
Execution Model and Optimizing Compilation for

Execution Migration

by

Ilia Andreevich Lebedev

B.S., University of California, Berkeley (2010)

ARCHNEs
TC

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2013

@ Massachusetts Institute of Techno 013.

Author
Department of EI trical E gineerikg-nd

All rights reserved.

e0 puter S6'ience

Augut, 21, 2013

Certified by
Srinivas Devadas

Professor
Thesis Supervisor

Accepted by............
L4 slie a.(kolodziej ski

Professor
Chair, Department Committee on Graduate Theses

2

Execution Model and Optimizing Compilation for Execution

Migration

by

Ilia Andreevich Lebedev

Submitted to the Department of Electrical Engineering and Computer Science
on August 21, 2013, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

Although systems with hardware support for fine-grained execution migration are
becoming a reality, no concrete execution model or compiler exist for these machines.
This limits the complexity of software that can be written for these machines, and
therefore also the scope of studies for which these machines can be used. In this thesis,
we define a productive programming model for an execution migration platform by
exposing migration as a set of interfaces usable with the C programming language via
a custom optimizing compiler. We employ hardware-software co-design to describe a
stack core architecture with support for partial context migration in order to simplify
the compiler problem and improve compiler efficiency. We also consider instruction
encoding in abstract terms to establish a baseline comparison of encoded instruction
density to an ideal upper bound. The stack-based execution migration platform
offers a new and unexplored cost model, which leads us to reevaluate the trade-offs
associated with compilation for these architectures, and to explore novel algorithms,
or novel applications of existing optimizations. Throughout this work, we attempt
to gain a deep understanding of the costs and benefits of execution migration by
aggressive design space exploration. We use the insight gained to better inform the
the problem of compiling to this unorthodox architecture, and design the compiler, a
library of optimized parallel primitives, and a set of compiler optimization passes to
best reflect and utilize the underlying hardware.

Thesis Supervisor: Srinivas Devadas
Title: Professor

3

4

Acknowledgments

This work was done as part of the Execution Migration Machine (EM2) project at

the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) under the

supervision of Professor Srinivas Devadas. Its aim was to investigate the unusual

cost model associated with compiling to a stack-based many-core architecture with

a shared memory abstraction provided by migration of execution contexts, and to

produce a C compiler targeting this architecture. I would like to thank my advisor

for his patience, insight, and support throughout my time so far at MIT. I also

would like to acknowledge my family, and all those close to me without whom my

work would not have been possible. Finally, I would like to thank the computation

structures group at the MIT CSAIL lab for copious feedback, ideas, and and insightful

discussions that contributed to this project.

