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Abstract

A recent sequence of works, initially motivated by the study of the nonlocal properties of

entanglement, demonstrate that a source of information-theoretically certified randomness

can be constructed based only on two simple assumptions: the prior existence of a short

random seed and the ability to ensure that two black-box devices do not communicate (i.e.

are non-signaling). We call protocols achieving such certified amplification of a short random

seed randomness amplifiers.

We introduce a simple framework in which we initiate the systematic study of the possi-

bilities and limitations of randomness amplifiers. Our main results include a new, improved

analysis of a robust randomness amplifier with exponential expansion, as well as the first

upper bounds on the maximum expansion achievable by a broad class of randomness am-

plifiers. In particular, we show that non-adaptive randomness amplifiers that are robust to

noise cannot achieve more than doubly exponential expansion. We show that a wide class of

protocols based on the use of the CHSH game can only lead to (singly) exponential expansion

if adversarial devices are allowed the full power of non-signaling strategies. Our upper bound

results apply to all known non-adaptive randomness amplifier constructions to date.

Finally, we demonstrate, for all positive integers k, a protocol involving 2k non-signaling

black-box quantum devices that achieves an amount of expansion that is a tower of exponen-

tials of height k. This hints at the intriguing possibility of infinite randomness expansion.

Thesis Supervisor: Dana Moshkovitz

Title: Assistant Professor
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Chapter 1

Randomness Expansion

1.1 Introduction

Consider the following simple game, called the CHSH game: a referee sends each of a pair

of isolated, cooperating but non-communicating players Alice and Bob a bit x, y E {0, 11

respectively, chosen uniformly at random. Alice and Bob reply with bits a, b E {0, 1}, and

they win the game iff a @ b = x A y. If Alice and Bob employ classical strategies, the proba-

bility that they win the game is at most 75%. As a consequence, one readily sees that any

non-signaling strategy (i.e. a strategy in which each player's marginal output distribution is

independent of the other player's input) that wins the CHSH game with probability strictly

larger than 75% must generate randomness. Remarkably, there actually exists such a strat-

egy, allowing them to win with probability cos 2 (r/8) ~ 85%. Furthermore, the strategy can

be physically implemented using simple "everyday" quantum mechanical devices that utilize

shared entanglement [AGR81]. In his Ph.D. thesis, Colbeck [Col06] was the first to explicitly

observe that the CHSH game could be interpreted as a simple statistical test for the presence

of randomness: the test repeatedly "plays" the CHSH game with a given pair of black-box

devices. Provided that non-signaling is enforced between the devices (via space-time sepa-

ration or other means), the observation of a sufficiently high success probability can be used

to certify the generation of "fresh" randomness. In particular, the soundness of the test does
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not require one to assume that quantum mechanics is correct. (Of course, as far as we know,

the easiest way to actually pass the test is to perform certain specific quantum mechanical

measurements on two halves of an EPR pair!)

It is easy to see that without any assumptions, black-box randomness testing is impossi-

ble: if a (randomized) test T accepts a random source X with some probability p, by linearity

of expectation there automatically exists a deterministic source Y (i.e. a fixed string) that

is accepted with probability at least p. Thus it is quite surprising that a very simple phys-

ical assumption - that it is possible to enforce non-signaling between two devices - allows

for an information-theoretic method to test for randomness in the devices' outputs. As we

shall see, the test provides guarantees on the min-entropy of the outputs, which enables the

tester to later apply a classical procedure such as a randomness extractor to generate bits

that are nearly independent and uniformly distributed, making them useful in algorithmic

or cryptographic applications (for a survey on randomness extractors we refer to [Sha02]).

Starting with work of Pironio et al. [PAM+10], a series of papers [CK11, FGS13, VV12,

PM13] have demonstrated that not only can randomness be certified, but it can be expanded

as well. In [PAM+10], a protocol was given in which the testing requires m bits of seed

randomness, but the output of the devices is certified to have Q(m 2 ) bits of min-entropy.

Vazirani and Vidick [VV12] show that there exists a protocol that can produce 21(m) bits

of certifiable randomness starting from m bits of seed randomness. In their protocol, the

referee uses the seed to generate pseudorandom inputs for the two devices; the devices play

2 0(m log 2 m) iterations of (a variant of) the CHSH game on those inputs. The referee then

tests that the wins and losses of the devices obey a simple statistical condition. One can

show that, whenever the devices are designed in a way that they pass the test with non-

negligible probability, their output distribution (conditioned on passing) must have high

min-entropy. The test, however, is not robust in the sense that even a very slight deviation

by the devices from the intended behavior will result in rejection. Robust protocols for

exponential randomness expansion were devised in [FGS13, PM13] but they use two pairs

of devices, and furthermore rely on the strong assumption that there is no entanglement

7



between the pairs.

These prior works immediately raise a wealth of questions, for which there has been no

systematic investigation so far: What is the maximal expansion achievable? Could doubly

exponential expansion, or even an unbounded, expansion of randomness be possible? Can

exponential expansion be achieved using a more natural protocol that is robust to noise?

What are the minimal assumptions required on the seed quality? While many specific

protocols have been considered in the quantum information literature [CK11, FGS13, CR12],

to our knowledge no general model of randomness certification and amplification had yet been

formulated.

In this paper we introduce a simple and natural framework for randomness amplifica-

tion which captures nearly all previously considered protocols. We initiate the systematic

investigation of the possibilities and limitations of such protocols, which we call randomness

amplifiers.1 In particular, we present both the first upper bounds on the achievable ran-

domness expansion of natural protocols, as well as the first robust exponential lower bounds.

(Note that here, contrary to common usage in theoretical computer science, upper bounds on

randomness expansion are impossibility results, whereas lower bounds are possibility results.)

A puzzle. Before describing our results in greater detail, we invite the interested reader to

contemplate the following puzzle. Consider a protocol in which the referee chooses a single

pair of uniformly random bits x, y E {0, 1}, and sends x' and yf (x and y repeated n times

each) to two non-signaling devices DA and DB, respectively. The referee collects the devices'

output sequences (a,,..., an) and (bi,..., b), and accepts iff 85% ± 1% of the rounds i are

such that ai ED bi = x A y (i.e. the CHSH condition). Under the a priori assumption that

the devices pass this protocol with probability at least 99%, (i) what is the minimal amount

of randomness that the devices must have generated, and (ii) what are strategies for the

devices that achieve this while generating as little randomness possible?

'These protocols have been called "randomness expanders" or "randomness expansion protocols" in prior
works, but we adopt the term randomness amplifiers to avoid confusion with the traditional concept of
expanders.
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Tackling (i) consists in proving a lower bound, while (ii) considers upper bounds. Es-

tablishing a lower bound requires ruling out clever "cheating strategies" by the devices, in

which they would pass the referee's test while still producing outputs with little min-entropy.

Upper bounds consist in devising such clever strategies. The upper bounds we prove in Sec-

tion 3 demonstrate the possibility for non-trivial cheating strategies, that take advantage of

structural properties of the referee's test in order to save on the randomness generated and

defeat the protocol.

Robust protocols. An appealing aspect of randomness amplifiers is that they only rely on

two basic physical assumptions: the ability to enforce the non-signaling condition between

devices, and the a priori existence of a some small amount of randomness to use as seed. As

such, these protocols lend themselves quite naturally to experimental implementations. In

fact, [PAM+10] report an implementation of their quadratic randomness amplifier in which

42 bits of certified randomness were generated (over the course of a month of experiments!).

However, noise as well as errors due to imperfections in laboratory equipment are unavoid-

able in such experiments. Given the recent interest in realizing efficient implementations of

randomness expansion protocols 2, it is important to understand the power and limitations

of protocols that behave robustly in the presence of noise and imperfect devices. Some ran-

domness amplifiers, such as the one in [VV12], are not robust to noise. Is this an artifact or

an intrinsic limitation of protocols that achieve exponential randomness expansion?

Our results

The model. Our first contribution is the introduction of a natural model for randomness

amplifiers. Abstractly, we think of a randomness amplifier as a family of protocols describing

an interaction between a trusted entity (called the referee) and a pair of black-box devices.

The referee selects inputs to the devices, collects outputs, and based on these decides to

either accept or reject the devices' outputs. The protocols are parametrized by a seed length

2 Such protocols have recently been suggested as a benchmark for the closure of the so-called detection
loophole. We refer to the recent survey [BCP+13] for more details.
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m, which is the amount of initial randomness required to execute the protocol. The output

of the protocol is defined as the output of the black-box devices over the course of the

interaction (provided the referee accepted). The procedure has completeness c, soundness

s, and expansion g = g(m) if (i) there exists a pair of non-signaling devices, called the ideal

devices, such that the referee's interaction with them will result in a "pass" with probability

at least c, and (ii) for any pair of non-signaling devices (either bound by the laws of quantum

mechanics or not, depending on context) such that they pass the protocol with probability

at least s, the output distribution of the devices has min-entropy at least g(m) - where,

ideally, g(m) > m.

The interaction between the referee and the devices could a priori be arbitrary. In this

paper we restrict our attention to non-adaptive protocols. In such protocols the referee

uses his random seed to select a pair of input strings to be given to each device. He then

provides the inputs one symbol at a time, collecting outputs from the devices. At the end of

the interaction, the referee applies a test to the inputs and outputs he has collected. Such

protocols are called non-adaptive because the inputs to the devices do not depend on the

devices' outputs in previous rounds. Nearly all protocols considered in the literature are

non-adaptive.

In addition, we formalize the notion of "robust" randomness amplifiers: informally, an

amplifier is robust if small deviation from the behavior of the ideal devices still results

in acceptance with high probability. Since randomness amplification is based on physical

assumptions, it is natural to consider models that are robust to noise or device imperfections.

Naturally, allowing noisy devices makes the analysis harder, e.g. to prove lower bounds on

robust protocols we have to account for the fact that devices may use the freedom to deviate

to cheat the protocol. However, we will also show that in certain cases, non-robust protocols

can be cheated by malicious devices that exploit the possibility for noise-free operation!

Unlike the protocols considered in [Col06, PAM+10, VV12, PM13, FGS13], conditioned

on passing the protocol, the devices' outputs are only required to have high min-entropy,

as opposed to being close to uniform. As alluded to above, the guarantee that the devices'
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output has high min-entropy allows one to apply a randomness extractor to produce nearly

uniform bits - indeed, that is what these previous works do. However, it is known that

randomness extraction for min-entropy sources requires an independent seed of logarithmic

length [RTSOO], thus trivially limiting many protocols to exponential expansion! Since our

interest is in exploring the limits and possibilities of randomness expansion - including the

possibility of super-exponential expansion - we make the choice of measuring the output

randomness by its min-entropy.

A robust lower bound. Our first result is a lower bound: we extend and generalize the

result of [VV12] by devising a randomness amplifier that attains exponential expansion and is

robust to noisy devices. The underlying protocol is simple and can be based on any non-local

game (and not only the CHSH game as in [VV12]) that is randomness generating. Informally,

randomness generating games are such that any strategy achieving a success probability

strictly higher than the classical value must produce randomized answers, on a certain fixed

pair of inputs (X0 , Yo) that depend only on the game, not the strategy. Many examples of

games are known to be randomness generating, and we give an additional example based on

the Magic Square game [Ara02].

Fix a two-player game G. Let q denote the "noise tolerance" parameter, e a target

"security" parameter and R a number of rounds. The robust protocol PG is as follows:

in each round, with some small probability pc the two devices are presented with inputs

as prescribed in the game G. Such rounds are called game rounds. Otherwise, they are

presented with some default inputs x0 , yo respectively. The referee collects the outputs of

the two devices for the R rounds, and checks that on average over the game rounds the

devices' inputs and outputs satisfy the game condition a fraction of times that is at least the

maximum success probability achievable in G using quantum mechanics, minus 7.

Theorem 1.1.1 (Informal). Let m be a positive integer. Let G be a randomness generating

game, qe > 0 and PG the protocol described above, for some R = R(m) < exp(m/ log(1/e))

and pc = e(log(1/e)/R). Then PG uses m bits of seed, has completeness 1 - exp(-7 2R),
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soundness e and expansion g(m) = Q(R(m)).

Upper bounds. We present the first upper bounds on non-adaptive randomness ampli-

fiers. Our first upper bound applies to protocols based on perfect games, which are games G

such that there exists a quantum strategy that wins G with probability 1 (an example is the

Magic Square game described in Appendix B). We consider simple protocols in which the

referee's test is to verify that the devices win every single round. We give a simple argument,

based on the construction of a "cheating strategy" for the devices, showing that any such

protocol can achieve at most doubly exponential expansion.

