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Abstract

This thesis considers routing problems in stochastic time-dependent networks where link
travel times are modeled as time-dependent discrete random variables. Among various
routing problems that arise in stochastic time-dependent networks, we focus on the follow-
ing three problem classes: the minimum possible travel time path problem, the minimum
expected travel time next-arc hyperpath problem, and the minimum expected travel time
path problem.

In the first problem class, we study the all-to-one minimum possible travel time paths
problem, the all-to-one minimum possible travel cost paths problem, the all-to-one k-mini-
mum path travel time realizations problem, and the all-to-one k-dynamic shortest paths
problem. As routing problems in the second problem class, we discuss the all-to-one mini-
mum expected travel time next-arc hyperpaths problem, the all-to-one minimum expected
travel cost next-arc hyperpaths problem, the all-to-one minimum expected travel time next-
arc hyperpaths problem in signalized networks, and the all-to-one minimum expected travel
time next-arc hyperpaths problem in multimodal networks. Finally, we explore the all-
to-one minimum expected travel time paths problem that belongs to the third problem
class.

We drive optimality conditions for each routing problem. We develop efficient solution
algorithms for the routing problems in the first two problem classes. We prove that the
algorithms developed in the thesis have theoretically better worst-case running time com-
plexities than the existing algorithms in the literature. Computational tests show that our
algorithms outperform the existing algorithms in practice as well.
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Chapter 1

Introduction

1.1 Research Background

Routing people, vehicles, goods, messages, or other commodities over transportation or

communication networks has been an important issue in satisfying economical and societal

needs. When commodities are sent over a network, there usually exist one or more criteria

by which routes for the commodities are determined. For instance, individuals on their

way to work in the morning may want to take routes with the shortest travel times. A

telecommunication company may want to route calls over a communication network in

such a way that it accommodates as many calls as possible and also maintains a delay for

each call below a certain level. Among various criteria, travel time between an origin and

a destination serves as the primary concern in many routing applications.

Traditionally, routing problems were considered over deterministic static networks where

link travel times are deterministic and time-invariant, i.e. they are fixed quantities. Many

routing problems in deterministic static networks, whose objectives were mainly to find

shortest paths, were successfully investigated and many efficient solution algorithms were

developed as a result.

Researchers and practitioners then began to consider dynamism associated with link

travel times and to use deterministic time-dependent networks, where link travel times

change time-dependently, as base networks for various routing problems. With the advent

of the Intelligent Transportation Systems (ITS), deterministic time-dependent networks

became more important especially in transportation area because time-dependent travel

time information was required to successfully deploy several subsystems of ITS such as

19



the Advanced Traveler Information Systems (ATIS) and the Advanced Traffic Management

Systems (ATMS).

In deterministic time-dependent networks, it is assumed that the travel time on a link

varies according to the entry time to the link. It is also assumed that for a given link entry

time, the link travel time is a constant that is known a priori with certainty. Although deter-

ministic time-dependent networks approximate well real transportation or communication

networks where network characteristics change according to the time of day and therefore

have been extensively used for various routing problems for the last decade, a couple of

drawbacks of deterministic time-dependent networks especially for transportation networks

have been pointed out.

Firstly, we know from daily experience that even for the same link entry time, traversing

a link may take different amounts of time in congested transportation networks, because of

traffic volume change, incidents, meteorological condition, or other factors. Secondly, we

do not know the travel time on a link in advance until we complete traversing the link.

Therefore one of the assumptions of deterministic time-dependent networks, which is the

travel time on a link is an a priori known constant with certainty for a given link entry

time, is not valid in congested transportation networks.

In order to obtain more realistic routing solutions by modeling actual transportation

networks better, it is imperative to take into consideration the variability and uncertainty

of a link travel time for a given link entry time. A natural approach to capture the variabil-

ity and uncertainty of a link travel time would be to consider a link travel time for a given

link entry time as a random variable. This approach results in stochastic time-dependent

networks where link travel times are random variables that have different probability dis-

tributions according to link entry times.

Consideration of both stochasticity and time-dependency of link travel times makes

routing problems much harder to solve. Presumably this is one of the reasons that active

research on routing problems in stochastic time-dependent networks has begun recently and

only a small number of research papers have been published. However, since stochasticity

and dynamism are becoming increasingly important issues that cannot be ignored in many

routing applications in transportation or communication networks, we expect stochastic

time-dependent networks to take the place of deterministic time-dependent networks as

base networks for various routing problems in the very near future.
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This thesis studies several routing problems in stochastic time-dependent networks from

a transportation application perspective. Particularly we focus on the development of fast

solution algorithms for the routing problems with the intention of utilizing the algorithms

for real time ITS applications.

1.2 Network Types

We may think of four network types depending on which of stochasticity and time-depen-

dency of link travel times is considered. We illustrate the network types with examples in

this section.

A deterministic static network has fixed link travel times as exemplified in Figure 1-1.

No stochasticity and time-dependency of link travel times exist. If another attribute of a

link other than travel time is used, the value of the link attribute can be negative.

2
3 2

S3

4

Figure 1-1: An Example of Deterministic Static Network

Figure 1-2 shows an example of stochastic static network. In networks of this type, the

travel time on a link is a random variable. For instance, the travel time on link (2,3) follows

a normal distribution with the mean of 4 and the variance of 1. Link travel time random

variables may be discrete or continuous. There is no time-dependency of link travel times,

so only one probability distribution is associated with each link. It is well known that we

3 wp 0.5
5 wp 0.5 N(4,1)

S3

exp(-0.25x)

Figure 1-2: An Example of Stochastic Static Network
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can find a path with the minimum expected travel time from an origin to a destination

by setting each link travel time to its expected value and then applying a shortest path

algorithm (Sigal et al. [24], Eiger et al. [9]). Stochastic static networks have been widely

used in the reliability analysis of communication or manufacturing networks and in the

PERT-type network analysis for project management.

An example of deterministic time-dependent network is depicted in Figure 1-3. The

travel time on a link has different values according to the link entry time. For instance, the

travel time on link (1, 2) is 3 units of time when a traveler enters the link at time 0 and 5

units of time when he enters the link at time 1. As mentioned in the previous section, a link

travel time is constant for a given link entry time. Link travel times and link entry times

can be modeled in discrete time or in continuous time. Figure 1-3 shows a deterministic

discrete time-dependent network.

2
t=0: 3 t=3: 4

t=1: 5 t=6: 3

3

t=0: 8
t=1: 7

Figure 1-3: An Example of Deterministic Time-Dependent Network

Finally, Figure 1-4 illustrates an example of stochastic time-dependent network. For a

given link entry time, the travel time on a link is obtained from a probability distribution

that may be either discrete or continuous. For instance, the travel time on link (1, 3) is

exponentially distributed, but the distribution has different parameters according to the

t=0: 3 wp 0.5
t=: 5 wp 0.5 2t=3:N(4,1)

t=1: 2 wp 0.5 t=4: N(5,2)
t=1: 3 wp 0.5 t=5: N(6,2)

S3

t=0: exp(-0.25x)
t=1: exp(-0.5x)

Figure 1-4: An Example of Stochastic Time-Dependent Network
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link entry time. Note that stochastic time-dependent networks can be thought the most

general network type because they can reduce to networks of other types if one or both

of stochasticity and time-dependency of link travel times is ignored. In this thesis, we

consider stochastic time-dependent networks where probability distributions are discrete

and link travel times as well as link entry times are also discrete.

1.3 Problem Variants

Unlike deterministic static or deterministic time-dependent networks, stochastic time-depen-

dent networks may allow more than one path to have some positive probability of being

shortest for any origin-destination pair. Therefore the shortest travel time is not a well-

defined criterion for selecting routes in stochastic time-dependent networks.

We may employ other criteria by which routing decisions can be made unambiguously

in stochastic time-dependent networks, such as the lowest possible travel time on a path,

the longest possible travel time on a path, the expected travel time on a path, the variance

of the travel time on a path, etc. In this thesis, we consider the following two criteria among

others:

* Lowest Possible Travel Time

* Expected Travel Time

In routing problems with the lowest possible travel time criterion, we want to find a

path whose lowest possible travel time (minimum travel time) is smaller than that of any

other path for an origin-destination pair at a given departure time. In the literature, routing

problems of dispatching emergency vehicles in urban areas adopt this criterion (Miller-Hooks

[16], Miller-Hooks and Mahmassani [17]).

The expected travel time criterion is associated with another class of routing prob-

lems where we want to find a path with the minimum expected travel time for an origin-

destination pair at a given departure time.

It turns out that the expected travel time criterion results in a different class of routing

problems if travelers are allowed to change their paths adaptively during their trips in

stochastic time-dependent networks. This class of routing problems, called the minimum

expected travel time next-arc hyperpath problem, is also studied in this thesis.
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To recapitulate, the following three classes of routing problems are discussed in the

thesis:

" Minimum Possible Travel Time Path Problem

" Minimum Expected Travel Time Path Problem

" Minimum Expected Travel Time Next-Arc Hyperpath Problem

Routing problems are further classified by the number of origins, the number of desti-

nations, and the number of departure times. In the context of ITS applications, routing

problems concerning all origins, a single destination, and all departure times (so-called

all-to-one problems) are of particular interest. Therefore we will study various all-to-one

routing problems in each problem class in this thesis.

1.4 Contributions

The contributions of the thesis are as follows:

" For each routing problem, we derive a set of optimality conditions that is a dynamic

programming formulation of the problem.

" For several routing problems in the first and the third problem classes (the minimum

possible travel time path problem and the minimum expected travel time next-arc

hyperpath problem), we develop solution algorithms with worst-case optimal running

time complexities.

" For other routing problems, we develop efficient solution algorithms that have better

worst-case running time complexities than the existing algorithms in the literature.

1.5 Outline of the Thesis

The thesis is organized in eight chapters. This first chapter mentions the research back-

ground, the network types, the routing problem variants to be studied, and the contributions

of the thesis. In Chapter 2, the related literature is reviewed. In Chapter 3, we present some

preliminary material for the thesis, which includes basic notation, terminologies, assump-

tions, the concept of time-space network, and the concept of next-arc hyperpath. We study
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several routing problems that belong to the minimum possible travel time path problem

class in Chapter 4. We discuss the characteristics of routing problems of this class. For

each routing problem studied, we derive a set of optimality conditions and then develop an

efficient solution algorithm from it. In Chapter 5, we first introduce two routing policies in

stochastic time-dependent networks. We then distinguish between the minimum expected

travel time next-arc hyperpath problem and the minimum expected travel time path prob-

lem, based on routing policy. Several routing problems in the former problem class are

studied in the chapter. For each routing problem, we derive a set of optimality conditions

and develop an efficient solution algorithm. In Chapter 6, we discuss one problem in the

minimum expected travel time path problem class, the all-to-one minimum expected travel

time paths problem. We explain why this problem is inherently difficult to solve and dis-

cuss ideas of possible solution algorithms. In Chapter 7, we report on the results of the

computational tests on several algorithms presented in the preceding chapters. Finally, the

conclusions and the future research directions are given in Chapter 8.
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Chapter 2

Literature Review

In this chapter, we review the literature pertaining to routing problems in stochastic static

networks, in deterministic time-dependent networks, and in stochastic time-dependent net-

works. We do not survey the research work on routing problems in deterministic static

networks because several textbooks summarizing the work, for instance Ahuja et al. [1] and

Bertsekas [2], are readily available.

2.1 Routing Problems in Stochastic Static Networks

Most papers credit Frank [10] with the first published work on the "shortest" path problem

in stochastic static networks. He considers the problem of computing the probability that

the minimum travel time from an origin node to a destination node is less than some value

when link travel times have continuous probability distributions. Notice that this problem

is essentially equivalent to determining the probability distribution of the minimum travel

time. To avoid the complications arising from the computation of multiple integrals, he

approximates the computation by Monte Carlo simulation. He also studies the comparison

of any two disjoint paths from an origin node to a destination node based on the probability

that the travel time on each path is greater than a given threshold. He recognizes that the

computation of this probability involves a convolution of link travel time random variables,

which is formidable when each path contains many links. He overcomes this difficulty by

using the central limit theorem. In addition, he discusses hypothesis tests on the probability

that the minimum travel time from an origin node to destination node is greater than some

specified value.
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Sigal et al. [24] consider the selection of the "shortest" path from an origin node to a

destination node when link travel time random variables are independent of each other. As a

performance measure of a path to be used in determining the "shortest" path, they introduce

the concept of a path optimality index. The optimality index of a path is defined as the

probability that the path is shorter than all other paths. They recognize that the optimality

index of a path is difficult to compute, because links may belong to more than one paths

and therefore path travel times are not independent random variables. They resolve the

statistical dependence among path travel times by using the concept of uniformly directed

cutsets and present an analytical procedure to compute the optimality index of a path. The

analytical procedure, however, involves multiple integrals that are difficult to evaluate in

practice.

Eiger et al. [9] study the problem of finding an optimal path from an origin node

to a destination node when a traveler uses a utility function to evaluate each path. The

utility function is a nonincreasing function of the travel time on a path. An optimal path

is defined as one with the maximum expected utility. They show that when link travel

times are independent random variables and the utility function is linear or exponential, an

efficient Dijkstra-type algorithm can solve the problem.

Mirchandani and Soroush [19] extend the work of Eiger et al. [9] to the problem with a

quadratic utility function. In this case, Dijkstra-type algorithms may not find an optimal

path. They propose an algorithm that depends on only the first and second moments of

the travel time on a path, but it has an exponential running complexity in the worst case.

Kulkarni [14] considers networks where link travel times are independent and exponen-

tially distributed random variables. From the network, he constructs a continuous time

Markov chain (CTMC) with a single absorbing state such that the time until absorption

into the absorbing state starting from the initial state is equal to the minimum travel time

from a given origin node to a given destination node in the network. Using the Markov

chain, he develops methods for computing the distribution of the minimum travel time, the

moments of the minimum travel time, and the optimality index of a path. His approach

has a limitation that the state space of the Markov chain may grow exponentially with the

network size. Hence this approach is not suitable for large dense networks.

Extending the work of Kulkarni [14], Corea and Kulkarni [6] present methods for com-

puting the distribution and moments of the minimum travel time in networks where link
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travel times are independent, nonnegative, and integer valued random variables. They use

a discrete time Markov chain (DTMC) with a finite state space and a single absorbing state.

The same drawback as in Kulkarni [14] exists in this approach too.

2.2 Routing Problems in Deterministic Time-Dependent Net-

works

Perhaps the earliest paper dealing with routing problems (shortest path problems) in deter-

ministic time-dependent networks can be attributed to Cooke and Halsey [5]. They present

a recursive functional form (a set of optimality conditions) that gives the shortest paths

from all nodes to one destination node for all discrete departure times.

Dreyfus [8] suggests a label-setting approach which generalizes Dijkstra's algorithm to

determine the shortest path between two nodes for a given departure time.

Kaufman and Smith [13] show a counterexample for which Dreyfus' approach fails to

detect the shortest path. They establish a consistency condition under which Dijkstra-type

algorithms (Dreyfus' approach) are guaranteed to find the shortest path with the same

computational complexity as that of the static shortest path problem. This consistency

condition is thought of as the first-in first-out (FIFO) condition.

Ziliaskopoulos and Mahmassani [26] propose a label-correcting algorithm that deter-

mines the shortest paths from all nodes to one destination node for all discrete departure

times. The algorithm does not require the FIFO condition to hold in the network. It

can handle the case where an attribute of a link other than travel time, which can have a

negative value, is used, as long as the network does not have negative "cost" cycles.

Chabini [3] considers three routing problems: the shortest paths from one origin node to

all other nodes for a given departure time (called the one-to-all shortest paths problem), the

shortest paths from all nodes to one destination node for all discrete departure times (called

the all-to-one shortest paths problem), and the minimum cost paths from all nodes to one

destination node for all discrete departure times (called the all-to-one minimum cost paths

problem). He reviews optimality conditions for each problem. He then develops decreasing

order of departure time (DOT) algorithms for the all-to-one shortest paths problem and

the all-to-one minimum cost paths problem. He shows that the two algorithms have the

optimal running time complexities, and that consequently no algorithms with better running
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time complexities can be found for the problems. The ideas underlying those decreasing

order of departure time algorithms will be extended to routing problems in stochastic time-

dependent networks in this thesis.

Chabini and Dean [4] present a deeper analysis of waiting at nodes. They develop a

decreasing order of departure time algorithm for the all-to-one shortest paths problem and

an increasing order of departure time (IOT) algorithm for the one-to-all shortest paths

problem, when waiting at nodes is allowed in the network.

2.3 Routing Problems in Stochastic Time-Dependent Net-

works

Hall [12] appears to be a seminal paper about routing problems in stochastic time-dependent

networks. He shows that static shortest path algorithms such as Dijkstra's algorithm may

not find the minimum expected travel time path between two nodes for a given departure

time in stochastic time-dependent networks. He proposes an algorithm that finds the min-

imum expected travel time path from one origin node to one destination node for a given

departure time. The algorithm combines a branch-and-bound technique and a k-shortest

paths algorithm. Although the algorithm is exact, it does not explain how to compute the

expected travel time on a given path. The algorithm will be reviewed in Chapter 6 of this

thesis. He also realizes that the best route from any intermediate node to the destination

in terms of expected travel time depends on the arrival time at that intermediate node.

Therefore the best route can be found by deferring the choice of the next link to take until

the intermediate node is reached. He calls this method the time-adaptive route choice. The

result obtained from the time-adaptive route choice is generally not a simple path, but it is

referred to as an optimal adaptive decision rule (it is called the minimum expected travel

time next-arc hyperpath in this thesis). He applies dynamic programming to the problem

of finding an optimal adaptive decision rule from one origin node to one destination node

for a given departure time. We will study related problems in Chapter 5.

Kaufman and Smith [13] briefly mention a consistency condition for the determination

of the minimum expected travel time path in stochastic time-dependent networks. However

they do not propose any solution algorithm.

Miller-Hooks [16] studies various routing problems in stochastic time-dependent net-
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works where link travel times are independent discrete random variables. She proposes

several efficient solution algorithms, some of which will be revisited in this thesis.

Miller-Hooks and Mahmassani [17] discuss the problem of finding a path with the min-

imum possible travel time from all nodes to one destination node for all discrete departure

times when link travel times are independent discrete random variables. They extend the

problem to selecting several paths from all nodes to one destination node for all discrete

departure times. These two problems will be studied in detail in Chapter 4.

Fu and Rilett [11] study the problem of finding the minimum expected travel time

path from one origin node to one destination node for a given departure time when link

travel times are modeled as continuous time stochastic processes, i.e. link travel times

have continuous probability distributions. They claim that even if the link travel times

are independent random variables, the probability distribution of the travel time on a path

is very hard to obtain from the probability distributions of the travel times on the links

constituting the path. Hence they study how to estimate the expected travel time on a

path by using the means and variances of the travel times on the constituent links of the

path. They present a heuristic algorithm for the problem, which relies on a k-shortest

paths algorithm as well as the estimated expected travel time on a path.

Miller-Hooks and Mahmassani [18] propose an efficient algorithm for the problem of

finding the minimum expected travel time next-arc hyperpaths from all nodes to one desti-

nation node for all discrete departure times. They also present a non-polynomial algorithm

for the problem of finding the minimum expected travel time paths from all nodes to one

destination node for all discrete departure times. We will revisit these algorithms in Chap-

ters 5 and 6.

Yang and Miller-Hooks [25] study the problem of finding the minimum expected travel

time next-arc hyperpaths from all nodes to one destination node for all discrete departure

times in signalized networks. This problem will be discussed in Chapter 5.

Opasanon and Miller-Hooks [21] consider stochastic time-dependent multimodal net-

works. They study the problem of finding the minimum expected travel time next-arc

hyperpaths from all nodes to one destination node for all discrete departure times in such

networks. This problem will be also discussed in Chapter 5.
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Chapter 3

Preliminaries

In this chapter, we present preliminary material for this thesis. In Section 3.1, we introduce

basic notation, terminologies, and assumptions that will be used throughout the thesis.

Other problem-specific notation, terminologies, and assumptions will be introduced where

appropriate in the thesis. The comprehensive set of notation is summarized in Appendix A.

We also introduce the concepts of time-space network and next-arc hyperpath in Section

3.2 and in Section 3.3, respectively.

3.1 Notation, Terminologies, and Assumptions

3.1.1 Network

Consider a network consisting of a finite number of nodes and a finite number of directed

links. We denote such a network by S = (N, A), where N is the set of n nodes and A is the

set of m directed links.

Let d denote a given destination node. The network is assumed to have at least one

directed path from every node to the destination node d. It is assumed that no parallel

links exist between any two nodes, thus we have m < n(n - 1).

We denote by 0(i) the set of end nodes of outgoing links from node i, i.e. 0(i) = {j I

(i, j) E A}. Similarly, we denote by J(i) the set of start nodes of incoming links to node i,

i.e. 9(i) = {j 1 (j, i) E A}. Note that EiEN 10 (i) = EiEN NO(i) = m.
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3.1.2 Time Period of Interest

Let J* = [ti, t] be a continuous time period of interest, which is generally a peak period

of the network. We discretize {* into small time intervals. Let YC = {ti, ti + At, t +

2At,... , ti + (H - 1)At} be a discretized time period of interest, where At is the length of

each small time interval and tj + (H - 1)At = t,. At should be chosen such that it is no

greater than any link travel time value. This allows us to avoid the case where one would

arrive at a next node at the same time interval as the departure time from a node, which

is not realistic from a practical point of view.

For the sake of brevity of exposition hereafter, without loss of generality, we assume

that t1 = 0 and At = 1. Thus the discretized time period of interest becomes the set

H = {0, ... , H - 1}.

3.1.3 Link Travel Times

We assume that link travel times are time-dependent random variables whose probability

distributions vary according to the times that the links are entered.

For each link (i, j) E A and each link entry time t E H, let Tij (t) be a random variable

denoting the travel time on link (i, j) when one enters the link at time t. We assume that

the probability distribution of Tij(t) is discrete. The probability mass function (PMF) of

Ti (t) is denoted by pTj (t)-

We define a realization of Tij(t) as a couple of a possible travel time value and its

probability. Let Tij(t) have rij(t) realizations denoted by (%rj(t),pr (t)), r E 'R 3i(t) =

{1, ... ,rij(t)}. 1r-r(t) is the travel time value of the rth realization of Tij(t). pr (t) is the

probability of the rth realization of Ti3 (t) (the probability that Tri(t) occurs, i.e. P[Ti3 (t) =

< (t)] = pr (t)). We assume that rr (t), V r E 'Rij (t) are distinct. We represent the PMF of

Ti (t) by the set of realizations as follows:

PTj(t) = {(,ri(t), pi (t)) r E 'Ri (t) , (3.1)

where E tZej ti (t) = 1.

We assume that the link travel time values rr(t), V (i, j) E A, V t E H, V r E 'RZi (t) are

positive integers. We also assume that after the peak period, i.e. t > H - 1, the network

is no longer time-dependent, but still stochastic. The travel time distribution of link (i, j)
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at a link entry time t > H - 1 is assumed to be the same as that of link (i, j) at the link

entry time t = H - 1. Mathematically, pT%,(t) =PTi(H-1), V(ij) E A, Vt > H - 1.

We denote by in the total number of link travel time realizations in the network during

the peak period. Fn is given by

in-= 'Ii (t). (3.2)
(ij)EA tEX

As will be explained in Section 3.2.2, in- is the same as the number of links in the time-space

network of a stochastic time-dependent network.

3.1.4 Path Travel Times

In stochastic time-dependent networks, the travel time on a path is also a time-dependent

random variable because it is a function of the travel times of the links constituting the

path, which are time-dependent random variables.

Let L'(t) be a random variable denoting the travel time on path c from node i to the

destination node d at departure time t. Like a realization of a link travel time, we define

a realization of Lj(t) as a couple of a possible travel time value and its probability. The

realizations of L'(t) are not given data, but computed from the travel time realizations of

the links on the path.

We denote the realizations of L'(t) by (l t ), (t)), k = 1,2, ... , ke(t), where ki(t) is

the number of realizations. 1jk (t) is the travel time value of the kth realization of L'(t) and

pi (t) is the probability that ly (t) occurs, i.e. P[Lc(t) = l t = p"(t). The PMF of L (t)

is then represented by

PL (t) = {(lkt)jpik(t)) I k = 1,2, ... , k (t)}. (3.3)

Let us illustrate how to construct the PMF of Lc(t) from the link travel time PMFs

when the link travel times are independent random variables. Consider a trip from node 1

to node 3 at departure time 0 in the stochastic time-dependent network depicted in Figure

3-1 and Table 3.1. Let path a be 1 -+ 2 -+ 3 and path b be 1 - 3. Assuming that all

link travel time random variables are independent of each other, we obtain all travel time

realizations of each path for this trip as follows:
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Destination

Figure 3-1: An Example Network

Table 3.1: Time-Dependent Link Travel Time PMFs

Link (i, j) 1 (1, 2) (1, 3) (2,3)
Departure Time (t) 0 0 1 2

(1, 0.5) (4, 0.5) (2, 0.4) (1, 0.8)
( ) ) (2, 0.5) (6, 0.5) (3, 0.6) (3, 0.2)

* For path a:

l (0) =Tr, 2 (0) + 7-3 2(+2()) = 1 + 72 3(1) = 1 + 2 = 3

P1 (0) = P12(0) x P23(0 + rT2 (0)) -05 x P1
3 (1) = 0.5 x 0.4 = 0.2

l12(0) =Tr, 2 (0) + r23(0 + 7- 2 (0)) = 1+ -r3 (1) = 1 + 3 = 4

ay2(0 = ()X p2s( +r1 7(0)) =0. 5 X p231 . . .
p1 (0)= P12(0) 3(0 + 3(2) = 0.5 x 0.6 = 0.3

a3

li (0) =Ti?2 (0) +T 3(0 +? 2 (0)) = 2+T 3(2) =2 +13p12(0) = p 2(0) x P13(0 + r?2 (0)) = 0.5 x P13(2) = 0.5 x 0.8 = 0.4

1~()2(0)xp2 3 (0 +T-1 2 (0))0.5 Xp 2 (2) 05 x020.1

* For path b:

1 (0) =r,3(0) = 4

P (0) =Pi3(0) - 0.5
p1 6
l 2(0) = Tf3(0) = 6

1 (0)=p( =0.51i 3()0.5
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The PMFs of L'(0) and Li (0) are therefore given by

PL (o) = {(3, 0.2), (4,0.3), (3, 0.4), (5, 0.1)}, (3.4)

PLi(o) = {(4, 0.5),(6,0.5)}. (3.5)

Note that the first and the third realizations of La(0) have the same travel time value, i.e.

ja (0) = la' (0). The two path travel time realizations, however, are obtained by different

combinations of the link travel time realizations. The first realization is obtained by (Tr 1
2 (0),

P12(O)) and ('r 3 (1),p$3(1)), whereas the third realization is obtained by (Tr2 (O),p 2(0)) and

(-23(2), P23(2)). In the minimum possible travel time path problem that will be discussed

in Chapter 4, we will treat each travel time realization of a path obtained by a different

combination of the link travel time realizations on the path differently, regardless of its

travel time value. Hence the first and the third travel time realizations of path a in the

above example are considered to be different realizations although they have the same travel

time value. Consequently, we allow allow a PMF of path travel time to have more than one

realization with the same travel time value as exemplified in (3.4).

Now we introduce several terminologies related to path travel time. For a given node

i, path c, and departure time t, mink{lk (t)} is referred to as the minimum travel time

on path c from node i to node d at departure time t. A travel time realization of path c

from node i to node d at departure time t, whose travel time value equals to the minimum

travel time is called a minimum travel time realization. Since we differentiate between

travel time realizations of a path, which have the same travel time value, but are obtained

by different combinations of the link travel time realizations on the path, there may exist

several minimum travel time realizations on path c from node i to node d at departure time

t.

In the above example, the minimum travel time on path a from node 1 to node 3

at departure time 0 is 3 units of time. (3,0.2) and (3,0.4) are the minimum travel time

realizations of path a at departure time 0. As for path b from node 1 to node 3, the mini-

mum travel time at departure time 0 is 4 units of time and (4,0.5) is the minimum travel

time realization at departure time 0.

For a given node i and departure time t, we refer to minc{min{ly (t)}} as the minimum

possible travel time from node i to node d at departure time t. We call a path travel time
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realization from node i to node d at departure time t, whose travel time value equals to

the minimum possible travel time a minimum possible travel time realization. More than

one minimum possible travel time realization may exist from node i to node d at departure

time t. Some of those realizations may belong to the same path.

The minimum possible travel time from node 1 to node 3 at departure time 0 in the

above example is 3 units of time. (3,0.2) and (3,0.4) are the minimum possible travel time

realizations from node 1 to node 3 at departure time 0. Both of the minimum possible

travel time realizations belong to path a.

Note that the minimum travel time and a minimum travel time realization are the termi-

nologies associated with each (origin node, path, departure time) triplet, while the minimum

possible travel time and a minimum possible travel time realization are the terminologies

associated with each (origin node, departure time) pair.

3.1.5 Other Notation and Assumptions

Stochastic time-dependent networks are said to have the FIFO property if the following

conditions hold [17].

P[s + Tij(s) <; t + Ti(t)] = 1, V(ij) E A, Vt E X, Vs < t, 8 E H. (3.6)

If the networks have the FIFO property, solution algorithms for some routing problems could

be developed fairly easily. For instance, Dijkstra-type algorithms can solve the minimum

possible travel time path problem. However it is a property that is not always satisfied in

real transportation networks. In this thesis, we do not impose the FIFO property on the

networks.

Concerning waiting at nodes, we assume that no waiting is allowed at all nodes in most

part of the thesis. However we will provide short discussions about the case where waiting

is allowed at all nodes in Chapters 4 and 5.

While developing solution algorithms for various routing problems in stochastic time-

dependent networks in the subsequent chapters, we often need to solve an all-to-one shortest

paths problem in deterministic static networks as an initialization step of the algorithms

(details will be given in relevant parts of the thesis). We denote by 9(f(n, m)) the lowest

possible running time to solve an all-to-one static shortest paths problem with n nodes and
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m links.

3.2 Time-Space Network

3.2.1 Time-Space Network of a Deterministic Time-Dependent Network

When a deterministic time-dependent network is graphically represented without explicitly

incorporating time as a dimension, a vector of numbers which indicates time-dependent

travel times is associated with each link as exemplified in Figure 3-2. In this figure, for

instance, [1, 2,1, 2, 2] on link (1, 2) means that the traversal time of link (1, 2) is 1 unit of

time at departure time 0, 2 at departure time 1, and so on.

2
[1, 2, 1, 2, 2, 11 [1, 1, 1, 2, 2, 1]

Destination

[1, 2, 3, 3, 2,1]

[1, 1, 1, 2, 2, 1] [2, 1, 1, 2, 1, 1]

Figure 3-2: An Example of Deterministic Time-Dependent Network

This network representation, however, is not convenient for visualization of the net-

work and algorithm development. Especially for the later purpose, we use the concept of

time-space network. A time-space network is a deterministic static network constructed

by expanding the original network in the time dimension. The following shows how to

construct the time-space network of a deterministic time-dependent network.

For each node i of the original network, we expand node i by creating node-time pairs

(i, t) for all t E X. We also create an additional node-time pair (i, H) which plays a role

of all node-time pairs (i, t), V t > H - 1. Node-time pairs (i, t) E N x X U {H} are the set

of nodes of the time-space network. We introduce a link between two node-time pairs (i, t)

and (j, s), if (i, j) E A and the travel time on link (i, j) at time t is s - t.

Let us denote the set of nodes and the set of links of the time-space network by 4 and

A respectively. They are mathematically expressed as follows:
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N= {(it) I i E 2, t E a-u {H}},

A {((i, t), (j, s)) I (i, j) E A, t + rij(t) = s, t E C,

where rij(t) is the deterministic travel time on link (i, j) of the

entry time t.

Figure 3-3 shows the time-space network of the deterministic

depicted in Figure 3-2. Here are several observations about the

deterministic time-dependent network.

(3.7)

(3.8)E H U {H}} ,

original network at link

time-dependent network

time-space network of a

1. The time-space network is a deterministic static network. Therefore any deterministic

static shortest path algorithm can be directly applied to the time-space network.

2. There exist a one-to-one correspondence between all paths in the time-space network

and all paths in the original network.

3. If all link travel times of the original network are positive, then the corresponding

time-space network is acyclic.

4. By construction, no parallel links exist between any two nodes in the time-space

network.

5. If waiting is allowed at node i of the original network from time t to time s (s > t),

then there exist links ((i, t), (i, t + 1)), ((i, t + 1), (i, t + 2)), ... , ((i, s - 1), (i, s)) in

the corresponding time-space network.1

6. The number of nodes in the time-space network is INI x IX U {H}I = n(H + 1).

7. The number of links in the time-space network is JAl x IHI = mH. If waiting is

allowed at nodes, it is bound from above by (JAI + lNI) x 19C = (m + n)H.2

8. Let (((i, t)) be the set of end nodes of outgoing links from node (i, t) in the time-space

network. If ((i, t)) = {(j, si), (j2, S2),.- ,(jp, Sp)}, then ji 5 j2 # -#Jp

'This is valid only if the cost of waiting is additive (Chabini and Dean [4]).
2This is valid only if the length of waiting is unlimited and the cost of waiting is additive (Chabini and

Dean [4]).
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>= 60

4 0 0 0 0

3 0 0 O 4o

2O 0 0

1 0

1 2 3 4

Node

Figure 3-3: Time-Space Network of the Deterministic Time-Dependent Network in Figure
3-2, H = 6
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We can also draw a time-space network using a three-dimensional diagram where one

dimension represents departure time and the other two dimensions describe the spatial

layout of the nodes in the original network (see Figure 3-4).

