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Abstract

In this thesis, I design and implement a novel method of schedule and path selection be-
tween predetermined waypoints for unmanned underwater vehicles under uncertainty. The
problem is first formulated as a mixed-integer optimization model and subsequently uncer-
tainty is addressed using a robust optimization approach. Solutions were tested through
simulation and computational results are presented which indicate that the robust approach
handles larger problems than could previously be solved in a reasonable running time while
preserving a high level of robustness.

This thesis demonstrates that the robust methods presented can solve realistic-sized
problems in reasonable runtimes - a median of ten minutes and a mean of thirty minutes
for 32 tasks - and that the methods perform well both in terms of expected reward and
robustness to disturbances in the environment. The latter two results are obtained by
simulating solutions given by the deterministic method, a naive robust method, and finally
the two restricted affine robust policies. The two restricted affine policies consistently show
an expected reward of nearly 100%, while the deterministic and naive robust methods
achieve approximately 50% of maximum reward possible.
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Chapter 1

Introduction

Robust planning aims to take into account the uncertainties inherent in a problem's en-

vironment in order to deliver a solution which will remain feasible and near-optimal even

when adverse circumstances occur. This thesis applies robust planning specifically to the

undersea environment, where there are many sources of uncertainty.

1.1 Problem Motivation

Unmanned underwater vehicles (UUVs) are already in use in the US Navy for short-duration

missions such as local seafloor mapping and short-term surveillance [18, 15]. The Navy's

utilization of these vehicles, however, is restricted by command and control challenges: there

is no current technology which allows reliable, secure, and covert communication between

entities above the surface of the water and the submerged UUV, or even between multiple

submerged UUVs, unlike unmanned aerial vehicles (UAVs). Navy leadership envisions

UUVs capable of being sent on 60-90-day missions with minimal human supervision, with

similar success rates as manned submarines sent out for similar periods (see [17]). The

major hardware obstacle at this time is energy density of battery technologies, but the

major software obstacle is reliable path planning that is intelligible to the human tasking

the UUV, as stated by the current Chief of Naval Operations in [13] and earlier on in [18].

This question of reliability is the main challenge addressed in this thesis. In order to con-

fidently send UUVs out on 60-90-day unsupervised missions, the mission commander must

be certain that the vehicle will return to its stated rendezvous location by the rendezvous

time. Missing this rendezvous can imperil manned vessels and their crews by forcing them
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to remain on station waiting for the UUV, or to cast about in a potentially hostile area

searching for the UUV. Therefore it is necessary to have planning software which accounts

for these uncertainties and gives the vehicle a schedule and path which ensures its timely

arrival at the rendezvous point.

This planning problem is rife with uncertainties inherent to the undersea environment:

deep-ocean currents, tidal currents, surface traffic, etc. The planning problem is also com-

plicated by the fact that any UUV in this situation would naturally be over-tasked at the

outset of the mission, in the sense of being assigned more tasks than mission planners

thought could be completed. This practice ensures that units will experience minimal idle

time: some tasks might be impossible to complete for unforeseen reasons, and it is desirable

for the UUV to be able to choose a substitute task in this case. Therefore, the planning

problem is an optimal task allocation problem, with an objective function that maximizes

reward collected for executing individual tasks.

Between the inherent uncertainties and the task-choosing aspect of the problem, deter-

ministic solutions are intuitively unlikely to be successful in terms of arriving at tasks on

time according to the computed schedule. Users also would prefer that a vehicle stick to one

optimal or near-optimal solution, rather than "jittering" between highly divergent solutions

whenever environmental conditions change. Therefore, an approach which simultaneously

handles the uncertainty while not sacrificing too much optimality is necessary.

1.2 Literature Review

Route optimization for UUVs under uncertainty has previously been addressed by Cates [9]

and Crimmel [10]. In [9], Cates models the problem space as a Time Expanding Network

with discrete probabilities of arriving at the next task on time assigned to each enumerated

potential travel path of the UUV. This approach provides probabilistic guarantees as to

the reliability of the chosen optimal path, but results in low tractability as the number of

nodes (tasks) grows: this approach could handle problems of up to 15 tasks in a tractable

way. In [10], Crimmel works from the same framework, adding a choice of navigation

points for the vehicle. This approach provides greater expressivity for many real world

problems, especially in terms of the UUV's navigational requirements, but also results in

low tractability, approximately ten tasks, for provably optimal solutions. In [10], Crimmel
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additionally provides approximate dynamic programming methods for choosing a good task

route out of a precomputed group of potential task routes. For a small number of about

ten task routes, the approach remains tractable for up to 30 tasks.

This thesis proposes a robust optimization approach to handle the uncertainty in exe-

cution times. It demonstrates improved tractability and robustness of the solution over [9]

and [10]. Specifically it proposes affinely adaptive policies motivated by the successful ap-

plication of such policies in [12, 6, 2]. An affine policy is one in which decision variables are

formulated as affine combinations of uncertain quantities of the problem. These reformula-

tion techniques can simplify the problem and allow use of robust optimization approaches.

In [6], the authors detail the performance limitations of affine policies for a two-stage adap-

tive linear optimization problem under uncertainty. In [12], the authors investigate the

performance and tractability of affine policies for multistage robust optimization problems

under uncertainty. Although the authors show that in the worst case the best affine policy

is suboptimal, they show also that utilizing affine policies improves tractability in practice

without sacrificing too much performance.

1.3 Contributions

The approach presented in this thesis does not use time expanding networks used in [9] and

[10]. It features higher tractability in practice, along with modeling flexibility that dynamic

programming approaches do not exhibit. In addition, robustness implies that the vehicle

will be more likely to reach its rendezvous point on time, if planners have appropriately

accounted for uncertainty in the environment. The robust formulation applies polyhedral

uncertainty, as discussed in [7] and [11], to affine reformulations of the decision variables.

The thesis also presents restricted affine policies which further improve tractability in

practice with minimal performance gaps, shown empirically. These advantages result in

an ability to solve larger problems than previously could be solved under uncertainty, in a

tractable way in terms of runtime.

1.4 Structure

Chapter 2 provides the theoretical background of the robust optimization methods used

in this thesis. Chapter 3 lays out the deterministic mixed-integer formulation of the UUV
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problem. Chapter 4 discusses the full affine method and two restricted affine methods,

which trade optimality for faster computation and work well in practice for problems of

realistic size. Chapter 5 presents computational results from the deterministic method,

a naive robust method, and finally two affine robust policies. Computational results are

presented in terms of computation time and in terms of quality of solution, measured by a

discrete event simulator of a UUV mission. Chapter 6 contains conclusions.
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Chapter 2

Background in Robust

Optimization

In this chapter the basics of robust optimization needed to follow the approaches described

in the rest of this thesis are outlined. The thesis applies cardinality-constrained robust

optimization, described by Bertsimas and Sim in [7], to four different methods in the course

of the thesis. This chapter will lay out the basic theory behind cardinality-constrained

robust optimization and also provides a simple example of its use.