While this simple class of protocols already encompasses some protocols introduced in

the literature, such as one described in [ColO6J, many protocols do not use perfect games and

such a stringent testing condition from the referee. We thus extend this initial upper bound

and show that it also applies to arbitrary non-adaptive randomness amplifiers, provided that

they are noise-robust and the ideal devices play each round independently.

Theorem 1.1.2 (Informal). Let the family of protocols P = (P.) be a non-adaptive ran-

domness amplifier. Suppose that for all m E N, Pm is noise-robust and the ideal devices for

Pm play each round independently. Then, for all m E N there exists two quantum devices

that are accepted by the protocol Pm with high probability, but whose output min-entropy is

at most 20(2m)

We refer to Theorem 3.2.1 for a precise statement. The basic idea for the cheating

strategy is to show that, provided the referee's seed is short enough, the devices can often

deterministically re-use some of their outputs in previous rounds. That the referee's test can

be arbitrary complicates the argument somewhat, a priori preventing a systematic re-use by

the devices of their past outputs: the test could check for obvious patterns that could arise

in any obvious re-use strategies. To get around this we use the probabilistic method to show

that for any noise-robust test there exists a randomness-efficient re-use strategy that will

fool it.
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Our last upper bound is a stronger, exponential upper bound on randomness amplifiers

that are based on the CHSH game and in which the referee's test only depends on the pattern

of wins and losses in the game that is observed in the protocol. However, our "cheating

strategy" for such protocols requires the use of perfect non-signaling devices (which are able

to win the CHSH game with probability 1). As such, the significance of the theorem is in the

proof rather than in the statement: it demonstrates the possibility for elaborate cheating

strategies that exploit the structure of the protocol in order to be accepted in a highly

randomness-efficient way.

Unbounded randomness expansion. Finally, in contrast to our upper bounds, we show

that if the model of randomness expansion were relaxed to allow more than two non-signaling

devices, we can achieve an amount of expansion that far exceeds the doubly-exponential

barrier. In fact, we give a protocol that uses 2k non-signaling devices, and using m bits of
2n(m)

seed randomness, can generate roughly 22 bits (i.e. fm(k) where fm(1) = 2 m) and
k

fm(i+ 1) = 2 fm(i)) of certified randomness! We call our protocol the "Tower of Randomness"

scheme.

The idea behind the Tower of Randomness is simple: we show that the randomness

expansion scheme given by Vazirani and Vidick [VV12] has nice composability properties3.

Specifically, the Tower of Randomness consists of taking the output of the Vazirani-Vidick

protocol with two non-signaling devices, and using the output as the seed randomness (now

expanded by nearly an exponential amount) to a second invocation of the Vazirani-Vidick

protocol with two new non-signaling devices, repeated k times. Intuitively this should result

in a tower-type expansion protocol. The a priori difficulty with proving the correctness of

such a protocol, however, is that all the devices involved might all share entanglement. For

example, the two devices A and B involved in the first run of the randomness expansion pro-

tocol can use shared entanglement with the next two devices C and D to induce correlations

between their outputs and the internal state of C and D, preventing one from concluding

3 In the field of cryptography, composable protocols have the property that, if composed with other
protocols (or the same protocol), security properties are preserved.
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that the invocation of a randomness expansion protocol with C and D works correctly.

However, in addition to giving a randomness amplifier with exponential expansion, [VV12]

give a randomness amplifier with near-exponential expansion (specifically, g(m) = 2 (m 1/
3

))

where the output is guaranteed to have high min-entropy conditioned on quantum adver-

saries. Combined with a quantum-secure extractor (e.g. the one given by [DPVR12]), we

have a protocol whose output is secure (i.e. uncorrelated) with the internal state of any

quantum eavesdropper.

Intuitively, in our Tower of Randomness scheme, we can treat the devices in the protocol

as quantum eavesdroppers against each other! In Chapter 4, we argue this formally.

Related work. As mentioned earlier, [PAM+101, building on [Col06], were the first to

obtain a quantitative lower bound on randomness expansion. They showed that quantum or

non-signaling devices that demonstrate any Bell inequality violation can be used to certify

randomness. Fehr et al. [FGS13] extended this result to demonstrate exponential expansion,

although their protocol requires the use of two unentangled pairs of devices. Vazirani and

Vidick [VV12] describe a protocol with exponential expansion that only requires two devices.

Their protocol, however, is not robust to noise and is tailored to the specifics of the CHSH

game.

When considering the use of the bits generated by a randomness amplifier in a crypto-

graphic task it may be necessary to obtain stronger guarantees than simply a lower bound on

their min-entropy: indeed, in some cases it is essential that the bits not only appear random

by themselves, but are also uncorrelated with any potential adversary (say, the maker of the

devices). The protocol of [FGS13] is proven secure against classical adversaries; [VV12] also

obtain security against quantum adversaries, which is crucial in our Tower of Randomness

scheme.

It is worth noting that the protocols given in [Col06, CK11] do not formally conform

to our model of randomness amplifiers; they are based on the GHZ game, which involves

three non-communicating devices. However, our expansion upper bounds can be modified

to apply to protocols involving more than two devices (see Appendix C for an example).
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Recent results investigate the use of Bell inequality violations to extract almost uniform

bits from a weak random source, without requiring a uniform seed (in contrast with the afore-

mentioned protocols, as well as the protocols discussed in this paper) [CR12, GMDLT+12].

In particular, these works show that it is possible, using the non-signaling principle as a guar-

antee, to extract almost uniform randomness from so-called Santha-Vazirani sources. The

analogous classical task of deterministically extracting uniform random bits from Santha-

Vazirani sources is known to be impossible [SV86]. Plesch and Pivoluska [PP13] extend this

result to sources guaranteed to have some amount of min-entropy (which is more general

than a Santha-Vazirani source) - but their protocol requires three non-signaling devices.

Thinh et al. [TSS13] show limitations on randomness extraction based on Bell inequality

violations from general min-entropy sources.

1.2 Preliminaries

Notation. Given an integer n we write [n] = {1,..., n}. Given a string x e Xn, where

X is a finite alphabet, we let x<; = (X1 ,..., xi), x>y = (xi+1 ,... , X, ), etc. If X, Y are

alphabets and 7r a probability distribution over X x Y, for all R E N we let rOR denote the

product distribution defined over XR x yR by 7r*R(X,..., XR, Y1,-.., YR) = HFE[R 7r(xi, yi).

We use capital letters X, Y,... to denote random variables. Let X be a random variable

that takes values in some discrete domain D. Its min-entropy is defined as H,(X) =

- log maxXEv Pr(X = x). The Shannon entropy of a random variable X is denoted H(X) as

usual. We also define the max-entropy of a random variable X as Ho(X) = log(Isupp(X)|),

where supp(X) denotes the support of X. The conditional min-entropy is defined as

Ho(XIY) = -log ( Pr(Y = y) 2 -Ho(XIY=Y)

For two discrete random variables X, Y with the same domain, their statistical distance is

liX - Yj11 = - ExeD I Pr(X = x) - Pr(Y = x)l. For e > 0, the smoothed min-entropy of a
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discrete random variable X is defined as

H.' (X) = sup Hoo(X),

where the supremum is taken over all X defined on D. The smoothed conditional min-

entropy is

H0,5(XIY) = sup Hoo(X|).

We also define the smooth entropy of a random variable X, conditioned on an event T, as

the smooth entropy of a random variable having the distribution of X conditioned on T.

The following will be useful.

Claim 1.2.1. Let X be a random variable, e > 0 and T an event such that Pr(T) > 1 - 6.

Then H.-'(X IT) < He-a(X).

Proof. Let Y be a random variable having the same distribution as X conditioned on T. Let

Y be a random variable such that H.(Y) = Hmj 26 (XIT) = H - 25(Y) and Ilk - YII1,T <

e-26, where both quantities are computed on the probability space conditioned on T. Define

k = Y on T, and extend X to the whole probability space in an arbitrary way, under the

condition that Hoo(X) > H,,(f). Then IXk - Xj11 < (e - 26)/(1 - 6) + 6 < e, proving the

claim. El

We will make use of the following basic relations between the different entropy measures.

Lemma 1.2.2. Let X be a discrete random variable over some domain X. Let e E [0,1).

Then,

1. HOo(X) < H(X) < Ho(X), and

2. HOEO(X) < Ho(X) - log(1 - s).

Proof. The first inequality in the first item follows because H(X) is a convex combination

of {- log(Pr(X = x))} values over all x E supp(X), and Hoo(X) is the minimum such value.
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A proof of the inequality H(X) < Ho(X) can be found in [CT12, Ch. 2]. We prove the

second item. Let U = supp(X). Let y = HE(X), and let Y be a random variable such that

IIY - X111 < & and H,(Y) = [. Then, for every u E U, Pr(Y = u) 5 2-/ by definition, but

we also must have |UI - 2-A > 1 - e because of the statistical distance between Y and X.

Since Ho(X) = log UF, the proposition follows. E

We will use some standard concentration bounds (see e.g. Chapter 1 in [DP09] for a

detailed introduction).

Fact 1.2.3 (Chernoff bound). Let X 1 ,..., X, be independent Bernoulli random variables

with expectation p. Then

Pr Xi - pnj > Jpn < 2 e-AA

Fact 1.2.4 (Hoeffding's inequality). Let X1,...,X, be independent centered random vari-

ables such that for every i E [n], we have Pr(Xi E [ai, bi]) = 1 . Then for any t > 0,

~r[ ii t] 2 2t2 / Z 2 (bj-ai) 2

Pr [I Xd > t < 2 e-2t

Two-player games. A two-player game G is specified by input alphabets X and Y, output

alphabets A and B, an input distribution wr on X x Y, and a game predicate G : X x Y x A x

B -+ {0, 1}. The game is played between a referee and two non-communicating players, who

we typically call Alice and Bob. The referee generates inputs x E X and y E Y according

to w, and sends them to Alice and Bob respectively. Alice answers with a E A and Bob

answers with b E B. The referee accepts iff G(a, b, x, y) = 1, in which case we say that the

players win (or pass) the game.

Strategies. Given a game G, we define its value as the maximum winning probability of

two players in the game, where the probability is taken over the referee's choice of inputs

and randomness that may be part of the players' strategy. In full generality, a strategy S is
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specified by a family of distributions {ps(-, -Ix, y) : A x B -+ [0, 1}(x,Y)EXXy, parametrized

by input pairs (x, y) and defined over the output alphabet A x B. The value of G clearly

depends on restrictions that we may place on the allowed families of distributions, and we

(as is customary in the study of two-player games in the quantum literature) consider three

distinct restrictions:

First, if the players are restricted to classical deterministic strategies, specified by func-

tions fA : X -+ A for Alice and fB : Y -+ B for Bob, we obtain the classical value, which is

defined as

Wc(G) = max E r(x, y)G(fA(x), fB(y), x, y).
fA,fB

Xly

It is not hard to see that the use of private or even shared randomness by the players will

not increase the classical value. Second, by allowing all strategies that may be implemented

locally using quantum mechanics, including the use of entanglement, one obtains the quantum

value of G, Wq(G). In this paper we will not need to use the formalism of quantum strategies,

and we refer to e.g. [CHTWO4] for a good introduction. Finally, we may allow any strategy

which respects the non-signaling principle: the only restriction on the players' family of

distributions is that it satisfies

Vx E Xy,y' E Y,a E A, ps(alx, y) = ps(a, b I x, y) = Zps(a, b I x, y') = ps(alx, y'),
b b

and a symmetric condition holds when marginalizing over the first players' output. The

corresponding value is called the non-signaling value Wns(G). It is clear that, for any game

G, Wc(G) wq(G) 5 Wns(G). Examples of games are known for which all three inequalities

are strict (the CHSH game, see below). There are also games for which the first inequality is

strict, and the second is an equality (the Magic Square game, see below), and for which the

first inequality is an equality and the second is strict (see e.g. [LPSW07]).

The CHSH game. The CHSH game is a two-player game with two non-communicating

players, Alice and Bob, who are given independent random inputs x, y E {0, 1} respectively.
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Their task is to produce outputs a, b E {0, 1} such that a Db = x A y. By enumerating over all

deterministic strategies, it is not hard to see that wc(CHSH) = 3/4. There is a simple quantum

strategy based on the use of a single EPR pair that demonstrates Wq(CHSH) > cos2 (7r/8) ~

85%, and in fact it is an optimal quantum strategy [Cir80, NC10]. Furthermore, we,(G) = 1

(see Lemma A.0.1 for the simple proof). Thus, the CHSH game is an example of a game G

such that wc(G) < wq(G) < Wns(G).