>= 6 0

0.2

.. 0 Destination

Figure 3-4: An Example of 3-Dimensional Time-Space Network

3.2.2 Time-Space Network of a Stochastic Time-Dependent Network

Similar to deterministic time-dependent networks, we can construct the time-space network

of a stochastic time-dependent network. In this case, the set of nodes of the time-space

network is the same as X, but the time-space network has much more links because the

travel time on link (i, j) of the original network may have several realizations for a given

departure time.

Let N and A be the set of nodes and the set of links of the time-space network of a

stochastic time-dependent network, respectively. Then

X = {(ijt) I i E N, t E X U {H}}, (3.9)
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A= {((it),(js)) I (ij) E A, t+T rj(t) = s, r E 'Rij(t), t E H, s E X U{H}} . (3.10)

Several observations about the time-space network of a stochastic time-dependent net-

work are as follows:

1. The time-space network is a deterministic static network. Therefore any deterministic

static shortest path algorithm can be directly applied to the time-space network.

2. Since we assume that all rjj (t) are positive, the time-space network is acyclic.

3. By construction, no parallel links exist between any two nodes in the time-space

network.

4. If waiting is allowed at node i of the original network from time t to time s (s > t),

then there exist links ((i, t), (i, t + 1)), ((i, t + 1), (i, t + 2)), . . . , ((i, s - 1), (i, s)) in

the corresponding time-space network.3

5. The number of nodes in the time-space network is 1N x PX U {H}l = n(H + 1).

6. The number of links in the time-space network is i = E(i'j)eA ZtEj-c ij M(t)I. If

waiting is allowed at nodes, it is bound from above by i + nH.4

7. Let 0((i, t)) be the set of end nodes of outgoing links from node (i, t) in the time-space

network. If 6((i, t)) = {(ji, si), (j2 , S2 ), ... , (jp, sp)}, then some of ji, j2, ,jp can

be identical.

Suppose there exist several paths between two nodes in the time-space network of a

stochastic time-dependent network. From the last observation above, we can deduce that

some of the topological paths corresponding to those paths could be identical. Note that

all topological paths corresponding to paths between two nodes in the time-space network

of a deterministic time-dependent network are distinct if waiting at nodes is not allowed in

the deterministic time-dependent network.

The acyclic property of the time-space network of a stochastic time-dependent network

will play a key role when we develop efficient algorithms for routing problems in stochastic

time-dependent networks later in this thesis.

3This is valid only if the cost of waiting is additive (Chabini and Dean [4]).
4 This is valid only if the length of waiting is unlimited and the cost of waiting is additive (Chabini and

Dean [4]).
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Figure 3-5 shows an example of stochastic time-dependent network. For instance,

[1, 2, 1, 2, 2, 1] wp 0.5 and [2, 1, 3, 3, 3, 2] wp 0.5 on link (1, 2) mean that P[T12(0) = 1] = 0.5,

P[T12 (0) = 2] = 0.5; P[T12 (1) = 2] = 0.5, P[T12 (1) = 1] = 0.5; and so on. Its time-space

network is drawn in Figure 3-6. The solid lines correspond to the first realizations and the

dotted lines correspond to the second realizations.

[1,2,1,2,2, 1]wp.5 [1, 1, 1, 2,2, 1] wp 0.5
[2, 1, 3, 3, 3, 2] wp 0.5 [2, 2, 3, 4, 3, 2] wp 0.5

Destination
[1, 2, 3, 3, 2, 1] wp 0.5Q [2, 1, 2, 2, 3, 2] wp 0.5

[1, 1, 1, 2, 2, 1] wp 0.5 [2, 1, 1, 2, 1, 1] wp 0.5
[2, 2, 2, 3, 3, 2] wp .5 [1, 2, 3, 1, 2, 2] wp 0.5

Figure 3-5: An Example of Stochastic Time-Dependent Network

3.3 Hyperpath and Next-Arc Hyperpath

Finding an optimal simple path from an origin node to a destination node based on a

priori network state information is of primary interest in many routing problems. The

determination of shortest paths in deterministic static networks is one example.

However, if the network state changes during the trip from an origin node to a destination

node, the simple path chosen beforehand might be no longer optimal. In this case, a traveler

might need to deviate from the chosen path in order to move to a better path by utilizing

new network state information en route. Since different routing decisions can be made

according to new network state information available during the trip, an optimal path

cannot be described as a simple path. Instead, all different routing decisions collectively

form an acyclic network often called a hyperpath, which connects the origin node and the

destination node.

Generally, a hyperpath is a collection of more than one simple path from an origin node

to a destination node. All simple paths on the hyperpath are "candidates" that a traveler

can choose, and the actual selection of a path is dependent upon the network state en route.

The concept of hyperpath has played an important role in transit networks with over-
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5-

0
1 2 3 4

Node

Figure 3-6: Time-Space Network of the Stochastic Time-Dependent Network in Figure 3-5,
H = 6
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lapping routes. Consider bus services in transportation networks. In general, passengers do

not know the exact arrival times of bus lines at bus stops, but they have knowledge on the

frequency of each bus line. If there exist several ways (combinations of bus lines) to go from

an origin node to a destination node, the actual path, i.e. a sequence of bus lines that a

passenger takes, will vary according to the arrivals of buses at the bus stops. The collection

of bus lines that a passenger may take at the bus stops forms a hyperpath (Pallottino and

Scutellh [22]).

Transit routing in transportation networks is not the only application for which the

hyperpath concept can be usefully exploited. In fact, there are other routing problems

where an optimal itinerary of a traveler is not completely defined a priori, because an

optimal itinerary may change as new network state information reveals during the trip. In

these problems too, hyperpaths can model the traveler's adaptive routing decisions that

depend on the en route network state.

We define a next-arc hyperpath as a constrained hyperpath such that at every node of the

hyperpath, only one link among outgoing links from the node is used at each departure time.

We will use the concept of next-arc hyperpath in Chapter 5 to solve expected travel time-

based routing problems in stochastic time-dependent networks when travelers are allowed

to select links adaptively en route depending on the arrival times at nodes in the network.

Figure 3-7 shows a next-arc hyperpath example for a trip from node 1 to node 5. In

this example, path 1 -4 2 -4 3 -+ 5 is optimal if a traveler arrives at node 2 before 9 AM.

But if he arrives at node 2 after 9 AM, it is better to take path 1 -+ 2 -+ 4 -+ 5. Note that

if the exact traversal time of link (1, 2) is not known a priori, we cannot specify a simple

optimal path from node 1 to node 5 because either path can be optimal depending on the

network state after he leaves node 1. Notice that according to the arrival time at node 2,

If arrival time at node 2 < 9 AM

Destination

If arrival time at node 2 > 9 AM

Figure 3-7: A Next-Arc Hyperpath Example
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one of the two outgoing links from node 2 is used, i.e. either link (2,3) or link (2,4). Using

both links at a given departure time from node 2 is not allowed in a next-arc hyperpath.

For the mathematical definition of hyperpath and related discussions, we refer the reader

to Nguyen and Pallottino [20] and Pretolani [23].
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Chapter 4

Minimum Possible Travel Time

Paths

In this chapter, we discuss the minimum possible travel time path (MPTTP) problem that

relies on path travel time realizations. As mentioned in subsection 3.1.4, in stochastic

time-dependent networks, the travel time on a path for a given departure time is a random

variable that may have several realizations. In the minimum possible travel time path prob-

lem, we compare all path travel time realizations between an origin node and a destination

node for a given departure time and select a path that has a minimum possible travel time

realization. A path with a minimum possible travel time realization is referred to as a

minimum possible travel time path.

We first study the all-to-one minimum possible travel time paths problem which is one

variant of the minimum possible travel time path problem in Sections 4.1-4.5. In Section

4.6, we consider the exact probability that the minimum possible travel time occurs on a

path. We discuss several extensions of the all-to-one minimum possible travel time paths

problem in Section 4.7. Finally, we touch briefly on the case when waiting is allowed at all

nodes in the network in Section 4.8.

4.1 Introduction

We define the all-to-one minimum possible travel time paths problem as follows: Given a

stochastic time-dependent network, the problem is to find a path with a minimum possible

travel time realization from each node to a given destination node for each departure time.
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If more than one path have a minimum possible travel time realization, a path that has the

highest probability associated with a minimum possible travel time realization is selected.

The link travel time random variables are assumed to be independent of each other in

this problem.

4.1.1 An Illustrative Example

Let us illustrate the problem with the stochastic time-dependent network depicted in Figure

4-1 and Table 4.1.

Destination

Figure 4-1: An Example Network

Table 4.1: Time-Dependent Link Travel Time PMFs

Link (i, j) (1,2) (2,3) (1,3)
Departure Time (t) 0 1 4 0

(-rf (t), p (t)) (1, 0.5) (1, 0.5) (6, 0.5) (2, 0.1)
(4, 0.5) (5, 0.5) (8, 0.5) (4, 0.9)

Given the assumption that all link travel times are independent random variables, we

can easily compute all possible travel time values and their probabilities for each origin-

destination pair and each departure time (refer to Section 3.1.4). Table 4.2 shows all path

travel time realizations for origin-destination pairs 1-3 and 2-3.

Consider a trip from node 1 at time 0 to the destination node 3. There exist two

paths, namely path a: 1 -+ 2 -+ 3 and path b: 1 -+ 3 for this trip. The minimum

possible travel time for this trip is 2 units of time. Note that both path a and path b

are minimum possible travel time paths because they both have a minimum possible travel

time realization. However path a is selected for this trip because the probability that the

minimum possible travel time occurs on path a is higher than that of path b (0.25 > 0.1).
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Table 4.2: Path Travel Time Realizations

Origin Node Departure Time Path Travel Time Probability

1 0 1-+2-43 2 0.25
1 0 1 - 2 - 3 6 0.25
1 0 1-+2-43 10 0.25
1 0 1 - 2 -+ 3 12 0.25
1 0 1-+3 2 0.1
1 0 1 - 3 4 0.9

2 1 2-43 1 0.5
2 1 2 - 3 5 0.5
2 4 2-+3 6 0.5
2 4 2-+3 8 0.5

Table 4.3 summarizes the minimum possible travel

path for each origin node for each departure time.

time, its probability, and the selected

Table 4.3: Minimum Possible Travel Times, Their Probabilities, and Selected Paths

Origin Node Departure Time Minimum Possible Probability Selected Path
Travel Time

1 0 2 0.25 1-2-+3
2 1 1 0.5 2-+3
2 4 6 0.5 2_-+_ 3

It is interesting to note that although path a is a minimum possible travel time path for

a trip from node 1 to node 3 at departure time 0, it has 0.25 probability of being the longest

travel time path for the trip. This shows that a minimum possible travel time path may

actually result in a longer travel time than other paths. This is a typical characteristic of

the minimum possible travel time path problem because we are considering only minimum

travel time realizations of paths.

4.1.2 Reasons to Study the Problem

As seen in the above example, a minimum possible travel time path may also have some

probability of resulting in a longer travel time than other paths. In some cases, the proba-

bility that the minimum possible travel time occurs on that path is so small that it is rarely

achieved. From these points of view, the minimum possible travel time path problem might
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be thought to be of little importance. There are, however, several reasons to study this

problem.

First, this problem is easy to formulate and to solve. Hence it helps us understand

the characteristics of routing problems in stochastic time-dependent networks and provides

us with basic building blocks for more complex routing problems. Second, the travel time

distributions of minimum possible travel time paths often provide useful information for

route planning purposes. Third, minimum possible travel time paths can aid in determining

minimum expected travel time paths. As will be explained in Chapter 6, the currently

known algorithms for the all-to-one minimum expected travel time paths problem have non-

polynomial worst-case running time complexities. The information on minimum possible

travel time paths may allow us to develop better algorithms or to speed up the existing

algorithms for the all-to-one minimum expected travel time paths problem. Fourth, in the

literature this problem is considered useful in dispatching urban emergency vehicles where

the earliest possible arrival times at scenes are of paramount importance and the emergency

vehicles have exclusive right of way.

4.2 Optimality Conditions

In order to solve the all-to-one minimum possible travel time paths problem with a real-

size stochastic time-dependent network quickly, we need an efficient solution algorithm that

exploits the characteristics of the problem and of the network. In this section, we formally

derive optimality conditions' for the all-to-one minimum possible travel time paths problem,

from which such an algorithm is developed. By optimality conditions, we mean algebraic

conditions that the decision variables of the problem should satisfy. After deriving the

optimality conditions, we make several useful observations.

We begin by defining additional notation needed for the derivation of the optimality

conditions. Let Tc (t) denote the travel time from node i to the destination node d when

one leaves node i at time t by taking link (i, j) and then follows path c from node j to node

d. Tc (t) can be expressed as the sum of two random variables:

'In the literature, a set of optimality conditions for a problem is also referred to as a mathematical
formulation of the problem.
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= traversal time on link (i, j) +

travel time on path c from node j to node d

= Tij (t) + Lq(t + Tij (t)), (4.1)

where L (t + Tij(t)) is a random variable denoting the travel time on path c from node j

to node d at departure time t + Tij(t).

Let us denote by Ai(t) the minimum possible travel time from node i to node d when

one leaves node i at time t, which is a decision variable of the problem. We can obtain Ai(t)

by

Ai (t) = min min {travel time values of Tci (t)} }
jEO(i) C J

(4.2)

Using (4.1), we can rewrite (4.2) as

Ai(t) = min min
jEO(i) C

min {Tir(t){ re Ri (t)
+ travel time values of L (t-I+r[(t))}}}.3~~~ (t+J 0

Since random variable L'(t + 'rj(t)) may take 5k (t + 'r (t)), k = 1, 2, ... , kj(t) travel

time values (refer to 3.1.4), (4.3) is the same as

Ai(t)= min
jEO(i){min min

C r E () JiM
Tr (t) + min {l k(t

k

- min min
jEO(i) r E 9i(t)

{r (t) + min min {lk (t
C k

(4.4)

By the definition of Aj (t + ri (t)), we have Aj (t + r2j (t)) = minc { mink {l i(t + )

Therefore (4.4) becomes

Ai(t) = min
jeO(i)

mill
reR M(t)

{Tjrj(t) + A3(t + ri M)) .

Since Ad(t) = 0 for all t E X, we have the following optimality conditions that Ai(t) for

all i E N and all t E 9-C should satisfy:

{rj (t) + Aj(t + Tirj (t)) Vzi # d, Vt E 9-C ,

i=d, VtE 9-.
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+

+ -rM

(4.5)

min min
0 W) r EJ (j)M (4.6)

Tij (t)

Ai (t) =jE
0



When departure time t is greater than H - 1, it is assumed that the network becomes

stochastic static and that pTj3 (t) = PTi(H-1). Hence for t > H - 1, (4.6) reduces to the

following functional form:

min m in {rir (H) + Aj (t + -ri (H))} V i =, d, V t H
Ai(t) = Ai(H) = jE(i) rE'Hij(H)

0 i=d, Vt iJx

min min {Tr (H) + Aj(H)} Vi d, Vt J {,
= jEO(i) trE'Ri(H) (4.7)

0 i= d, Vt H.

Note that in (4.7) we use the fact that for t > H -, A(t) and Aj (t+rj (H)) are respectively

equal to Ai(H) and A3 (H) because no time-dependency exist when t > H - 1.

In fact, without following the derivation steps we have just shown, we can also obtain

(4.5) directly from the following argument: Since all link travel time values are positive,

Ai (t) is equal to the minimum among all possible sums of a value of the link travel time

to an adjacent node j (rj(t)) and the minimum possible travel time from node j to node d

when one leaves node j at time t + <r(t) (A3 (t + rij(t))). The mathematical formulation of

this argument is exactly the same as (4.5).

It is possible that from node i at departure time t, more than one path result in the

minimum possible travel time to node d, i.e. Ai(t). If this is the case, we assume that

a traveler selects a path that has the highest probability associated with Ai(t). We need

additional optimality conditions to take into account this case.

For each node j such that j E 0(i), we define set Qij(t) as follows:

Qij (t) = {r I r E 'Zij (t), Trj (t) + Aj(t + rj (t)) = A (t)}. (4.8)

Qij (t) contains the indexes of the link travel time realizations of link (i, j) at departure time

t, which engender the minimum possible travel time from node i to node d via link (i, i). If

Qij (t) = 0, it means that the travel time realizations of link (i, J) do not contribute to any

of the minimum possible travel time realizations from node i to node d at departure time

t. In other words, if Qij (t) = 0, link (i, J) does not belong to any minimum possible travel

time path from node i to node d at departure time t.

Let q E Qij(t). The probability of a minimum possible travel time realization obtained
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by (-rf (t), p (t)) and a travel time realization of path c from node j to node d is computed

as follows:

P[Tc (t) = Ai(t) through -ri(t)]

= P[Tij (t) = Tr (t), L (t + T(t)) = Aj (t + rfy (t))]

= P[Tij (t) = r; (t)] x P[Lc(t + Try (t)) = Aj (t+ Tj(t)) | T (t) = Tf(t)]

= P[Tij(t) = Trc (t)] x P[Lc(t + wfj(t)) = Aj (t + sj (t))]

=Z3 (t) x P[L (t + -rq (t)) = Aj (t + -r (t))], (4.9)

where the third equality follows from the independence assumption on the link travel time

random variables.

Let us denote by yi(t) the highest probability that Ai(t) occurs, i.e. the highest value

among the probabilities of all minimum possible travel time realizations from node i to

node d at departure time t. -yi(t), which is also a decision variable of the problem, can be

obtained by

y (t) = max max {P[Tc (t) = Ai(t)]}}
jeo(i) C

= max max max IP[T 3 (t) = Ai(t) through j (t)]
jEO(i) C qEQi(t) i

= max max max {py(t) x P[L (t + r (t)) = A (t + Try (t))]} . (4.10)
jEO(i) C qE~ij(t) I

Note that the travel time values of several realizations of Lc(t + Trf (t)) can be equal to

Aj (t + rj (t)). Let (l's (t + Tiqj(t)), pecks (t + Try (t))), s = 1, 2, ... be such realizations, i.e.

lj (t + r (t)) = Aj (t + r (t)), s = 1, 2, . Then we can rewrite (4.10) as follows:

-y (t) = max max max {p (t) x max {P[L (t + r (t)) = t + t
aEO(i) LC LqEQij(t) S 3

a ax max p(t) x max fpjks(t +

max max p (t) x max fmax ( +jEO(i) LqEQij (t) 23  is .

- max max {p 1 (t) x -yj(t +rfj (t)) , (4.11)
jEO(i) qEQij(t)

where we use -yj(t +rj (t)) = Maxc { max, {Pj'ks(t + riq (t))} by the definition of -yj(t + riq (t)).
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By convention, we set yd(t) to 1 for all t E a. The optimality conditions that yi(t),

V i c N, V t E a should satisfy are therefore given by

max max fp?.(t) x 'yj(t + T (t)) Vi d, Vt E a,
Jy(t) jEO(i) qEQij(t) (4.12)

1 i =d, Vt E a.

For t > H - 1, due to the static property of the network, we have

max max )p?.(H) x -j(H)K Vi 0 d, Vt ' a-,
y (t) = -y(H) = jE0(i) qEQi (H)' (4.13)

1 i=d, Vt 9-C.

We associate each node (i, t) in the time-space network with a pair of labels (Ai(t), -y (t)).

Then solving the all-to-one minimum possible travel time paths problem is equivalent to

determining all (Ai(t), y (t)) that satisfy the optimality conditions (4.6), (4.7), (4.12), and

(4.13).

The design of an efficient solution algorithm for the all-to-one minimum possible travel

time paths problem depends on how fast we can determine all label pairs (Ai(t), yi(t)) that

satisfy the optimality conditions. Now we introduce an important proposition regarding

this issue.

Proposition 1. All label pairs (Ai(t), yi (t)) satisfying the optimality conditions (4.6), (4.7),

(4.12), and (4.13) can be determined in a decreasing order of departure time in a single pass.

Proof. Since all ij((t) are assumed to be positive, the optimality conditions (4.6) and (4.12)

indicate that only (Aj (F), y (i)) such that i > t, can influence (Ai(t), -y (t)). Hence starting

from t = H and proceeding to t = 0, we can determine (Ai(t), -y(t)) for all i E N in a

decreasing order of departure time. In order to prove that (Ai(t), y (t)) can be computed

in a single pass, we argue that once (Ai(t), -y (t)) are determined, they do not change. We

prove this by contradiction. Suppose that we compute the value of (Ai(t), -y (t)) for some i, t

and then modify it later. It means that some (A (i), -yj (i)) for j E 09(i) and F> t changes

from its previous value (either A3 (F) decreases or -yj (F) increases). This in turn indicates

that some (Ak(t), -Yk()) for k E 0(j) and F > i changes and so on, until we arrive at the

static domain (t > H - 1). In the static domain, however, all (Ai(t), y (t)), i E N, t > H - 1

do not change once they are set to (Ai(H), y (H)) by (4.7) and (4.13). This means that all
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(Ai(t), yi(t)) at t = H -I do not change after they are initially determined by (4.6). We can

repeat this argument in a decreasing order of departure time until we arrive at departure

time t. Therefore (Ai(t), 'yi(t)) for some i, t does not change once it is determined, which

contradicts the assumption. This concludes that all (Ai(t), yi(t)) can be determined in a

decreasing order of departure time in a single pass. 0

Note that Proposition 1 does not hold if some of rj(t) have negative values. In that

case, the time-space network is no longer guaranteed to be acyclic.

Since we want to find a path with the minimum possible travel time and the highest

probability of its occurrence, one might view the problem as a multi-objective problem.

However this is not correct because the travel time value is the primary objective we try to

minimize no matter what the associated probability would be. Only when there exist more

than one path that result in the minimum possible travel time, we compare the associated

probabilities to select one of the paths. Therefore there is no trade-off situation that happens

in a multi-objective problem.

4.3 Minimum Possible Travel Time Paths in the Static Do-

main

In Proposition 1, we have shown that the label pairs (Ai(t), 'yi(t)) can be determined in a de-

creasing order of departure time. This implies that we need to first compute (Ai(H), -yi(H))

in order to calculate other label pairs (Ai(t), yi(t)), t < H - 1. We discuss this issue in this

section.

Consider the optimality conditions (4.7) again.

min min {r. (H) + Aj (H)} Vi 0 d, Vt g§ H,
Ai(t) = Ai(H) = JEO(i) rEJ(H) (4.14)

0 i=d, Vt J-C.

Since A(H) is irrelevant to r E 'RZi(H), we have

min {r.(H) + Aj(H)} = min {Tir(H)} + Aj(H). (4.15)
rE4ij(H) rE'i (H)

Let z = arg minreg4j(H) {rj (H)}1. Then (4.14) is the same as
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.min J {Tr(H) +A(H)} Vi f d,(
Aj(H) = jEO(W (4.6

0 i=d.

Notice that (4.16) is a set of optimality conditions for the all-to-one shortest paths

problem in a deterministic static network where the travel time on link (i, j) is equal to

Trf (H) (It is a variant of Bellman's equation for the one-to-all static shortest paths problem.).

This means that solving the all-to-one minimum possible travel time paths problem in the

static domain is equivalent to solving an all-to-one static shortest paths problem where link

travel times are set to their minimum values at departure time H.

Once all shortest paths are found by solving an all-to-one static shortest paths problem,

i.e. once all Aj(H) are determined, -yi(H) are computed by

- (H)= J pz,(H), (4.17)

(v,W)EPiad

where Psd is the shortest path from node i to the destination node d and z = arg minrERv>(H)

{rvrw(H) }.

Computing -yj(H) by (4.17) is essentially identical to using (4.13). To see this, we rewrite

(4.13) for i 0 d as

y (H) = max max )fq (H)I x y(H). (4.18)
jEO(i) qEQij(H) )

If link (i, j) belongs to the shortest path from node i to node d, then Qij(H) = {z} where

z = arg minreij (H){Tij(H)}. Otherwise, Qjj(H) = 0. Letting SJj = 1 if link (i, j) is on the

shortest path and 6jj = 0 otherwise, (4.18) can be rewritten as

7y(H) = max {6 x pf(H) x -yj(H)} = pz (H) x -yw(H), (4.19)
jE9(i)

where w is the successor of node i on the shortest path. Notice that (4.17) can be obtained

from the recursive formula (4.19).

4.4 Paths Construction

A label pair (Ai(t), -y (t)) tells us only the minimum possible travel time and the probability
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of its occurrence for the corresponding origin node and departure time. In order to construct

the minimum possible travel time path, we need to record the nodes constituting the path.

Let us denote by si(t) the successor of node i on the minimum possible travel time path

when one leaves node i at time t. For t E X, the minimum possible travel time path from

node i to node d at departure time t is finally constructed by (4.12), not by (4.6). Therefore

when t E X, si(t) should be determined by the following functional form where we define

sd(t) = d:

arg max max pq-(t) x yj (t + -r- (t)) Vi y d, Vt E X ,
si(t) = E0(i) q E ( (4.20)

d i=d, Vt EX-.

In the static domain (t > H - 1), the minimum possible travel time path from node i

to node d is just the shortest path from node i to node d obtained by (4.16). Hence si(t)

are determined by the following functional form:

argm {I(H) + A(H)} Vi # d, V t H 9-,
si(t) = si(H) = jEO(i) (4.21)

d i = d, Vt gX .

Sometimes it is useful to record the arrival time at the successor node. Let 7ri(t) denote

the arrival time at node si(t) when one leaves node i at time t E X. We first determine k

such that

k = arg max {P qS(t)(t) x 7'8 (*(t + Tr (t))) . (4.22)
qE~iSi(t)M i T

Then 7i (t) is obtained by 7i (t) = t + Tk W
Tsb =) (. When t > H - 1, ri (t) = H always.

4.5 Solution Algorithms

In this section, we present solution algorithms for the all-to-one minimum possible travel

time paths problem and determine their theoretical running time complexities.

We derived the optimality conditions for the all-to-one minimum possible travel time

paths problem in Section 4.2. The solution algorithms presented here are based on the

optimality conditions. However depending on how to update the label pairs (Ai(t),-yj(t)),

59



their theoretical running time complexities are quite different.

4.5.1 Algorithm MPTTP

The first algorithm we present is developed from the optimality conditions and Proposition

1 discussed in Section 4.2. We call this algorithm Algorithm MPTTP. The algorithm is

described in Algorithm 1.

It starts by initializing the label quadruplets (Ai(t), -y (t), si(t), ri(t)) in Step 1. In Step

2, (Ai(H), -y (H), si(H), ri (H)) are determined. As discussed in Section 4.3 and Section

4.4, this is nothing but solving an all-to-one shortest paths problem in a deterministic

static network. Any all-to-one static shortest paths algorithm (for example, a backward

application of Dijkstra's algorithm) can be used. Notice that we are passing to an all-to-

one static shortest paths algorithm the set of nodes, the set of links, the set of minimum link

travel time values and their probabilities at departure time H, and the destination node as

input. In Step 3, we determine all label quadruplets for t E 'H. We are using Proposition 1

for this step, so the outmost For loop is executed in a decreasing order of departure time.

Because the labels do not change once they are determined, Algorithm MPTTP can be

viewed as a label-setting algorithm. Algorithm MPTTP terminates after a finite number of

steps because each For loop in Step 3 is executed a finite number of times.

Now let us analyze the theoretical worst-case running complexity of Algorithm MPTTP.

It takes E(nH) time to initialize all label quadruplets in Step 1. Let SP(n, m) denote

the running time of an algorithm used in Step 2 to solve an all-to-one static shortest

paths problem. If the original implementation of Dijkstra's algorithm is used, for instance,

SP(n, m) = O(n 2). Let us assume that an optimal algorithm in the running time sense

is available, whose running time is SP(n, m) = 9(f(n, m)). To compute the running time

complexity of Step 3, we count the total number of elementary operations performed in

Step 3. The total number of elementary operations is the following quantity multiplied by

some constant:

w Z I (S~ IJ~(t) I+ E5-Rj t
tEJ-iEN\{d} jEO(i) jEo(i)

JEGij(t)+ jEOGij))+1QiSi(t)()+1).
jEO(i) jEO(i)
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Algorithm 1 Algorithm MPTTP

1: Step 1: Initialization

2: (Ai(t), -y(t), si(t), 7ri(t)) <- (oo, 0, oo, oo), V i $ d, V t E H

3 : (Ad(t), yd(t), sd(t), grd(t)) <- (0, 1,d, t), V tE H

4: Step 2: Minimum Possible Travel Time Paths in Static Domain

5: (Aj(H),-yj(H), s(H), 7rj(H)) +- All-to-One SP(N, A, {(r9 (H), pj(H))}, d)

6: Step 3: Minimum Possible Travel Time Paths in Time-Dependent Domain

7: For t<-H- I downto0do

8: For i E N\ {d} do

9: Ai(t) +- min jEO(i) {minresR.(t) {T7'jr(t) + Aj(t + rij(t))

10: For j E 0(i) do

11: Qij (t) <- {r I r E 'Rij (t), Trj (t) + Aj (t + Trf (t)) = Ai(t)

12: End (For)

13: yi(t) < maxjEo(j) {maxq, (t) {P?3(t) x (t +i(

14: si(t) +- argmaxjEo(j) {maxqEQi3 (t) {P j t) X 'y(t + T 2ijt))

15: k +- arg maxqE. (t)(t) Pis () (t) X 7ys(t)(t + i (0)

16: ir,(t) +- t + Tk (t)i(t)

17: End (For)

18: End (For)
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Since I:'Ri (t)J ;> I Qj (t)I for all (i, j) E A and all t E 'H, we have

W < 4 | '(i>(t)| + '+s(t)(t)|+
tEX iEN\{d} jEO(i)

< 6> E S: E IJzi(t)I
tEJf iEN\{d} jEO(i)

< 65 ' VR 3i(t)I
tEX (ij)EA

where Fn = EtEX E(ij)EA Ri (t) I which is the total number of links in the time-space

network. Therefore the running time complexity of Step 3 is O(iii). We can also show that

it is £(ih). These together imply that it takes E(Fn) time to complete Step 3.

To conclude, the theoretical worst-case running time complexity of Algorithm MPTTP

is e(nH + f (n, m) + in-) = E(max(f(n, m), Fn)). We record this as a proposition.

Proposition 2. The worst-case running time complexity of Algorithm MPTTP is E(max

(f(n, m), in-)) where E(f(n, m)) is the lowest possible time to solve an all-to-one static

shortest paths problem in Step 2.

Now let us see how efficient Algorithm MPTTP is. Every solution algorithm for the

all-to-one minimum possible travel time paths problem should perform the following tasks

at least:

" Initialize all label quadruplets (Ai(t), my(t), si(t), ri(t))

" Determine (Ai (H), y (H), si(H),7ri (H))

" Examine each link travel time realization at least once

The first task requires 9(nH) time. For the second task, we need E(f(n, m)) time at

minimum. It requires Q(Fn) time to examine each link travel time realization at least once,

because it is the same as examining all links in the time-space network at least once. Hence

Q(nH + f(n, m) + in-) = Q(max(f(n, m), Th)) is the lowest possible running time to solve

the problem.

Proposition 3. Algorithm MPTTP is optimal in terms of running time. No algorithm

with a better running time complexity can be found.
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Proof. The running time of Algorithm MPTTP is the same as the lowest possible running

time to solve the problem. Therefore Algorithm MPTTP is optimal in the running time

sense.

When we implement Algorithm MPTTP in computer, we need to create a set Qj, (t) for

each link (i, j) and departure time t. It is possible to dynamically allocate and de-allocate

memory for jj (t), but Algorithm MPTTP is not ideal in terms of memory management and

coding convenience. In Algorithm 2, we present Algorithm MPTTP2 that is essentially the

same algorithm as Algorithm MPTTP, but described in a different way to make a computer

implementation easier. It is not difficult to see that the worst-case running time complexity

of Algorithm MPTTP2 is also 9(max(f(n, m), iii)).

There is another reason that Algorithm MPTTP2 is preferred to Algorithm MPTTP.

Algorithm MPTTP first accesses a node (Line 8) and then examines the outgoing links from

the node (Line 9). Algorithm MPTTP2 examines all links directly from the link set A (Line

8). Although the theoretical asymptotic worst-case running time complexities of the two

algorithms are the same when n m, Algorithm MPTTP requires more time than Algo-

rithm MPTTP2 in practice because of the node access times. Algorithm MPTTP, however,

directly incorporates the optimality conditions. Hence it might be more understandable

than Algorithm MPTTP2. From now on, we describe most solution algorithms developed

in the thesis as we described Algorithm MPTTP, i.e. first access a node and then examine

the outgoing links from the node. However, for computational tests on the algorithms in

Chapter 7, we implement the algorithms as shown in Algorithm MPTTP2, i.e. examine all

links directly from the link set A.

In Appendix B, we will demonstrate how Algorithm MPTTP2 works using an example.

4.5.2 Algorithm LEAST

Miller-Hooks [16] and Miller-Hooks and Mahmassani [17] propose another efficient solution

algorithm called Algorithm LEAST for the all-to-one minimum possible travel time paths

problem. We restate the algorithm in Algorithm 3 in order to compare it with Algorithm

MPTTP.

