness of (a- A ).

In this case the new potential function P ew will be

(pfCW~y) ip S0  sin kl
p"(X, y) =f- e"k" sink cosh k(y - A) dk,

)T w_ k sinh k(a - AO)
(4.40)

(4.41)

____ + ) 7(y- AO)
cosh +cos

, new (XY S 0 (a - AO) (a - AO)

27cw J(l -x) ___(y-___cosh +cos
(a - AO) (a - AO)

The potential function may be written as q = qO + q and, therefore,

new new
T pa = epo +0 p ma be e

The parameter AO may be estimated as

hA

-
(4.42)

A detailed discussion of this is provided in Appendix E. Figure 4.7 shows the potential

functions considering the new boundary condition at A0o. It can be observed that this new

boundary condition fixed the potential function q, at large values of x.
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potential functions for the new B.C.

50 -200 -150 -100 -50 50 100 150 200 2.

-50

-100-

-150- -- phi

- phi new

Distance from the center to the border of the plate (mm)

Figure 4.7 - Comparison between the potential functions for

(h = 6.3mm and A = 50.8mm) using new B.C

a plate with slot defect

at A0 .
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4.1.5 Analytic Solution for a semi-infinite plate with smooth defect

Consider a plate with a defect as shown schematically in Figure 4.8. This is a

more likely defect caused by flow-accelerated corrosion, which is called here a

"smooth defect".

y

x

/

a

Figure 4.8 - Schematic view of a semi-infinite plate with smooth defect

(assume infinite in the x direction).

In two dimensions, the general problem can be described by the following

equations:

V 2 p(x, y) = 0,

- o ((x -pS

= a (P1 IA '

1) - (x +1)] ,

= 0,

yP X± = 0.
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The surface SI can be defined as S (x, y) y - A(x) = 0, where A(x) represents the defect

amplitude, and its normal vector as

(ev - A'eX)
n = (-A20

where A'=--.
dx

The potential function can be written as q = (o+ 01 +q2, where q5o is the

potential function for a plate without defect, and (p and (P2 are the potential functions

that consider first and second order solution for the defect, respectively.

The solution to the potential function po is given by Equation 4.26:

(P (X, Y) = 2 In

z(l+x) +s y
cosh +cos

a a (4.43)
cosh + cos ; Y

a a

The next step is to find a solution for the potential function (6 . The Laplace equation and

the boundary conditions are

V 2 9 1(x, y) = 0, (4.44)

aq =0, (4.45)
aY va

(y ax 1 s,
= 0.

Expanding the last boundary condition about y = 0 yields to Equation 4.32:

D1 +A yoA~ j
y ay 2 - A

a y=O

=0 ,or
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axaJy a

Equations 4.33 and 4.34 give the potential function (p and its Fourier transform 1i :

(p, (x, y)= fe" ( 1(k, y) dk, and

e-"" (p, (x, y) dx.

Applying the Fourier transformation to equations 4.44, 4.45 and 4.46 and solving for the

potential function qp results in

y(x, y) = 1 dx(P, (, Y) 2;T f

os r(x+ x' +CO T(y - a)
( -' cJsh'' + co

A' In a a
ax ax V hr(x -x) fr(y-a)

cosh + cos
_ a a _

Evaluating this potential function at the surface of the plate (y = a) gives

py (x)I =
I

21rf dx
0

(A a90
ax, ax, V=0

c r(x + x )cosh +1
In a

cosh +1
a

Using trigonometric identity and integration by parts this equation can be simplified to

S(x) Y= 2 A(x
4a w

)[tanh + tanh tanh + tanh ] dx'-
2a 2a 2a 2a

The final step is to find a solution for the potential function q 2 . The Laplace equation

and the boundary conditions are

V 2(P2 (x, Y) = 0 , (4.49)
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(4.48)

(4.46)

oj (k, y) = 2
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2( = 0 ,
ay va

(4.50)

(4.51)A'Y = 0.
ax s,

Expanding the last boundary condition and considering the second order term gives

SI . (4.52)
ay 1, ax ax )

The potential function ( 2 and its Fourier transform ^2 are given, by definition, as

9 2 (x, y) = fe" 9 2 (k, y) dk , and (4.53)

p 2(k, y) = e~" (P2(x,y) dx. (4.54)

Taking the Fourier transformation of equations 4.49, 4.50 and 4.52 and solving for the

potential function (2 gives

I - )

c(x + x' ) +o r( y - a)cosh + cosI
in a a

coshff(XX) +cos ir(y-a)
_ a a _

Evaluating this potential function at the surface of the plate (y = a) produces

(P2 (X)l "
1 -=- 1 dx'

2a f
A(x )

ax,
F n(x +x) ~ irx-x)

tanh + tanh .
O L 2a 2a

The term I can be evaluated as
a ,V=o

a< (P, 3a -2O+- = 1 dx ' A 3+ 2 , -2 - - - -
ax V=O 21r 0 ()x' dx " x " & 2 -=

2

In cosh cosh .
I a a
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The details of this derivation are presented in Appendix F. The integrand has a

logarithmic singularity when x' = x", but this singularity is inLugrable if A and po are

sufficiently smooth. In this case, at the singularity x = x

A -- x +2 ,, 2

Ir ax"' dx" aXax, Y=

Equation 4.57 becomes

d 2 A a - & rx' 2
+ . In(-sIh ) -2

dx- 3xa a
(4.58)

where x is a small increment about the singularity point. The details of this analysis are

shown in Appendix F. Suppose we have a smooth defect given by the equation below:

A(x)= h[

(c+x) (c-x)~1
tanh + tanh

S S
2 tanh(c /s) J

where h, c and s are parameters shown in Figure 4.9. In this case the parameters are

c =101.6mm, s = 50.8mm and h = 6.3mm.

Smooth Defect

:7.

E

E

/
6-

5-

4-

3-

2-

1 -

NC

h

(4.59)

-300 -250 -200 -150 -100 -50 0 50 100 150 200 250

Distance from the center to the border (mm)

Figure 4.9 - Smooth defect given by Equation 4.59.
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Evaluating the first and second derivatives of this function with respect to x, as well as

the derivatives of the potential function qo with respect to x, the potential function

(2 evaluated at y = a may be calculated, which is given by Equation 4.56. This result

added to the potential functions (poI ya and p gives the solution to the forward

problem for a smooth defect given by Equation 4.59. Appendix F shows the derivations

of equations 4.47, 4.48, 4.52, 4.55 and 4.56.

A program in MATLAB was developed to solve this problem. Appendix G has a

listing of this code called "forwardsmooth". Figure 4.10 shows the result of this analysis

for the defect shown in Figure 4.9. An experimental result to compare with the analytic

one was not performed.

Potential Functions : plate with smooth defect

Distance form the center to the border (mm)

Figure 4.10 - Analytic potential functions for a plate with smooth defect
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4.1.6 Correction for the cylindrical geometry

Consider a pipe without defect, which is infinitely long in the z-direction, as shown in

Figure 4.11. The Laplace equation can be rewritten in cylindrical coordinates as

V 2 yp(r,6,Z) =0,

1 a y a29 a 2(p
-- r--+- + =0,
r r ar r2 a6 2  aZ 2

d2 y 10 1 a 1 a 2(y ,2 (p
++ -+ (4.60)

ar 2  r ar r 2 a6 2  aZ 2

z

r2

Figure 4.11 - Schematic view of a semi-infinite pipe without defect

Consider the variables below

ro = 2I + (mean radius of the pipe), and
2

a = r2 - ri (wall thickness of the pipe).

Making the following change of variables, the pipe may be approximated as a plate

and a correction term for the cylindrical geometry can be calculated:
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ar =r + y - ,
2

Oz

Z=X.

Equation 4.60 becomes

_2_ 1 ap r2 +2 2

+ + + -0.
ay2roya ay ( y -a)2 aJZ 2 X2

2 2

Assuming a small wall thickness compared to the mean radius of the pipe, that is

a
y - - << ro, the equation above can be approximated as

2

a 2 o a 2 ( D2q a 1, 2(y- a 2 ) a 2 ,
2+ + + .z2  (4

ay 2 aZ2 aX2 r, ay ro aZ2

Expanding the potential function to find the cylindrical correction the solution can be

written as

S(x, y, z) ( 0 (x, y) + (p (x, y, z), (4

.61)

.62)

where (o (x, y) is the potential function for a non-defect region and (P (x, y, z) is the

correction term for cylindrical geometry. Considering first order approximations, the

problem can be stated as

a 2  
+ 0 2 0

x2 y2 +aZ2 ra Dy

with the boundary conditions
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ay a

a 0

DyA

SOP[9(x-
1 )

w
-3(x+l)] ,

=0,

=0,

=0,

where w = 21z ro.

The solution for the non-defect region has already been calculated. From Equation 4.40

ip Iso sin kI
y(x, y)= - i e s. k cosh k(y - AO) dk,

z w _ k sinh k(a -AO)

S(X, y)=pS 0 In
2)rw

cosh + cos 4
(a -AO) (a -AO)
ir(l-x) __y-__)cosh -+cos
(a - A) (a - AO)

For a uniform slot defect the correction term is not a function of z, therefore the problem

can be stated as

ax2  ay2  ro ay

ay v=0,

aD(P
ay yAO

=0.

Solving this system for the potential function (p, gives
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0p (x, a) = 4 wr [ + +x1 - 11 - x|]. (4.63)
4 wr0

Appendix H shows the derivation of this equation. From Equation 4.62

q (x, a) =(p (x, a)+ q, (x, a),

cosh -c + Cos ) (a - AO)

(xpa) 0 x 1_ 2 (a-AO) (a-AO) (4.64)
4S r x~-lx)+1 zc(1-x) r(a-A0 )4 w 'o cosh +cos

(a -AO) (a -AO)

This equation gives the potential function at the surface of a pipe without defect. It was

calculated approximating a pipe as a plate and then making a correction for the

cylindrical geometry. It is valid for pipes with a large ratio between the external radius

and the wall thickness (r2>>a).
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4.1.7 Three-dimensional solution for a pipe with a non-symmetric defect

Consider a pipe similar to that shown in Figure 4.11, but with a non-symmetric

defect in its inner surface. Figure 4.12 shows a schematic view of this pipe.

Surface S

Figure 4.12 - Schematic view of a pipe with a non-symmetric defect.

Assuming a small wall thickness compared to the mean radius of the pipe, the Laplace

equation is written as

~2 329 d2 y
2 +a2 a2

ay2 aZ2 dX2
I a( 2 (y - 2 ) 22,

r, ay ro aZ2

The potential function can be expressed as

(P(x, y, z) = O (x, Y) + qI (x, Y' Z) + q 2 (x, Y, z) + P (x, y, z),
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where qO (x, y) is the potential function for a non-defect region, (i (x, y, z) and

(2 (x, y, z) are the potential functions that account for the defect region, and , (x, y, z) is

the correction term for cylindrical geometry.

The basic equations are

a 2  2 y =0, (4.66)
ax 2 ay2

2 P

ax
2

+Vj+ az 2 0

2 2 
2 2(102+2 + -9 0, and

Dx 2  Dy 2  az 2

a 2  D2  2 c _ 1 9C .D

ax2 Dy 2 az2 r ay

(4.67)

(4.68)

(4.69)

The surface S can be defined as S(R,6,Z) = R - F(6,Z) = 0 , where F(6,Z) represents

the defect amplitude. The boundary condition at the surface S is

Jn = n -V( s = 0,

w F
where n ce __ e

R a6 -"

DR

1 DF aqp

RD2 D6 ao

- F e . Thus,

F ay -p0.

DZ DZ IS

Writing the equation above in slab coordinates gives

Dr2 Dp DF Dp DF -0.

Dy (r ya)2 Dz Dz ax Dx

2 ds

The defect A(x, 7) can be defined as

57

(4.70)



A(x, z) = F(O,Z) - ro +-a
2

therefore Equation 4.70 can be rewritten as

a (;' D =A ] 0 . (4.71)
(ro+y a2 az az ax Dx

2 .

Expanding this equation about A = 0 produces, for each order of magnitude indicated as

a superscript index, the following equations:

A O): =0 (4.72)
ay 0=

- a (A a ) =0, (4.73)
ay ax ax j=

A : (C 0, (4.74)
ay 0=

E D9 2 -(A a) a(A 4 =.0. (4.75)
ay ax ax az az j o

Appendix I shows how these equations are derived. The boundary conditions at the

external surface of the pipe (y = a) are

a _ 0  SOP d( l 8 (x-l)], (4.76)
y=a W

(y1  =0, (4.77)

Dy 2  =0, (4.78)
Dy y=a
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a y0
(4.79)

The potential function (po can be calculated using equations 4.66, 4.72 and 4.76. It has

been solved previously and the solution is given by Equation 4.26. Thus,

c
tpjx, y)-= p S ln-

2ff wc

s(1+x) s y)sh +cos
a a

)sh + cos ) Y
a a

The potential function (p can be calculated using the equations 4.69, 4.74 and 4.79. It

also has been solved previously and the solution is given by Equation 4.63. Therefore,

4 wro

Equations 4.67, 4.73 and 4.77 provide the solution to the potential function (P . By

definition,

p, (x, y, z) =
2r nz

e wi (x, y)

2z nz

(4.80)

where ^ ,, (k, y) is the Fourier transform of qI, (x, y).

Applying the Fourier transformation to the Laplace equation and its boundary conditions

and solving for q

21

In (x, y) gives

dkfdx' k sin k(x -x') (X
_~ kcsinh kna

where kn = k2 +( )~k w )7 and A(x,z)= Ax) e "
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(4.81)

=0.

ax , =



Appendix I shows the derivation of this equation. An analogous approach can be

followed for the potential function q2 using equations 4.68, 4.75 and 4.78. Appendix I

also shows that

(4.82)
(P21n x =dk d' "k sin k(x - x') ( m n cos k(x

S 2z k,,, sinh k,,a ax w

Appendix J shows that equations 4.81 and 4.82 can be written in a more convenient form.

Therefore, the potential function qi (x, y, z) can be calculated using the following

equations:

('' (X, z) v=

S,,(x,x) =

..2,r ()z

Ye w 9im(X),

fdx A(x )? Sm

I dk ksink(x-x )

- kM sinhkm a

lv l(x-x')-tanh ,
2a 2a

In addition, the potential function 402 (x, Y, z) may be calculated using the equations

below:

902 (X, Z)1 v=a =

.27c nz

e W y,,xW

Ix A,,,- (x') Gn
2nz a a

+ - C ( ,,A (x ) ,,
w m x j 7

2mz fdk
C(x~x)={w o0

cos k(x - x)

k,1 sinh kma

(x,x)

for

for

m#0

m=0

1
<P2,x W dx I

for

for

m#0

m=O
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G, (x',x") =

I 2nff(x -x) j+dk

w 0

1flS l2 75(x -x) 1In sinh 2
2 1 2a

e-k a cos k (x -x")

kn sinhkna
for n # 0

for n=O
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4.2 Solution to the inverse problem

4.2.1 Solution for a 2D symmetric defect

Consider a semi-infinite plate with defect as shown in Figure 4.13.

/

a

y

Surface Si

Surface S2
Z

Figure 4.13 - Schematic view of a semi-infinite plate with symmetric defect (assume

infinite in the x direction).

The surface SI is the top surface where the current is applied and the surface S2, defined

as y = A(x, z), is the bottom surface with defect. Equations 4.1 through 4.5 are valid and

the potential function can be written as ( (x, y, z) = (O (x, y) + q, (x, y, z), where qO and

q, are the potential functions that account for the non-defect region of the plate and the

defect region of the plate, respectively. In this problem, ps, as well as n . V (ps,are given

and we desire to find the contours of n -Vq = 0, or in the other words, the surfaces where

the normal current density (Jn) is zero.

Summarizing, this problem is described by the following equations:

(4.83)V2 9O(x, y, z) = 0 ,
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T = 0 [i5(x -1) - ((x+ 1)],
ay v=a W

where o, (x, z) is the potential given by measurements.

The problem is to find A(x, z) so that Jn = n -V pis = 0 , where n oc e

Thus,

ay

Day ax ax
aAy =~) 0.
az az

The first part of this problem, which is the Laplace equation V2 (x, y) = 0 with

boundary conditions n -V (p, Is, = p S(x, z) and n -V po s2 = 0 has already been solved

previously. The solution is given by Equation 4.41:

po (x, y) = P In
2zf w

cosh +cos
(a - AO) (a - AO) (4.87)
_____ - x (y - A0 )

cosh + cos
(a -AO) (a - AO)

For a two-dimensional case, the second part of the problem can be stated as

(4.88)

with boundary conditions

n . V p, - N
= 0, and (4.89)

(1IYa p,, (x) - po (x, y = a) = (p,(x). (4.90)

Consider a small defect compared to the thickness (A << a). The defect can be

modeled as sum of the first and second order terms, which is
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(4.84)

(4.85)

az

(4.86)

ax
axx



A(x) A (x)+ A 2 (x) -

In a two-dimensional case, Equation 4.86 can be rewritten as

rag
(y _ Dx ax

a ax S2

=0.

Expanding the equation above as a Taylor series about y = A0 gives

A, (x) = AO

dx'

+
a g

A0
ax

Equations 4.93 and 4.94 are derived in Appendix K.

From equations 4.33 and 4.34

gy (x, y)= fe" g,(k, y) dk , and

, (k, y) = e i (x,y)dx,

where (p-I (k, y) is the Fourier transform of (p, (x, y).

Applying the Fourier transformation to the Laplace equation and to the boundary

condition of Equation 4.89 gives

-k 2 =0 ,
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(4.92)

(4.93)

(4.94)

(4.95)

(4.96)

(4.97)



ay __

(4.98)

The general solution to the Equation 4.97 with the boundary condition above is

q, (k, y) = B(k)cosh k(y - a).

Substituting this solution into Equation 4.95 results in

(x, y)= e ikx B(k)cosh k(y -a) dk .

Thus,

1  - e' B(k) k sinh k(A -a) dk.
DyA

The coefficient B(k) can be defined as

B(k) = (k, a),

B(k)= e-"" p1(x,a) dx.

The boundary condition defined by Equation 4.90 is

(Pi -va =(x) - (PO (x = p(x) ,

thus

e~"" p, (x) dx .

Since the potential measurement (,. is given by a set of data, Equation 4.101 has to be

calculated numerically. Basically, the problem consists of solving Equation 4.10 1,

plugging the result into Equation 4.100 and then calculating the defect solution by

solving Equation 4.93. A program in MATLAB was developed to numerically solve this
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(4.99)

(4.100)

(4.101)

= 0 .

B(k) =f



system of integrals. Appendix L has a description of the integrals and a listing of this

code, entitled "inverse _firstdata".
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4.2.2 Alternative approach for the 2D inverse problem

The previous solution used the parameter Ao to correct the boundary condition at

infinity. Although this approach provides a good result, it introduces a new parameter

that needs to be evaluated iteratively. A solution can also be developed without using the

parameter A0 .

Expanding the boundary condition of Equation 4.92 about y =0, the following

equations are obtained for a 2D case:

A1(x) = (4.102)

ax )=

A2 (x)=-A 1 (x) . (4.103)

ax V=0

The potential function (o is given by Equation 4.26. Therefore,

zz(l+x) ;n y
cosh +cos

y pS ln a a
2z w cosh + Cos z Y

a a

From this equation the denominator of equations 4.102 and 4.103 can be evaluated. Thus,

___ pS0 [ c(l+x) r(l -x)1
dx = 0 2 [tanh + tanh . (4.104)
Tx fon 2wa 2a 2a

The potential function can be defined as

67



Rix
p, (x, y) = (x, y)+ 9. tanh ,

2a

where (p. = ((p - (p )- is defined so that 01pl = 0

The function j (x, y) satisfies

V 2 01 =-_9V 2 tanh A i,
2a

=0,
aJy _~

f x
91 n - (O a - yo. tanh 2a

By definition,

p(x, y) = e" p,(k, y) dk , and

$1 (k, y)
21r

fe-" p, (x, y) dx.

Taking the Fourier transformation of equations 4.106, 4.107 and 4.108 and solving for

the function $ (k, y) gives

( = i . s + 'P"a I cosh k(y - a), (4.109)
whee sinh ka z sinh ka

where

s^=!Jsin kx,- (p.- tanh dx .
fs i 2a _

Equation 4.109 is derived in Appendix M.

(4.110)
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as Ix- * o,

(4.106)

(4.107)

(4.108)



In order to avoid the ill-conditioned part of this solution the short wavelengths must be

suppressed. This can be done introducing a damping factor to the solution above.

Consider

q*-a sI ka _ -o.a 1 cosh k(y.- a) e
zc smnh ka zc sinh ka _

91, = i

k2

'', (4.111)

where km is a damping parameter.

Appendix M also shows that the numerator of the Equation 4.102, called Num(x), can be

evaluated as

Num(x) = pa 2 e - 2fdk cos kx (,50sinhka) e
-4r- 0

(4.112)

Equations 4.104, 4.110 and 4.112 are used to calculate the first order approximation of

the defect given by Equation 4.102.

In order to calculate the second order approximation of the defect given by Equation

4.103 the term must be determined. Appendix M shows that this term is given by

=--2f dk k cos kx
K IC

(^0- a cosh kae k,,

I z sinh ka ]
(4.113)

Equations 4.113 and 4.104 are used to calculate A2 (x) given by Equation 4.103. A

MATLAB code called "inversesecond" was developed to numerically solve these

integrals and calculate the defect to a second order of approximation. Appendix N has a

listing of this code.
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4.2.3 Solution for a 3D cylindrical non-symmetric defect

Consider a pipe as shown in Figure 4.12. The surface S can be defined as

S(R,6,Z) = R - F(6,Z) = 0 , where F(6, Z) represents the defect amplitude. In slab

coordinates the defect amplitude may be defined as A(x, z) = F(0, Z) - ro

potential function can be expanded as

P(x, y, z) ~ (0 (X, y)+ (I (X, y, Z)+ (p (X, y, Z)

The problem is described by the following equations:

a+-. The
2

(4.114)

D2y D2q, D2y
+ + ---

Dy 2 Dz 2 Dx 2

i , 2(y - ) 32/1 D- + , a 2(p

ro ay ro az 2

a9 _P Sop [((x -_1)- ((x+ 1)],
ay W

(Pq = (P, (X, Z)

where w = 2z ro and ,,(x, z) is the potential given by measurements.

The problem is to find A(x, z) so that Jn = n -VqPIs = 0,

where n oc e

- F
R D6 -

DF-- e . Thus,
aZ Z

D( 1 F Dp aF _

DR R 2 DODO ZDZ s

Writing the equation above in slab coordinates gives

Dy r y aD aF D(p @F

y (ro + y a)2 az az ax ax

2 -s
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(4.115)

(4.116)

(4.117)



(P r02 apo aA a39 aA -0 .
ay (ro a 2aZ aZ ax ax

2

The first part of this problem, which is the Laplace equation V 2y0 (x, y) = 0 with

boundary conditions n -V po = p S(x, z) and n -Vools

previously. The solution is given by Equation 4.26:

P(Xy)2= 2 w In

= 0 has already been solved

cosh +cos
a a

cosh + cos
a a

The second part of the problem can be stated as

V 2 ( 1(x, y, z) =0,

n-VPi a (PI =0,

(4.119)

(4.120)

(4.121)

Consider a small defect compared to the thickness (A << a). The defect can be written as

sum of the first and second order terms, which is

A(x, z) = A1(x, z)+ A2 (x, z).