(Non-adaptive) Protocols. Informally, a protocol prescribes the interaction between a

trusted referee and a pair of devices, which we usually denote by DA and DB. A protocol

can be thought of as a multi-round game in which the rounds are played sequentially; we

use the word "devices" rather than "players" to refer to the fact that the interaction may

go on for many rounds, but there is no essential difference. In this paper, we restrict our

attention to non-adaptive protocols, where the referee's messages to the devices are inde-

pendent of the devices' outputs. Formally, a non-adaptive protocol P is specified by a tuple

(X, Y, A, B, R, 'r, T), where: X, Y are finite input alphabets, A, B are finite output alpha-

bets, R E N is the number of rounds of interaction, 7r is the input probability distribution

over XR X yR, and T: XR X yR x AR X BR _+ {O, 1} is the referee's test.

Given such a protocol P, the interaction between the referee and a pair of devices

(DA, DB) proceeds as follows: using private randomness, the referee samples the input se-

quence (x, y) E XR X yR from 7r. Then, for each round i E [R], the referee distributes xi E X

and yi E Y to DA and DB, respectively. Devices DA and DB are required to produce outputs

ai E A and bi E B, respectively. Let a = (ai) and b = (bi). After R rounds of interaction,

the referee accepts if T(x, y, a, b) = 1. Otherwise, the referee rejects.

Given a protocol P and a pair of devices (DA, DB), a strategy for the devices is a de-

scription of their behavior in the protocol: for each round index i, a family of distributions

{p(ai, biJxi, yi, histi)} on Ai x Bi, where histi is the history of the protocol prior to round

i, i.e. the list of inputs and outputs generated by the devices in previous rounds. We call

a strategy quantum (resp. non-signaling) if it can be implemented using isolated quantum

(resp. non-signaling) devices.
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1.3 Randomness amplifiers

In this section we define the notion of randomness amplifiers that we use throughout the

paper. A randomness amplifier is given by a family (Pm)mEN of non-adaptive protocols. The

following definition summarizes the important parameters associated with a non-adaptive

randomness amplifier.

Definition 1.3.1. A family of protocols P = (Pm) = (X, Y, A, B, Rm, irm, Tm) is a random-

ness amplifier with seed length m, completeness c = c(m), soundness s = s(m) < c

against quantum (resp. non-signaling) strategies, smoothness e = e(m), expansion

g = g(m) and ideal strategy Sidea = Sidea(m) if the following hold for every m E N:

" (Seed length) A sequence of inputs (x, y) E XRm x yRm to the devices can be sampled

according to lrm using at most m uniformly random bits,

" (Completeness) If the devices behave as prescribed in the ideal strategy Sidea,' then

Pr(Tm(X, Y A, B) = 1) > c(m), (1.1)

where A, B are random variables corresponding to each device's outputs, and the prob-

ability is over (X, Y) ~ ,xm and the randomness inherent in the strategy.

" (Soundness) For all quantum (resp. non-signaling) strategies S for the devices in Pm,

if playing according to S guarantees Pr(Tm(X, Y, A, B) = 1) > s(m), then

HE(A, B I Tm(X, Y A, B) = 1) > g(m).

For notational clarity we will often omit the parameter m when the seed length is clear

from context.

We further elaborate on the completeness and soundness conditions. We say that the

completeness of a randomness amplifier P holds with quantum (resp. non-signaling) devices

' We refer to devices implementing the ideal strategy as ideal devices.
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whenever the ideal strategy can be implemented using quantum (resp. non-signaling) devices.

Similarly, we say that the soundness of P holds against quantum (resp. non-signaling)

devices if the universal quantifier in the soundness condition is over all quantum (resp.

non-signaling) strategies. Generally, a stronger condition on the soundness (i.e. soundness

against non-signaling devices) will imply weaker parameters, such as smaller expansion.

We note that the amount of randomness produced is measured according to its (e-smooth)

min-entropy. Motivation for this particular measure comes from the fact that it tightly

characterizes the number of (e-close to) uniform bits that can be extracted from the devices'

outputs using a procedure known as an extractor (we refer to [RenO5] for more details on

using extractors for privacy amplification, including in the quantum setting). This procedure

requires the use of an additional short seed of uniformly random bits, which we do not take

into account here: our goal is simply to produce entropy, and one could in principle replace

the min-entropy by, say, the Shannon entropy in the definition. We also observe that the

conditioning on T(X, Y, A, B) in the definition of the soundness is necessary. Indeed, consider

devices applying the following strategy: first, flip a biased coin that is heads with probability

p. If the coin comes up heads, deterministically output 0 R (a strategy which we may assume

will fail the referee's test with high probability over his choice of inputs). Otherwise, apply

the ideal strategy specified in the protocol. The probability that the devices pass the protocol

is at least (1 - p)c (where c is the completeness parameter of the protocol), which is larger

than the soundness s as long as p < 1 - s/c, a value larger than 1/2 for any reasonable

setting of s and c. For any e < p the e-smooth min-entropy of the device's outputs is at

most log(1/p); it is (potentially) large only once one conditions on success.

It may be useful to keep typical ranges for the different parameters in mind. The "asymp-

totic" quantity is the seed length m. Completeness will often be exponentially close to 1

in the number of rounds R, itself a function of m that can range from linear to doubly

exponential (or more). The soundness and smoothness will be exponentially small in m.

We now define restricted classes of protocols which capture most of the protocols so far

introduced in the literature. The definitions are extended to randomness amplifiers in the
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natural way.

Natural protocols. We will say that a protocol P is natural if there is a two-player

game G such that the ideal strategy for P is the strategy SGOR consisting of playing each

of the R rounds of P according to an optimal (quantum or non-signaling depending on the

context) strategy SG for the game G. We say that G is the game that underlies P. All

randomness amplifiers to date are natural according to this definition. In this paper we only

consider natural protocols.

Definition 1.3.2. Let G be a two-player game. A test function T : XR x yR x AR X BR 4

{0, 1} is a product test with respect to G iff there exists a function g : {, 1 }R - {0, 11

such that T(x, y, a, b) = g (G(xi, yi, a,, bi),.... G(XR, YR, aR, bR))-

Product protocols. We will say that a protocol P is a product protocol if the referee's

test T is a product test with respect to some two-player game G. Intuitively, the protocol

P consists of R independent instances of the game G, played in sequence (though the input

distribution may not necessarily be the product distribution 7rOR). The referee's test is to

apply a function g on the sequence of wins and losses of the devices. Natural examples of

functions g for this purpose include the AND function and threshold functions, e.g. g(w) = 1

iff the Hamming weight of w E {0, I}R is greater than (wq(G) - q)R. An example of a

non-product test would be one where, say, the referee checks that the devices output (0, 0)

(for a given input pair) in } ± c fraction of the rounds.

Robust protocols. Informally, a protocol is robust if small deviations from an ideal

strategy are still accepted with high probability by the referee. We now provide a formal

definition for such protocols. First, we introduce the notion of closeness of strategies. Let P

be an R-round protocol. Let X, Y be random variables on XR, yR respectively distributed

according to the protocol's input distribution 7rp. For any strategy S, let Si(X i, Y 1 ) denote

the random variable distributed as the devices' outputs in round i, conditioned on having

played according to S on the input sequence (X<i, Y<j). Then we say that two strategies S
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and S are rq-close if for all rounds i E [R],

ISi(Xi,Ysi) - Si(Xsi, Ysi) <;1 q.

Let P be a protocol with some specified ideal strategy Sideal that is accepted with prob-

ability at least c in the protocol (as is when P is a member of a randomness amplifier,

for example). Let T be the referee's test in the protocol. We say that P is q-robust

if whenever the devices' strategy S for the protocol P is q-close to Sidea1, it holds that

Pr(T(X, Y, A, B) = 1) > c (under strategy S). We note that this definition captures the

concept of robustness against not only, say, i.i.d. noise, but also against physically plausible

sources of imperfection such as misaligned mirrors, imperfect detectors, etc.
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Chapter 2

Lower bounds

Let G be a two-player game in which inputs to Alice (resp. Bob) are chosen from sets X

(resp. Y), and answers expected in sets A (resp. B). Let 7r be the referee's distribution on

input pairs in G.

Definition 2.0.3. We say that a two-player game G is (po, q, 1 - )-randomness generating

against quantum (resp. non-signaling) players if there exists an input xO E X such that

the marginal probability 7r(xo) > po and any quantum (resp. non-signaling) strategy for the

players that has success at least wq(G) - 77 (resp. wns(G) - q) satisfies

maxp(A = a I X = xo) < 1 -. (2.1)
aEA

We note that for any given game G, xO and y > 0 the problem of approximating the

smallest possible such that G is (r(xo), 77, )-randomness generating against quantum (resp.

non-signaling) devices is an optimization problem for which upper bounds can be obtained

through a hierarchy of semidefinite programs [DLTW08, PAM+10] (resp. a linear program).

If G is an XOR game, the hierarchy converges at the first level: there is an exact semidefinite

program of size polynomial in JXJJYI. For the special case of the CHSH game, choosing

xO = 0 it is known that CHSH is (1/2, 7, 1/2+3 j)-randomness generating (see Claim B.0.2).

In Claim B.0.3 we show that the Magic Square game is (1/9, q, 12/13 + 7)-randomness
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generating. Clearly, the condition that q < wq(G) - wc(G) (resp. 77 < Wns(G) - wc(G)) is

necessary for the game G to be randomness generating for any > 0.

2.1 Unbounded randomness expansion

For any game G with input distribution 7r, e > 0 and function R : N -+ N, we introduce a

simple randomness amplifier that achieves unbounded expansion, with the strong limitation

that soundness only holds against devices that are restricted to play each round of the

protocol in a completely isolated, though not necessarily identical, manner (in particular,

the devices are memory-less but may be aware of the round number). Fix an optimal strategy

S for G. Our randomness amplifier is given by the family of protocols (Pm), where protocol

Pm is defined as follows.

P, has R = R(m) rounds. The rounds are divided into (1/E) blocks B of e R rounds each.

For each block, the referee chooses a random pair of inputs (x, y) - r that is used in every

round of the block. The referee then checks that in every block at least a Wq(GIS, x, y) - 77

fraction of the rounds have been won, where here wq(G|S, x, y) is defined as the probability

that the players satisfy the game condition, conditioned on their inputs being (x, y), in the

fixed strategy S (so that 7r(x, y)w,(GjS, x, y) = wq(G)). (In the non-signaling case,

replace wq by o,.) The referee accepts the devices if and only if this condition holds in

every block. Note that P is a non-adaptive protocol with ideal strategy S®R, completeness

that goes exponentially fast to 1 with R, and seed length O(e-1) (where we treat the size of

G as a constant).

The following lemma shows that the randomness amplifier (Pm) has good soundness and

a constant rate. Since the seed length remains a constant as R(m) grows, the protocol can

be used to achieve unbounded expansion.

Lemma 2.1.1. Let 77, > 0 and G a (po, 47,I - )-randomness generating game against

quantum (resp. non-signaling) players. Then, for all E > 0 and functions R : N -* N the

above-described randomness amplifier (Pm) has

25



1. Seed length O(e 1 ),

2. Completeness 1 - e-G(eR(m)) with quantum (resp. non-signaling) devices,

3. Soundness e-QG!1) against independent quantum (resp. non-signaling) devices,

4. Smoothness e-0!Q ), and

5. Expansion g(m) = ctR(m), where a is a positive constant depending only on and q.

Furthermore, P is i-robust.

Proof. The argument is simple and makes heavy use of the independence assumption; we only

sketch it here. We do the proof in the quantum case; the non-signaling setting is similar.

For each round i and pair of inputs (x, y) let pi(x, y) be the i-th round devices' success

probability in game G, when the inputs are deterministically fixed to (x, y). Consider a fixed

block B ; [R] of eR rounds, and suppose that in that block it holds that

1 LE[pi(x, y)] wq(G) - 277, (2.2)
ERiEBj

where the expectation is taken according to the input distribution ir in game G. Then there

must exist a pair of inputs (xi, yJ) such that (1/(eR)) ZiEB. p(xj, y') < wq(GIS, xi, y3) - 2q.