The original version of Algorithm LEAST does not have Step 2. We add Step 2 to the

original version because firstly it is a necessary component and secondly it allows us to
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Algorithm 2 Algorithm MPTTP2

1: Step 1: Initialization

2: (Ai(t), -y(t), si(t),7ri (t)) +- (oo, 0, oo, oo), V i # d, V t E H

3: (Ad(t), yd(t), sd(t), rd(t)) +- (0, 1, d, t), V t E

4: Step 2: Minimum Possible Travel Time Paths in Static Domain

5: (Aj(H),7-y(H), s2(H),7rj(H)) +- All-to-One SP(N, A, {(rfj(H), pf.(H))}, d)

6: Step 3: Minimum Possible Travel Time Paths in Time-Dependent Domain

7: For t <- H - 1 down to 0 do

8: For (ij) E A do

9: For r E 'R~i(t) do

10: I <- rj (t) + Aj (t + rrj(t))

11: V P +-2 M~ ( x Yj (t + ri Mt)

12: If (p < Ai(t) or (I = Ai(t) and v > -yi(t))) then

13: Ai(t) +- p

14: -yj(t) <

15: si(t) <-j

16: T (t) <-t + -rg(T)

17: End (If)

18: End (For)

19: End (For)

20: End (For)
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Algorithm 3 Algorithm LEAST

1: Step 1: Initialization

2: (Ai(t), yi(t), si(t), 7ri(t)) *- (oo, 0, oo, oo), V i , d, V t E X

3: (Ad(t), 7d(t), sd(t), 7rd(t)) <- (0, 1, d, t), V t E X

4: Create a queue S

5: Enqueue d to S; flag = 0

6: Step 2: Minimum Possible Travel Time Paths in Static Domain

7: (Ai(H), y (H), si(H), 7ri(H)) <- All-to-One SP(N, A, {(riz (H), p (H))}, d)

8: Step 3: Choose Current Node

9: If S = 0 then stop

10: Else dequeue a node (called j) from S

11: Step 4: Update Labels

12: For i E J(j) do

13: For t+-O toH-1 do

14: A < minrE (t) {r (t) + Aj (t + rr (t))

15: Q <- r I r Ez 'Rjj (t) , 7rj (t) + Aj (t + rir (t)) =p}

16: k +- arg maxqeQ {p (t) x '(t + rj(t))}

17: V 4 p .(t) X -yj (t + -rit)

18: If (p < Ai(t) or (p = Ai(t) and v > yi(t))) then

19: Ai(t) +-L

20: -yj(t) +-V

21: si(t)

22: 7r,(t) +- t + k(t)

23: flag +-1

24: End (If)

25: End (For)

26: If(iVS and flag= 1) then

27: Enqueue i to S; flag = 0

28: End (If)

29: End (For)

30: Go to Step 3
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compare Algorithm LEAST with Algorithm MPTTP with the same yardstick.

4.5.3 Comparison of the Algorithms

It is shown in Miller-Hooks [16] and in Miller-Hooks and Mahmassani [17] that when

IIRij (t) I = R for all (i, j) E A and all t E H, the worst-case running time complexity of

Algorithm LEAST is 0 (max(f (n, m), n3 H 2 R)). Under the same assumption, the worst-

case running time complexity of Algorithm MPTTP becomes E(max(f(n, m), mHR)).

For networks under consideration in this thesis, m < n(n - 1) < n 2 . Therefore,

max(f(n, m), n 3 H 2R) ;> max(f (n, m), mHR) for any values of n, m, H, and R. This con-

cludes that theoretically, the running time of Algorithm MPTTP is always better than or

equal to the running time of Algorithm LEAST in the worst-case. This is an obvious result

because the running time complexity of Algorithm MPTTP is optimal. In Chapter 7, we

will compare the practical running times of the two algorithms.

It is interesting to note that Step 4 of Algorithm LEAST and Step 3 of Algorithim

MPTTP2 look alike. The main difference is that the outmost For loop in Step 4 of Algo-

rithm LEAST (Line 12) is performed in terms of nodes, whereas that of Algorithm MPTTP2

(Line 7) is executed with regard to depature times in a decreasing order. Specifically,

Algorithm LEAST fixes a node and then updates the label quadruplets of the node for all

departure times, i.e. (Ai(t), -y(t), si(t),7ri(t)), V t E si. On the contrary, Algorithm MPTTP

fixes a departure time and then updates the label quadruplets for all nodes at the departure

time, i.e. (Ai(t), y (t), si(t),7ri (t)), V i E N. This implies that the recognition of Proposition

1 is a key factor in designing a theoretically fastest algorithm.

4.6 Exact Probability of the Minimum Possible Travel Time

Suppose that there exist several minimum possible travel time realizations from node i to

node d at departure time t. Then a minimum possible travel time realization with the

highest probability and a path that has the realization are selected. It is possible that

each of the minimum possible travel time realizations belongs to a different path. It is

also possible that some of the minimum possible travel time realizations belong to the same

path. If the former is the case, the probability that the minimum possible travel time occurs

on the selected path is higher than that of any other path. If the latter is the case, however,
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the probability that the minimum possible travel time occurs on the selected path may be

actually lower than that of some other path.

This happens because we differentiate between all travel time realizations of a path even

if some of those have the same travel time value and the optimality conditions are obtained

based on a single path travel time realization. To illustrate this concretely, let us condsider

the network example shown in Figure 4-2 and Table 4.4.

Destination

Figure 4-2: An Example Network

Table 4.4: Time-Dependent Link Travel Time PMFs

Link (i, j) (1,2) (2,3) (1,3)
Depature Time (t) 0 1 2 0

(1, 0.5) (2, 0.4) (1, 0.5) (3, 0.3)
(2, 0.5) (5, 0.6) (8, 0.5) (4, 0.7)

Table 4.5 shows all path travel time realizations of this example. Let us consider a trip

from node 1 to node 3 at departure time 0. Notice that the two paths, namely path a:

1 -4 2 -+ 3 and path b: 1 -+ 3, result in the same minimum possible travel time, which is

3 units of time. If the solution algorithms discussed in Section 4.5 are used to determine

the minimum possible travel time path from node 1 to node 3 at departure time 0, path

b is selected because it has a minimum possible travel time realization with the highest

probability (0.3).

However path a has two minimum possible travel time realizations, so the likelihood

that the minimum possible travel time occurs on path a is higher than that of path b

(0.2 + 0.25 > 0.3). Therefore it is better to take path a.

The exact probability that the minimum possible travel time is realized on a path is

obatined by summing up the probabilities of all minimum possible travel time realizations

on the path. The exact probabilities that the minimum possible travel time occurs on path
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Table 4.5: Path Travel Time Realizations

Origin Node Departure Time Path Travel Time Probability

1 0 1-+2-+*3 3 0.2
1 0 1-+2-+3 6 0.3
1 0 1-+2-+3 3 0.25
1 0 1-+2-+>3 10 0.25
1 0 1-+3 3 0.3
1 0 1 -* 3 4 0.7
2 1 2-+3 2 0.4
2 1 2-43 5 0.6
2 2 2-+3 1 0.5
2 2 2-+3 8 0.5

a and on path b in the above example are 0.45 and 0.3, respectively.

-yi(t) defined in Section 4.2 is actually a lower bound on the exact probability that Ai(t)

occurs on a path. Hence the solution algorithms presented in Section 4.5 may fail to find

a path whose exact probability of having the minimum possible travel time is higher than

any other path.

To compute the exact probabilities that the minimum travel times occur, one may

attempt to change the optimality conditions (4.12) as follows:

max max

yi(t) = jEO(i) kEN\{i,j}

1

q(pij (t) x ^y* (t + rq (t)) Vi = d, Vt E J-C,

i=d, VtE9-C,

(4.23)

where Q (t) for k E 4\ {i, j} is defined as

Qk (t) = {q | q E Qjj (t), sj (t + rT (t)) = k}. (4.24)

The intention of this modification is to add up the probabilities of minimum possible

travel time realizations that belong to the same path from node i to node d. This modifica-

tion, however, does not work. The minimum possible travel time realizations obtained by

the indexes in set Qk (t) are clearly associated with ("going through") the same subpath,

i -+ j -+ k. But there is no guarantee that those realizations are also associated with the
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same subpath from node k to node d.

Let us illustrate this with the example network depicted in Figure 4-3 and Table 4.6.

Consider a trip from node 1 to node 5 at departure time 0. As shown in Table 4.7, three

paths, 1 -+ 2 -+ 3 -+ 5, 1 -+ 2 -+ 3 -+ 4 -+ 5, and 1 -+ 5, provide the same minimum

possible travel time for the trip, which is 5 units of time. Note that only one minimum

possible travel time realization exists on each path. Therefore the associated probabilities

(0.24, 0.1, and 0.3) are the exact probabilities that the minimum possible travel time occurs

on the three paths respectively. Since path 1 - 5 has the highest probability, it is chosen

for the trip.

Destination

Figure 4-3: An Example Network

Table 4.6: Time-Dependent Link Travel Time PMFs

B
L

Link (i, j) (1,2) (1,5) (2,3) (3,4)
Departure Time (t) 0 0 1 2 2 3 4

(1, 0.5) (5, 0.3) (1, 0.8) (1, 0.8) (1, 0.8) (1, 0.5) (2, 0.5)

't ( (2, 0.5) (7, 0.7) (3, 0.2) (2, 0.2) (4, 0.2) (2, 0.5) (4, 0.5)

Link (i, j) (3,5) (4,5)
Departure Time (t) 2 3 4 3 4 5

(T (t),p[ (t)) (3, 0.6) (4, 0.5) (4, 0.5) (3, 0.5) (1, 0.5) (2, 0.5)
(4, 0.4) (5, 0.5) (6, 0.5) (4, 0.5) (2, 0.5) (3, 0.5)

H
I

Now let us apply (4.23) to this trip. Note that Q15 (0) = {1} and Q12 (0) = {1, 2}. Since

s2(0+71'2 (0)) = s2(1) = 3 and s 2(0+r22(0)) = s2(2) = 3, we have Q32(0) = {1, 2}. Therefore

71 (0) is computed by
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Table 4.7: Path Travel Time Realizations from Node 1 to Node 5 at Departure Time 0

Origin Node Departure Time Path Travel Time Probability

1 0 1-+2-43-+5 5 0.24
1 0 1-42-+3-->5 6 0.16
1 0 1-+2-+43-45 8 0.05
1 0 1 -+2-+3-+5 10 0.05
1 0 1-+2-+3-+5 7 0.2
1 0 1 -+2-+3-+5 8 0.2
1 0 1-42-43-+5 8 0.05
1 0 1-+2-+3-45 10 0.05
1 0 1 -+ 2 - 3 -+ 4 -+ 5 6 0.16
1 0 1 -+ 2 -+ 3 -4 4 - 5 7 0.16
1 0 1 -+ 2 -+ 3 -+ 4 -+ 5 8 0.04
1 0 1 -+ 2 -+ 3 4 -+ 5 9 0.04
1 0 1 -+ 2 -+ 3 -+ 4 - 5 8 0.025
1 0 1 - 2 -+ 3 - 4 -+ 5 9 0.025
1 0 1 - 2 -+ 3 - 4 -+ 5 10 0.025
1 0 1 - 2 -+ 3 -+ 4 -+ 5 11 0.025
1 0 1 -+ 2 -+ 3 -+ 4 -+ 5 5 0.1
1 0 1 -+2-4 3 -+ 4 -+ 5 6 0.1
1 0 1 -+ 2 - 3 -+ 4 -+ 5 7 0.1
1 0 1 -+ 2 - 3 -4 5 8 0.1
1 0 1 - 2 - 3 4 -+5 8 0.025
1 0 1 - 2 -+ 3 -4 - 5 9 0.025
1 0 1 -+ 2 -+ 3 4 5 10 0.025
1 0 1 -+ 2 - 3 -+4 - 5 11 0.025
1 0 1 -+5 5 0.3
1 0 1 -+ 5 7 0.7
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71(0) = max {p15 (0) x 75(0 + T 5 (0)), P12(0) x 72(0 + T12(0)) +p2(0) x -2(0 + Tf2(0))}

=max (P15 (0) X Y5 (5), P12(0) x 72(1) +p 2 (0) x Y2(2)}

= max {0.3 x 1, 0.5 x 0.48 + 0.5 x 0.2}

= 0.34.

According to this computation, the minimum possible travel time path includes link

(1, 2), and the probability that the minimum possible travel time occurs on the path is

0.34. Clearly, this is not correct. We explain the reason using the time-space network of

the example network.

In Figure 4-42, the two thick solid lines connecting node 1 at time 0 and node 5 at time 5

indicate the minimum possible travel time realizations from node 1 to node 5 through node

2 at departure time 0. Because the two realizations are associated with the same subpath,

1 -* 2 - 3, their probabilities are added together in (4.23). However, the realizations are

associated with different subpaths from node 3 to node 5, indicating that they belong to

different paths from node 1 to node 5 and their probabilities cannot be summed up. The

minimum possible travel time realization with the highest probability from node 1 to node

5 at departure time 0 is the thick dashed line, and it is on path 1 -+ 5.

The above example suggests that in order to correctly compute the exact probability that

the minimum possible travel time occurs on a path from node i to node d at departure time t,

for every minimum possible travel time realization, we have to examine all successor nodes,

i.e. all nodes between node i and node d. Obviously, this requires an exponential running

time. Hence any solution algorithm, if possible, for the all-to-one minimum possible travel

time paths problem, which guarantees to compute the exact probabilities of the minimum

possible travel times, has an exponential worst-case running time complexity.

4.7 Extensions

In this section, we study three extensions of the all-to-one minimum possible travel time

paths problem. First, we consider the all-to-one minimum possible travel cost paths problem

where link travel costs are also time-dependent discrete random variables and the minimum

2 Links corresponding to T 3 5 (3), T35(4), and T4 5 (5) are omitted.
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possible travel cost is used as a path selection criterion. Second, we discuss how to select

several paths from each node to the destination node for each departure time, based on

minimum travel time realizations. We call this problem the all-to-one k-minimum path

travel time realizations problem. Third, we introduce an algorithm for the problem of deter-

mining all-to-one k shortest paths in deterministic time-dependent networks by suppressing

stochasticity in the all-to-one k-minimum path travel time realizations problem. The third

problem is referred to as the all-to-one k-dynamic shortest paths problem.

4.7.1 All-to-One Minimum Possible Travel Cost Paths Problem

In this problem, we consider a stochastic time-dependent network where both link travel

times and link travel costs are given in the form of time-dependent discrete random variables.

The objective of the problem is to find a path with a minimum possible travel cost realization

from each node to a given destination node for each departure time.

Additional Notation and Assumptions

Let Ci, (t) be a random variable denoting the travel cost on link (i, J) at link entry time t.

Assume that Ci (t) has a finite number of realizations, and denote the PMF of Ci (t) for

t E 'H by

Pc 3 (t) = {(((t), gg (t)) I X E X X(t)}, (4.25)

where (if(t) E W, V x E Xij (t) and EZXEXi(t) g9 (t) = 1. Note that unlike the link travel

times whose values are assumed to be positive integers, the link travel costs do not have any

restriction imposed on their values. For all t > H - 1, we assume that Pcj(t) = Pcj(H-1).

It is also assumed that Ci (t) are independent of each other and of Ti (t).

Optimality Conditions

Optimality conditions for the all-to-one minimum possible travel cost paths problem can be

derived by following a procedure similar to one used in Section 4.2.

Let C (t) be the travel cost from node i to node d when one leaves node i at time t via

link (i, j) and then takes path c from node j to node d. Ci(t) can be expressed as the sum

of two random variables.
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= travel cost on link (i, j) +

travel cost on path c from node j to node d

= Ci (t) + Yi(t + T (t)), (4.26)

where YjC(t + Tij(t)) is a random variable denoting the travel cost from node j to node d at

departure time t + Tij (t).

Let us denote by j(t) the minimum possible travel cost from node i to node d when one

leaves node i at time t. j(t) is obtained by

(t) = min min {travel cost values of c (t)} }.

Using the realizations of Tij (t) and Cij (t), we rewrite (4.27) as

(4.27)

min min min min {fy (t)
jEO(i) C rE93 (t) xeXij(t)

+ travel cost values of Yjc(t + ri () .

(4.28)

Note that (%. (t) do not depend upon c and r E 'Rjj (t). Letting z = arg min.,x 1 j (t) I (t) M

we can rewrite (4.28) as follows:

min min
C rEJ (t) min f{(t) (t)} + travel cost values of Yjc(t + Tj(t))x E Xj(t) I JI

= min min min {Ci' (t) + travel cost values of Y,-f(t + r (t))}
jEO(i) C rEcs v(t)

= min) (j'j(t) + ,mint min { travel cost values of Yc (t + rir (t))} .
jE(9(i) rEj4() C

(4.29)

Let (yk (t + _(T) g(t + t)(t))), k = 1,2,... ,kj(t) be the realizations of random

variable YjJ (t +r T (t)), where y j(t +T$ (t)) is the travel cost value of the kth realization and

gc(t + Tj (t)) is its probability. Then (4.29) is equal to

-(t) = min (fy (t) + min
jEO(i) { + rCR (t)

Smin (iz (t)
jE O(i)

+ min { g (t + r (0)
r EjZ (t)

{min{
C

(4.30)

since j (t + rj (t)) = minc { mink {yjk(t + rj (t))}}. Therefore we have the following opti-
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mality conditions that (t), V i E N, Vt should satisfy:

min CQ(t)
( = jEO(i)

0

{
+ min {g(t+ r (t)

rER M(t)

min (iz (H) +
jEO(i)

0

min {Cj(H)+ (H)}
jEO(i)

0

Vi d, Vt X J,

i =d, V t g'H.

Let p(t) be the highest probability that j(t) occurs among all minimum possible travel

cost realizations from node i to node d at departure time t. It is obtained by

i~)= max
jEOWi

max {P[ 3 (t) = j (t)]

= a max
jEO(i)

max
qEQij(t)

{P[Cii (t) = j(t) through rij(t)]

where Qj2 (t) = {r I r E 'zi?(t), (t) + j (t + jri (t)) = )

Due to the independence assumptions on Cij (t) and Tij (t), P[C,(t) = j (t) through rij (t)]

is computed by

P[FCic(t) = j(t) through Tj(t)]

= P [Ci(t ) = Q(t), Ti (t) = Trq(t), Yf(t+y(t)) =( + ri(t))]

= P[Ci (t) = Q (t)] x P[Ti (t) = T (t)] x P[Yc(t + T(t)) = j (t + rj (t))]

= gj(t) x pj(t) x P[Yc(t + (t)) = (j(t + Ti(t))]. (4.34)

Plugging (4.34) into (4.33), we obtain

pi(t) = max
jE(9(i)

max max
C LqCQij(t)

x P[Yc(t +
j (t)) = j (t +

max g(t) x max
jeO(i) '3 C {max p(t)

qEQij (t) Pljt

_ri t)

_ri~))

(4.35)
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Vi 5 d, V E JC,

i = d, Vt E X,

Vi 5 d, Vt H

(4.31)

min { (H)
rE4jj (H)

i=d, Vt J-C

(4.32)

(4.33)

(gi ) = i (H) =

gbt) x X (P) -

x P[jt+i(t)) = (t +



Let (yck, (t + r4(t) gk (t + rq(t))), s = 1,2, ... be the realizations of YC(t +

such that y (t ± T (t)) = ( 3(t + Tr(t)). Then we can rewrite (4.35) as follows:

Oi(t) = max g (t)

= max g (t)
jEO(i) 1

= max g (t)
jE{(i) V

= max g (t)M
jEO(i)

max max P(t) x max {P[Yfc(t + j (t)) =y + (t)

C {EQ a {ph(t) x mx {( t+

(max {p(t) x max max {g (t+
qEQij(t) x s (

x max pf(t) X oj (t + Tij (t)) ,(4.36)
qE~ij(t) Z

where og (t + rj (t)) = maxc { max,, {gk, (t + rj (t))}} by the definition of

Therefore optimality conditions for pi(t) are given by

max gi 3 (t) x max {pyj(t) x j(t+T, 5(t))I Vi o
Wi(t) = jEO(i) qEQij)

1 i =

max gz(H) x max fp .(H) x pj(H)
Wi (t) = p(H)= jECi) qE~ij(H) i

1

max gz,(H) x max pq-(H)I x pj(H)
jEO(i) qEQi(H 13

1

d, V t E9-C,
(4.37)

d, Vt E ,

Vi 5 d, Vt g X

i=d, Vt g C

Vi d,

i =d,

Vt ' :,
Vt V X.

(4.38)

Similar to the all-to-one minimum possible travel time paths problem, label pairs ( j(t),

(Pi(t)) satisfying the optimality conditions (4.31), (4.32), (4.37), and (4.38) can be deter-

mined in a decreasing order of departure time in a single pass. A proof of this is similar to

one given in Proposition 1, so it is omitted.

Proposition 4. All label pairs ( j(t), po(t)) satisfying the optimality conditions (4.31),

(4.32), (4.37), and (4.38) can be determined in a decreasing order of departure time in a

single pass.

From (4.32), we can see that j(H) can be determined by solving an all-to-one minimum

cost (cheapest) paths problem in a deterministic static network where the link travel costs

are set to ,j(H). Once j(H) are determined, pi(H) are computed using (4.38). Note that
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if link (ij) belongs to the minimum cost path from node i to node d, Qjj(H) = 'Rzi(H)

because (fz (H) + j (H) is equal to (j(H) no matter what value Tij (H) takes. On the other

hand, if link (i, j) is not on the minimum cost path, then Qjj(H) = 0. Hence for i = d, we

can rewrite (4.38) as

i (H) = max {giz(H) x (6ij x py,(H)) x po(H)}
jEo(i)

= giW(H) x p". (H) x pw(H), (4.39)

where u = argmaxre4RjZ(H){p j(H)}, Jij = 1 if (ij) is on the minimum cost path and 0

otherwise, and w is the successor of node i on the minimum cost path. (4.39) may also be

expressed as

ic(H) 1 7 (gvw(H) x pu"(H)), (4.40)

where Pid is the minimum cost path from node i to node d.

Solution Algorithm

Algorithm MPTCP shown in Algorithm 4 is an extension of Algorithm MPTTP to the

all-to-one minimum possible travel cost paths problem. Notice that we determine and save

zi (t) (denoted by z above), the index of the link travel cost realization with the smallest

value for each link for each departure time, in the initialization step because they will not

change in the remainder of the algorithm. It is possible to determine zij(t) on the fly in

Step 3 in order to save memory. For this, we may extend Algorithm MPTTP2 instead.

Proposition 5. Let F denote the total number of link travel cost realizations, i.e. c =

(ij)eA EtEX |Tij(t)|. Then the worst-case running time complexity of Algorithm MPTCP

is e(max (&, f (n, m), Fn)) and it is optimal.

Proof. It takes e(nH + c) time to perform Step 1. The running time for Step 3 is the

same as that of Algorithm MPTTP, which is e(fi-). Therefore the running time complexity

of Algorithm MPTCP is E(nH + _+ f (n, m) + Fn) = 0(max(&, f (n, m), in)). To solve the

all-to-one minimum possible cost paths problem, we should determine ((j(H), Wpi(H)) and

examine all link travel cost realizations and all link travel time realizations at least once.
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Algorithm 4 Algorithm MPTCP

1: Step 1: Initialization

2: ( i(t), Wi(t), Si(t), gri(t)) +- (oo, 0, oo, oo), Vi $ d, Vt E X

3: (d(t), pd(t), Sd(t), 7d(t)) +- (0, 1, d, t), V t E X

4: zij(t) +- argmineX (t) {Q(t)}, V (ij) E A, Vt E H

5: Step 2: Minimum Possible Travel Cost Paths in Static Domain

6: ((j(H), (oj (H), si(H), 7ri(H)) +- All-to-One SP(N, A, {(% (H), gfz (H))}, {pY,(H)}, d)

7: Step 3: Minimum Possible Travel Cost Paths in Time-Dependent Domain

8: For t<-H- 1 downtoO do

9: For i E N\ f{d} do

10: i(t) +_ minJE() {i( (t) + minrERj (t) { i(t +

11: For j E 0(i) do

12: Qij(t) +- {r I r E 'jj (t), C;J () (t) + j (t + 'r[ (t)) = (t)}

13: End (For)

14: Wi(t) +- maxjEO(i) {g 3 (t) x maxqeQi3 (t) {p 3(t) x ( +

15: s2(t) <- arg maxjEo(i) {g ( (t) x maxqei(t) {Pj(t) x p (t +

16: k +- arg maxqEQ. (t)() {Pisd(t) x>< + ()

17: 7ri(t) *- t + 4Tk (t)

18: End (For)

19: End (For)
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This implies that Q(f (n, m)+c+in-) = Q(max(f (n, m),~,Fi)) is the lowest possible running

time to solve the problem. Since Algorithm MPTCP attains this lowest possible running

time, its running time complexity is optimal.

4.7.2 All-to-One k-Minimum Path Travel Time Realizations Problem

Selecting several paths between an origin node and a destination node is frequently required

in many routing problems for various reasons. One reason could be that travelers have

different path selection criteria such as travel time, travel cost, familiarity, scenery, etc. and

sometimes they choose paths based on a combination of these. Since an optimal path in

terms of one criterion may not be optimal for other criteria, finding a single path would not

be sufficient in this case.

In stochastic time-dependent networks, travelers might consider not only the minimum

travel time on a path but also the variance of travel time on a path as a path selection

criterion. In this case, a path whose minimum travel time is slightly greater than the

minimum possible travel time, but whose travel time variance is very small, might be

preferred to a minimum possible travel time path with a very large travel time variance.

We may solve such a routing problem using a solution algorithm that simultaneously

considers the minimum travel time and the variance of travel time with equal weight. How-

ever, if the minimum travel time is a primary criterion for choosing a path and the variance

of travel time is a secondary criterion, it might be adequate that we first find several paths

based on their minimum travel times and then select one of them according to a certain

trade-off between the minimum travel time and the variance of travel time. This method

can also serve as a proxy for a solution algorithm that takes into account both the mini-

mum travel time and the variance of travel time simultaneously, when such an algorithm is

difficult to develop.

In this section, we discuss how to find k minimum path travel time realizations efficiently

from each node to a given destination node for each departure time in stochastic time-

dependent networks. It should be emphasized that k minimum path travel time realizations

are not necessarily associated with k different paths. In an extreme case, a single path may

contain all k minimum path travel time realizations. However, for a sufficiently large value

of k, we may expect that k minimum path travel time realizations produce several distinct

paths. Note that the all-to-one k-minimum path travel time realizations problem is a direct
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extension of the all-to-one minimum possible travel time paths problem.

Optimality Conditions

Let us denote by A'(t) and yf(t) the travel time value and the probability of the nth

minimum path travel time realization from node i to the destination node d at departure

time t, respectively. Let minE 8 {xi} be the operator that returns the nth smallest element

from the set {xi I i E 8}, where 8 is some set. We can obtain AM(t) by

A (t) = min' travel time values of TM (t)
jEO(i), C Ii

= min" {rT (t) + travel time values of Lq(t + Tr (t))i E 0(i), c, r E J~j)

= min"n ri Mt + ICM (t + ri (M)) (4.41)
i E 0(i), c, rE Ri (t), m

Note that when we compute Ag(t), n = 1,2,... , k by (4.41), only the k smallest values

from the set {l7m(t + Tri(t)) I Vc, Vm} need to be considered for a given j E ('(i) and

r E 'Rij(t). This can be easily proved by contradiction. These k smallest values can be

denoted by A (t +rj(t)), h = 1,2,... , k because

A (t + -rr(t)) = minh{l(t+ri(t)) IV c, Vm}, h = 1, 2, ... ,k,

by the definition of A4(t + irr(t)). Hence (4.41) is equivalent to the following formula:

A7(t) = min" rj (t) + A (t + r- (t)) (4.42)
jEO(i), rEgRi 3 (t), hE{1,2,... ,k} + (4

Letting X ={1, 2... , k}, optimality conditions that An(t) should satisfy are thus given by

minn brir (t) + A (t + -rr (t))I V i $ d, Vn E X, Vt E H7
A!(t) = jEO(i), rER4j(t),hEX 3 ' (4.43)

0 i = d, Vn E X, Vt E ,

min n -rj(H)+ A (H)} Vi # d, Vn E X, Vt H -,
An(t) = A7(H) = je(9(i), rE9i(H), hEX

0 i =d, Vn E X, Vt H{.

(4.44)

Since all link travel time values are positive, An(t) can be determined in a decreasing
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order of departure time. In addition, once AM(t) are set, they do not change afterward. A

proof of this argument is similar to that of Proposition 1.

It should be noted that (4.44) is not equivalent to the following functional form, where

z = arg minrei4jj(H){ f (t) :

min" -rjz(H) + A (H)j Vi 0 d, Vn E X,
AZ(H) = (4.45)

0 i =d, VnEX.

(4.45) is a set of optimality conditions for the all-to-one k-shortest paths problem in a

deterministic static network, where the travel time on link (i, j) is set to -r(H). Therefore

we must consider all link travel time values at departure time H to determine A'(H) by

(4.44). This indicates that Ag(H) are obtained by solving an all-to-one k-minimum path

travel time realizations problem in a stochastic static network, not by solving an all-to-one

k-shortest paths problem in a deterministic static network.

Let us consider optimality conditions for yg(t). It is possible that more than one path

travel time realization from node i to node d at departure time t have the same travel time

value, An(t). Define set S(t) as follows:

87(t) = {(j, r, h) I j E 0 (i), r E 'Rij(t), h E X, Trj(t) + A (t + rfj(t)) = Ag(t)}. (4.46)

Suppose we have 8(t) = {(ji, ri, hi), ( 2 , r 2 , h 2 ), ... , (jq, rq, hq)}. If q <; (k-n+1), all q

path travel time realizations obtained by the elements in 8 (t) are used as the nth, the (n +

1)th,... , and the (n+q-1)th minimum path travel time realizations from node i to node d at

departure time t, respectively. In this case, the probabilities jn(t), -yi+ 1(t), ... , f+-1(t)

are computed from each (j, r, h) E SW(t). For instance, yn (t) = pf (t) x yg(t +

-( p 2(t) x y '3(t + (t)), etc. It is not necessary to make y(t) > 'f+1(t) ...

.+q-1(t). All we make sure is that both A(t) and -yn(t) are associated with the same

(j, r, h) E 8n (t).

If q > (k - n + 1), we discard (q - k + n - 1) realizations among q path travel time

realizations, whose probabilities are smaller than the probability of any of the remaining

realizations to be used as the nth, the (n+l)th,... , and the kth minimum path travel time

realizations.

It is notationally cumbersome to write down these optimality conditions for -y-4(t) in
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a functional form. We will incorporate the optimality conditions for y!(t) into a solution

algorithm in a more convenient way.

Solution Algorithm

We define additional notation to describe a solution algorithm. s'(t) and 7r!(t) respectively

denote the successor of node i and the arrival time at node s(t) on the nth minimum path

travel time realization from node i to node d at departure time t. rd,(t) indicates the rank

of the path travel time realization from node s (t) to node d at departure time ir,!(t), which

one should follow in order to achieve the nth minimum path travel time realization from

node i to node d at departure time t.

A label-setting algorithm, named Algorithm k-MPTTR, is described in Algorithm 5.

Notice that it does not implement the optimality conditions for AM (t) as they are stated

in (4.43). This is simply for the sake of coding convenience. The optimality conditions

for 'yi'(t) are also implemented indirectly. In these respects, Algorithm k-MPTTR can be

viewed as an extension of Algorithm MPTTP2 to the all-to-one k-minimum path travel

time realizations problem.

Several remarks about the algorithm are as follows: ci(t) is a counter that counts the

number of minimum path travel time realizations from node i to node d at departure time t

during the execution of the algorithm. In Step 2, we solve the all-to-one k-minimum path

travel time realizations problem in a stochastic static network. Line 19 and 20 select the

worst path travel time realization among k minimum path travel time realizations found so

far. Set 8 at Line 19 contains all n E X whose AM(t) are the maximum. Line 20 chooses an

index w from 8 whose -'yi(t) is the minimum. Finally, AM(t) obtained from this algorithm

do not necessarily satisfy Al(t) < A?(t) K - - Ak(t). If this is required, it can be done by

sorting Al (t) after the termination of the algorithm.

Proposition 6. Let R = max(ij)EA |\k(H) 1, and let O(g(n, m, R, k)) be the running time

to solve an all-to-one k-minimum path travel time realizations problem in a stochastic static

network in Step 2. Then the worst-case running time complexity of Algorithm k-MPTTR

is O(max(g(n, m, R, k), k2 fh)).

Proof. We need E(nHk) time to complete Step 1. In Step 3, it is apparent that Line

19 is a bottleneck operation (we assume that the value of k is not so large that Line 19
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Algorithm 5 Algorithm k-MPTTR

1: Step 1: Initialization

2: (An (t) , ̂ ,, (t) , s (t) , 7rn (t)I ,z (t))+-(00, 0, 00, 00, oo) , V i =A d, V n E= 'X, V t E X

3: (An (t) , 7(t), sn (t), 7rn (t), rg (t+- (0, 1, d, t, 0), Vrn E X, Vt E X

4: ci(t) <- 0, Vi = d, Vt E X

5: Step 2: k Minimum Path Travel Time Realizations in Static Domain

6: (An (H), _y (H), s?(H), ir!(H), Kp(H)) +- All-to-One k-SMPTTR(N, A, {Tij(H)}, d)

7: Step 3: k Minimum Path Travel Time Realizations in Time-Dependent Domain

8: For t<-H- 1 downtoOdo

9: For (ij) E A do

10: For r E JZij(t) do

11: For h E X do

12: p +-rj(t) + A (t + r

13: V +- p (t) x y (t + r (t)

14: If (c (t) < k) then

15: c (t) +- cj(t) + 1

16: Ac'' (t) +-p; -Yjc' (t) <-V

1 7 : s ( t) + -j ; (') (t) + -t + rj (t); a ( ) +

18: Else

19: 3+- arg set maxnex {An (t)}

20: w +- arg minsE {y(t)}

21: If ([z < Aw(t) or (y = AF (t) and v > 'yiw(t))) then

22: Aw (t) +- p; -yiw(t) <- v

23: sw (t) <-j; 7rT (t) +-t + rj (t); -Kw(t) <- h

24: End (If)

25: End (If)

26: End (For)

27: End (For)

28: End (For)

29: End (For)
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is executed). Whenever it is visited, E(IXl) = E(k) running time is needed. Since it can

be visited at most lxi F E (i,j)EA I'ij(t)I = kin times, the running time complexity

of Step 3 is O(k2 Fn). Therefore the running time complexity of Algorithm k-MPTTR is

O(nHk + g(n, m, R, k) + k 2in-) = O(max(g(n, m, R, k), k2 n)).