2.1 Theory of Cardinality-Constrained Robust Optimization

This approach applies cardinality-constrained robust optimization. This framework encodes

uncertainty in a row-wise fashion, with an uncertainty budget (Fi) for each row i which

allows the user to adjust the level of risk (or risk aversion) desired for the uncertain quantities

in that row i. For example, if there are m uncertain coefficients in row i and the user sets

Fi = m, the user is indicating that he wishes to protect against the worst case scenario

(worst-case optimization). If the user sets Fi = 0, he is indicating that he believes there

is no uncertainty in row i; a value of 0 in this framework corresponds to the deterministic

case. The subset of uncertain coefficients in row i is called Ji; the further subset of uncertain

coefficients which we would like to allow to vary is called Si, where Si E Ji and Si = Fi.

Note that the user does not explicitly choose the elements of Si.

The range of potential uncertainty is described by symmetric box-type uncertainty sets

for each uncertain coefficient in the A matrix. For each uncertain coefficient a2j, ai3 is the
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nominal value, aij is the maximum divergence, and 6ij denotes the actual uncertain value.

The uncertainty set, then, says that aj E [ad, - adj, aFg + aij].

Bertsimas and Sim demonstrated a method of handling the robust formulation described

in [7] as a single linear optimization problem, which empirically demonstrated significant

improvements in computational tractability. The robust formulation is below:

max cTx

subject to Ej cijxj + max{sicJi:si1=ri} EjEs, aijyj < bi, 1 < i < m

-yg - Iy y< j < nYj <Xj Y3 ~<f

1 <x U, y > 0

where the decision variables are xj and yj.

In words, this formulation says the following: maximize the given objective function,

subject to the nominal constraints plus some protective quantity. This protective quantity

max{SigJi:SiI=ri} EEs, aijyj is described by the uncertainty sets ([aiC - dj, a1j + a^] for

each ij) and by the risk budget (Fi for each row i).

For each row i, this quantity is described as a protection function #i(x), namely

oi(x) = max ~Ed 1 ai1X3zii

subject to Egc, zij < 1i

0 < zij < 1 Vj E Ji

Essentially, the new decision variable zij acts as a weight for each uncertain coefficient, in

the sense that it describes as a proportion of the total maximum divergence adj how far a-i

is from a-i; hence the constraint that all zij values must sum to IFi, the uncertainty budget

defined by the user for this row i.

Now, from Lemma 2.1 and Theorem 2.1 in [16], if there are x E R"x1 a vector of decision

variables; c E R 'Xl, b E Rmx1, G E 3 lx(mn), and d E RIx1 given data; and A E- R"xn a

matrix of uncertain coefficients, then the problem

max CTX

subject to Ax < b

18



x C PX

VA where G vec(A) < d

is equivalent to

max cTx

subject to (p i)TG = (x,)T, i =1, ... , m

(pi)Td < bi, i = 1, ..., m

pi > 0, Z = 1, ..., Im

x E Px

where pi E lX1 and xi e R("')X, i=1, ... , m are vectors of decision variables. Essentially,

for the robust problem format, this theorem implies that strong duality applies: by strong

duality, if we have a primal and a dual problem where both are feasible and bounded,

the optimal objective function values are the same. The above theorem states that an

equivalent problem can be formulated with the original objective function while replacing

the constraints with the relevant dual constraints. In turn, this reformulation means the

nonlinear aspects of the protection function /i(x) can be transformed into a tractable linear

optimization problem as follows.

Since the protection function problem /i(x) is feasible and bounded, take the dual:

min Fiqi + ri

subject to qi + rij > aijlxjl Vj E Ji

rij .> 0 Vj E Ji

qi > 0 Vi

Now since the dual problem is feasible and bounded, the objective function value is equal

to the protection function's objective function value (and hence generating the appropri-

ate level of conservatism required by the user's chosen F values). Therefore according to

[16], the constraints of the dual problem can be substituted for the original subproblem

19



(max{sgcj,:IsjI=r} Ejcs, aiyij) in the first robust formulation:

max CT X

subject to Ej di-xj + qiFi + E> rij < bi,

qi + rij > dij

-YJ Xj < Y3 Vj

l<x<u, q 0, r 0, y > 0

Vi

yg, Vi, j

This formulation is a single linear optimization problem, with the same objective function

and equivalent constraints as the original robust formulation.

2.2 Example of Cardinality-Constrained Robust Optimiza-

tion

The following simple example problem in two dimensions demonstrates the process of gen-

erating the robust formulation. This example problem shows uncertainty in the b vector,

which is where the uncertainty lies in the problems described later on in this thesis. Uncer-

tainty in the b vector requires a small amount of special handling, which is shown below.

Consider the problem:

max 3x, + 2x2

subject to x 1 + 2x2 < b1

3x 1 - x2 b2

xI 0, X2 > 0

bE [6, 7]

b2 [9, 12]

First transform the uncertain ranges of the b vector into the symmetric uncertainty sets

required by the cardinality-constrained optimization framework:

bi = 6.5, b1 = .5, bi E bi - ,bi + bi

20



b2 = 10.5, b2 = 1.5, b2 E b2 - b2, b2 + b2

Next, move the b vector into the A matrix, since cardinality-constrained optimization

is designed to handle uncertainty in the A matrix rather than in the b vector. Manage this

by adding one column to the A matrix: the uncertain b values are the coefficients of this

column, and the extra variable (X 3) is constrained to be 1 at all times.

max 3x 1 + 2X2

subject to x1 + 2X 2 - b1x3 < 0

3xI - X2 - b 2x 3  < 0

XI, X2 > 0 X3 = 1

b, E 1b, - 6, bi + 61

b2 E Ib2 - b2 , b2 + b2]

Now recast the above nonlinear problem in the notation of cardinality-constrained op-

timization:

max 3xi + 2X2

subject to x, + 2X 2 - b1i 3 + ma{sicgJI:IsiJ=r 1 } jEEs, bIy 3 < 0

3x 1 - X2 - b2 x3 + max{S2 cJ2 :1s 2 I=r2 } EJES 2 b2Y3  0

-Y3 <_ X3 <_ Y3, X3 = I XI, X2 >_0

Here the two protection functions OI(x) and 02(x) are apparent, and can be written

as linear optimization problems. The example uses wi for the weight variables (the deci-

sion variables in the protection function linear programming problems) because zi is used

elsewhere in the primary research problem notation.

o 1 (x*, Ii)

max bilw3 lwi

subject to Wi < IFI

0 < wi1

21



2 (X*, F2 ) :

max b21x3 w2

subject to W2

0 < w2 <1

Then take the dual of each problem:

DoB(x*, IF) :

min Fiqi + r 13

subject to q + r 13

qi > 0,

> 61Ix 31

r 13 > 0

min F2q2 + r23

subject to q2 + r 23

q2 0,

b2 12X31

T23 > 0

where there is only one r variable per row because there is only one uncertain coefficient per

row of the A matrix. In any case, there would be only one q variable per row, but there are

as many r variables in a given row i as uncertain coefficients in that row of the A matrix.

So after substituting the dual constraint conditions back into the original robust formu-

lation, obtain the following:

max 3xi + 2x 1

subject to x1 + 2x 2 - 6.5x 3 + (lFiqi + r 13)

3x, - X2 - 10.5x3 + (F 2 q2 + r23)

q, ± r 13

q2 + r23

X1, x 2 ;> 0, x 3 = 1

< 0

< 0

> .5 y3

> 1. 5Y3

q1, q2 0

22



--y3 < X3 < Y3

recalling that b1 = 6.5, b1 = .5, b2 = 10.5, and b2 = 1.5.