Expanding Equation 4.118 as a Taylor series about y = 0 gives

ay
-- (A1ax

) = 0,
ax I =

(4.122)

0 +A y)Dx 1 D a7 (A )yJDz Dz jno

71

(4.118)

L5(A2
ax 2

=0. (4.123)

(01i y, = p,(x, z) - po(x, a) - p, (x, a).



Appendix 0 shows the derivation of equations 4.122 and 4.123. One can see that from

Equation 4.122

f dx

ay(x, =) =(4.124)

ax 1_0

and from Equation 4.123

A2  0 +A Dy, + fdx'Ia(A ) =0. (4.125)
ax a x _ az az j,=

The potential function q, can be defined as

1 (x, y, z) = ~p(x, y, z)+ a+ 5 tanh , (4.126)
2a

where a = o') + P(-"O)], (4.127)
2

J = [p(oo) - y(-<x>)], (4.128)
2

y(ooP) = [(,- 0 so I - S] (4.129)
wa 2row _

<p(-oo0) = <(Pn + wao + 2ro0 (4.130)

are defined so that , 1 = 0 as x -+ oo.

The function , (x, y, z) satisfies

V2 ~ =_8V 2 tanh , (4.131)
2a
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@0 1

ay va
= 0,

1va = 9,m - la - ' I + x|-|1 - x11- a-- o tanh" x
a 4 wro 2a

By definition,

.21r nz

e w n(X, Y), I(X, y, z) =

(0 1, (k, y) =j1 f ,-" p,, (x, y) dx .

Taking the Fourier transformation of equations 4.131, 4.132 and 4.133 and solving for

the function (^1. (k, y) gives

Sa k2
Sm z k 2 sinh ka+ ['Pm

-Sa k cosh k.. (y - a)
-i k,2 sinh ka

where

k,2= k2+2 m 2,kinFk W )1

q',,(k) = I fdxJ
2xi w

dz eW e~i" {Pi, - 4wro + x - 11 - x] - a- tanh " ,
2a

8 = -
n w f

dz e W = 0
if m=0

if m#0

Equation 4.137 is derived in Appendix 0.
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(4.132)

(4.133)

(4.134)

(4.135)

(4.136)

P, in (4.137)

(4.138)

(4.139)

(4.140)

Oln(X, Y) = e "p,, (k, y) dk ,



In order to avoid the ill-conditioned part of this solution the short wavelengths must be

suppressed. This can be done introducing a damping factor to the solution above.

Consider

'"n r sinh ka

- k,2

+ TM ', cosh kn(y -a) e k ,

I' ;T sinh ka _

where kmaxis a damping parameter.

Assume

.2z m

A1(x,z) = IA,(x) e w Z , and
M

' a~o dx'

A X) (x) = -

ax =O

The term fdx, a 1
ay )=0

is given by

xx ikx-'
1

-

" A K
ki sinh km a

k

The details of this derivation are presented in Appendix 0. Equations 4.142 through

4.144 can be used to calculate the first order approximation of the defect given by

Equation 4.124.

Assume

.2r p

A2 (x, z)= A 2p(x) e w (4.145)
P
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(4.141)

(4.142)

(4.143)

5 a
kmax e 4)

(4.144)
X (0
fdx' 1"71

a =0



The second order approximation of the defect can be calculated applying Fourier analysis

to Equation 4.125. Appendix 0 shows that

I

1
A 2 p (x) =

ax VO

Sdk k e-AP) T1 cosh k a e

J a
- -

k 2

dk k cos kx coshka k
s n e max

sinh ka

2)r n 27 x+ 2Ifjj
w w _

dk e"" Al(p-n) Tcoshkna
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(4.146)
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4.3 Forward problem for a semi-infinite plate without defect

Two expressions were developed that give the voltage difference between two

points at the surface of a plate without defect:

mi m'TZk
N COS( ) COS( ) -y x -v,(!+x)

V(x)=4__S0 __ 2 W e -e and
wa n=O k=1 Um n=0 U n Ymn

zt(l +x)
cosh -1

V(x)= SoIn a
Ircw cosh r(l-x)

a

These equations are essentially identical. The first one is a numerical expression

and the second equation is an analytical function. The results of these equations were

compared with those obtained experimentally. Figure 4.14 shows the comparison

between the experimental and analytical results for a rectangular plate (12 inches x 8

inches x 3/4 inch). As shown in Figure 3.3 the voltage probes were spaced at 12.7mm (

inch) intervals and 15 input current wires (total current of 10 Amp) were attached at the

plate ends, equally spaced 12.7mm ( inch) apart.

76



Potential Difference - plate 3/4" no defect

0
0
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Distance from the center to the border of the plate (mm)

120 140

Figure 4.14 - Comparison between experimental and analytical results for a

no-defect rectangular plate.

It can be seen that the theoretical result is extremely close to the experimental

one. Although the model assumes a semi-infinite plate, experimentally no end effects

were observed. The uniform current distribution throughout the wires contributed to the

good agreement between the results. The difference between the analytical and

experimental result is mostly due to measurement uncertainties.
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4.4 Forward problem for a semi-infinite plate with a slot defect

When a slot defect, such as the one showed in Figure 4.5, is introduced in the

plate a new term is added to Equation 4.27 in order to consider this defect. Equation 4.38

is the analytical solution for the potential difference between two points on the surface of

a slot-defective plate:

cosh ;z(1+x) -1 cosh- (1+A)cosh -( 2 -x)
V(x) = pSo a _P Sh [coth (I - x)n 2a 2a

Iw coshI(IX) -1 a w 2a cosh -(x+ A)cosh -- (/-l)
a 2a 2a

cosh -* (/I + x) cosh - (/I + 1)
coth - (1+ x) In 2a 2a

2a cosh I-(A-l)cosh -(A-x)
2a 2a

Several experiments were carried out on a rectangular plate with 304.8mm x

203.2mm x 19.05mm (12 in x 8 in x % in). A groove, as described in Figure 4.5, with

dimensions A = 50.8 mm and h = 2 mm was machined in the bottom of the plate. Figure

4.15 shows the experimental data and the analytical result using Equation 4.38. Again, 15

current wires were used, equally spaced at 12.7mm ( inch) at the ends of the plate. The

total current was 10 Amp. It can be seen that the analytical result was very close to the

experimental data.

Equation 4.38 was developed considering a small slot height defect compared to

the thickness of the plate (h<<a) and shows a linear dependence of the potential

difference with the height of the slot defect (h). For a 2mm-height slot defect

(approximately 10.5 % of the plate thickness) Equation 4.38 predicts a good result

compared to the experimental data. A change in the slope of the curve for distances
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greater than 50.8 mm (2 inches), which is the half slot length, points out a change in the

resistance of the plate and therefore the presence of a defect.

PotentIal Ofference - plate 3f4" with a2mheight slot defect

140-

12D3
0
.0
E

0

0

0

-. N-

Sct Ddect kdytica

-St Ddct Exprinrel

40 80
Dstarmfromfte wrier ID the border of t plele (mm)

140

Figure 4.15 - Comparison between experimental and analytical results for a

2mm-height slot defect plate.

Figure 4.16 shows the results for a plate with a 4 mm-height slot defect. For this

case, where the depth of the slot was about 21% of the thickness of the plate, the linear

correction for the potential difference given by Equation 4.38 is not enough. The

experimental data are about 3% to 6% greater than the results given by the analytical

solution. It turns out that a second order term correction is necessary to improve the

analytical solution. The changing of the slope for distances greater than 50.8 mm (2
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inches) is more visible since there is a relatively larger decrease in the resistance of the

plate, as compared to Figure 4.15.

Potential Difference - plate 3/4" with 4mm-height slot defect

0

0

......- 4rrmheight experirrnetal data

4mT-height aralytical solution

.- b defect plate

20 40 60 80 100

Dstance fromthe center to the border of the plate (rmj

120 140

Figure 4.16 - Comparison between experimental and analytical results for a

4mm-height slot defect plate.

Finally, a slot with 6.3mm of depth was machined in the plate. Figure 4.17 shows

the comparison between the analytical solution given by Equation 4.38 and the

experimental data. In this case the slot depth is more than 32% of the thickness of the

plate and, therefore, a good agreement between experimental and analytical results was

80
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not expected. The difference between the experimental data and the analytical solution

varies from 7% to 12%. In this case a second order term correction for the potential

function becomes necessary. The bigger the depth of the slot defect, the greater the

difference between the experimental data and the analytic solution given by Equation

4.38.

Potential Difference - plate 3/4" with 6.3mi-height slot defect

0

I F--

0

A' . - --- - 6.3mm-height expeimntal data

,-'6.3 mmn-height anyical sduticn

--- No defect plate

20 40 60 80 100

Distance from the center to the border of the plate (mm)

120 40

Figure 4.17 - Comparison between experimental and analytical results for a 6.3mm-

height slot defect plate.
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4.5 Forward problem for a semi-infinite plate with a ramp defect

Consider a plate with a ramp defect as shown in the Figure 3.4. The plate has

dimensions of 304.8mm x 203.2mm x 19.05mm (12 in x 8 in x 3/4 in). The total current

applied was 20 Amp and 15 current wires were used, equally spaced at 12.7mm ( inch)

at the end of the plate and. In two dimensions this defect can be represented by the

following equations:

A(x)= h for -c 5 x < c,

h
A(x)=-(c+s-x) for c<x<c+s,

s (4.147)
h

A(x)=-(c+s+x) for -c-s<x<-c,
s

A(x) = 0 else.

Figure 4.18 shows a schematic view of the function above. The first derivative of

this function can be easily calculated and the second derivative vanishes for all points.

Equation 4.147 replaces Equation 4.59 in the analytic solution for a semi-infinite plate

with a smooth defect. A code called "forward-ramp" was developed to calculate the

potential at the surface of the plate for this ramp geometry.

A(x)

h

- x

S C C S

Figure 4.18 - Ramp defect function given by Equation 4.114.
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Figure 4.19 shows a comparison between the experimental data and the analytic result

given by the code "forward-ramp". The parameters described in the Figure 4.18 for this

experiment are h = 6.3mm, c = 50.8mm and s = 24.6mm. Although the defect depth is

more than 32% of the thickness of the plate the agreement between the two curves is

good. The reason for this better behavior compared to that obtained in Figure 4.17 is not

only because defect is smoother but also because a second order term was considered for

the potential function.

Potential Difference - plate 3/4" with ramp defect

200-
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.. -- Analytic solution

No defect

Distance from the center to the border of the plate (mm)

Figure 4.19 - Comparison between experimental and analytical results for a ramp

defect plate.
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4.6 Forward problem for a semi-infinite pipe without defect

The pipes used during the experiments had a large diameter compared to the wall

thickness, therefore the cylinder was approximated as a plate and Equation 4.28 was used

to estimate the analytic solution. Several experiments were carried out in a pipe with an

external diameter of 326.4mm (12.85 inches), a wall thickness of 12.7mm (0.5 inch) and

609.6mm (24 inches) in length. The total current applied was 35 Amp and 26 current

wires were used at each end of the plate. Figure 3.5 shows a picture of this pipe. Figure

4.20 gives a comparison between the experimental results and the approximated analytic

solution given by Equation 4.28. An average radius was assumed for the calculation.

Pipe without defect: approximating by a plate

300

250 -

0
0

200 -
E

Cc 150

0> 100
0)
Cz
0

50

0
0

QI--ID
0

.__-'_Experimental Data

-.-... ....... Analytical solution without
correction

50 100 150 200

Distance from the center to the border of the pipe (mm)

250 300

Figure 4.20 - Comparison between experimental and analytical solution

without correction for a pipe with no defect.
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The analytic solution matches well the experimental data only in the center of the

pipe, where the effect of the geometry is less evident. For large distances from the center

of the pipe the difference between the experimental and analytical results can be reduced

using the correction term for the cylindrical geometry given by Equation 4.63.

Equation 4.64 gives the potential function at the surface of a pipe without defect

using the correction term for the cylindrical geometry. It is valid since the pipe has a

large external radius compared to the wall thickness (r2>>a). Figure 4.21 shows a good

agreement between the experimental data and the analytical result given by Equation

4.64.

Pipe without defect: approximating by a plate with correction

250

0

0
o 200

150

a> 100

0

50-

0
0

0

Eperimental Data

. ....... Analytical solution with
correction

50 100 150 200

Distance from the center to the border of the pipe (mm)

250 300

Figure 4.21 - Comparison between experimental and analytical solution

with correction for a pipe with no defect.
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4.7 Inverse problem for a semi-infinite plate with a slot defect

Consider the plate with a slot defect as shown in Figure 3.3. The DCPD

measurements can be used to calculate a series of contour plots of constant plate

thickness. These thickness measurements were derived from Equation 2.2. Figure 4.22

shows these contour plots in two sections. The upper part of the figure shows the contour

plot as experimentally determined. The numbers denote the plate thickness (in milmiters)

for that contour and the thinner the wall, the darker the shading. The lower portion shows

the contour plot with the defect drawn in. Although the depth of the defect is not well

predicted, the presence of the defect is clearly identified in the top figure.

Equation 4.93 calculates the first order of the defect considering a two-dimension

case. A MATLAB code described in Appendix L was developed to solve the equation.

Figure 4.23 shows the two-dimension solution from the measurements acquired along the

centerline of the plate. It can be seen that the solution given by the model predicts a

height about 17% greater than the actual value, which represents a plate thickness of

11.7mm. It is a more conservative prediction compared to the thickness shown int the

contour plot. The sharp edges cannot be predicted mathematically but do not represent a

likely defect caused by flow accelerated corrosion. The potential data were collected only

between the current probes.
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Thickness contour plot for a slot defect

thic

Thickness contour plot for a slot defect

thic

Figure 4.22 - Thickness contour plot for a slot defect in a plate.
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Defect using the experimental data - kmax = 0.08/mm
25

20-

15-

E

10-

5-

0-

-150 -100 -50 0 50 100 150
distance from the center to the border of the plate (mm)

Figure 4.23 - 2D defect solved for a slot plate (A = 50.8mm, h = 6.3mm) using

experimental data.

Since the analytical solution has been determined for the potential function at the

surface of the plate, "analytical data" can be generated for any slot. These "virtual" data

can be used, instead of the potential measurements, to solve the inverse problem.

Appendix P describes the code used to solve the inverse problem using "analytical data".

Figure 4.24 shows the output of this code for a slot defect with the same dimensions

(h = 6.3mm and A = 50.8mm).
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Defect using the "analytical data" : kmax = 0.036/mm
25

20-

15-

E

E

R 10-

5-

0 -. - -... --........-..

SI I I

-400 -300 -200 -100 0 100 200 300 400
distance from the center to the border of the plate (mm)

Figure 4.24 - 2D defect solved for a slot plate (A = 50.8mm , h = 6.3mm) using

"analytical data".

Using the forward problem "analytical data" was generated for long distances

from the current probes where the electrical field vanishes and the potential function q,

goes to zero. The model results predict a defect of 6.1mm in height, which is very close

to the real value of 6.3mm.

"Analytical data" can also be produced for a wider slot. Figure 4.25 shows the

solution for a plate with slot defect with h = 6.3mm and A = 400mm compared to the

real defect.
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Defect using the "analytical data" kmax = 0.0113/mm
25

20-

15 -
E

10

0. .. . . . . .. ...................................

5 -

-1000 -500 0 500 1000
distance from the center to the border of the plate (mm)

Figure 4.25 - 2D defect solved for a slot plate ( 400mm, h = 6.3mm) using

''analytical data".

The solution predicts a defect with about 5.6mm of height and a better resolution of the

flat part of the defect. The inverse problem was solved considering only the first order

approximation, which means that the height of the defect could be more accurate if a

second order term were added to the solution.

Figure 4.26 shows the output of the code for a slot defect with h = 2mm and

2 =50.8mm.
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Defect using the experimental data - kmax = 0.055/mm
25

20-

15-
E
E

10-

5-

- - - - I - - -

-150 -100 -50 0 50 100 150
distance from the center to the border of the plate (mm)

Figure 4.26 - 2D defect solved for a slot plate (A = 50.8mm , h = 2mm) using

experimental data.

This figure shows a predicted defect with a height about 19% greater than the actual

value. It is a good prediction considering that the plate was 12 inches in length and no

data was acquired outside of the current probes.

"Analytical data" can also be produced for this defect slot and compared to the

solution of the real defect. Figure 4.27 shows the solution to be in excellent agreement

with the actual height of the defect.
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Defect using the "analytical data" kmax = 0.086/mm
25

20-

15 --
E

5-

-300 -200 -100 0 100 200 300
distance from the center to the border of the plate (mm)

Figure 4.27 - 2D defect solved for a slot plate (2. = 50.8mm , h = 2mm) using

''analytical data".

92



4.8 Inverse problem for a semi-infinite plate with a ramp defect

Consider the plate with a ramp defect as shown in Figure 3.4. Equation 4.93

calculates the first order defect considering a two-dimensional case. A MATLAB code

described in Appendix L was developed to solve the equation. Figure 4.28 shows the

output of this code for a plate with a ramp defect given by Equation 4.114 with

parameters h = 6.3mm, c = 50.8mm and s = 24.6mm.

Defect
30-

E
0

25-

20-

15-

10-

5

0

using the experimental data and first order approximation - kmax = 0.033/mm

-150 -100 -50 0 50 100
distance from the center to the border of the plate (mm)

150

Figure 4.28 - 2D defect solved for a ramp plate using experimental data and first

order approximation.
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Equation 4.103 calculates the defect considering the second order approximation for the

two-dimension case. A MATLAB code described in Appendix N was developed to solve

the equation. Figure 4.29 shows the output of this code for a plate with a ramp defect

given by Equation 4.114 with parameters h = 6.3mm, c = 50.8mm and s = 24.6mm. The

defect height calculated was about 5% less than the actual one. Since the depth of the

defect represents 33% of the thickness of the plate, the model and real defect are in good

agreement.

Inverse Problem with 2nd order approximation - km = 0.045/mm
30-

25

20-

E
15

0

-200 -150 -100 -50 0 50 100 150 200

Distance from the center to the border of the plate (mm)

Figure 4.29 - 2D defect solved for a ramp plate using experimental data and second

order approximation.
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Figure 4.30 shows a comparison of the defect solution using the first and the second order

approximation. It can be seen that by considering the second order term in the calculation

of the defect, the solution better approximates the actual value.

Comparison of the ramp defect results

26 - ---- st order

2nd order

22 -

E

E

-1 _-10__12 __-00_ -5--50_ -2 _.pJi_ -2_____________i.O._125__15T__J'5

Distance from the center to the border of the plate (mm)

Figure 4.30 - Comparison between first and the second order solutions for a ramp

defect.
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4.9 Inverse problem for a semi-infinite plate with a smooth defect

Consider a plate with a smooth defect as shown in Figure 4.9. Using the "analytic

data" calculated by the code "forwardsmooth", as presented in Figure 4.10, the inverse

problem can be solved for this defect. Figure 4.31 shows a comparison between the result

calculated using first and second order approximation and the real defect shown in Figure

4.9. The analytic result gives a good estimate of the depth of the defect. The model also

predicts a better width of the defect compared to the slot and ramp defect cases.

Comparison of the result for a smooth defect

------- defect

25 1st order
2nd order

20 ............................................. ..................... .......................

15

3 0 -300 -250 -200 -150 -100 -50 G 50 100 150 200 250 300 3t

Distance from the center to the border (mm)

Figure 4.31 - Inverse problem for a smooth defect given by Equation 4.59.
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4.10 Inverse problem for a pipe with a circular defect

Consider a pipe similar to the one shown in Figure 3.5 with a circular defect on its

inner surface. The original thickness of the pipe wall was 12.7mm ( inch). The defect

was 101.6mm (4 inches) in total diameter with a 76.2mm (3 inches) diameter region

having a constant depth of 6.35mm (% inch), as shown in Figure 4.32. This is a more

likely type of defect that resulting from flow-accelerated corrosion phenomena.

Figure 4.32 - AUTOCAD reproduction of a circular defect machined in the pipe.
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Figure 4.33 shows the contour plots of constant pipe thickness using the DCPD

measurements. The upper part of the figure shows the contour plot by itself. The lower

portion shows the contour plot with the defect draw in. A current density of 0.28

Amp/cm2 (35Amp total) was used in this experiment. Although the assumption of

constant current density is a weak one, the presence of the defect is clearly identified by

the dark shaded region in the top figure.

The depth of the defect is not well predicted by these contour plots. Solving the

inverse problem from the DCPD measurements can refine this result. Figure 4.34 shows a

two-dimension solution from the measurements acquired along the centerline of the

circular defect. Although the evaluation of the depth of the defect is better, the solution is

not as good as to that shown for the ramp-defect case in Figure 4.30. In the slot and ramp

defects, the defects were independent of the z direction. However, in this case the defect

is no longer independent of the z direction. A three-dimensional solution for the pipe

defect is required to obtain better resolution of the defect morphology. Nevertheless, the

application of the methodology developed in this work allows for a significant refinement

and improvement of predicted pipe thickness.
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2D defect for the centerline of the pipe - kmax = 0.084/mm
tII I I I I

-200 -150 -100 -50 0 50 100 150 200
Distance from the center to the border of the pipe (mm)

Figure 4.34 - 2D defect solved for the pipe using experimental data.
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CONCLUSION

A new methodology, based on the direct current potential drop technique, has

been developed to measure the pipe wall damage morphology caused by flow assisted

corrosion or any other phenomenon that results in wall thinning. The methodology has

been confirmed using plate and pipe with a well-defined defect present.

This new non-destructive evaluation technique allows the real-time determination

of the evolution of pipe wall thickness and damage morphology. In the actual field the

data will be in the form of the potential drop measurements for an array of probes placed

on the outside diameter of the pipe. First, the algorithm determines the presence of a

defect and then, assuming that a defect is detected, it develops the morphology of the

defect. The method is capable of detecting wall loss greater than 5% of nominal wall

thickness of the pipe.
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FUTURE WORK

The methodology developed was tested in two-dimensional cases for a well-

defined defect. Although the algorithm for three-dimensional evaluation has been

developed it was not tested. Interesting future work, then, would be testing this algorithm

for the circular defect that was shown in the pipe. Then, the algorithm can be used to

evaluate the pipe wall thickness and damage morphology for a real defect caused by flow

assisted corrosion (FAC).

Because FAC is common in components with geometry that increases fluid

velocity and turbulence, it is recommended to develop similar methodology for other

geometries than pipes. Building algorithm for elbows, for example, would be a valuable

addition.