Miller-Hooks [16] and Miller-Hooks and Mahmassani [17] propose a label-correcting algo-

rithm for this problem, whose worst-case running time is claimed to be O(max(g(n, m, R, k),

kn 3 H 2 max(R, k))), where R = I'R~i (t)1, V (i, j) E A, V t E 9-C. It is an extension of Algorithm

LEAST described in Section 4.5.2. We refer the reader to Miller-Hooks [16] or Miller-Hooks

and Mahmassani [17] for the details of the algorithm.

4.7.3 All-to-One k-Dynamic Shortest Paths Problem

The k-shortest paths problem in deterministic static networks has been extensively investi-

gated and many research papers have been published. To the best of the author's knowledge,

however, no research work on the k-shortest paths problem in deterministic time-dependent

networks has been published. In this section, we introduce an efficient algorithm that solves

the all-to-one k-shortest paths problem in deterministic time-dependent networks.

Let us ignore stochasticity from the all-to-one k-minimum path travel time realiza-

tions problem discussed in Section 4.7.2. It is easy to see that in that case, the problem

simply reduces to the all-to-one k-shortest paths problem in deterministic time-dependent

networks.

Optimality Conditions

Let A' (t) denote the travel time on the nth shortest path from node i to node d at departure

time t. Optimality conditions for An(t), Vi E N, Vt are obtained by eliminating terms

related to stochasticity from (4.43) and (4.44).

Min" -rij (t) + A 4(t + rij (t))) Vi d, V n E X, V t E H ,
A(t) = jEO(i), hEX (4.47)

0 i= d, Vn E X, Vt E H,

minn rij(H)+ A (H) Vi 0 d, Vh E X, Vt K,
An(t) = An(H) = jEO(i), hEX (4.48)

0 i=d, VhEX, Vt §J-C.
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Let s (t) denote the successor of node i on the nth shortest path from node i to node

d at departure time t. Let rn(t) denote the arrival time at node sn(t), which is equal to

t+rT&f(t)(t). Let i (t) indicates the rank of the path from node s'(t) to node d at departure

time 1r (t), which one should follow in order to achieve the nth shortest path from node i to

node d at departure time t. si(t) and K (t) are obtained by the following functional forms:

arg min {rij (t) + A4 (t + rij(t)) Vi = d, V d E X, Vt E H,
(sn(t), n (t)) = ( }

(d,0) i = d, Vn E X, Vt E H,

(4.49)

(sn(t), K?(t)) = (s?(H), n (H)) =

arg min" -rij(H) + A3 (H) Vi d, Vn E X, Vt X,
(j,h)EO(i)xX I

(d, 0) i =d, V nE X, V i OH.

(4.50)

Solution Algorithm

A solution algorithm named Algorithm k-DSP is shown in Algorithm 6. For each n, the

execution of Line 10 requires I0(i) x lX = kI0(i) comparison operations because we

already know AV-1 (t) (A9(t) is assumed to be -oc). Hence the total number of comparison

operations at Line 10 until the termination of the algorithm is bounded from above by

k2Hm as shown below:

E E k x k|0(i)| < k2  |0(i)|= k 2 Hm.
teX iEN\{d} tEX iGe

Obviously Line 10 is the computational bottleneck of the algorithm. Hence we have the

following proposition about the worst-case running time complexity of Algorithm k-DSP.

Proposition 7. Let O(g(n, m, k)) be the running time to solve an all-to-one k-shortest

paths problem in a deterministic static network in Step 2. Then the worst-case running

time complexity of Algorithm k-DSP is O(max(g(n, m, k), k2 Hm)).

4.8 Waiting at Nodes

So far, we have assumed that no waiting is allowed at all nodes in the network. In this
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Algorithm 6 Algorithm k-DSP

1: Step 1: Initialization

2: (A , (t), sSi,(t) , 7rn (t), K , (t)) <-(00, o0, 00, 7 0), V i =, d, V n E 'X, V t E X

3: (A(t), s (t),7rn(t), iK(t)) +- (0, d, t, 0), Vn E X, Vt E X

4: Step 2: k Shortest Paths in Static Domain

5: (A (H), sf(H), 7r (H), ig (H)) +- All-to-One k-SP(N, A, {rij (H)}, d)

6: Step 3: k Shortest Paths in Time-Dependent Domain

7: For t<-H-1 downtoOdo

8: For i E N\ {d} do

9: For n <- 1 to k do

10: Aj (t) <- minl je(9(i),hEX {jj(t)±A4(t +7Tj(t))}

11: (sg(t), i(t)) + arg min (j,h)Ei(i)xX {Tii(t) + A,(t + rii(t))

12: rg (t) = t + Tisn(t)(t)

13: End (For)

14: End (For)

15: End (For)
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section, we briefly revisit the routing problems discussed in the preceding sections for the

case where waiting is allowed at all nodes. We assume that the length of waiting is unlimited

and the cost of waiting is additive. We only provide the modified optimality conditions for

each routing problem. Modifications of solution algorithms are easy, so they are not included

here.

4.8.1 All-to-One Minimum Possible Travel Time Paths Problem

When waiting is allowed at all nodes, the optimality conditions for Ai(t) become as follows:

min min min ft +rj (i) + Ajf+ rj~)}Ai(t)= {E(i) t< <H-1 rE'Y j ()t

0

min {r7, (H) + Aj(H)} Vi d, Vt §J H,
Ai (t) = Ai(H) = iEO(i)

0 i=d, Vt J-C.

Vi = d, Vt E ,

i= d, VtE ,

(4.51)

(4.52)

Notice that (4.52) is identical to (4.16) because waiting at nodes after t = H - 1 is not

beneficial at all.

The definition of set Qi (t) should be modified to take account of possible waiting at

nodes. For t E H, we define Qij(t) as follows:

(4.53)

For t > H - 1, the definition is the same as before.

Qjj (t) = Qjj (H) = {r I r E 'Jij (H), Tri (H) + Aj (H) = Ai(H)}.

Then optimality conditions for -yj(t) are given by

max max {p( x -j(i + r(f)
-yj((t) = iE (i,r)eoij()

I

Vi d, Vt E H-,

i=d, Vt E J-(,
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(4.55)

Qij(t) = { (i, r) I t < i < H - 1, r E 'Rjji (), i - t + rj (i) + Aj (i + rj(i)) = Ai(t)}.



-y (t) = -yi(H) = {max max {K
jE(i) rEQij(H)

1

(H) x -j(H) Vi d, Vt 9-C,

i =d, Vt ifX.

4.8.2 All-to-One Minimum Possible Travel Cost Paths Problem

When waiting is allowed at all nodes, the optimality conditions for j(t) change as follows:

min min ( ) + min
jEO(i) t<i<H-1 rE'Rij( )

0

Vi f d, Vt E H ,

i=d, VtEH,

{ min {Q(H) +(H)

jEO(i)

0

Vi d, Vt -X,

i =d, V t § a.

For t E C, we define Qjj (t) as

Qij(t) ={,r)|t < < H - 1, r E 'gi (f), (f)+ j rf)=(~).

For t > H - 1, Qjj (t) is defined as before.

Qij (t) = Qjj (H) = {r I r E 'RZi (H), Cj(H) + j (H) = .j (H)}.

Then optimality conditions for p(t) are given by the following functional forms:

max {gly (i) x p() x
(i,r)EQjj() V

{max gj (H) xjEO(i)

1

wi (i + Tr () )}

max {p (H)} x po (H)
rEQj,(H) J

Vi d, Vt E H-,

i =d, Vt E J{,

Vi 4 d, Vt V H,

S= d, V t V .

4.8.3 All-to-One k-Minimum Path Travel Time Realizations Problem

When waiting is allowed at all nodes, the optimality conditions for A'(t) are modified as

follows:
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(4.56)

i M) = I

(4.57)

(4.58)

(4.59)

(4.60)

max
jE(O(i)

1

=O~t - W(H) =

(4.61)

(4.62)

Oi~ =M

{ (j (i + ri (t))} I



minn ( - t+rTj(t)
jEO(i), t< i< H-1, rE'Zij(t), hEX t+T

10

+ + (+r)

min' rj (H) + A4 (H)
jEO(i), rERij(H), hEX

0

Vi 5 d, Vn E X, Vt E H,

i= d, Vn E X, Vt E J-C

(4.63)

Vi 5 d, Vn E X, Vt H,

i = d, Vn E X, Vt z H{.

(4.64)

4.8.4 All-to-One k-Dynamic Shortest Paths Problem

Finally, the following functional forms are the modified optimality conditions for Al(t) for

the all-to-one k-dynamic shortest paths problem when waiting is allowed at all nodes:

A! (t) = jEO(i),

0

min' < - t + Hi, (h)X
t < i < H-1, hEX

+ A (i + Tij ()) Vi = d, Vn E X, Vt E 9f,

i=d, VnEX, VtE H,

(4.65)

min" (rij(H) + A4 (H)
jEO(i), hEX

0m

Vi , d, Vn E X, Vt -X,

i = d, Vn E X, Vt J-C.
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Chapter 5

Minimum Expected Travel Time

Next-Arc Hyperpaths

When networks are stochastic, expected travel time would be one of the criteria most

frequently used for route selection in many applications of a repetitive nature. In this and

the next chapters, we study routing problems based on expected travel time in stochastic

time-dependent networks.

In Section 5.1, we introduce two routing policies in stochastic time-dependent networks

and define two expected travel time-based routing problems from these routing policies. We

explain the meaning of the wait-and-see expected minimum travel time and distinguish it

from the minimum expected travel time in Section 5.2. We study the all-to-one minimum

expected travel time next-arc hyperpaths problem in Sections 5.3-5.7. In Section 5.8, we

discuss extensions of the all-to-one minimum expected travel time next-arc hyperpaths

problem.

5.1 Routing Policies and Expected Travel Time-based Rout-

ing Problems

In most routing problems based on expected travel time, the objective would be to find

an optimal routing solution that leads to the minimum expected travel time. In stochastic

time-dependent networks, this optimal routing solution may have different forms according

to routing policy. Two routing policies have been considered in the literature.
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Consider the case where a traveler is capable of obtaining and utilizing network infor-

mation while he is traveling. In this case, upon arrival at every intermediate node, he can

optimally select a link to traverse next based on the travel time information gathered so

far. We refer to this routing policy as the adaptive routing policy because the traveler can

change his path adaptively en route. We call the expected travel time-based routing prob-

lem with the adaptive routing policy the minimum expected travel time next-arc hyperpath

(METTH) problem, because an optimal routing solution is generally a next-arc hyperpath

corresponding to the traveler's choices made en route, not a simple path. This problem

arises in the study of route guidance systems within the context of ATIS when travelers are

equipped with in-vehicle communication devices. We discuss this problem in this chapter.

Consider the other case where a traveler is required to follow a simple path that is

determined before he leaves the origin. It is not allowed for the traveler to deviate from the

path while he is traveling. In this case, an optimal routing solution should be a simple path.

We refer to this routing policy as the non-adaptive routing policy. Under the non-adaptive

routing policy, our interest is to find an a priori simple path that results in the minimum

expected travel time. We call this routing problem the minimum expected travel time path

(METTP) problem. This problem will be discussed in Chapter 6.

5.1.1 An Illustrative Example and Observations

To illustrate how the two problems are different, consider the stochastic time-dependent

network example depicted in Figure 5-1 and Table 5.11.

Destination

Figure 5-1: An Example Network

Let path a consist of links (1, 2) and (2, 3)upper and let path b be comprised of links

(1, 2) and (2, 3 )iower. Suppose that a traveler makes a trip from node 1 to node 3 at time 0.

'To simplify the computation in this example, we allow parallel links between node 2 and node 3.
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Table 5.1: Time-Dependent Link Travel Time PMFs

Link (i, j) (1,2) (2, 3)upper (2, 3 )iower
Departure Time (t) 0 1 3 1 3

) pr (1, 0.5) (1, 0.5) (6, 0.5) (6, 0.5) (2, 0.5)
(T) (0)) (3, 0.5) (3, 0.5) (8, 0.5) (8, 0.5) (4, 0.5)

The expected travel time on path a for this trip is computed as follows:

2 2

(_ rlr2(0)+E723 r220)) X pe upper ({2(0))) xP12(O) =
r=1 q=1

(1 + (1 x 0.5 + 3 x 0.5)) x 0.5 + (3 + (6 x 0.5 + 8 x 0.5)) x 0.5 = 6.5.

Likewise, the expected travel time on path b for the trip is 7 units of time. Therefore

path a is the simple path that results in the minimum expected travel time for the trip, i.e.

path a is the optimal solution to the minimum expected travel time path problem for the

trip. The minimum expected travel time from node 1 to node 3 at departure time 0 under

the non-adaptive routing policy is 6.5 units of time.

Destination

Figure 5-2: Minimum Expected Travel Time Path

Now suppose that the traveler does not decide on which link to take from node 2 at the

outset of the trip, but chooses either link (2, 3)upper or link (2, 3)iower after he arrives at node

2. If he arrives at node 2 at t = 1, then he will select link (2, 3 )upper because at the entry

time of 1, it has a lower expected travel time to the destination than link (2, 3 )iower. On

the other hand, if his arrival time at node 2 is t = 3, then it is better to take link (2, 3 )iower-

The expected travel time of this strategy (solution) is

(1 + (I x 0.5 + 3 x 0.5)) x 0.5+ (3 + (2 x 0.5 + 4 x 0.5)) x 0.5 = 4.5.

When the adaptive routing policy is used, four routing strategies are available for the
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trip as shown in Table 5.2. Since the routing strategy just described gives the minimum

expected travel time, it is the optimal solution to the minimum expected travel time next-arc

hyperpath problem for the trip. The hyperpath representing the optimal routing strategy

is shown in Figure 5-3.

Table 5.2: Routing Strategies

Routing Strategy Expected Travel Time

t = 1: take link (2, 3)upper 4.5
t = 3: take link (2, 3)iower
t = 1: take link (2, 3)lower
t = 3: take link (2 3)upper9.0

t = 1: take link (2, 3)upper
t = 3: take link (2, 3)upper 6.5
t = 1: take link (2, 3)upwer
t = 3: take link (2, 3)iower

If arrival time at node 2= 1

Destination

If arrival time at node 2= 3

Figure 5-3: Minimum Expected Travel Time Next-Arc Hyperpath

Notice that the third and the fourth routing strategies in Table 5.2 are equivalent to

taking path a and path b, respectively. Therefore taking any simple path is also a possible,

but not optimal, routing solution when the traveler is allowed to make routing decisions

adaptively en route in this example. The other two routing strategies in Table 5.2 do not

correspond to simple paths. This implies that all feasible solutions to the minimum expected

travel time path problem are also feasible to the minimum expected travel time next-arc

hyperpath problem. The converse, however, is not true in general.

It follows from the above observation that for a given origin-destination pair and depar-

ture time, the minimum expected travel time obtained from the minimum expected travel

time path problem is always greater than or equal to that obtained from the minimum
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expected travel time next-arc hyperpath problem. Therefore the latter is a lower bound on

the former.

In the minimum expected travel time path problem, i.e. under the non-adaptive routing

policy, for a given origin-destination pair and departure time, all travelers follow the same

simple path regardless of their actual arrival times at intermediate nodes. However in

the minimum expected travel time next-arc hyperpath problem, i.e. under the adaptive

routing policy, travelers may take different simple paths depending on their arrival times at

intermediate nodes. The hyperpath is the set of those different simple paths.

If there is no time-dependency in the network, i.e. if the network is stochastic static,

no matter when a traveler arrives at an intermediate node, the travel time distributions

of the outgoing links from the node are the same. Therefore there is no incentive to defer

making the decision on which link to take from the node until he arrives at the node. In

this case, the minimum expected travel time next-arc hyperpath problem becomes identical

to the minimum expected travel time path problem. As mentioned in Chapter 1 and will be

shown mathematically in this chapter, if the network is stochastic static, a path with the

minimum expected travel time can be found by setting each link travel time to its expected

value and then applying a static shortest path algorithm.

5.1.2 Problem Type to Study

In this chapter, we study one type of the minimum expected travel time next-arc hyperpath

problem, the all-to-one minimum expected travel time next-arc hyperpaths problem defined

as follows: Given a stochastic time-dependent network, from each node to a given destination

node for each departure time, the problem is to find a next-arc hyperpath (a routing strategy),

which results in the minimum expected travel time when travelers are allowed to change their

paths adaptively en route.

5.2 The Wait-and-See Expected Minimum Travel Time

In this section, we digress from the main topic of this chapter and explain the meaning of

the wait-and-see expected minimum travel time. The reader may skip this section without

loss of continuity.

Consider a trip that starts from node 1 at time 0 to the destination node 3 in the
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following stochastic time-dependent network2 .

Destination

002

Figure 5-4: An Example Network

Table 5.3: Time-Dependent Link Travel Time PMFs

Link (i, j) (1, 3) (1, 2)_ (2, 3)upper (2 , 3 )ower
Departure Time (t) 0 0 2 4 2 4

(6, 0.5) (2, 0.5) (1, 0.5) (7, 0.5) (6, 0.5) (3, 0.5)
(T'(t),p (t)) (8, 0.5) (4, 0.5) (3, 0.5) (9, 0.5) (8, 0.5) (5, 0.5)

A network state is defined as a collection of link travel time values that may be experi-

enced during the trip. For instance, the 5 th network state in Table 5.4 (s denotes network

state number) corresponds to the following link travel time values:

r13 (0) = 6, rl'2 (0) = 4, Tr2 3 upper(4) = 7, T2-3 1 0e(4) = 3.

The probability of a network state is defined as the probability that the link travel time

values associated with the network state are simultaneously realized. If we assume that

the link travel time random variables are independent of each other, the probability of a

network state is the product of the probabilities that the associated link travel time values

occur. The probability of the 5th network state is therefore given by

P5 = P13( 0 ) x P12(0) x P3upper(4) x 3  (4) = 0.0625.

For each network state, we can find the minimum travel time path for the trip. Notice

that determining this is equivalent to computing a shortest path in a deterministic static

network. The minimum travel time path for the 5 th network state is link (1, 3) that gives 6

2 To simplify the computation in this example, we allow parallel links between node 2 and node 3.
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units of time.

Table 5.4 shows all possible network states for a trip from node 1 to node 3 at departure

time 0, their probabilities, the minimum travel time path and the minimum travel time for

each network state.

Table 5.4: Network States and Minimum Travel Times

s 11r3(O) 'rf2(0) IT2 (-[ 3) 3 (-) 1 P [s Min. Path Min. Time

1 6 2 1 6 0.0625 (1, 2) - (2, 3)upper 3
2 6 2 1 8 0.0625 (1, 2) - (2, 3)upper 3
3 6 2 3 6 0.0625 (1,2) -+(2, 3)upper 5
4 6 2 3 8 0.0625 (1, 2) (2, 3)upper 5
5 6 4 7 3 0.0625 (1,3) 6
6 6 4 7 5 0.0625 (1,3) 6
7 6 4 9 3 0.0625 (1,3) 6
8 6 4 9 5 0.0625 (1,3) 6
9 8 2 1 6 0.0625 (1,2) - (2, 3)upper 3
10 8 2 1 8 0.0625 (1,2) - (2, 3)upper 3
11 8 2 3 6 0.0625 (1, 2) - (2, 3)upper 5
12 8 2 3 8 0.0625 (1,2) + (2, 3)upper 5
13 8 4 7 3 0.0625 (1,2) - (2, 3 )lower 7
14 8 4 7 5 0.0625 (1,3) 8
15 8 4 9 3 0.0625 (1,2) - (2, 3 )lower 7
16 8 4 9 5 0.0625 (1,3) 8

The wait-and-see expected minimum travel time for a trip from node i to the destination

node at departure time t, denoted by e(t), is defined as

(5.1)efg(t) = E P, x minimum travel time for state s.
all states s

In this example, the wait-and-see expected minimum travel time from node 1 to node 3 at

departure time 0 is computed by

fi(0) = 3 x 0.0625 + 3 x 0.0625 + ... + 8 x 0.0625 = 5.375.

Suppose we observe the network for many days and record the observed minimum travel

time from node i to the destination node at departure time t every day. The wait-and-see

expected minimum travel time is then also obtained by
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n=1 observed minimum travel time of day kfi(t) = lim .k (5.2)n- oo n

Note that (5.1) and (5.2) are both the same as

fi(t) = E[minL (t)]. (5.3)
C

It should be noted that the wait-and-see expected minimum travel time is generally

associated with neither a simple path nor a hyperpath. In other words, it is not a travel

time that can be achieved by taking a simple path or a hyperpath in general. Let us call

the problem of computing the wait-and-see expected minimum travel time the wait-and-see

expected minimum travel time problem.

For the example network in Figure 5-4 and Table 5.3, we can verify that the minimum

expected travel time path for a trip from node 1 to node 3 at departure time 0 is link (1, 3),

whose expected travel time is 7 units of time. The minimum expected travel time next-arc

hyperpath for this trip is shown in Figure 5-5 and its expected travel time is 6 units of time.

If arrival time at node 2 = 2 Destination

02

If arrival time at node 2= 4

Figure 5-5: Minimum Expected Travel Time Next-Arc Hyperpath

For this trip, the wait-and-see expected minimum travel time is less than the expected

travel time of the minimum expected travel time next-arc hyperpath (5.375 < 6). This is a

general result, and we provide a rough justification for this below.

In the minimum expected travel time next-arc hyperpath problem, there is a constraint

such that a solution should be a next-arc hyperpath. The wait-and-see expected minimum

travel time problem, however, does not have such a constraint. Hence the latter problem

is less constrained than the former problem. This implies that the wait-and-see expected

minimum travel time for a given trip is a lower bound on the expected travel time of the

minimum expected travel time next-arc hyperpath for the same trip.

In the previous section, we have seen that the expected travel time of the minimum
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expected travel time next-arc hyperpath is a lower bound on that of the minimum expected

travel time path. This is also justifiable because the minimum expected travel time path

problem has a more restrictive constraint, which is a solution should be a simple path, than

the minimum expected travel time next-arc hyperpath problem.

5.3 Optimality Conditions

In this section, we drive optimality conditions for the all-to-one minimum expected travel

time next-arc hyperpaths problem.

Let Ti, (t) denote the travel time from node i to the destination node d when a traveler

leaves node i at time t via link (i, j) and then takes an optimal next-arc hyperpath from

node j to node d. Tij(t) is written as the sum of two random variables,

Tij (t) = traversal time on link (i, j) +

travel time on an optimal next-arc hyperpath from node j to node d

= Tij (t) + Lj (t + Ti (t)), (5.4)

where Lj(t + Tij(t)) is a random variable denoting the travel time on an optimal next-arc

hyperpath from node j to node d at departure time t + Tij (t).

The expected value of Tij(t) is interpreted as the expected travel time to node d when

one leaves node i through link (i, j) at time t and selects all downstream links optimally

according to his arrival times at intermediate nodes.

E [Tij(t)] = E [Tij(t) + L3 (t + Tij(t))] = E [Tij(t)] + E [Lj (t + Tij(t))]. (5.5)

Let ei(t) denote the minimum expected travel time to node d under the adaptive routing

policy when one leaves node i at time t. In other words, it is the expected travel time on

the minimum expected travel time next-arc hyperpath from node i to node d at departure

time t. e2(t) is obtained by

ei(t) = min {E[_Ti(t)]} = min {E[Tij(t)] + E[Lj(t + Tij(t))]}. (5.6)
jEO(i) jE((i)

E[Tyj(t)] = Zi) (t) py(t). By the total expectation theorem, E[Lj (t + Tij(t))] is
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computed by

E[Lj(t +Ti(t))] = E[E[Lj(t +Ti(t)) Ti(t)]] = E[Lj(t + rj(t))] p -(t). (5.7)
rE Rzi (t)

Therefore we can rewrite (5.6) using the realizations of Tij(t) as follows:

ej(t) = mi 1f rirj(t) pir(t) + 1 E[Lj(t + rT(t))]p -(t)
JE~)fr E 9zj) rEg4j(t) 1

(5.8)

By the definitions of Lj (t + <rf(t)) and ej (t + ri (t)), we have ej (t + rj (t)) = E[L,(t +

,rj(t))]. Hence (5.8) becomes

ej(t) = i

Smin
i E 0(i)

( rir(t) pr.(t)+ ej(t +-rjr(t)) p -(t)
r r tz(t))

rEmJ~(t)

Since ed(t) = 0, optimality conditions for ej(t), Vi E N, Vt E X are given by

{min + ( eri(t)+e(t + ri(t))) zi(t) Vi 0 d, Vt E X,
(5.10)

0 i=d, VtE E-C.

For t > H - 1, (5.10) reduces to the following formula due to the no

the network when t > H - 1.

time-dependency in

min { (rg ((H) + ej (H)) p'i(H)}
jEO(i) rERj,(H)

0

Vi # d, Vt V K,

i=d, Vt §J-C.

Proposition 8. All labels e2 (t) satisfying the optimality conditions (5.10) and (5.11) can

be determined in a decreasing order of departure time in a single pass.

Proof. From (5.10), it is apparent that ei(t) is determined only by ej(s) such that s > t

because all link travel time values, Trf(t), are positive. Therefore if we first compute ej(H)

as a base case by (5.11), we can compute e2(H - 1), e2(H - 2), -.. , ej(0) by (5.10) in a

decreasing order of departure time. In order to prove that ej (t) can be computed in a
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single pass, we argue that once ei(t) are determined, they do not change. We prove this by

contradiction. Suppose that we compute the value of ei(t) for some i, t and then modify

it later. It means that some es(s) for j E 0(i) and s > t changes from its previous value

(it decreases). This in turn indicates that some ek(q) for k E ((j) and q > s changes and

so on, until we arrive at the static domain (t > H - 1). In the static domain, however, all

ej(t), i E N, t > H - 1 do not change once they are set to ej(H) by (5.11). This means that

all ei(t) at t = H - 1 do not change after they are initially determined by (5.10). We can

repeat this argument in a decreasing order of departure time until we arrive at departure

time t. Therefore ej (t) for some i, t does not change once it is determined, which contradicts

the assumption. This concludes that all ei(t) can be determined in a decreasing order of

departure time in a single pass. l

5.4 Minimum Expected Travel Time Next-Arc Hyperpaths

in the Static Domain

Let us consider the computation of ej(H) by (5.11), that is, the computation of the all-

to-one minimum expected travel time next-arc hyperpaths in the static domain. We can

simplify (5.11) as follows:

min ri (mH) p (H ) + ej (H) pI (H) Vi # d
e0(H) jEC(i) re9Zi(H) drE'Ri (H) )

0 id

min {E[Tjj(H)]+ej(H)} Viod,
jEO(i) (5.12)
0 i=d.

Note that (5.12) is the set of optimality conditions for the all-to-one static shortest

paths problem. This indicates that ej(H) can be found by solving an all-to-one shortest

paths problem in a deterministic static network where the link travel times are set to their

expected values at departure time H, E[Tij(H)].

Therefore the solutions to the all-to-one minimum expected travel time next-arc hyper-

paths problem in the static domain are simple paths. This proves the argument we made in

Section 5.1.1 that the minimum expected travel time next-arc hyperpath problem is equiv-
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alent to the minimum expected travel time path problem, if there is no time-dependency in

the network.

5.5 Hyperpaths Construction

In order to construct the minimum expected travel time next-arc hyperpaths, we maintain

si(t), the successor of node i on the minimum expected travel time next-arc hyperpath

from node i to node d at departure time t. si(t), Vi E X, Vt are obtained by the following

functional forms, where we define Sd(t) = d for all t:

arg min (Trr(t)+ej(t + rj(t))) Pij(t) Vi#d, VtE J ,
si(t) = r E 6(t) J (5.13)

d i=d, VtE X-,

arg min {E[T(H)] + ej(H)} Vi 0 d, Vt V i-,
si(t) = sj(H) = iEO(i) (5.14)

0 i=d, Vtvx.

The minimum expected travel time next-arc hyperpath from node i to node d at de-

parture time t is an acyclic subnetwork of the original network. Finding the links that

constitute the subnetwork is rather involved compared to finding the links consituting an

optimal simple path. We provide Algorithm Hyperpath to find the links of a minimum ex-

pected travel time next-arc hyperpath in Algorithm 7. The links are stored in set L when

the algorithm is terminated.

5.6 Solution Algorithms

5.6.1 Algorithm METTH

The discussions in the preceding sections allow us to develop an efficient algorithm to solve

the all-to-one minimum expected travel time next-arc hyperpaths problem. A label-setting

algorithm called Algorithm METTH is described in Algorithm 8. In Appendix C, we give

an example that illustrates how Algorithm METTH works.

Let us analyze the worst-case running time complexity of Algorithm METTH. It takes

0(nH) time to complete Step 1. The total number of elementary operations performed

102



Algorithm 7 Algorithm Hyperpath

1: Create a set L

2: Create a queue S

3: Insert link (i, si(t)) into L

4: If si(t) : d then

5: For r E 'Ris,(t)(t) do

6: Enqueue (si(t), t + & (t)) into S

7: End (For)

8: End (If)

9: While S # 0 do

10: Dequeue a (node, departure time) pair, called (i, t), from S

11: If L does not contain link (i, sj(t)) then

12: Insert link (i, si(t)) into L

13: End (If)

14: If si(t) # d then

15: For r E 'jZ, (t)(t) do

16: Enqueue (si(t), t + Tr (t)(t)) into S

17: End (For)

18: End (If)

19: End (While)
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Algorithm 8 Algorithm METTH

1: Step 1: Initialization

2: (ei (t), si (t)) <- (oo, oo), V i =, d, V t E X

3: (ed(t), Sd(t)) - (0, d), Vt E Y

4: Step 2: Minimum Expected Time Hyperpaths in Static Domain

5: (ei(H), si(H)) - All-to-One SP(N, A, {E[Tjj(H)]}, d)

6: Step 3: Minimum Expected Time Hyperpaths in Time-Dependent Domain

7: For t+-H-1 downto0do

8: For i E N\ {d} do

9: e(t) - minJE() {Zre (t) (Tf(t) + ej (t + r[ (t))) pr (t)}

10: si(t) - arg minEO(i) {ZrE9Zij (t) (T2 t) + e, (t + Tri ())) p(t}

11: End (For)

12: End (For)
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in Step 3 is given by W = E( EZt EiEN\{d} EjeO(i) PJij(t)I). Hence the running time

of Step 3 is e(fii). The total running time complexity of Algorithm METTH is therefore

e(nH + f (n, m) + in-) = E(max(f(n, m), fi)).

Proposition 9. The worst-case running time complexity of Algorithm METTH is E(max

(f(n, m), in-)) and it is optimal.

Proof. We only need to show that the running time is optimal. Any solution algorithm for

the all-to-one minimum expected travel time next-arc hyperpaths problem must examine all

link travel time realizations at least once, because any unexamined link travel time realiza-

tions may lead to lower expected travel times. To do so, it requires Q(fi-) time. Any solution

algorithm should also compute ej (H) somehow, and we assume that the lowest possible time

to compute ej(H) is e(f(n, m)). Therefore Q(iL + f(n, m)) = Q(max(f(n, m),i)) is the

lowest possible running time of any solution algorithm. The worst-case running time of

Algorithm METTH attains this bound, so it is optimal.

5.6.2 Algorithm ELB

The all-to-one minimum expected travel time next-arc hyperpaths problem was also stud-

ied in Miller-Hooks [16] and in Miller-Hooks and Mahmassani [18], and a modified label-

correcting algorithm called Algorithm ELB was proposed as a solution algorithm. We restate

Algorithm ELB in Algorithm 9 for the reader's reference. Note that the original version of

Algorithm ELB does not have Step 2.

When R = max(ij)eA, tC- {ViZj(t)I}, the worst-case running time complexity of Algo-

rithm ELB is O(max(f(n, m), n3 H 2 R)) (Miller-Hook and Mahmassani [18]). This running

time is clearly inferior to the worst-case running time of Algorithm METTH theoretically

because max(f (n, m), n 3 H 2 R) ;> max(f(n, m), fi). The practical running time of Algo-

rithm ELB will be compared with that of Algorithm METTH in Chapter 7.

Like Algorithm LEAST for the all-to-one minimum possible travel time paths problem,

Algorithm ELB does not exploit the fact that the labels can be set in a decreasing order of

departure time in a single pass.