This method of obtaining robust counterparts will be used throughout Chapter 4 to

obtain robust formulations for each of four approaches to handling the uncertainty in the

underwater environment.

23
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Chapter 3

A Deterministic Model

This chapter describes the problem and presents an initial formulation of the deterministic

model of the unmanned underwater vehicle (UUV) planning problem under uncertainty. In

succinct terms, the problem is to develop a schedule for a UUV which maximizes reward

collected, by completing tasks in an optimal manner, and which reaches the rendezvous

point on time. This final rendezvous constraint is a hard constraint, as described in section

1.1.

The problem is first formulated as a mixed-integer optimization problem. This initial

approach moved away from the fundamentally probabilistic approach inherent in previous

approaches [9, 10]. The use of uncertainty sets to address randomness in the real-world en-

vironment permits the use of robust optimization to generate robust solutions in a tractable

way.

The deterministic model is developed for a model with n tasks, including a start and

end task which are potentially artificially imposed. There may be time-related constraints

on these tasks, such as windows within which certain tasks must be completed if they are

to be done at all. These windows might be absolute, or relative to completion of another

task. These potential constraints are included in the model.

This chapter details the relevant quantities in the deterministic formulation along with

its structure, and also gives an example to illustrate the function of the quantities described.
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3.1 Formulation

This formulation assumes that there are n tasks, including an explicit start task and end

task. It works from a basic graph formulation, with nodes i and arcs (i, j), where arc (i, j)

represents physical travel from node i to node j. The formulation also assumes that arriving

at node i is synonymous with beginning task i. When there are n tasks, task 0 is the origin

point of the plan and task n is defined as arriving at the final rendezvous location.

The data are:

" cij, a value indicating the sum of the duration of task i and the travel time of the

UUV from node i to node j.

" (ai, bi), a temporal interval constraint specifying the allowable timeframe for executing

task i (alternatively, arriving at node i). There may not exist a (ai, bi) pair for every

task. This pair indicates that the UUV must begin task i no earlier than time ai after

the start of the plan and no later than time bi after the start of the plan if task i is

executed, namely, a2 < bi. The set Bi indicates the set of nodes for which a (ai, bi)

pair exists.

" (lij, uij), a temporal interval constraint specifying the allowable timeframe for execut-

ing task j relative to the completion time of task i. There may not exist a (lij, uij)

pair for every arc ij. This pair indicates that the UUV must begin task j no earlier

than lij time units after task i, and no later than ui3 time units. after task i if both

tasks i and j are completed, namely, lij < uij. Lij represents the set of arcs ij for

which a (lij, uij) pair exists.

* fi, a reward for completing each task. The objective function is to maximize the sum

of these rewards.

* T, an upper bound in mission elapsed time, or the time elapsed since executing the

start task.

The decision variables are:

* zi, a binary variable, where a value of 1 indicates that node (task) i is visited (that

the UUV completes task i), and a value of 0 indicates that node (task) i is not visited,

for all i E {1, ... , n}.
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" yij, a binary variable, where a value of 1 indicates that arc (i, j) is selected for travel,

and a value of 0 indicates that arc ij is not selected, for all i E {0, ... , n - 1}, j E

{ 1, ... , n}. By construction, there are no incoming arcs to the start node, node 0, and

no outgoing arcs from the end node, node n.

" pi, a continuous variable indicating the time at which the UUV begins task i, for all

i E {1, ..., n}.

The objective function is 1 fizi which will be maximized.

The deterministic model, in compact form utilizing big-M constraints where there are

n tasks, follows. M is a number large enough to enforce binary constraints; in this case, a

number slightly larger than T is used.

n

maximize fizi

subject to yii 0

ZYij Zi
j=1

n-1

Yij = 3 Z
i=O

p3 - A cij - M(1 - yi)

Pj -Pi > li - M(2 - zi - zj

Pj -Pi < uii + M(2 - zi - zj

pi -po > ai - M(1 - zi)

pi -po bi + M(1 - zi)

Pn - Po < T

ZO, Z" = 1

yij E { {1}

Pi > 0,

Vi E {1, ... ,I n - 1}

Vi E f{, ... , n-1}

Vj E {1, ..., n}

Vi E {o, ..., In - 1},j , f.. n}

) Vi E Lij

Vi E Li2

Vi E Bi

Vi E Bi

zi E {0, 1} Vi 5 0, n

Vi E {0, ... , In - 1}, j E {1, ... ,n}

pi < T

The reward functions are set by the user and can be as simple as a constant value

assigned to each node, which is collected when that node is visited.

Constraint (3.2) forbids the UUV to travel from task i back to task i; (3.3) and (3.4)
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dictate exactly one incoming arc and one outgoing arc for tasks visited, and conversely

exactly zero incoming and outgoing arcs for tasks not visited. They are adjusted to account

for the starting task having one outgoing and zero incoming arcs, and for the ending task

having one incoming and zero outgoing arcs. These constraints ensure that the path chosen

by the model is a coherent path with no disjoint cycles. They also ensure that the UUV

does not repeat tasks.

Constraints (3.5)-(3.10) and constraint (3.13) ensure that the schedule obeys the chrono-

logical limitations given by the data. For example, in (3.5), if the arc from i to j is chosen,

then the timestamp of task j should be at least equal to the timestamp of task i, plus

the sum of the travel time from task i to task j and the completion time of task i (in

this model we fold task duration and travel time into the single quantity ci). Constraint

(3.11) forces completion of the start and end tasks. The subsequent constraints encode this

consideration for other chronological constraints, including inter-task constraints and the

final elapsed-time deadline T.

3.1.1 An Example

To better understand the formulation (3.1)-(3.13), consider a UUV with four potential tasks,

including a starting point and a final rendezvous point. In Figure 3-1, circles represent tasks,

and arrows represent possible travel arcs. Consider the following requirements:

" The vehicle must arrive at Task 3 (the end task) within 12 time units from the mission

start.

" Task 1 takes 2 time units to complete.

" Task 2 takes 1 time unit to complete.

" Task 1 must be completed between 2 and 5 time units from the mission start if Task

1 is completed: 2 < p, < 5.

" Task 2 must be completed within 4 time units after Task 1 if both Task 1 and Task

2 are completed, and Task 2 must be completed after Task 1 if both Task 2 and Task

1 are completed: 0 P2 - P1 < 4.

" There is a reward of 3 for completing Task 1.

28



1 2

0 L

Figure 3-1: Example problem with four total tasks.

* There is a reward of 5 for completing Task 2.

In Figure 3-1, the numbers along travel arcs represent the number of time units it takes

to travel along that arc.

In the deterministic model, in order to minimize the number of nodes and thus the

problem size, the cij quantity is calculated for each node-arc pair. For example, c12 =

2 + 1 = 3, because Task 1 takes two time units to complete and the travel arc y12 takes one

time unit to traverse. Using these quantities, the following formulation corresponds to the

example problem shown.

maximize Ozo + 3zi + 5Z2 + Oz3

subject to Y11 = 0, Y22 0
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Yoi + Y02 + Yo3

Y12 + Y13

Y21 + Y23

Yoi + Y21

Y02 + Y12

Yo3 + Y13 + Y23

Pi - PO

P2 - PO

P3 - PO

P2 - P1

P1 - P2

P3 -PI

P3 - P2

P2 - PI

P2 - PI

Pi - PO

PI - PO

P3 - PO

P3 - PO

ZO, Z3 = 1

yij E {0, 1}

Pi > 0,

pi < T'

The next chapter presents approaches for h

and travel times between tasks.