Finally significant computer work must be done to present the results. For

applications in the field conversion of all codes to FORTRAN and developing an

interface for the data acquisition is necessary. Moreover, a graphical user interface using

Visual Basic could be developed to show the wall damage morphology.
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APPENDIX A

This appendix is a listing of the program "Pipe Thinning" developed in HP Basic

for acquiring potential difference measurements. This program sets up the channels for

voltage reading, assigns the switch controller to inverter the current and filters the data to

neglect a deviation by more than half standard deviation from the average.

5 ! Program Pipe Thinning

10 ! by

15 ! P. STAHLE

20

25

26

30

35

36

37

40

45

50

55

OPTION BASE 1

DIM File$[20]

COM /Screendata/Ht,Wd,Ih,Iw

COM /Devices/@Dvm

INPUT "ENTER FILE NAME",File$

CREATE File$,1

ASSIGN @F TO File$

INTEGER G(0:5)

GESCAPE CRT,3;G(*)

Ht=.75*G(3)
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d=G(2)

LEAR SCREEN

LEAR 7

SSIGN @Dvm 1

SSIGN @Swt T

60

65

70

75

80

85

90

95

100

105

110

115!

120

125

130

135

140

145

150

155

160

165

170

C

C

A

A

ASSIGN @Main-panel TO WIDGET "PANEL";SET ("VISIBLE":0)

CALL Panelbuild(@ Mainpanel, "Main Panel")

STATUS @Mainpanel;RETURN ("INSIDE HEIGHT":Ih,"INSIDE WIDTH":Iw)

ON KEY 1 LABEL" HALT" GOTO Halt

ON KEY 2 LABEL" TAKE READING" GOTO Takereading

ASSIGN @Cht TO WIDGET "STRIPCHART";PARENT @Mainpanel

Chartbuild(@Mainpanel,@Cht,-1.E-5,-3.E-5,1,"","")

CONTROL @Cht;SET ("CURRENT AXIS":"Y","AUTOSCALE":0)

CONTROL @Main-panel;SET ("VISIBLE":1)

CONTROL @Cht;SET ("CURRENT AXIS":"X","RANGE":2000)

OUTPUT @Swt;"SLIST200-209,300-309,400-409,500-509,0"

Nrows=10

Takereading:!
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175 Timer=60

180 !

185 OUTPUT @Dvm;"RESET"

190 OUTPUT @Dvm;"TERM REAR"

195 OUTPUT @Dvm;"NDIG 6"

200 OUTPUT @Dvm;"NPLC 100"

205 OUTPUT @Swt;"CLOSE 100"

210 Crnt$="POSITIVE"

215 FOR Chnl=1 TO 40!

220 GOSUB Monitor

225 OUTPUT @Swt;"STEP"

230 Volt=FNEntervolts(Timer)

235 CONTROL @Cht;SET ("POINT LOCATION":TIMEDATE,"VALUE":Volt)

240 OUTPUT @F USING

"4(K,"",""),K";DATE$(TIMEDATE),TIME$(TIMEDATE),Volt,Chnl,Crnt$

245 DISP DATE$(TIMEDATE),TIME$(TIMEDATE),Volt,Chnl,Crnt$

250 NEXT Chnl

255 OUTPUT @Swt;"STEP"

260 OUTPUT @Swt;"OPEN 100"

265 OUTPUT @Swt;"CLOSE 101"

270 Crnt$="NEGATIVE"

275 FOR Chnl=1 TO 40!

280 GOSUB Monitor
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285 OUTPUT @Swt;"STEP"

290 Volt=FNEntervolts(Timer)

295 CONTROL @Cht;SET ("POINT LOCATION":TIMEDATE,"VALUE":Volt)

300 OUTPUT @F USING

"4(K,"",""),K";DATE$(TIMEDATE),TIME$(TIMEDATE),Volt,Chnl,Cmt$

305 DISP DATE$(TIMEDATE),TIME$(TIMEDATE),Volt,Chnl,Crnt$

310 NEXT Chnl

315 OUTPUT @Swt;"RESET"

320 Halt: !

325 ASSIGN @F TO*

330 LOCAL 710

335 LOCAL 722

340 CLEAR 7

345 STOP

350 Monitor:!

355 SELECT Chnl

360 CASE 1

365 OUTPUT @Swt;"CMON 2"

370 CASE 11

375 OUTPUT @Swt;"CMON 3"

380 CASE 21

385 OUTPUT @Swt;"CMON 4"

390 CASE 31
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395 OUTPUT @Swt;"CMON 5"

400 END SELECT

405 RETURN

410 Theend: END

415 !

420 SUB Time-delay(T)

425 T1=TIMEDATE

430 IF TIMEDATE-T1>T THEN

435 SUBEXIT

440 ELSE

445 GOTO 430

450 END IF

455 SUBEND

460 Chartbuild: SUB Chartbuild(@Charts,@W,REAL Yorg,Yrng,Traces,Titl$,Ylbl$)

465 OPTION BASE 1

470 INTEGER G(0:5)

475 GESCAPE CRT,3;G(*)

480 STATUS @Charts;RETURN ("INSIDE HEIGHT":G(3),"INSIDE WIDTH":G(2))

485 CONTROL @W;SET ("X":0,"Y":0)

490 CONTROL @W;SET ("WIDTH":G(2),"HEIGHT":G(3))

495 CONTROL @W;SET ("CURRENT AXIS":"X","DIGITS":5, "NUMBER

FORMAT":"CLOCK24")

500 CONTROL @W;SET ("ORIGIN":TIMEDATE,"RANGE":43200)
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505

510

515

520

525

530

535

540

545

550

555

560

565

570

575

580

585

590

595

600

605

610

615

SUB Panel-build(@P,A$)

OPTION BASE 1

COM /Screendata/Ht,Wd,Ih,Iw

CONTROL

CONTROL

CONTROL

SUBEND

@P;SET

@P;SET

@P;SET

("X" :0,"Y":0)

("WIDTH" :Wd,"HEIGHT":Ht)

("TITLE":A$)
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CONTROL @W;SET ("AXIS LABEL":"Time")

Crtid$=SYSTEM$("CRT ID")

IF Crtid$[7;7]="C" THEN

CONTROL @W;SET ("BACKGROUND":11,"TRACE BACKGROUND":1)

END IF

CONTROL @W;SET ("CURRENT TRACE":0,"POINT CAPACITY": 1500)

CONTROL @W;SET ("SHARED X":I,"TRACE COUNT":Traces)

CONTROL @W;SET ("MINIMUM SCROLL":0)

CONTROL @W;SET ("CURRENT AXIS": "Y" ,"ORIGIN":Yorg,"RANGE":Ymg)

CONTROL @W;SET ("AXIS LABEL":Ylbl$)

CONTROL @W;SET ("SHOW GRID":1)

SUBEND



620 !

625 ! CODE TO READ AND FILTER THE RESULTS

630

635 DEF FNEntervolts(Timer)

640 COM /Devices/@Dvm

645 DIM V(100)

650 I=-i

655 T=TIMEDATE

660 LOOP

665 I=I+1

670 ENTER @Dvm;V(I)

675 EXIT IF TIMEDATE-T>Timer

680 END LOOP

685 CALL Filter(V(*),Vfiltered,I)

690 RETURN Vfiltered

695 FNEND

700

705 SUB Filter(X(*),X_filtered,N)

710 Mean=SUM(X)/N

715 Xsum=0.

720 FORI=1TON

725 Xsum=Xsum+(X(I)-Mean)A2

730 NEXT I
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735 Sigma=SQR(. 111111 *Xsum)

740 Test=.5*Sigma

745 Incr=.1*Sigma

750 Testing:!

755 Xsum=0.

760 Nsum=0

765 FORI=1TON

770 IF ABS(X(I)-Mean)>Test THEN GOTO 785

775 Xsum=Xsum+X(I)

780 Nsum=Nsum+1

785 NEXT I

790 IF Nsum=0 THEN

795 Test=Test+Incr

800 GOTO Testing

805 END IF

810 Xfiltered=Xsum/Nsum

815 SUBEND
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APPENDIX B

This appendix describes the numerical solution for an infinite plate with slot

defect using Fourier transformation. From equations 4.5, 4.6 and 4.7,

V 29(x, y, z) = 0

ay _~

ay Y=O

=p S(x, z),

= p P(x,z).

By definition,

(B.1)

(B.2)

(B.3)

9^ (k,,k , y)
21r

Sf(P(x, y, z) e(ikxx+ik=z)dzdx,

(q(x, y, z) = (B.5)f f -(k, k, y) e-(ikx+ikzz)dkxdkz,

where r is the Fourier transform of ( and kx, kz are the variables in the frequency

domain.

Applying the Fourier transformation to Equation B.1 results in

a 2 2o = 0 ,

ay 2

where k2 = k + k.

Applying the Fourier transformation to equations B.2 and B.3, the boundary

conditions change to
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at y = a:

at y = 0 :

=' p (k x, kz ),
ay

=pP (k ,k ),
ay

where S and P are the Fourier transform of S(x, z) and P(x, z), respectively.

The general solution for Equation B.6 is

^(k, y) = Acosh ky + Bsinh ky,

and after applying the boundary conditions

^'(k, y) = . [ cosh ky - P cosh k(y -
k sinh ka

Plugging this equation into Equation B.5 results in

a)].

(P(x, y, z) -

2zcf [k S cosh ky -P cosh k(y -a)]
_ksinh ka

e-(ik r+ikz)dkxdkz

To solve Equation B. 11 it is necessary to find the functions S and P . Using the

So
definition of the current source function as S (x, z) = , the Fourier transform of S can

)ir

be found:

(B.12)S = - f fS(x, z) ek dxdz.

Figure B. 1 shows a schematic view of the wires attached to the plate. At this time,

the problem is being modeled as one wire on each end of the plate.
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Zoom view of the wire

r
0

x

current in

y

-I +/

x

a

z

Figure B. 1 - Schematic view of plate with the round wires.

Considering only the input current wire on the right border of the plate, the following

change of variables is helpful:

x=l+pcos6,

z = p sin 6 ,

dx dz = p dp d6,

k, = kcosa ,

k- = ksina ,

where 1 is the distance between the current wire and the center of the plate and r is the

radius of the wire.
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The argument of the exponential of Equation B. 12 can be expressed as

i(kxx + k z) =i[k cos a (I + p cos 6)+ k sin a (p sin 6)],

i(kxx + k z) =i[kl cos a + kp (cos a cos 6 + sin a sin 6)],

i(k x + kZ z)= i[kl cos a + kp cos(a - 6)],

and substituting Equation B. 13 into Equation B.12 produces an expression for S

considering only the current wire located on the right border of the plate:

2rr

right ikIcosa+ikpcos(a-)] p dp d6

right = k 2 ffeikcos(a-o)p dp dO.
27c cr 0 0

Using the definition of the zero order Bessel function,

2r

JO (kp) = e ipcos0dG ,

gives

right 
ikxl s

rih 7, r 2 J0 (kP) p .
0

Making another change of variables,

w = kp,

dw = kdp,

Equation B.16 can be expressed as

right 7 r 2 w2w
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s0 eikl cos a 
(.

Sright ; krsJ 1 (kr), (B.17)
7i kr

where Ji is the first order Bessel function.

For the outlet current wire on the left border of the plate, a similar change of

variables is necessary:

x = -(I+ p cos6),

z = p sin6 ,

dx dz =-p dp d6.

With similar results:

5
leftt S ie kl s a

R kr
J1(kr), (B.18)

and therefore, the total source current function can be calculated as

total = rigth ~ left

S l''cos"z e-''c

Stotal =so eikks e J,(kr)
"" T7 kr kr'

So sin(klcosa)
Stotal 2i J, (kr).

it kr
(B.19)

To find the function P it was assumed the defect in the material is given by a

x -x2
Gaussian distribution type with parameters Po and k, that is, P(x, z) = PO - e

Using the Fourier transformation the function P can be calculated as:

P f P(x, z) e(ikxx+ikzz) dxdz ,

123



S1 eikz x0ie zdz0 -x

2f=f 8(k)

P 27c fez

e ,l2 eiksxdx,

-X dikx
e A dx.

Applying the following change of variables:

x

dx =A d,

the P function will be

P P 2;r 8(k) fA4 e-_2+ikxd{,

P2c
P= 8(k

2ff

P 2

""1({+i -t kx1)e
2 2

k2Z
2

4

-(;-ikA2  k2
2 e 4 d{

kA kI -(G-
{+ kj )e
2 2

2ik, d
2 d{.

This integral can be simplified through another change of variables,

k A

2

thus

2ffP= P 2 8(kz)2le

27 A

= 42(k2 )e
2.

k; - -k A ,2
4 f(u+i x )e Udu,

2

2 ktA
4 i ,A

2

k 2

4 k A2 .

124

(B.20)

(B.21)

(B.22)



Now, the voltage difference between two probes can be calculated. Substituting

equations B.19 and B.22 into Equation B.10 gives

sin ki co~n s a) __k2e

(^ (k, y)= .P 2i S0osin~klos , (kr) cosh ky -i 10(k,)e 4
k sinh ka L 7 kr 22

k A7 cosh k(y -a)j-

Substituting this expression into Equation B.5 a general expression for the potential

function can be calcuated:

1 x I 2i S0 sin(klcosa) J (kr)coshky - i S(kz)O(X2, Z) = _r __ k sinh ka I I kr 22
e 4 k,2 coshk(y -a) e-(ik x+ik )dkdkz

Evaluating this function at the centerline of the plate (z = 0) and at the surface of the

plate (y = a) results in

<p(x, y = a, z =20) 2 O sin(k2 cos a) J 1 (kr2 cosh ka 5(k, ) e
27r __k sinh ka )r kr 2Y

k 1) ] e-ikx dkdk2

Finally, recalling Equation 4.8 and substituting the expression above obtained for p

gives

V(x, y = a, z = 0)= V(x)= D(x, y = a, z =0) - p(-x, y = a, z =0), (B.23)

(e-'ks' eik"x ) coh 2iS0  J1(kr ) P0
icosh ka sin(kl cos a) - i f 5(k )

k sinh ka ) kr 22

k 2 1 ,

e 4k.!/t2j

V(x)=S Jdk~dk,V c ()=PffAXA

k 22
sink___ x J,_ J(kr) P0  k A2

sin k cx L ka 2SO sin(klcosa) Jkr 2 S k)e 4

k sinh ka I' kr 2

This integral can be separated into two parts: the first part takes into account only

the non-defected region of the specimen. The second part considers the effect of a defect
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V (x)=-- dkxdk,
27c

kXA2 . (B.24)



with a Gaussian distribution. These integrals will be represented as I and 12,

respectively. Thus,

V(x)= I1 - 12. (B.25)

The first integral is

~P . .sink x 2S J,(kr)
Il =. dkndk hka coshka sin(kl cosa)

X k sinh ka r kr

25o sin k x J1 (kr)
Il= f dkxdkz sk sin(klcosa) . (B.26)

z k tanh ka kr

If we change variables,

k, = kcosa ,

k- =ksina,

dk, dkz = k dk da ,

the integral becomes

2S p 21 sin(kxcos a) sin(kl cos a) J,(kr)I 2 =ldkda .(.7
1 2 f tanh ka kr

From trigonometric relations

1
sin(a) sin(b) = - [cos(a - b) - cos(a + b)], and

2

cos#= (e +e-'#),
2

therefore,

SOP 2f cos[k cosa(x -1)]-cos[k cosa(x+l)] J1(kr)t nh 
da

)2 0- tanh ka kr
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2S p 2;- cos[k cos a(x -l)] -cos~k cos a(x+l )] J1 (kr)I1= 2S Jdk dcx
07 2 0f tanh ka kr

S p [e ik cosa(X-1) + e-ikcosa(X-) -e ikcosa(x+1) - e- ikcosa(+) ] J (kr)
Il - dk d(B.2

Ic 2 0 0 tanh ka kr

Recalling the definition of the zero order Bessel function in Equation B. 15 I becomes

4SI p f d JI (kr) {JO[k(x - 1)] - JO[k(x+ )]}. (B.2
Z 0 tanh ka kr

The second integral, represented by 12, is

I2= fdk dk

12= P0A p f dk,
;2) -2

sin kx iO S(k,) e k24

k sinh ka 22

sinkk x - 22
:dkz . 5 3(k,)e 4

Zk snh ka

Recalling that

k = k +k2 , and by definition

f (k,)s(kz)dk= f (0),

the following expression for 12 is obtained:

P p12=
'2 -f

12=
2 0

dkxdk2

dk

sin kX x e k4

k, sinh(jk, a)

sin k x k 2
e 4

sinh(kxa)

Substituting equations B.29 and B.31 into Equation B.25 the final expression for

voltage difference will be:
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V(x)= 4Sop dk J 1 (kr) {JO[k(x-l)]-JO[k(x+l)1}-o P Jdk sink~x e- . (B.32)
Ir i tanh ka kr 2 sinh(k a)

This expression considers the current coming in for a single wire and coming out

for another single wire, as shown in Figure B. 1. The next step, in order to provide a more

uniform current distribution along the plate, is to model the specimen with multiple

wires. Figure B.2 shows a schematic view of this model.

Defining z,, = mc , where c is the spacing between current wires, the following change of

variables will be necessary:

x=l+pcos6,

z = zI+ p sin6 ,

k, = kcosa ,

k =ksina,

dxdz=p dp d6,

and the argument of the exponential of Equation B. 12 can be written as

i(kxx + k z)=i[k cos a (l + p cos 6)+ k sin a (z, +,p sin 6)],

i(k~x+k z)= i[kl cosa +kp cos(a -6)+(k sin a)z,,]. (B.33)

Analogous to Equation B.14, the function S considering only the current wires located

on the right border of the plate (current coming in) will be:

r 1g ht S0 2 [ikl cos a+ikp cos(a-)+ikz. sin a] p d.B
2right , 2 p dp (B.34)IT _n- o7
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Zoom view of the wire
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Figure B.2 - (a) Schematic view of the model with multiple wires;

(b) top view of the plate.
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Developing this equation in the same way as was done for the single current wire case an

expression similar to Equation B. 17 results:

S ikI cosa

17C kr
(B.35)(kr) I e ikz,,L sin a

,n=-

Finally, taking account of the current wires on the left border of the plate, where the

current is coming out, gives

SO sin(kl cos a)
,ol =2i --- k

r kr
J, (kr) e kz sina

Since the model with multiple wires does not change Equation B.31, only the

contribution of the non-defect region to the voltage difference measurements changes.

This term is represented by V0 (x) and, similarly to Equation B.26, it can be expressed as

_2S p sink x J(kr) ikz sina
V(x)=S;P _Jdk~dk, i ickcs r ''i"

f , k tanh ka kr

Making the same change of variables as before results in

(B.37)

S27,

2f f f~

sin(kxcosa) J1(kr) ikz sinadk dc sin(kl cos a) e
tanh ka

Using the same approach as Equation B.27 the equation above can be written as

V(X)=2- , j dk da
2 ,?I=-- ) 0

[eikcos a(x >-1 -e)i cos a'x'l -e-ik cos (+1)]

tanh ka

J, (kr) e ikz sin a

kr

The following change of variables simplifies the above expression:

a = k(x -l),

b = kmc,

= acosa +bsina.

Equation B.40 can be written as
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2
V(x)= -

Kr
(B.38)
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7= a2+b2 cosa+ sina
2 a2

1-+ 1+-
a b

b
and defining tan 0 = - results in

a

I,
y= a2 +b 2 cos(a+ 00), (

y= k 2 (X _ )2 +k 2m 2c 2 cos(a+ 0 ).

Recalling the definition of the Bessel function in Equation B.15

O (Vk2 (X _ 1)2 + 2 m 2 c 2 ) 2i k
2 

(x)
2

+k2n2c2 cos(a+c00)da
0

and finally the contribution of the non-defect region to the voltage difference

measurements can be expressed as

V(x)=4 pSOp dk J1(kr)J 0(k (x-l)
2 +msc2-J 0 (k (x+l)

2 +m2c2)]. (
r ,n=- 0 tanh ka kr

The total potential difference will be

V(x)= 4 S J, k I(k(x -)2+m 2c2 _ J(k (x±1)2 +m2c 2)] dk' sinkx -

w T Is t tanhka kr za 2t o sinh(ka)

which is the expression for Equation 4.9.

B.41)

B.42)
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APPENDIX C

This appendix describes the numerical solution for a semi-infinite plate without

defect using Fourier transformation. From Equation 4.10

(P(x, y, z) = 1 Je" cos(n ) ,(k, y)dk.
T t F n r

Taking the Fourier transform of the Laplace equation:

a2 (
2" - (k 2

ay 2

2 2

+ A, n 0+ O

(C.1)

(C.2)

and calling k 2 = k 2
2 2

+ 2 , the Laplace equation can be expressed as

2" - k = 0.

The general solution to this equation is

(k, y) = A, cosh(kny)+ Bn sinh(k y).

The boundary conditions require

=Bnk=0--Bn =0 and
ay V=

a __= Ankn sinhka= pS (k, y),

where S(k, y) is the Fourier transform of S(x, z).

Equation C. 1 can be written as
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(P(x, y, z) = 1 e
n=O _

cos( n)An cosh(kny)dk.
w

From the boundary condition

j_ = p S(x, z), and
h at

from the Equation C.5

f e ikx
2ff n=O -_

cos(n)Ankn sinh(kna) dk.
w

These equations give

cos(n )Ankn sinh(kna) dk = p S(x, z)
w

(C.6)

In order to calculate the coefficient A, from the equation above, again apply

Fourier analysis. Multiplying both sides of Equation C.6 by

the left-hand side becomes

LHS= 1 e 
2fn=O _

LHS= 1
n=0 -

cos( nn )Ankn sinh(kna)dk
w

sinh(kna)dk fcos( n)zz
0 w

2w

f. n
cos

cos
w

irz dz fe-ik dx,
w

dz ei(kk dx.

Observe that

2w MM nm 2w
I1= Crs cos --- dz =

0 W W W

I1=w ,,;

if n=m=O

if n=m#O'

(C.8)
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y a

1 e
2ffn=0 _

2w

0
cos - dz fe- idx,

(C.7)
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where 6m, is the Kronecker delta and o, = 1 if

integral is

(C.9)12= e-(k-xdx = 2z (5(k -k'),

thus Equation C.7 can be rewritten as

I 1
LHS = dkAk sinh(k a)Il 12,

2fn=O -

and substituting equations C.8 and C.9 into the equation above results in

LHS = 1 A kn sinh(k a)2z 5(k - k')W(-nm dk,
2zf n=O -

n

~1
LHS = A k sinh(k, a)2ff w,

where k,2 =k

(C.10)

,2 m 2)2
+ 2

In addition, the right hand side of Equation C.6 becomes

(C.11)RHS= pf cos M dz e-ik'xdx S(x,z).
0 W -

Recalling that to make (p periodic a mirror image in the z direction was built, the current

source can be expressed as

Sk (x, z) = S0[6 (x - 1)6 (z - Zk) +6(x- 1)6 (z - 2w+Zk) -6(x+1)6(z- Z)-6(x+1)6(z - 2w + z, ).)