5.7 Waiting at Nodes

If waiting is allowed at all nodes in the network, a traveler may shorten the expected travel
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Algorithm 9 Algorithm ELB

1: Step 1: Initialization

2: (e (t), si(t)) - (oo, cc), V i 5 d, V t E X

3 : (ed(t),sd(W)) - (0,d), V tE X

4: Create a queue S

5: Enqueue d into S

6: Step 2: Minimum Expected Time Hyperpaths in Static Domain

7: (e (H), si(H)) +- All-to-One SP(N, A, {E[Tij (H)]}, d)

8: Step 3: Choose Current Node

9: If S = 0 then stop

10: Else dequeue a node (called j) from S

11: Step 4: Update Labels

12: For i E '(j) do

13: For t +-0 to H -l do

14: 77 <- Er gg~t (-rirj(t) + ej(t + rirj(t))) p -(t)

15: If 7 < ei(t) then

16: ej (t) <- q

17: si(t) +- j

18: Ifi S then

19: Enqueue i into S

20: End (If)

21: End (If)

22: End (For)

23: End (For)

24: Go to Step 3
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time by waiting at some appropriate nodes during his trip. Below we provide optimality

conditions for ei(t) when waiting is allowed at all nodes.

ej(t) =

mm ~~j (j9) +ej (±T+ t))
min min -t + (j )eyfr(j))) Pr~s Vi 54 d, Vt E H,

jEO(i t <i<H-1rE ij()j

0 i=d, VtEC,

(5.15)

min 4 > (rr (H) + e (H)) p (H) Vi 4 d, Vt V H,
ej(t) = ej(H) = jEO(i) re'Ri(H) Z (5.16)

0 i=d, Vt J-C.

Algorithm METTH can be modified to take account of the optimality conditions (5.15)

and (5.16). The worst-case running time complexity of the resulting algorithm is O(max

(f(n, m), Hin)).

5.8 Extensions

In this section, we extend the all-to-one minimum expected travel time next-arc hyperpaths

problem to: (1) when travel cost is of primary concern for route selection, (2) when signals

are present in the network, and (3) when several travel modes are available in the network.

5.8.1 Minimum Expected Travel Cost Next-Arc Hyperpaths

Algorithm METTH can be extended for determining all-to-one minimum expected travel

cost next-arc hyperpaths in networks where the link travel times and the link travel costs

are both time-dependent random variables.

Additional Notation and Assumptions

Recollect the random variable Cij (t) denoting the travel cost on link (i, j) when one enters

the link at time t, which we defined in Section 4.7.1. In the all-to-one minimum expected

travel cost next-arc hyperpaths problem, however, Cij(t) does not have to be a discrete

random variable.

Let a function fcj (t) (c) : - a R+ such that f fcj (t) (c) dc = 1 be the probability
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density function (PDF) of Cij(t) for t E H. For t > H - 1, it is assumed that fcj(t)(c) =

fcij(H-1)(c) for all (i, j) E A. We also assume that no waiting is allowed at all nodes.

Optimality Conditions

Let Cij(t) denote the travel cost from node i to the destination node d when one leaves

node i at time t via link (i, j) and then takes an optimal next-arc hyperpath from node j

to node d. ?7y (t) is expressed by

Cij (t) = travel cost over link (i, j) +

travel cost on an optimal next-arc hyperpath from node j to node d

= C 3 (t) + Y (t + T (t)), (5.17)

where Yj(t + Tij(t)) is a random variable denoting the travel cost on an optimal next-arc

hyperpath from node j to node d when one departs from node j at time t + Tij(t). The

expected value of Ci, (t) is given by

E [Cij (t)] = E [Cij(t) + Y3(t + Tij(t))] = E [Crj(t)] + E [Y,(t + Tij (t))].

Let ci(t) be the minimum expected travel cost from node i to node d under

routing policy when one departs from node i at time t. ci(t) is obtained by

ci(t) = min {E[-Ci(t)]} = min {E[Cy(t)] + E[Y(t + Tij(t))]}.
y EO(i) jEO(i)

(5.18)

the adaptive

(5.19)

Using the total expectation theorem,

(5.20)

Since cj (t+?rj (t)) = E[Yj (t +rj (t))] by the definitions of cj (t±+jr (t)) and Y (t +rj (t)),

optimality conditions for ci(t), Vi E N, Vt E H are given by

ci (t) =

0 i=d, VtE E-.
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For t > H - 1, (5.21) reduces to

min fCj (H) (c) dc + E cj (H) pi (H) Vi = d, Vt 0 H
ci(t) = ci(H) = {J fcE(H rE(c) d(H) +V

0 i=d, Vt J-C

min {E[Cjj(H)] +cj(H)} Vi = d, Vt 0 H,
- EO(i) (5.22)
0 i=d, Vt OJ-C,

which can be solved by an all-to-one static shortest paths algorithm.

It should be noted that the individual probabilities of link travel cost realizations are

not used in the optimality conditions. We only need to know the expected link travel costs

at discrete departure times, E[Cij(t)], to solve the all-to-one minimum expected travel cost

next-arc hyperpaths problem. We, however, should know the PMFs of the link travel times

to solve the problem.

Proposition 10. All labels ci(t) satisfying the optimality conditions (5.21) and (5.22) can

be determined in a decreasing order of departure time in a single pass.

Proof. A proof is similar to the proof of Proposition 8.

Solution Algorithm

A solution algorithm called Algorithm METCH for the all-to-one minimum expected travel

cost next-arc hyperpaths problem is described in Algorithm 10.

Proposition 11. Suppose we approximate fcu,(t)(c) by the following PMF:

PCj,(t) = (Q(G (t), gij(t)), X E Xjj (t)} ,

where Xii (t) = {1, 2, ... , xij (t)}. Let C = E(itj)EA tEg- IX X(t)1. The worst-case run-

ning time complexity of Algorithm METCH in this case is E(max(f(n, m), , in)) and it is

optimal.

Proof. It takes 0(nH) time to complete Step 1. Since the approximation converts Line 9

into the following,
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Algorithm 10 Algorithm METCH

1: Step 1: Initialization

2: (ci (t), si(t)) <- (oo, oo), V i # d, V t E X

3: (cd (t), sd (t)) +-(0, d), V t E X

4: Step 2: Minimum Expected Cost Hyperpaths in Static Domain

5: (ci(H), si(H)) - All-to-One SP(N, A, {E[Cij (H)]} , d)

6: Step 3: Minimum Expected Cost Hyperpaths in Time-Dependent Domain

7: For t+--H- 1 downtoOdo

8: For i E N\ {d} do

9: ci(t) +- minjE((i) fcj (t)(c) dc + rremi(t) c3(t + T~j (t))

10: si(t) 4- argminjE((i) { fc (t)(c) dc + Ere9Zi,(t) c, (t + <jy(t)) p (t)

11: End (For)

12: End (For)
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ci (t) <-- min ( Q, (t) g*,7 (t) + E ci (t + -rri(0)) K13 (t),
jE~)xExi(t) rEf4j(t)

the total number of elementary operations needed in Step 3 is given by W = E( ME

ZiEN\{d} ZjEO(i) (IXij(t)I + fij(t)I)). Hence the running time of Step 3 is 9(i+ F). The

worst-case running time complexity of Algorithm METCH is therefore E(nH + f(n, m) +

c + in-) = e(max(f(n, m), i, Fn)). To solve the problem, we need to compute ci(H) and to

examine all link travel cost realizations and all link travel time realizations at least once.

Hence Q(f (n, m) + -+ in) = Q(max(f(n, m), Z, Fn)) is the lowest possible running time for

the problem. This indicates that the running time complexity of Algorithm METCH is

optimal.

5.8.2 Signalized Networks

If a network is signalized, waiting due to signal control at intersections often accounts for

a large proportion of the total travel time, and therefore, cannot be ignored when routing

decisions are made. In this section, we discuss the all-to-one minimum expected travel time

next-arc hyperpaths problem when signals are present in the network.

Problem Overview, Additional Notation and Assumptions

A signal cycle at a signalized intersection consists of signal phases, each of which defines

a set of movements allowed within its duration. Generally, a particular movement is only

allowed within a particular phase of a signal cycle.

When a traveler arrives at a signalized intersection, if his desired movement is not

permitted in the current signal phase, he should wait until the beginning of the next phase

in which the movement is allowed. The time between the moment of his arrival at the

intersection and the beginning of the next phase that permits his intended movement is

called the penalty for the movement (Yang and Miller-Hooks [25]).

For a given movement, the value of the penalty obviously depends on the arrival time

at the intersection. If the network is equipped with pre-timed signal control devices, the

lengths and the sequence of the signal phases at each signalized intersection are fixed and

known in advance. In this case, it is possible to compute the penalties for movements at

each signalized intersection for each arrival time before making a trip.
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For an example, Figure 5-6 illustrates a signalized intersection that has 12 possible

movements. Table 5.5 shows the allowed movements and the duration of each of four

phases at the intersection. Let us assume that the signal consists of only red and green

time. Amber time is not considered. We also assume that there is no spillback effect from

downstream intersections and that a driver does not have to wait for more than one signal

cycle at the intersection. In other words, we assume that intersections are not saturated.

Table 5.6 summarizes the penalties for the movements assuming that Phase I starts at time

0. Note that the penalties repeat every 10 units of time (the cycle length). Therefore, we

do not have to compute the penalties for all arrival times. Computing the penalties for the

first signal cycle suffices.

12 4 8

10
2
6

5
1 9
9

0

7 3 11

Figure 5-6: Movements at a Signalized Intersection

Let Whij(t) be the penalty (the amount of waiting time) when one arrives at node i

at time t from node h and then wishes to take link (i, j). Once we construct the penalty

table such as Table 5.6, we can easily obtain the value of whii(t) from it. For instance,

w123 (3) = 7, w12 5 (0) = 6 in this example. For trips commencing at node i at time t, we
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Table 5.5: Signal Phases

Phase I Phase II Phase III Phase IV

Allowed Movements 1, 2, 9, 10 3, 4, 11, 12 5, 6 7, 8
Duration (units of time) 3 3 2 2

Table 5.6: Penalties (units of time)
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Arrival Signal Penalty for Penalty for Penalty for Penalty for

Time Phase Phase I Phase II Phase III Phase IV

(t) Movements Movements Movements Movements
0 I 0 3 6 8
1 I 0 2 5 7
2 I 0 1 4 6
3 II 7 0 3 5
4 II 6 0 2 4
5 II 5 0 1 3
6 III 4 7 0 2
7 III 3 6 0 1
8 IV 2 5 8 0
9 IV 1 4 7 0
10 I 0 3 6 8
11 I 0 2 5 7



define wi (t) = 0 for all j E 0(i).

Below we derive optimality conditions for the all-to-one minimum expected travel time

next-arc hyperpaths problem in a signalized network. As usual, we assume that waiting at

a node is not allowed unless it is required due to the red signal.

Optimality Conditions

We denote by Thi,(t) the travel time from node i to the destination node d when a traveler

arrives at node i at time t from node h and then wants to take link (i, j) and an optimal

next-arc hyperpath from node j to node d. Thiy(t) is the sum of three quantities as follows:

Thij (t) = waiting time for the signal at node i +

traversal time on link (i, j) +

travel time on an optimal next-arc hyperpath from node j node d

= Whij(t) + Tij(t + Whi,(t)) + Lij(t + whi3 (t) + T 3(t + WhiJ(t))), (5.23)

where Lij(t + whij(t) + T 3(t + whi3 (t))) is a random variable denoting the travel time on

an optimal next-arc hyperpath from node j to node d when the traveler arrives at node j

at time t + Whij (t) + Tij (t + Whij (t)) from node i.

Since whi (t) is a constant for a given h, i, j and t, the expected value of Thij (t) is

E[Thij(t)] = E[whij t) + Tij (t + whij(t)) + Lij (t + Whij (t) + Tij (t + Whij (t)))]

= E[whij(t)] + E[Tij(t + whij(t))] + E[Lij(t + whij(t) + Tij(t + Whi(t)))]

= Whij(t) + E[Tij(t + whij(t))] + E[Lij(t + Whij(t) + Tij(t + Whij(t)))]. (5.24)

Let ehi (t) be the minimum expected travel time from node i to node d under the adaptive

routing policy when the traveler arrives at node i at time t from node h. ehi(t) is obtained

by

ehi(t) = min {E[Thij(t)]}
jeO(i)

= min {Whij(t) + E[Tij (t + Whij (t))] + E[Lij (t + Whij (t) + Tij (t + whij (t)))]}.
jEO(i)

(5.25)
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E[Tij (t+Whij (t))] = reiJZi (t+whij (t)) Tij (t+Whij t)) p (t+whij (t)) and E[Lij (t+whij (t)+

Tij(t + whij(t)))] is computed by

E[Lij(t + whij(t) + Tij(t + Whij(t)))]

= E[E[Lij(t + whij(t) + Tij(t + whij(t))) I Tij(t + Whij(t))]]

E E[Lij(t + whij(t) + Tjj(t + whij(t)))] pj(t + whij(t)).
rEfNi(t+Whij t))

(5.26)

Therefore we can rewrite (5.25) as follows.

ehi(t) = min Whi (t) +

ES

ES r'j (t + Whij(t)) pKj(t + Whi (t)) +

E [Li (t + Whij(t) + Trj(t + whij(t)))] p (t + Whij t)) -

(5.27)

Since eii(t + whij(t) + rfj(t + Whi(t))) = E[Lij(t + Whi(t) + 'r[j(t + whij(t)))] by the

definitions of ei (t + whij(t) + Trj(t + whij(t))) and Lij(t + whi 3 (t) + rfj(t + whij(t))), (5.27)

is rewritten as

ehi(t) = min
jEOMi

Whij(t) + ES +rj(t - Whi (t)) pij(t + Whij t)) +

E+Wh~ eij (t + whij(t) + Tfj(t + whij(t))) pij(t + whij(t))

rEm ((t+W+i ±))

=min wa7 (Wi -+ -rj(t + Whij M)) +
j9()rE4zj(t+whi (0))

ei (t + whijt) -±- Tr (t + whij t)))) Kj (t + whij(t)) . (5.28)

When i = d, we define ehd(t) = 0 for all h E J(d) U {d} and all t. Once all ehi(t) are

determined, the minimum expected travel time of a trip starting from node i at time t is

given by eri(t).

We assume that no signal effects prevail when it > H - 1. Therefore Whij (t) = 0 for all

t > H - 1 and (5.28) reduces to
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ehi(t) = ehi(H)= min E (,T4(H)+eij(H)) piH
7eO(i) rE'Ri,(H)

= min {E[Tij (H)] + ei (H)}. (5.29)
jeo(i)

Since no signal exists, which node a traveler arrives at node i from, i.e. the predecessor

of node i, is not relevant when t > H - 1. Hence (5.29) can be further reduced to

ej(t) = ej(H) = min {E[Tij (H)] + ej (H)}. (5.30)
jEO(i)

As in Section 5.4, ej(H) satisfying (5.30) can be obtained by solving an all-to-one static

shortest paths problem using E[Tij(H)] as link travel times. Once ej(H) are determined,

we set ehi(H) = ej(H) for all h E J(i) U {i}. Then ehi(t) for t E 'X can be determined by

(5.28) in a decreasing order of departure time in a single pass.

Proposition 12. All labels ei(t) satisfying the optimality conditions (5.28) and (5.29) can

be determined in a decreasing order of departure time in a single pass.

Proof. A detailed proof is similar to the proof of Proposition 8. I

Solution Algorithm

We present a solution algorithm called Algorithm METTH-Signal in Algorithm 11. Shi(t)

denotes the successor of node i on the minimum expected travel time next-arc hyperpath

from node i to node d when one arrives at node i at time t from node h.

Proposition 13. The worst-case running time complexity of Algorithm METTH-Signal is

O(max(f (n, m), nrfi)).

Proof. It takes e(nH + mH) time to initialize (ehi(t), shi(t)) in Step 1. The computation

of whiJ(t) in Step 1 requires O(nmH) time. In Step 3, we need to perform

0( ' E E S Ri (t + whij (t))I c O(rni)
tE'H iEN\{d} hE'J(i)U{i} jE O(i)

operations. Hence the worst-case running time complexity of Algorithm METTH-Signal is

O(nH + mH + nmH + f (n, m) + nfih) = O(max(f(n, m), nf)). l
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Algorithm 11 Algorithm METTH-Signal

1: Step 1: Initialization

2: (ehi(t),shi(t)) +- (oo,oo), Vi E N\ {d}, Vh E 3(i) U {i}, Vt E X

3: (ehd(t), Shd(t)) +- (0, d), V h E 3(d) U {d}, V t E X

4: Compute whij(t), Vi E N, Vh E 3(i) U {i}, Vj E 0(i), Vt E H

5: Step 2: Minimum Expected Time Hyperpaths in Static Domain

6: (ehi(H), shi(H)) <- All-to-One SP(N,A, {E[Tjj(H)]} ,d)

7: Step 3: Minimum Expected Time Hyperpaths in Time-Dependent Domain

8: For t<-H- 1 downtoOdo

9: For i E N\ {d} do

10: For h E 3(i) U {i} do

11: ehi(t) +- minjEO(i) { rE'Ri (t+whij () (Whij)) + 4r(t + whi,(t) +

eij (t + Whij(t) + ri (t + Whij(t)))) pg (t + Whi (t))}

12: shi (t) <-- arg minjEO(i) { ErEij (t+whij(t)) (Whi (t) + r[j (t + whij(t)) +

eig(t + WhiJ (t) + TJ(t + Whij (t)))) p (t + whij(t))}

13: End (For)

14: End (For)

15: End (For)
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Let R = max(ij)EA,tEX {'JZi(t) }. Then the worst-case running time complexity of Al-

gorithm METTH-Signal is bounded from above by O(max(f(n, m), nmHR). Note that

the worst-case running time complexity of the solution algorithm for the same problem

proposed in Yang and Miller-Hooks [25] is O(max(f(n, m), nr4H 2R)). Since m < n2 , Al-

gorithm METTH-Signal has a theoretically better worst-case running time than Yang and

Miller-Hooks' algorithm.

5.8.3 Multimodal Networks

If there exist several travel modes in a network, traveling via a single mode for the entire

trip from an origin node to a destination node might not necessarily result in the minimum

expected travel time. By changing travel modes judiciously along the trip, a traveler may

reduce his expected travel time. We discuss here how to find all-to-one minimum expected

travel time next-arc hyperpaths in stochastic time-dependent multimodal networks. Let us

first introduce additional notation and assumptions for this problem.

Additional Notation and Assumptions

Let M = {1, - - - , M} be the set of travel modes available in the network. Some modes may

not be available on some links. We denote by Mij C M the set of modes available on link

(ij).

For each link (i, j) E A and each mode b E Mij, let random variable TP (t) denote the

travel time on link (i, j) via mode b when one enters the link at time t. We assume that

TJ (t) is a discrete random variable that takes r .(t) distinct values denoted by Tri . (t), r E

' { , r (t) }. The probability that -r V(t) occurs is denoted by pb (t). The PMF

of TJ (t) is then represented by

P ~ -ri) t), pi' (t)) | E g ()} (5.31)

When a traveler changes modes at nodes, mode transfer delays arise. In order to take

into consideration the variability of these delays, we introduce another time-dependent

random variable, Dab (t), where (h,i) E A, (i,j) E A and a E M3 i, b E Mij. This random

variable indicates the mode transfer delay when one arrives at node i at time t from node

h via mode a and then takes mode b to go to node j. We assume that Dab (t) is also a
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discrete random variable with the following PMF:

PDab (t) =(o (t), q ';(t)) s E 'Jzg(t)}, (5.32)

where 6hJ (t) is the mode transfer delay value of the sth realization of Dab (t), qa% (t) is

the probability that 6a (t) occurs, and JR? (t) = {1, ... ,rg,(t)} is the set of indexes of

realizations of Dab (t).

If b = a, i.e. if one travels from node h to node j through node i using the same mode,

no mode transfer delay is incurred at node i. Therefore the PMF of Daa (t) is given by

PDa?3 (t) = 1(0,1.0)1. (5.33)

When h = i, i.e. when a traveler initiates his trip at node i, we assume that there are

no mode transfer delays at node i. Hence the PMF of D (t) is

PDj!b(t) = {(0, 1.0)1, (5.34)

where we define, by convention, the fictitious mode set Mij as {1}, Vi E N.

We assume that all TV (t) are positive integers and that 6, (t) are likewise if a ) b and

h / i. We also assume that for all t > H - 1, pTb (t) = pTh(H-1) and PDb.(t) PDgb (H-l)

It is assumed that waiting at nodes is not allowed unless it is required for mode transfer.

Optimality Conditions

-ab
Let Thi2 (t) denote the travel time from node i to the destination node d when one arrives

at node i at time t from node h via mode a and takes link (i, j) using mode b and then

follows an optimal next-arc hyperpath from node j to node d. T (t) can be expressed as

the sum of three random variables as follows:

Thi3 (t) = mode transfer delay at node i +

traversal time on link (i, j) +

travel time on an optimal next-arc hyperpath from node j to node d

= Di (t) + T (t + Di (t)) + Lij (t + D ij (t) + T (t + D (t))), (5.35)
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where L (t + Dab (t) + Tfy (t + Dab (t))) is a random variable denoting the travel time on

an optimal next-arc hyperpath from node j to node d when one arrives at node j at time

t + D (t) + Tg(t + D (t)) from node i via mode b.
-ab ()iThe expected value of Thi1 (t) is

E[Tha (t)] = E[D t) + Tfg(t + Dh (t)) + L ±(t + Di (t) + Tij(t + D a(t)))]

= E[D a(t)] + E [TP. (t + Dha (t))] + E [ .(t + Dg a(t) + TP,(t + DhO (t)))

(5.36)

Let e (t) be the minimum expected travel time from node i to node d under the adaptive

routing policy when one arrives at node i at time t from node h via mode a. e (t) is obtained

by

en(t) = m E[Tab (t)]
hiM jEO(i) bEMij hjj

= mi mi {E[D ab (t)] + E[TP,(t + D± (t))] +

E[L (# + D ab(t) + TP. (t + Dha (t)))] . (.)

E[Dhi(t)] = EsEqab.(t) 6(t) q (t) and E[T. (t + Dha3 (t))] is computed as follows:

[TP (t + Dh .(t))] = E[E[TP (t + D -(t)) I D ()]

= >Z E[T (t+6o;(t))] qgi(t)
seaJZg (t)

= S [ S.(t +3(t)) p,(t± t + (t))1 q 3 (t).

SEqia (t) ~rERZj(t+6ab (t)) ( 0

(5.38)

By using the total expectation theorem twice, E[L (t + Dalg (t) + TIb (t + Dab (t)))] is com-

puted by

E[Li b(t + D ab (t) + T. (t + D (t)))]

= E[E[Lh (t+Dab (t) + T (t + Dh' -(t))) Di(

= 5 E[L(t+ 5i (t)+Tf9 (t + 6a;(t)))] qg(t)
se9Zb (t)
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= S E[E[Lb,(t + 6it) + Tfb(t + o;(t))) I T (t + 6a5 (t))]] q (t)
sExR- (t)

sez z(t) -rEfR (t+6 (M)

E[Lb.(t + 6%;(t) + + 6a;(t)))] pr(t + 6ab (t)) qa (t).

(5.39)

Using (5.38) and (5.39), we rewrite (5.37) as

e(t) = m
hi M EO(i)

E
sERa (t)

seqZab (t)

{bEMij

rez Ja (t+jb (t))- (t)

[s h3M

56ab;(t) qab;(t) +
seRit (t)

3U(t + 6ab(t)) pr (t + a()-rib- qab(qhiiM

E[Lb (t + 6b (t) + -r (t + 6a; (t)))] p((t + a (t))1 qi (t)

By the definitions of L (t3+ 6 (t)+r* (t+ 6;(t))) and e (t3+ 3 (t)+T (t + jab (t))),

we have eig(t+ 6a(t)±+-r(t+ 6 (t))) = E [L (t+ ja(t)+ (t6 (t)))]. Hence (5.40)

is the same as

{bmn

sERh ,(t)

-rzb" (t + 6ab (t)) p(r(t + 6b (t)) qi3 (t) +
rEbRt (t+6b3 t (t))

Se j(t + 6(t) + Tf (t + 6ab(t))) pb(t + 6 (
rER (t+pb (t))

reJ .(t+6W (t))

For t > H - 1, (5.41) reduces to the following functional form:
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} .
(5.40)

eg(t) = mi
h jM C)(i)

S
seRi, (t)

seR-, (t)

-min

jEO(i) mint, SE
SERab (t)

6as()+ T1bj (t + jab"(t)) +

hi; (t))] qig;(t)} }. (5.41)I (t + jabs (t) + -,ibr
(t 

+ 
jabs 

(t))) 

br(t

eij hii hij ) PZ3

(0)) qhi( )



ehi(t) = ehi(H) =

min min { Z (o(H) + ±He j(H) p4(H) q (H) .
jEO(i) bEMij 6 J P13(g i

i M sE'(H) rER (H)

(5.42)

(5.41) and (5.42) together with ead(t) = 0, Vh E J(d)U{d}, Va E Mhd, Vt are optimality

conditions for the all-to-one minimum expected travel time next-arc hyperpaths problem

in stochastic time-dependent multimodal networks. Once all eg(t) are computed, eh;(t)

contains the minimum expected travel time for a trip commencing at node i at time t.

Note that in (5.41), e'i(t) depends only on e .(s), where s > t. Hence all e i(t) can be

set in a decreasing order of departure time. A detailed proof of the following proposition is

similar to that of Proposition 8, so we do not include it here.

Proposition 14. All labels egh(t) satisfying the optimality conditions (5.41) and (5.42) can

be determined in a decreasing order of departure time in a single pass.

Before the determination of ea;(t) for t e '-, we need to compute eg;(H) by (5.42) as a

base case. We can rewrite (5.42) as follows:

e7(H) = min min Z[ b' (H) > py(H) +
jcTJ(i) bEM i, s 6j'R (H) ' (H)

S r (H)py'(H)+eg(H) 5 py§(H)] qi%(H)'~
ErRa H) r'R ,(H) (

sE'Rj (H)
= ~ ~ -i mm {m [ (H) (F + eT (I)] +2 eH1 (H)}}

jEO(i) bEMij hij ij(H)

min min {E[Da (H)] + E[TPb (H)] + e -(H)1 4 . (5.43)
JG((i) bCMij%

This implies that egg(H) are determined by solving an all-to-one multimodal static

shortest paths problem.

Solution Algorithm

Let shi(t), mhg(t) respectively denote the successor of node i and the travel mode for link

(i, sti(t)) on the minimum expected travel time next-arc hyperpath from node i to node
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d when a traveler arrives at node i at time t from node h via mode a. In Algorithm 12,

we propose a label-setting algorithm called Algorithm METTH-Multimodal that solves the

all-to-one minimum expected travel time next-arc hyperpaths problem in stochastic time-

dependent multimodal networks.

Proposition 15. Let D = max(hi)EA, (ij)eA, aeMhi,beMte { (t)}, and let O(g(n,m,

M)) be the running time to solve an all-to-one multimodal static shortest paths problem in

Step 2. Then the worst-case running time complexity of Algorithm METTH-Multimodal is

O(max(g(n, m, M), nM2Dih)).

Proof. It takes O(mHD) time to initialize (e (t), sig(t), ma,(t)) in Step 1. In Step 3, we

need to perform

(Z S ' S S S (t + jab' (t))) cO(nM2D)

tEX iEN\{d} hEJ(i)U{i} aEN(hi jeO(i) beMij s6 (t)

operations. Hence the worst-case running time complexity of Algorithm METTH-Multimodal

is O(mHD + g(n, m, M) + nM 2 Din) = O(max(g(n, m, M), nM2 Din-)). 0

Opasanon and Miller-Hooks [21] propose a label-correcting algorithm for the same prob-

lem, whose worst-case running time complexity is O(max(g(n, m, M), nWH 2M 3DR)), where

R = max(ij)eA, beMij, tEX {IR (t) }. Since the worst-case running time complexity of Algo-

rithm METTH-Multimodal is bounded from above by O(max(g(n, m, M), nM 2DmHR)),

Algorithm METTH-Multimodal has a better worst-case running time complexity than

Opasanon and Miller-Hooks' algorithm.
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Algorithm 12 Algorithm METTH-Multimodal

1: Step 1: Initialization

2: (ea (, (t), a, (t))+- (oo,oo,oo), ViE N\{d}, Vh E J(i)U{i}, VaENMhi, VtE 

3: (eI(t), sd(), mhd(t)) <- (0, d, 0), V h E (d) U {d}, V a E Mhd, V t E YC

4: Step 2: Minimum Expected Time Multimodal Hyperpaths in Static Domain

5: (e (H), si;(H), ma, (H)) +- All-to-One MSP(N, A, M, {E[TI (H)]}, {E[D (H)] }, d)

6: Step 3: Minimum Expected Time Multimodal Hyperpaths in

Time-Dependent Domain

7: For t<--H- 1 downtoOdo

8: For i E N\ {d} do

9: For h E J(i) U {i} do

10: For a E Mhj do

11: eg;(t) <- minJEo(i) { minbeJ{m s Esz2i'.(t) [rE~zg (t+s6 (t)) (h~ (t11: ~ ~~~~ (e +a (t6t))+) 6b(t

2(t, ( art)) +

± 6~;() + r(t + 6h;())) p~( ~;t) q.t}

rem(t+3 i (t)) (6; (t) + -Pr (t + 6 a (t)) +

t+b6 (t)+ r3.(t (t)))) p + ja (t)) q (t)

13: End (For)

14: End (For)

15: End (For)

16: End (For)
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Chapter 6

Minimum Expected Travel Time

Paths

In this chapter, we explore another class of expected travel time-based routing prob-

lems in stochastic time-dependent networks, called the minimum expected travel time path

(METTP) problem. Recall that this problem adopts the non-adaptive routing policy, so

recourse en route is not allowed.

Minimum expected travel time paths are important to travelers who do not have ap-

propriate in-vehicle route guidance equipments and therefore rely on a priori minimum

expected travel time paths information for their routing planning. This problem may also

appear as a subproblem in other routing applications where a simple path rather than a

next-arc hyperpath is sought as an optimal solution.

In this chapter, we focus on the all-to-one minimum expected travel time paths problem,

one variant of the minimum expected travel time path problem, which is defined as follows:

Given a stochastic time-dependent network, the problem is to find a simple path with the

minimum expected travel time from each node to a given destination node for each departure

time.

We discuss optimality conditions for the all-to-one minimum expected travel time paths

problem in Section 6.1. In Section 6.2, we explain why this problem is difficult to solve

efficiently. We present ideas of possible solution algorithms for the problem together with

a known algorithm in the literature in Section 6.3.
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6.1 Optimality Conditions

To derive optimality conditions for the all-to-one minimum expected travel time paths

problem, we use the notation used in Chapter 4. Recall that Tc (t), the travel time from

node i to the destination node d when a traveler leaves node i at time t by taking link (i, j)

and then follows path c from node j to node d, can be expressed as follows:

Tc (t) = traversal time on link (i, j) +

travel time on path c from node j to node d

= T (t ) + L5(t + T 3(t)). (6.1)

The expected value of Tc (t) is

E[T c(t)] = E[Tij(t) + L (t + Tij(t))] = E[Tij(t)] + E[L (t + Tij(t))]. (6.2)

Let us denote by i (t) the minimum expected travel time from node i to node d at

departure time t under the non-adaptive routing policy. In other words, it is the expected

travel time on the minimum expected travel time path from node i to node d at departure

time t. Ei(t) is obtained by

E (t) = min min {E[Tc (t)]} = min min {E[Tij (t)] + E[Lc(t + Ti. (t))] (6.3)
jEO(i) c C J jEO(i) c J

Rewriting (6.3) using the realizations of Ti(t), we have

Ei~ =min min ( ri (t) p -(t) + Y E[ ( r (t))]pg
M m min{ ) rEp ) S+r)

=mi E r 2 (t) p (t) + min E E[Lc(t + rj (t)) ] p (t) . (6.4)

) Lre ,(t) C rEM(t) M 3

Unlike other problems we have seen so far, we cannot simplify (6.4) any further. Note

that attempting to rewrite (6.4) as the following functional form is not correct.

-E (t) = mi{ () pnj(t) + 5 ej(t + Tj(t)) pig (t)}. (6.5)
jE)r G 4(jM ) r E 9(j )
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The reason is as follows. Let z = arg minc { re4(t) E[Lq(t + <r(t)) p(t)}. Then it is

not guaranteed that E[Lz(t + Tr(t))] = -j(t + rr (t)) for all r E 'RZi (t). For some q E 'Rij (t),

some path (called w) other than z can be the minimum expected travel time path, i.e.

E [LJ (t + Tiq (t ))] > Ej (t + Tfj(t)) = E [LY '(t + rfj(t))J.

To put it in other words, since -e (t + <1(t)) = min, {E[Lc(t + rr (t))]} by the definition

of j(t + r (t)), (6.5) is equivalent to the following formula which is clearly different from

(6.4).

Ej(t) = mi > rT(t)pij(t)+ min E[L (t + re (t))] pi(
E0() r E f (i ) rEe j(t)

(6.6)

Nonetheless, (6.4) gives the following optimality conditions for the all-to-one minimum

expected travel time paths problem:

zi(t) =

i M
I re,(t)

0

-ri(t) p -(t) + min > E[Lj(t+Tr(t))] p (t) Vi 5 d, Vt E Xj,
rEj(t) M

i=d, Vt EH,

(6.7)

i (t) = E (H) =

{ TH) Pi(H )+m { A+ in E[L'(H)] p (H) Vi #d, VtJX{,
jE~)r E9zj(H) '3 C r EJzj(H) Z 3

0 i=d, Vtogx.