- zO

- ZI

= z2

= zi

- Z3

* 3- M (1 - yoi)

* 2-M (1 -Y02)

* 3- M (1 - Yo3)

* 3 - M (1 - y 12 )

* 3 - M (1 - Y21)

> 4 - M (1 - Y13)

> 3 - M (1 - Y23)

* 0 - M (2 - zi - Z2)

* 4 - M (2 - zi - z 2 )

* 2 - M (1 - zi)

* 5 + M (1 - zi)

> 0

<12

zI, z2 E {0, 1}

Vi E {0, 1, 2}, Vj E {1, 2,3}

Vi E {0, 1, 2}

Vi E {0, 1, 2}

andling uncertainty in task completion times

30



Chapter 4

Models Under Uncertainty

This thesis models a problem where all uncertainty comes from the environment (tides, wind

currents, etc.) These sources of uncertainty only influence task duration and travel times

between tasks. This model assumes that data such as Bi and Lij, temporal constraints

between tasks or delineating exact execution windows for particular tasks, do not have

uncertainty. Therefore, there are two sources of uncertainty in this problem: uncertainty in

travel times between tasks, and uncertainty in task completion times. By this assumption,

and because the model folds these two pieces of data into the quantity cij, the result is

only one uncertain value per row. One important implication of these modeling choices is

that only the constraint relating timestamps to travel times will incur uncertainty when the

formulation shifts to the robust model (constraint (3.5) in Chapter 3).

For this example, consider the following uncertainties:

" Task 1 may take from 1 to 3 time units to complete.

" Task 2 may take from 1.75 to 2.25 time units to complete.

" It may take from 1 to 3 time units to travel from Task 1 to Task 3.

" It may take from 1.5 to 2.5 time units to travel from Task 2 to Task 3.

4.1 Modeling uncertainty

This model uses uncertainty sets rather than probabilistic frameworks to model the un-

certainty in the problem. Due to the sources of uncertainty in the problem, it is virtually
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impossible to appropriately model the resulting randomness probabilistically. Namely, the

vehicle may encounter disturbances in task completion and travel times due to such di-

verse sources as tides, wind-driven currents, deep ocean currents, and ocean-going traffic,

among others. Furthermore, some of these sources have geography-based and time-based

dependencies, additionally complicating the modeling process. Therefore, this thesis uses

uncertainty sets constructed using a set of nominal travel times Eij and a set of maximum

possible divergences from those nominal values cij expected given reasonable knowledge

of the intended travel environment. Then each uncertain value ijj belongs to an interval

Uij = [aij - ij, ij + ij] which is the uncertainty set for that particular uncertain coeffi-

cient.

For this application, this type of "box" uncertainty set is appropriate because pelagic

travel times are often affected by factors which take the form of an average quantity plus

or minus some disturbance. Tidal currents are a good example: a typical tidal cycle may

have an average current speed of 0 knots, plus or minus 2 knots depending on the state of

the cycle.

A F value is chosen for each row of the A matrix containing an uncertain coefficient. In

my modeling framework, the F value represents the number of uncertain coefficients which

are allowed to take their worst-case value. Therefore it must be less than or equal to the

number of uncertain coefficients to the vector of decision variables in each row of the A

matrix.

As touched on briefly above, this model uses cardinality-constrained robust optimization

to handle the uncertainty in the problem. However, when there is only one uncertain coef-

ficient per row, cardinality-constrained optimization is problematic. The F value is meant

to spread risk over multiple uncertain coefficients per row; if there is only one uncertain

coefficient, then the user is essentially just setting a new, more conservative Bij (nominal

value) for the travel time in that row.

Consider this example. For the path from Task 1 to Task 2, the given uncertainty implies

that c12 E [2, 4]. For symmetrical box uncertainty sets, it follows that 12 = 1 and Z12 = 3.

If the user chooses F12 = 0.5, then the effective value of c 12 will be 3 + (0.5 * 1) = 3.5. In

other words, the F value for one uncertain coefficient does not add robustness in the sense

of spreading risk; it just makes the solution value more conservative.

The computational results from the naive approach demonstrate these weaknesses, de-
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tailed later in this chapter.

The uncertainty is modeled in four different ways: a naive approach, which does not

reformulate any decision variables; a full affine policy, which takes every possible travel arc

into account; an All Incoming Arcs affine policy, which takes into account all incoming arcs

to a given node; and an h-Nearest Neighbors policy, which takes into account incoming arcs

from the h nearest nodes to a given node. The next sections describe the uncertainty sets

for the three affine policies, which reformulate the decision variable pi. The uncertainty set

for each jj for the naive approach remains the box uncertainty set discussed above.

4.1.1 Full affine policy

The full affine policy reformulates each pi as an affine combination of all possible travel times,

so that each individual F value (one per row) spreads uncertainty over many uncertain

coefficients rather than over a single uncertain coefficient. This approach eliminates the

effects of having only one uncertain coefficients.

Each timestamp PA, Vk E (1, ... , n) is reformulated in the following manner:

Pk -0 0 1c0 1 - &02C02 (n-1)(n)C(n-1)(n)

where po is a decision variable unique to each Pk and each a& is a decision variable, unique

to each affine combination. The index (k, i, j) refers to the timestamp k and the arc (i, j).

There will be one a for each timestamp and for each travel arc. Not only does this method

spread risk over many uncertain coefficients, rather than having each F value correspond

directly to one uncertain coefficient, it also retains full flexibility of potential task orderings

and selection in the model. Because most tasks are not pre-ordered, any assumptions

regarding which travel times are "likely" to contribute to each timestamp restricts the

scope of the uncertainty. In order to account for all possible task orderings, each possible

travel time is allowed to potentially contribute to each timestamp.

The relevant uncertain constraint follows:

Pk - P ij - M(1 - yij)

The method retains the box uncertainty sets discussed in section 4.1 for each &jj value,

so that the uncertainty set U1 for the full affine policy and the compact reformulation of
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each timestamp PA follows:

Pk + P

i,J

Z E U1 = i {Ej 1, cj
C% - Ci mi<]kFk

4.1.2 All Incoming Arcs affine policy

For this policy, instead of each timestamp being reformulated as an affine combination

of all possible travel arcs, each timestamp is reformulated as an affine combination of all

travel arcs flowing into that timestamp's corresponding node. In other words, this approach

assumes that the uncertainty in the travel arc traversed immediately previous to executing

task k has the most influence over the execution time of task k. This approach helps

mitigate the problem of large numbers of additional variables, as well as greatly decreasing

the number of nonzero coefficients in the A matrix. It does not capture the full complexity

of the real-world problem, but the assumption is reasonable for this application.

Specifically, formulate each timestamp as follows:

Pk = Po0k Okk+ 0kk a+ + (n-1)k(n-1)k,

where, as in section 4.1.1, each pk is a decision variable, and each aik is a decision variable

associated with each travel arc (i, k), where i = 0, ... , n - 1, i 0 k.

