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Abstract
We propose a new random field (RF) model, smoothness-transfer random field (ST-RF)
model, for image modeling.

In the objective function of RF models, smoothness energy is defined with com-
patibility function to capture the relationship between neighboring local regions, while
data energy for the evidence from local regions. Usually, the smoothness energy is con-
structed in terms of a fixed set of filters or basis which can be learned from training
examples and steered to local structures in test examples. ST-RF, on the other hand,
takes the data-driven approach to nonparametrically model the compatibility function
for smoothness energy.

The pipeline for our ST-RF model is as follows: first for each training example,
we build a RF model with "ground truth smoothness energy", where the compatibility
function is constructed from ground truth value. Then, for each test example, we
use data-driven method to find its correspondence with training examples. Lastly, we
construct the smoothness energy of ST-RF for each test example by transferring the
compatibility function from matched region. After construction, we applies traditonal
RF inference and learning algorithms to obtain the final estimation.

We demonstrate that with transferred ground truth smoothness, random field can
achieve state-of-the-art results in stereo matching and image denoising on standard
benchmark dataset.

Thesis Supervisor: William T.Ereeman
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

R ANDOM field (RF) models have been widely used in computer vision, particularly
in problems of low-level vision such as image restoration, stereo reconstruction,

and optical flow estimation. In these applications, Markov random field (MRF) impose
spatial regularization with prior knowledge on the types of natural images, depth maps,
flow fields, etc. In the last decade, much attention is received on the improvements in
learning and inference algorithms. As pointed out in Roth and Black [22], most MRF
models are limited in three different areas in regard to smoothness energy modeling:
(1) simple neighborhood structures, e.g. pairwise graphs; (2) hand-defined and hand-
tuned potentials; (3) lack of spatial adaptivity. The first two problems are well eplored
in [21, 35] and Roth and Black [22] addresses the third limitation by aligning potentnal
functions with local structure of the image. However, such parametric approach cannot
well take the advantage of existing similar examples in the training data.

Nonparametric modeling, on the other hand, is by nature richly adaptive through
its data-driven mechanism and scales better with respect to the training data size. It
has obtained state-of-art performance on semantic labeling [17], image denoising [14],
super-resolution [27] and depth transfer [11].

In this thesis, we propose to build a RF model with nonparametric modeling for
smoothness energy. To our knowledge, it is not only the first attempt to define and
transfer "ground truth smoothness energy" from database for building adaptive RF
model but also the first data-driven system for vision task with high accuracy require-
ment, like stereo matching.

* 1.1 Related Work

* 1.1.1 Smoothness Energy Modeling

Traditionally, smoothness energy in RF is constructed parametrically in terms of filter
response or basis assignment.

For image prior related low level vision tasks (e.g. denoising, inpainting, deblurring,
super-resolution and texture synthesis), FRAME [35] and Field-of-Expert [21] are pop-
ular filter-based smoothness model, and sparse coding [18], kernel regression [29] and
mixture of Gaussian [36] are recently proposed as basis-based methods.

9



CHAPTER 1. INTRODUCTION

For stereo and optical flow, however, the smoothness energy to capture the pattern
of motion or disparity is mostly confined to gradient filter (e.g. V, = 0) with a pairwise
grid or bilateral/median filter with higher-order connectivity.

0 1.1.2 Nonparametric Modeling

Starting with the seminal work of Freeman et al. [7], nonparametric modeling has been
widely used within RF model in low level vision. Such data-driven methods implicitly or
explicitly learn the mapping between source image patches and its desired estimation.
Thus, only data energy is transferred for the RF model.

In order to find the neartest neighbor of a patch to build its non-parametric distribu-
tion, [7] has a special data structure to store large amount of patches for fast retrieval.
However, such approach doesn't scale well with the size of training data and matches
can be ambiguous due to the lack of context. Alternatively, we can use scene alignment
algorithms like SIFT flow [16] which are both efficient for computing correspondence
and effective for preserving context.

0 1.2 Outline

This thesis is organized as follows.
Chapter 2 begins with a brief discussion of background material and previous work

essential in understanding the concepts presented in later chapters. Topics in this
chapter include the construction, inference and learning of MRF models, correspondence
computation in data-driven literature, and introduction of low level vision tasks for our
smoothness-transfer Random Field (ST-RF) model.

Chapter 3 introduces the computation pipeline for an ST-RF. We first define "ground
truth smoothness energy" for each training example. Then, we use data-driven method
to find correspondence from training examples. Lastly, we construct the smoothness
energy of ST-RF by transferring the ground truth smoothness energy from matched
region. We also explain in detail, the MRF inference and learning algorithms that we
used for an ST-RF.

Chapter 4 and Chapter 5 show results of using our ST-RF model in stereo matching
and image denoising. We first show the task-specific construction of ST-RF, describing
the design choices for each module. Then compare our ST-RF result with other meth-
ods on the standard benchmark dataset. Moreover, we show the relationship between
matching quality and the ST-RF performance.

Finally, we conclude the thesis in Chapter 6 with the summary of contribution and
future research directions.

10



Chapter 2

Background Material

N this chapter, we will briefly discuss some background material for readers that are
not familiar with the topics. We here introduce readers to the two main components

of our ST-RF model: MRF model as the backbone for our vision task modeling, and
data-driven techniques to find matched patches to transfer smoothness energy. We also
cover problem formulation and computation pipeline for two vision applications: stereo
matching and image denoising.

N 2.1 Markov Random Field

Markov Random Field (MRF) is an undirected graphical model and is widely used in
image modeling to capture both the evidence from local regions and the relationship
between neighboring local regions. Below, we go through basic elements for MRF model
in order to better understand our ST-RF model as a variation. For detailed explanation
and recent progress, we refer readers to Blake et.al. [2].