(6.8)

Note that we can simplify (6.8) as follows:

- (H)= min S (H)pri(H)+min E[L(H)] r pij (H)
je~)rE64j(H) ij C 3 rE6%j(H) 1 3

= min E[Tj (H)] + min {E[L(H)]} }
s GO(i) C J

= min E[Ti(H)]+-E(H)}, Vi # d. (6.9)

(6.9) is the set of optimality conditions for the all-to-one shortest paths problem in a de-

terministic static network where link travel time values are set to E[Tij(H)].

127



Let si(t) be the successor of node i on the minimum expected travel time path from

node i to node d at departure time t. Let Ki(t) denote the index of the path from node si(t)

to node d that is a subpath of the minimum expected travel time path from node i to node

d at departure time t. For i E N \ {d} and t E H, si(t) and Ki(t) are obtained by

si(t) = ar g mr[(t) p (t)+ min S E[L (t+r7 j(t))] pr(t) , (6.10)
jE~)r E J~ M) rE4(t)M

Ki(t) = arg min E[Le. (t + T4.(t(t))] rjS()(t) . (6.11)
rE'Rjs (t)(t)

When t > H - 1,

si(t) = si(H) = arg min {E[Tij (H)] + -3 (H)}. (6.12)
jEO(i)

Proposition 16. All labels Ei(t) can be determined in a decreasing order of departure time

in a single pass.

Proof. Since -Ej(t + re (t)) = minc {E[Lj(t + [rir(t))]}, i(t) is dependent upon -Ey(t + Trir(t))

and other E[Lq(t + rrj(t))] values in (6.7). Since all rfr (t) are positive, no Ej (s) where s < t

can affect the computation of Ei(t). This concludes that all Ei(t) can be determined in a

decreasing order of departure time, starting from the determination of i (H). To prove that

j(t) can be determined in a single pass, we have to show that once Ei(t) and E[L (t)] are

computed at departure time t, they do not change later. A proof of this is similar to one

given in Proposition 8, so we omit it. D

The optimality conditions (6.7), however, reflect a difficulty in solving the problem since

all simple paths from node j to node d should be considered in order to compute 'E(t). If

we do not consider all paths from node j to node d, Proposition 16 does not hold and any

single pass decreasing order of departure time algorithm results in suboptimal solutions.

Since the enumeration of all paths is a very time-consuming task even for moderate size

networks, single pass decreasing order of departure time algorithms are not applicable to

the all-to-one minimum expected travel time paths problem.

128



6.2 Inherent Difficulty of the Problem

It should be noted that we need to keep not only -e(t) but also all other E[L'(t)] at node i

at departure time t because some E[L'(t)] might be necessary for the determination of some

-Ej(s) for s < t. The number of simple paths from a node to the destination node increases

exponentially as the size of the network increases. Accordingly the number of E[L (t)] to be

kept at node i at departure time t also grows exponentially. This implies that the all-to-one

minimum expected travel time paths problem is inherently difficult to solve efficiently.

Let us expand on this inherent difficulty. We have seen that each node maintains H la-

bels, i.e. ej(t), V t E H, in the all-to-one minimum expected travel time next-arc hyperpaths

problem. Each label is the expected travel time on the optimal next-arc hyperpath for the

corresponding departure time. In the all-to-one minimum expected travel time paths prob-

lem, however, each node may have to keep much more than H labels. We illustrate this with

an example after we introduce two dominance concepts for path elimination (Miller-Hooks

[16]).

Consider all simple paths between node i and node d. Pairwise-dominance and group-

dominance are respectively defined as follows:

Definition 1. Path c is pairwise-dominated if there exists a path q such that E[Lq(t)] <

E[L (t)], Vt E H and E[Lq(t)] < E[Lc(t)] for some t. Otherwise, path c is pairwise-non-

dominated.

Definition 2. Path c is group-dominated if for each departure time t, there exists a path q

such that E[L q?(t)] < E[L (t)]. Otherwise, path c is group-nondominated.

For the pairwise-dominance, we compare the expected travel time on path c with the

expected travel time on another path for all departure times. For the group-dominance,

however, we check, for each departure time, if there always exists a path whose expected

travel time is smaller than that of path c. Hence as the name indicates, we compare path

c with a group of paths, not with a single path.

Consider the network example in Figure 6-1. There are three paths (a, b, and c) from

node 2 to the destination node 3. The expected travel times on path a, b, and c at departure

time 1 and 2 are shown below. The PMF of the travel time on link (1, 2) at the link entry

time 0 is also given.
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Link (1, 2): PT12 (0) = {(1, 0.5), (2,0.5)}

Path a: E[La(l)] = 5, E[La(2)] = 10

Path b: E[Lb(1)] = 10, E[L (2)] = 5

Path c: E[L (1)] = 7, E[L (2)] = 7

a

Destination

0b

Figure 6-1: An Example Network

Notice that path c is group-dominated by paths a and b, but not pairwise-dominated

by any other path. For trips that originate from node 2 at time 1 or 2, path c would be

never used since there always exists another path with smaller expected travel time for each

departure time. Now let us consider trips commencing at node 1 at time 0. The expected

travel times on three paths from node 1 to node 3 are computed as follows:

E[L'-+ 3 (0)] = (1 + E[La(1)]) x 0.5 + (2 + E[La(2)]) x 0.5 = 9.

E[L"2s-'3 (0)] = (1 + E[Lb(1)]) x 0.5 + (2 + E[Lb(2)]) x 0.5 = 9.

E[L'-423(0)] = (1 + E[Lc(1)]) x 0.5 + (2 + E[Lc(2)]) x 0.5 = 8.5.

Since path 1 -+ 2 + 3 gives the minimum expected travel time, trips commencing at

node 1 at time 0 will use it. This implies that removing path c by the group-dominance at

node 2 would result in a sub-optimal path selection from node 1. Hence we cannot eliminate

paths by the group-dominance in the minimum expected travel time path problem. Note

that if the group-dominance were applicable, each node would maintain at most H different

paths and therefore would keep at most H 2 labels, indicating that a polynomial running

time solution algorithm could be viable.

If a path is pairwise-dominated, we can safely eliminate it because it can never be

used. However even if we reduce the number of paths associated with each node by the

pairwise-dominance, the number of remaining paths (therefore labels) at each node can still
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be enormous. This implies that the worst-case running time complexity of any algorithm

for the all-to-one minimum expected travel time paths problem is non-polynomial.

6.3 Solution Algorithms

6.3.1 Algorithm METTH-based-METTP

In the all-to-one minimum expected travel time next-arc hyperpaths problem, it is possible

that an optimal next-arc hyperpath from node i to node d at departure time t is a simple

path. Algorithm METTH-based-METTP to be presented in this section is motivated by

this possibility. The algorithm uses k minimum expected travel time next-arc hyperpaths

to find the minimum expected travel time path from each node for each departure time.

We did not discuss the all-to-one k-minimum expected travel time next-arc hyperpaths

problem in this thesis. However it is an easy extension of the all-to-one minimum expected

travel time next-arc hyperpaths problem, just as we extended the all-to-one minimum pos-

sible travel time paths problem to the all-to-one k-minimum path travel time realizations

problem.

Let us explain Algorithm METTH-based-METTP. In Step 1, the algorithm creates a

set S and sets P(t). Set S contains node-departure time pairs for which the minimum

expected travel time paths have not been found yet. Set P(t) possesses the indexes of next-

arc hyperpaths that are simple paths from node i at departure time t. K is the number of

next-arc hyperpaths to be found initially, which is a user input value.

In Step 2, k minimum expected travel time next-arc hyperpaths are determined for each

(i, t) E S.

In Step 3, the algorithm examines the k minimum expected travel time next-arc hy-

perpaths for each (i, t) E S to see whether any of those hyperpaths are actually simple

paths. The indexes of hyperpaths that are simple paths are collected into set P(t). If

Pi(t) is empty, it means that none of the current k minimum expected travel time next-arc

hyperpaths are simple paths. Otherwise, we select a hyperpath, which is a simple path,

with the minimum expected travel time from P(t) and then remove (i, t) from S because

we have found the minimum expected travel time path for that node-departure time pair.

If S becomes empty, the algorithm is terminated. Otherwise, we increase the value of k by

K and go to Step 2.
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Algorithm 13 Algorithm METTH-based-METTP

1: Step 1: Initialization

2: Create a set S +- {(i,t) I Vi E N\ {d}, Vt E J}

3: Create sets P(t) <- 0, Vi E N \ {d}, Vt E X

4: k <- K

5: Step 2: Determination of k Minimum Expected Travel Time Next-Arc Hyperpaths

6: Determine k minimum expected travel time next-arc hyperpaths from each (i, t) E S

to the destination node d

7: Step 3: Checking for Simple Paths

8: For (i, t) E S do

9: For c < I to k do

10: If the cth minimum expected travel time next-arc hyperpath is a simple path then

11: insert c into P(t)

12: End (If)

13: End (For)

14: If P(t) = 0 then

15: -E(t) = mincEP,(t){e(t)}

16: Remove (i, t) from S

17: End (If)

18: End (For)

19: If S = 0 then stop

20: Else

21: k<-k+K

22: Go to Step 2

23: End (If)
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e,(t) at Line 15 denotes the expected travel time on the cth minimum expected travel

time next-arc hyperpath from node i at departure time t.

6.3.2 Algorithm METTP-B&B

We propose another solution algorithm called Algorithm METTP-B&B, which employs a

branch-and-bound method based on minimum possible travel times on paths. The algorithm

is described in Algorithm 14.

In Step 1, we create a set S that contains node-departure time pairs for which the

minimum expected travel time paths have not been identified yet. We then determine the

minimum possible travel time paths from all nodes to the destination node d for all departure

times. Algorithm MPTTP presented in Section 4.5.1 can be used for this purpose. Once

the minimum possible travel time path from node i at departure time t is determined, we

compute the expected travel time on that path. This expected travel time is obtained by

using the following formulae recursively from node d until we get e(t):

e*(t) = 0, Vt E YC, (6.13)

,(t) = (- (t) %+ e* -t+-rrk(t))) Pjr M , V t E Hi614

where node j is the precessor of node k on the path. This expected travel time is an upper

bound, denoted by eV(t), on the minimum expected travel time from node i to node d for

departure time t .

In Step 2, we determine the next minimum possible travel time path for each (i, t) E S.

The minimum travel time on this path is stored in A4(t). Note that Ak(t) is a lower bound

on the expected travel time of the new path just found and on the expected travel times of

all other paths not yet considered from node i to node d for departure time t.

In Step 3, we compare A4(t) with eV(t), i.e. the minimum travel time on the new path

found in Step 2 with the current upper bound on the minimum expected travel time from

node i to node d for departure time t.

If A4 (t) is not smaller than eu (t), then the expected travel time of the new path and the

expected travel times of all other paths not yet considered cannot be smaller than eu(t).

Therefore eu(t) is the minimum expected travel time from node i to node d for departure

time t and the associated path is the minimum expected travel time path. Since we have
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Algorithm 14 Algorithm METTP-B&B

1: Step 1: Initialization

2: Create a set S +- {(i, t) I Vi E N\ {d}, Vt E '{}

3: Determine the minimum possible travel time paths for all (i, t) E S

4: Compute the expected travel times e(t) on the minimum possible travel time paths

5: eV(t) = e(t), V(i,t) E S

6: k +- 1

7: Step 2: Branching

8: k +- k+ 1

9: A4(t) +- the minimum travel time on the kth minimum possible travel time path,

V (i, t) E S

10: Step 3: Bound Checking and Pruning

11: For (i, t) E S do

12: If eU(t) K; A(t) then

13: The path associated with eV(t) is the minimum expected travel time path

from node i to node d for departure time t

14: -E(t) +- eV(t)

15: Remove (i, t) from S

16: Else

17: Compute the expected travel time ei*(t) on the kth minimum possible travel

time path

18: If e'(t) > e*(t) then

19: e(t) < (t)

20: End (If)

21: End (If)

22: End (For)

23: If S = 0 then stop

24: Else go to Step 2

25: End (If)
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found the minimum expected travel time path for (i, t), we remove (i, t) from set S.

If A (t) is smaller than eu(t), we compute the expected travel time on the new path. If

this expected travel is smaller than eV(t), it replaces eV(t). We repeat Step 2 and Step 3

until set S is empty.

The main difficulty of this algorithm is how to determine the kth minimum possible

travel time path for each (i, t) E S in Step 2. We leave this as an open question.

Hall [12] proposes an algorithm, which combines a branch-and-bound technique and a

k shortest paths problem, for finding the minimum expected travel time path. Although

Algorithm METTP-B&B is inspired by Hall's algorithm, there are a couple of differences

between the two algorithms.

Firstly, Algorithm METTP-B&B determines the minimum expected travel time paths

from all nodes to a single destination node for all departure times, whereas Hall's algorithm

determines the minimum expected travel time path from a single origin node to a single

destination node for a given departure time. Secondly, compared to Hall's algorithm, Al-

gorithm METTP-B&B uses a better lower bound (A4(t)) on the expected travel time of

a path not yet examined. In Hall's algorithm, the minimum travel time on a path, which

serves as a lower bound on the expected travel time of the path, is defined as

E min min {TW(t)} 1 , (6.15)
(W tEX rEJZ,(t)

where link (v, w) belongs to the path. This indicates that Hall's algorithm does not consider

time-dependency of the link travel times when it computes the minimum travel time on a

path. The value obtained by (6.15) is clearly smaller than or equal to the minimum travel

time computed in Algorithm METTP-B&B. Since a higher value of the minimum travel

time, i.e. a higer lower bound on the expected travel time on a path not yet considered,

is used in Algorithm METTP-B&B, Algorithm METTP-B&B is able to prune "branches"

earlier than Hall's algorithm. This would enable the practical running time of Algorithm

METTP-B&B to be faster than that of Hall's algorithm.

6.3.3 Algorithm EV

Miller-Hooks [16] and Miller-Hooks and Mahmassani [18] propose a label-correcting algo-

rithm called Algorithm EV for the all-to-one minimum expected travel time paths problem.
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The worst-case running time complexity of Algorithm EV is known to be non-polynomial

(Miller-Hooks and Mahmassani [18]). We refer the reader to Miller-Hooks and Mahmassani

[18] for the details of the algorithm.

6.3.4 Algorithm METTP

Algorithm METTP described in Algorithm 15 is a decreasing order of departure time al-

gorithm for the all-to-one minimum expected travel time paths problem. As mentioned

before, decreasing order of departure time algorithms do not guarantee to find the mini-

mum expected travel time paths correctly unless all paths are examined at each departure

time. In Algorithm METTP, for departure times close to H, some paths may not be taken

into consideration. Hence this algorithm is a heuristic.

W'(t) denotes the expected travel time on path c from node i to node d at departure

time t. a' denotes the successor of node i on path c from node i to node d. /3f indicates

the index of the path from node ac to node d, which is a subpath of path c from node i to

node d. M is a number that is bigger than the number of paths between any node and the

destination node. Set P contains the indexes of paths from node i to node d discovered

during the execution of the algorithm.

In Step 2, we solve an all-to-one static shortest paths problem to compute -E(H). By

solving this problem, we have found a path from each node to node d. We keep the infor-

mation of this path (Lines 8-10).

In Step 3, we compute Ei(t) in a decreasing order of departure time. In Line 16, we

check whether path i -+ j --c. d is already discovered. If so, we compute the expected travel

time on the path at the current departure time and store it in w?(t), where q is the index

indicating the path. If not, path i -+ j -6c d is a newly constructed path. We check if the

path contains a cycle. Note that this is the same as checking if path j --c, d visits node i.

If the path contains a cycle, we ignore the path. If it does not contain a cycle, we create

an index for the path and store the index in P (Lines 20-21). We compute the expected

travel time on the path at the current departure time (Line 22) and keep the information

of the path (Line 23).

Once we consider all j E 0(i), we determine zi(t), si(t), and ri'(t) by Lines 27-28. Notice

that at this point, there may exist some paths that are not examined from node i to node

d. To elaborate on this, consider the network in Figure 6-2.
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Algorithm 15 Algorithm METTP

1: Step 1: Initialization

2: (e (t), si(t), -i (t)) +- (oo, oo, oo), V i : d, V t E H

3: (ed(t), sd(t), J'i (t)) - (0, d, 1), V t E H

4 : W ,(t) +- oo, V i 0 d, V t E H, V c = 1, 2, . .. , M

5 : (a , #f -(oo, oo), V i 0 d, V c = 1, 2,.. . ,M

6: Step 2: Minimum Expected Travel Time Paths in Static Domain

7: (Ei(H), si(H)) +- All-to-One SP(N,A, {E[T 2 (H)]}, d)

8: U; (H) +- -Ej(H), V i E N

9: (a!,3 ) < (sj(H),1), Vi EN

10: P+-f{1}, ViE N

11: Step 3: Minimum Expected Travel Time Paths in Time-Dependent Domain

12: For t +- H - 1 down to 0 do

13: For i E N\ {d} do

14: For j E 0(i) do

15: For c E Pj do

16: If P has the index indicating path i -+ j -'c d then

17: let q E P be the index

18: w (t) - Z (t) (T[(t) + w)(t + Tij(t))) p (t)

19: Else If path i -+ j --c d does not contain a cycle then

20: q +- |Pil + 1

21: insert q into Pi

22: wq(t) <- Zr ( ((t) + w(t + r 2 (t))) pr (t)

23: q +- j, fq +-c

24: End (If)

25: End (For)

26: End (For)

27: z = arg minc-p, { w(t)}

28: -E(t) = lf (t), si(t) = af, Ki(t) =3z

29: End (For)

30: End (For)
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Destination

Q

Figure 6-2: An Example Network

Suppose that paths 1 -+ 2 -+ 4, 2 -+ 4, and 3 -+ 4 are identified as shortest paths in Step

2. Let node 1 be the first node we select at Line 13 when departure time t = H - 1. Then

the algorithm finds a new path 1 -+ 3 -+ 4, but does not construct paths 1 -+ 2 -+ 3 -+ 4

and 1 -+ 3 -+ 2 -+ 4 at departure time t = H - 1. Therefore E1(H - 1) determined at Line

27 in this case could not be the minimum expected travel time from node 1 to node 4 for

departure time H - 1.

In fact, unexamined paths at a certain departure time depend on the order of selection of

nodes (or the order of selection of links) at Lines 13-14 of the algorithm. If node 2 and node

3 are selected before node 1, all paths from node 1 to node 4 will be considered at departure

time t = H - 1. Note that as departure time t decreases, the number of unexamined paths

at each departure time gets smaller.

We may repeat the For loop of Lines 13-29 for each departure time to ensure that all

paths are examined. However, this results in enumeration of all paths in the network.
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Chapter 7

Computational Tests

In this chapter, we report on the results of computational tests on several algorithm pre-

sented in the preceding chapters. All computational tests were conducted on randomly

generated stochastic time-dependent networks. We first describe the methodology for gen-

erating networks and then show the computational test results.

7.1 Generation of Stochastic Time-Dependent Networks

The random network generator we developed to create stochastic time-dependent networks

requires the following eight parameters: number of nodes (n), number of links (m), maximum

indegree of a node (MAXIN), maximum outdegree of a node (MAX.OUT), number of discrete

departure times (H), number of link travel time realizations (R), minimum possible link

travel time value, and maximum possible link travel time value.

The first four parameters determine the topology of a network, so we may produce

dense or sparse networks by choosing appropriate values of these parameters. The rest of

the parameters are used for constructing time-dependent link travel time probability mass

functions.

For various all-to-one routing problems addressed in this thesis, we need networks with

a single destination node where connectivity from every node to the destination node is

ensured. To do so, the random network generator first constructs a tree where a directed

path from every node to the destination node exists. This tree consists of n - 1 links.

Once the tree is constructed, the random network generator randomly adds m - (n - 1)

links to the tree to build a network of m links. During this procedure, the indegree and
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the outdegree of a node are kept no greater than MAXIN and MAXOUT respectively. The

random network generator also makes sure that no parallel links are introduced between

any two nodes throughout the procedure. The following are the detailed steps by which the

random network generator creates a network with a given destination node d.

1. Create two sets, Si and S2 .

2. S +- N \ {d}, S2 <-- {d}.

3. Randomly select a node (called i) from Si and a node (called j) from S 2 -

4. If the outdegree of node i < MAX-OUT and the indegree of node j < MAXIN, then

create link (i, j). Remove node i from Si and insert it into S2.

5. Repeat Step 3 and Step 4 until S, becomes empty.

6. Randomly select two nodes (called i and j) from S2 .

7. If link (i, j) does not exist and the outdegree of node i < MAXOUT and the indegree

of node j < MAXIN, then create link (i, j).

8. Repeat Step 6 and Step 7 until we obtain m link in total.

In order to create networks that are topologically similar to real transportation networks

in urban areas, the number of links is assumed to be four times the number of nodes. We

set the maximum indegree and the maximum outdegree of a node both to 5. By doing so,

we allow nodes to have no more than five incoming or outgoing links, which is a topological

property generally observed in real transportation networks.

After the random network generator creates a network, it establishes a probability mass

function of the travel time on each link for each departure time. The random network gen-

erator first randomly selects R distinct integer travel time values, i.e. Tg(t), r = 1, ... ,

from the range of a link travel time value which is given by the maximum possible link

travel time value - the minimum possible link travel time value + 1. Then R fractional

values are randomly chosen from the range of (0, 1). In order to convert the R fractional

values into valid probabilities associated with the R link travel time values already gener-

ated, we normalize the R fractional values so that their sum equals to 1. The normalized R

fractional values serve as p (t), r = 1,... , R. Note that we let all link travel time random
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variables have the same number of realizations in the computational tests. Also note that

the range of a link travel time value should be greater than or equal to R. Otherwise, we

cannot generate R distinct link travel time values.

7.2 Computational Test Results

Algorithms for the following problems were implemented and computationally tested:

" All-to-One Minimum Possible Travel Time Paths Problem

" All-to-One k-Minimum Path Travel Time Realizations Problem

" All-to-One k-Dynamic Shortest Paths Problem

" All-to-One Minimum Expected Travel Time Next-Arc Hyperpaths Problem

The algorithms were written in C++. The source codes of the algorithms are available

for the interested readers. Running times were obtained using a Sun Blade 100 workstation

with a 500MHz CPU and 512 MB RAM. All running times are in seconds and do not include

input/output times.

7.2.1 All-to-One Minimum Possible Travel Time Paths Problem

We implemented Algorithm MPTTP2 and Algorithm LEAST to compare their practical

running times. We considered three levels of the number of nodes (1000, 2000, 3000), three

levels of the number of discrete departure times (30, 60, 90), and two levels of the number

of link travel time realizations (5, 10). We set the minimum possible link travel time value

and the maximum possible link travel time value to 1 and 15, respectively.

For each combination of n, H, and R, we randomly generated five different stochastic

time-dependent networks. We obtained the running times of each algorithm for those five

networks and computed the average of the running times. Tables 7.1-7.3 show the average

running times for different combinations of n, H, and R.

The computational test results show that the running time of Algorithm MPTTP2 is

1.6 - 2.7 times faster than that of Algorithm LEAST. The ratio of the running times (Al-

gorithm LEAST/Algorithm MPTTP2) becomes larger as the topological size of a network
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increases, i.e. as n increases. This implies that Algorithm MPTTP2 will be much faster

than Algorithm LEAST for larger networks.

It is interesting to observe that for fixed values of n and H, the running time of Algorithm

LEAST may not monotonically increase as the number of link travel time realizations

increases. Table 7.3 shows this case. The running time of Algorithm MPTTP2 is, however,

always an increasing function of any of the parameters n, H, and R.

Table 7.1: Running Times of Algorithm LEAST and Algorithm MPTTP2 as a Function of

H and R When n = 1000 and m = 4000

H I R Algorithm LEAST [Algorithm MPTTP2 LEAST/MPTTP2

5 0.94 0.44 2.15
30 10 1.07 0.65 1.66

5 1.86 0.83 2.25
60 10 2.16 1.27 1.70

5 2.79 1.25 2.23
90 10 3.21 1.92 1.67

Table 7.2: Running Times of Algorithm LEAST and Algorithm MPTTP2 as a Function of

H and R When n = 2000 and m = 8000

H [ R Algorithm LEAST I Algorithm MPTTP2 [LEAST/MPTTP2

5 2.42 0.99 2.44
30 10 2.43 1.40 1.74

5 4.49 1.83 2.45
60 10 4.75 2.68 1.77

5 6.49 2.71 2.39
90 10 7.04 4.01 1.75

7.2.2 All-to-One k-Minimum Path Travel Time Realizations Problem

For the all-to-one k-minimum path travel time realizations problem, Algorithm k-MPTTR

and the algorithm proposed in Miller-Hooks and Mahmassani [17] (we call it Algorithm

k-LEAST hereafter) were implemented.

We obtained running times of the two algorithms for three levels of the number of nodes

(200, 600, 1000), three levels of the number of discrete departure times (30, 60, 90), two

levels of the number of link travel time realizations (5, 10), and two levels of the k value
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Table 7.3: Running Times of Algorithm LEAST and Algorithm MPTTP2 as a Function of
H and R When n = 3000 and m = 12000

H I R 11 Algorithm LEAST Algorithm MPTTP2 I LEAST/MPTTP2
5 4.63 1.69 2.75
10 4.23 2.24 1.89
5 8.01 2.94 2.72
10 7.76 4.19 1.85
5 11.13 4.28 2.60

10 11.37 6.20 1.83

(5, 10). The minimum possible link travel time value and the maximum possible link travel

time value are respectively set to 1 and 15 as before.

Since we should maintain k label couples, (Ag(t),-47(t)), n = 1,... , k, for each node-

departure time pair, much more memory is needed to keep labels in this problem than in

the all-to-one minimum possible travel time paths problem. This compels us to consider

topologically smaller networks, i.e. networks with smaller number of nodes, than those used

in the all-to-one minimum possible travel time paths problem in order to avoid running out

of memory (RAM).

In the workstation we used, disk swapping resulting from running out of memory hap-

pened very often for networks with more than 1000 nodes, and it increased the running

times of the algorithms enormously. This is the reason that we considered networks with

no more than 1000 nodes.

For each combination of n, H, R, and k, we randomly generated five different stochastic

time-dependent networks. The average running time of each algorithm obtained from these

five different networks is shown in Tables 7.4-7.9.

It turns out that the running time of Algorithm k-MPTTR is 1.3 - 2.2 times faster

than that of Algorithm k-LEAST. For a given H, R, and k, it is observed that the ratio

of the running times is almost constant regardless of the number of nodes. We also observe

that the running time ratio decreases as the k value increases for a fixed n, H, and R.

7.2.3 All-to-One k-Dynamic Shortest Paths Problem

We implemented Algorithm k-DSP discussed in Chapter 4. Since no solution algorithm

for the all-to-one k-dynamic shortest paths problem has been published, we modified Al-
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Table 7.4: Running Times of Algorithm k-LEAST and Algorithm k-MPTTR as a Function
of H and R When n = 200, m = 800, and k = 5

HI R Algorithm k-LEAST [Algorithm k-MPTTR k-LEAST/k-MPTTR

5 1.58 0.82 1.92
30 10 2.25 1.60 1.40

5 3.32 1.62 2.05
60 10 4.66 3.18 1.46

5 5.18 2.43 2.13
90 10 7.18 4.78 1.50

Table 7.5: Running Times of Algorithm k-LEAST and Algorithm k-MPTTR as a Function

of H and R When n = 200, m = 800, and k = 10

H [ R Algorithm k-LEAST I Algorithm k-MPTTR [ k-LEAST/k-MPTTR

5 5.02 2.79 1.80
30 10 7.77 5.66 1.37

5 10.40 5.48 1.90
60 10 15.96 11.25 1.42

5 15.77 8.15 1.94
90 10 24.24 16.67 1.45

Table 7.6: Running Times of Algorithm k-LEAST and Algorithm k-MPTTR
of H and R When n = 600, m = 2400, and k = 5

as a Function
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H R 11 Algorithm k-LEAST Algorithm k-MPTTR j k-LEAST/k-MPTTR

5 4.73 2.55 1.85
30 10 7.04 4.91 1.43

5 10.34 5.03 2.06
60 10 14.13 9.73 1.45

5 18.04 8.21 2.20
90 10 22.58 14.92 1.51



Table 7.7: Running Times of Algorithm k-LEAST and Algorithm k-MPTTR as a Function
of H and R When n = 600, m = 2400, and k = 10

H] R 1[ Algorithm k-LEAST -[Algorithm k-MPTTR] k-LEAST/k-MPTTR]

30 5 14.87 8.49 1.75
10 23.30 17.19 1.36

60 5 32.01 16.74 1.91
10 49.74 36.72 1.35

90 5 49.22 25.00 1.97
10 73.75 51.36 1.44

Table 7.8: Running Times of Algorithm k-LEAST and Algorithm k-MPTTR as a Function
of H and R When n = 1000, m = 4000, and k = 5

H R Algorithm k-LEAST Algorithm k-MPTTR k-LEAST/k-MPTTR

30 5 8.03 4.27 1.88
10 11.59 8.25 1.40

60 5 17.71 8.44 2.10
10 23.84 16.86 1.41

90 5 29.20 13.68 2.13
10 36.75 24.36 1.51

Table 7.9: Running Times of Algorithm k-LEAST and Algorithm k-MPTTR as a Function
of H and R When n = 1000, m = 4000, and k = 10

H R 1 Algorithm k-LEAST Algorithm k-MPTTR I k-LEAST/k-MPTTR

30 5 25.11 14.29 1.76
10 41.04 31.00 1.32

60 5 54.02 28.00 1.93
10 81.87 59.50 1.38
5 85.92 42.69 2.0190 10 122.79 86.86 1.41
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gorithm k-LEAST so that it solves the all-to-one k-dynamic shortest paths problem. We

refer to the modified algorithm as Algorithm k-D-LEAST. We compare the practical run-

ning time of Algorithm k-D-LEAST with that of Algorithm k-DSP.

The procedure to generate deterministic time-dependent networks with a single desti-

nation node is identical to the procedure described in Section 7.1 except that only one link

travel time value is generated for each link and each departure time.

Three levels of the number of nodes (1000, 2000, 3000), three levels of the number of

discrete departure times (30, 60, 90), and two levels of the k value (5, 10) were considered.

For each combination of n, H, and k, we randomly generated five different determinis-

tic time-dependent networks. The average running times are shown in Tables 7.10-7.15,

indicating that Algorithm k-DSP is 2.7 - 3.9 times faster than Algorithm k-D-LEAST.

Table 7.10: Running Times of Algorithm k-D-LEAST and Algorithm k-DSP as a Function

of H When n = 1000, m = 4000, and k = 5

H Algorithm k-D-LEAST

30 2.14
60 5.07
90 8.29

Algorithm k-DSP

0.76
1.50
2.22

k-D-LEAST/k-DSP
2.83
3.39
3.73

Table 7.11: Running Times of Algorithm k-D-LEAST and

of H When n = 1000, m = 4000, and k = 10

H Algorithm k-D-LEAST Algorithm k-DSP

30 5.73 1.93
60 13.09 3.68
90 20.71 5.48

Algorithm k-DSP as a Function

k-D-LEAST/k-DSP
2.96
3.56
3.78

Table 7.12: Running Times of Algorithm k-D-LEAST and Algorithm k-DSP as a Function

of H When n = 2000, m = 8000, and k = 5

H Algorithm k-D-LEAST

30 4.49

60 10.53
90 16.94

Algorithm k-DSP

1.61
3.10
4.65

k-D-LEAST/k-DSP
2.79
3.39
3.65
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Table 7.13: Running Times of Algorithm k-D-LEAST and Algorithm k-DSP as a Function
of H When n = 2000, m = 8000, and k = 10

H Algorithm k-D-LEAST Algorithm k-DSPI k-D-LEAST/k-DSP
30 11.39 3.94 2.89
60 26.95 7.54 3.57
90 43.20 11.29 3.83

Table 7.14: Running Times of Algorithm k-D-LEAST and Algorithm k-DSP as a Function
of H When n = 3000, m = 12000, and k = 5

H Algorithm k-D-LEAST Algorithm k-DSP Ik-D-LEAST/k-DSP
30 6.73 2.46 2.73
60 16.45 4.77 3.45
90 35.93 9.91 3.63

Table 7.15: Running Times of Algorithm k-D-LEAST and Algorithm k-DSP as a Function
of H When n = 3000, m = 12000, and k = 10

H Algorithm k-D-LEAST Algorithm k-DSP I k-D-LEAST/k-DSP
30 17.85 6.01 2.97
60 41.51 11.42 3.64
90 65.22 16.91 3.86
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7.2.4 All-to-One Minimum Expected Travel Time Next-Arc Hyperpaths

Problem

For this problem, Algorithm METTH and Algorithm ELB were computationally tested.

The same levels of the number of nodes, of the number of discrete departure times, and

of the number of link travel time realizations as in the all-to-one minimum possible travel

time paths problem were considered. For each combination of n, H, and R, the average

running times of the two algorithms were computed from five different randomly generated

networks. The results are summarized in Tables 7.16-7.18.

The running time ratios for Algorithm ELB and Algorithm METTH range between 1.0

and 1.5, which is significantly smaller compared to the running time ratios for Algorithm

LEAST and Algorithm MPTTP2 for the all-to-one minimum possible travel time paths

problem. Considering that Algorithm METTH and Algorithm ELB have the same worst-

case theoretical running time complexities as Algorithm MPTTP2 and Algorithm LEAST

respectively, this appears to be a surprising result.

However there is a reason for this result. The running times of Algorithm LEAST

and Algorithm ELB both mainly depend on the total number of times that nodes are

inserted into the "scan eligible list" S (We used a queue data structure for S. Other data

structures are also viable for implementing S). In Algorithm LEAST, a node is inserted

into S whenever a better path travel time realization, which has a smaller travel time value

or the same travel time value with a higher probability than the current path travel time

realization from the node for any departure time, is found. In Algorithm ELB, a node is

inserted into S whenever a better next-arc hyperpath, which has a lower expected travel

time than the current next-arc hyperpath from the node for any departure time, is obtained.