Then the uncertainty set U2 and the compact reformulation of each timestamp Pk for

the All Incoming Arcs policy follows:

PkkAk= aik ij -+ PO

C E U2 { aI j 1,

| ik - ik i i l < i Pk
Cik Ci
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4.1.3 h-Nearest Neighbors affine policy

This policy restricts the arcs which contribute to the affine combination for each timestamp,

to include only the incoming arcs from the h nearest nodes to each node. In the case where

the end node is one of the h nearest neighbors, the timestamp is formulated as an affine

combination of the other h - 1 nearest neighbors. "Nearest" refers to closest in terms of

physical location. Hk is the set of the h nodes nearest to node k.

Then the uncertainty set U3 and the compact reformulation of each timestamp Pk for

the h-Nearest Neighbors policy follows:

Pk - 'kij + PO,
icHk

6EEz-U3= i(2 i 0 <

Cik-f~ cCick -+ F il<kl>
icHk iH 1  c21 J

4.2 Robust Counterparts

This section presents the explicit robust counterparts to the uncertainty sets discussed in

Chapter 2.

4.2.1 Naive approach

This initial approach applies cardinality-constrained robust optimization to the determin-

istic problem, as laid out in Chapter 2. The user chooses a F value for each row containing

an uncertain coefficient that represents the budget of risk for that row. In this case, that F

value exactly corresponds to the budget of risk for the one uncertain coefficient in its row;

in other words, each rij describes exactly the budget of risk for its corresponding aij value.

As mentioned above, the jj values are subtracted over into the A matrix in order to fa-

cilitate applying cardinality-constrained robust optimization. Then the relevant constraints

with uncertain coefficients (those constraints relating the travel times between tasks) look

as follows:

Pj - Pi - j > --M(1 - yij).
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The constraint is then multiplied across by -1 in order to reverse the direction of the in-

equality to match the theoretical basis provided in Chapter 2:

pi - pj + ij < M(1 - yij).

Next a protection function is constructed for each arc ij, namely, /ij

max Cij IPn+11 zii

subject to zij < 17Z3

0 < zij < 1.

And take the dual:

min Fijqij + rij

subject to qij+rij ;>±

rij > 0

qij > 0.

As described above, by strong duality, substitute these constraints back into the original

nonlinear uncertain constraint to yield:

pi - pj + Eij + Fijqij + rij < M(1 - yij)

qij + rij

rij

qij

> .ij

> 0

> 0.

By plugging these new constraints into the deterministic formulation in place of the deter-

ministic travel time constraints, a linear robust formulation is developed:
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maximize

subject to

Pi - Pj + cij

n

fizi
i=1

yii = 0

Yij = Zi
j=1

n-1

Yzij = Z3

i=M

+ ]Fijqij + rij M(1 - yij)

qij + rij > cij

Pj - pi > lij - M(2 - zi - z1)

Pj - pi < ui + M(2 -zi - zj)

pi -Po ai - M(1 - zi)

Pi - PO < bi + M(1 - zi)

Pn - PO

Pn -PO

zo, Z" = 1

yije{0, 1}

rij > 0

qij 0

Vi {1,., n - 1}

ViE{f0, ... , n - 1}

VjE{1, ..., n}

ViE{ 0, ..., n - 1}, jcf{1, ..., n}

ViE{0, ..., n - 1}, JEfl ... n}

VicLij

VjcLij

ViEBi

VicBi

>0

<T

ziE{0, 1} Vi # 0, n

ViE{0,..., n - 1}, j{1, ..., n}

ViE{O,..., n - 1}, j{1, ..., n}

Vic{O,..., n - 1}, jE{1, ..., n}.

4.2.2 Full affine policy

For the determination of the robust counterparts for the three affine policies, this chapter

shows the process once for the most complex case. The process is the same as that outlined

in Chapter 2 and section 4.2.1.

Following the convention from section 4.1.1, each uncertain constraint then takes the

following form:
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PO + ao1ic1 + aW2c02 + - + a fll)(n)c(n-1)(n)

-- + a 0 2 0 2 + - - - + a(ln- 1)(n)(n-1)(n) ) + akl

M (1 - YkI) (4.1)

for all arcs (k, 1) and all arcs (i, j), where k $ l and i $ j.

The robust counterpart based on Equation 4.1, including uncertainty in the aij quanti-

ties, is below:

Theorem 1. The robust counteTpart to Equation 4.1 is

Pk Po± E j
i j i

+Fklqkl + rkij
2 3

j

+ kI

+ Y Sij -+ rjk

2

qk1 + E 5 kjj > Cijtkij

-qkl + riij -ijtiij
ij

k1 + rikI > 4k1

-tkij a*i tkij

qkl 0, kij 0, r1ij > 0, tkij > 0, rk1 > 0

Proof. Cardinality-constrained optimization as in [7] is applied to these uncertain con-

straints:

Po Po + Z jcij -
ij

(s
-|-max c 3

a3ij Cj + Ckl1

3

Wkij - I
5 M (1 - Ykl)

The protection function, an optimization problem which describes the uncertain aspects of

each row of the A matrix as restricted by the risk allocation parameter skl, for each arc k1
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c 1i ij lij -+ clWkl)



max >3 I Z Zkij -- >3 > iy zaij + CklZkI

i j i j

subject to E z - >3>3 Zhi + ZkI < FkI
i j i j

0< Zki1 1

0 < zlij K 1

0 Zk K 1

Vi = 0, ... , n - 1, j = I,-.., n, j i

Again take the dual:

subjec

min Fklqkl + E kij >i + E rij - Tkl

i j i j

t to qkl + E E rkij > ij a*

2 3

-qkl -r rlij > -Cijj a.*
i j

qk1 + rkl > 4k

-tkij < OZ3 < tkij

qk1 > 0, rkij > 0, r1i > 0, rkl > 0 tkij > 0

Vi = 0, ..., In - 1,J = 1, ... , n, j i

V =0 ---, In - 10 = 1, -- ,n, j i

Vk, i = 0, ..., n - 1, n = , ., ,

Vk, 1, i, j.

Finally, substitute back into the original formulation to give the full robust formulation.

The following index sets are assumed: Vi E {0, ... , In - 1}, j E {1,..., n}, Vk = 0, ... , n - 1,l =

1, ..., n. These sets correspond to the constructed arcs (i, j) of the problem and the available

tasks k.

n

fi zi

Yii = 0
n

E Yij = Zi
j=1

n-1

E Yij = ZJ
i=0

Vi E {1, ... , n - 1}

Vi E f0, ..., n - 1}

Vj E {1, ..., n}
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subject to

where k 7 1, for all k = 0, ...,I n - 1, 1 = 1, ... , n, then is:

Alk:



k 1 k
PO P0± L2 Ej a . Czj - (E Ej 0% Cij ) + 4k1

+Fklqkl ± Ei L rk + Li Lj rijg + rkl < M (1 - Ykl)

qki + Li Ljrkij Cijtkij Vij, k, 1, i 0 j

-qki + >: E rij > -ijtiij Vi, j, k, 1, i 0 j

qkl + rkl I1

-tkij < aj < tkj Vk,l,i,j

Pi - A> p - M(2 -zi - zi) Vilj

pj -pi < ui + M(2 -zi - zj) Vilj

pi ai - M(1 - zi) Vi

p b + M(1 - zi) Vi

Pn - PO < T

zo, z = 1 zi E {0, 1} Vi , 0, n

Yij E {0, 1}

Pi >_ 0, pi < T

qki > 0, rkij > 0, r1ij > 0, tkij > 0, rkl > 0 Vk, l,i,j.