E 2.1.1 Construction

As explained in [7], we denote the observed image data as y and the underlying scene
to recover as x. In the MRF graphical model shown in Figure 2.la, we have P(x) as
the prior distribution of the scene to estimate, and P(ylx) as the likelihood to observe
the image from such scene. Usually, these probabilities are defined with Boltzmann dis-
tribution as the nomalized expontenial of negative energy function. Conventionally, we
denote the energy function for P(x) as "smoothness energy" to capture the neighboring
relationship among x: Esmoothness log(P(x)) = E P(xp), where x, are groups of

P
nodes and T the compatibility function to prefer certain configuration of xP. And
that for P(ylx) as "data energy", to model the generative process from scene to image
data: Edata - log(P(ylx)) = E4<(xi), where <b the likelihood function to evaluate

the possibility to observe yi from xi.
In pair-wise 4-connected MRF model for example, we show the energy function

11



defined on the edges of the graph in Figure 2.1b. The joint probability is defined as:

P(x, y) = P(x)P(ylx) = exp{- E b(x, yi) - E Q(xi, x)} (2.1)
i i~j

(Xl 1Yl) 0D(X 21Y2) (D(X 31y3)

WI)(x 11x2) I(X 2,X3

(a) (b)

Figure 2.1: (a) Graphical Model for pair-wise MRF with 4-connected neighborhood.
Each xi node describes a local patch of scene where yi as the corresponding image
observation. Edges in the graph indicate statistical dependencies between nodes. (b)
Energy function defined on the graph

In order to capture longer range connectivity, high-order MRF models are pro-
posed [21, 35].

E 2.1.2 Inference

In computer vision tasks, we aim to estimate the underlying scene from observed im-
age data within the Bayesion framework by calculating the posterior probability of
P(xly) oc P(yjx)P(x). In general, there are two kinds of estimation we can make from
the posterior probability. We can either find the mode of the probability function as the
Maximum-A-Posteriori(MAP) estimator, or calculate the expectation of a certain loss
function with respect to it as the Bayesian estimator. Due to the difficulty to integrate
out the posterior probability, MAP estimator is commonly used in vision application.
Below, we list the common methods for MRF optimization with x being either discrete
or continuous.
a. Discrete Model

For the discrete formulation of stereo matching, where the disparity at each pixel
is treated as a discrete variable, the state space grows exponentially with the range of
the connectivity. In inference algorithms for discrete pairwise MRF, three major types
can be seen: Polyhedral and Combinatorial Methods, Message Passing Methods, and
Max-Flow and Move-Making Methods. The detailed description and comparasion of
these inference algorithms can be found in [10]

12 CHAPTER 2. BACKGROUND MATERIAL



Sec. 2.2. Patch Correspondence

However, these algorithms became cumbersome when it comes to high-order-MRF
with big potential clique. Thus, tree approximation of the connectivity graph [26,31]
are proposed as an alternative.
b. Continuous Model

Compared to discrete models, continuous model has the drawback of having a contin-
uos parametric form of data energy, which is usually hard to capture the non-convexity.
However, it can well handle high-order smoothness energy since during optimization it
only considers the local gradient at current estimation instead of searching over expo-
nentially large joint state space.

N 2.1.3 Learning

Besides the inference phase above, MRF need a learning phase for the paramter in the
potential function. For example, the most common compatibility function in smooth-
ness energy is the pair-wise potential T(xp) = 'I(xi, xj) = wijp(xi - xj), where p is a
cost function and wij weight of the constraint of xi, xj being alike. For a homogenous
MRF, wij is set to be the same value, which need to be learned during the MRF learning
phase to balance the influence between smoothness energy and data energy.

For learning MRF, two main approaches are seen: Sampling-based methods [25,34]
and discriminative learning methods [15,23]. The sampling-based methods utilize
efficient sampling methods to learn image prior by fitting the statistics of ground truth.
These methods are well founded on statistical theories and exhibit good performance
in learning natural image prior in a general way. The discriminative learning methods
learn the model parameters by constructing a loss function [13] between the inferred
estimation from MRF model and the target.

0 2.2 Patch Correspondence

Given a database of stereo images with ground truth depth map, we want to find
nonparametric depth prior for test stereo images. In the following section, we briefly
overview data driven matching methods and a recent application that creates such
depth prior by finding correspondence between test image and the database.

* 2.2.1 Matching between Patches

Early works build a fast data structrue (e.g. kd-tree) for training patches in order to
find the nearest neighbor for each test patch efficiently. However, such method throws
away the context information of images that training patches are extracted from. Good
match for one test patch alone may not be misleading while good matches for mutiple
neighboring patches from one test image to those from one training image may be more
compelling.

13



0 2.2.2 Matching between Images

Inspired by optical flow that is able to produce pixel level correspondence between two
images, [16] replaces raw pixel value by SIFT descriptors for matching cost and follows
the standard computational framework of optical flow. As shown in many applications
in [16], the use of SIFT features allows robust matching across different scene/object
appearances and the discontinuity-preserving spatial model allows matching of objects
located at different parts of the scene.

Typically, there are three steps in most data-driven applications. First, retrieve
a small set of similar images from the large corpus of training images. This can be
done, for example,by comparing global image descriptors such as GIST [19]. Secondly,
compute dense pixel mappings between images in the retrieval set and the target im-
age. Some methods enforce smooth mappings [16], while others allow arbitrary map-
pings [32]. Lastly, transfer desired scene property, e.g. semantic label, local appearance,
from the images in the retrieval set to the target image via the dense pixel mappings. To
resolve the ambiguity and mistakes during transfer, a MRF is often used to aggregate
local evidence from transfer and enforce smoothness constraints.

* 2.3 Low Level Vision Task

To show the power of better capturing smoothness prior with our new proposed T-
MRF model, we test it on two popular low level vision task: image denoising and stereo
reconstruction. Below, we give brief overview of these vision tasks.

* 2.3.1 Image Denoising

E 2.3.1.1 Problem Setup

Natural image denoising is defined as the problem of estimating a clean version of
a noise corrupted image (Figure 2.2b), given a priori knowledge that the original
unknown signal is a natural image (Figure 2.2a). The main idea in this setting is that
image denoising can be performed using not only the noisy image itself but rather using
a suitable prior on natural image statistics.

E 2.3.1.2 Computation Pipeline

Recently, impressive results have been obtained with non-parametric techniques such
as non-local means [4] or BM3D [5], and sparse representation methods such as KSVD
[6].

These methods share the same computation framework: first extract overlapping
patches from the noisy image, then denoise each patch either individually or collabo-
ratively, and lastly take the average or median of the pixel value from corresponding
patches.