This means that Algorithm LEAST examines all path travel time realizations in a

stochastic time-dependent network under consideration, while Algorithm ELB examines all

next-arc hyperpaths in the network. In general, the number of next-arc hyperpaths in a

stochastic time-dependent network is considerably smaller than the number of path travel

time realizations in the same network. Hence the total number of times that nodes are

inserted into S in Algorithm ELB would be much smaller than that of Algorithm LEAST.

This explains that the practical running time of Algorithm ELB is much better that that

of Algorithm LEAST although their worst-case running time complexities are the same.
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Algorithm METTH also results in slightly better running times compared to Algorithm

MPTTP2 despite of the fact that they have the same optimal (lowest possible) running time

complexity. We think that this is because the hidden constant associated with the running

time complexity of Algorithm METTH is smaller than that of Algorithm MPTTP2.

Table 7.16: Running Times of Algorithm ELB and Algorithm
and R When n = 1000 and m = 4000

METTH as a Function of H

Table 7.17: Running Times of Algorithm ELB and Algorithm METTH as a Function of H
and R When n = 2000 and m = 8000

H R 11 Algorithm ELB I Algorithm METTH ELB/METTH
5 1.00 0.71 1.4130 10 1.17 1.05 1.11
5 1.82 1.34 1.35
10 2.11 2.02 1.04
5 2.64 2.04 1.29
10 3.01 3.00 1.00

7.3 Concluding Remarks

We have seen that several algorithms developed in this thesis are faster than the existing

algorithms in the literature in practice through the computational tests. These computa-

tional test results are consistent with the theoretical running time analysis results presented

in the previous chapters. Therefore we can conclude that our algorithms are more efficient

than the existing ones both in theory and in practice.

In addition to having better running times, our algorithms are also more robust than the

existing ones in the sense that the running times of our algorithms are affected by neither

the network topology nor the link travel time data.
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H R 1 Algorithm ELB Algorithm METTH [ELB/METTH

30 5 0.41 0.31 1.33
10 0.52 0.48 1.09
5 0.79 0.64 1.25
10 0.97 0.96 1.01
5 1.17 0.95 1.24
10 1.48 1.45 1.02



Table 7.18: Running Times of Algorithm ELB and Algorithm METTH as a Function of H

and R When n = 3000 and m = 12000

H R 11 Algorithm ELB [Algorithm METTH [ELB/METTH

5 1.83 1.19 1.54
30 10 2.02 1.68 1.20

5 3.17 2.18 1.46
60 10 3.44 3.18 1.08

5 4.33 3.20 1.35
90 10 4.81 4.68 1.03

For given network parameters, each of our algorithms has a constant running time

complexity that does not vary with the shape of a network or with the link travel time

data. On the contrary, the running time of each of the existing algorithms (modified label-

correcting algorithms) may change significantly depending on the topological shape of a

network and/or on the link travel time data even with the same network parameters. This

is because certain network topology and/or certain link travel time data may make label-

correcting algorithms update labels more frequently.

To support this numerically, we compute the variance of each algorithm's running times

obtained from the five different randomly generated networks for given network parameters.

Tables 7.19-7.22 show those variances for selected network parameters. Our algorithms

result in considerably small running time variances compared to the existing algorithms.

Finally it should be noted that the networks used in the computational tests are rela-

tively sparse. If the networks become denser, our algorithms would outperform the existing

algorithms more significantly in practice.

Table 7.19: Variances of Running Times of Algorithm LEAST and Algorithm MPTTP2

When n = 3000, m = 12000, H = 60, and R = 5

Network No. 1[ Algorithm LEAST Algorithm MPTTP2

1 8.75 2.93
2 7.90 2.97
3 7.78 2.98
4 7.74 2.89
5 7.88 2.95

Mean 8.01 2.94

Variance 0.140 0.0010
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Table 7.20: Variances of Running Times of Algorithm k-LEAST and
k-MPTTR When n = 1000, m = 4000, H = 60, R = 5, and k = 10

Network No. 1[ Algorithm k-LEAST Algorithm k-MPTTR
1 54.25 27.90
2 53.88 28.05
3 52.97 28.01
4 54.65 28.04
5 54.35 28.02

Mean 54.02 28.00
Variance 0.336 0.0029

Table 7.21: Variances of Running Times of Algorithm k-D-LEAST and
When n = 3000, m = 12000, H = 60, and k = 10

Network No. Algorithm k-D-LEAST Algorithm k-DSP
1 42.70 11.47
2 41.01 11.40
3 41.52 11.43
4 41.48 11.42
5 40.83 11.37

Mean 41.51 11.42
Variance 0.426 0.0011

Table 7.22: Variances of Running Times of Algorithm
n = 3000, m = 12000, H = 60, and R = 5

Algorithm k-DSP

ELB and Algorithm METTH When

Network No. Algorithm ELB Algorithm METTH

1 3.14 2.18
2 3.12 2.18
3 3.04 2.17
4 3.22 2.19
5 3.35 2.18

Mean 3.17 2.18
Variance 0.011 4e-05
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Chapter 8

Conclusions and Future Research

Directions

8.1 Conclusions

In this thesis, we studied routing problems in stochastic time-dependent networks where

link travel times are modeled as time-dependent discrete random variables. Although the

consideration of both stochasticity and time-dependency of link travel times makes routing

problems hard to solve, it gives better routing solutions in real transportation or commu-

nication networks.

Among various routing problems that arise in stochastic time-dependent networks, we

focused on three classes of routing problems: the minimum possible travel time path prob-

lem, the minimum expected travel time next-arc hyperpath problem, and the minimum

expected travel time path problem.

8.1.1 Minimum Possible Travel Time Path Problem

The objective of this class of routing problems is to find a path that has the minimum

possible travel time. We studied the all-to-one minimum possible travel time paths problem

in detail. This problem was extended to the all-to-one minimum possible travel cost paths

problem, the all-to-one k-minimum path travel time realizations problem, and the all-to-

one k-dynamic shortest paths problem.

We developed an efficient solution algorithm for each problem. Especially, the algorithm
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for the all-to-one minimum possible travel time paths problem (Algorithm MPTTP) and

the algorithm for the all-to-one minimum possible travel cost paths problem (Algorithm

MPTCP) were proved to be optimal in the running time sense. We also observed that the

algorithm for the all-to-one k-minimum path travel time realizations problem (Algorithm

k-MPTTR) had a better worst-case running time complexity than the existing algorithm.

It seems that Algorithm k-DSP is the first algorithm proposed for the all-to-one k-dynamic

shortest paths problem, to the best of the author's knowledge.

8.1.2 Minimum Expected Travel Time Next-Arc Hyperpath Problem

In this class of routing problems, a next-arc hyperpath (a routing strategy) that results

in the minimum expected travel time is sought when travelers are allowed to change their

paths en route. This class of routing problems is important for route guidance systems

within the context of ATIS.

We studied the all-to-one minimum expected travel time next-arc hyperpaths problem

and developed an optimal running time solution algorithm (Algorithm METTH). By ex-

tending Algorithm METTH, we also developed an optimal running time solution algorithm

for the all-to-one minimum expected travel cost next-arc hyperpaths problem (Algorithm

METCH).

The all-to-one minimum expected travel time next-arc hyperpaths problems in signalized

networks and in multimodal networks were investigated. We showed that the algorithms

(Algorithm METTH-Signal and Algorithm METTH-Multimodal) developed for these two

problems in this thesis had better worst-case running time complexities than the known

algorithms in the literature.

8.1.3 Minimum Expected Travel Time Path Problem

The aim of this class of routing problems is to find a simple path that has the minimum

expected travel time. We discussed the all-to-one minimum expected travel time paths

problem. It turned out that this problem could not be solved efficiently. We provided a

reason for that.

Single pass decreasing order of departure time-type solution algorithms, which worked

for the routing problems mentioned in Sections 8.1.1 and 8.1.2, were not applicable to this
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problem. Hence we presented ideas of alternative solution algorithms (Algorithm METTH-

based-METTP, Algorithm METTP-B&B).

8.1.4 Results of Computational Tests

Computational tests were carried out to compare the practical running times of several

algorithms developed in this thesis with those of the existing algorithms in the literature.

The results showed that our algorithms outperformed the existing algorithms in practice

as well. We, therefore, believe that our algorithms are useful especially for many real time

routing applications in transportation or telecommunication area.

8.2 Future Research Directions

The following are the tasks left unanswered or unfinished in this thesis. They could be done

in the short or the medium term.

1. For routing problems in the minimum possible travel time path problem class, we

assumed that link travel time random variables were independent of each other. This

assumption is hardly satisfied in congested transportation networks. Relaxation of

this assumption should be explored.

2. Computational tests on Algorithm METTH-Signal and Algorithm METTH-Multi-

modal should be carried out to support the fact that they have theoretically better

worst-case running time complexities than the existing algorithms.

3. Computational tests on Algorithm METTH-based-METTP should be performed.

4. In Algorithm METTH-B&B, we left how to determine the kth minimum possible

travel time path as an open question. This question should be answered, and compu-

tational tests on the algorithm should be done.

As further extensions of the work done in this thesis, we propose the following topics for

the long term research.

1. We studied all-to-one versions of routing problems in the thesis. Other variants such

as one-to-all routing problems, all-to-all routing problems, etc could be considered.
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2. Other criteria for route selection, for instance, minimum variance, lowest probability

of being longest, highest probability of being shortest, could be studied.

3. The formulation of various routing problems in stochastic time-dependent networks by

using hyperpaths on suitably constructed hypergraphs could be an important research

topic.
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Appendix A

Notation

In this appendix, we summarize the notation used in the thesis. For each notation, we

provide the chapter where it was first introduced in parentheses.

A.1 Network-related Notation

* 9(N, A): a directed graph (network) (Chapter 3)

N 4: set of n nodes (Chapter 3)

* A: set of m directed links (Chapter 3)

" d: destination node (Chapter 3)

" 0(i): set of end nodes of outgoing links from node i (Chapter 3)

" 'J(i): set of start nodes of incoming links to node i (Chapter 3)

" 'H: set of discrete departure times (Chapter 3)

* N: set of nodes in the time-space network of a deterministic time-dependent network

(Chapter 3)

0 A: set of links in the time-space network of a deterministic time-dependent network

(Chapter 3)

. ((i, t)): set of end nodes of outgoing links from node (i, t) in the time-space network

of a deterministic time-dependent network (Chapter 3)
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* N: set of nodes in the time-space network of a stochastic time-dependent network

(Chapter 3)

" A: set of links in the time-space network of a stochastic time-dependent network

(Chapter 3)

* (((i, t)): set of end nodes of outgoing links from node (i, t) in the time-space network

of a stochastic time-dependent network (Chapter 3)

* M = {1, -- - , M}: set of travel modes available in the network (Chapter 5)

* MiC C M: set of modes available on link (i, j) (Chapter 5)

A.2 Random Variable-related Notation

" Tij (t): random variable denoting the travel time on link (i, j) at link entry time t

(Chapter 3)

" 'Rij (t) = {1, ... , ri (t)}: set of indexes of realizations of T2j (t) (Chapter 3)

" Tr9 (t): travel time value of the rth realization of Tij (t) (Chapter 3)

* p (t): probability of the rth realization of Tij (t) (Chapter 3)

* PT,(t) = (rirj(t), pr-(t)) r E R9i(t)}: PMF of Tij(t) (Chapter 3)

" L (t): random variable denoting the travel time on path c from node i to node d at

departure time t (Chapter 3)

* l (t): travel time value of the kth realization of Lc(t) (Chapter 3)

* p (t): probability of the kth realization of L (t) (Chapter 3)

* PL (t) = {(l p k(t)) k = 1, 2,... ,k(t)}: PMF of Lc (t) (Chapter 3)

* T (t): random variable denoting the travel time from node i to node d when one

leaves node i at time t via link (ij) and then follows path c from node j to node d

(Chapter 4)

" Cij (t): random variable denoting the travel cost on link (i, J) at link entry time t

(Chapter 4)
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* Xij(t) = {1,... , xij(t)}: set of indexes of realizations of Cij(t) (Chapter 4)

e (xjg (t): travel cost value of the Xth realization of Cii (t) (Chapter 4)

* g (t): probability of the th realization of Cij(t) (Chapter 4)

* PC13 (t) = {(((t), gg(t)) I x E Xjj(t)}: PMF of Cij(t) (Chapter 4)

* Ci (t): random variable denoting the travel cost from node i to node d when one

leaves node i at time t via link (i, j) and then follows path c from node j to node d

(Chapter 4)

* Y C(t + ir- (t)): random variable denoting the travel cost on path c from node j to node

d at departure time t + ir(t) (Chapter 4)

* yck(t + Tj(t)): travel cost value of the kth realization of Yjc(t + rj (t)) (Chapter 4)

* g5k(t + <,(t)): probability of the kth realization of Yfc(t + rj(t)) (Chapter 4)

e Tij (t): random variable denoting the travel time from node i to node d when one

leaves node i at time t via link (i, j) and then takes an optimal next-arc hyperpath

from node j to node d (Chapter 5)

* Lj (t + <r(t)): random variable denoting the travel time on an optimal next-arc hy-

perpath from node j to node d at departure time t + 4r(t) (Chapter 5)

* Uij(t): random variable denoting the travel cost from node i to node d when one

leaves node i at time t via link (i, j) and then takes an optimal next-arc hyperpath

from node j to node d (Chapter 5)

* Yj (t + r4(t)): random variable denoting the travel cost on an optimal next-arc hyper-

path from node j to node d at departure time t + 4r(t) (Chapter 5)

* Whii (t): penalty (the amount of waiting time) when one arrives at node i at time t

from node h and then wants to take link (i, J) in a signalized network (Chapter 5)

* Thi3 (t): random variable denoting the travel time from node i to node d when one

arrives at node i at time t from node h and then takes link (i, J) and an optimal

next-arc hyperpath from node j to node d in a signalized network (Chapter 5)
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* Lij(t + whii(t) + rj (t + whij(t))): random variable denoting the travel time on an

optimal next-arc hyperpath from node j to node d when one arrives at node j at time

t + Whij (t) + Tfrj (t + Whii (t)) from node i in a signalized network (Chapter 5)

* T (t): random variable denoting the travel time on link (i, j) via mode b at link entry

time t in a multimodal network (Chapter 5)

* 'R (t) = {1, , rb (t)}: set of indexes of realizations of TP (t) (Chapter 5)

* rr (t): travel time value of the rth realization of T (t) (Chapter 5)

Sp (t): probability of the rth realization of TP (t) (Chapter 5)

* PT t= {(Tg (t), pg(t)) I r E 'ZR'(t)}: PMF of TIP(t) (Chapter 5)

SDab (t): random variable denoting the mode transfer delay when one arrives at node

i at time t from node h via mode a and then takes mode b to go to node j in a

multimodal network (Chapter 5)

" 'Za (t) = {1, ... , r (t)}: set of indexes of realizations of Da(t) (Chapter 5)

" j' (t): mode transfer delay value of the Sth realization of DJ a(t) (Chapter 5)

" qa (t): probability of the sth realization of Dab (t) (Chapter 5)

* PD. (t) = ((a (t), I q (t)) I s E 'Ria (t)}: PMF of D ab (t) (Chapter 5)

" T"b (t): random variable denoting the travel time from node i to node d when one

arrives at node i at time t from node h via mode a and takes link (i, j) using mode b

and then follows an optimal next-arc hyperpath from node j to node d in a multimodal

network (Chapter 5)

* Lig(t + jg%(t) + T (t + 6a (t))): random variable denoting the travel time on an

optimal next-arc hyperpath from node j to node d when one arrives at node j at time

t + 6j (t) + ib
7 (t + jb (t)) from node i via mode b in a multimodal network (Chapter

5)
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A.3 Decision Variable-related Notation

" Ai(t): minimum possible travel time from node i to node d at departure time t (Chap-

ter 4)

" yi(t): highest probability that Ai(t) occurs among all minimum possible travel time

realizations from node i to node d at departure time t (Chapter 4)

" j(t): minimum possible travel cost from node i to node d at departure time t (Chapter

4)

* Wpi(t): highest probability that (t) occurs among all minimum possible travel cost

realizations from node i to node d at departure time t (Chapter 4)

" A,7(t): travel time value of the nth minimum path travel time realization (or of the

nfth shortest path) from node i to node d at departure time t (Chapter 4)

" y7 (t): probability of the nth minimum path travel time realization from node i to

node d at departure time t (Chapter 4)

" ei(t): minimum expected travel time from node i to node d at departure time t under

the adaptive routing policy (Chapter 5)

* ci(t): minimum expected travel cost from node i to node d at departure time t under

the adaptive routing policy (Chapter 5)

* ehi(t): minimum expected travel time from node i to node d under the adaptive

routing policy when one arrives at node i at time t from node h in a signalized

network (Chapter 5)

* ea(t): minimum expected travel time from node i to node d under the adaptive

routing policy when one arrives at node i at time t from node h via mode a in a

multimodal network (Chapter 5)

* O, (t): minimum expected travel time from node i to node d at departure time t under

the non-adaptive routing policy (Chapter 6)
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A.4 Miscellaneous Notation

" si(t): successor of node i on the minimum possible travel time path (or on the min-

imum possible travel cost path, or on the minimum expected travel time next-arc

hyperpath, or on the minimum expected travel cost next-arc hyperpath, or on the

minimum expected travel time path) from node i to node d at departure time t

(Chapter 4)

" Iri(t): arrival time at node si(t) on the minimum possible travel time path (or on

the minimum possible travel cost path) from node i to node d at departure time t

(Chapter 4)

* s (t): successor of node i on the nth minimum path travel time realization (or on the

nth shortest path) from node i to node d at departure time t (Chapter 4)

T 7r!(t): arrival time at node s, (t) on the nth minimum path travel time realization (or

on the nth shortest path) from node i to node d at departure time t (Chapter 4)

" ,n(t): rank of the path travel time realization (or of the path) from node s(t) to

node d at departure time irn(t), which one should follow in order to achieve the nth

minimum path travel time realization (or the nth shortest path) from node i to node

d at departure time t (Chapter 4)

" Shi(t): successor of node i on the minimum expected travel time next-arc hyperpath

from node i to node d when one arrives at node i at time t from node h in a signalized

network (Chapter 5)

si (t): successor of node i on the minimum expected travel time next-arc hyperpath

from node i to node d when one arrives at node i at time t from node h via mode a

in a multimodal network (Chapter 5)

mi(t): travel mode for link (i, sai(t)) on the minimum expected travel time next-arc

hyperpath from node i to node d when one arrives at node i at time t from node h

via mode a in a multimodal network (Chapter 5)

" Ki(t): index of the path from node si(t) to node d that is a subpath of the minimum

expected travel time path from node i at departure time t (Chapter 6)
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" M = E(ij)GA EtEH P'ij(t)I: total number of link travel time realizations in the net-

work during the peak period (Chapter 3)

" E(f(n, m)): lowest possible running time to solve an all-to-one static shortest paths

problem with n nodes and m links (Chapter 3)

" Tij (t): travel time on link (i, j) at link entry time t in deterministic time-dependent

networks (Chapter 3)

" min'ES{xj}: operator that returns the nth smallest element from the set {xi I i E 8}

where 8 is some set (Chapter 4)

" e (t): wait-and-see expected minimum travel time from node i to node d at departure

time t (Chapter 5)
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Appendix B

Example of Minimum Possible

Travel Time Paths Computation

This appendix demonstrates step-by-step execution of Algorithm MPTTP2 to find all-to-

one minimum possible travel time paths in the stochastic time-dependent network depicted

in Figure B-1 and Tables B.1-B.6.

2

Destination

Figure B-1: An Example Network

Table B.1: Time-Dependent Link Travel Time PMFs

Link (i, j) (1,2)
Departure Time (t) t=O t= 1 t=2 t =3 t=4 t=5

(1, 0.5) (2, 0.4) (1, 0.6) (3, 0.5) (3, 0.3) (2, 0.3)
(2, 0.5) (3, 0.6) (3, 0.4) (4, 0.5) (4, 0.7) (4, 0.7)
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Table B.2: Time-Dependent Link Travel Time PMFs (cont.)

Link (i, j) (1,3)
Departure Time (t) t =0 1 t = 1 t=2 t = 3 t = 4 t = 5

((t),p (2, 0.2) (1, 0.7) (1, 0.6) (1, 0.6) (2, 0.4) (3, 0.4)II (3, 0.8) (3, 0.3) (3, 0.4) (2, 0.4) (5, 0.6) (4, 0.6)

Table B.3: Time-Dependent Link Travel Time PMFs (cont.)

Link (i, j) (2,3)
Departure Time (t) t = 0 t= 1 t = 2 t = 3 t=4 t= 5

(2, 0.7) (1, 0.6) (1, 0.8) (2, 0.1) (1, 0.9) (1, 0.5)
( (o) (4, 0.3) (2, 0.4) (3, 0.2) (3, 0.9) (4, 0.1) (4, 0.5)

Table B.4: Time-Dependent Link Travel Time PMFs (cont.)

Link (i, j) (3,2)
Departure Time (t) t = 0 t= 1 t=2 t=3 t=4 t=5

j t r(1, 0.1) (2,10.3) (3,10.1) (1, 0.6) (,0.8) (,03
(3, 0.9) (3, 0.7) (4, 0.9) (3, 0.4) (2, 0.2) (3, 0.7)

Table B.5: Time-Dependent Link Travel Time PMFs (cont.)

Link (i, j) (2, 4)

Departure Time (t) t =0 t = 1 t = 2 t = 3 t=4 t= 5

j (t),pr (2, 0.6) (2, 0.4) (1, 0.7) (2, 0.5) (2, 0.4) (2, 0.5)
( (0) (3, 0.4) (4, 0.6) (3, 0.3) (4, 0.5) (4, 0.6) (3, 0.5)

Table B.6: Time-Dependent Link Travel Time PMFs (cont.)

Link (i, j) (3,4)

Departure Time (t) t=0 t= 1 _t=2 t=3 t=4 t=5

j(t), pr (1, 0.5) (2, 0.2) (1, 0.5) (1, 0.8) (3, 0.5) (2, 0.8)
(3, 0.5) (3, 0.8) (2, 0.5) (3, 0.2) (5, 0.5) (4, 0.2)
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Step 1: Initialization

(Ai (t), 7j(t), si(t), ri(t)) = (oo, 0, oo, oc), V i E {1, 2, 3}, V t {0, 1,... , 5}

(Ad(t), Yd(t), Sd(t), lrd(t)) = (0, 1.0, d, t), Vt E {O, 1, ... , 5}

Step 2: Minimum Possible Travel Time Paths in Static Domain

(A (6), -y(6), s1(6), 7ri(6)) = (4, 0.15, 2,8)

(A2 (6), -Y2 (6), S2(6), 7r2 (6)) = (2, 0.5, 4,8)

(A3(6), 7y3(6), 83(6), r3 (6)) = (2,0.8, 4,8)

(A4 (6), 7y4( 6), s4(6), r4 (6)) = (0, 1.0, 4,6)

Step 3: Minimum Possible Travel Time Paths in Time-Dependent Domain

At departure time t = 5

For link (1, 2)

IL = T12 (5) + A2(5 + 12(5)) = 2 + A2(5 + 2) = 2 + 2 = 4

v = pS2 (5) x I2(5 + r2(5)) = 0.3 x -2( 5 + 2) = 0.3 x 0.5 = 0.15

Since p < A1 (5) = oo, A1 (5) = 4, 71(5) = 0.15, si(5) = 2, 7r1 (5) = 7

I. =,r,22(5) + A2(5 + r,22(5)) = 4 + A2(5 + 4) = 4 + 2 = 6

= p12 (5) x -y2( 5 + r 22(5)) = 0.7 x 72( 5 + 4) = 0.7 x 0.5 = 0.35

Since p > A,(5) = 4, do not change A,(5)

For link (1, 3)

S= 713 (5) + A 3 (5 + r,3(5)) = 3 + A3 (5 + 3) = 3 + 2 = 5

- 1 _(5) x /3 (5 + r,3(5)) = 0.4 x y3(5 + 3)= 0.4 x 0.8 = 0.32

Since p > A,(5) = 4, do not change A,(5)

IL = T?3 (5)+A3 (5+ 3(5)) = 4 + A3(5 + 4) 4 + 2 = 6

1=p 3 (5) x y3(5 + r 23(5)) = 0.6 x 3(5 + 4) = 0.6 x 0.8 = 0.48

Since y > A,(5) = 4, do not change A,(5)

For link (2, 3)

/. = 7 3 (5) + A3(5 + 72 3 (5)) = 1 + A3(5 + 1) = 1 + 2 = 3

vp 2 3 (5) X 3(5 + r23(5)) = 0.5 x Y3 (5 + 1) = 0.5 x 0.8 = 0.4

Since y < A2 (5) = oo, A2(5) = 3, y2( 5 ) = 0.4, S2(5) = 3, 7r2 (5) = 6

p = -23(5) + A3(5 + r23(5)) = 4 + A3 (5 + 4) = 4 + 2 = 6

i = p23 (5) x -y3(5 + T23(5)) = 0.5 x -y3(5 + 4) = 0.5 x 0.8 = 0.4

Since p > A2 (5) = 3, do not change A2 (5)

For link (2, 4)
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p = -r2(5) + A4 (5 + T 4 (5)) = 2 + A4 (5 + 2) = 2 + 0 = 2

v=p2 4 (5) x -y4( 5 + r24 (5)) = 0.5 x y4(5 + 2) = 0.5 x 1.0 = 0.5

Since p < A2(5) = 3, A2(5) = 2, 72( 5 ) = 0.5, S2(5) = 4, 7r2(5) = 7

A = - 24 (5) + A4 (5 + 7 4 (5))= 3 + A4 (5 + 3) = 3 + 0 = 3

v=p 24(5) x -y4(5 + -r 4 (5))= 0.5 x 74(5 + 3) = 0.5 x 1.0 = 0.5

Since p > A2(5) = 2, do not change A2(5)

For link (3, 2)

A = -32(5) + A2 (5 +T 32(5)) = 1 + A2 (5 + 1) = 1 + 2 = 3

v-p_2(5) x 2 (5 + -32(5)) = 0.3 x Y2 (5 + 1) = 0.3 x 0.5 = 0.15

Since p < A3(5) = oo, A3(5) = 3, y3(5) = 0.15, S3(5) = 2, 1r3(5) = 6

A = -r 2 (5) + A2(5 + r2 2 (5)) =3 + A2 (5 + 3) = 3 + 2 =5

S= p32(5) x -Y2(5 + r22 (5)) = 0.7 x -Y2( 5 + 3) = 0.7 x 0.5 = 0.35

Since M > A3(5) = 3, do not change A3(5)

For link (3, 4)

A = 73 4 (5) + A4 (5 + 734(5)) = 2 + A4(5 + 2) = 2 + 0 = 2

V=p 34 (5) x ^/4(5 + T 4 (5)) = 0.8 x y4(5 + 2) = 0.8 x 1.0 = 0.8

Since p < A3(5) = 3, A3(5) = 2, -y3(5) = 0.8, 83(5) = 4, 1r3(5) = 7

p = j 3 4 (5) + 4 (5 + T3 4 (5)) = 4 + A4 (5 + 4) = 4 + 0 = 4

v=p34 (5) x -y4(5 + -r 4(5)) = 0.2 x y4(5 + 4) = 0.2 x 1.0 = 0.2

Since p > A3 (5) = 2, do not change A3(5)

At departure time t = 4

For link (1, 2)

p = -r2(4) + A 2 (4 + r,2(4)) = 3 + A2 (4 + 3) = 3 + 2 = 5

v-p 1 2(4) x 72(4 + Tr2(4)) = 0.3 x 2(4 + 3) = 0. 3 x 0.5 = 0.15

Since p < A (4) = oo, A,(4) = 5, -y7(4) = 0.15, si(4) = 2, ri (4) = 7

p = r,2(4)+ A2 (4+r22(4)) = 4+ A2(4+4) = 4+ 2 6

p 2(4) x 7 2 (4 +T,2 2(4)) =0.7 x 2(4 + 4)= 0.7 x 0.5 = 0.35

Since p > A,(4) = 5, do not change A,(4)

For link (1, 3)

[t = -1(4) + A3(4 + r,3(4)) = 2 + A3 (4 + 2) =2 + 2 = 4

1 = p13(4 ) x -y3(4 + T1
1
3 (4)) = 0.4 X 73 (4 + 2) = 0.4 x 0.8 = 0.32

Since p < A (4) = 5, A,(4) = 4, 71( 4 ) = 0.32, si(4) = 3, iri(4) = 6
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P = T 2
3 (4) + A3(4 + T23(4)) = 5 + A3 (4 + 5) = 5 + 2 = 7

v-p_3(4) X Y3 (4 + r23(4)) = 0.6 x y3(4 + 5) = 0.6 x 0.8 = 0.48

Since p > A,(4) = 4, do not change A,(4)

For link (2, 3)

I = 72 3 (4) + A3 (4 + -23 (4)) = 1 + A3 (4 + 1) = 1 + 2 = 3

v = p23(4) x -y3(4 + -23 (4)) = 0-9 x -13(4 + 1) = 0.9 x 0.8 = 0.72

Since , < A2(4) = oc, A2(4) = 3, 2( 4 ) = 0.72, s 2 (4) = 3, 7r2 (4) = 5

y =r223 (4) + A3 (4 + r23(4)) =4 + A3 (4 + 4) = 4 + 2 =6

-p23(4) x y3(4 + r23(4)) =0.1 x 73(4 + 4) = 0.1 x 0.8 = 0.08

Since y > A2(4) = 3, do not change A2(4)

For link (2, 4)

A = T24 (4) + A4 (4 + r 4(4)) = 2 + A4 (4 + 2) = 2 + 0 = 2

24(4) x 74(4 + T24 (4)) = 0.4 x y4(4 + 2) = 0.4 x 1.0 = 0.4

Since p < A2(4) = 3, A2(4) = 2, y2( 4 ) = 0.4, 82(4) = 4, r2 (4) = 6

p = 724(4) + A 4 (4 +r24(4)) =4 + A4 (4 + 4) = 4 + 0 = 4

V 2p2 4(4) x y4 (4 + r2 4 (4)) 0.6 x y4(4 + 4) = 0.6 x 1.0 = 0.6

Since p > A2(4) = 2, do not change A2(4)

For link (3, 2)

t = 732 (4) + A2 (4 + 3 2 (4)) = 1+ A2 (4 + 1) = 1 + 2 = 3

v-p_2(4) x y2(4 + -32 (4)) = 0.8 X 2(4 + 1) = 0.8 x 0.5 = 0.4

Since M < A3 (4) = oo, A3(4) = 3, y3(4) = 0.4, 83(4) = 2, ir3(4) = 5

A = T 2 (4) + A2 (4 + 72(4)) =2 + A2 (4 + 2) = 2 + 2 =4

3 = P32(4 ) x y2(4 + r2(4)) = 0.2 x 7Y2( 4 + 2) = 0.2 x 0.5 = 0.1

Since , > A3(4) = 3, do not change A3 (4)

For link (3, 4)

/ = T4 (4) + A4(4 + 4(4)) = 3+ A4(4 + 3) = 3 + 0 = 3

v=3p 4 (4) x -y4(4 + T34(4)) = 0.5 x -y4(4 + 3) = 0.5 x 1.0 = 0.5

Since yz = A3(4) = 3 and v > -/3( 4 ) = 0.4, A3(4) = 3, -y3(4) = 0.5, 83(4) = 4, ir3 (4) = 7

p = T2 4 (4) + A4 (4 + -24 (4)) = 5 + A4(4 + 5) = 5 + 0 = 5

3=pj4 (4) x -4(4 + -r24(4)) = 0.5 x y4(4 + 5) = 0.5 x 1.0 = 0.5

Since M > A3 (4) = 3, do not change A3(4)

At departure time t = 3
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For link (1, 2)

A =rl2(3) + A2 (3 +,r1 2(3)) =3 + A2 (3 + 3) = 3 + 2 = 5

v = p12(3) x y2( 3 + r 2 (3)) = 0.5 X 72( 3 + 3) = 0.5 x 0.5 = 0.25

Since p < A1(3) = oo, A1(3) = 5, 7'1( 3) = 0.25, s1 (3) = 2, r1 (3) = 6

A = r 22(3) + A2(3 + r,2(3)) 4 + A2 (3 + 4) = 4 + 2 =6

1 p 2 (3) x y2( 3 + r 2 (3)) -0.5 x y2( 3 + 4) = 0.5 x 0.5 = 0.25

Since p > A,(3) = 5, do not change A,(3)

For link (1, 3)

p = Tr3 (3) + A(3 + r13 (3)) = 1 + A3(3 + 1) = 1 + 3 = 4

v-p 1_(3) x - 3 (3 + T13 (3)) = 0.6 x -y3(3 + 1) = 0.6 x 0.5 = 0.3

Since p < A (3) = 5, Al(3) = 4, -y1(3) = 0.3, s1 (3) = 3, 7r,(3) = 4

p =r 2 3(3) + A3(3 + 123(3)) = 2 + A3(3 + 2) = 2 + 2 = 4

v-p3(3) x 73(3 + r?3(3)) = 0.4 x y3 (3 + 2) = 0.4 x 0.8 = 0.32

Since p = A (3) = 4 and v > -yj(3) = 0.3, Al(3) = 4, 71(3) = 0.32, s1 (3) = 3, iri(3) = 5