For any i E [RI let (Xi, Y) be random variables denoting the referee's choice of inputs to

the devices in round i, and Zi a binary random variable that is 1 if and only if the game is

won in round i. By definition E[Zi I (Xi, Y) = (xi, y')I = pi(xi, yJ). Applying Hoeffding's

inequality (see Fact 1.2.4), conditioned on the input to block B being chosen as (xi, yj) it

holds that

Pr Z> wq(G) - 7) e-(9 2 ,R)
iEBj

Let f = min(x,y,(p)>o wr(x, y); f is a constant depending only on G. In any block Bj the

probability that the input to the block is (xi, yJ) is at least f. Since the inputs to different

blocks are chosen independently, applying Hoeffding's inequality once more the probability

that less than a fraction f/2 of blocks Bj have their input set to (xi, yJ) is at most e-OW2E)
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As a result, except with probability exponentially small in 1/e a constant fraction of the

blocks B are such that (2.2) does not hold. In particular, at least half of rounds i in any

such block must be such that pi := E[pi(x,y)] > Wq(G) - 41, where we used pi wq(G),

by definition of the optimum wq. Using the definition of a randomness generating game,

provided the input in that round is (xo, Yo) - which happens with constant probability

- the outputs produced by the devices in that round must contain a constant amount of

entropy. 0

2.2 Exponential randomness expansion

It is much more realistic to assume that the devices do have memory, and we analyze this case

for the remainder of the section. For any game G that is randomness generating we show that

there exists a corresponding randomness amplifier with exponential expansion. For simplicity

we only consider quantum strategies; the non-signaling setting is completely analogous. We

introduce a randomness amplifier (Pm) which is parametrized by a randomness generating

game G, a fixed set of inputs (xO, Yo) E X x Y, an error tolerance q > 0, a precision e = s(m),

a "checking probability" pc = pc(m) and a number of rounds R = R(m).

Fix an m E N. We first describe the input distribution in Pm. Let Wmax = 2pcR, and

U C {0, 1 }R the set of binary strings with Hamming weight at most Wmax. Let q be the

distribution on {0, i}R with density q(x) = HLE[R] pi(i - pc)l-xi. Let 6 be a precision

parameter and qj be defined on {0, i}R by % (x) = (6/Rw-mx) [q(x)(Rw-ma/6)J if x E U and

q6 (x) = 0 otherwise. Clearly IIqs Ii1 < 1; normalize qj by introducing an additional "fail"

symbol _ such that q6(_) = 1 - EX q6 (X). We think of q as a discretized version of q;

the following claim will be useful.

Claim 2.2.1. Assume 6 > 2e-pcR/3 . Then q, is supported on U = {x E {0,1}R : X <

2pcR}, ||q - q5||1 < 26, and it is possible to sample from q5 using O(pcRlog(R)) uniformly

random bits.

Proof. By definition, for any x E U, jq(x)-q 6 (x)| < 6/jUj, where we used JUI < Rw-. Using
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the Chernoff bound (Fact 1.2.3), under q it holds that Prq(X V U) 2e-PR/3 < 6. Overall,

|iq - q6I|l < 26 as claimed. To sample from q3, first sample a weight w E {0, ... , W }aI-

Using the discretized form of q3 this can be done using O(pcR + log(Rw-ax/6)) bits. Then

sample a uniformly random string of weight w using at most w log(R) bits. 0

The protocol Pm proceeds as follows. The referee first samples a string u E {0, 1 }R

distributed according to q,2/ 4 . He then selects inputs for the devices in the R rounds. If

ui = 1 inputs are selected as prescribed in G; such rounds are called "game rounds". If ui = 0

they are set to the default value (xo, yo). Once inputs to the R rounds have been computed,

the referee sequentially provides them to the devices, who produce a corresponding sequence

of outputs. The referee computes the average number of rounds in which the input/output

pairs satisfy the game condition G, and accepts if and only if it is at least Wq(G) - q. We

note that P, is a natural, product protocol for which we define the ideal strategy to consist

of playing each round independently according to an optimal quantum strategy for the game

G. With that ideal strategy, the protocol is also q-robust.

The following theorem shows that for any game G that is (po, 7, 1 - )-randomness gener-

ating against quantum adversaries,1 for some > 0, the protocols (Pm) form a randomness

amplifier with exponential expansion.

Theorem 2.2.2. Let G be (po, 4 ,q/po, 1 - )-randomness generating against quantum players,

with input distribution wr. Let m, be the number of uniform random bits required to sample

a pair of inputs (x, y) ~ 7r. Let pe, R, e, s : N - N be non-negative functions such that

pc(m)R(m)(log R(m) + m,) m/C, e(m) < s(m), and s(m)e(m) > e-Cmin(r 2 ,o 2 )pc(m)R(m)

for all m, where C is a universal constant. Then the family of protocols (Pm) (as defined

above), based on game G, inputs (xo, yo), error tolerance (poq/ 4 ), precision e, checking prob-

ability p, and number of rounds R is a randomness amplifier with

1. Seed length m,

'For simplicity we focus here on establishing completeness and soundness for quantum devices, but our
arguments can easily be extended to the non-signaling case.
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2. Completeness c > 1 - e -* 2
R(m) with quantum devices,

3. Soundness s against quantum devices,

4. Smoothness e, and

5. Expansion g(m) > R(m)/5.

Furthermore, (Pm) is 6-robust for any 6 < po7/4.

For any small constant n > 0, integer m and desired soundness and smoothness & = s,

setting R(m) = C'm/ log(1/E) and pc = C"log(1/e)/R for small enough C' and large enough

C" (depending on q, po and ) will lead to parameters that satisfy the theorems' assumptions,

thus guaranteeing an amount of min-entropy generated that is exponential in m for constant

E.

The claim on the completeness in the theorem follows by a standard Chernoff bound.

The claim on the seed length follows immediately from the description of the referee given

above and the bound in Claim 2.2.1. Finally, the claims on the soundness, smoothness and

rate follow from Proposition 2.2.3 below, which shows that if the claims are not satisfied,

then there exists a strategy for the players in the game G that contradicts the assumption

that G is (po, 4 ?7/po, 1 - )-randomness generating (to see this, set the only new parameter

6 in the proposition to 6 = /5).

Proposition 2.2.3. Let 1/2 > 6 > 2 pc, 7 > 0 and s > e > 0 be such that

log(16/(e 2s)) min(pO6 2 , r 2)pc
R 30

and suppose further that H. (A, B | X, Y, T(A, B, X, Y) = 1) < 6R and Pr(T(A, B, X,Y) =

1) > s. Suppose that

Then there exists a single-round pair of quantum devices and an ao E A such that when

the game G is played with the devices it holds that

Pr(G(A,B, XY) = 1) > w,(G) -47/po and Pr(A = ao I X = x0 ) > 1 - 56,
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where po = 7r(xo) is the marginal probability that input x0 is chosen for Alice in the game G.

Proof. To prove the proposition we analyze a slightly different protocol, in which the referee's

procedure is replaced by the following simpler one: for each round i E [R], set ui = 1 inde-

pendently with probability pe, and define w := Ej ui. Then proceed as prescribed in the de-

scription of protocol Pm above to choose inputs to the devices. By Claim 2.2.1, the statistical

distance between the distribution on inputs chosen by this simplified referee and the original

one is at most E2/2. Hence the distribution of outputs produced by the same devices under

the one or the other referee's input distribution will also have statistical distance at most E2/2;

conditioning on the event that T(A, B, X, Y) = 1, which has probability at least e, will at

most increase this distance to e/2. It will thus suffice to prove the proposition for the simpli-

fled referee under the restricted assumption that Ho42 (A, B I X, Y, T(A, B, X, Y) = 1) < 6R

to deduce the proposition for the original referee.

Let Q = {(x, y, a, b, u) E ({0, 1}5)R} be the probability space associated with the exper-

iment consisting of executing the protocol with the devices. Here (x, y) are the strings of

inputs chosen by the (simplified) referee, (a, b) the outputs observed, and u a string of bits

that indicates the locations chosen for the game rounds (which correspond to ui = 1). For

every i E [R] let U; E {O, 1} be the random variable that is 1 if and only if ui = 1. Let

W = Ej Uj. By definition, T(A, B, X, Y) = 1 if and only if

S E 1G(X ,Yi,Ai,B)=1 > Wq(G) 7-
i:Ui=1

Applying the Chernoff bound (Fact 1.2.3), since each round is chosen as a game round

independently with probability pc,

Pr (1W - pRj > ) < 2e-pcR/ 2 7 < E2/41

where the second inequality follows from our choice of parameters. Furthermore, if w' is the

number of rounds such that wi = l and xi = xo, and W' the associated random variable,
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then similarly

Pr (|W'- ppoR| ;> P <PO 2e-pcPOR/27 < E2/4

Define an event WIN as the event that T(A, B, X, Y) = 1 and

IW-PcR , pI IW'- ppoRI pcpoR (2.3)

Further conditioning on WIN, the assumptions of the proposition together with Claim 1.2.1

and 62 e/2 imply that HE2 (A, B I WIN, X, Y) < 6R and Pr(WIN) > s/2, where we

used E < s. By definition, the first condition implies that for any distribution q such that

|Iq - p|I1 e/2 (where here q, p are taken as distributions on the probability space Qw

obtained from Q by conditioning on WIN), Hoo (A, B I WIN, X, Y) < 6R, where here the

min-entropy is taken with respect to the distribution q. In particular, it must be that the

set S of all (x, y, a, b, u) E WIN such that Pr((A, B) = (a, b) I (X, Y) = (x, y)) > 2 -,R has

probability at least

Pr(S) = Pr(S I WIN) Pr(WIN) > (E/2)(s/2) = sE/4. (2.4)

The following two claims show properties of those sequences (X, y, a, b, u) E S.

Claim 2.2.4. For all but a fraction at most E of all (x, y, a, b, u) E S it holds that

I Pr (Ai = ai I Xi = xo, (A, B, X, Y)<i = (a, b, x, y)<i) > 1 - 46. (2.5)
iE[RJ, ui=1,xi=xo

Proof. Let (x, y, a, b, u) E S. By definition, Pr((A, B) = (a, b) I (X, Y) = (x, y)) > 2

Applying Bayes' rule and taking logarithms we get

R

Z -log Pr(Aj = ai I (X, Y)i = (x, y)j, (A, B, X1 Y)<i = (a, b, x, y)<i) < 6R,
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where we used that Ai is independent of (X, Y)>i. Using concavity of the logarithm, we get

IR
R> Pr(Ai = ai I (X, Y)i = (x, y)j, (A, B, X, Y)<i = (a, b, x, y)<i) > 2- 1 - 6.

Note that Ai is independent of Y. Moreover, since (x, y, a, b, u) E WIN there are at most

4pcR/3 game rounds, hence at least (1 - 4pc/3)R rounds must have xi = xO. Therefore,

RZ Pr(A = ai I Xi = xo, (A, B, X, Y)<i = (a, b, x, y)<i)>1 - 6 4 pc/ 3 > 1 - 26.

Finally, note that conditioned on Xi = xo (and (A, B, X, Y)<i = (a, b, x, y)<i) any given

round i is chosen as a game round independently with probability pcpo/(l - Pc + PcPO) >

PcPo/2 ; the distribution of Ai, conditioned on Xi = xO, does not depend on this choice.

Applying Hoeffding's inequality (Fact 1.2.4),

Pr ( Pr(Ai = ai I Xi = xo, (A, B, X, Y)<j = (a, b, x, y)<j) < 1-46) < 2e-862W'/3 < se2

iE[R],Ui=1

where here the summation is restricted to those rounds in which Uj = 1 and Xi = xO, and

for the second inequality we used the bound on W' and our choice of parameters. Using the

lower bound (2.4) on the size of S, the claim is proved.