14 CHAPTER 2. BACKGROUND MATERIAL



Sec. 2.3. Low Level Vision Task 15

(a) Original Image (b) Add Gaussian Noisy

Figure 2.2: The generative process for image denoising (a) original image (b) corrupted
by Gaussian noise

0 2.3.2 Stereo Reconstruction

* 2.3.2.1 Problem Setup

Calculating the distance of various points, or any other primitive, in a scene relative
to the position of a camera is one of the important tasks of a computer vision system.
Epipolar geometry provides tools in order to solve the stereo correspondence problem,
i.e. to recognize the same feature in both images. If no rectification is performed,
the matching procedure involves searching within two-dimensional regions of the target
image, as shown in Figure 1.8(b). However, this matching can be done as a one-
dimensional search if accurately rectified stereo pairs are assumed in which horizontal
scan lines reside on the same epipolar line, as shown in Figure 1.8(a). A point P1 in
one image plane may have arisen from any of points in the line C1P1, and may appear
in the alternate image plane at any point on the epipolar line E2 (Jain et al. 1995).
Thus, the search is theoretically reduced within a scan line, since corresponding pair
points reside on the same epipolar line. The difference of the horizontal coordinates of
these points is the disparity value. The disparity map consists of all the disparity values
of the image. Fig 2.3a shows a generic formulation of two-view stereo problem using
epipolar geometry where details can be found in [28]. In practice, stereo images are often
taken by two side-by-side synchronized cameras shown in Fig 2.3c. Consequently, the
relationship between 3D depth and the disparity on two image planes can be simplified
as the function of focal length and the displacement between two cameras illustrated in
Fig 2.3b.

0 2.3.2.2 Computation Pipeline

a. Matching Cost Computation
In order to find for each pixel in the left image the corresponding pixel in the right one,
we need to measure the similarity of these pixels. The pixel to be matched without any

Sec. 2.3. Low Level Vision Task 15
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(a) (b) (c)

Figure 2.3: (a) Illustration from [28] for the corresponding set of epipolar lines and their
epipolar plane (b) simplified geometry relationship between depth and disparity on two
image planes when there is only translation between two camera poses (c) image of a
stereo camera from http: //commons. wikimedia. org

ambiguity should have the lowest matching cost distinctly from its surrounding pixels.
As described in [24], we first compute such cost for each pixel with all possible corre-
sponding pixels. The feature to match for each pixel can be its intensity, gradient or
patch-based features like census-transform and SIFT. The most common matching met-
rics are absolute differences (AD) and the squared differences (SD), p-norm of vectors
with p=1,2. To limit the influence of noise, robust measures like truncated quadratics
and contaminated Gaussians have been proposed. To be insensitive to image sampling,
Birchfield and Tomasi compares pixel values in the reference image against a linearly
interpolated function of the other image instead of the integral pixel positions.
b. Matching Cost Aggregation
To be robust against noisy observation, we aggregate within a small support . Aggre-
gation with a fixed support region can be performed using 2D or 3D convolution:

C(x, y, d) = w(x, y, d)Co(x, y, d) (2.2)

where Co(x, y, d) is the initial cost volume computed above, w(x, y, d) the weight and
C(x, y, d) the agregated cost volume. The weight can come from box filter, gaussian
filter, bilateral filter and guided image filter.
c. Spatial Regularization
In addition to the local evidence for each pixel, we need to add spatial regularization to
obtain a globally consistent stereo estimation. Here, we show the formulation of different
stereo matching methods using Markov Random Field (MRF) Model. In general, we
want to minimize the energy function E, the total matching cost Eta with spatial
regularization Esmooth.

E(d) = Edata(d) + AEsmooth(d) (2.3)

Edata(d) = C(x, y, d(x, y)) (2.4)
(x,y)

16 CHAPTER 2. BACKGROUND MATERIAL



Local methods set Esmooth = 0 and the optimal disparity d can be calculated for
each pixel indenpendently, known as winner-take-all (WTA) optimization. For global
methods,

Esmooth(d) = p(Vld(x, y)) (2.5)
(xy)

Esmoothi(d) = p(w(x', y', d')d(x', y') - d(x, y)) (2.6)
(xy)

(2.7)

Esmooth wants the dispairty at each pixel to be similar to that predicted by the neighour-
ing pixels. Similar to the metric in cost computation, we use robust function p to cap-
ture such difference. In terms of the prediction, it is usually made by simple gradient
or regression. For first-order MRF model, where only pair-wise spatial regularization
is imposed, Belief Propagation is used. Tree approximation of the MRF model is used
for efficient Dynamic Programming. In general, the optimization of high-order MRF
model is hard.
d.Disparity Refinement
After obtaining the disparity estimation from the model above, we can further improve
the result with post-procesing steps. To refine an initial disparity estimation, we first
remove unconfident or invalid estimation and then fill in the holes. The confidence of
the estimation is defined as the ratio between the top two lowest cost and the invalid
estimation is detected using cross-checking. Usually, holes are filled by surface fitting
or by distributing neighboring disparity estimates. A median filter can be applied to
clean up spurious mismatches,

Sec. 2.3. Low Level Vision Task 17
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Chapter 3

Smoothness-Transfer Random Field
(ST-RF)

N this chapter, we describe in details the computation pipeline of our ST-RF model.
Similar to other pipelines with MRF modeling, we need to first construct the MRF

model with data energy and smoothness energy. Then we learn the parameters of the
MRF model to better tune the model to fit the training data. Last, we do inference on
the MRF model for the test data to obtain the estimation for underlying scenes. The
novelty of our ST-RF lies in the smoothness energy construction, Sec. 3.1.2, where we
use data-driven techniques to find correspondence from database and to transfer the
compatibility function from the matched region.

The summary of the pipeline is shown in Algo 1.

input : Test image data (ytest), Training image data and scene data (Ptrain, strain)
output: Test scene (xt,,t)

a) Learn MRF parameter: Sec.3.3
b) Construct Data Driven MRF: Sec.3.1

Construct Data Energy: Sec.3.1.1

Transfer Smoothness Energy: Sec.3.1.2

c) Infer MRF variable: Sec.3.2

Algorithm 1: Pipeline of Smoothness Energy Transfer Framework

19



0 3.1 ST-RF Construction

Below, we show the comparison of the energy function of the standard and the proposed
energy function.

Eo(x; y, 9) = p(x% -y) + p(#(Xp)) (3.1)

Data Energy Smoothness Energy

E1 (x; y, 9) = x - y ) + 1 p(#(x) - #(tp)) (3.2)

Data Energy Transferred Smoothness Energy

where x denotes the current state of the MRF, p the penalty function, # the potential
function to capture the statistics of patches, and tp the matched patches from the
training.

0 3.1.1 Construct Data Energy

For image denoising, the data energy is defined straight-forwardly from the generative
model. It is the probability of the Gaussian distribution N(Y - X; 0, a2 ) where Y is the
noisy observation, X the estimated pixel value, and a the known noise level. For stereo
reconstruction, however, the data energy need to be approximated with a continuous
function. Various relaxation methods and coarse-to-fine scheme are used to address
such issue. We take the approach implemented in [30], where the continuos function is
a Gaussian distribution centered at the initial estimation. We'll discuss the detail in
Sec 4.2.1.