5

6

Contents

1 Introduction 17

1.1 Background Information . 18

1.1.1 Fine-Grained Thread Migration 18

1.1.2 Com pilers . 19

1.2 Benchm arks . 22

1.2.1 Microbenchmark Workloads 22

1.2.2 Parallel Benchmarks . 23

1.2.3 Manually Optimized Benchmarks 25

2 EM2 Core ISA as a Compiler Target 27

2.1 Choice of Compiler Framework . 29

2.2 Compiler IR Translation to ISA Expressions 29

2.2.1 Unsupported language features 30

2.2.2 Arithmetic and Bitwise operators 31

2.2.3 Comparison operators and Control Flow 32

2.2.4 The Phi operator . 34

2.2.5 Data Type Conversions . 35

2.2.6 Constant Expressions . 36

2.3 Evaluation of IR Translation Overhead 36

2.4 Sum m ary . 42

3 Scheduling Program Variables onto the EM2 Architected State 45

3.1 Expression Variables and the Local Stack 46

7

3.2 Stack Access Depth . 48

3.3 Instructions for Stack Manipulation 49

3.4 Allocation and Scheduling of Local Expression Variables 53

3.4.1 Stack regions: E-stack, L-stack, and T-stack 55

3.4.2 Methodology for Local Expression Variable Scheduling 56

3.4.3 In-Order Stack Allocation . 56

3.4.4 Optimal Stack Allocation . 57

3.4.5 Modified Koopman Stack Allocation 59

3.4.6 Evaluation of Local Stack Allocation Algorithms 60

3.5 Expression Reordering for Efficient Scheduling 61

3.5.1 Topological Sort to Enumerate Expression Sequences 62

3.5.2 Evaluation of Expression Reordering Schemes 65

3.6 Variable Scheduling Across Basic Blocks 66

3.7 Sum m ary . 69

4 EM2 Instruction Set Encoding for a Dense Instruction Stream 71

4.1 General Practices for Instruction Encoding 72

4.2 The EM2 ISA is Sparse . 73

4.2.1 Ideal Encoding as a Baseline 73

4.2.2 Ideal Microcoded Encoding 75

4.3 Encoding the EM2 ISA . 76

4.3.1 Naive 32-bit Encoding . 77

4.3.2 Dense 8-bit Encoding . 78

4.3.3 Compressible Encoding . 78

4.3.4 Multi-Cycle Compressible Encoding 80

4.4 Evaluation of ISA Encoding Schemes 81

4.5 Conclusion . 82

5 Library for Synchronization in the EM2 Execution Model 83

5.1 ABI Library . 84

5.1.1 Calling convention . 85

8

5.2 Bit Movement Metric

5.3 The Lock Synchronization Primitive

5.3.1 Naive Lock Primitive

5.3.2 Analysis of the Naive EM2 Lock

5.3.3 EM-RA Hybrid Lock

5.3.4 Self-Arbitrating Lock for Low Bandwidth .

5.4 The Barrier Synchronization Primitive

5.5 Conclusion .

6 Compiler Optimization for EM 2

6.1 EM2 Compiler Optimization Goals

6.1.1 Migration Behavior

6.1.2 Code Size

6.2 Parallel Workloads for Evaluating Optimizations .

6.3 Optimizations for Reduced Instruction Count . .

6.3.1 Commutative Operators

6.3.2 Constant Replication

6.3.3 Relaxed Memory Consistency . . .

6.4 Optimizations for Core Misses

6.4.1 Memory Access Clustering

6.4.2 Static Promotion

6.5 Underflow and Overflow Optimization . . .

6.5.1 Context Size Estimation

6.5.2 Expression Reordering for Improved

6.5.3 Bulk Data Transfer

6.6 Last-Level Peephole Optimization

6.7 Collective Evaluation of Optimizations . .

85

86

87

88

93

95

98

102

105

. 107

. 107

. 109

. 110

. 110

. 110

. 111

. 113

. 113

. 114

. 114

. 114

. 116

Run Length 118

. 118

. 119

. 123

6.8 Summary .

7 Conclusion

7.1 Quality of Compiled Code .

124

129

129

9

7.2 Future work

7.2.1 Relaxed Memory Consistency Model

7.2.2 Memory Anti-Aliasing

7.2.3 Profiler-Informed Optimization . . .

7.2.4 Trace Optimization

7.2.5 Inference of High-Level Operations .

7.2.6 Improved Data Placement

7.2.7 Dynamic data placement

7.3 Summary

. . . . 132

. . . . 132

133

. . . . 133

. . . . 133

. . . . 134

. . . . 134

135

135

10

List of Figures

1-1 EM2 chip architecture and layout . 20

1-2 High-level architecture of a typical extensible compiler 20

1-3 Illustration of a parallel prefix sum DFG and thread partitioning . . . 25

1-4 Illustration of example-based texture synthesis 26

2-1 High-level role of ISA translation in the EM2 compiler 28

2-2 Source code for a radix-4 remainder procedure 33

2-3 Transformation from IR branch to EM2 single-target control flow . . 34

2-4 Overhead incurred translating IR to expressions of EM2 instructions . 43

3-1 High-level role of variable scheduling in the EM2 compiler 46

3-2 Histograms of stack access depths . 49

3-3 Bullseye diagram of EM 2 stack instructions 51

3-4 Depth of access for common variable types 52

3-5 Analytical model for overhead of a deep stack access 54

3-6 Variables in E-, L-, and T-stack regions 55

3-7 Stack behavior: deep variables maintain their position 58

3-8 Overhead associated with surveyed L-stack scheduling schemes 61