The subscript k denotes one wire at position k. Rewriting Equation C. 11 results in:

2ww

RHS =p f Sk (x, z) cos M=e -ik dxdz,
0 -W

RH = ~j iki '1 m k +e-4k! m~t k) iki mtk -eikl k~(w )
wH = p vevs + o - o e cs]
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M)7(2w -Zk z, )7 COS m)7Z
and noting that cos = cos[2mff - m = cos

w w w

gives

RHS = p So[2e-'ki cos mZ- 2e cos ] ,
W

RHS = -2p So cos mZk W ik' - e-ik 1),
w

(C.12)RHS = -4ip So cos sin(k 1).
w

From equations C. 10 and C. 12 the coefficient Am can be calculated:

-4ip So cos m)Zk sin(k'l)

A = - s
", hz wk,,U,, sinh(k,,a)

(C.13)

Substituting Equation C. 13 into Equation C.5 an expression for the potential function can

be derived:

1 , f Jeik'x

2=0 m-.

4ip So cos(mitZk ) sin(k'l)
cos( ) w

w V2f wk,IMsinh(kna)
cosh(kmy)dk,

q0(x, y, z) = 2ip So f eikx

)TW 11= -

cos( ) sin(k'l)
cos( ) w cosh(km y)dk',

w km,,, sinh(k,,a)

which is Equation 4.11.

w
Now the voltage difference along the centerline of the plate (z =-) can be evaluated as

2

w W
V (x)= p(x, y = a, z =-) - p(-x, y =a, z =-),

2 2

_ _4p So fsin(k'x) sin(k'l) m C(M'
V(x)= cos()cos( )dk' . (C.15)SWo_ k,02oLg tanh(kma)2
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In case of multiple current wires it is necessary to sum all contributions. Thus,

4poSoa oo N11 iykIx snk1k)
V()= Y f scos(-)cos( 'Mk )dk,

'n m=0 k=, nMamtanh(kna) 2 w
(C.16)

where Nw is the total number of current wires.

The contribution of the current wires for the semi-infinite plate can be analyzed

separately. From Equation C.16 for m # 0:

N,

Icos( MlrZk
k=1

I N, .mlZj

2k=1

* .MZZk

+eW (C.17)

From a geometric progression:

K K+1

Y, r = -
k=1 r

and considering that w = (N, + l)c and Zk = kc , where c is the spacing between the

current wires, Equation C.17 can be written as

;mite iie

N v

Icos( rZk )
k=1

Let b = M)c, so
w

e eL mr - e w tniwr - e
2 m c - i w

- e -( + .
e -I e -1

M~k 1 eini w~
w 2 im

e W-

ernvr -e W

+ )

mlt'Zk 1 eimiteb
cos( ) = ( +

w 2 e" -1

e -im -ib

e -1

mC zk 12cosb -2-2cosmf+2cos(mZr-b)
cos( ) = -

w 2L 2-2cosb
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cos(
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Nv

COs( )
k=

= -- (I+ cos mC).
2

(C.19)

mAc 2mc 2w
This equation is only valid for - 2z. When = 21r, that is m = -- , or m =0

w w C

Equation C. 17 becomes

COs( MTk)
k=1 w

- 2i ) k = Nw.
k=1

The next step is to focus on the integral of the Equation C. 16. Rewriting that

integral for m = 0 as

I fd Asin(kx) sin(kl)
ka tanh ka

I =2f sin(kx) sin(kl)

0 ka tanh ka

and letting u = ka,

U U

2 sin(-x) sin(-l)
I= Jdu a a

ao u tanh u

We can rewrite this integral as

2 un(ul1l
I= -- du sin(-x) sin(U 1)

a 0 a a u tanhu

1
2 +

U

U U
sin(- x) sin(- 1)

du a a
U

(C.20)

(C.21)

(C.22)

'2

2 u u 1 1
I = - dusin(-x) sin(-l)2,

a f a a u tanhu u 2
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I =4

12
2 .



therefore, Equation C.20 can be rewritten as

I = ( +nEe

From tables (Gradshteyn and Ryzhik, 1994) Equation C.21 can be expressed as

U

2 0sin(- x) sin(u 2 )
I du a a 2-- 2

a 0U2 a2a a2

Recalling that

1
sin(kx) sin(kl) -[cos k(l - x) - cos k(l + x)],

2

gives

~1" ~Fu U ~F iii
I =J-du cos-(l - x) - cos -(l+ x) 2.a 0 L a a ~ tanhuu

Making the following change of variables,

_-x
a

+X
a

Equation C.25 can be expressed as

I = Re du(e" -e '
0

(C.26)
) utanhu iI,2

where Re means the real part of a complex variable.

Let u = y i. Using the following relationships:

e- -e-
sinh(iy)= i. . = isin y,

2i

et"+e-a'
cosh(iy)= = cos y,

2

tanh(iy) = i sin y = i tan y,
cos y
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evaluating this integral along the dashed contour defined in Figure C. 1 and using

Cauchy's theorem gives

I = - Re if (e-e- ,e Y
a

(C.27)
t I

y tan y -y' _d

The pole contribution at y = 0 cancels and the only contribution come from poles

at y = nz .

Let y = nz+ , with n >I and small c then

sin y = sin(nz + b) = + cos nz,

cos y = cos(ni + 5) cos nn,

tan y = 5.

/
y

Figure C. 1 - Closed contour

Equation C.27 becomes

I =--Reiyj
a n_1 0

~1
I Re

a n=1

d5(e -ar- e - "")
dzo

(e -a n _ e - n hr)

nzr
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I =e (C.2
a n=1 nx

Substituting equations C.24 and C.28 into Equation C.23 gives

Mr ) ** (e~ "" - e~- "")
I 2= -e + )(C.2

a a n=1 n

This equation only holds for m = 0. Similarly, the integral of the Equation C. 16 can be

evaluated for m # 0. In this case

k 2 =k 2 + , 7
2+ W

and

A sin(kx) sin(kl)
k, 1atanhk,,a

1= 2dksin(kx) sin(kl)

0 kia tanhkma

I=2 fdk sin(kx) sin(kl)
0

1 1 2
kma tanh k,,a k 2_a

Equation C.30 can be separated into two parts:

*A sin(kx) sin(kl)
I f= dk , 7

0 k 2 a2+m 22

W

k2 sin(kx) sin(kl)

0 k _2+MZ

2

w

and from tables (Gradshteyn and Ryzhik, 1994) the integral above can be expressed as

l L T2 r wy '"(I-x)
Il=-- e W

a 2 4 mir

- ( j
-e W
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(I-x) - (l+x)
7tw e w -e w

2a 2 Mr

The second integral can be expressed as

1 1
12=2 f dk sin(kx) sin(kl) k 2

2 dk slkl +km a akma

I2= dk Acos k(I - x) - cos k(l +x)] 1
0 k,a tanh k a

12 = Re fdk [eik(-) -e ik(l+x)

0 ( k, a tanh k, a k a2j1

- 1,
k 2a 2

(C.32)

Letting k = y i and evaluating this integral along the dashed path defined in Figure C. 1

results in

12= Re i d1 (e- -e - 1 ,
ka tanh ka k a 2

In In)

12 = Re if dy [e-(IX) - e -Yv+ ] 1
2922 

222

-ya2 tanh -y a

1
M 2 I___2_a 2 2

2 - 4ya

ma'The integrand is real only for 0 < y < -- and vanishes for y --> oo. Thus,
w

12=-Re i dy [eY(-x -e-Y(I+X)
111ir 222 

2 a 2

y~a2 - m a tan y2a2-
W

y . (C.34)

y2 
_2 I 2 a 2

yW 2

Contribution only comes from poles at

2 2 2 2 2 a 2
ya = 2+nf

.(C.33)

with n 1.
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Let 22 mt222 a +

therefore,

22
22 m2 a

tanya- = ,

with <<1,

a 2 2 2 2 2

dS=dy- 2 +
nr a 2 W2

m22 n22
Let Yin= 2+ a2

Equation C.34 can be expressed as

[e -x) - -e - ],,(nx)
12=-Re iJ d5

0nx 5 , 22 2 2 2
a2 + 2w a

12 = - R e i 7 [---)- I X

2 2 2+
2 + 2

I2=

12 t [e-31,- (l-x) - e- Hn (1+x)

2 2 2 2 2a _~ mit n it
2 2w a

I2=
a n=l Yn

Combining equations C.31 and C.35 gives

raw e W -e I
2a 2 M~

e n(I-X) -- Ymn +x)

+--
2n=] .Yn
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7r -e v)O(l-x) -e-321(I+x) + I r [ y,,(-x - (l+x)

2 a 2  +2-
L YmnO a n=1 Ymn

m I
where ymo =

Equation C.36 is valid only for m # 0 and can be rewritten as

a -yinn(1-x) -Y n(I+x)

a n =o an Ymn

where on =1 if n #0 and on =2 if n=0.

Returning to Equation C.29 a general formula for any value of m can be built. It

was shown that for m = 0

____nir -- fl7~r

Mx + *T (e a -e a

a a n 1 nit

a 2

(e a -e a )

ni

a

2a L
(C.38)

However, as n -+ 0,
(e-yo'(1 x) - eYo(+x))

YOn
2x and, therefore, Equation C.38 can be

written as

r (e-yOn (I-x) -e -on(l+x))

a n=O n YOn

(C.39)

Combining equations C.37 and C.39 a general expression for the integral of the Equation

C.16 is derived. So, for any value of m
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(C.36)

(C.37)

ye)On (1-x) -e-yon (I+x

n=1 YOn.



-Yin - -x) _ -Yn (l+x) ,

I=;Ty
2n an Ymn

(C.40)

where on =1 if n#0 ando =2 if n=0.

Returning to Equation C. 16 an analytical expression for the voltage difference at

z = is derived:
2

mif mxtZ,
N, COS( )Cos( )

4p Soa * 2 w I
V(x)- 7 k 2

m=0k=1 mr a

-ya(I-x) -) n, (/+x)e Inn -e

an Ymn

4D So N, Cos( ) Cos( (- -"nn (l+x)

w m= k=1 m n=0 n Ymn

which is Equation 4.14.
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APPENDIX D

This appendix describes the analytic solution for a semi-infinite plate without defects

using Fourier transformation. Consider equations 4.19, 4.20 and 4.21:

k 2 =0 
( . )

=0,
yo

y V= 2zf

(D.2)

(D.3)e "" S(x)dx .

The general solution to Equation D. I is

p = A cosh(ky). (D.4)

From the boundary condition at the surface (y = a)

p SO
21r w

fe"" [(x-

- 1) - (x + l)]dx,

1) - 8(x + 1)]dx ,

= p 0 [ e-ikl - eikl],
ay 2ff w

_ ip S0-- - sin kl.
T y r a W

The derivative of Equation D.4 with respect to y is
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2)r _f W

(D.5)

ao
ay Y~



= Ak sinh ka, 

and combining equations D.5 and D.6 determines the constant A. Thus,

Ak sinh ka = - sin ki,
9 W

ip So sin kl
7r w k sinh ka

(D.7)

(D.8)

Substituting this constant into Equation D.4 gives

( ip So sin kl
,ztwk sinhka

Entering this result into Equation 4.17 results in

iP So e sin k
qp(x, y) = inh ka cosh(ky) dk , (D.9)

which is the expression for Equation 4.22.

This allows the potential difference between two points at the surface to be calculated as

(D.10)

Therefore,

V(x) - S (e" -e-") sin kI cosh(ka) dk,
)T W __ k sinh ka

V(x) i2p So jsin kx sin kl d.
ITw _ k tanh ka

This integral has been evaluated before using complex analysis. Thus,

(1-x)nr _' +x)nir

V()-2pS. =+7c e a -e a

/IT W a n= n 7r

(D.11)
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(1-x)nr (l+x)nir

Vx 2pSox 2pSo e a -e a

w a I7W n=1 n

Consider the series

K=Xe_.
n=1

Now consider the following integral

J fJda'K.
a

Substituting Equation D. 13 into Equation D. 14 gives

J=1X da 'e-"
n=1 a

-a n

= e
n_1 -n n=1n

which is the series that appears in Equation D. 12.

Evaluating the series of the Equation D. 13 gives

-1= 11-ea

-a

-1= .e
1-ea

Substituting this result into Equation D. 14 results in
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(D.13)

(D. 14)

K=1 e-"= e-02"
n=O

(D.15)



J = da
a

e-a

1- e-"

Let z = e-". Thus,

o dz

1- z
e

J =-n(1 - e-").

Using this result and Equation D.12 gives

V(-2 p So x _2 p So In(V(x) =2 Fn (1-e
w a zvw L

(-x)7r

a )-ln(1- e a+),

(I-x)nr 1
2pSo x 2pSo 1-e a

V(x) = in ,1xnrI

L 1-e a j

(1-x),r

2p S x 1 1-e a

V(x) = (1+x,W a )T(cxl
. 1- e a

which is Equation 4.24.

Since the potential is an odd function it can be expressed as

o(x) =p So x 1 I : 1-e a

W a ;T(+X7
L 1- e a
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There is another way to find an analytic expression for the potential function. Consider

Equation D.9:

ip So
O(x, y)=- -

7w
f e i sinkl cosh(ky) dk.

k sinh ka

A table of integrals may be used to find a new expression for this function. So, the

equation above can be rewritten as

p So sin kx sin k1
qP(x, y) = P sin s cosh(ky) dk,

)rw k sinh ka

Q(x, Y) = sin kx sin ki cosh(ky) dk.
z W 0 k sinh ka

Knowing that

1
sin kx sin ki =-[cos k(l - x) - cos k(l + x)],

2

1 2 k____-x)__2_
sin kx sin k/ = -[1- 2sin2 k(l-x) _ 1+2sin 2

2 2

s 2 k(l+x) 2 k(l-x)sin kx sin k2 sin - sin ,

(D.18)

k(l + x)

2

(D.19)

and substituting Equation D. 19 into Equation D. 18 gives

2p So cosh(ky) 2 k(l+x) .2 k(l -x) A
y(x, y ) -= ~0cs(Q sin - sin Idk .

7rw 0 ksinhka 2 2

Making the following change of variable

4= ka,

the potential function will be

2p So -
9P(x, y) = S0IT W 0

cosh(j ) -
a sin 2

Ssinh

(l+x)
2a

sin 2d .
2a _
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It can be seen from tables (Gradshteyn and Ryzhik, 1994) that

coshfix dx
ax -

sinhx x

1 cosh2az +cos,8c
= - in

4 1+cos#3if

c c(l+x) + sr y
cosh +cos

a

1+Cos
a

a
coshff(lX) + cos 1

- In a a

I+ Cos y
a

c (l+x) C y
cosh +cos

(x, y)= p S in
2zc w

a a

cosh + cos I y
a a

which is the expression for Equation 4.26.
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0

Therefore,

qp(x, y) = 2p So In
;T W 4



APPENDIX E

This appendix describes the steps necessary to get equations 4.32, 4.35 and 4.37

that are part of the analytic solution for a semi-infinite plate with slot defect. Consider

Equation 4.31:

ay
(E.1)_A'p =0.

ax s,

The first term of this equation my be approximated as

DP(x, y)
Dy s,

a P(x,O) + A2P(x,0)
Dy ay

2

A2 aDp(x,0)

2 Dy 3

Dq 0 (x,0)+(x +A a 
2 0(xO)

ay ay ay 2

D2 y (xO)+ (A a 2 +
A2 @2P(x,O))

2 ay
2

A2 a 2 y1(x,O)

2 ay
2

The second term of Equation E. 1 can be expressed as

A[ Y(xO)
ax

Dy 1 (x,0) +A A2

ax Dxay

Substituting these results on the boundary condition of Equation E. 1 produces, for each

order of magnitude indicated as a superscript index, the following equations:

- a( 0
ay Y=O

'A )=

=0;

ay Dy 2 Dx
=0 ;

jV=O

2 2  A 2 a2y 0 _ a
Dy 2 2 Dy 2 Dx

a(x, y)
Dy

a (x, y)
Dx s

A290A D -a (y =0.

1J= 0
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Considering only the first order approximation (A(')) the boundary condition can be

expressed as

a 1+AayO - -0,
ay Dy2  D')

which is Equation 4.32.

Now consider equations 4.33 and 4.34:

P (x, y)= fe "" c(k, y) dk, and

e~ikx p1 (x, y) dx,

(E.2)

(E.3)

(E.4)

where (^ I (k, y) is the Fourier transform of (p, (x, y) .

The general solution to the Laplace equation with the boundary condition of Equation

4.30 will be

(p, (k, y)= B cosh k(y -a). (E.5)

Consider the terms of the equation E.2:

( = (x, dke" B k sinh ka,
ay

A D2 90(x,0) iP SoA ikxk sin kl dk,
ay 

2 r w f sinh ka

- ago (x,0)
ax

APSo
7rw

f sin kl k.
_~ sinh ka

Therefore Equation E.2 can be rewritten as

- [dk e" B k sinh ka P 1 Sof eikxk sinkl dk
-, W _ sinh ka

-fA e"" sin kl dk = 0.
Itw sinh ka
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c O (k, y)= f



Multiplying this equation by e~ikxdx the unknown coefficient can be calculated. The

first term, I,, of Equation E.6 may then be reduced as follows:

I,=- Jdke'' Bksinhkafe-ik xdx,

I=- JeLk-k)x B k sinh ka dx dk

I = -2c k'B sinh k'a.

The second term, 12, of Equation E.6 can be reduced as follows:

I2 - S S"
;Tw

fe ihk sin ki dk
sinh ka

(E.7)

f e - ikxAdx

I2 - ip Soh ekx
1- w_

k sinkl dk e kx[U(x+ A)
sinh ka

-U(x - A)] dx ,

ip Soh k sin kl A

rC w sinh ka

ip Soh k sin ki e -(kk ) e~i(k-k)'

7r w f[dksinh ka i(k - k')

2ip Soh k sin kl sin(k - k')A
rw _ sinh ka (k-k')

Finally the third term, 13, of Equation E.6 may

1 =-S ei sin ki
Ir W sinh ka

1  p hSO f sinkl dk
I w sinh ka

(E.8)

be reduced as follows:

dk f' e-ik dx,

f[J(x + A) - (5(x - /1)] ei(k-k)xdx,
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1  p hSO f sin ki [e--i(k-k),l ei(kk)A]dk
7cw sinh ka

1  2ip hSO sinki sin(k -k)AA.
Ir w _ sinh ka

Adding equations E.7, E.8 and E.9 the coefficient B can be calculated.

2_pS___k sin kl sin(k - k')A 2ip hSO sin kl .-2rck'Bsinhk' a- 2S fdk ' + 7 sin(k - k')1 A dk =0 ,
,'vw ~sinh ka (k -k ) r ihk

2ip Sh k k sin k' sin(k -k')+

c w _ sinh ka (k - k )

2ip hS 0  sin kI sin(k -k'), dk
7C w _ sinh ka

2zv k B sinh k'a

2z B sinh k a =

2ip Soh dk sin kl sin(k - k'),Z k

Irjd sinh ka k - k

2ip Soh dk sin k1 sin(k - k )A
zc W - (k - k ) sinh ka

B =i Soh 1 dk sin kl sin(k - k')A , or
zc 2 w sinh k'a _ sinh ka (k - k )

switching k' by k results in

B(k)= ip S0 h 1 dk sin k l sin(k- k)Z (E.1
2 w sinh ka _ sinh k a (k -k)

Substituting this result into Equation E.5 gives

ip SOh cosh k(y - a) sink'I sin(k- k()E
(,(k, y) - 2

W sinh ka dk sinh k'a (k' - k) (

An expression for the potential function ( , (x, y) can be obtained substituting Equation

E. 11 into Equation E.3. Thus,

0)

1)

9 X, ) - ip 2Soh ffd
1(x, y)=- iPhdk

7V"W _
(E.12)sin k'a sin(k'-k)/ coshk(y-a)e""dk I

sinh k'a (k - k ) sinh ka

which is the expression for Equation 4.35.
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The potential difference may be calculated as

V, (x) = (p,(x, a) - T, (-x, a),

2)p Soh
Ax Jfdk dk' sin kI sin(k- k)1 sin kx

sinh k'a (k- k) sinh ka

Consider the integrals

J = dk dk

K = dk dk

sin k'l sin(k'- k)11 sin kx

sinhk a (k'-k) sinhka

sin k'l sin kx

sinh k a sinh ka

It can be seen that

J= K dl.
0

Evaluating the integral K gives

d'sink k' sin kxdksink sinhka [coskitcosk 'A-sinkA sink'A],
sinh k a sinh ka

d sin k 1 sin kx co o ',k kcoskacosk it,
sinh k'a sinh ka

K= dk dk' sin k
K =

0 0

(1 + A)+ sin k'(1 - A) sin k(x + A)+ sin k(x - A)
sinh k 'a sinh ka

It can be seen from tables (Gradshteyn and Ryzhik, 1994) that

n z(x±+2) z(l±+2)
K = )2 [tanh tanh +

2a 2a 2a
itx+ ) 7C(l -it)

tanh tanh +
2a 2a

Making the following change of variables

tanh tanh +
2a 2a

TV(x -i) ,'(l± + )
tanh tanh ]

2a 2a
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-k)A.

(E.14)

K ffdk

K = f dk

(E.15)



2a
a=-

2a
1

2a

Equation E. 15 can be rewritten as

K = ( 2 [tanh(a +0) tanh(# +0) + tanh(a -0) tanh(#3 -0) +
2a

tanh(a +0) tanh(# - 0)+ tanh(a -0) tanh(#5+ 0)]

Substituting this equation into Equation E. 14 gives

dO tanh(a + 0) tanh(# + 0)

dO tanh(a+ 0) tanh(# - 0)

2a

+ (-f
2a~ 0

2a

2a+
0

dO tanh(a - 0) tanh(# - 0) +

10 tanh(a - 0) tanh(#3+ 0)

Consider the first term of Equation E. 16, represented by J, :

f2a

J1 =( 2a)fdtanh~ + 0) tanh(# + 0) .

Let

2

/3-a
2

Therefore,

J= (J ) o tanh(#
2a+,

- v) tanh(# + v).