0 3.1.2 Transfer Smoothness Energy

For each patch p from the test image, we need to first find matched patches t, in the
database, and then transfer the compatibility function from them.

E 3.1.2.1 Scene Retrieval

Like label transfer system, we need to first find a small set of images for patch level
correspondence. Here, there are two variation of the method:

1. Distance metric: we need to quantify the distance between matched images. We
can calculate the difference between two images in either intensity space (I) or
SIFT feature space (S). Moreover, for stereo, we can also compute the distance
between the initial disparity estimation of test image and that of training images
with DC component removed (D) Also, we can design new feature by combining
both appearance and disparity. (not implemented)

2. Number of neighbor: we can use a simple K-NN approach or a generalized < K, f >
approach to adaptively choose the number of neighbors, where E is the threshold
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parameter to remove neighbors with distance further than (1 +e) times the smallest
distance. .

N 3.1.2.2 Patch Correspondence

Traditionally, [7] builds fast querying data structure for all patches, which is still expen-
sive considering the size of training patches. Recently, image alignment through SIFT
feature matching (e.g. SIFT flow) and approximate Nearest-Neighbor-Field method
(e.g. PatchMatch) have shown great promise for fast patch correspondence while pre-
serving image context. Here, we consider two popular methods: SIFT flow [16] and
PatchMatch [1].

* 3.1.2.3 Patch Selection

Given Ki matches for each patch i in the query image, we can either build a mixture
model as for image prior, or choose a simple estimator from these matches. Here, we
only consider three intuitive factors for patch selection, where e is a threshold parameter
(different for each case):

1. number of matches: (Count> EK) if only few matches are found from neighboring
images, then the patch is less confident about its disparity matching distance

2. standard deviation of the matched smoothness: (Std< E) if the matched smootheness
for one patch agree with each other, then this patch has strong confidence to have
good matches

3. deviation from initial estimation: (SM-L1< E) since the disparity estimation from
SGBM is still valuable, we can reject outlier matches through checking its difference
from the transferred estimation

* 3.1.2.4 Ground Truth Smoothness Energy

Ever since the advent of the MRF model, people have been devising various forms
of smoothness energy to better capture the correlation among nodes in the graph.
However, the answer to the question, "What is the ground truth smoothness energy",
is still not clear. We here explicitly define the ground truth smoothness energy as a
function form that leads to ground truth estimation during inference.

Take stereo matching for example, one trivial ground truth smoothness energy can
be defined as p(xp(center) - xp(i) - (gp(center) - gp(j))), where xp(center), xp(j) are
nodes at center and jth position in the patch p in RF, gp(center), gp(j) the disparity
value at center and Jth position in the ground truth disparity map. With reasonable
data energy, we can get the infered disparity map same as the ground truth.

For the convenience of transfer, we define ground truth smoothness for each patch
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of the image. The final form of the ground truth smoothness energy is:

E(x; y, 0) = p(xi - yi) + 1: >j 0,p(xp(center) - xp(j) - (gp(center) - gp(j))

IN VP
Data Energy Transferred Smoothness Energy

(3.3)

E 3.2 ST-RF Inference

As discussed in Sec.2.1.2, the discrete variable x has the advantage of capturing the
non-linearity of the energy while the continous version of the variable can incorporate
nonlocal smoothness more efficiently. We use a continuous MRF model to capture long
range correlation within a matched patch. Our inference problem is the same as optical
flow. Specifically for our nonlocal smoothness energy, we follow the inference technique
in [12]. The outer loop is a standard coarse-to-fine scheme, in which the disparity is
estimated at increasing resolutions. Below, we focus on disparity estimation during
a single step of this multiresolution refinement. At a given resolution, we estimate
the disparity D between the warped images iteratively, initializing it with the previous
estimate DO. At step k + 1, for k > 0, we express the disparity as xk+1 . xk + Axk
Our goal is to find a displacement Axk that satisfies

VAzNkE(xk + AXk) = 0 (3.4)

We linearize the gradient around xk, reducing it to a linear system, which can be solved
efficiently using the conjugate gradient algorithm with Jacobi preconditioning.

To linearize the gradient VEN, we begin with a simple variable substitution pN(x) =
#N(X2 ). This yields the following expression for the components of the gradient

a N (+ = ( + Ax- - - Ax )2) (3.6)

To linearize the gradient with general penalty functions pN(x), we follow Papenberg
et al. [11] and use a fixed point iteration to compute Auk. We initialize this inner
iteration with Auk = 0. At each step 1+1, for 1 > 0, we compute a displacement vector
Auk,l+1 that satisfies

VArk,i+1 E(xk + Axk,l) = 0 (3.7)

where

O~kllEN (Xk + AXkl+l) = 2 Z: wij(x + AXk'1~l _-X - Axk,1+1) (3.8)
09A~kl~l Z ijii

(x + Ax ' x - Ax ',1)2) (3.9)N i i X' )3

22 CHAPTER 3. SMOOTH NESS-TRANSFER RANDOM FIELD (ST-RF)

(3.9)



Sec. 3.3. ST-RF Learning

This assumes that the derivative terms V'b(.) are approximately constant for small
changes in the flow displacement [11]. The terms 0'(.) in Equation 5 are constant
with respect to Auk,l+1, thus Equation 4 is a linear system. Specically, we can express
Equation 4 as

(A + B)Aukl+1 = WA + WB (3.10)

where BAuk,l+1 - WB is the sum of the linearized gradients of ED and ES, and A and
WA are defined as follows:

A = -wij'N((X + ~Xk~ - - AXkl) 2 ) for i j (3.11)

Ai = E wij 0'v((Xk + AX ' - X -- Ax ',)2) for i # j (3.12)
jii

WA = -Auk (3.13)

0 3.3 ST-RF Learning

There are two approaches in MRF learning: generative and discrimitive. In genera-
tive learning, it is often hard to compute the partition function. We here take the
discrimitive approach and adapt the image prior model in [23] for our ST-RF model.

M 3.3.1 Discrimitive Learning

We rewrite the energy function of ST-RF model with nonlocal smoothness defined in
Equation 3.3 with the following notation: xm as the mth variable, 6O5 as the weight
vector on the edge between ith and jth variable, ym the Mth observation, and Axgt(i, j)
as the disparity difference between ith and jth variable.