3-9 Operator order is flexible, up to dependencies 62

3-10 Data flow graph with efficient and inefficient linearization 63

3-11 Local scheduling overhead with surveyed expression re-ordering schemes 66

3-12 Total overhead due to stack scheduling in compiled programs 69

4-1 High-level role of instruction encoding in the EM2 compiler 72

11

4-2 Distribution of instruction widths with ideal single-cycle encoding . . 75

4-3 Average and maximum instruction widths with ideal multi-cycle encoding 77

4-4 Naive 32-bit instruction encoding for EM2 78

4-5 Compressible instruction encoding for EM2 80

4-6 Average and maximum bit widths for surveyed EM 2 instruction encod-

ing schem es . 80

5-1 ABI library and its role in the compiler toolchain 85

5-2 EM2 calling convention . 86

5-3 Livelock in naive lock implementation on EM2 88

5-4 Completion time of benchmarks using EM-only and RA-only naive locks 90

5-5 Bit movement observed for benchmarks using EM-only and RA-only

naive locks (normalized to number of threads) 91

5-6 Livelock occurs when time between reservation-breaking requests is

shorter than critical section length 92

5-7 EM-only lock also livelocks if lock critical section is artificially elongated 93

5-8 Completion time with RA, EM, and EM-RA locks 95

5-9 Average bit movement per thread observed with RA, EM, and EM-RA

locks . 96

5-10 Lock utilization observed with RA, EM, and EM-RA locks 96

5-11 Completion time with self-arbitrating lock vs. other locks 98

5-12 Average bit movement per thread observed with self-arbitrating lock

vs. other locks . 99

5-13 Lock utilization observed with self-arbitrating lock vs. other locks . . 99

5-14 Synchronization barrier functionality 100

5-15 Completion time with optimized vs. naive barrier 102

5-16 Multicast time with optimized vs. naive implementation, evaluated in

EM 2 RTL . 103

6-1 High-level role of back-end optimization in the EM2 compiler 106

6-2 Relative frequency of migration sub-types on EM2 109

12

6-3 Example of a DFG rewritten using the commutative operators opti-

mization .111

6-4 Instruction count after the commutative operators optimization 111

6-5 Example of a DFG rewritten using the constant replication opti-

m ization . 112

6-6 Instruction count after the constant replication optimization . . . 113

6-7 Memory access rate after the static promotion optimization 115

6-8 Code size after the static promotion optimization 115

6-9 Migration rate after the static promotion optimization 115

6-10 Relative rate of eviction due to under and overflow, and relative average

run length after context size estimation 117

6-11 Relative completion time of an optimized bulk data transfer vs. a naive

com piled loop . 120

6-12 Relative bit movement of an optimized bulk data transfer vs. a naive

com piled loop . 121

6-13 Effect of peephole window size on code size of result 122

6-14 Effect of optimizations on benchmark code size, relative to unoptimized

code 124

6-15 Effect of optimizations on benchmark migration rate, relative to unop-

tim ized code . 125

6-16 Effect of optimizations on benchmark underflow and overflow eviction

rate, relative to unoptimized code . 126

6-17 Effect of optimizations on overall benchmark bit movement, relative to

unoptim ized code . 126

6-18 Effect of optimizations on overall benchmark completion time, relative

to unoptimized code . 127

7-1 Performance of compiled parallel benchmarks relative to hand-optimized

assem bly . 131

13

7-2 Bit movement in compiled parallel benchmarks relative to hand-optimized

assem bly . 131

7-3 Migration behavior in compiled and hand-optimized xvalidate bench-

m ark . 132

14

List of Tables

1.1 Single-threaded benchmarks used in this work 22

2.1 LLVM instruction families, equivalent in EM2 Instructions 37

2.1 LLVM instruction families, equivalent in EM2 Instructions 38

2.1 LLVM instruction families, equivalent in EM2 Instructions 39

2.1 LLVM instruction families, equivalent in EM2 Instructions 40

2.2 EM 2 core instructions . 41

3.1 EM2 core instructions as producers and consumers of stack values . . 47

3.2 EM2 instructions for stack manipulation 50

6.1 EM2 migration types and corresponding causes 109

6.2 Rewrite rules for the commutative operators optimization 112

15

16

Chapter 1

Introduction

This thesis aims to define a useful programming model for an execution migration

platform (specifically EM2 , the Execution Migration Machine [36]) by exposing mi-