Knowing that

sinh(# - v) sinh( + v) = I (cosh 20b
2

- cosh 2v), and
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2a 
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1
cosh(# - v) cosh(# + v) = - (cosh 20 + cosh 2v),

2

gives

2a 2

J =(a) Jdp
2a ,

2a 2

cosh 20 + cosh 2v - 2cosh 2v

cosh 20 + cosh 2v

2cosh2v

cosh 20 + cosh 2v

Making 4 = 2 , the previous equation becomes

a dj 2cosh2v
2 -[1- ],

8+2 cosh 20+ cosh 2v

J, =( ) A
2a 2a

a d" cosh 2v

, cosh + cosh 2v

)TA++a

J 7 =(-)[- cosh(# - a)
2a 2a

a
/3a cosh + cosh(8 - a)

It can be seen from tables (Gradshteyn and Ryzhik, 1994) that

dx = cos echa[ln cosh x+ a In cosh
cosh a + cosh x 2

x- a
2

thus,

; ;1 cosh(-+#) cosh#
Ji =(-){-- coth( - a)[ln -2a In

2a 2a cosh(7+a) cosha

2a
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J z =(){ - coth(# - a)ln
2a 2a

J = ( f){

2a 2a
coth (I - x) In

2a

cosh( ±/B) cosh a
2a

cosh(- +a)cosh#8
2a

},

cosh (l+ A)cosh
2a 2a

cosh (x+A) cosh a
2a 2a

Now, consider the second term, J2 , of Equation E.16:

2a

j2= ( 2a) fJdO tanh(a -60) tanh(/J - 6),

2a

J2= ( 2a) f dO tanh(6 - a) tanh(6 -,)
0

Let

0=0 
+
2

V/-
2

Therefore,

761 f+a

J2 2a 2

J2 2a) f do~ tanh(q! - v) tanh(q5 + v),
+ia

-(2

ZrA 8+a
2a 2

a -

2cosh2v

cosh 20 + cosh 2v

Making 4 = 20, gives
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J2 = ( )[ - cosh(# - a)
2a 2a

J2= (
2a

(#+a)

Sch+do

_(#+fa> cosh + cosh(#B - a)

cosh( -a) cosh#l
I coth(# - a) an }
2a cosh( #- /)cosh a

2a

J 2 =( ){-
2a 2a

coth - (l - x) In
2a

cosh ( - x)cosh
2a

cosh
2a

2a}

(1-l) cosh 2a
2a

Consider the third term, J3 , of Equation E.16:

J3= (a)f d0 tanh(a + 0) tanh(#l - 0),

;r
1

Ir2a

J3 2a(-f)dO tanh(a +0) tanh(O -,#).

Let

0= 3- a
2

A + a
2

Therefore,

2a 2

J 3 =-( ) do tanh(q - v) tanh(+ v),
a a

7CA 6-a

2a 2

J 3 =-() Jdp[1
3 )

2

2cosh 2v

cosh 20+ cosh 2v
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Making 4 = 20 , the previous equation becomes

J = -(-)[-- - cosh(#8 +
2a 2a

J 3 = -(-){ - - coth(#5 +
2a 2a

J 3i ) { f
2a 2a

coth (l
2a

)T (,-a)
ad

a) J,
cosh + cosh( +a)

cosh(- +a)cosh#8
a)ln 2a

cosh( - B) cosh a
2a

cosh (A+x)cosh

+ x) In 2a 2a }.
cosh (A - l) cosh

2a 2a

Finally, consider the last term, J 4 , of Equation E.16:

Ir2a

J 4 = ( ) d6 tanh(a - 0) tanh( + 6),

2a

J4 2)fdO tanh( - a) tanh(8 +/6).

Let

= +A a
2

2

Therefore,

ZA2 '8-a
2a 2

J42 f(I Jdo tanh(qO - v) tanh(q5 + V),

2
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2

2

2cosh 2v

cosh20 + cosh2v

Making 4 = 20, gives

J4 = )[ - cosh(/3 + a)
2a 2a c s d

_t cosh + cosh(#8+ a)

cosh(-- +#/)cosha
J= -( "){- coth(# + a)ln - 2a

S2a 2a 761
cosh( - a) cosh#/

2a

J 4 = i i {
J4 2a 2a

- coth z
2a

cosh (A1l)cosh
(lI + x) In 2a 2a

cosh (A - x) cosh
2a 2a

An expression for the integral J can be obtained by adding equations E. 17 through E.20.

Thus,

J = )coth
2a 2a

+( ()coth (
2a 2a

J =-(-)coth -(l-
2a 2a

cosh- (I +A)cosh-
I - x) In 2a 2a _

cosh (x+ Z)cosh ITI
2a 2a

cosh (2+x)cosh
l+x) In 2a 2a+

cosh--(A - l)cosh
2a 2a

cosh -(l+l)cosh (-x)
x) In 2a 2a +

cosh (x + A) cosh (-- z 1)
2a 2a

7r If ((-)coth -(l
2a 2a

( )cothZ (1
2a 2a

(-) coth -(I+.
2a 2a

cosh (A -x)cosh

-x) In 2a 2a

cosh (2 -1)cosh a
2a 2a

cosh-(A +)cosh

+x)ln 2a 2a

cosh-(2- x)cosh
2a 2a

cosh- (A + x)cosh ( + 1)
2a 2a

cosh- (A - l) cosh- ( - x)
2a 2a

From Equation E.13

2p Soh
;x J
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ZA'8, /-a
2a

4 2a

(E.20)

x) in



thus,

V (x)= - p 0 h
i a w

if
[coth (l - x) In

2a

cosh (l +) cosh (A - x)
2a 2a

cosh " (x +A) cosh 7 (A - l)
2a 2a

If
coth - (l + x) In

2a

cosh (A+ x) cosh (A+ l)
2a 2a

cosh 7 (A-
2a

1j

1) cosh (Z(l-- x)
2a

which is the expression for equation 4.37.

Now consider equations 4.40 and 4.41:

Pnew () -- 0  e"i sin kl cosh k(
I w _ k sinh k(a - AO)

y-AO) dk,

p S09pnew(xy)= in
cosh

(a - A)
+ cos

(a - AO) (E.23)
h(l -X) z (y - AO)

cosh +cos
(a -A 0 ) (a -A 0 )

The potential function may be written as (p = po + qp and, therefore,

pnew = npo + -_p new.

The parameter A0 may be estimated. At large x evaluated at y = a Equation E.23 can be

approximated as

7t(l+x)

new _ P So e (-AO)
-" 2r win ,r(X-1)

e (a-A 0 )

,,new v=a

P So I
w(a-AO)

Also, the potential function (O in this region can be approximated as
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(E.21)

(E.22)

I



r(1+x)

p i lne "
2 =a f2 w (x- ,

e a

(PO = aP SO
y wa

Analogously, the potential function p, at y = a for large values of x can be approximated

as

-(+) - (x-A) -(A+x) -(+l)

Soh ee 2 a e2a e2a
(pi ~ In -In-pSh e ea e e _27c a w -n -L(x+2)IA ) -L (12) -(x-A)L. e 2a e 2ae 2a e 2a j

YiL,- ~ SChA .

The parameter AO is such that

( y ('new \, 0y= 0

Thus,

pSol pSoh2
+ 2

wa a w

pSOl hA
(1± -):

wa

1 hA
-(1+--)

at

p so I
w(a-AO)

= S 1

w(a--AO)

a al a-A 0

1-(1
a

hA
+a

al
1

a
AO
a

hA

which is the expression for Equation 4.42.

(E.25)

(E.26)

(E.27)
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APPENDIX F

This appendix describes the steps necessary to get the equations that are part of

the analytic solution for a semi-infinite plate with smooth defect. Consider equations

4.33 and 4.34:

p(x, Y)= e"" p1(k, y) dk , and (F.1)

k, y)=
-i" 91(x, y)dx.

Taking the Fourier transformation of equations 4.44, 4.45 and 4.46 gives

-k 2 ,
k%71- =0,

Jy2

, = 0 ,

27r
f e-"'dx

y 01
a (A

ax,
I 1

The solution to the Equation F.3 is

(p (k, y)= B cosh k(y - a).

The derivative of this equation with respect to y is

1 k Bsinhk(y-a).
ay

Evaluating this expression at y = 0 and replacing it in Equation F.5 results in
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(F.2)

(F.3)

(F.4)

(F.5)

(F.6)

e



-kBsinhka=- e~ j?)j
21r ax, ax, I

21r k sinh ka
f e~i"' dx

Substituting Equation F.7 into Equation F.6 gives

y)= cosh k(y - a) e-ikx

2)r k sinh ka _
dx'[

Replacing this equation in Equation F. 1 gives

1 > coshk(y-a) e~""
21 k sinh ka _f

P (X, y) = I
21r

dx[a (A a (O)
ax, ax, I 1-0

Akf dx'eik(xx) coshk(y- a)
f Jk sinh ka Lx'

2 A xy1(x,y)=-- dk dx'
)T 0

PL (X, y) = 2dx , (A
IT f ax,

sinkxsinkx cosh k(y - a) a
k sinh ka I ax'

a - o0

a9o
, )

ax, _,_0

dk sin kx sin kx coshk(y-a)
k sinh ka

2
1 (x, y) =

0fo
, (A )

3x 3Jx -o=0 0

d coshk(y -a) 2 k(x+x') 2 k(x -x)
k[sin - sin 
k sinh ka 2 2

Making the following change of variable

4 = ka,

the potential function (p, becomes

2 f PO -
P (x, y) = 2dxd (Ag--)

0 ax x o

cosh(y -acs (a . ,(x+x')
d1 [sin

; sinn ,

2 { (x -x)
sin 

.

2a

It can be seen from tables (Gradshteyn and Ryzhik, 1994) that
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B +(A )j? 0
ax, ax, _YO

(F.7)

a (A a )I
ax ax I -

(F.8)

2a

A , 0 )
ax, - =O



fsin' axcoshfix dx Incosh2az +cos#8z

sinh x x 4 1+ cos#uc

Therefore,

(p, (x, y)
24r 0

dx' a (A a
ax, ax,

cosh (x~x) +X+ Cosiry-a)

in a a

V=O coshhr(XX) + Cos Z(y - a)

_ a a

(F.9)

which is the expression for Equation 4.47.

Evaluating this potential function at the surface of the plate (y = a) results in

I0dx
v=a - 27c [ iv(x+x )

cosh +1
in aIn

cosh +1
a

but

cosh(2a) +1 = 2cosh 2 a,

therefore,

yp1 (x) = I dx
0ro

aJ (A a )]_
-x, y=0

cosh 2 )(x+x)

In 2a

cosh
2a

dx' (A )
ax @ 'y=0

cosh f(x + X
In 2a

cosh (XX)
2a

Integrating by parts gives

(Ax'?)]0x
L ir(x +x) ___x-x_tanh + tanh

2a 2a _

Deriving Equation 4.43 with respect to x gives
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p1(x) _=a fu

pi (x) y= f dx
2a 0

(F.10)

,

_

9' (A ) (P
ax, ax, V=0



y0  p 0  [tanh + tanhl
ax -V = 2aw [ 2a 2a

(F.11)

thus,

P ( = A(x')[tanh + tanh ][tanh + tanh 2 ] dx(P 4V'-4a 2 W 0 2a 2a 2a 2a
(F.12)

This is the expression used for Equation 4.48.

Now consider equations 4.49, 4.50 and 4.51:

(F.13)

ay2 = 0,

r9 Dy 2D =0.

ay ax st

Expanding the last boundary condition and considering the second order term gives

(F.14)

(F.15)

ay 2

ax 2

2 a 3  0  ' 2 ' 2 0 x)
+ 2 ay 3 - x Ab AA)'= 0

A2 
Dx 2Dy)

2 ax y
Ax P1y - -1

ax Dxay i)y=0 = 0,

5T +aDx 1=0

Dy 2  = (A D 1 ) .

ay V-0 ax ax )v=0

This is the expression for Equation 4.52.

The potential function (P 2 and its Fourier transform I2 are given, by definition, as

(F.16)
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q 2(x, y)= fe "( 2 (k, y) dk , and

?-ikx 9 2 (x, y) dx .

The Fourier transformation of equations F. 13, F. 14 and F. 16 are

=0,2 - k 2 0,

ay a

ay 2

Dyy=
fe-"'dx' L (A )

2IT _ ax, ax, _,_o

The solution to Equation F. 19 is

$2(k, y) = C cosh k(y - a).

The derivative of the equation above with respect to y is

2 =k C sinhk(y -a).
a

Evaluating this expression at y =0 and replacing it in Equation F.21 gives

-k Csinh ka =- e- dx' ,(A ) ,
2zc ax ax y=O

C = - e~"" dx'L A ) .L
2z k sinh ka ax ax =

Substituting Equation F.23 into Equation F.22 results in

~2 (k s ~coshk(y- a) -dx'
27c k sinh ka e '

a (A ')
ax ax I -O
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(F.18)

(F.19)

(F.20)

(F.2 1)

(F.22)

(F.23)

(F.24)

(F. 17)

(P2(k, y) = f



Replacing this equation in Equation F. 17 gives

, cosh k(y - a) dk
k sinh ka _e

-"" dx'L (A ) .
_ax ax ,O_

Using the same algebra as for qf , the potential function (c2 is found to be:

f(x+x) r(y - a)1

(P (IY)dx[a A P - I cosh -a + Cos a_

2)2( x, y), dx' 7r(X -) X) ary a),
cosh + cos

a a]

which is the expression for Equation 4.55.

Evaluating this potential function at the surface of the plate (y = a) gives

(P2(X)a =Idx (A
2)T f ax,

92 (x) y=
0

dx(dx [ (
a x,

dO)
ax,

cosh +1
In a

=0  cosh +1
a

cosh Z(X±X
In 2a

cosh7C(XX)
2a

Integrating by parts yields

0
2a0

A(x )-- -
ax V-0

[ c(x +x) ff(x -x) 1tanh + tanh ,
2a 2a

which is the expression for Equation 4.56.

The term must be evaluated. From Equation F.9
ax , 1-

(x,1y)
2c f

dx '[ (A 90ax ax -O

cosh f(X+X + cos

In a a

cosh(X - x) Cs (y -a)
a a]
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2,(,Y 2)r f

(F.25)

(F.26)

_

ax,-y0



and changing the integration variable results in

(, (X, y) 1 dx
2; 0

a (A
-ax "

c _(x +x" ) + c( y -a)
-j cosh + cos

In ,1a Ia _ .

-- cosh 7rx - )+ Cos ry-a
a a

Evaluating the first derivative of this function with respect to x gives

-, I
ax ) a In
ax" I j?0 x,

-Le

IC(x+ x") 7c y -a)
cosh +cos

a a

c C(x -x ) sr(y - a)cosh +±cos
a

It can observed that

__a ir(x + x" ) r( y - a) f (x" - x' ) f( y -a)l
In cosh +cos ]-In[cosh + cos =

ax a a a a

a I hr(x' + x") or(y - a) F r(x" - x) + r(y - a)
Inn cosh +cos + ln cosh +cos

ax I a a I a a

Replacing this identity in Equation F.28 gives

- dx[ (Ai )] In cosh + + cos 7c y a)+ln cosh + Cosya-a)
ax 21r ax" ix" ng ax" a a a a_

and integrating it by parts

d9  I 'V a d 0 ~1 1n-- - jdx " , (A ,, ) In
ax' 27r 0 ax ax" I V=

cosh +cos - +lnI
a a I

ff(x"-x') ___y-a

cosh +cos
a ajI

Evaluating the expression above at y = 0 gives

dx =-- dx- In
ax, A o 2z' 0 ax ax - =0

cosh 
-1(X + X

a 1+ In cosh
(x"- x )]}

but

cosh(2a) -1 = 2sinh 2 a ,
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dy1 (x , y)

ax'
dx" a (A

ax "

1 (F.28)

a _

.
21r f



1 ,,F 2 d91 [ 2 ,r(x' + x" ) .2
= I- dx[ ,, (A a ) In 4 sinh 2 7x )sinh 2

279rLx 2 fx _ 2a
0 0=

A -p- )  In 2sinh lr(x+x)

ax" I 2a

11 2
. Ir(x - x)

sinh .-
2a _

Knowing that

sinh a sinh b =
1

-[cosh(a + b) - cosh(a - b)],
2

Equation F.29 can be rewritten as

1 dx'[d a2 (dY?)] 71X nc _ Mcos
= -- dx , (a ---- ) In cosh - cosh .

2)T 0 _x V=x a a_
(F.30)a ('-1

ax , 

The integrand has a logarithmic singularity when x x , but this singularity is

integrable if A and (po are sufficiently smooth. Figure F. 1 shows a schematic view of the

singularity.

cx x

x
x

Singularity point

Figure F.1 - Schematic view of the singularity in Equation F.30

Consider Equation F.30 as
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therefore,

ax ,

dx wo
dX ( (F.29)

r(x" x'

2a



- dx f(x )n cosh a cosh ,2x' & I

where f(x)= (A ) and x is a small increment about the singularity point.
ax2" aX - =O

Expanding near x = x' + , where 4 is a small term, results in

f (x) f (X

7x f(x+) 7C x . 7t x
cosh = cosh cosh + sinh .

a a

Substituting these expansions into Equation F.31 gives

0p 43 1 t . r 2e
- -- d1 f (x )ln sh ,

ax O 2 -5 a a]'

21 5x

1
-f(x )

2ff

_1

f (x)
27c

__1

2f

x )
ff x)

77 2 sinh2

f (X )In( 2 s -h2 )+In 2

a a_

[
[
2x ln( 2 sinh2 )+2 dj In 2

0

)X )2x
2x ln(-sinh fX) 2 + 4Jdl n ],

a a _

(x) 28x ln( sinhi)2
a a

+4(& Incx-x)]

In( sinh ]) -2
a a

ln(
gx a2 (A

Zc ax2" x "
-sinh )2 -2j.
a a

This equation replaces Equation F.30 at the singularity x = x .
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aP1

ax, Y=0

(F.3 1)

a a a

Dx ,_o

ax V=O

Dx ,=0

ax 0

ax y=0

Dx wo
(F.32)

a a

].V=o I



The term (
aX2

[aX2 ax ]v'=0

a2 a )

Lx 2" dx

A ) can be rewritten as
ax" -=

a - ,,A g o2

=[A +2 ,,a2 0 + d g
ax "3 dx " dx2 aX - =O

Substituting Equation F.33 into Equation F.30 gives

dA a
2y 0  d 2A Dy0]2 ,, + ,,

dx dx" dx"2 dx j
In cosh -cosh M,

1 a a_

which is the expression for Equation 4.57.

Substituting Equation F.33 into Equation F.32 gives the equation above evaluated at the

singularity x = x . So,

da d2 0  d 2 A Dy0

dx" dx"2 dx"2 x =0

L Mx .___ 2In( sinh TX)
a a

which is Equation 4.58.

From Equation 4.43 the derivatives of the potential function qo with respect to x" can be

evaluated. Therefore,

itanh +
2aw [ 2a

pSozc 2
2 sech

4a2w

tanh ,
2a

Z(l + x") -sech 2 
I7l - X)

2a 2a

sec h2 7r(l+x tanh+sec
4a3 w [ 2a 2a

Consider the defect given by Equation 4.59.
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a- =
ax ,_ y

(F.33)

=- I dx
2;T 0

A +
dx"3

(F.34)

ax , =0

+3 (F.35)

dx" ,_ 0

a 20 g

ax2dx y=C

d390

yx =0

(F.36)

(F.37)

h2 -x tanh .
2a 2a _

(F.38)



tanh + tanh (c - x)

A(x) = h s s , (F.39)
2 tanh(c / s)

The first and second derivatives of this function with respect to x must be calculated in

order to substituted into equations F.34 and F.35. Thus,

dA h sec h2( Cx)-sech2(cx)l (F.40)
dx 2 s tanh(c / s) s sj

d 2A = hsec h2(c ) tanh(c )-xsec h2(c- ) tanh( x)]. (F.4 1)
dx2 2 S2 tanh(c/s) s s s S

Equations F.34 through F.41 are used to calculate the potential function qp2 evaluated at

y = a, which is given by Equation F.26.
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APPENDIX G

This appendix contains a listing of the code "forwardsmooth", which was

developed to solve the forward problem for a plate with a "smooth defect". This code

includes the subroutines "calcphione" and "calcphi2".

% PROGRAM FORWARD-SMOOTH

function smoothforward

clear

global lprobe w 1 a rho curr deltax x

global xpO numcol numxp deltaxp

global h c s i x2pO deltax2p numx2p

input('enter with the

input('enter with the

input('enter with the

input('enter with the

input('enter with the

length of probe in x direction : lprobe (nn)= ');

width: w (mm) =');

defect height: h (mm)=');

defect width: c (mm) =);

length :1 (mm) =);
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input('enter with the thickness :a (mm) =');

input('enter with the resistivity :rho (micro-ohm*mm) =);

input('enter with the current : curr (amp) =';

input('enter with the increment in xprime : deltaxp (mm) =');

input('enter with the increment in xdouble-prime : delta2xp (mm) =);

input('enter with the parameter s : s (mm) =');

input('enter with the increment in x : deltax (mm)=');

numcol = lprobe/deltax +1;

numxp = (2*1)/deltaxp+1;

numx2p = (2*1)/deltaxp+1;

for i=1:1:numcol,

x(i)= (-probe/2)+deltax*(i-1);

numi = sinh((pi/(2*a))*(1+x(i)));

den1 = sinh((pi/(2*a))*(-x(i)));

phizero(i) = ((rho*curr)/(pi*w))*log(num 1/den 1)

[phione] = calcphione(xpO);

[phi2] = calcphi2(xpO,x2pO);

phi(i) = phizero(i) + phione(i) + phi2(i);

end

plot(x,phi,'b-',x,phizero,'r-')
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title('Potential functions versus distance: plate with smooth defect')

xlabel('Distance from the center to the border of the plate (mm)')

ylabel(Potential (microvolt)')
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SUBROUTINE CALCPHIONE

function [phione]= calcphione(xpO)

global w 1 a rho curr deltaxp h c s

global xpO numxp x i

xp=xpO;

sumxp = 0;

for j=1:numxp,

var1 = tanh((pi/(2*a))*(+xp))+tanh((pi/(2*a))*(-xp));

var2 = tanh((pi/(2*a))*(x(i)+xp))+tanh((pi/(2*a))*(x(i)-xp));

var3 = (h/(2*tanh(c/s)))*(tanh((c+xp)/s)+tanh((c-xp)/s));

prod = varI*var2*var3;

sumxp = sumxp + prod;

xp = xp + deltaxp;

end

phione(i) = (rho*curr*deltaxp*sumxp)/(4*a*a*w);
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SUBROUTINE CALCPHI2

function [phi2]= calcphi2(xp0,x2p0)

global w I a rho curr deltaxp h c s i

global xp0 numxp x i numx2p x2pO deltax2p

xp=xp0;

sumxp = 0;

for j=1:numxp,

sumx2p = 0;

x2p =x2pO;

for k=1:numx2p,

aux = xp - x2p;

if (aux==O)

indice =j;

incremxp = 0.001;

var1 = (h/(2*tanh(c/s)))*(tanh((c+xp)/s)+tanh((c-xp)/s));
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var2 = -

(pi*pi*curr*rho)/(4*a*a*a*w))*[((sech(pi*(1+xp)/(2*a)))A2)*tanh((pi/(2*a))*(1+xp))+...