Claim 2.2.5. For all but a fraction at most e of (X, y, a, b, u) E S it holds that

1 Pr (G(Xi, Y, A, Bi) = 11 (A, B, X, Y)<i = (a, b, x, y)<i) > Wq(G) - 277. (2.6)z
iE[R],ui=1

Proof. For any j = 1, ... , W define a random variable Zj E {0, 1} on Qw by Z = 1 if and

only if G(xi,, yr,, as,, bi,) = 1, where ij is the index of the j-th game round. By definition of

WIN, it holds that

Zj >- W(wq(G) - 77). (2.7)

For any k = 1, . .. , W let Vk = (Zj-E[Zj I Zj- 1, .. . IZ 1 , U]). Then (Vk) is a martingale
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with respect to the filtration induced by the sequence of random variables

Applying Azuma's inequality (see e.g. Theorem 5.2 in [DP09]),

Pr Zj - E [Zj Zj_1, ... , Z1, W] ;> Wq) < 2 e-W,7/2 (2.8)

Using (2.3), (2.8) together with (2.7) implies that

Pr E[Z I Zj_ 1 7 ... , Zi, w] W(wq(G) - 277)) 5 E2 s/4, (2.9)

given our choice of parameters. The probability here is taken over 2w; removing the condi-

tioning on WIN will give a probability over Q that is at most e s/8. On Q, for any j it holds

by definition that E[Zi 1 Z-. 1, ... , Z, VW] < wq(G). Using that Pr(S) > se/4, Eq. (2.9)

implies that all but a fraction at most e of (x, y, a, b, u) E S are such that (2.6) holds. E

Using Claims 2.2.4 and 2.2.5 we may now conclude the proof of the proposition. Fix any

(x, y, a, b, u) E S such that both (2.5) and (2.6) hold. By an averaging argument a round i

such that ui = 1 and xi = x0 can be found such that both equations hold with the "loss" on

the right-hand side multiplied by W'/W < 2 po for the case of (2.6) and any constant greater

than 1 for (2.5). Fix such an i. Execute the protocol with the devices up to the i-th round

(excluded), choosing inputs as prescribed by (x, y). If the outputs produced by the devices

do not match (a, b) in every round, abort and restart. Conditions (2.5) and (2.6) guarantee

that, once the conditioning succeeds, the two devices at the beginning of round i will be in

a state such that both conditions stated in the conclusion of the proposition hold. E
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Chapter 3

Upper bounds

In this section we prove upper bounds on the expansion attainable by a wide class of ran-

domness amplifiers. The upper bounds are proved by exhibiting "cheating strategies" for

the two devices DA and DB that fool a referee into accepting, while producing an amount

of entropy that is at most doubly exponential in the referee's seed length. In particular, our

bounds on output entropy are independent of the number of rounds.

The main idea behind the cheating strategies we exhibit is that, after a sufficiently

large number of rounds, there are inevitable correlations between the referee's inputs to

the devices that hold irrespective of the referee's choice of random seed. These correlations

can be inferred from the given input distribution 7r of the protocol, before it begins. In

Theorems 3.1.1 and 3.2.1 we use the observation that after a number of rounds that is

doubly exponential in the referee's seed length, the inputs to DA and DB in the current

round i must be identical to their inputs in some previous round j < i. If the referee's test

is particularly simple (as it is assumed to be in Theorem 3.1.1), then the devices can pass

the protocol by simply copying their answers from round j. More generally, we show that

for robust protocols there will be a set of rounds J C [R] such that IJI = 20(2m) (where m is

the referee's seed length), and a strategy for the devices to deterministically recombine their

respective answers from the rounds in J into answers for the rounds in [R]\J. It follows that

the devices' output entropy is at most O(IJI) = 20(2m)
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An important element of the cheating strategies we present is the input matrix, which

is defined for any nonadaptive protocol as follows.

Definition 3.0.6 (Input matrix). Let P be an R-round, non-adaptive protocol with seed

length m. The input matrix Mp is the R x 2' matrix whose (i,ao)-entry is Mp(i,o-) =

(X(u)i, Y(c-j)), where here X(-) (resp. Y(o)) are the input sequences for device DA (resp.

DB) chosen by the referee on seed a- E {O, 1}m.

When P is clear from context we shall simply write M instead of Mp for the input matrix.

We let Mi E (X x Y) 2'm denote the ith row of an input matrix M = Mp. We define the set

F(M) C [R] as the set of round indices i such that i E F(M) iff Mi -, Mj for all j < i. The

following immediate claim places a bound on the size of F(M).

Claim 3.0.7. Let P be a protocol with seed length m and input alphabets X, Y. Then

IF(M) < IX x yl" .

3.1 A simple doubly exponential bound

We first demonstrate a doubly exponential upper bound on randomness amplifiers that are

based on perfect games, which are games G such that wq(G) = 1 (or w,,(G) = 1, if we're

allowing devices with full non-signaling power). In these protocols, the referee checks that

the devices win every single round.

Theorem 3.1.1. Let G be such that wq(G) = 1 (resp. wn,(G) = 1). Let P = (Pm)

be a randomness amplifier with input (resp. output) alphabets X, Y (resp. A, B) and in

which the referee's test consists in verifying that the devices win G in every round. Suppose

completeness and soundness of P both hold with quantum (resp. non-signaling) devices.

Then the expansion of P satisfies

g(m) < IX x y 2 ' log A x B1 - log(1 - E(m)),

where e(m) is the smoothness of P.
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We only sketch the proof here; we give a more general argument in the next section. The

idea of the proof is as follows: in each round i, the devices check whether i E F(M) or not,

where M = Mpm is the input matrix corresponding to protocol Pm. If it is, then the devices

play according to the ideal, honest strategy that wins G with probability 1. If not, then

there must exist a j E F(M), j < i, such that Mi = Mj. Thus, regardless of the referee's

seed, it must be that (xi, yi) = (xj, yj) always. In that case, the devices will simply replay

their outputs (aj, bj) from that round, independently setting ai := a3 and bi := bj. Since we

can assume that round j was won with probability 1, round i must be won with probability

1 as well. It is easy to see that the only entropy-generating rounds are those in F(M), and

the theorem follows from Claim 3.0.7 and Lemma 1.2.2.

3.2 A doubly exponential bound for robust protocols

In this section we generalize the bound from the previous section to show a doubly expo-

nential upper bound on the expansion achievable by any randomness amplifier based on a

protocol that is non-adaptive and robust. In particular, the underlying game G may not

be perfectly winnable, and the referee's test T may not necessarily check that the devices

win G in every single round. The fact that we allow an arbitrary test T in the protocol

complicates the proof, as the referee may now for example check for obvious answer repeti-

tions in the players' answers to identical question pairs, and thereby easily detect cheating

strategies of the form described in Section 3.1. Nevertheless, we will design a somewhat

more elaborate cheating strategy for the devices in any such protocol, that prevents it from

achieving unbounded expansion.

Theorem 3.2.1. Let P = (Pm) be a natural, 'r-robust randomness amplifier such that com-

pleteness and soundness both hold with respect to quantum (resp. non-signaling) devices. Let

Km = Q 1 log |AxBjF(Mpm)). Then the expansion of P satisfies

g(m) < Km - IF(Mpm)I - log JA x BI - log(1 - E(m)),
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where A, B are the output alphabets of P, and e(m) is the smoothness of P.

Combined with Claim 3.0.7, the theorem implies that any q-robust randomness amplifier

P must have a expansion g(m) = 20(2") (where the constant in the O(-) depends only on

,q, the smoothness e, and the alphabets X, Y, A, B). This in particular demonstrates that

unbounded randomness expansion as demonstrated in Lemma 2.1.1 is impossible as soon as

the devices are allowed to have (classical) memory.

The idea for the proof is simple. Instead of directly reusing outputs corresponding to

identical pairs of inputs, as described in Section 3.1, the devices first repeatedly apply the

protocol's ideal quantum (resp. non-signaling) strategy for game G in order to locally gener-

ate a discrete approximation to the corresponding distribution on outputs. Whenever they

receive a pair of questions for which they already computed such an approximation, they use

shared randomness to jointly sample a pair of answers from the approximating distribution.

To conclude we use the probabilistic method to derandomize the shared sampling step (which

would otherwise still lead to the generation of a constant amount of entropy per round).

Proof of Theorem 3.2.1. Fix an m and protocol Pm, with R = Rm rounds. Consider the

following randomness-inefficient strategy S' for the devices. Since Pm is a natural protocol,

it has has an ideal strategy of the form SG R, for Sc is a single-round two-player quantum

strategy for Pm's underlying game G. Let M = Mp, be the input matrix for protocol

Pm. At every round i, DA and DB locally check whether i E F(M). If so, they first

perform the following sampling step: repeatedly apply the strategy SG a number K =

Q ( In JAxBHF(M)) times on their respective inputs xi and yi. Let the outcomes of the K

instances be a(') = (ak)k=1,...,K and 0) = (b(f)k=l,...,K. Each device stores its own sequence

of outcomes. Whether or not i E F(M), the devices then perform the following replay

step. They identify the unique j < i such that j E F(M) and Mj = Mi. Using shared

randomness they select a uniformly random k E [K], and output aA and b) respectively.

Define the following probability density function on A x B: for all i E F(M), for all
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(a, b) E A x B,
K

q (a, b) = I (.('),b( =( b) (3.1)
k=1 kk

Assume first that the strategy S' achieves winning probability Pr(T(X, Y, A, B) = 1) ;> c.

Let V denote the devices' shared classical randomness, as it is used in the replay steps. By

averaging, there exists a fixed setting V* such that the probability that T(X, Y, A, B) = 1,

when using V*, is at least c. Let S be the strategy where Alice and Bob perform the sampling

steps as usual, but in the replay steps, they use the fixed string V* instead (which they can

precompute beforehand). Thus, the entropy of the outputs produced by the strategy S comes

entirely from the sampling steps. There are at most IF(M)l sampling steps, and in each

step, at most K log IA x BI bits of randomness are produced, so HO(A, B I T(A, B, X, Y) =

1) < I F(M)I - K - log IA x BI. We use Lemma 1.2.2, and the theorem follows provided we

can show that S' achieves the desired success probability whenever K is chosen as stated.

To show this, we use the assumption that Pm is an q-robust protocol. From the definition

of q-robust and the strategy S', it will suffice to verify that with high probability for every

i E F(M) the distribution with density qj, as defined in (3.1), is q-close in statistical distance

to the distribution implied by SG, for the pair of inputs (xi, yi). This follows from a standard

application of Hoeffding's inequality: for any fixed i, 77 > 0 and (xi, yi) the probability that

IIqj - SG(-, -Ixi, yi)I1 > q/2 is at most IA x BI - exp(-(772 K)). By the union bound, the

probability that there exists an i E F(M) such that IIqj - Sc(-, -Ixi, yi)II 1 > 77 is at most

IA x BI - IF(M)l - exp(-O(q2 K)). By our setting of K, this probability can be made less

than 7/2. L

3.3 An exponential upper bound for protocols with

non-signaling devices

In this section we prove exponential upper bounds on the attainable expansion of a class

of non-adaptive randomness amplifiers for which completeness holds with respect to non-
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signaling devices. We address protocols using the CHSH game, which have been widely

studied in the literature [PAM+10, VV12].

Theorem 3.3.1. Let P = (Pm) be a randomness amplifier in which completeness and sound-

ness both hold with non-signaling devices, and for each m the referee's test Tm is a product

test with respect to the CHSH game. Then

g(m) < 22m+2 - log(1 - 6(m)),

where e(m) is the smoothness parameter of P.

Theorem 3.3.1 exhibits a scenario in which the specific structure of the underlying game

G and the protocol can be used to give an exponential improvement over Theorem 3.1.1. For

simplicity we have constrained the theorem statement to protocols involving the CHSH game,

but the proof can be extended to establish the same result when G is a balanced 2-player

XOR game, as well as the (3-player) GHZ game, which has played an important role in early

randomness expansion results [CK11]. We refer to Appendix C for additional details.

We remark that Theorem 3.3.1 implies a "meta-theorem" that says that the type of

analysis performed in [VV12] cannot be improved to have more than exponential expansion.

Any randomness amplifier based on the CHSH game in which the referee only checks that the

devices won more than a certain fraction of the rounds, and where the analysis of soundness

only uses the fact that the devices are non-signaling, by Theorem 3.3.1, must be limited

to exponential expansion. The randomness amplifier in [VV12] is of this form, and hence

modifying it to obtain super-exponential expansion would require either a non-product test,

or an analysis that uses the fact that the devices can "only" be quantum!

Proof of Theorem 3.3.1. Fix an integer m and protocol P = Pm, with test T and number of

rounds R. Let G(x, y, a, b) = 1 D xy ( a ( b (i.e. the CHSH game predicate). For simplicity

we first prove the theorem in the special case when the product test is

R

T(x, y, a, b) = G(xi, yi, ai, bi).
i=1
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We give a strategy that can be used by the non-signaling devices DA and DB to ensure that

T(X, Y, A, B) = 1 with probability 1. The strategy will have the additional property that all

of the output pairs (ai, bi), except for at most 2 m values of i, are deterministic functions of

the outputs produced (using the "honest" strategy described in the proof of Lemma A.0.1)

in a particular set of 2 2m previous rounds. This proves the desired result.

Let M be the protocol's input matrix, as introduced in Definition 3.0.6. Let us consider

the rows of the input matrix M as vectors Mi E Fi2m 1 . Additionally, before the protocol

begins, the devices precompute the set I C [R], which consists of all i such that Mi (as a

vector in F2m+') is linearly independent from {M : j < i}. Note that III < 2+'.