E(x; y, 0) = p(xi - yi) + E ijp(xi - xj - Axgt(i, j)) (3.14)
iij

X*(0) = arg min E(x; y, 0) (3.15)

,where x* is the MAP estimation of the MRF model.
For discrimitive learning, we want to minimize the distance between the MAP esti-

mation and the ground truth xgt, where the distance metric is based on the evaluation
methods. Stereo, for example, needs thresholded Lo-norm while image denoising needs
L2-norm. For simplicity, we here demonstrate the derivation of our learning algorithm
with L2 -norm. Thus, the objective function and the gradient w.r.t. parameter 0 are:

L(x*(0), xgt) = (X*(0),Xgt) 2  (3.16)

&L(x*(O ), xgt ) Ox*(9)
a L( *( 0 , x t = 2 (x *( 0) - xt) a x *( 0 (3 .1 7 )
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Although it is hard to write down the analytical form of x*, we can make use of the
implicit derivative trick described in [23]. We first define the auxilary function g(x*, 0)
and calculate its total derivative.

g(X, 0) -E(x; y, 0)
Ox

0E(x; y, 0)
x y 0 x*() = g(x*, 0) = 0

dg(x*, 0) og(x*, 0) ax*
dO 0x* 00

(3.18)

(3.19)

(3.20)
Og(x*, 0)
+ o 0

input : MRF parameter 0, Observation y
output: 0* s.t. MAP estimation x*(0*) is closest to the ground truth xgt in L2

for t <- I to T do
MRF inference: Compute x*('-1) 3.2
MRF learning: Compute Ot 3.3

end

Algorithm 2: Pipeline for discrimitive MRF learning

0 3.3.2 Gradient Calculation

Now with the implicit derivative trick, we get the desired ax*o) as

ax* (0) ag(x*,0) -1 0g(x*,0)
00 k0x* / 0

we explicitly write out each part of Eq. as

x,9 E(x; y, 0)
g"(X*, 0) = 0XM .X*(0)

= p'(X* ym) + Z jp'(x* - x*(j, k)
k

p (x* - ym) + 0p (X4 Xpk -
k

- Axgt(m, jk))

Axgt(m, jk))

- p" (x* - xk - Axgt(m,jk))
jk

-, Z p( - Xk- Axgt(m,jk))
j k

(3.21)

agm(x*, 0)

agm(x*, 0)
0n*

9mg(x*, 0)

a
0

k

(3.22)

(3.23)

(3.24)

(3.25)
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Thus, the final update 0 is as following, where s is the step size for the gradient descend
to find the minimum energy.

Ot t_1 -',L(x*(Ot-1), t)
Dx*(9-1)

=t1 - 2s(x*(0'-1) - t)aot-1
o*-1

= 6-1 + 2s(X*(01-1) - 0) ag(x* 6t-1) ag(x*, 6t-1) (3.26)
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Chapter 4

Experiment I: Stereo Matching

Traditionally, stereo matching dataset contains few training and test examples which
makes it hard to apply our framework. However, thanks to the recent KITTI dataset
which provides around 200 training and test examples, we can find matches to transfer
the smoothness information to demonstrate the usefulness of matching approach. Be-
low, we first adapt our general SM-MRF framework to stereo matching task. Then we
make use KITTI training data to make the design decision for each module during MRF
construction and to test our MRF inference and learning algorithm. For evaluation,
we show comparison result not only on overall performance but also the patch level
correlation between estimation error and the matching quality.

N 4.1 Pipeline

In Figure 4.1, we visualize the pipeline of ST-RF for stereo matching. Since these images
are approximately aligned, SIFT flow algorithm doesn't make much change during scene
alignment.

We define the ground truth smoothness energy as the difference between disparity
value at each position and that in the center:

O(xp(i)) = xp(i) - xp(center) (4.1)

* 4.2 ST-RF Construction

To build data energy, we need the initialization result from modified SGBM, which is
used in [30] to achieve state-of-the-art stereo matching result on KITTI. To transfer
smoothness energy, we need to finalize the design of our data-driven module since it
has many different choices in how to find and select matched patches. In Sec. 4.2.2, we
used a greedy search approach to make these decisions based on the disparity error of
the estimation with leave-one-out cross validation method.
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Figure 4.1: ST-RF Pipeline for Stereo Matching

E 4.2.1 Construct Data Energy

In the discrete formulation of stereo model, the data energy, aggregated matching cost
explained in Sec 2.3.2.2, is calculated at each possible state of the variable (distinct
disparity values). But for continouse MRF model, we need to make a functional ap-
proximation of this discrete data energy function. Recently, [33] implements the adap-
tive convex relaxation and [20] applies the coarse to fine scheme to approximate the
original data energy. However, these approaches suffer from large disparity value and
highly non-convex data energy distribution. Inspired by [30], we take an alternative
route which treats the initial disparity estimation from Semi-Global-Matching (SGM)
stereo algorithm [9] as the i.i.d. observation for the ground truth disparity.

E 4.2.1.1 Modified SGM

Following [30], we use the opencv implementation [3] of SGM. Usually, SGM uses
pixel intensity as the feature to calculate the matching cost. It works well for the
Middlebury dataset which is obtained in a controlled environment (Figure 4.2a- 4.2d).
However, for the KITTI dataset, some image have large regions of low contrast as
shown in Figure 4.2e. The original SGM won't produce estimation for these regions
due to matching uncertainty and the post-processing method naively treats them as
occluded regions leading to the result in Figure 4.2g. Instead of doing sophisticated pre-
processing, [30] used the combination of gradient feature and census transformation
feature to calculate the matching cost. We modified upon opencv SGM code and
reproduced similar result to [30], 6.65% disparity error rate.
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(a) (b) (c) (d)

(e) (f)

(g) (h)

Figure 4.2: Stereo matching result from SGM [9] on examples from Middlebury and
KITTI dataset. (a,e) show the original left image (b,f) are the output from SGM after
noise removal (c,g) are the result using standard interpolation method to fill in the
unestimated region (d,h) show the error map and we can see that error in (d) is mostly
around boundary while error in (g) has large regions of wrong estimation due to the
simple interpolation method



0 4.2.2 Transfer Smoothness Energy

0 4.2.2.1 Greedy Strategy

Considering the system design discussed in 3.1.2, we need to select parameters for the
following modules on training data: (a) image feature and nearest neighbor set for
scene retrival, (b) patch correspondence algorithm, and (c) patch smoothness tranfer
methods.