((sech(pi*(I-xp)/(2*a)))^ 2)*tanh((pi/(2*a))*(1-xp))];

var3 = (h/(2*s*tanh(c/s)))*[(sech((c+xp)/s))A2-(sech((c-xp)/s))A2];

var4 = ((pi*curr*rho)/(4*a*a*w))*[(sech((1+xp)*pi/(2*a)))A2-(sech((-

xp)*pi/(2*a)))A2];

var5 = -(h/(s*s*tanh(c/s)))*[((sech((c+xp)/s))A2)*tanh((c+xp)/s)+((sech((c-

xp)/s))^2)*tanh((c-xp)/s)];

var6 = ((rho*curr)/(2*a*w))* [tanh((pi/(2*a))*(1+xp))+tanh((pi/(2*a))* (1-xp))];

deriv2xp = var1*var2+2*var3*var4+var5*var6;

excessao = (1/pi)*incremxp*deriv2xp*[(og((i/a)*incremxp*sinh(pi*xp/a)))A2- 2 ];

x2p = x2p + deltax2p;

end

if (aux-=0)

var7 = (h/(2*tanh(c/s)))*(tanh((c+x2p)/s)+tanh((c-x2p)/s));

var8 = -

((pi*pi*curr*rho)/(4*a*a*a*w))*[((sech(pi*(1+x2p)/(2*a)))A2)*tanh((pi/(2*a))*(1+x2p))+

((sech(pi*(1-x2p)/(2*a)))^ 2)*tanh((pi/(2*a))*(1-x2p))];

var9 = (h/(2*s*tanh(c/s)))*[(sech((c+x2p)/s))A2-(sech((c-x2p)/s))A2];

var10 = ((pi*curr*rho)/(4*a*a*w))*[(sech((1+x2p)*pi/(2*a)))A2-(sech((-

x2p)*pi/(2*a)))A2];
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var 11 = -(h/(s*s*tanh(c/s)))*[((sech((c+x2p)/s))^2)*tanh((c+x2p)/s)+((sech((c-

x2p)/s))A2)*tanh((c-x2p)/s)];

var12 = ((rho*curr)/(2*a*w))* [tanh((pi/(2*a))*(1+x2p))+tanh((pi/(2*a))*(1-x2p))];

deriv2x2p = var7*var8 + 2*var9*varlO + var 1*varl2;

prod1 = deriv2x2p*log((cosh((pi/a)*xp)-cosh((pi/a)*x2p))A2);

sumx2p = sumx2p + prod 1;

x2p = x2p + deltax2p;

end

end

dphildxp = (1/pi)*deltax2p*sumx2p + excessao;

var13 = (h/(2*tanh(c/s)))*(tanh((c+xp)/s)+tanh((c-xp)/s));

var14 = tanh((pi/2*a)*(x(i)+xp))+ tanh((pi/2*a)*(x(i)-xp));

prod2 = dphildxp*varl3*varl4;

sumxp = sumxp + prod2;

xp = xp + deltaxp;

end

phi2(i) = (1/(2*a))*deltaxp*sumxp;
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APPENDIX H

This appendix describes the derivation of Equation 4.63, which is the cylindrical

correction for the potential function. Consider the equations below:

a2, D2 y _

ax2 
y 2

=0,
Dy _

ay Y=AO

1 q0"
r@ Dy

=0.

(H.1)Let ,(x, y) = K(y - a) (x, y)+ T .

Thus,

VpC = K (y - a)V + 2V(y - a).V po +pOV 2 (y - a)]+ V2 T

V 2 9 = 2K + V 2'PC.
ay

1
Choosing K = - , Equation H. 1 can be written as

2ro

PC (X, y) = -( 2 a) o(x, y) + (x, y).

The function Tc (x, y) satisfies the Laplace equation, therefore

V2 TP(x,y) =0,

ay Dy 2rc y- aDay

ay Dy 2 ro 2 r. Dy

(H.2)
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The boundary conditions are

afy (oray 2 r yA=0,

-0.
Dy 2ro )

I
T, (k, y)

2zc
fe"ikx{c(x, y) dx.

The Laplace equation changes to

a2 ^
" -k2P =0.

The general solution for this equation is

T, (k, y)= Acoshk(y - a)+Bcosh k(y - Ao).

Thus,

= kA sinh k(y -a)+kB sinh k(y - AO).
ay

From Equation H.3

-kAsinhk(a - AO) =
1

ro (A o) ,

A = I
2rk sinh k(a - AO)

From Equation H.4

183

at y=A :

at y=a:

Consider

(H.3)

(H.4)

(H.5)

T, (x, y) = e""T, (k, y) dk,



kBsinh k(a - AO)
1

2r0

1
B = -- I 0 (a).

2rok sinh k(a - A0 )

Substituting these results into Equation H.5 gives

Ts (k, y)n=h. - [ ̂0(a)cosh k(y - AO)- ^ (AO)cosh k(y - a)].
2rok snh k(a - AO)

From Equation 4.40

ip So sin k!
00 (k, y) = - -cosh k(y- AO).

7cw ksinhk(a-Ao)

Thus,

ip So cosh k(a - AO) sinh kl

zIw k sinh k(a - AO)

=p (O
ip SO sinh kl

mw ksinhk(a-AO)

Substituting the equations above into Equation H.6 results in

j,. (k, y) -- - ip S0 sin k! _coshk(a - AO) coshk(y - AO)- coshk(y - a)]
2r wroks2 sinh[2 k(a - AO)

Evaluating this equation at the surface (y = a) gives

(ka) = ip So sin k!
, (k 2zr wro k2

By definition

T, (x, y) = fe ikx T,(k, y) dk,
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(H.6)

(H.7)

(H.8)

T (, a) = e""$T, (k, a) dkA



and substituting Equation H.8 into this equation results in

xip e', sin kl

2r wro _ k

T(x, a) pS0  sin kx sin kl k.
2c wro f k2

It can be seen from tables (Gradshteyn and Ryzhik, 1994) that

-sin ka sin kb dk
f k 2

fira if a<b

if a>b

or sin ka sin kb dk - 7b+ a - b -a].

Therefore,

T, (x, a) = S0  I+ x - l-
4 wro

From Equation H.2

q, (x, a)= T, (x, a),

therefore,

q (x,a) = (x, a)+ pc (x, a),

yp(x,a) --sO Ifi+x| - +-in4 w i or Er

which is the expression for Equation 4.63.

cosh if(l + x)
(a-AO)

cosh Z(l X)
(a-AO)

+ cos z (a - AO)
(a-AO)

+ cos z (a - AO)
(a-AO)
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APPENDIX I

This appendix describes the derivation of equations 4.72 through 4.75, 4.81 and

4.82, which are parts of the forward 3D solution for a pipe with a non-symmetric defect.

Consider Equation 4.71:

rI=0. (I.1)
ay r + y a 2 z Dz ax ax

Expanding this equation about A = 0 gives

A2 a 3  
r A Dq'

2y 3  (r + y a)2 aZ az
2

+ A-)
ayaz

9 2e 2(A + A -)
ax ax axay

Knowing that

(P(x, y,z) = O(x, y)+ qI (x, y, z)+ q 2 (x, y, z)+ (c(x, y, z)

and substituting it into Equation 1.2 produces, for each order of magnitude indicated as a

superscript, the following equations:

Dy =O
=0;

S') FP +A 2YO
ay ay2

DA q'0
ax ax

A o: A aD9O"DAaYO
ay ax2 ax ax

]1=
IV=

=0,

=0,
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(1.3)

[ =0. (1.2)



S') : D A aD ( O)1
I Dy ax ax j=0

DA aQ 1

az az

aA a,
ax ax

DA 2 0

ax axayj V=

aZ
2 DZ DZ

-A~ y=0

(2 ) . 2

ay ax ax

a Da~
(A '"

Dz Dz I Y=0

These are equations 4.72 through 4.75.

Now consider the equations:

ax 2 +y 2 az2

- ax a , )I
Dy Dx Dx j =

- 0,

Dy , =0.
Dy Ya

By definition,

y1 (x, y, z) =
.2 (nz

e W M(IY

21r nz

y, (x, y, z)= Ye e""~p, (k,y)dk,

p, (x, y) =

187

=0;

F D

DY
ay IV=O

2 3q

ay
2

(1.4)

= 0,

= 0,

L . y

_A 1 -D2

(1.5)

= 0,

= 0 (1.6)

(1.7)

(1.8)

(1.9)

(1.10)d kx "^ (k, y),



where (1, (k, y) is the Fourier transform of pI, (x, y).

Fourier analysis may solve Equation 1.9 after multiplying both sides by

ooW .2mz T

e-ikx dxf e - dz.
-oo 0

The right hand side becomes

W .2mir z
-ikx dxf e W

0

0 .2z n z

dz Ye Je f In(k, y) dk,
n=- -o

RHS= e- x
n=-* -o00

W .2wnrz .2rnz

e dx e We

0
dZ in(k,y) dk,

RHS = f e- dx

n=- -co

w .2,rj- - ;(n-n)z
e W

0

We know that

e i(kk )xdx = 277 S(k - k), and

W i 2 n-mr

e ( z dz =wSnm
0

therefore, Equation 1.12 will be

RHS = 21r w qim(k).

The left-hand side of Equation 1.9 becomes

LHS = fe-ik

LHS = fe-ik

W .2)nz z

dx e
0

W .2mox z
dx e

0

dz (o1(x, y,z).

.2fT nz

dz i e (p,, (x, y)

RHS= Je

(1.11)

dz j, (k, y) dk. (1.12)

(1.13)
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LHS=X fe-ik x

LHS=1 Je-ik

n=- _.

w .2m z .2) nz
d I

dx fe- W e'

0

jei2(n-m)z

dx e w
0

LHS = w e-ikx dx Qir (x, y).

Recombining equations I. 13 and .14 gives

2ff W i,(k) =w feik dx y1,n(x, y),

(l,,2(k f dx e-x q21 (x, y).

Can also apply Fourier analysis to the boundary condition of Equation 1.4 after

multiplying both sides by

oow .2mz z

fe-k dx fe dz.
-oo 0

Therefore, the left-hand side becomes

a w w .2mr z .2; nz

LHS = e-'k dxew e W 91x W
ay n -

dz ,

a **
LHS = e-e

ay n=- -

x i 2z(n-m)z
dx0e w

0
dz ( 1,(x)| 0 dz

LHS = a w e-k'' dx y1,(x) ,
ay

LHS = 2ffW '" .
y=0

(1.14)

(1.15)

(1.16)

(1.17)
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dz p,,(x, y),

dz o,,(x, y),



Assume

.2rnz

A(x, z) = A, (x) e

The right hand side of Equation 1.4 will be

RHS = fe

RHS =

RHS =
n=

~"" dx fe dz
0

w W .2mr z

fe-" dx e d
0

fJe-i dxfe
0

RHS =w fdx e- [+(An(x

and integrating by parts

RHS = w i dx k e-""h

a (An
[DXn

dz I

2 nz ay0

(x) e w )
ax I=

(A (x) aO)
ax ax .. V=0

D y01 =0

A,(x) aP
ax Y=O

Recombining equations 1.17 and 1.19 gives

=w i dx k e -" Am(x)a0
ax V=0

f dx k e-"" A, (x) .
_ ax )=

ay ,=0

ay ;=0 2

Applying the Fourier transformation to the Laplace equation gives

a 2  ( 4m 2Z 2 %
'"- k 2 +4 1 n =0

ay c W 2

2 4m 2Z2
and calling, k2= k 2+ 2 ,the Laplace equation can be expressed as

W
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(1.18)

(1.19)

(1.20)

(1.21)

(A ) ,0
x ax ,,=O



-k12 k ,( =0.

The boundary condition at the surface changes to

a9im =0.
y =a

The general solution to this equation is

i, (k, y) = Am cosh k,. (y - a).

Thus,

y' = kl, A, sinh'k, (y -a).,
ay

a,"'

ay v=O

= -km Ai sinh k,a.

Substituting Equation 1.25 into Equation 1.20 determines the coefficient A, . So,

-kA, sinhk, a = dx k

Am = dx k
2z km sinh ka _.

e-ikx A , (
ax Y-O

e-"" A (x)
' x ,_O

Substituting this result into Equation 1.24 produces

(01M,(k,y)= dx k e
21 km sinh k,,a -

Am x -1

ax =

Finally, substituting this equation into Equation I.10 gives

dx k e-"" Am(x )
Dx ,=

coshk, (y -a),
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(1.22)

(1.23)

(1.24)

(1.25)

(1.26)

coshk(y-a).

(pI, (x, y)= fdk e""
27r__

(1.27)

1
k,, sinh kma



9 ,(X, ) = dk fdx'
2zc_ _

cosh k, (y - a) k eik(XX A t

km sinh kma

I dk dx, coshk,, (y - a)k sink(x-x')
2Jck km sinhka k

Evaluating this equation at y = a gives

1 0
<pi,71Wl x) = 2f dk [dx

km sinh k,, a

which is the expression for Equation 4.81.

Now consider the equations:

+ 2  + =0,

ax 2 ay2 dz2

ay a

d dy,1-(A -

ax ax
-(A )z _

dz dz I]V=

= 0.

By definition,

(P2 (x Y, z) =

92 (x, y, z) =

27c nz o

'e W fe"2n (k, y) dk,

(P2n (x, y)= fdk e"" 2n (k, y),

where 02, (k, y) is the Fourier transform of CP2n (x, Y).
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Yli, (x, y) =

( x 0o

A,(x') x (PO
ax, VO

(1.28)

k sin k(x - x)
A,,a(x)

dx V=o

= 0,

2r nz

e 'W 2n (X, Y) ,

(1.29)

(1.30)

(1.31)

(1.32)



A Fourier analysis of the boundary condition of Equation 1.6 can be performed after

multiplying both sides of the equation by

w .2mz z

e-ik x dx e dz. (1.33)
eor t 0

Therefore, the left-hand side of Equation I.6 becomes

LHS = e-ik x

w .2 mx z
dx e W

0

dz
ay =

d wj.2ml z .21 nz

LHS = e dx fe e w(2,n(X)I Ydz
an=-o __o 0

LHS =+weik
ay __

dx (2, (x) 1

LHS = 2ICw (2m(k

ay 0

The right hand side of Equation 1.6 will be

RHS = e-ikx dx
w .2riz

eW

0

dz -(A )+- (A
_ ax ax az

Consider the first term of the equation above as

RHSI = fe-ik dx fei Z

0
dz -- (A 1)]

ax ax _,_O

Assuming

.2z pz

A(x,z)= XA,(x) e w
P=-o

and replacing Equation I.8 in the Equation I.36 gives
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(1.34)

z )I
az _ 0=

(I.35)

(1.36)



RHS, = XI X
p=-J n=-o

RHS, = ,X
p=- n=-o

Jeik x
Jeok

w .2m1vz

dxje
0

dz aA,(x) e

1 d2 (p-m+n)z
dxfdz A (x) e "

0 a

.27r p z
w

D
(1 1n

.2) nz

e W (Px) ,- y=ax

(x)
- =

RHSI =w dx e-ik x - (An (W)-

integrating by parts results in

RHS, =wiy fdx k' -ik x (1.37)
a x .0

Now consider the second term of Equation 1.35 as

RHS2 = edikx dx
IV *2mr z

e
0

dz [ (A = )0
-z yV=

Using the same approach as was done before gives

no o ooW .2mc z

RHS2 = f e- dx me W

p=- *n=-oo-o 0

oc o ocW .2mc z

RHS2 =ei e dxfe W
0

RHS2 = Y Je'k dx fe2n

RHS2 = e dx e .2rncz

p - ~ 0

W .2mr ~z

RHS2 = , Je dxf e-
p=-o n=-o o 0

dz 91, (x) 0

dz o,, (x) V

.27c p z .21 nz

- e w 1n(x)
- y=O

.27c p z .2)c nz

e -e w 1'

2,ni 1.2e nz
e w

w

27r ni -FiT$ (p+n)z

P p(x) e az ,

21r ni 2T (n + p)i i2 (p+n)z
A P(x) e W

W w

194

, and

(1.38)

dz AP(x) 

dZ Oln (x)I A P

dz 'i27 p z

dz p,,(x)l = APx) e

--a (PIx)W

,



RHS2 = eikx dx
p=-o n=-o -00 0

S2), n 2zc m 0
RHS2 =-W Y f, nf

n=-~ W

21r ni 2ff (n + p)i i2T (p+n-m)z

w w

dx e kx A (x)(Pl e(X)

Adding equations 1.37 and 1.39 gives

RHS = w i dx k -ik x
n= -

R HS = w fdx Wke -i

(x) W
axy=0

Anin (x ax V=0

27c n 2km
- W f dx e~'1 x

n=- W W -__

21 m- 21_r n - ~ -k= -f m f dxe e x w (x)q1 ,n(x)l, 0w w

RHS=w dxe-ikx ik A x)1x
n -x =Ol

Equating equations 1.34 and 1.40 produces

2z
2 ffW d2'n

Dy ,_

=w dx e x ik A mn W a(x ) V"
Fix ,*=0

2ff m 2 ;f n 1mn X (~ ( ) ) =
- Ann(x)91 n(x) 0w w

27c _ Iik A,,, (x) "
ax 1-0

27c m 27c n
An,- (x)P, (x)10

W W

Analogous to Equation 1.22 the Laplace equation will be

a 2 2 :

The boundary condition at the surface changes to

"=0.
y =a

The general solution to this equation is

^2,n (k, y) = Bn cosh kn, (y - a).
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(1.39)

A_ m(x)P1 n(X)lV=O

2f m 2ff n 1
'V Wj

(1.40)

a ^2'

ay N=O

(1.41)

(1.42)

(1.43)

(1.44)

'



Thus,

"2 m = knBi sinh k,,(y - a),
ay

2" 0

ay , O

= -kiB,,, sinh k,, a.

Equating equations 1.45 and 1.41 gives the coefficient B.. So,

-k,,,,, sinhkna= I-f dx

12
Bn =dx

switc k, sinh k,,

switching k'by k gives

1
Bs =h- I

'" 27r km sinh ka

e-ikx ik'A,-n(x) 
n=- ax Y-O

Wr(x) "

ax V=O

fdx e - ikA x) dy 1 ",
=- ax =

- 2m 2f A ,, (x) 1 n(x) _y=O
IA IA I

27c m 2zf n 1 ~ 911 iVOo
- A ,,(x)91,(x)|, ow w

2;- m 27 n A,,, (x)pI n Wx),
w j

Substituting this result into Equation 1.44 we have

1 ~
92,,, = - Jdx

21r k,, sinh k,,,a __
e ,X ikA,, (x) "

ax , 0

2f m 2IT n AII,, (x)p1,, (x) V] cosh k,,, (y - a)
w w

Finally, substituting this equation into Equation 1.32 results in

1 c oshk (y-a) ,h
(P2m, = -- fdk e'k" "' " dx' e-""

2zc k,,, sinh k,a _

2ffr= dk

&A ik -,_ (X) x' 1,"0
ax 0

dxsh k(y - a x)p 2 (

dx ik(-' sh k y-a) ik A,,_,(x') " - 2) 2 mn A,,,,,(x ),, (x) 0k,, sinh k,,a ax, _x w

Scosh k,, (y - a) k sin k(x - x')A,,, " +(---)2 mn cos k(x - x) A
2fcf ' k,, sinh k,,, a ax 0 w

Evaluating the expression above at y = a gives
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(1.45)

- (-)2 mn A,,_, (x )p 1, (x')w o

I
I

?-I'k.x ' [ik',
n=--



92rn, A 1 (x ) Fksnkp-
Tp2,x) =dk dx '" k sin k(x - ix') n

- 27c f _ k,,, sinh k,,1 a L ax

which is the expression for Equation 4.82.
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+( 2) ncos k(x- x')(pn
W =



APPENDIX J

This appendix shows how equations 4.81 and 4.82 can be written in a more

convenient form. Consider Equation 4.81:

Yi1,n (W1lVa fz27r

wherek,2=k2+M 2

dk f dx
k sin k(x - x ) (X

k, sinh kma

Consider

Ti,(x,x)=
Lfdk ksink(x-x')

2z -. knsinhkma

So,

(p],n(X) = Jdx' Am(x
y=0

T,.(x,x ).

Equation J.2 can be written, for m # 0,as

Tm (x,x) = Ifdk ksink(x-x')
)TO km sinh kma

In addition, for m = 0 Equation J.2 can be evaluated as

T0 (X, X ) =I
2z)

T 0 (x, x') =-
0ce

fdk sin k(x - x')

J sinh ka

dk sin k(x-x )
sinh ka

It can be seen from tables (Gradshteyn and Ryzhik, 1994) that
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ax V=O

(J. 1)

(J.2)

(J.3)

(J.4)



sin ax if 7Va
dx= tanh

0 sinhbx 2b 2b

therefore,

T 0o(x,x') =
1 if _____-x_

tanh
7 2a 2a

To (x, x') = -- tanh I. (x-x
2a 2a

Equations J.3 through J.5 represent an alternative form of expressing Equation 4.81.

Now recall Equation 4.82:

<p(x)| = , fdk dx=21
' (X

k,, sinh k,n a
ksink(x-x') +

I @x'

21r 2m ncosk(x-x')(pj
WI =

Consider the terms that appear in this equation. Assume

S2n = 2z n~P .
w

Thus,

p1 Wx)a = 1 f dk jdx '~ ksink(x-x') 'I

27r - k,,, sinh k,,a [ a

From Equation 1.28

1p (x, y)= f dk
2IT _

f dx
cosh k (y - a) kik( )Ao

k sinh k s x( x) ,(
kn sinh kna ax , =O

thus,

cosh k ac k sin k(x -x')
kn sinh kna

Substituting Equation J.9 into Equation J.6 results in
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(J.5)

(J.6)

+(21)m cosk(x-x S.
w I

(J.7)

(J.8)

1
fdk fdx Aa(x)-

vx ,O

(J.9)



2vcn I %l
S2n = ) dk

"w 21r
f dx"

coshk a
k os n k sin k (x x A

k sinh k a ( (J.10)
ax =0

So, if n = 0 then S 2 n =0.