We now describe the strategy employed by DA and DB. In each round i, DA and DB

check whether i E I. If so, they perform the sampling step. Otherwise, they perform the

replay step. Let Xi and Y denote the inputs to DA and DB in the ith round.

Sampling step. Let i be a round in which DA and DB perform the sampling step. Let

I(i) = {j E I :j i}. DA and DB play two series of private CHSH games, S1 = (Cij) and

S2 = (Cji) for all j E I(i), and store the outcomes without reporting them to the referee.

Using a canonical ordering of these games (e.g. playing series S1 first, where the Ci, are

played in order of increasing j, and then S2, where Cjj are played in order of increasing j),

the devices DA and DB use the perfect non-signaling strategy described in Lemma A.0.1 to

play Cij, and obtain outputs Aij and Bij, respectively. Similarly, they will play the games

Cgi and obtain outputs Aji and Bjj, respectively. Since we are using the perfect non-signaling

strategy, for all j E I(i), we have G(Xi, Y, Aij, Bij) = G(Xj, Y, Aji, Bjj) = 1. Note that the

devices can play this series of private games without communicating.

Finally, DA and DB report outputs Ai = Asi and Bi = Bij to the referee.

Replay step. If DA and DB perform the replay step in round i, we have that Mi is

linearly dependent on the rows {M : j < i}. Observe that the set {Mj : j E I(i)} forms a

linearly independent basis over F2m+1 for the rows {M: j < i}. Thus, there exists a subset

J C I(i) such that Mi = Ejej Mi, and it follows that, regardless of the value of random seed

chosen by the referee, (Xi, Y) = Ejej(Xj, Y) = (Ejej Xj, Ejej Y). Knowing this, DA and
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DB now wish to produce output values Ai and Bi respectively (without communicating),

such that G(Xi, Y, Aj, B) = 1 XjY ( Ai D B = 1, which is equivalent to

Ai ED Bi = XjY 1 = (Zx 3 ) (Y, ;) ()EJ 2 XkY.

\gEJ / jEJ / (k,j)EJ

To accomplish this, DA outputs Ai = (kj)EJ2 Akj and DB outputs Bi = E(k,)EJ2Bkj,

where the values of the summands are the outputs generated in the sampling steps described

above. By design, for each (k, j) E j2 C (i) 2 , we have Akj D Bkj = XkYj. It follows that

A ED Bi = 1 AD E Bk= E Akj D Bj
(k,j)EJ2 (k,j)EJ 2  (k,j) E J 2

ZXk= Y
=( XuJ2 = (Ex Y = XiYi

(k,j)EJ 2  
\jEJ jEJ /

which implies that G(Xi, Y, Aj, Bj) = 1, as desired. Thus, for every round i E [R], we have

that G(Xi, Y, Aj, B) = 1 with probability 1, and hence T(X, Y, A, B) = 1 with probability

1.

We now show the upper bound on the entropy of the devices' outputs. In every round, the

outputs in all steps are a deterministic function of the round number and the set of outputs

{Aij, Bij : (i, j) E J2}. Since this set contains exactly 1112 random variables, each of which has

max-entropy 1, the entire set can have max-entropy at most 112. Thus Hma.(A, B) 5 1112.

From our previous bound on III, we have Hm. (A, B) < 112 < 2 2m+2. The upper bound on

the smooth min-entropy follows from Lemma 1.2.2.

This concludes the proof in the case that T(X, Y, A, B) = 1 G(Xi, Y, Aj, Bj). We now

indicate how the proof can be extended to general product tests T.

As we saw above, DA and DB have a non-signaling strategy that allows them to pass

each individual CHSH test with probability 1, and produce at most 22m+2 bits of entropy in

their outputs. We now want a similar proof which allows DA and DB to win against any

CHSH product test, where an arbitrary function g is used to combine the outcomes of the
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tests performed in each round. Suppose that the test is specified by

T(X, Y, A, B) = g (G(X1, Y, A1, B), ..., G(XYRAR,BR))

for some function g : {0, 1}R -+ {0, 1}. Since c > 0 we know that the referee cannot reject

every vector of wins and losses, so there must exist some v E {0, 1}R such that g(v) = 1. We

can think of v as specifying a sequence of CHSH wins and losses. DB can fix such a v before

the start of the protocol. DA and DB will perform exactly the same strategy as above, except

where DB would have output Bi in the ith round, DB will now output Bi E vi ( 1. It is easy

to see that G(Xi, Yi, Ai, Bi D vi D 1) = vi. Thus T(X, Y, A, B D v @ 1) = g(v) = 1, and DA

and DB will pass the referee's test with probability 1. We again have Hmax(A, B) <; 22m+2

and the desired result follows. 0

We note that the cheating strategy exhibited in the proof of Theorem 3.3.1 crucially relies

on the existence of noiseless devices. As such, the theorem suggests an intriguing possibility:

that the assumption of an unavoidable presence of noise in any devices used to execute a

given protocol may allow for the certification of additional randomness, by ruling out special

finely-tuned adversarial strategies.
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Chapter 4

A Tower of Randomness

4.1 Introduction

Here we demonstrate substantial improvements to randomness amplification when we use

more than two non-signaling devices in a randomness expansion protocol, and assume that

the devices act according to the laws of quantum mechanics. In fact, we give a protocol
.2f(m)

that uses 2k non-signaling devices and can produce roughly 22 bits (i.e. fm(k) where

k

f m (1) = 20(m) and fm(i + 1) = 2 fm(i) of certified randomness, starting with only m bits

of seed randomness. Even starting with only, say, 100 bits of seed randomness, and 4 non-

signaling devices, this protocol outputs an amount of certified random bits that is, for all

intents and purposes, infinite!

The idea of this Tower of Randomness protocol, as we call it, is simple. The basic prim-

itive of the protocol is the quantum-secure randomness amplification protocol of [VV12],

which shows how to use two non-signaling quantum devices to produce a near-exponential

amount of certified randomness that is secure against quantum adversaries. We treat two

quantum devices used for this purpose as sub-devices of a single, unified randomness ampli-

fication device (which we'll abbreviate as RAD for this section). Then, with k such RADs

D ... , Dk (all isolated from one another), we run the [VV12] protocol on the Di sequentially,

except the seed randomness for the Di comes from the output of device Di_ 1 (the random
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seed for D 1 will come from an outside source). We inductively assume that the output of

device Di_ 1 is close to uniform and secure against Di (which we treat as an adversary from

the point of view of Di_ 1), so the output of Di will also be near-uniform and secure against

all other RADs that we care about.

Of course, there is the issue of error propagation. There are two sources of error at

every iteration of the protocol: first, even on a perfectly uniform and independent seed, the

output of a RAD Di will not in general be perfectly uniform or perfectly secure against

other quantum devices. Secondly, the seed input to Di will not be perfectly uniform or

secure against Di, which can affect the output distribution of Di. We will show that in fact

the added error introduced by ith iteration is much smaller than the error from the (i - 1)th

iteration, and that the errors simply add. Thus, the final error is bounded by some universal

constant times the initial error, and is independent of k! The object of this chapter is to

prove the following theorem:

Theorem 4.1.1 (Informal). For all positive integers k, there exists a protocol ToRScheme

between a classical referee and 2k non-signaling quantum devices such that the referee uses

m bits of randomness, and if Pr(ToRScheme protocol succeeds) > exp(-Q (mi/3 )), then the

output of the protocol is exp(-Q(m 1/ 3 ))-close to the uniform distribution over f(k) bits.

Furthermore, there exist 2k non-signaling quantum devices D = {D 1,...,D2k} such that

Pr(ToRScheme protocol succeeds with D) ;> 1 - exp(-Q(m 1 /3)).

4.2 Notation

We assume basic familiarity with the notions and notation of quantum information and com-

putation. A classical-quantum state (cq-state) is a state of the form PXE = Z.,P(X)Ix) (9

pX, where p(x) is a probability distribution over classical strings, and the pXE are arbitrary

density matrices. We let Un denote the uniform distribution on n bits, and let pu, de-

note the completely mixed state on n qubits. The trace norm of a matrix A is defined as

||AJ|tr.:= -!try/"AtA.

44



Although we will use the quantum analogue of smooth conditional min-entropy - de-

noted Hg, (X I E), for some eq-state PXE - in this chapter, we will not define it, because

the only thing we use is that the output of the Vazirani-Vidick protocol has high smooth

conditional min-entropy, and this satisfies the conditions required by a quantum-secure ex-

tractor. We refer the reader to [DPVR12] for more details on quantum smooth min-entropy

and quantum-secure extractors.

4.3 Quantum formalism for randomness amplification

In general, a randomness amplification protocol is an interaction between a classical referee

R and a quantum device D, that is entirely uncharacterized, except that D consists of two

or more isolated, non-signaling sub-devices (but the sub-devices may be entangled). In this

section, we will develop some formalism to describe the interaction as a quantum operation,

which will be useful for the analysis of the "Tower of Randomness" protocol that we present

later.

The important Hilbert spaces we will consider are:

1. (Pass/No Pass Flag). tF denotes a two-dimensional Hilbert space that the referee

will use to indicate whether it accepts or rejects the interaction.

2. (Seed). Ws denotes the 2'-dimensional Hilbert space that corresponds to the (private)

m-bit seed randomness that the referee will use for its interaction with the device D.

3. (Protocol output). Wx denotes the 29-dimensional Hilbert space that corresponds

to the g-bit output of the device D.

Of these three Hilbert spaces, device D only has access to Wx.

In this section, we will view randomness amplification protocols as quantum operations

acting on a state in the space 7 F 0 Ws 0 Wx. Of course, there are other Hilbert spaces

involved in the entire system, such as the space corresponding to the internal state of the

device D, and perhaps the internal space of the referee R, but those are not relevant.
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Let P be a randomness amplifier on m seed bits. We will model P as a quantum operation

Ep acting on an initial state pinit, prepared by the referee. Ep will be some unitary map Vp

applied to the joint state Pinit,J (which includes the initial state as well as whatever internal

state the referee P and the device D may have), a measurement of the F and X registers

in the computational basis by the referee, followed by a partial trace over the subsystems

that are not the three Hilbert spaces above. We say the device D passes the protocol, or the

referee R accepts the interaction, if the post-measurement state in the F register is 11). The

output of the protocol P is defined to be the mixed state pX in the X register, which will

be a probabilistic mixture over classical strings.

The completeness and soundness of P are argued only with respect to an ideal initial

state pinit := 0)(OtF®PUm 09IO)(OJX, where pum denotes the totally mixed state of dimension

2 m in the S register. In other words, the randomness amplifier is only guaranteed to work

when the initial state is defined this way. However, we also have a form of robustness: if

the initial state were instead e-close (in trace distance) to the ideal initial state defined

above, then, roughly speaking, we would obtain the same output parameters as P, up to an

e additive factor in statistical or trace distance. We will be more precise soon.

4.4 Basic primitives

The basic primitive used in the protocol is the randomness amplification scheme given

by [VV12]. We call this primitive VVScheme, and its pertinent properties are summarized

next:

Definition 4.4.1 (Vazirani-Vidick protocol). VVScheme(R, D, m) is a protocol between a

classical referee R and a quantum device D, parameterized by the seed length m, that has the

following properties, when the initial state of the registers F, S, and X is Pinit = 10)(0|F 0

pU, O 0)(0x, and PFSXJ = PFSX 0 pJ, where J corresponds to the internal state space of

D.

1. The output of the protocol has length 20(m),
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2. The protocol is a non-adaptive randomness amplifier with seed length m, completeness

1 - e(m), soundness E(m), smoothness e(m), expansion g(m) = exp(Q(MI/3)

3. Let PXE denote the joint cq-state of the output of the protocol and some quantum side

information E that is isolated from D (but possibly entangled with D). Then, either

H E.(X I E), > g(m) or Pr(R accepts) < e, where e = E(m), and where p' denotes the

state PXE conditioned on the referee accepting,

where e(m) = exp(-Q(m)).

Item (3) reveals the notable property of the VVScheme, which is that in addition to

being a (near)-exponential randomness amplifier, its output is also secure against quantum

adversaries! We will call this property quantum security, and that the VVScheme randomness

amplifier is quantum-secure.

Another important primitive we will use in our final protocol is a quantum-secure extrac-

tor.