gration as a set of interfaces usable with the C programming language via a custom

optimizing compiler. We employ hardware-software co-design to produce an EM2

core architecture which serves to simplify the compiler problem and improve com-

piler efficiency. We also consider the ISA encoding in abstract terms to establish a

baseline comparison of encoded instruction density to an ideal upper bound. Due to

the unorthodox architecture of EM2 , no compiler well-suited for the platform exists at

this time. Moreover, the compiler problem, although well studied for the type of ar-

chitectures used by the majority of modern computers, is relatively unexplored in the

context of both hardware stack-based architectures, and fine-grained thread migra-

tion. The platform offers a new cost model significantly different from that of common

register-based out-of-order superscalar architectures, which gives us an opportunity

to reevaluate the trade-offs associated with compilation for these architectures, and

to explore novel algorithms, or novel applications of existing optimizations.

We carefully design the compiler backend, a library of EM2 -optimized parallel

primitives, and a set of compiler optimization passes to best reflect and utilize the

underlying hardware. Throughout this work, we attempt to gain a deep understand-

ing of the costs and enabling features of the EM2 platform by aggressive design space

exploration. We use the insight gained to better inform the algorithms and heuris-

17

tics used by the compiler, and propose a set of optimizations to improve utility of

fine-grained thread migration by reducing frivolous migration due to eviction by ju-

diciously ordering memory accesses and computation. This thesis is organized as

follows: Chapter 2 sets up the framework to ground this work in reality, namely a

compiler infrastructure based around the LLVM [34] framework. Chapter 3 discusses

the hardware stack and the compiler design decisions and algorithms made to effi-

ciently target this unorthodox architecture. Chapter 4 investigates encoding schemes

for EM2 instruction set by discussing the problem in abstract terms, deriving an upper

bound on instruction density, and evaluating several practical schemes against this

ideal. Chapter 5 considers library primitives for synchronization as an illustrative

example of optimized primitives inexpressible above the abstraction imposed by the

ABI, and explores execution migration as an enabling technology for synchronization.

Chapter 6 introduces several compiler optimizations to improve performance and ef-

ficiency of programs by taking advantage of judicious fine-grained thread migration,

partial context migration, and improving code density. Finally, Chapter 7 compares

performance and efficiency of compiled code to equivalent hand-optimized code, and

discusses limitations of our compiler, and future work.

1.1 Background Information

This work is relies on and serves to extend numerous existing projects. In this section,

we summarize background information and related work to better provide context for

the information in subsequent chapters.

1.1.1 Fine-Grained Thread Migration

Although thread and process migration has been a common feature provided by

an operating system (OS), fine-grained migration (millisecond) is out of reach for

a software service due to the latencies involved with a context switch to the OS.

Migration at very fine intervals can be beneficial for power efficiency and performance,

however, so several projects [46, 9, 7] used the idea for improvements ranging from

18

better hardware utilization to performance gains to dark silicon. The Execution

Migration Machine (EM2) project views fine-grained thread migration as an enabling

technology [35], and because applications are limited by migration granularity, seeks

to reduce migration latency and bandwidth overhead to its lowest. EM2 is a many-core

architecture of 110 stack cores, shown in Figure 1-1, employing fine-grained thread

migration to implement a scalable shared memory abstraction with no replication of

data in its caches. The architecture also implements a remote access memory access

protocol. In order to minimize average and minimum context size for migration,

the EM2 platform allows partial context migration, and to this end uses a stack-

based core instead of a register-based architecture. Because a stack maintains a

notion of temporal locality, a partial migration carries with it the values needed for

the most immediate computation (although this places the burden of high quality

stack scheduling on the compiler). Its purely hardware-based implementation can

accomplish a single thread migration in as few as 4 cycles between the adjacent cores

when a minimally-sized context is migrated, and 33 cycles between the most distant

cores (on the 110-core grid) with a maximally-sized context. The cost of remote

accesses is strictly lower. The architecture also implements a hardware migration

predictor [51] to dynamically select between migration-based memory accesses and

remote access via reinforcement learning, as well as selecting the appropriate context

size for a migration.