We start from a reasonable initial setting (NS+5-NN, SIFT Flow, SM-L1) and
greedily select the best setting for each module in the following order: (c)-+(b)-+(a).
(c) Patch Smoothness Transfer As described in Sec. 3.1.2.3, we test three different
methods to transfer patch smoothness under three different parameter settings.

Count Std SM-L1
f error E error E error
0.25 6.62 0.5 6.28 0.5 5.87
0.5 6.41 1 6.33 1 5.76
0.75 6.41 1.5 6.29 1.5 5.79

Table 4.1: Error rate on training data with different NN strategies in terms of number
of images and descriptor to calculate the matching cost.

(b) Patch Correspondence From observation, we found that correspondence found
by SIFT Flow can better preserve context information due to the smoothness energy.
PatchMatch, on the other hand, may match low textured patches from the wall to that
on the road as long as they have simliar appearance. This is undesirable, since patches
from the wall has horizontal smoothness and that on the road has vertical smoothness.
Our experimental results confirmed such intuition.

SIFT Flow PatchMatch
5.76 6.23

Table 4.2: Error rate on training data with different patch correspondence algorithm

(a) Scene Retrieval we compare nearest neighbor strategies with differnet image
retrieval features and numbers.
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< K, e >-NN/Descriptor SIFT GIST NS
5-NN 5.81 5.85 5.76
11-NN 5.83 5.86 5.72
<5,1.05>-NN 5.82 6.37 6.03
<111,.05>-NN 5.82 6.37 6.01

Table 4.3: Error rate on training data with different NN strategy in terms of number
of images and descriptor to calculate matching cost.

0 4.3 ST-RF Inference

For efficient inference, we not only adopt the coarse-to-fine optimization scheme but
also update values for certain variables instead of all of them. We first lower SGBM's
uncertainty threshold for assigning bad estimation, which leads to around 1% error
rate for regions with good estimation, accounting for around 70% of the image. Thus,
we can fix the values of variables which are classified as good estimation and focus on
re-estimating the values for the rest variables.

To show the correctness of our implementation of the gradient descend MRF infer-
ence algorithm described in Sec 3.2, we plot the during each iteration in Figure 4.3a.
As expected, we can see that the energy value does go down monotonically at each
iteration.

Since the energy function we are using is convex, we can check the optimality of the
inference by checking the energy value at the small perturbation of the estimation. of
with random added. We can see from Figure 4.3b that the random pertubation does
not further lower the energy, suggesting that the inference result does correspond to
the optima of the model energy.
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Index
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(b) Checking Optimality

Figure 4.3: Checking our MRF inference algorithm: (a) energy value of ST-RF model
at each iteration (b) energy value of random perturbation of the inference estimation.
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0 4.4 ST-RF Learning

N 4.4.1 Choice of Loss Function

As described in Sec 3.3, we can choose various loss function L for our discriminative
learning. For evaluation of our disparity estimation, we use 0-1 loss 1 - 6(Ierrl < 3),
where errors within the threshold is counted as 0 and 1 otherwise. However, such
loss function is not differentiable and we here choose to use to two approximations:
quadratic loss (err/3)2 and exponential loss e-(err/2)2 . We visualize these three loss
functions in Figure 4.4.

2
-- 1-8(|errj<=3)

1.5 -(err/3) 2

-1 (err12)
2

0.5

0
-5 0 5

Figure 4.4: Visualization of the 0-1 loss(OL) function for disparity evaluation and two
approximated loss functions , quadratic loss(QL) and exponential loss(EL), that are
easier for computation.

* 4.4.2 Comparison of Loss Function

In order to determine which loss function to use between the two approximation, we
perform the following experiment on the training data from KITTI. We pick the first
10 examples with ground truth disparity and run 50 iterations of our MRF learning
algorithm for each loss function described in Sec 3.3. For quadratic loss function for
example, we show in Figure 4.5a the values of the loss function during each iteration,
in Figure 4.5b the value of 0-1 loss function during each iteration, and in Figure 4.5c
the visualization of the weight within the patch.

We can see that our learning algorithm converges within a reasonable number of
iterations for both loss function. The quadratic loss function is a bad approximation
since the learned weight vector leads to higher 0-1 loss. The weight vector learned with
exponential loss function, on the other hand, has lower 0-1 loss.
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Figure 4.5: MRF learning result. (a,d) Evaluation of approximated loss function during
learning with itself; (b,e) Evaluation of 0-1 loss function learned with approximated
loss function; (c,f) weight vector learned by approximated loss function at iteration
0,10,20,30,40,50.

* 4.4.3 Training on KITTI

We test our data driven MRF model with learned parameter on KITTI dataset. To see
the improvement of the training with respect to the number of the training example, we
train the parameter with {10,97} examples separately. In Figure 4.6, we visualize the
learned weight vector which is similar in to that trained with 10 examples in Figure 4.5f.
and in Table 4.4, we find that more training examples only improve the final performance
slightly.
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Figure 4.6: MRF learning result on all the training images. (a) Evaluation of approx-
imated loss function during learning with itself; (b) Evaluation of 0-1 loss function
learned with approximated loss function; (c) weight vector learned by approximated
loss function at iteration 0,10,20,30,40,50.

Number of training 97 10
Error Rate 5.55 5.61

Table 4.4: Error rate of FoE-type MRF on KITTI training data.

0 4.5 Results on KITTI Dataset

In Sec. 4.5.1, we show results on the recent KITTI benchmark dataset with comparison
to MRF models with various smoothness modeling. To deeper analyze the performance
of our framework, we need to show the correlation between disparity estimation error
and the disparity matching error. In Sec. 4.5.2, we first design and justify the disparity
matching metric and then show such desired relation.

N 4.5.1 Image Level Evaluation

For image level evaluation, we use the error rate for the whole disparity map with 3 pix
threshold, which is standard on the KITTI benchmark dataset. Below, we compare our
results on both the training and test data.

N 4.5.1.1 Training Data

Due to the constraint of evaluation on KITTI test data from the server, we here compare
our transfer smoothness approach with homogeneous MRF methods on the training
data where dense ground truth disparity maps are available.

S
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Sec. 4.5. Results on KITTI Dataset

1. Filter MRF: In stereo matching, pairwise MRF and second-order MRF are widely
used, and they correspond to using V, V2 filter in the FoE MRF. Recently, bilateral
filter is used in this framework. In Table 4.5, we compare the result without
using MRF model (data energy only) and that using Filter MRF with the filters
mentioned above. .is used to model

Filter Type None V V2  Bilateral
Error Rate 8.97 7.89 7.43 7.25

Table 4.5: Comparison of different Filter MRF on KITTI training data.