Definition 4.4.2 (Quantum-secure extractor). A function Ext : {0, 1} x {0, }d _+ {0, 1}r

is a (k, E)-quantum-secure extractor iff for all cq-states PXE classical on n-bit strings X with

H .(X I E)p ;> k, and for uniform seed pud (that is, the joint state pxEY = PXE 0 PUd), we

have

PExt(X,Y)YE PU, 0 PY 0 PE tr

where PExt(X,Y)YE denotes the joint ccq-state on the extractor output, seed, and quantum side

information E.

Theorem 4.4.3 ([DPVR12]). For all positive integers n, r, there exists a function QExt

{0, 1} x {0, 1 }d -+ {0, 1}r that is a (r + O(log r) + O(log 1/e), E)-quantum-secure extractor

where d = 0 (log2 (n/E) log r).

Both the VVScheme and the extractor QExt are robust to slight deviations in their inputs.

We record these robustness properties in the following lemma.
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Fix the seed length of VVScheme to be m. We can view the application of the VVScheme,

followed by the extractor QExt as a quantum operation E that takes as input states in the

Hilbert space lS0WT, and produces a state in the space tFO Y, where S is the seed register

for the VVScheme, T is the extractor seed register, F is the register indicating whether the

VVScheme protocol passed, and Y is the extractor output register. More precisely, viewing

8 as an algorithm, 8 first runs the VVScheme protocol, using register S as the referee's

random seed, and stores the protocol output in an auxiliary register X, as well as the

protocol outcome in F. Then, E applies QExt to the source X, with T as the extractor seed,

and stores the extractor output in register Y. Finally, E outputs the state in registers F and

Y. Note that 8 is a trace-preserving quantum operation.

Now, define the quantum operation F that takes a state pFY in 7 F Y Wt, and returns

the post-measurement state of py conditioned on measuring 11) in the F register. Note that

if this happens with probability 0, then F(pFy) = 0, and thus F is not a trace-preserving

quantum operation. We define FE to be the composition of the two quantum operations.

Lemma 4.4.4. Let QExt be a (k, )-quantum secure extractor, and let VVScheme have

smoothness parameter e(m) = exp(-Q(m)). Suppose that Pr(VVScheme passes) > A >

e(m). Then, for all ccq-states PSTE such that IIPSTE - PUm 0 PUd 0 PEI1tr J, we have that

ITFE(PSTE) - PUr 0 PEI1tr < e(m) + 7 + 6/A,

where Y8 is the quantum operation F9 0 I, with the identity operation acting on W E, the

space of quantum side information.

Proof. By the triangle inequality, we have:

II (PSTE) - PUr 0 PEiItr I If(pSTE) ~~ E(PU 0 PUd 0 PEltr

+ II (PUm 9 PU 0 PE) - PUr 0 PE1tr-
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We bound each term on the right hand side separately. We start with the first term.

||F (PSTE) ~ .(PUm PU 9PE)t r < (PSTE) (PUm 0 PUd 0 PE) tr

< ~IPSTE - PUm ( PUd 9PEtr

6/A,

where 0 = 1 I. The first inequality follows because post-selection on an event B with

probability Pr(B) introduces a factor of 1/ Pr(B) to the distance of the post-selected states.

The second inequality follows because trace-preserving quantum operations are contractive

with respect to the trace distance. The final inequality comes from our assumption on PSTE-

For the second term, we have that, by definition of VVScheme and QExt, |IfE(pUm 0

PUd 9 pE) - PU, 0 PEtr e(m) -|-. 0

4.5 The Tower of Randomness protocol

We now describe the "Tower of Randomness" protocol (abbreviated as the ToRScheme) in

detail. We fix the number of randomness amplification devices (RADs) to be k, and the

starting seed length to be m. We will label the RADs Do, ... , 1. In the ToRScheme, the

referee R will interact with the Di's, but the devices are isolated and non-signaling.

Let f : Z+ -+ Z+ be defined recursively as f(0) = m and f(i + 1) = 2(f) . This

function will represent the size of the extractor output at iteration i. As above, we de-

fine e(m) = exp(-Q(m)). For precision and clarity's sake, we explicitly keep track of the

constants for the following parameters:

1. C: Given a seed of length m, the output length of the VVScheme(R, D) is h(m) = 2C-M

2. C,: Given a seed of length m, the output min-entropy of VVScheme(R, D) (conditioned

on passing) is g(m) = 2 C-m/ 3

3. C,: On a seed of length m, the smoothness and soundness parameter of VVScheme(R, D)
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is e(m) = 2 -c-m

4. Ce, Cd: QExt : {0,1} x {0, I}d -+ {0, 1}r is a (Ce(r + log 1/-y), -7)-quantum secure

extractor, with seed length d = Cd log2 (n/y) log r.

5. f (i + 1) = 2 (C-/cf)(i-1)'/ 3 , where Cf = l/(CvCd(Co + C8)2 ).

We use the quantum formalism discussed at the beginning of the chapter. For i =

1, ... , k, we have Hilbert spaces f(F), 7(Si), N(Xj), which correspond to the pass/no

pass flag, seed register, and output register for the interaction with the ith device. We also

have Hilbert spaces W(T) and W(Y) denote the extractor seed and the extractor output

registers respectively. We will let F, Si, Xj, T, and Y denote the corresponding registers.

For simplicity we will assume that each register contains an unbounded number of qubits

(although the referee will only ever interact with a bounded number of them in each register).

Device Di only has access to register Xj. The referee can only interact with the registers via

classical operations.

Initially, the referee will set pF,s,,x,,T,Y, = (O PUm 0 0)(0 19PUm 9 10)(01. This uses

2m bits of seed randomness. For notational convenience, we describe the protocol in terms

of classical variables.

Tower of Randomness Protocol
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1. Let S1 ~ Uf(o).

2. Let Ti ~ Uf (o).

3. For i = 1, ... , k:

(a) Let Fi <- 0, Xi +- 0, and YO -- 0.

(b) Execute VVScheme(R, Di, f(i - 1)1/3), using Si as the seed randomness

for the sub-protocol, and Xi as its output.

* If F = 0, abort ToRScheme.

(c) Let Y +- QExt(Xi, Ti) where QExt : {0, 1}" x {0, 1}d -+ {0, 1} is the

(k, y)-quantum secure extractor with the following parameters:

* n = h(f(i - 1)1/3), r = f(i), k = g(f(i - 1)1/3), y - _(f(i - 1)1/3),

and d = Cd log 2 (n/-y) log r < f (i - 1)/2.

(d) Let Si+1 +- First f(i)/2 bits of Yi.

(e) Let Ti+1 +- Last f(i)/2 bits of Yi.

4. Accept, and output Yk.

4.6 Analysis of the ToRScheme protocol

First, observe that this protocol uses O(m) bits of randomness, which comes from the setting

the S1 and T registers. Then, the completeness of the protocol - that there exists devices that

pass the protocol with probability at least 1- O(E(m)) - easily follows from the completeness

of the VVScheme protocol.

Next, we show that, conditioned on the ith invocation of the VVScheme passing, the

content of register Y is close to uniform and nearly independent of devices Di+1,..., Dk.

For i = 1,... , k, let Ei denote the devices Di+ 1 - - - Dk. When we refer to a state in Ei, we

are referring to the joint state over all Hilbert spaces that the devices Di+ 1,...,Dk have

access to (i.e. the Hilbert spaces W(Xi+1),..., ?(Xk), as well as the internal states of the
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devices themselves).

In the ith iteration, VVScheme will use f(i - 1)/2 bits of seed randomness1 (provided by

the (i - 1)th iteration), and produce 20(f(i-1)1/3) bits of output. Conditioned on the protocol

passing, the output will have f(i) = 2 "(f (-1)1/ 9 ) bits of min-entropy conditioned on quantum

side information.

Applying QExt with the parameters above on the output of VVScheme and using f(i-1)/2

bits of seed randomness, we obtain a final output of f(i) bits of nearly uniform random bits

secure against E.

We now analyze the error incurred at each iteration, which will prove Theorem 4.1.1.

Theorem 4.6.1 (Formal). Suppose Pr(R accepts all k iterations) > A > e(m'/ 3 ). Then

||pYk,Ex ~ PUfk) ® PEj < CE(m 1 /3 )/A, where pYh,E, is conditioned on the referee having

accepted all k iterations, and C is some universal constant.

Proof. First, we divide the overall probability of acceptance into conditional probabilities.

Let p = Pr(R accepts all k iterations) and let pi = Pr(Aj I A<j), where Ai denotes the event

"R accepts iteration i" and A<j denotes the event "R accepts iterations 1, ... , i - 1" Then,

clearly, p = ]J pi A.

Now we prove the claim by induction. The inductive hypothesis is that for all i = 1, ... k,

|1PY,Ej - PUf(, 0 PE. II 6(i), where pY,,E; is conditioned on A 1 (where A<j is the event "Ai

and A<j"), and 6 : Z>o -+ R is defined inductively as 2e(f(i - 1)1/3) + 6(i - l)/p,, with

6(0) = 0.

Let i = 1. Then, by Lemma 4.4.4, we have that |IPYi,Ej - PUf(1) 0 PE1 I 2E(f (0)1/3)

6(1). This establishes the base case.

Now, suppose that we have run i -I iterations of the ToRScheme protocol for some i > 1,

and we have that IIP~i..,Ei-1 - PUf(i- 1 ) OPE_1 11 < 6(i - 1). The ith iteration of the ToRScheme

can be viewed as applying the quantum operation F (defined above) to the registers Si and

'Actually, it uses much less: it uses f(i - 1)1/3 bits of seed randomness. However for clarity of exposition
we simply ignore the extra random bits.
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Ti (which is simply a copy of the Y_1 register). Then, by Lemma 4.4.4 again, we have that

IPYi,Ei - PUf(,) 0 PEi <2(f(i - 1)1/3) ± 6(i - l)/pi = 6(i).

A simple induction argument yields that 6(i) < (2/A)(e(f(0) 1 / 3 ) + E(f (1)1/3) + - - +

E(f(i - 1)1/3)). The second factor can be bounded by Ce(mI/ 3 ) for some universal constant

C. E

4.7 Conclusion

We presented a new randomness amplification scheme where the expansion achieved far

exceeds that of any existing protocol - exponential expansion is literally the only first floor

of the Tower of Randomness. The central component of the ToRScheme is the randomness

amplification protocol given by [VV12], which achieves exponential expansion, but most

importantly has provable security guarantees against quantum adversaries, which is what

allows us to chain the VVScheme devices together in sequence.

One may ask whether we're being too greedy. After all, how could one possibly need

more than 22100 bits of certified randomness? It seems that schemes that try to achieve more

than, say, exponential expansion have quickly left the realm of practicality.

There are two main responses to this objection. First, the subject of randomness ex-

pansion seems to be an ideal "training ground" for many problems in quantum information

theory which we have relatively little handle on. Examples include the monogamy of en-

tanglement, rigidity of quantum games, non-locality, entropic uncertainty principles, and

more. Each of these problems individually, in full generality, form entire research fields in

their own right. The study of quantum randomness expansion has demonstrated novel and

prescient applications of these concepts, and furthered our understanding of them. In this

specific instance, the ToRScheme demonstrates the power afforded by the quantum secu-

rity/composability guarantees of the WScheme protocol.

The second response is of a philosophical nature. While it is principally impossible
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to distinguish between a completely deterministic universe and a universe with randomness,

quantum randomness expansion schemes hint at a very strong dichotomy: either the universe

is completely deterministic; or, even if there is a minute amount of randomness, it can be

amplified into effectively an infinite amount. Perhaps the biggest question at the heart

of quantum randomness expansion is whether there exists a protocol which admits truly

unbounded expansion. We view the ToRScheme as one step towards this intriguing possibility.
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Appendix A

A non-signaling strategy for CHSH

We note that there is a no-signaling strategy that succeeds in the CHSH game with probability

1. An analogue of Claim B.0.2 also holds against no-signaling strategies (see [PAM+10]

Appendix A.3).

Lemma A.0.1. There exists a non-signaling strategy that wins the CHSH game with proba-

bility 1.

The proof of Lemma A.0.1 is well-known, but may be instructive for readers unfamiliar

with non-signaling strategies.

Proof. Labeling the inputs to the game as x and y respectively, imagine that the outputs (a

and b, resp.) are selected according to the following conditional distribution.

If x A y = 1 then the two possible outputs pairs are (a, b) = (1, 0), and (a, b) = (0, 1)

each with occurring probability }. If x A y = 0 then the output pairs are (a, b) = (0, 0), and

(a, b) = (1, 1), again each occurring with probability }. It now follows easily that, regardless

of the values of a, b, x, and y we have

1
E p(a, b' I x, y) = p(a Ix, y) = p(a I x) =-
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and

Lp(a',b I x,y) =p(b I x,y) =p(b I =
ag 2

Thus, the above strategy is non-signaling by definition, and wins with probability 1.
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Appendix B

Some randomness generating games

Claim B.O.2. For any > ; 0 the game CHSH is (1/2, 7, f (,q))-randomness generating (against

quantum strategies) for f (q) = . + Vyj.