This formulation allows every travel arc and task in the problem to potentially contribute

to the execution time of any task k, subject to any additional constraints, which captures the

complexity of the real-world problem. It also allows the user to allocate risk over multiple

uncertain coefficients, which ameliorates the brittleness issue inherent in assigning a F value

to only one uncertain coefficient per row of the A matrix. However, the formulation has the

significant disadvantage of being intractable for any realistic-sized problem, indeed, for any

problem of more than four total nodes. Specifically, this intractability is due to the dense A

matrix and the large number of additional variables. In the uncertain constraints, the vast

majority of the coefficients in each row are nonzero. The number of variables also increases

on the order of n 2 , further slowing computation time.

To illustrate these problems, the robust counterpart to one of the uncertain constraints

discussed in our example is shown below. Consider again the arc (1,2) from Task 1 to Task
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2, with the uncertainty sets outlined above. The original uncertain constraint is

P2 - P1 >- 12 - M(1 - y1 2 )-

After reformulation, this constraint takes the form

Po + &O1 01 + a02 02 + a0 3C0 3 + a 1 2C12 + a 13C13 + a21c21 + a23C23
2 2- 20 2- 2-1 2- 23

P P 02 + a2 161 2 + a02 A 2 + a 03e03 + a 22 12 + a 23 13 + a2 1C2l + a23C23 12

< M(1 - Y12).

and its robust counterpart follows:

2 3
1 - 2 aIeiPO Po + 

i=0 j=1
2 3

+ F 1 2 q 1 2 + E E ij
i=0 j=l

2 3

-- Z a ij + l2
i=0 j=1

2 3

+ E E r 2ij - r 1 2

i=0 j=1

< M(1 - Y12)

Vi E 0, 1, 2, j E 1, 2, 3

Vi E 0, 1, 2, j E 1, 2, 3

q12 + T1ij > ijtiij

i a

-q12 + > > T >2 - -aijt 2ij
z 3

q12 - r 12 > a1 2

-tis < a' tij

q12 0, rTij 0, r2ii 0, tigj > 0, t2ij > 0, r12 0

Vi

Vi

E

E

0,

0,

1,2,jE

1, 2, j E

1, 2,3

1,2,3.

As is apparent, this single constraint for quite a small problem has many additional

variables and many nonzero coefficients, with serious implications in terms of increased

running time required.

The formulation given above does have the advantage of being readily adjustable to

approximation measures, such as formulating each timestamp as an affine combination of

some reasonably chosen subset of travel arcs, instead of all travel arcs. The next sections

propose two such approximation measures.
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4.2.3 Restricted affine policies

Due to the denseness of the A matrix in the previous model and the large number of

additional variables, this thesis considers two simpler affine policies.

All Incoming Arcs

With this formulation, following the convention of section 4.1.2, each uncertain constraint

takes the following form:

Po+ a0kk + a1kC0k + + a(n_1)k(n-1)k

- Pj+ a0 1C01 + aOiqo- + -+ a(n_1)I(n_1lI) + Ckl

< M (1 - YkI).

After applying the same procedure demonstrated in the proof above, and the following

robust counterpart is obtained:

The following is assumed: Vi E {, ... , n- 1}, j E {l, ... , n}, Vk = 0, ... , n - 1, = .

fi(zi)

ZO, Zn = 1

Yij E {0, 1}

yii = 0
n

Yij = Zi
j=1
n-1

Yij = Z
i=0

zi E {0, 1} Vi $ 0, n

Vi E {1, ... ,I n - 1}

Vi E {0, ... , n-1}

VJ E {1, ..., n}

(a lii +z) Ek

+ FklqkI + rik - ril

ii

qk + Tik >- Ciitik

-qk + -r- > tk

qkl + rkl > Ckl

-+ Ski < M (1 - Ykl)

Vik,l,i f k

Vilklii 0 k
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-tik - Ck - tik Vkii # k

p -pi > ij -M(2-zi -z) Vi, j

pj - pi < uij + M(2 - zi - zj) Vij

pi > ai - M(1 - zi) Vi

Ai :! bi + M(1 - Zi) Vi

Pn -PO < T

Pi > 0, pi < T

qkl > 0, rik 0, tik 0, Ski > 0 Vk, l,i,j.

This formulation does not exactly replicate the full structure of the problem; as dis-

cussed above, it assumes that the immediately previous travel arc is the largest influence

on the pk decision variable. However, this modeling decision also reflects reality, in that

the uncertainty between the previous timestamp and the current timestamp stems totally

from whichever travel arc lies between the two relevant nodes. Therefore it is reasonable

to assume that this formulation, while not encompassing the full scope of the problem,

nevertheless does not artificially restrict the path-planning of the model.

Computationally, this formulation significantly decreases both the number of nonzero

coefficients in the A matrix and the number of variables in the problem. These simplifica-

tions improve its tractability over the full affine formulation.

h-Nearest Neighbors

Without rehearsing again the mechanics of arriving at the appropriate constraints (similar

to the All Incoming Arcs policy, but restricted) the final form of this robust counterpart

follows:

The following is assumed: Vk = 0, ..., n - 1,= 1, ... , n.

n

maximize fizi

subject to zo, zn = 1 zi E {0, 1}Vi # 0, n

Yij E {0, 1}

yii = 0 Vi E {1, ..., In - 1}
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n

E Yij = Zi
j=1
n-1

E Yij = Zj
i=O

PkO - PIO + aikCik - ajlCjl -+ cikcl

-qkl + il > -cltil

qk1 + rkl 61

-tik ak < tik

Pj - Pi lij - M(2 - zi - z3 )

Pj - Pi < uij + M(2 - zi - zj)

pi ai - M(1 - zi)

pi bi + M(1 - zi)

Pn - PO

Pi 0,

qkl > 0, Tik 0, tik ! 0, SkI > 0

Vi E {O, ... , n-1}

Vj E {1, ..., n}

<M(1 -Ykl)Vi G HkVj E H

Vil k l1i 7 k

Vil k7 l1i :7 k

Vk,i,i = k

Vi, j

Vi, j

Vi

Vi

p<T

pi < T

Vk, 1, i, j-

where Hk is the set of h nodes closest to a given node k and H is the set of h nodes closest

to a given node 1.

This method again decreases significantly the number of nonzero coefficients in the

A matrix from the All Incoming Arcs method. Its tractability is improved over the All

Incoming Arcs method, as shown in the next chapter.
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Chapter 5

Computational Results

This chapter demonstrates that the methods detailed above can solve problems of a realistic

size in a reasonable running time, showing the tractability of the methods. It further

demonstrates the quality of these solutions through simulation, by comparing both failure

rates and expected reward (objective function value) of the All Incoming Arcs method

(4.2.3) and the h-Nearest Neighbor method (4.2.3) versus the deterministic method (3) and

the naive method (4.2.1). Additionally this chapter shows that most of the improvement in

objective function value is achieved in the first quintile of time required to find the provably

optimal objective function value. This last observation supports the tractability of the

approaches presented in the thesis.