2. Basis MRF: We use EPLL [36] algorithm for disparity map inpainting. We first
learn a Mixture-of-Gaussian (MoG) model on the held-out ground truth dispar-
ity map, and then apply EPLL algorithm to improve upon the initial disparity
estimation. In Table 4.6, we show the result with varying K components and the
oracle performance with ground truth component assignment of MoG.

K/Algo EPLL Oracle EPLL
100 6.37 5.58
200 6.30 5.40
500 6.40 5.31

Table 4.6: Comparison of EPLL MRF with oracle result on KITTI training data.

3. Slanted Plane MRF [30] (Segmentation Smoothness): 5.94

4. ST-RF (Matching Smoothness): 5.72/5.55, the latter one is using learned weight
vector

E 4.5.1.2 Test Data

The state-of-the-art algorithm on KITTI benchmark is PCBP, a slanted-plane MRF
model with good initialization. The initial algorithms are SGBM (6.54%, rank 10) and
StereoSLIC (5.17%, rank 2) and the PCBP improve them into (5.45%, rank 4) and
(4.79%, rank 1).

Shown in Table 4.7, our ST-RF is initialized with similar SGBM result, and the error
rate drops to 5.71% with default parameter and 5.44% (rank 3) with learned parameter.
Although the improvement of ST-RF over PCBP is not significant, our inference time
is 30x fasterthan the authors' implementation of PCBP.
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Initial Inference Inference Time Rank
Slanted Plane MRF [30] -6.50 5.45 5 min 4
ST-RF (ours) 6.54 5.71/5.44 10 sec 3

Table 4.7: Comparison of ST-RF with state-of-the-art algorithms on KITTI testing
data.

0 4.5.2 Patch Level Evaluation

Data-driven matching module is vital in our ST-RF performance and we here show the
relationship between the matching quality and the disparity accuracy in our ST-RF
system. We want to see whether regions with good matches in the database will have
better disparity estimation, which verifies whether data-driven module is the bottleneck
of the current system.

In image appearance related applications, e.g. denoising, the matching error between
two matched patches is defined by the L2 distance of image intensity. In stereo, however,
we can match features from image appearance and/or initial disparity of the query
patch. For example, Karsch et.al. [11] uses the SIFT feature of the query patch to find
matches in the database. As explained later in 4.5.2.2, there are many other options
to define the matching metric and we want to find one that better capture matching
quality in terms of disparity improvement.

Thus, in the following paragraphs, we first propose three possible matching metrics,
then justify to use one of them, and lastly plot the correlation between the matching
quality and the accuracy of disparity inferred by our ST-RF.

0 4.5.2.1 Define Matching Metric

The problem statement here is that, given two patches left stereo images with their
corresponding disparity map and the matching between patches from them, we want to
quantify the matching distance between every pair of corresponding patches.

Below, we propose three different metric to approach this problem.

1. Intensity Difference: (PIX)
The simplest approach is to calculate the difference in intensity between pair of
patches.

2. SIFT Descriptor:(SIFT)
As widely used in label transfer literature, SIFT feature matching is believed to
relate patches with similar local geometry structure.

3. Nonlocal Smoothness Descriptor:(NL-SM)
Instead of using appearance information, we use the disparity value after removing
DC component as the feature vector. Thus, we are expecting to encourage patches
with similar smoothness and orientation
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0 4.5.2.2 Metric Justification

In order to select from the proposed metric to define a "good" match, we evaluate their
ability to capture semantic labels.

We use the first 20 KITTI training examples and manually labeled the semantic seg-
mentation with the following six categories: car, tree, building, sky, road and grass. In
Table 4.8, we show the category statistics of our evaluation database and in Figure 4.7,
we show one example of our manual semantic labeling.

Category car tree building sky road grass
Number 54 40 28 27 26 8

Table 4.8: Object statistics from the semantically labeled dataset

Unlabeled
car

Tree

Building
____ ____ ____ ___Sky

Road
(a) Left Image (b) Semantic Label Grass

Figure 4.7: Visualization of one example of manually labeled semantic segmentation of
images from KITTI.

In Figure 4.8, we compare the semantic label accuracy for SIFT Flow algorithm
with the three proposed metric. We can see that there is stronger positive correlation
between the NL-SM descriptor matching metric and the semantic labeling accuracy.

N 4.5.2.3 Metric Evaluation

We here plot the relationship between patch matching distance when using NL-SM
descriptor metric and error of disparity inferred by ST-RF.

In Fig 4.9a, we plot the mean and std of disparity error as a function of disparity
matching error. With the increase matching distance, the disparity error of our data-
driven stereo algorithm is increasing in both mean and std.

In Fig 4.9b, we plot the error rate of disparity difference bigger than 3 pix (standard
for KITTI evaluation) as a function of disparity matching error. We also draw the error
rate for traditional min-interpolation in red. When the matching distance is smaller
than 0.2, our data driven stereo algorithm outperform the baseline pairwise MRF, which
assumes matched patches is fronto-parallel.

Sec. 4.5. Results on KITTI Dataset 3'7
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Chapter 5

Task II: Image Denoising

N 5.1 Pipeline

1.b) Initial Denoising Estimation

o Data

Energy
cornz bmge:2746db

I

2) ST-RF Model

t Smoothness
Energy

i) Scene Retrieval
ii) Scene Alignment (matching distance) iii) Patch Selection (black is selected)

.a) Training Database

Figure 5.1: Pipeline for image denoise with ST-RF

In Figure 5.1, we show the pipeline of the image denoising:

1. Image Coring: Our observation is noisy but our training data is clean. In order
to find better correspondence between them, we need image coring to pre-process
the noisy image.

2. Database Matching:
Instead of doing nearest patch search [14], we do coring image to training image
matching (e.g. PatchMatch) which taking patch context information into account
during matching. For scalability, we can prune the training images to match with
various metric (e.g. L2 distance in pixel space).

3. ST-RF:
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" ST-RF construction: For data energy, we use the standard Gaussian distribu-
tion from the generative model. For smoothness energy, we do the following:
Now, for each patch in the coring image, we have a pile of matched patches.
We set a threshold for the distance of the matches to define inliers, with which
we build non-parametric kernel distribution.

" ST-RF inference: We use similar algorithm to that in EPLL, where the assign-
ment of the inlier for each patch is inferred iteratively during annealing.