Proof. Consider a quantum strategy for the CHSH game whose success probability is at least

Pr(WIN) > Wq(CHSH) - 7, where Wq(CHSH) = cos2 (7r/8). It is proved in [PAM+10] that for

every a and x in {0, 1},

Pr(A = a I X = ) <2/4),

where I = 8 Pr(WIN) - 4 = 8(wq(CHSH) - 7) - 4 is the so-called "Bell correlation value".

Observe that Wq(CHSH) = (2 + v/2)/4 for CHSH, So

(I+ V2-- P/4) < + vr2 - Vv 2n - 2772 <; + /3~77.

The Magic Square game. Consider a 3 x 3 matrix, and suppose that one is asked to

fill in each entry with 1 or 0, with the constraint that each row must have even parity and

each column must have odd parity. Clearly, there is no such assignment that satisfies all the

constraints, because while the row constraints imply that the sum of the entries has even
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parity, the column constraints imply that the same sum has odd parity, a contradiction.

Now consider the following 2 player game, which we call the MS game. The referee

chooses an x E [6] uniformly at random, interpreted as choosing a row or column of a 3 x 3

matrix at random. Then, the referee chooses a y E [3] x [3] that corresponds to a random

entry in the row/column x. For example, conditioned on x = 1, y is uniform over the set

{(1, 1), (1, 2), (1, 3)}, the entries in the first row. The referee sends x to Alice, and solicits

Alice for an assignment a E {0, 1}3 to the entries in that row/column. Simultaneously, the

referee sends y to Bob and solicits Bob for an assignment b E {O, 1} to entry y. The referee

checks that Alice's answer satisfies the parity constraint, and Alice's answer is consistent

with Bob's.

From the foregoing discussion, it is easy to see that there is no classical strategy for Alice

and Bob to successfully pass the referee's test with probability 1; in fact it is not hard to

show that wc(Ms) = 17/18. However, there is a quantum strategy for Alice and Bob to win

with probability 1 [Ara02]: wq(MS) = wa,(MS) = 1.

To show that MS is randomness generating, we derive a contradiction by transforming

any near-deterministic strategy for the players into a strategy for the guessing game, which

is defined as follows: Alice and Bob receive inputs x and y from the Magic Square input

distribution, respectively, and they win the guessing game if Alice outputs y. Clearly, there

is no non-signaling strategy for Alice that allows her to guess Bob's output with probability

greater than 1/3.

Claim B.O.3. Let q < 1/13. The game MS is (1/9, q, f(,q))-randomness generating (against

both quantum and no-signaling strategies) for f(q) = 12/13 + 77.

Proof. Suppose for contradiction that for all y, maxb Pr(B = b I Y = y) > 12/13 + q. We

show that this cannot happen, as it gives rise to a strategy for a guessing game in which

Alice guesses Bob's input y E [3] x [3] with probability better than 1/3, which is impossible.

Let S be the strategy employed by Alice and Bob to win the MS game with probability

1 - q, and such that for every y there exists an output b* (y) E {0, 1} for Bob such that

Pr(B = b*(y) I Y = y) > 12/13 +. The function b*(y) defines an assignment to the 3 x 3
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matrix. There must exist a row or column that violates the parity constraint. Without loss

of generality, say that it is the first row.

We now describe the strategy for the guessing game. On input x, Alice acts according to

strategy S on x and records her output as a = (a,, a 2 , a 3 ). On input y, Bob acts according

to strategy S on y (and doesn't need to record any output). If x is not the first row, Alice

randomly selects one of the three possible coordinates from the row or column denoted by x,

and outputs this as her guess for y. Otherwise, suppose x is the first row. If Alice's output

(a 1 , a 2 , a3 ) doesn't satisfy the parity constraint, she aborts the protocol. The number of a

that agree with b*(1, i) is either 0 or 2; if it is 0, Alice will abort the protocol. Otherwise,

Alice randomly selects from the two coordinates in agreement and produces that as her

guess.

In case that x is not the first row, Alice guesses Bob's input with probability 1/3. If it

is, conditioned on winning the protocol and Bob outputting b* (y), Alice guesses Bob's input

with probability 1/2. Therefore,

Pr(Alice guesses y) > Pr[Alice guesses y I B = b*(y), WIN] - Pr[B = b*, WIN]

(Pr[r is not first row] ± Pr[x is first row]
3 2

=1/3

where Pr[B = b*, WIN] > 1 - (1 - Pr[WIN]) - (1 - Pr[B = b*]) > 1 -,q - (1/13 - q) by the

union bound. 0
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Appendix C

Extending Theorem 3.3.1 to arbitrary

XOR games

Here we will briefly discuss the extension of Theorem 3.3.1 to 2-player XOR games, as well

as the GHZ game.

While considering 2-player XOR games we will, for simplicity, restrict our attention to

games which have exactly one valid answer parity for each pair of inputs. We refer to such

games as balanced games. All balanced games have the form G(X, Y, A, B) = f(X, Y) (

A D B, where f(X, Y) = C1 ( c2X ( c3 Y E c4XY for some constants ci, c2, c3 , c4 E {O, 1}.

The constant term and linear terms can be removed by making a classical addendum to the

quantum strategy. For example, by having Alice XOR her answer with ci E c2X, and Bob

XOR his answer with c3Y. In this way we can reduce without loss of generality to the case

f (X, Y) = c4XY. If c4 = 0 then we are done, if c4 = 1 then we have the CHSH game, for

which we already know the correct strategy. So, the proof for balanced 2-player XOR games

is an easy extension of that for CHSH, because, in some sense, CHSH characterizes the only

interesting example of a 2-player XOR game in this context.

In the (3-player) GHZ game, the three devices are each given an input, which we'll call

X, Y, and Z respectively. Further, they are guaranteed that X D Y D Z = 0. Their goal is

to produce outputs (A, B and C respectively) such that G(X, Y, Z, A, B, C) = f(X, Y Z) @
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AeBEC= 0, where

f(XYZ) = XVYVZ=X EY DZ DXY(DYZ DXZ DXYZ

We note that for GHZ wq(G) = 1 (this is well known, see [CKIl]). Thus, the three

devices can win this game with probability 1 using a quantum strategy. The analog of

Theorem 3.3.1 for the GHZ game can be obtained by following the proof of Theorem 3.3.1

with slight modifications that we will now describe. The linear terms of f(X, Y, Z) can be

dealt with by a classical modification of the strategy in which the first player XOR's their

answer (A) with X, the second player XOR's their answer with Y, etc. The XY, YZ,

and XZ terms can be dealt with by secretly using the probability 1 non-signalling strategy

for CHSH between the respective devices so that the CHSH game essentially is used as a

subroutine in the cheating strategy. For example, if the first and second players secretly

play CHSH on using inputs X' and Y' (resp.), and a probability 1 strategy, then they obtain

outputs A' and B' respectively such that A' D B' = X'Y'. By XORing these outputs onto

their final output they effectively remove the X'Y' term from f(X, Y, Z). In the case that

the input (X, Y, Z) is a linear combination of previous inputs, we can extend this method

to deal with the quadratic number of quadratic cross terms, in the same manner as in the

cheating strategy for CHSH protocols. This same technique is used between all three pairs

of players.

Lastly, the XYZ term can be dealt with (for any particular input XiYZk) by secretly

playing a series of GHZ games with those inputs. Since the test G only uses the XOR of the

three outputs, we can combine all three of these strategies linearly just as in the proof of

Theorem 3.3.1. Note that, due to the cubic term XYZ we will need to play a cubic number of

GHZ games in secret to simulate rounds where the inputs are linear combinations of previous

rounds. As a result the final entropy bound will have a cubic blow up (rather than a quadratic

blow up as in the proof for CHSH). The final entropy bound will be HO(A, B, C) < O(23m).

61



Bibliography

[AGR81] A. Aspect, P. Grangier, and G. Roger. Experimental tests of realistic local

theories via Bell's theorem. Phys. Rev. Lett., 47(7):460-463, 1981.

[Ara02] P. K. Aravind. The magic squares and Bell's theorem. Technical report,

arXiv:quant-ph/0206070, 2002.

[BCP+13] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner. Bell non-

locality. Technical report, arXiv:1303.2849, 2013.

[CHTWO4] R. Cleve, P. Hsyer, B. Toner, and J. Watrous. Consequences and limits of

nonlocal strategies. In Proc. 19th IEEE Conf. on Computational Complexity

(CCC'04), pages 236-249. IEEE Computer Society, 2004.

[Cir80] B. Cirel'son. Quantum generalizations of Bell's inequality. Letters in Mathe-

matical Physics, 4(2):93-100, 1980.

[CK11] R. Colbeck and A. Kent. Private randomness expansion with untrusted de-

vices. Journal of Physics A: Mathematical and Theoretical, 44(9):095305,

2011.

[Col06] R. Colbeck. Quantum And Relativistic Protocols For Secure Multi-Party Com-

putation. Ph.D. thesis, Trinity College, University of Cambridge, November

2006.

[CR12] R. Colbeck and R. Renner. Free randomness can be amplified. Nature Physics,

8(6):450-454, 2012.

62



[CT12] T. Cover and J. Thomas. Elements of information theory. Wiley-interscience,

2012.

[DLTW08] A. C. Doherty, Y.-C. Liang, B. Toner, and S. Wehner. The quantum mo-

ment problem and bounds on entangled multi-prover games. In Proc. 23rd

IEEE Conf. on Computational Complexity (CCC'08), pages 199-210. IEEE

Computer Society, 2008.

[DP09] D. P. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis

of Randomised Algorithms. Cambridge University Press, 2009.

[DPVR12] A. De, C. Portmann, T. Vidick, and R. Renner. Trevisan's extractor in

the presence of quantum side information. SIAM Journal on Computing,

41(4):915-940, 2012.

[FGS13] S. Fehr, R. Gelles, and C. Schaffner. Security and composability of randomness

expansion from Bell inequalities. Phys. Rev. A, 87:012335, Jan 2013.

[GMDLT+12] R. Gallego, L. Masanes, G. De La Torre, C. Dhara, L. Aolita, and A. Acin.

Full randomness from arbitrarily deterministic events. Technical report,

arXiv:1210.6514, 2012.

[LPSW07] N. Linden, S. Popescu, A. J. Short, and A. Winter. Quantum nonlocality and

beyond: Limits from nonlocal computation. Phys. Rev. Lett., 99:180502, Oct

2007.

[NC10] M. A. Nielsen and I. L. Chuang. Quantum computation and quantum infor-

mation. Cambridge university press, 2010.

[PAM+10] S. Pironio, A. Acin, S. Massar, A. B. De La Giroday, D. N. Matsukevich,

P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and et al. Random

numbers certified by Bell's theorem. Nature, 464(7291):10, 2010.

63



S. Pironio and S. Massar. Security of practical private randomness generation.

Phys. Rev. A, 87:012336, Jan 2013.

M. Plesch and M. Pivoluska. Single min-entropy

plified. Technical report, arXiv:1305.0990, 2013.

R. Renner. Security of Quantum Key Distribution.

Institute of Technology Zurich, September 2005.

J. Radhakrishnan and A. Ta-Shma. Bounds for

depth-two superconcentrators. SIAM Journal

13(1):2-24, 2000.

random source can be am-

Ph.D. thesis, Swiss Federal

dispersers, extractors, and

on Discrete Mathematics,

[PP13]

[Ren05]

[RTSOO]

[Sha02]

[SV86]

[TSS13]

[VV12]

64

[PM13]

R. Shaltiel. Recent developments in explicit constructions of extractors. Bul-

letin of the European Association for Theoretical Computer Science, 77:67-95,

June 2002.

M. Santha and U. V. Vazirani. Generating quasi-random sequences from

semi-random sources. Journal of Computer and System Sciences, 33(1):75-

87, 1986.

L. P. Thinh, L. Sheridan, and V. Scarani. Properties of the random seed input

to Bell tests. Technical report, arXiv:1304.3598, 2013.

U. Vazirani and T. Vidick. Certifiable quantum dice: or, true random number

generation secure against quantum adversaries. In Proceedings of the 44th

symposium on Theory of Computing, STOC '12, pages 61-76. ACM, 2012.