Observe that

k' sink k(x' - x) An(x )---- -- cos k'(x- x),a (x -O

k sink'(x -x") A (x")-- a - -- An(x")9- cosk'(x-x")]
ax~~ ~ " a =

cosk (x -x) a An (x)a
ax ax V=OI

Substituting this result into Equation J. 10 gives

Sn n fs2 = ~idk

w

Observing that

f dx"
cosh kna

k " snkacos k'(x' -x")k ,sinhk'a csk( x (J.12),, A(x") 4 1.Lx" ax ,_O

cosh kna = coshkn a - sinh k a + sinhkIa=eka +sinhk'a,

and that the integral above is even in k, Equation J. 12 may be rewritten as

2n - '9 i
S2n = - k f dx ' ,, (x") a,,

w 0 -- x x -=

ek'" cos k'(x' -x") + cos k (x -x (J.13)

kn sinh kna k

It can be seen from tables (Gradshteyn and Ryzhik, 1994) that

ecos ax s dx = Ko (ab),
o x

therefore, in Equation J. 13
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(J.11)



fdk' cosk (x -x)

0 kn

= dk' cosk (x -x") =KOr2( x")n

f k2 + 7 ) -
A2 (2n27c(Lw

w

Using the result above in Equation J. 13 for n # 0 gives

S2 ,7= 2n Jdx"
w I,, A

ax"
, 0 ] r 21(x x )n

" ax ,_W 0
e~ cos k'(x - x)

k sinhk a

Consider the second term of Equation J.7, represented by (p (x) _

92(x) = dkfdx '"-"(x)()mcosk(x-x )S2,.2z n=-_ k,,, sinh ka w

Substituting Equation J. 15 into Equation J. 16 results in

9 (2) =-4 N'dkrdxrdx"mn ',,-"(x)
=2m = 2 - k,, sinh a

A (x")
ax ax __

where

Gn (X"X)KOK 2t(x x )nj

Calling

2r m cos k(x -x')

W 0 kn sinh kma

+ f
0
dk e cosk (x -x )

kn sinh kna

Equation J. 17 can be rewritten as

q{(x) = dx
I T, n A ax j

fdx "A,,,-,(x') Gi C,. [ ,I , (x ")

Recall Equation J.8:
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(J.14)

(J.15)

. Thus,

(J.16)

cos k(x-x (J.17)

(J.18)

(J.19)

(J.20)



1 , cosh k (y-a) ag
9, (x,y)= dk dx k h k sink(x-x') A, (x)

21r kn sinh kn a ax V_0

thus

cosh kn(y- a) k2

kn sinh kna
cosk(x-x') A,(x)

Evaluating the equation above at y = 0 gives

fdx, cosh kna k 2 cos k(x - x')
kn sinh kna

Consider n = 0. In this case,

___ I_ 1 cosh ka a__
X0 = fdk dx k cosk(x-x') A0(x') -P

ax ,_0 2z sinh ka ax ,-0

Observe that the integrand of Equation J.23 will be

Il = k coth ka cos k(x - xI)AO (xa) (,
ax, ,_0

II = coth ka ,-(sin k(x - x')A, 0 (x') ' )+ sin k(x -

Substituting this result into Equation J.23 gives

ax y=0 2= fdk dx' coth ka sin k(x -A

The new integrand can be rewritten as

12= cothkasink(x-xI) , A d(x )---
ax, ax, V-O

202

ax

21r

2wc
fdk fdx

dx ,-o

ax Y=0

(J.21)

Sfdk
21r

Aa (x')
x' ,-0

(J.22)

(J.23)

x') , A, 0 (x')
ax,

- 4 .=

I) xA (x') _, x ax , VO
(J.24)



12=cothka { ,-a[(cosk(x-x')-coskx) , A0 (x')-
k ax ax x 7=0

cosk(x-x')-coskx a2

k ,2 A A(x

ka tx
Entering this result into Equation J.24 gives

2 fdk J dx coth ka Lcos ktx -x'c) -Cos kx ] 2A( )

k Iax'2x 10

a910p 1 ~d
ax 

dk
V=x 002c

dx cothkacoskx- cosk(x- x)aA (x') aq9
k ax'a O

Now consider the integral

F=d f A cos kx - cos k(x - x') cothka.
0 k

Recalling that

.kx 2 k(x-x')coskx-cosk(x-x')=-2sin -+2sin
2 2

gives

F = 2f dk
0

sin 2 k(x-x sin 2 kx cothka
2 21 k

Let 4 = ka. Thus,

[

24(x-x) s 2 jx coth4sin -sin I
2a 2aj 4

It can be seen from tables (Gradshteyn and Ryzhik, 1994) that

ax coshbxdx In cosh 2 a + cos bfc

sinhx x 4 1+cosbf

therefore,
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I

(J.25)

F=2f dj
0

sin2
0

ax ,_()



F = 1
2[cosh - x)+ cosir cosh -- + cosff

In a -In a
1+cos 1+cos7

rvi z(x-x')-cosh -1

F=1 In a
2 cosh -1

a

sinh )( '

F =1 In 2 a .
2 .RDC

sin
2a

Substituting this result into Equation J.25 results in

-Jdx 2 A(x') In
4- Dx aax I=0

_1 D2  Dy
= dx j A0(x) -- In

47r0 - Dx x y

sinh f(X - 2

2a

sinh R
2a

sinht(x x
2a

I

(J.27)

Consider n # 0 in Equation J.22. The integrand of this equation can be written as

cosh k a a

I3 = kn sin k cosk(x-x )A, (x ) , ,
k, sinh k~a ' x' v=0

I3 = coth kna k 2

kn
cosk(x-x) A (x) 

Dx ,=0

coth ka
13k

kn
- 4 k

ax,
sin k(x-x) A (x) 0ax, v=0_

+ k sin k(x - x) a A, (x) x'ax, ax,

Entering this result into Equation J.22 gives
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(J.26)

Dy 10

ax ,=O

Dy 10

ax 1=0

y'=0}



a1 2"f = dk
ax ,_O 2zc _

coth k a
Jdx . k sin k(x -x') An

-W kn ax,

(J.28)(x ') ----
ax Y-o

This new integrand can be written as

coth k~a
I4=- a k sin k(x - x') ,

kn ax,

cothka {
I4= n ta, L a 30 co ~cosk(x-x)-- A, (x) , -cosk(x-

ax ax, V=O

32 0
x') 2 A (x ) ,

3x ax =0J

Substituting this result into Equation J.28 produces

1
2ff

cothkna a_2 __p
Jdk fdx cosk(x-x) DX 2 A (x)

coth k a
Scos k(x-

X) =cosk(x- x) ekn" + sinh kna
kn sinh kna a

cothka k(') cosk(x -x) + cosk(x-x') eka

k k k sinh kna

Thus,

-f dx dk [cosk(x-x) cosk(x-x ) ek-", ~] 2

f- - k + kn sinh k a jx'2
A (x )

From the result of Equation J. 14

1 2 ( PO

- fdx' 2 An (x)1-0 ax, v=0

- dx' A I?(x') a P

[KO r 2 (x' - x )n + dk cos k(x - x) e-"a

W 0 kn sinh kn aI

Gn (x,x ) .
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a(x) , ,

ax V=

but

ax =O
(J.29)

<pin

3x

aJx
(J.30)



Consider the first term of Equation J.7, represented by qpo (x) . Thus,

9 (x) dk dx
( n ()17a =21r _ A fd

A sn (x
k 17, sinh k ~a Lk sin

Entering Equation J.30 into equation above results in

(xP fdk dx""'~" ksink(x-x
2m r2 =_k, sLnh k,,a

) dx"
a

2

aX"2

fdx dx dk ". ~ k sin k(x-x ) a2 A
f 2__ k, sinh k .a Fx

.' a P"1 .
S (x ) --- )P= G,,(x', x )]

(x" ) G,,(x',x") (J.32)
ax ,=

92n (x)I =- 2 fdx
" if f="

dx -4A , (x )jdx ax 2

Note that for m = 0

dk s x -tanh z(x - x)
sinh ka 2a 2a

Adding equations J.20 and J.34 gives

a2
(P2, (x - fdx dx a A,

Irn=-- -o -- nOx
(x") A ,, (x')G, (x', x")S, (x, x') -

ax" =

-- dx
if f-"

fdx"A,,_,(x') G, 21 n
w

Fi
CI [ . A,(x)

ax"

I - 22 . a P' 27rn a " g-I dx dx" A,,, (x')G,[S( A,(x") - )2+ C,,('A (x)F1 ) 1
-if / -- ax Fi x - w iax" Fx N-O

where S,,, C and Gn are given by equations J.33, J.19 and J.18, respectively.
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(J.31)

P Y (x) =

Calling

k sink(x-x )
S,7 (x, x) = dck kmsnhk 1

S to k, sinh k a

the Equation J.32 can be rewritten as

(J.33)

Fix A ,, (x') G (X , x ")S (x, x') . (J.34)
ax , .=O

So (x, x') = (J.35)

92, (x) =

aF O
ax , =O

k(x- x) ax V=
.x I



APPENDIX K

This appendix describes the derivation of equations 4.93 and 4.94, which are the

solution for a 2D symmetric defect considering the first and second order approximation,

respectively. Consider the equations below:

q(x,y) = (xy)+qi(xy),

A(x) ~ Al(x)+ A2 (x) , and

Dy ax ax

(K.1)

(K.2)

(K.3)= 0.

After expansion of Equation K.3 as a Taylor series about y = AO, the first term is

a (p a (PDy la Dy-A
a2

+ (A- Ad y 2V=A
0

0) 2 a 3 (

+ 2 Dy 3 =A

+ 1 + (A1 a (oa A ) -A0 )

(yO
ay )'=AO [Dy

+ LA2 ay2 1

(A ] -A O ) ay 21 Y=AO

al2Q +(A-A 0 )2 D3
-A 0 ) a2 + 2 ayj3vA

± [A2 aD 2 (A -A0 ) ay2 j (K.4)

And the second term is

DA ay
Dx Dx 3v=A(x)

DA ay
Dx Dx V=A(X)

DA Ny
Dx Dx )AX

D(A1±+A2) LDy + (A - 1O
ax Lax (AA)D A

DA, Dy 0  + DA2 Dy0" DA I , +y DA
Dx Dx vaLDx Dx Dx Dx Dx

DA, Dy0

Dx Dx y=A
+ [DA2 Dy 0 + DAI Dy1 1Lax Dx Dx Dx I=A
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Dy Y=A(x)

- A ) Dxayj V A

(K.5)

L P av')lay v=A00 lay I V=Ao



Substituting the results obtained from equations K.4 and K.5 and into Equation K.3

produces, for each order of magnitude indicated as a superscript index, the following

equations:

ay x'A
=0;

+(A] -AO) D 2 v=AO
a 1 Dy 0

Dy 0-AO) a(x

(A, ADj2 0
1 )ay2 VA

- 2 ,
-(A1 --A) d 2

I

+(A - AO) Dy,]
ax IVA

-~D 2 Dy0

[aA2 a 0

=0.

+DA1 D 1
ax ax 1

x =A0

+ aA, avi]

=0,

= 0,

From Equation K.6 the first order defect A, (x) can be calculated. Thus,

a y, dx'

A, (x) = AO A ' ,
90

which is the expression for Equation 4.93.

From Equation K.7 the second order defect A2(x) can be calculated. Therefore,

(K.7)

(K.8)
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A : [y =0,

ay ax L

' (2

A 2>.)-

S2> a A2ax I

(K.6)

2  +
A2 a2 +

-A
2 ax2

a( 0
ax



ax(P

A2 (X) = -(A l - A O) - ,xlvA (K.9)

which is the expression for Equation 4.94.
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APPENDIX L

This appendix describes the code developed in MATLAB to solve the inverse

problem in two-dimensions considering only the first order term of the defect, that is,

A, (x). The code, called "inversefirstdata", includes a subroutine called "calcphis2d"

that calculates the experimental potential data (, (x) that accounts for the defect region.

The experimental potential data , (x) is calculated as

(L.1)

where (, (x) is the measurement potential data at the surface and qO (x) is the known

analytical potential function for a non-defect region. This function is given by Equation

4.69

S(X, y) = 2zw ln

cosh Z + cos
(a -AO) (a -AO)

cosh + -cos
(a -AO) (a -AO)

The defect in two-dimensions is given by Equation 4.93

A, (x) = A0 + X -lf v=0

Dxdx

where xini, is an initial position chosen such that we do not have negative values of

(L.2)

(L.3)
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A1(x) . The numerator in Equation L.3 is given by Equation 4.100

a (P

ay =

= fe"" B(k) k sinh k(A 0-a) dk.

The coefficient B(k) is given by Equation 4.101

B(k) =f
21r

e'k (p, (x) dx.

This expression can be discretized as

B(k,)=Ax Y,(PS(x)eiklxj

where x are the positions where we have data measurements and p, (x.)

(L.5)

are the

corresponding potential measurements calculated using the subroutine "calcphis2d".

Substituting Equation L.5 into Equation L.4 results in

ay Y A0

(L.6)- X dk -x(x)) k'x- k sinh k(a -A )
2 I _

The numerator of Equation L.3, represented by Num(x), is given by

Num(x) a dx,
xini y=Ao

Ax kmax i k(ii X

Num(x) = - . Jdk o (x1) [ek - - ] sinh k(a - AO),

mx j xkak-s
Nu~ ) Ax ~ (1  k [ik (x-xj - ik (xi,-x) [k(a-AO) _-k(a-Ao)]

Numx) - (P (Xi) A e ere

(L.7)

It can observed that a maximum value to the parameter k, called kmz, was chosen in

order to solve the integral. This parameter will be responsible for the stability of the final

solution. Factoring Equation L.7 results in
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(L.4)



Ax ee(a-Ao+i(X-xj)) e (a-0+i(x-x))

Nun(x)= Xqo(x1 )
47c 1 ja-Ao+i(x-x)

+ k me a-A o-- i( X -X j ) ) - _e k m ( a -A -i( x -x ) )

a-A0 -i(x-xj)

e +a-O+i~x-,,,-xj a-)+itx,,-x

a-,Ao+i(.x,,,xj)

-k..(a-Aj-i(xjt-xj)) -e .(AO4xjtj)

Rearranging the terms of Equation L.8 and after some algebra gives

Num(x) -X {t- (Xj) -2 [(a - AO)coshk(a - A,)sin k *x -xj)-(x -x)sinhk,.(a - AO)coskm(x - x)]-(
N x j [ a - )2 + (X - x , 

( L

[(a -Ao)coshkm.(a - AO)sink (x,,, -x) - (x,,, - x)sinhk (a - AO)cosk (x - x.)]}
[(a-A 0 )

2 
+ (xi,_ Xj

2
]

The denominator of Equation L.3, represented by Den(x) , can be easily calculated as

3e20Den(x) =
axA

sinh[' (s+x) sinh[z x)
So (a - AO) (a -AO)1

27aCel+x) +1 C(l-x)
I cosh + cosh +

(a -AO) (a -Ao)]

(L.10)

Now the defect A (x) can be calculated substituting equations L.9 and L. 10 into the

following expression:

A,(W = AO + Num(x)
Den(x)

The code "inverse _first-data" is listed below.
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Num(x) = Ax (x
4id

fdk e k~ 0 -i(x-xj)] - k~aAO+i(xij -x1 )l - e -k[a-AO-i( x-xj)] + -i~j''" - ]

-kmna

(L.8)

I
a-,AO -i(xj,,itXj)



%0

PROGRAM INVERSEFIRSTDATA

function inverse-firstdata

clear

global lprobe w 1 a rho curr deltax x

global xO nimag numcol kmax new_x

global xinit newx deltaO

input('enter with the length of probe in x direction : lprobe (mm)= ');

input('enter with the

input('enter with the

input('enter with the

input('enter with the

input('enter with the

input('enter with the

input('enter with the

input('enter with the

input('enter with the

input('enter with the

width of the plate: w (mm) =');

length of the plate: 1 (mm) =';

thickness of the plate :a (mm) =');

resistivity of the material: rho (micro ohm*mrn) =';

current : curr (amp) =);

potential measurements matrix: phim (microvolt) =');

increment in x : deltax (mm) =);

initial position in x : xO (mm) =');

maximum value of k: kmax (1/mm) =');

parameter deltaG : deltaO (mm) =);

xinit= input('enter with the inferior limit of the integral: xinit (mm) =);
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nimag= sqrt(-1);

numcol = lprobe/deltax +1;

[phis2d] = calcphis2d(phim,xO);

for j=1: 1:numcol,

x(j)= (-1probe/2)+deltax*(j-1);

end

new x=-xO:2.54:xO;

sizenewx=length(new-x);

for i=1:size-new-x,

sum = 0;

sumi = 0;

for j=1:numcol,

varl = (delta0-a)*cosh(kmax*(delta0-a))*sin(kmax*(newx(i)-x(j)));

var2 = (newx(i)-x(j))*sinh(kmax*(delta0-a))*cos(kmax*(new_x(i)-x(j)));

var3 = (delta0-a)*cosh(kmax*(deltaO-a))*sin(kmax*(xinit-x(j)));

var4 = (xinit-x(j))*sinh(kmax*(deltaO-a))*cos(kmax*(xinit-x(j)));

var5 = (phis2d(j)/(((delta0-a)A2)+(new-x(i)-x(j))A2))*(varl-var2);

var6 = (phis2d(j)/(((delta0-a)A2)+(xinit-x(j))A2))*(var3-var4);

var7 = var5 - var6;

sum = sum + var7;
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end

num (i) = (deltax/(pi))*sum;

den(i) = ((rho*curr)/(2*(a-deltaO)*w))*( (sinh((pi/(a-

deltaO))*(1+new-x(i))))/(cosh((pi/(a-

deltaO))*(1+new-x(i)))+cos(pi*deltaO/(a-deltaO))) + (sinh((pi/(a-deltaO))*(-

newx(i))))/(cosh((pi/(a-deltaO))*(1-new-x(i)))+cos(pi*deltaO/(a-deltaO))));

deltal(i)= (deltaO+numl(i)/den(i));

end

defectl = deltal

plot(newx,defectl,b-)

title('Defect Mapping using the experimental data - kmax = /mm)

xlabel('distance from the center to the border of the plate (rnm)')

ylabel('defect (mm)')
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% SUBROUTINE CALCPHIS2D

% This subroutine calculates phis(x,y=a) using phim(x,y=a), which

% is the measurement potential at (x,y=a), and phizero(x,y=a)

% that is the potential. function for a non-defect region on the

% surface (y=a).Ail. the potential. are in microvolts.

% The position of the first value of x is defined as xO., which is

% the closest point to the current wires in the negative direction of

% x. The unit for x0 is mm.

function [phis2d]= calcphis2d(phim,xO)

global w 1 a rho curr deltax

global x numcol phim deltaO

% nurncol is the number of columns in the grid of measurements, which is

% the number of points in the x direction.

x=xO;

for j=1:numcol,

numl= cosh((pi/(a-deltaO))*(l+x))+cos(pi*a/(a-deltaO));

den1= cosh((pi/(a-deltaO))*(l-x))+cos(pi*a/(a-deltaO));

varl= log(numl/denl);

var2=((rho*curr)/(2*pi*w))*varl;

phizero(j)= var2;

newphis2d(j)= phim(j)-phizero(j);

x = x + deltax;

end
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APPENDIX M

This appendix describes the derivation of equations 4.109, 4.112 and 4.113, which

are part of the alternative solution for a 2D symmetric defect considering the first and the

second order approximation. Consider the equations below:

2 ~
('1- k 2 i

ay 2

=0,

f e-i V2 tanh 9 X dx,
27r_ 2a

e
-ikx I

(M.1)

(M.2)

(M.3)- 9 tanh I dx.
2a _(,n - 00 "

Defining

Si = f sin kx
0%

(Pl -9o -I 9 tanh 'cx dx,
I 2a _

Equation M.3 may be written as

9y _ =ai .

Observe that

2 X 2 zX
V tanh 2- = - tanh ,

2a 3x a

V2 tanhZ X
2a

V2 tanh - X
2a

= - sec h 2
2a ax

=--sech-
2a 2

)7x
2a

tanh .
2a 2a
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(M.4)

(M.5)

ay
y=a

2zfy=a



Therefore Equation M.1 can be rewritten as

4a 2
(P1 -2k

,2
e-ikx 2 C Ce sech tanh dx.

2a 2a

The right hand side of the equation above can be solved. Thus

RHS = F e~" sech2 xtanh dx,
4a2  2a 2a

sinh A X

RHS=a-i 2 fsinkx 2a dx.
2a 0 cosh3)TX

2a

Rx
Let y = -, so

2a

(p 2a
RHS=-i- sin(ky-

a 0

sinhy dy.
cosh' y

Solving this integral by parts yields

<p2ka
RHS =-i- fcos(

Ic 0 rl

k
y) k dy

cosh y

It can be seen from tables (Gradshteyn and Ryzhik, 1994) that

cos ax dx
0 cosh 2 bx

alt

2b 2 sinh az
2b

therefore,

RHS =-_i(P.. k 2a
7 sinhka

Substituting this result into Equation M.6 gives

(2~^ kp k2a
ay 

2 lt sinh ka
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(M.7)

(M.8)



The general solution to the equation above is

= .,,a 1 +A
sin + A cosh k(y - a). (M

iz sinh ka I

From the boundary condition of Equation M.5 the constant A1 can be calculated. Thus

A1(k) = iS -i 1

7 sinh ka

Replacing this result into Equation M.9 gives

.9a 1 4J&/ 1 ink
i sa n _+ &^5, ypa 1 cosh k(y - a), (M.

z sinh ka _ zr sinh ka_

which is the expression for Equation 4.109.

Now consider Equation 4.111:

.9)

10)

(M.11)
k k2

(~^ . = a - [a _ 9.a k 2oh~ ae* .
;1 { sinh ka ir sinh ka coshk(ya)e

The numerator of Equation 4.102 can be represented by Num(x). Thus,

Num(x)= ' -f dx',
- ay =O

(M.12)Num(x) = fdxJ dk e" .

The term can be evaluated as
ay =0

y Oyv =0

z _
av

(&) k sinh ka
i sinh ka ~

e i ,

kr )ay !=O y 
(M.13)i &^ k sinh ka
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Substituting Equation M. 13 into Equation M.14 results in

Num(x) = -i

Num(x) = -i

fdx k e ikj k

Jdx-- dk e--
NumI ax) =-deK"ih

sinh ka

k
- k pTa

k2

80 sinh ka - (-ae

Num(x)= dkA e""x i<^ sinh ka - a7

m s k

Num(x) = Jdk eik (50 sinh ka) e k' + dk(e a e2A ifk

Calling the second integral of Equation M. 14 Numl(x) results in

Numl(x) =

Numl(x) =

dk e" a e

p-a
if

Sdk
ikxe

e(

Let k = k,, , thus

Numl(x) =

Numl(x) =

fak d{ e i'"'_ 2

fak
2

fJd e(_ 
k2x 22

e 4

k 4 x

Numl(x)= - j e

Substituting this equation into Equation M. 14 gives

Sk,;
2

Num(x) = -Adk e"" ((S sinh ka) e + o ake 4
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(M.15)



k 2

Num(x) = k' e 4- 2 dk cos kx (50 sinh ka) e

which is the expression for Equation 4.112.