Sample problems were randomly generated ranging in size from 12 tasks (including start

and end) to 32 tasks. Fifty problems were generated of each size. For each problem, a list

of n latitude-longitude pairs was randomly chosen (where n is the number of tasks) and its

corresponding list of travel times between each pair of tasks. Rewards were then randomly

assigned to each task, excepting the start and end tasks, which had reward 0 for every

problem. The upper bound T was randomly chosen, choosing from a user-defined range

that spanned very loose bounds to quite tight bounds. For the robust problems, maximum

divergences were randomly generated ii from Zgy for each arc (i, j). These divergences were

between 5 and 20 percent of eij. Finally, the F value for each row of the robust problems

was randomly selected from a user-chosen range.

The problems were run on a MacBook Pro OS 10.6.8, with a 2.4 GHz Intel Core Duo

processor and 4GB of RAM, and the runtime is reported in seconds. The MILPs were
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optimized using PuLP [1] as a modeler and Gurobi [14] as the solver.

Each solution was tested by simulation, using a simulator in Python which randomly

generates a speed-of-advance for the vehicle at each 1-minute timestep. This speed of

advance is used to generate the simulated distance traveled by the vehicle during that

minute. This distance traveled is then compared to the distance traveled required by the

solution being tested to get to the next task on time. If the simulated progress of the vehicle

falls too far behind the solution being tested to make it to the next task on time, then the

simulator records that event as a failure of the solution being tested. A buffer value of

30 percent of the average distance between tasks was used to mean too far behind. The

maximum possible divergence from the nominal travel time used to calculate the speed-

of-advance is 30 percent of the nominal travel time, a worse-case scenario than the robust

problems assumed. The simulator also records the point in elapsed time at which each

failure happened.

5.1 Runtime results

Table 5.1 and Table 5.2 present the mean and quartiles for 50 random problems of the given

size. In the following tables, the heading "Det." refers to the deterministic problem, "All"

refers to the All Incoming Arcs method, and the heading "h-NN" refers to the h-Nearest

Neighbors method.

Det. Naive All h-NN
Size Mean SD Mean SD Mean SD Mean SD

12 0.02 0.02 0.02 0.02 3.26 6.07 0.82 1.06
17 0.14 0.20 0.16 0.26 389 1040 242 781
22 0.18 0.17 0.12 0.10 532 1140 56.9 83.3
27 0.24 0.29 0.25 0.21 2630 -3530 1 203 234
32 1.36 1.88 1.09 0.92 21700 19100 1820 3070

Table 5.1: Mean and standard deviation, reported in seconds, of runtime of various problem
sizes. "All" indicates the All Incoming Arcs method, and "h-NN" indicates the h-Nearest
Neighbors method.

Table 5.1 shows that the deterministic method is consistently very fast; the All Incoming

Arcs method is the slowest, while the h-Nearest Neighbors method tends to perform one

order of magnitude better than the All Incoming Arcs method. The h-Nearest Neighbors

method averages half an hour for the largest problems. However, the means are somewhat
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skewed by outlying problems, as indicated by typically large standard deviations. Table 5.2

shows that the robust methods in particular perform better than the mean would indicate.

The median for the largest problems for the h-Nearest Neighbors method is ten minutes,

instead of half an hour. These results also show that the deterministic method performs

better than its means would indicate.

Det. Naive All h-NN

Size Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

12 0.01 0.01 0.01 0.01 0.01 0.01 0.38 0.95 2.44 0.13 0.59 0.87
17 0.02 0.09 0.19 0.03 0.06 0.18 18.4 25.9 198 3.10 8.22 49.5
22 0.06 0.11 0.23 0.07 0.11 0.13 68.3 164 303 11.0 20.8 65.1
27 0.09 0.10 0.21 0.13 0.13 0.23 534 1040 3540 42.2 141 273
32 0.30 0.85 1.63 0.35 0.74 1.51 8960 13800 29500 491 601 1960

Table 5.2: First" second, and third quartiles, reported in seconds, of runtime of various

problem sizes. "All" indicates the All Incoming Arcs method, and "h-NN" indicates the

h-Nearest Neighbors method.

Figure 5-1 shows the median runtimes of the four solution methods. The behavior of

the runtimes indicates that the robust methods have the potential to scale relatively well,

especially given the behavior in Figures 5-2 and 5-3.
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Figure 5-1: Median runtime shown graphically for the deterministic, naive, All Incoming

Arcs, and h-Nearest Neighbors methods.

Figures 5-2 and 5-3 demonstrate that, even though the computation time is long for the

h-Nearest Neighbors policy, the significant majority of solution improvement is achieved

very early in terms of computation time required to produce the optimal solution with a

tolerance of 1 x 10-10; the remaining time required has immensely diminished rewards. This

pattern holds for the deterministic case as well.
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Figure 5-2: Rate of improvement shown for seven randomly selected problems with 22 tasks,
with the h-Nearest Neighbors method. Each color indicates a separate problem instance.
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Figure 5-3: Rate of improvement shown for eleven randomly selected problems with 22
tasks, with the deterministic method. Each color indicates a separate problem instance.
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5.2 Solution quality results

This section presents the results of simulating solutions. Figure 5-4 illustrates the process

of simulation described at some length at the beginning of this section.

compare progress

not behind behind

add one failure,
record time

Figure 5-4: This flowchart shows the simulation process. Arcs represent information being
passed, blocks represent executable steps. The process takes place once a simulated minute.

Table 5.3, Table 5.4, and Figure 5-5 show the expected reward for each method for

each task size, based on simulation. The objective function value of this problem is to be

maximized. The expected reward for each problem has been normalized to a maximum

value of 1, to allow for side-by-side comparison.
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Det. Naive All h-NN
Size Mean SD Mean SD Mean SD Mean SD

12 0.51 0.12 0.51 0.08 0.98 0.05 0.98 0.05
17 0.46 0.13 0.46 0.12 0.92 0.27 0.97 0.14
22 0.40 0.09 0.43 0.13 0.99 0.04 0.99 0.04
27 0.42 0.16 0.41 0.16 0.94 0.16 0.97 0.14
32 0.41 0.17 0.33 0.08 0.99 0.03 0.92 0.25

Table 5.3: Normalized expected reward (objective function value) for each method for each
task size, based on simulation.

Det. Naive All h-NN
Size Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

12 0.45 0.50 0.53 0.47 0.51 0.56 0.97 1 1 1 1 1
17 0.40 0.44 0.52 0.38 0.43 0.51 1 1 1 1 1 1
22 0.35 0.38 0.46 0.35 0.40 0.48 1 1 1 1 1 1
27 0.32 0.38 0.45 0.30 0.38 0.45 0.98 1 1 1 1 1
32 0.29 0.35 0.49 0.27 0.33 0.38 1 1 1 0.98 1 1

Table 5.4: First, second, and third quartiles of expected reward normalized to 1.

Expected Reward of FourMethods
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Figure 5-5: Normalized
deviation bars.

expected reward for each method for each task size, with standard

While it appears that the h-Nearest Neighbors method performs better than the All

Incoming Arcs method, the standard deviations demonstrate that this difference is not

significant.
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Table 5.3 and Figure 5-5 demonstrate that the robust methods substantially outperform

the deterministic method in terms of expected reward. Notably, the standard deviation bars

do not overlap. Table 5.4 shows that the first, second, and third quartiles of expected reward

for our robust methods clusters very closely to the maximum possible reward. The expected

reward for the deterministic method does not deliver the same value.