For link (2,3)

[ = -23(3) + A3(3 + -r 3(3)) = 2 + A(3 + 2) = 2 + 2 = 4

v-p 1 _(3) x y3(3 + r 3(3)) = 0.1 x -Y3(3 + 2) = 0.1 x 0.8 = 0.08

Since p < A2(3) = oo, A2(3) = 4, 7j2(3) = 0.08, s2 (3) = 3, 7r2(3) = 5

p = 723(3) + A3 (3 + -r3(3)) =3 + A(3 + 3) = 3 + 2 =5

v- p(3) x 73 (3 + r2 (3)) - 0.9 x -3 (3 + 3) = 0.9 x 0.8 = 0.72

Since p > A2 (3) = 4, do not change A2(3)

For link (2, 4)

S= -r24(3) + A4(3 + -r4(3)) = 2 + A(3 + 2) = 2 + 0 = 2

v=p2 4 (3) x -y4( 3 + -r 4 (3)) = 0.5 x y4(3 + 2) = 0.5 x 1.0 =0.5

Since p < A2(3) = 4, A2(3) = 2, -y2( 3) = 0.5, s2(3) = 4, 7r2(3) = 5

/I = - 4(3) + A4 (3 + -r 4 (3)) = 4 + A4 (3 + 4) = 4 + 0 = 4

v=2p 4 (3) x -y4(3 + r24(3)) = 0.5 x y4(3 + 4) = 0.5 x 1.0 = 0.5

Since p > A2(3) = 2, do not change A2(3)

For link (3, 2)

[ = -r 2 (3) + A2(3 + T32 (3)) = 1 + A2(3 + 1) = 1 + 2 = 3

v- 1 2(3) x Y2(3 + 72(3)) = 0.6 x 72( 3 + 1) = 0.6 x 0.4 = 0.24

Since p < A3(3) = oo, A3(3) = 3, 7Y3( 3 ) = 0.24, S3(3) = 2, r3 (3) = 4
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pL= TZ2 (3) + A2 (3 + 7-2 (3)) =3+ (3+3) =3 +2 =5

-p3 2(3) x -2(3 + T3 2 (3)) = 0.4 x y2 (3 + 3) = 0.4 x 0.5 = 0.2

Since / > A3 (3) = 3, do not change A3 (3)

For link (3, 4)

S= -34(3) + A4(3 + 734(3)) = 1 + A(3 + 1) = 1 + 0 = 1

34(3) x y4(3+ -r4(3)) = 0.8 x -y4( 3 + 1) = 0.8 x 1.0 = 0.8

Since p < A3(3) = 3, A3(3) = 1, -y3( 3) = 0.8, s3(3) = 4, 7r3(3) = 4

y = -r 4 (3) + A(3 + r24(3)) = 3 + A4 (3 + 3) = 3 + 0 = 3

v=3p 4 (3) x -y4(3 + 24 (3)) = 0.2 x Y4(3 + 3) = 0.2 x 1.0 = 0.2

Since M > A3(3) = 1, do not change A3 (3)

At departure time t = 2

For link (1, 2)

p = / r 2 (2) + A2 (2 + T,2(2)) = 1 + A2 (2 + 1) = 1 + 2 = 3

v=p12 (2) x y2(2 + Tr 2 (2)) = 0.6 x y2(2 + 1) = 0.6 x 0.5 = 0.3

Since I < A (2) = oc, A (2) = 3, -y(2) = 0.3, s,(2) = 2, 7r,(2) = 3

P = -T2 (2) + A2(2 + T12(2)) 3 + A2 (2 + 3) = 3 + 2 =5

v = p12 (2) x 72( 2 + T22 (2)) = 0.4 x -Y2( 2 + 3) = 0.4 x 0.5 = 0.2

Since p > A,(2) = 3, do not change A,(2)

For link (1, 3)

/t = 7 3 (2) + A3 (2 + r,3(2)) = 1 + A3 (2 + 1) = 1 + 1 = 2

13 p_(2) x y3(2 + 13(2)) = 0.6 x y3( 2 + 1) = 0.6 x 0.8 = 0.48

Since p < A (2) = 3, Al(2) = 2, 'y1( 2 ) = 0.48, s1(2) = 3, 7r,(2) = 3

P = T?3 (2) + A3 (2 + 713(2)) = 3 + A3(2 + 3) = 3 + 2 =5

v- p_(2) x -3(2 + T 3(2)) = 0.4 x - 3 (2 + 3) = 0.4 x 0.8 0.32

Since p > A,(2) = 2, do not change A,(2)

For link (2, 3)

y = 72 3(2) + A3(2 + T213(2)) = 1 + A3(2 + 1) = 1 + 1 = 2

v=23(2) x y3(2 + -23(2)) = 0.8 x 3 (2 + 1) = 0.8 x 0.8 0.64

Since p < A2(2) = oc, A2(2) = 2, 72( 2 ) = 0.64, s 2 (2) = 3, r2(2) = 3

S -r23 (2) + A3 (2 + T2 3(2)) = 3 + A3(2 + 3) = 3 + 2 = 5

23 = p3(2 ) x 73 (2 + 2 3 (2)) = 0.2 x y3(2 + 3) = 0.2 x 0.8 = 0.16

Since p > A2 (2) = 2, do not change A2(2)

171



For link (2, 4)

[ = T24 (2) + A4(2 + r24(2)) = + A(2 + 1) = 1 + 0 = 1

v=p24(2) x ' 4(2 + r24 (2)) =0.7 x j4(2 + 1) = 0. 7 x 1.0 = 0.7

Since p < A2(2) = 2, A2(2) = 1, Y2( 2 ) = 0.7, S2(2) = 4, 7r2 (2) = 3

A = -r 4 (2) + A4 (2 + 2 4 (2)) = 3 + A4 (2+ 3) = 3 + 0 = 3

v=p24(2) x -y4(2 + -r4 (2)) =0.3 x y4(2 + 3) = 0.3 x 1.0 = 0.3

Since A > A2(2) = 1, do not change A2(2)

For link (3,2)

y = -r 2 (2) + A2 (2 + -r2(2)) = 3+ A2 (2 + 3) = 3 + 2 = 5

-p 32(2) x Y2 (2 + T 2(2)) = 0.1 x y2 (2 + 3) = 0.1 x 0.5 = 0.05

Since p < A3(2) = oo, A3(2) = 5, 73(2) = 0.05, 83(2) = 2, 7r3 (2) = 5

I = -r 2 (2) + A2 (2 + 3
2

2(2)) =4 + A2 (2 + 4) = 4 + 2 =6

S= p32(2) x -Y2( 2 + r22(2)) = 0.9 x -Y2( 2 + 4) = 0.9 x 0.5 = 0.45

Since p > A3 (2) = 5, do not change A3(2)

For link (3, 4)

p =,r 3 4 (2) + A4(2 + r34(2)) = 1 + A4(2 + 1) = 1 + 0 = 1

v=p34 (2) x y4(2 + r34(2)) = 0.5 x -y4 (2+ 1) = 0.5 x 1.0 = 0.5

Since p < A3(2) = 5, A3(2) = 1, 73( 2) = 0.5, 83(2) = 4, 7r3 (2) = 3

A = 74(2) + A4(2 + 734 (2)) = 2 + A4(2 + 2) = 2 + 0 = 2

v=p34(2) x y4(2 + -r 4(2)) = 0.5 x y4(2 + 2) = 0.5 x 1.0 = 0.5

Since p > A3 (2) = 1, do not change A3(2)

At departure time t = 1

For link (1, 2)

[ = r 2 (1) + A2(1 + 712(1)) = 2 + A 2 (1 + 2) = 2 + 2 = 4

u-p 1 2(1) x 72 (1 + T 2 (1)) = 0.4 x y2(1 + 2) = 0.4 x 0.5 = 0.2

Since p < A (1) = oo, A,(1) = 4, -y7(1) = 0.2, si(1) = 2, iri(1) = 3

p = 2 (1) + A2(1 + T22 (1)) = 3 + A2(1 + 3) = 3 + 2 = 5

p 2(1) x Y2 (1 + T,2(1)) = 0.6 X Y2 (1 + 3) 0.6 x 0.4 = 0.24

Since p > A,(1) = 4, do not change A,(1)

For link (1, 3)

p = r 3(1) + A3 (1 + 113(1)) = 1 + A3 (1 + 1) = 1 + 1 = 2

i = p13(1) X 73(1 + T13(1)) = 0.7 X '3(1 + 1) = 0.7 x 0.5 = 0.35
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Since [t < Aj(l) = 4, Aj(1) = 2, 71(l) = 0.35, si(1) = 3, ir1 (1) = 2

IL = 7? 3 (l) + A3(1 + 71 3 (1)) = 3 + A3(1 + 3) = 3 + 3 = 6

i = p13(1) x 73(1 + 7j13 (l)) = 0.3 x -y3(1 + 3) = 0.3 x 0.5 = 0.15

Since p > A,(1) = 2, do not change A,(1)

For link (2, 3)

p = 7-23(l) + A3(1 + 7213(1)) = I + A3(1 + 1) = 1 + 1 = 2

v-p_3(1) x 73(1 + 7 3 (1)) = 0.6 x y3 (1 + 1) = 0.6 x 0.5 = 0.3

Since p < A2 (1) = oo, A2(1) = 2, 72(l) = 0.3, s2 (1) = 3, 7r2 (1) = 2

I = 3(l) + A3 (1 + 23(1))= 2 + A(1 + 2) = 2 + 1 = 3

v=p 2 3(1) x Y3(1 + T23(1))= 0.4 x y3(1 + 2) = 0.4 x 0.8 = 0.32

Since ft > A2(1) = 2, do not change A2(1)

For link (2,4)

p = T 4 (1) + A4 (1 + 7 4 (1))= 2 + A4 (1 + 2) = 2 + 0 = 2

V=p 2 4 (1) X 74(1 + r24 (1))= 0.4 x y4(1 + 2) = 0.4 x 1.0 = 0.4

Since p = A2(1) = 2 and v > 7y2(l) = 0.3, A2(1) = 2, 72(1) = 0.4, s2 (1) = 4, 7r2 (1) = 3

A = -24 (1) + A4 (1 + T 4(1))= 4 + A4 (1 + 4) = 4 + 0 = 4

= p24(1) X 74(1 + 724 (1)) = 0.6 X -y4(1 + 4) = 0.6 x 1.0 = 0.6

Since tt > A2 (1) = 2, do not change A2 (1)

For link (3, 2)

p = T32 (1) + A2 (1 + T12(1)) = 2 + A2(1 + 2) = 2 + 2 = 4

v=p3 2(1) X 72(1 + 732(1))= 0.3 x 72(1 + 2) = 0.3 x 0.5 = 0.15

Since p < A3(1) = oc, A3 (1) = 4, -y3(1) = 0.15, s3(1) = 2, 7r 3(1) = 3

p = T322(l) + A2(1 + 7-32(l)) = 3 + A2(1 + 3) = 3 + 2 =5

v-p 2 (1) x 2(1 + T32 (1))= 0.7 X 72(1 + 3) = 0.7 x 0.4 = 0.28

Since p > A3(1) = 4, do not change A3 (1)

For link (3, 4)

p = T3 4 (1) + A 4 (1 + j4 (1))= 2 + A4 (1 + 2) = 2 + 0 = 2

v=p3 4(1) x y4(1 + F34 (1))= 0.2 x 7y4(l + 2) = 0.2 x 1.0 = 0.2

Since p < A3 (1) = 4, A3 (1) = 2, 7y3(1) = 0.2, s3 (1) = 4, Ir3(1) = 3

/t = T 4 (1) + A4(1 + 34 (1)) = 3 + A4(1 + 3) = 3 + 0 = 3

v=P24 (1)x y 4 (1±Tr 4 (1))=0.8 X -y4(l + 3) = 0.8 x 1.0 = 0.8

Since p > A3(1) = 2, do not change A3 (1)

173



At departure time t = 0

For link (1, 2)

p = 712 (0) + A2 (0 + 12 (0)) = 1 + A2 (0 + 1) = 1 + 2 = 3

vp 1 2(0) x I 2(0 + T2(0)) = 0.5 x 72(0 + 1) = 0.5 x 0.4 = 0.2

Since p < A (0) = oo, A,(0) = 3, 71 (0) = 0.2, si(0) = 2, iri(0) =

p = r12(0) + A2 (0 + T12(0)) = 2 + A2 (0 + 2) = 2 + 1 =3

v-p 2 (0) x -2 (0 + 7 2(0)) = 0.5 x 72(0 + 2) = 0.5 x 0. 7 = 0.35

Since p = A (0) = 3 and v > -yj(0) = 0.2, Al(0) = 3, 71,(0) = 0.3E

For link (1, 3)

S= -13 (0) + A3 (0 + 1 3(0)) = 2+ A3 (0 + 2) = 2 + 1 = 3

v-p 1 (0) x 73(0 + 713(0)) = 0.2 x 73 (0 + 2) = 0.2 x 0.5 = 0.1

Since p = A (0) = 3 but v < 7y(O), do not change A,(0)

A = r2 3(0) + A3 (0 + 713(0)) = 3+ A3 (0 + 3) = 3 + 1 = 4

v- p_(0) x 73(0 + T1 (0)) = 0.8 x y3(0 + 3) = 0.8 x 0.8 = 0.64

Since p > A,(0) = 3, do not change A,(0)

For link (2, 3)

A = T 1 (0) + A3 (0 +F 23(0)) = 2+ A3 (0 + 2) = 2 + 1 = 3

v- p(0) x 73(0 + T2 3 (0)) = 0.7 x y3 (0 + 2) = 0.7 x 0.5 = 0.35

Since 1 < A2 (0) = oo, A2(0) = 3, 72(0) = 0.35, s2 (0) = 3, 7r2(0)

p = 723(0) + A3 (0 + 72 3 (0)) =4 + A3 (0 + 4) = 4 + 3 7

v- 2 3(0) x 73 (0 + T23(0)) -0.3 x y3(0 + 4) = 0.3 x 0.5 = 0.15

Since p > A2 (0) = 3, do not change A2(0)

For link (2, 4)

A = r24(0) + A4 (0 + T 4 (0)) = 2 + A4(0 + 2) = 2 + 0 = 2

v=p2 4 (0) x 74 (0 + T24 (0)) = 0.6 x -4(0 + 2) = 0.6 x 1.0 = 0.6

Since p < A2(0) = 3, A2(0) = 2, 72(0) = 0.6, s2 (0) = 4, 7r 2 (0) =

p=724 (0)+A 4 (0+2 4 (0)) =3+A4 (0+3) =3+0=3

v=p24(0) X 74(0 + T24 (0)) = 0.4 x y4(0 + 3) = 0.4 x 1.0 = 0.4

Since p > A2 (0) = 2, do not change A2 (0)

For link (3, 2)

7 = 12 (0) + A2(0 + T32(0)) = 1 + A2(0 + 1) = 1 + 2 = 3

v-p 2(0) x 72(0 + T32(0)) = 0-1 x 2(0 + 1) = 0.1 x 0.4 = 004

1

~, si(0) = 2, uri(0) = 2

=2
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Since ft < A3(0) = oo, A3(0) = 3, 73(0) = 0.04, 83(0) 2, 7r3 (0) = 1

p = -2(0) + A2 (0 + T32 (0)) =3 + A2(0 + 3) = 3 + 2 =5

p 2(0) X Y2(0 + T 2(0)) 0.9 X Y2 (0 + 3) = 0.9 x 0.5 =0.45

Since p > A3 (0) = 3, do not change A3(0)

For link (3,4)

p = r34(0) + A4 (0 + r34(0)) = 1 + 4(0 + 1) = 1 + 0 = 1

v=p34 (0) X -Y4(0 + 73 4 (0)) = 0.5 x y4(0 + 1) = 0.5 x 1.0 =0.5

Since /t < A3(0) = 3, A3 (0) = 1, -y3(0) = 0.5, 83(0) = 4, 7r3(0) = 1

A = T 4 (0) + A4 (0 + 34 (0)) =3 + A4 (0 + 3) = 3 + 0 = 3

S= (0) x y4(0 + -r4 (0)) =0.5 x y4(0 + 3) = 0.5 x 1.0 = 0.5

Since p > A3 (0) = 1, do not change A3 (0)

Table B.7: Results

Origin Node Departure Time Ai(t) f 7y(t) Successor Arrival Time at si(t)

(i (M (Si(0)) (7ri(0))
0 3 0.350 2 2
1 2 0.350 3 2
2 2 0.480 3 3

1 3 4 0.320 3 5
4 4 0.320 3 6
5 4 0.150 2 7

> 6 4 0.150 2 8
0 2 0.600 4 2
1 2 0.400 4 3
2 1 0.700 4 3

2 3 2 0.500 4 5
4 2 0.400 4 6
5 2 0.500 4 7

> 6 2 0.500 4 8
0 1 0.500 4 1
1 2 0.200 4 3
2 1 0.500 4 3

3 3 1 0.800 4 4
4 3 0.500 4 7
5 2 0.800 4 7

> 6 2 0.800 4 8
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Appendix C

Example of Minimum Expected

Travel Time Next-Arc Hyperpaths

Computation

In this appendix, we demonstrate how Algorithm METTH solves the all-to-one minimum

expected travel time next-arc hyperpaths problem using the stochastic time-dependent net-

work in Appendix B.

Step 1: Initialization

(e (t), si(t)) = (oo, oo), V i E {1, 2, 3}, V t E {0, 1, ... , 5}

(ed(t), sd(t)) = (0, d), Vt E {0, 1, ... , 5}

Step 2: Minimum Expected Travel Time Next-Arc Hyperpaths in Static Domain

(e1(6), s1(6)) = (5.9, 2)

(e2 (6), s 2 (6)) = (2.5, 4)

(e3(6), s 3 (6)) = (2.4, 4)

(e4 (6), s4 (6)) = (0.0, 4)

Step 3: Minimum Expected Travel Time Next-Arc Hyperpaths in Time-Depend-

ent Domain

At departure time t = 5

For link (1, 2)

e = ZrE-i 2 (5) (Trf2 (5) + e2 (5 + TIr2 (5))) P12(5 )

= (2 + e 2 (5 + 2)) 0.3 + (4 + e2 (5 + 4)) 0.7 = (2 + 2.5) 0.3 + (4 + 2.5) 0.7 = 5.9
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Since e < e1(5) = oo, e1(5) = 5.9, s1(5) = 2

For link (1, 3)

e = EreJis(5) (Tjr3(5) + e3 (5 + Tr3 (5))) P13(5)

= (3 + e2(5 + 3)) 0.4 + (4 + e2 (5 + 4)) 0.6 = (3 + 2.4) 0.4 + (4 + 2.4) 0.6 = 6.0

Since e > el(5) = 5.9, do not change el(5)

For link (2, 3)

e = Ere9Z23(5) (-r 3 (5) + e3 (5 + Tr3 (5))) Pr3(5)

= (1 + e2(5 + 1)) 0.5 + (4 + e2 (5 + 4)) 0.5 = (1 + 2.4) 0.5 + (4 + 2.4) 0.5 = 4.9

Since e < e2(5) = oc, e2 (5) = 4.9, s2 (5) = 3

For link (2,4)

e = ErGR24 (5) (724 (5) + e4 (5 + Tr4 (5))) pr4(5)

= (2 + e2(5 + 2)) 0.5 + (3 + e2 (5 + 3)) 0.5 = (2 + 0.0) 0.5 + (3 + 0.0) 0.5 = 2.5

Since e < e2 (5) = 4.9, e2 (5) = 2.5, s 2 (5) = 4

For link (3,2)

e = Ere9 32 (5) (4r2(5) + e2(5 + 4r2(5))) Pr2(5)

= (1 + e2 (5 + 1)) 0.3 + (3 + e2 (5 + 3)) 0.7 = (1 + 2.5) 0.3 + (3 + 2.5) 0.7 = 4.9

Since e < e3 (5) = oo, e3 (5) = 4.9, s3 (5) = 2

For link (3,4)

e = Ere93 4 (5) (4r4(5) + e4 (5 + 4r4(5))) p34(5)

= (2 + e2 (5 + 2)) 0.8 + (4 + e2(5 + 4)) 0.2 = (2 + 0.0) 0.8 + (4 + 0.0) 0.2 = 2.4

Since e < e3 (5) = 4.9, e3 (5) = 2.4, s3(5) = 4

At departure time t = 4

For link (1, 2)

e = EZrE9Z2(4) (Tr 2 (4) + e2 (4 + Tlr2 (4))) Pi2()

= (3 + e2(4 + 3)) 0.3 + (4 + e2 (4 + 4)) 0.7 = (3 + 2.5) 0.3 + (4 + 2.5) 0.7 = 6.2

Since e < ei(4) = oc, ei(4) = 6.2, s1(4) = 2

For link (1, 3)

e = Er R 1 3 (4) (Tr3 (4) + e3 (4 + Tr3 (4))) p3

= (2 + e3 (4 + 2)) 0.4 + (5 + e3(4 + 4)) 0.6 = (2 + 2.4) 0.4 + (5 + 2.4) 0.6 =6.2

Since e = el(4) = 6.2, do not change el(4)

For link (2, 3)

e = Zr 2 (4) (,23(4) + e3(4 + -23(4))) P23( 4 )
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= (1 + e3 (4 + 1)) 0.9 + (4 + e3 (4 + 4)) 0.1 =

Since e < e2 (4) = oo, e2 (4) = 3.7, 82(4) = 3

For link (2, 4)

e = ErE 24 (4) (T24 (4) + e4(4 + r 4 (4))) pr4(4 )

= (2 + e4(4 + 2)) 0.4 + (4 + e4 (4 + 4)) 0.6=

Since e < e2 (4) = 3.7, e 2 (4) = 3.2, 82(4) = 4

For link (3, 2)

e = ErE 32( 4) (-r 2 (4) + e2(4 + .3 2 (4))) Pr2(4 )

= (1 + e2(4 + 1)) 0.8 + (2+ e2(4 + 2)) 0.2=

Since e < e3 (4) = 00, e3 (4) = 3.7, 83(4) = 2

For link (3,4)

e = ErE 34 (4) (Tr 4 (4) + e4 (4 + r34 (4))) pj4(4)

= (3 + e4 (4 + 3)) 0.5 + (5 + e4 (4 + 5)) 0.5 =

Since e > e3 (4) = 3.7, do not change e3 (4)

At departure time t = 3

For link (1, 2)

e = ErE2(3) (Tf 2 (3) + e 2 (3 + rT2(3))) pr2(3)

= (3 + e2 (3 + 3)) 0.5 + (4 + e2(3 + 4)) 0.5=

Since e < e1(3) = oo, e1(3) = 6.0, si(3 ) = 2

For link (1, 3)

e = EreR13 (3) (Tr 3 (3) + e3 (3 + Trf3 (3))) p(

= (1 + e3(3 + 1)) 0.6 + (2 + e3(3 + 2)) 0.4 =

Since e < e1(3) = 6.0, el(3) = 4.6, s1(3) = 3

For link (2, 3)

e = ErE () (T, 3 (3) + e 3 (3 + T2r3 (3))) pr3 (3 )

= (2 + e3(3 + 2)) 0.1 + (3 + e3(3 + 3)) 0.9 =

Since e < e 2 (3) = o, e 2 (3) = 5.3, 82(3) = 3

For link (2, 4)

e = ErR 2 (3) (T74 (3) + e4 (3 + -2 4 (3))) pr4(3 )

= (2 + e4 (3 + 2)) 0.5 + (4 + e4 (3 + 4)) 0.5 =

Since e < e2 (3) = 5.3, e2 (3) = 3.0, 82(3) = 4

For link (3, 2)

(1 + 2.4) 0.9 + (4 + 2.4) 0.1 = 3.7

(2 + 0.0) 0.4 + (4 + 0.0) 0.6 = 3.2

(1 + 2.5) 0.8 + (2 + 2.5) 0.2 = 3.7

(3 + 0.0) 0.5 + (5 + 0.0) 0.5 = 4.0

(3 + 2.5) 0.5 + (4 + 2.5) 0.5 = 6.0

(1 + 3.7) 0.6 + (2 + 2.4) 0.4 = 4.6

(2 + 2.4) 0.1 + (3 + 2.4) 0.9 = 5.3

(2 + 0.0) 0.5 + (4 + 0.0) 0.5 = 3.0
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e = Ere9Z32 (3) (4r2(3) + e2(3 + -32(3))) Pr2(3 )

= (1 + e2 (3 + 1)) 0.6 + (3 + e2 (3 + 3)) 0.4 = (1 + 3.2) 0.6 + (3 + 2.5) 0.4 = 4.7

Since e < e3 (3) = oo, e3 (3) = 4.7, s3 (3) = 2

For link (3,4)

e = ErE 34 ( 3) (r44(3) + e4 (3 + r44(3))) P34(3)

= (1 + e4(3 + 1)) 0.8 + (3 + e4 (3 + 3)) 0.2 = (1 + 0.0) 0.8 + (3 + 0.0)0.2 = 1.4

Since e < e3 (3) = 4.7, e3 (3) = 1.4, s3 (3) = 4

At departure time t = 2

For link (1, 2)

e = ErEJ 2 ( 2) (4r2(2) + e2 (2 + r 2(2))) Pr2( 2)

= (1 + e2 (2 + 1)) 0.6 + (3 + e2 (2 + 3)) 0.4 = (1 + 3.0) 0.6 + (3 + 2.5) 0.4 = 4.6

Since e < ei(2) = 00, ei(2) = 4.6, s1(2) = 2

For link (1, 3)

e = ErEJZ3( 2) ('rT3 (2) + e3 (2 + Tr3(2))) pr3(2)

= (1 + e3(2 + 1)) 0.6 + (3 + e3(2 + 3)) 0.4 = (1 + 1.4) 0.6 + (3 + 2.4) 0.4 = 3.6

Since e < e1(2) = 4.6, el(2) = 3.6, si(2) = 3

For link (2, 3)

e = ZrEJ( 2 ) (4r3(2) + e3 (2 + T- 3 (2))) P23(2)

= (1 + e3 (2 + 1)) 0.8 + (3 + e3 (2 + 3)) 0.2 = (1 + 1.4) 0.8 + (3 + 2.4) 0.2 = 3.0

Since e < e2 (2) = oo, e2 (2) = 3.0, s2 (2) = 3

For link (2, 4)

e = E.E924(2) (4r4(2) + e4 (2 + -24(2))) pr4(2 )

= (1 + e4(2 + 1)) 0.7 + (3 + e4 (2 + 3)) 0.3 = (1 + 0.0) 0.7 + (3 + 0.0) 0.3 = 1.6

Since e < e2 (2) = 3.0, e2 (2) = 1.6, 82(2) = 4

For link (3, 2)

E = Zre (2) (4r2(2) + e2 (2 + 4r2(2))) P32( 2 )

= (3 + e2 (2 + 3)) 0.1 + (4 + e2(2 + 4)) 0.9 = (3 + 2.5) 0.1 + (4 + 2.5) 0.9 = 6.4

Since e < e3 (2) = 00, e3 (2) = 6.4, S3(2) = 2

For link (3,4)

e = ErE 34 ( 2) (34(2) + e 4 (2 + r4(2))) pr4(2)

= (1 + e4 (2 + 1)) 0.5 + (2 + e4 (2 + 2)) 0.5 = (1 + 0.0) 0.5 + (2 + 0.0) 0.5 = 1.5

Since e < e3 (2) = 6.4, e3 (2) = 1.5, S3(2) = 4
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At departure time t = 1

For link (1, 2)

e = rEgZ12 (l) (Tr 2 (1) + e2(1 + rf2 (1))) pI 2(1)

= (2 + e2 (1 + 2)) 0.4 + (3 + e2 (1 + 3)) 0.6 = (2 + 3.0) 0.4 + (3 + 3.2) 0.6 = 5.7

Since e < el(1) = oo, el(1) = 5.7, s1(I) = 2

For link (1, 3)

e = ErOZ3(1) (-r 3(l) + e3 (1 + r1 3(1))) P13(l)

= (1 + e3(1 + 1)) 0.7 + (3 + e3(1 + 3)) 0.3 = (1 + 1.5) 0.7 + (3 + 3.7) 0.3 = 3.8

Since e < el(1) = 5.7, e1 (1) = 3.8, si(1) = 3

For link (2, 3)

e = reR23(1) (.23(1) + e3 (1 +2 3 (1))) pE3 (l)

= (1 + e3 (1 + 1)) 0.6 + (2 + e3 (1 + 2)) 0.4 = (1 + 1.5) 0.6 + (2 + 1.4) 0.4 = 2.9

Since e < e2 (1) = 0o, e2 (1) = 2.9, s 2 (1) = 3

For link (2, 4)

e = ZreR2(1) (7 4 (1) + e4(1 +2 4 (1))) p94 (l)

= (2 + e 4 (1 + 2)) 0.4 + (4 + e4 (1 + 4)) 0.6 = (2 + 0.0) 0.4 + (4 + 0.0) 0.6 = 3.2

Since e > e 2 (1) = 2.9, do not change e2 (1)

For link (3, 2)

e = rEJZ2(l) (r42(1) + e2(1 +32(1))) PE2(l)

= (2 + e2(1 + 2)) 0.3 + (3 + e2 (1 + 3)) 0.7 = (2 + 3.0) 0.3 + (3 + 3.2) 0.7 = 5.8

Since e < e3 (1) = 00, e3 (1) = 5.8, s 3 (1) = 2

For link (3, 4)

e = re, 4 (1) (T44(1) + e4 (1 + 44(1))) P34(l)

= (2 + e4 (1 + 2)) 0.2 + (3 + e4(1 + 3)) 0.8 = (2 + 0.0) 0.2 + (3 + 0.0) 0.8 = 2.8

Since e < e3 (1) = 5.8, e3 (1) = 2.8, s 3 (1) = 4

At departure time t = 0

For link (1, 2)

e = Er, 12 (o) (r 2(0) + e2(0 + Tr2(0))) P12(0)

= (1 + e2 (0 + 1)) 0.5 + (2 + e2 (0 + 2)) 0.5 = (1 + 2.9) 0.5 + (2 + 1.6) 0.5 = 3.7

Since e < ei(0) = oc, ei(0) = 3.7, si(0) = 2

For link (1, 3)

e = Er9 3 (0) (Tr3 (0) + e3 (0 + T1((0))) P13(O)
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= (2 + e3 (0 + 2)) 0.2 + (3 + e3(0 + 3)) 0.8=

Since e > ei(0) = 3.7, do not change ei(0)

For link (2, 3)

e = ZreJ23(O) (i43 (0) + e3 (0 + T 3 (O))) P23(o)

= (2 + e3 (0 + 2)) 0.7 + (4 + e3(0 + 4)) 0.3=

Since e < e2 (0) = oc, e2 (0) = 4.8, 82(0) = 3

For link (2, 4)

e = ZE9 24 (O) (rfr4 (0) + e4 (0 + T54 (0))) P24(o)

= (2 + e 4 (0 + 2)) 0.6 + (3 + e 4 (0 + 3)) 0.4

Since e < e2(0) = 4.8, e2 (0) = 2.4, S2(0) = 4

For link (3,2)

e = ZrEJ32 (O) (,T2(0) + e2(0 + T52 (O))) P32(o)

= (1 + e2 (0 + 1)) 0.1 + (3 + e2 (0 + 3)) 0.9

Since e < e3 (0) = 00, e3 (0) = 5.8, S3(0) = 2

For link (3, 4)

e = ErE34(O) (r44(0) + e4 (0 + 3(4()))) pj4(O)

= (1 + e 4 (0 + 1)) 0.5 + (3 + e4 (0 + 3)) 0.5=

Since e < e3 (0) = 5.8, e3 (0) = 2.0, S3(0) = 4

(2 + 1.5) 0.2 + (3 + 1.4) 0.8 = 4.2

(2 + 1.5) 0.7 + (4 + 3.7) 0.3 = 4.8

(2 + 0.0) 0.6 + (3 + 0.0) 0.4 = 2.4

(1 + 2.9) 0.1 + (3 + 3.0) 0.9 = 5.8

(1 + 0.0) 0.5 + (3 + 0.0) 0.5 = 2.0

The minimum expected travel times from all nodes for all departure times are shown in

Table C.1. In this example, all minimum expected travel time next-arc hyperpaths except

three turn out to be simple paths. The three minimum expected travel time next-arc

hyperpaths that are not simple paths are depicted in Figures C-1-C-3.
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Table C.1: Results
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Origin Node Departure Time Min. Expected Time Successor

(W (t) (ei (t)) (si(0))
0 3.7 2
1 3.8 3
2 3.6 3

1 3 4.6 3
4 6.2 2
5 5.9 2

> 6 5.9 2
0 2.4 4
1 2.9 3
2 1.6 4

2 3 3.0 4
4 3.2 4
5 2.5 4

> 6 2.5 4
0 2.0 4
1 2.8 4
2 1.5 4

3 3 1.4 4
4 3.7 2
5 2.4 4

> 6 2.4 4



If arrival time at node 2= 2

Destination

0 If arrival time at node 2= 1

Figure C-1: Minimum Expected Travel Tim
at Departure Time 0

If

Figure C-2: Minimum Expected Travel Tim
at Departure Time 1

If

Q0

e Next-Arc Hyperpath from Node 1 to Node 4

Destination

arrival >time at node 3 = 4

If arrival time at node 3 = 2

e Next-Arc Hyperpath from Node 1 to Node 4

Destination

arrival time at node 3 = 4 4

,.-'If arrival time at node 3 = 5

Figure C-3: Minimum Expected Travel Time Next-Arc Hyperpath from Node 1 to Node 4
at Departure Time 3
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