From Equation 4.105

a = + ** see h2 - ,
ax ax 2a 2a

and by definition

p(x, y) = e"" (k, y) ik

~(x, y) =2i dk $(k, y) sin kx

Thus,

- =2ijdk ,(k, y) k cos kx
Sx 

i

Substituting Equation M. 11 into Equation M. 18 results in

3x
-2 dk

0

k cos kx{a ink [ p s
r sinh ka r sinh ka_

cosh k(y -a) e

It can be seen from tables (Gradshteyn and Ryzhik, 1994) that

f
x cos ax dx = sec h2 ;T a
sinhbx 4b2 2b

therefore,

0x - sec h2 _

Fm 2a 2a
From Equation M. 17

2f A k cos kx [0
r sinh kaI coshk(y-a)e
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(M.17)

(M.18)

k2
2

(M.19)

(M.20)



- -- + sinh , and
ax =O ax =O 2a 2a

evaluating Equation M.20 at y = 0 and substituting into the result above gives

=-2 dk kcos kx
0 -

k
2

. a coshkaTe
7 sinh ka _

which is the expression for Equation 4.113.
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APPENDIX N

This appendix contains a listing of the code "inversesecond" developed in

MATLAB to solve the inverse problem in two-dimensions considering the second order

term of the defect, that is, A2 (x). The code includes the subroutines "calcdeltaphihat",

"calcintnum" and "calcdphildx".

% PROGRAM INVERSESECOND

function inversesecond

clear

global lprobe w 1 a rho curr deltax x

global xpO numcol numxp deltaxp

global i phim phijinf kmax deltak km k

input(enter with the length of probe in x direction : lprobe (mm)= ');

input(enter with the width : w (mm)=);

input(enter with the length :1 (mm)=');

input(enter with the thickness :a (mm) =);
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input('enter with the

input('enter with the

input('enter with the

input('enter with the

input('enter with the

input('enter with the

input('enter with the

input('enter with the

input('enter with the

resistivity :rho (micro-ohm*mm) =';

current: curr (amp) =');

potential measurements matrix: phim (microvolt) =';

increment in xprime : deltaxp (mm)=';

increment in k : deltak (1/mm) =');

maximum value of k : kmax (1/mm) =');

increment in x : deltax (mm) =);

parameter phiinfinite : phijinf (microvolt) =';

parameter km : km (1/mm) =');

xpO= 0;

numcol = lprobe/deltax +1;

numxp = 5*1/deltaxp+1;

cont =1;

for k=0.01:deltak:kmax,

[deltaphihat] = calcdeltaphihat(xpO);

vecdeltaphihat(cont) = deltaphihat;

vec-k(cont)= k;

cont= cont + 1;

end
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for i=1:1:numcol,

x= (-1probe/2)+deltax*(i-1);

[intnum] = calcintnum(veck,vecdeltaphihat,x);

num= (phi_inf/sqrt(pi))*km*a*exp(-(km*x/2)2)-intnum;

den= (rho*curr/(2*w*a))*(tanh(pi*(+x)/(2*a))+tanh(pi*(I-x)/(2*a)));

deltal = num/den;

[dphildx] = caledphildx(vec-k,vecdeltaphihat,x);

delta2 = -delta1*dphiIdx/den;

defectl(i) = deltal;

defect2(i) = deltal + delta2

newx(i) = x;

end

plot(new_x, defect2,'b-')

title('Inverse Problem with 2nd order approximation - km =/mm')

xlabel('Distance from the center to the border of the plate (mm)')

ylabel('Defect (mm)')
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% SUBROTTINE CALCDELTAPHIHAT

% This subroutine calculates the Equation 4. 11 0.

function [deltaphihat]= calcdeltaphihat(xpO)

global w a numxp deltaxp phim

global xp0 k rho curr 1 phijinf

xp = xpO;

sumlxp = 0;

sum2xp = 0;

for j= 1:nunmxp,

if (xp<=140)

n = 24 +j;

numi = sinh(pi*(1+xp)/(2*a));

dent = sinh(pi*(l-xp)/(2*a));

varl = (rho*curr/(2*pi*w))*log((num 1/dent )A2);

var2 = phi inf*tanh(pi*xp/(2*a));

var3 = phim(n) - varl - var2;
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prodi = sin(k*xp)*var3;

sumIxp = sum1xp + prod1;

xp = xp + deltaxp;

end

if (xp>140)

varl = phijinf*tanh(pi*xp/(2*a));

var2 = phiuinf - varl;

prod2 = sin(k*xp)*var2;

sum2xp = sum2xp +prod2;

xp = xp + deltaxp;

end

end

deltaphihat = -(1/pi)*deltaxp*(sumlxp+sum2xp);

227



SUBROUTINE CALCINTNUM

% This subroutine calculates the second term of the Equation 4. 112.

function [intnum]= calcintnum(vec_kvecdeltaphihat,x)

global a veck vecdeltaphihat km x

sizek = length(vec-k);

for ind= 1:sizek,

varl = cos(vec k(ind)*x)*sinh(vec k(ind)*a);

var2 = exp(-(vec-k(ind)/km)A2);

interf(ind) = vecdeltaphihat(ind)*varl*var2;

end

intnum = 2*trapz(vec-k,interf);
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SUBROUTINE CALCDPHII.DX

This subroutine calculates the Equation 4.11 3.

function [dphildx]= calcdphildx(vec_kvec_deltaphihat,x)

global a veck vecdeltaphihat km x phijinf i

sizek = length(vec-k);

for ind=1:sizek,

vara = (phi-inf*a)/(pi*sinh(veck(ind)*a));

varb = vecdeltaphihat(ind) - vara;

varc = exp(-(vec-k(ind)/km)A2);

interf(ind) = vec-k(ind)*cos(vec-k(ind)*x)*cosh(vec-k(ind)*a)*varb*varc;

end

dphildx = -2*trapz(veck,interf);
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APPENDIX 0

This appendix describes the derivation of equations 4.122, 4.123, 4.137, 4.144

and 4.146 which are parts of the solution for a 3D cylindrical non-symmetric defect.

Consider the equations below:

P(x, y, z) = PO (x, y)+ (p (x, y, z)+ "4 o+ xs -1 - xo,
4 wrz

A(x, z) ~A 1i(x, z)+ A2 (x, z),(

Dy 2

ay (r +y a)2 aZ aZ

2

ap A =0.
ax ax

. A

Expanding the first term of Equation 0.3 about A = 0 gives

+ ( P ++ A + A + A2  + 2 3 0

ay Ly ay ay 2  D y2  Dy 2  2 DY2 ]=

Expanding the second term of Equation 0.3 about A = 0 gives

r 2 A, _a_ ._

(r a + y a)2 az az az az =O

2 e a

Finally, expanding the last term of Equation 0.3 about A = 0 gives

[DDaA]" DyD A

LaxDA Lx axax
-A D2A Dy]

Dxay Dy]I 10

[
).1)

).2)

(0.3)

(0.4)

(0.5)
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A I ax ax ax ax

D990 aA2 -A1 a2A1 d 1
ax ax Idxay ay j =

Substituting equations 0.4 through 0.6 into Equation 0.3 produces, for each order of

magnitude indicated as a superscript, the following equations:

ay -0; (0.7)
dy a

a dq

L y 1

L d A

dy

> dy

D2 0 aA1 I a o (
ay 2 aX aX

a 2  dx 0 dx aP

d 2 9 dAX ay
dx 2 dxd

- (A
ax

d90 )]

I
I=O

V=

= 0;

=0,

=0,

(0.8)

F . 32 +
Say2

A2): - A

A + D 2 + 3 9O A0 av,,
2 y 2 2 ay3 ax ax

D 2

dx2

2 

dz 2 2

a
2 y 0  aA, ay

ax 2 ax ax

a 2 9x
dx dx - a x ay Dy

aA2 d90 aA1 Dq1 1
ax ax az az ]

'A 2 >: l -(A2 a

Lax 2ax
+ Al )+ (0.9)S(A1 ) =0.

Equations 0.8 and 0.9 correspond to equations 4.122 and 4.123.

Now consider the equations:

y , (x, y, Z) (x, y, z) + +(00) +y() + L (00) - ((O)
2 2

9(<x>) = K7 - O Ia
p Soi
2row
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ax dx

(0.6)

aI a9 1
az az

=0,

-0,

I

r x
tanh ,

2a
(0.10)



p(oo) = I
p S S0 l So

wa 2row -

(p(-oo) = [P, - POI a +2rw X-e--

(P-(xo) = Km + p S l x + P-S--
wa 2row

Thus,

7xx
(p1(x, y, z) = #1(x, y, z)+ a+3 tanh ,

2a

where

-= [p(oo) + p(-oo)], and
2

S=1 [p(oo) - ((-0o0).
2

Observe that = = 0 as Ixj -+ o.

The function #1(x, y, z) satisfies

V 2 1 __5V2 tanh 2 a
2a

=0,

ayy _a

1v=a = Ym - 4 wr

By definition,

.2znz

(x, y 9Z) = ' e 1 q9(x, y)
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(0.12)

(0.13)

(0.14)

(0.15)

(0.16)

(0.17)

(0.18)- 1 -x|-a-V- J tanh "
2a

(0.19)



91n (k, y)=
2;r

fe~" 9pin (x, y) dx,

where ( (k, y) is the Fourier transform of q1, (x, y).

Equation 0.16 gives

+ + +SV2 tanh I =0.
Dx2 

+ 
2  aZ2  2a

Substituting Equation 0.19 into the equation above results in

N 2 2 21r nQ

+ a x 22 Y
(0.22)+dV 2 tanh =0.

- 2a

A Fourier analysis of the equation above can be performed after multiplying both

sides of the equation by -f dz e W
wo0

. Therefore, Equation 0.22 becomes

L2 a2 27m
ax2 ay 2 W

2I9iM +S mSV 2 tanh =0,
2a

if m=0

if m#0

Can also apply Fourier analysis to Equation 0.23 after multiplying both sides by

f dx e-ikx

I
. Therefore, equation 0.23 becomes

+ -f )dx e "" V 2 tanh -- = 0,
2r 2a
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(0.21)

.2)r n z

jP e w

where

.27r mz

e W =
0,

c$,n -f dz
w 0

(0.23)

(0.24)

(p" (x, y)=f dk e""cpj, (k, y),

a2 k2 -~i,

ay 2 "I



where k,, = k+ 2r m

Observe that

V 2 tanh X
2a

S2 Ir x
2 tanh ,

x 2 2a

V 7x )7 a 2 7XVltanh ---- sech -,
2a 2a ax 2a

7rxx
V2 tanh -= =

2a

Ir2 2 7 Tx ITx
--- sech- Xtanh-

2a 2 2a 2a

Therefore Equation 0.24 can be rewritten as

Yrn" - k,im = 3 e ""y 2 ' 4a2 _ (0.25)sec h2 1 x tanh ' x dx.
2a 2a

The right hand side of the equation above can be solved. Thus

RHS=&8 457
'" 4a 2

RHS= -ijM

7

2a0

e-ikx 2'c ce~sech tanh dx,
2a 2a

sinh AX
sinkx 2a dx.

cosh 3 7r X
2a

71 x
Let y= -,so

2a

RHS = -i,1 1

2a
sin(ky -)

Iv

sinhy dy.
cosh3 y

Solving this integral by parts yields

RHS= -i(,
45 2ka k
-- Cos( 7Y) cosh2Y dy.

0

It can be seen from tables (Gradshteyn and Ryzhik, 1994) that
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f cosax dx
0 cosh 2 bx

air

2b 2 sinh air
2b

therefore,

5 k 2 aRHS =-iS - k.a

'" z sinh ka

Substituting this result into Equation 0.25 gives

32^

"2 2 2

ay 2 
i n: 

= k2 a

'z sinh ka

Taking the Fourier transformation of equations 0.17 and 0.18 gives

'" im
yv=a

= 0,

- j Wj2f^ dx dz
"pi 2I Vw _ 0

e Iwei {"9,l - 90 a

Defining

fdxf dz
-W 0

e 2 z " z

e'we-k (Pi -(PIa

Equation 0.29 may be written as

PIM = T',,(k) . (0.3

The general solution to Equation 0.27 is

h a ka +A coshk,(y-a). (0.3
(pi, i11 r k 2 sinh ka I

In

From the boundary condition of Equation 0.31 the constant A1 can be calculated. Thus

S a k 2
A, (k) = i Ti (k) - irk sinhka (0.3

ck nh k
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(0.27)

(0.28)

- S 0
4 wr0

T..k. = . W
2r i w

(0.29)

4 wro
S+x|-| - x\ -a - itanh" J,

2a
(0.30)

1)

2)

3)

+ x1-|11 - x|]- a - t5 tanh" "' .
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Replacing this result into Equation 0.32 gives

(l= i(5 a k2

'"n '"n z k 2 sinh ka
,ka k coshk(-a)'" k2 sinh ka j (y

Sa k2

rC k2 sinh ka

Sa k2

rc k2 sinh ka coshkm(y-a) 
,

which is the expression for Equation 4.137.

In order to avoid the ill-conditioned part of this solution the short wavelengths must be

suppressed. This can be done introducing a damping factor to the solution above.

Consider

Sa k2 +

rT k2 sinh ka _'

Sa k2 1
-S 5 coshk (y-a)

'" c k 2 sinh ka

^im = 57 5 '" + [Tn '" 1 cosh kn (y
z sinh ka 7z sinh kaI

kfl1

-a) e kma

where kmxis a damping parameter.

Assume

.2)r in

Ai(x, z) = Ajm(x) e , andZian

' a P dx'
_ ay N-

Am (X) a (O

axJ=O

The numerator of the equation above, N(x), can be calculated as

N(x)= "a yO dx',
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N(x)= dxJ dk eih "1

N(x)= fdx , fdk ik ayi
ik 2Jy no0

N(x)= dk ' e
_ k y =O

From Equation 0.34

,[ i (5, 5 a
ir sinh ka

O i r sinh

k"

km sinh k, ( y - a) e ka

a

ka I

2

km sinh kyna e max

Substituting Equation 0.38 into Equation 0.37 results in

N(x) =f- dk e

N(x) =- dk

N(x) =- dk

k 

e M

2'1k2

(5 1 a ~2-" k, sinh k a e
if sinh ka _

5 m a k sinh kna

r sinh ka k

k, sinh k, a + a 2d e k .

k 8i _

Consider the second term of the integral above:

= m £5 a
zf

dk e

Let k = km . Thus,
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(5= n 8 a kma

I , 5  a kmax

1 r

fd e (kflMX- 2

4aX

d e 2

k2ax X2

km ax X2

Ia 8 k e -

Substituting this result into Equation 0.39 gives

N(x)-= - dk e(
ki~ kk,2lnm

S kin sinh k a
inax T^M k

km a X2

+(M( a kae 4

+j.k,,

which is the expression for Equation 4.144.

Consider Equation 4.125:

A a (O
2 ax

+At& + fdx (A
ax -- az

=0

Assume

.2r p
A 2 (x, z) = A2 (x) e' .

P

(0.40)

(0.41)

A Fourier analysis of Equation 0.40 can be performed after multiplying both sides of the

equation by - dz e w .

The first term of Equation 0.40, represented by Il, becomes

1 (P 2;r p z
Il= dzA e .

w0 V
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Il = P A (x)
w ax _y= .P

w

fdz e

Iw 1 Ad90  W(x) dz e
1-0 _ 0dp

2; p 2-irPZ
W e w

.2z( p -p)
w

Il =- aO A 2 , (x).
ax =

The second term of Equation 0.40, represented by 12, becomes

12= - dz
w 0

d - 21rpz
A1 a e w

dx v=O

1
12 =- Ai,,(x)

Wmn

12 = -XAI,(x)
w M

~d dyf dx =P

0 ax O

f dz
0

e 2,rpz 2r in

e w e w

2) (m-p)

e w
ax V=O

From Equation 0.13

-sech ,
2a 2a

= Y eW - n+S-sech ,
dx d__ ax 2a 2a

dx - l e - dx v

ax ,_O n__- ax V=0

+ -- sech
2a 2a

Substituting Equation 0.44 into Equation 0.43 gives

1
12 =-XAm(x)

w ,n

w 12z (m-p)~ .2) n& a
fdz e w e z ln

0 xn=- a =

+ -sech 2 ,
2a 2a

12 = A1, (x)3-sech2 if Ax + () "
2a 2a ,___ ax

239

(0.42)

, - -+,
ax dx

(0.43)

(0.44)



I2= Ai,(x)S§Lsec h2§ + $A 1(,_,(xi dk e"" ik ^1(,
2a 2a __ P jfl0

12=A ' 1

I 1 =x)-sech --
2a 2a

p-n) (x) f dk e"
{ S a K o a ~ 2

k " + ' - coshknae max

if sinh ka " z sinh ka _

f 9

12 = A,(x)8-sec h2
2a

77 X(
-- ,_l(x-)Wf dk

2a n=

e"" kLTin

- k 2
8 (5 a -~2" cosh kna e kinax

if sinh ka

- Ap (x) dk e "

Observe that

- A1 (x) dk e" '
5 ka 2 a '

zf sinh ka if -

k cos kx Ir 2 rc X
kskx =-A 1 (x)S 2-sec h2a
sinh ka 2a 2a

Thus,

12 = - AI(p n) ( Jdk

12= - A (p)(x) dk k e"" n

(5 a de kAlp(x dk e" 
if _

2

k 
h

e m cosh kna +

j cosh ka 1 kax

sinh ka

k k2

2

12= J dk k e'k A~ X 'ln e kmax cosh kna±+
A a cosh ka

A x sinh ka

The third term of Equation 0.40, represented by 13, becomes

J d -. 2, p xz , a a (PI
If dz e dx azAl
-ooo
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d 2;r p z
dz e w dx -- ,(x)

a( n

2e m

ew I
J'0

13 = - dz dx
-. 0

13=- I
w-.0

-i 2ffz 
(e wZ+ IAlm(x)e

dz dx e ZAm(x) e
mn

1 i
13 =- w

-0

,--

dz dx e r
,n n

2zc(m+ n) 2rcn 2; (,+n)

2 ( +n (x ) e 

1 w
13 ff dz dx' Y

w - n

x
13 =-f

13 = -i f

27c (m+n) 2 ) n

w w

91n I= 1

i8 (5 a +-" sn +
x sinh ka

-" J cosh kna
;r sinh ka I

1 3 = -I 21r p 2r n f

11 w w _
dx dk el'(Ah,_,,x) 5 a + , ( a cosh

i sinh ka [ r sinh ka_

Substituting equations 0.42, 0.45 and 0.46 into Equation 0.40 and solving for A 2 p (

gives
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W 9in
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w
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n 21rn
e w n I V=O

q1 1K=O ,
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e w 1in I ,0
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nW w

dk eixdx' 2fc p 27c n A 1(p-n)(W
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k

e
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n

.k2

2z p 2.,x X Xk2n
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2kmaxdk k e'kxA T a e i k2I(P-n)

fdk k cos kx cosh ka -
sinh ka

1 f
A 2p (X) =~

( p,,

a=x k"

dk e""x T _ cosh k a e na

which is the expression for Equation 4.146.
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APPENDIX P

This appendix contains a listing of the code "inversefirst-analytic" developed in

MATLAB to solve the inverse problem for a slot defect in two-dimensions using

"analytical data". The code includes the subroutine "calcnewphil".

% PROGRAM INVERSEFIRSTANALYTIC

function inversefirstanalytic

clear

global lprobe w 1 a rho curr deltax x

global xO nimag numcol kmax new_x

global xinic h c newx deltaO

input(enter with the length of probe in x direction : lprobe (mm)= ');

input(enter with the width : w (mm) =);

input(enter with the defect height : h (mm) =');
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input('enter with the defect width: c (mm) =');

input('enter with the length :1 (mm) =');

input('enter with the thickness :a (mm) =');

input('enter with the resistivity :rho (micro-ohm*mm) =');

input('enter with the current : curr (amp) =);

input('enter with the increment in x : deltax (mm)=');

input('enter with the initial position in x : xO (mm) =';

input('enter with the parameter deltaO: deltaO (mm) =';

input('enter with the maximum value of k: kmax (1/mm) =');

xinic= input(enter with the inferior limit of the integral: xl =';

nimag= sqrt(-1);

numcol = lprobe/deltax +1;

[newphi 1] = calcnewphi 1 (x);

for j=1: 1:numcol,

x(j)= (-lprobe/2)+deltax*(j-1);

end

newx=-xO:12.7:xO;

sizenewx=length(newx);
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for i= 1: sizenew_x,

sum = 0;

for j=1:numcol,

varl = (delta0-a)*cosh(kmax*(delta0-a))*sin(kmax*(new_x(i)-x(j)));

var2 = (newx(i)-x(j))*sinh(kmax*(delta0-a))*cos(kmax*(new-x(i)-x(j)));

var3 = (delta0-a)*cosh(kmax*(delta0-a))*sin(kmax*(xinic-x(j)));

var4 = (xinic-x(j))*sinh(kmax*(deltaO-a))*cos(kmax*(xinic-x(j)));

var5 = (newphil(j)/(((delta0-a)A2)+(new-x(i)-x(j))A2))*(varl-var2);

var6 = (newphil(j)/(((delta0-a)A2)+(xinic-x(j))A2))*(var3-var4);

var7 = var5 - var6;

sum = sum + var7;

end

numi(i) = (deltax/(pi))*sum;

den(i) = ((rho*curr)/(2*(a-delta0)*w))*( (sinh((pi/(a-

delta0))*(l+newx(i))))/(cosh((pi/(a-deltaO))*(1+newx(i)))+cos(pi*delta0/(a-delta0))) +

(sinh((pi/(a-deltaO))*(I-new_x(i))))/(cosh((pi/(a-deltaO))*(l-new_x(i)))+cos(pi*deltaO/(a-

deltaG))));

delta1(i)= (delta0+numl(i)/den(i));
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end

defecti = deltal

plot(new_xdefectl,'b')

title(Defect using the "analytical data" :kmax = /mm')

xlabel('distance from the center to the border of the plate (mm)')

ylabel('defect (mm)')
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SUBROUTINE CALCNEWPHII

function [newphil]= calcnewphil(xO)

global w 1 a rho curr deltax h c

global x numcol x deltaO

% numcol is the number of columns in the grid of measurements, which is

% the number of points in the x direction.

x=xO;

for j= 1:numcol,

num 1 = cosh((pi/(a-deltaO))*(+x)- 1);

den1= cosh((pi/(a-deltaO))*(-x)-1);

varl= log(num1/den1);

var2 = ((rho*curr)/(2*pi*w))*varl;

newphizero = var2;

num2 = cosh((pi/a)*(+x))-1;

den2 = cosh((pi/a)*(-x))-1;

var3 = log(num2/den2);
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phizero = ((rho*curr)/(2*pi*w))*var3;

num3= cosh((pi/(2*a))*(1+c))*cosh((pi/(2*a))*(c-x));

den3= cosh((pi/(2*a))*(x+c))*cosh((pi/(2*a))*(c-1));

var4= coth((pi/(2*a))*(-x))*1og(num3/den3);

var5= -((rho*curr*h)/(2*pi*a*w))*var4;

num4= cosh((pi/(2*a))*(x+c))*cosh((pi/(2*a))*(c+1));

den4= cosh((pi/(2*a))*(c-1))*cosh((pi/(2*a))*(c-x));

var6= coth((pi/(2*a))*(1+x))*log(num4/den4);

var7= ((rho*curr*h)/(2*pi*a*w))*var6;

phil = var5 + var7;

newphil(j) = phizero + phil - newphizero;

x=x+deltax;

end
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