The next tables show the results of simulation in terms of failures and failure points.

Each solution was simulated 200 times. Table 5.5 and Table 5.6 present the mean and

quartiles for 50 problems of the given size. A mean of 25, for example, indicates that

there were on average 25 failures out of 200 simulations for that task size, averaged over 50

problems.

Det. Naive All h-NN
Size Mean SD Mean SD Mean SD Mean SD

12 97.4 24.5 98.0 16.0 5.06 9.41 3.18 9.37
17 107 25.7 108 23.3 16.3 54.1 6.78 28.8
22 120 17.3 113 25.0 2.82 8.75 2.31 7.00
27 117 31.6 119 31.2 11.3 31.1 5.41 28.3
32 119 33.3 135 15.9 2.06 5.64 16.9 49.7

Table 5.5: Mean and standard deviation of number of failures over 50 problems of each size,
simulated 200 times each. The average number of failures is out of 200 trials.

Det. Naive All h-NN
Size Q1 Q2 Q3 Qi Q2 Q3 Q1 Q2 Q3 Qi Q2 Q3

12 94 101 111 88.5 99 107 0 0 7 0 0 0
17 96.5 113 121 98.5 115 124 0 0 0 0 0 0.5
22 109 124 131 104 120 130 0 0 0 0 0 0
27 110 124 136 110.5 125 140 0 0 5 0 0 0
32 102 131 142 124 135 147 0 0 0 0 0 3.75

Table 5.6: First, second, and third quartiles of number of failures over 50 problems of each
size, simulated 200 times each. The number of failures is out of 200 trials.

Table 5.5 and Table 5.6 indicate that the deterministic solutions fail very frequently,

over half the time even when considering quartiles instead of the mean. On the other hand,

the robust solutions fail very infrequently, less than ten percent of the time in the worst case

(the h-Nearest Neighbors mean for 32 tasks). The quartile results for the robust methods

indicate that typically, these solutions fail extremely infrequently in simulation.

Table 5.7 and Table 5.8 below illustrate the points of failure for each solution size. The

number reported indicated the percentile of total solution time T at which the solution
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being tested failed, if it failed. Table 5.7 and Table 5.8 present the mean and quartiles for

the points of failure for each of 200 simulations for each of the 50 problems for a given size.

Det. Naive All h-NN

Size Mean SD Mean SD Mean SD Mean SD

12 0.20 0.13 0.20 0.12 0.17 0.12 0.09 0.12
17 0.22 0.18 0.23 0.19 0.17 0.05 0.07 0.08
22 0.20 0.17 0.18 0.17 0.08 0.04 0.10 0.07
27 0.17 0.17 0.17 0.17 0.12 0.08 0.08 0.02
32 0.18 0.19 0.19 0.19 0.07 0.04 0.19 0.13

Table 5.7: Mean and standard deviation of failure points
simulated 200 times each.

over 50 problems of each size,

Det. Naive All h-NN
Size Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

12 0.11 0.17 0.26 0.11 0.17 0.26 0.07 0.14 0.26 0.01 0.03 0.16
17 0.08 0.18 0.30 0.09 0.17 0.31 0.12 0.18 0.20 0.02 0.03 0.11
22 0.08 0.15 0.28 0.07 0.12 0.22 0.05 0.07 0.09 0.05 0.07 0.12
27 0.06 0.11 0.23 0.05 0.10 0.21 0.05 0.09 0.22 0.07 0.08 0.09
32 0.05 0.11 0.23 0.06 0.12 0.26 0.04 0.08 0.09 0.05 0.25 0.29

Table 5.8: First, second, and third
simulated 200 times each.

quartiles of failure points over 50 problems of each size,

Table 5.7 and Table 5.8 indicate that solutions of all three types tend to fail early in the

solution timeline, when they fail. This tendency is more pronounced for the robust methods,

but even the third quartile for the deterministic method indicates that failures take place

in the first 30 percent of the solution timeline. Figures 5-6, 5-7, and 5-8 demonstrate this

tendency visually. This pattern holds for other problem sizes.
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Figure 5-6: Number of failures in each decile of the overall solution time for the deterministic
method, size 22 tasks.
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Figure 5-7: Number of failures in each decile of the overall solution time for the All Incoming
Arcs method, size 17 tasks.
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Figure 5-8: Number of failures in each decile of the overall solution time for the h-Nearest
Neighbors method, size 22 tasks.

Figure 5-9 demonstrates that, when h-Nearest Neighbor solutions fail, they fail later in

the solution timeline as the problem size grows. The opposite pattern holds true for deter-

ministic solutions. This tendency suggests that the h-Nearest Neighbor method becomes,

if anything, slightly more robust with larger problem sizes. This data is also reported in

Table 5.8.
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Figure 5-9: Median failure points for the deterministic, naive, All Incoming Arcs, and

h-Nearest Neighbors methods.

These results demonstrate that these methods can solve problems of up to 32 tasks in a

reasonable runtime. Simulation demonstrates that using robust optimization improves the

quality of the solution in terms of likelihood that the optimal plan yielded by the model

would succeed in an uncertain environment. Simulation also demonstrates that the robust

policies perform much better in terms of expected reward than the deterministic method,

and furthermore that the robust policies yield expected reward very close to the maximum

reward possible.

56



Chapter 6

Conclusions

This thesis presented a novel method for robust route optimization for unmanned under-

water vehicles, wherein each key decision variable (each timestamp) is reformulated as an

affine combination of all travel arcs in the planning problem. It also presented two restricted

versions of this method. The All Incoming Arcs approach formulated each timestamp as

an affine combination of the travel arcs flowing into that timestamp's node. This approach

was more tractable than the full affine method, being able to handle up to 22 tasks in a

reasonable runtime, but it was much less tractable than the deterministic problem. The

h-Nearest Neighbors method formulated each timestamp as an affine combination of the

travel arcs flowing into that node from that node's h nearest neighbors. This method was

much more tractable than the All Incoming Arcs method, but still less tractable than the

deterministic formulation. As shown in the computational results, the h-Nearest Neighbors

method could handle up to 32 tasks in a reasonable runtime; larger problems were not

tested for this paper.

Despite the disadvantages of the restricted affine policies, they do provide highly robust

solutions which supply ample buffer time between nodes to protect against uncertain events

such as tides, currents, and surface traffic, among others.The h-Nearest Neighbors method,

in particular, achieves nearly 100% of expected reward in simulation, with a typical failure

rate of under 5%, suggesting increased robustness. Unlike previous robust attempts like the

naive robust approach, it is not brittle; it also enjoys some computation time advantages

over prior art in the area of robust solutions (see [9, 10]). There is certainly room for

improvement, which should be sought in other heuristics which further decrease the number
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of nonzero coefficients in the A matrix without compromising the scope of the model.

Future work might include further refining a restricted affine policy of the kind presented

in this thesis; it may also include a multistage adaptive affine policy, wherein the problem is

optimized over multiple time stages. Finally, future work could involve including Crimmel's

work on navigation points. Adding navigation points to the mix of path planning constitutes

another layer of complexity, and may require other approaches.
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