0 5.2 ST-RF Settings

With no intention to further improve the result, we use almost the same setting as that
for stereo matching in Chapter 4. The only difference lies in (1) data energy modeling,
where it is defined as -log(Af(x, y; o2 )) for image denoising; (2) loss function for MRF
learning, where we use directly the evaluation loss function, quadratic loss.

* 5.3 Results on Berkeley Segmentation Dataset

In all experiments below, we use 100 test images from Berkeley segmentation dataset
and generate Gaussian noise corrupted images with noise level o- = {15, 25, 50, 100}.
We use the sum-absolute-distance (SAD) metric in pixel space to measure the distance
between patches.

We want to show three things:

1. The closer distance between patches from coring image (C) and matched patches
from training image (T), the closer T is than C in terms of the distance from the
ground truth patches (G).

2. Incorporating these "better" patches T into smoothness energy in ST-MRF model
can achieve better denoising result.

We repeat the same experiment set up except that we train on the training data from
Berkeley segmentation dataset (200 images) instead of the ground truth image.

N 5.3.1 Matching Performance

Shown in Figure 5.2, unlike the performance for matching ground truth image, the
improvement of retrieved patches is small due to the diversity of training images and
lack of similarity to test images.

40 CHAPTER 5. TASK 11: IMAGE DENOISING



Sec. 5.3. Results on Berkeley Segmentation Dataset
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Figure 5.2: Train on training images from Berkeley segmentation dataset. Comparing
the distance from matched training patches to ground truth (T-G) and that from coring
patches to ground truth (C-G)

U 5.3.2 Image Denoising Comparison

For comparison, we re-trained EPLL and KSVD method on the sampled patches from
all the training images. For ST-RF, we use the BM3D-coring and test with default
parameters and learned parameters respectively. The learning and inference is similar
to that presented in Sec 4.4, 4.3, and we here omit the detailed testing result.

Shown in Table 5.1, ST-RF result with the default parameter is slightly worse than
the-state-of-art algorithm EPLL.

As expected, nonlocal means will further blur out the detail from the coring image by
averaging in the pixel domain. Collaborative Wiener filtering obtains better estimation
by taking the spectrum energy estimated from the coring image. Our ST-RF is on par
with BM3D by retriving and incorporating clean patches which add back the detail of
estimated patches. We have a closer look at one example in Figure.

a/Algo Coring ST-RF EPLL KSVD BM3D
15 30.51 30.96/31.07 30.97 30.69 30.87
25 27.96- 28.10/28.61 28.46 28.12 28.35
50 24.92 25.31/25.43 25.49 25.01 25.45
100 22.18 22.87/23.17 22.94 22.31 23.13

Table 5.1: Image Denoising result for algorithms trained on Berkeley segmentation
training dataset. Our new ST-RF is comparable to the state-of-the-art methods.
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(a) Original Image (b) Noisy Image o=25

(c) Coring: 27.46 db (d) C+NL: 26.06 db

(e) BM3D: 28.58 db (f) C+ST-RF: 28.61 db-U.-,.t
(g) EPLL: 28.33 db (h) KSVD: 28.19db

Figure 5.3: Comparison of Image denoising results and closer look at patch level. No-
tice that C+ST-RF better preserves the texture around the tiger's neck and has less
artifact on the grass, due to contraints of matched patches in the training data. C+NL
and BM3D only have the input from the corruped image and consequently have hard
time recovering the detail on patches. EPLL and KSVD, on the other hand, learn a
parametric patch model, which may lead to unnatural results due to the expressiveness
of the model.



Chapter 6

Conclusion

N this thesis, we introduce the idea of using scene level correspondence to construct
smoothness energy in the domain of spatially discrete random field models of image.

In contrast to previous RF models, which construct smoothness energy using fixed set of
filters or basis with or without locally steering of the orientation, the proposed Smooth-
ness Transfer Random Field model (ST-RF) transfers the ground truth smoothness
energy from the training data.

On standard benchmark datasets, KITTI dataset for stereo matching and Berkeley
Segmentation dataset for image denoising, our ST-RF framework achieves state-of-the
art performance.

In the following sections, we summarize the contribution of this thesis and point out
future directions to pursue.

N 6.1 Contribution

In terms of RF model construction, we are the first to build data-driven smoothness to
model the heterogeneous property of an image. Local adaptation is an active research
area in random field model, and previous work focuses on finding better parametric
form to orientation or weighting.

In terms of data-driven application, we work on stereo matching which has high
accuracy requirement. Most nonparametric modeling explore to improve performance
for enhancing image appearance like scene completion [8] and super resolution [27].
Beyond transferring pixel intensity, semantic classification [17] and depth transfer [11]
are made possible by scene alignment algorithms. However, the complexity of the
semantic labeling space is substantially limited and the accuracy evaluation for depth
transfer is only qualitative.

* 6.2 Future Work

There are two modules in our ST-RF: data-driven module and RF module. On one
hand, our RF module uses pixel level grid representation and standard MRF learning
and inference algorithm. One future direction is to apply our ST-RF framework to more
sophisticated RF module with the goal of achieving more significant improvement in
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CHAPTER 6. CONCLUSION

specific vision tasks. On the other hand, our data-driven module uses scene alignment
algorithm for correspondence calculation and nonlocal smoothness to capture ground
truth smoothness. Another future direction is to consider alternative choices depending
on the property of the vision task and the database. Below, we list our thoughts on
possible representation for data-driven module.

0 6.2.1 Correspondence Representation

Object Level
Due to the size of the training dataset, many images do not have close enough

matches during scene alignment. Thus, object level correspondence appear more favor-
able for its repetitivity and flexibility.
Segmentation Level

Recently, [27] built the-state-of-the-art super-resolution algorithm upon the of seg-
mentation level correspondence.

M 6.2.2 Ground Truth Smoothness Representation

Beyond Nonlocal Smoothness
Given the matched patch, we now transfer the difference between the center pixel

and the rest as the ground truth smoothness. However, such smoothness is only in-
variant to the shift of DC (e.g. value at the center pixel). Thus, we can not only have
higher-order smoothness (e.g. bilateral smoothness) but also smoothness which has
other types of invariance (e.g.rotation) For example, let x0 be the value at center pixel,
x1, x' the value at two xo-symmetric pixel. Then the smoothness function x1 +x'1 -2*xo
is a second-order smoothness with rotation invariance. We also desire a compatibility
function that can explicitly capture the occluding boundary.
Learning Smoothness

Instead of the manually design of smoothness form, we can try to build a model to
learn the right type of smoothness automatically.
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