1.1.2 Compilers

A compiler [3] is a collection of transformations that convert a program expressed

in one language (source) into its implementation in another language (target). In

general, the source is expressed in a high-level language such as C, while the target

is architecture-specific, such as the language directly implemented by a computer

system such as an OS over a particular processor architecture. In this case, the

compiler targets an application binary interface (ABI): a union of the instruction set

architecture (ISA, the language component of an ABI), a library of primitives (such

as system calls), and a set of conventions that dictate how high-level constructs such

19

Source Lex IR - odegen & Stat
Pretok Scheduling

PAs AnalyzehAu

AsT5 ; AsM Assemble Binary

Translate R Optimize IR & Link
Frotend Optimizer Back end Executable

Figure 1-2: High-level architecture of a typical extensible compiler

as function calls are mapped to instruction sequences. The ABI defines an abstract

environment within which a program executes - not on bare metal, but instead bound

by a set of rules, and aided by a library. A compiler is a large and complex work

of infrastructure (exemplified in Figure 1-2, so it seldom makes sense to create one

20

Off-chip
memory 10mm

Off-chip
memory

10 mm

Figure 1-1: EM2 chip architecture and layout

from scratch. Instead, research projects rely on existing compiler infrastructure such

as GCC [55], LLVM [34], and LCC [19] to provide the majority of algorithms and

data structures, and allowing the project to focus on its goals instead of implementing

complex infrastructure.

Compilation in the context of execution migration is a relatively new area of

research. Although execution migration has long been considered as an OS-level op-

eration moving a thread or process between cores [12], processors, or even between

servers in a large-scale supercomputer [27], low-latency fine-grained migration has

only recently been a subject of discussion in compiler research. Compilation for a

stack architecture is also somewhat under-researched. Although the topic is quite

old, it has only been seldom discussed. As Phil Koopman (a principal investigator

in this area) stated in 1993, "Stack compilers aren't currently very efficient - but

that's because no-one has tried very hard" [30]; the situation had not changed signif-

icantly in the last 20 years. The compiler problem problem in general, and register

allocation specifically, is dissimilar from compilation to a register-based target: the

in-core value store of a stack machine is logically infinite but not freely addressable,

just the opposite of a register file. As a result, the cost model for a stack machine is

largely unexplored, and may merit new algorithm choices at every level of the com-

piler flow. Several investigators including Koopman [32], Maierhofer [38], Bailey [6],

and Shanon [50] made significant advances in understanding the stack cost model, and

studied approaches to stack scheduling (equivalent of register allocation for a stack

machine). In recent years, the main example of a hardware stack-based processor has

been the UFO project [45], which attempts to show that stack-based architectures are

not inherently less efficient than register-based machines by implementing complex

out of order superscalar machines with hardware stack architected state, as well as a

compiler, libraries, and other software.

21

1.2 Benchmarks

To inform compiler optimizations and measurements, we use a set of benchmarks,

summarized in Table 1.1. Due to the absence of standard libraries designed for the

EM2 platform, we use simple benchmarks written in architecture-agnostic C code,

and write several of our own. The benchmarks are gathered from various sources:

FSU [10], MiBench [1], and several written specifically for this project. All bench-

marks are evaluated on a bit-accurate ISA simulator emulating the underlying ma-

chine at the instruction level, with high-level features added where necessary to sim-

ulate partially compiled code.

Benchmark Source J Description

bsort FSU A binary sort benchmark

image FSU Image smoothing, based on a FSU benchmark

matmul FSU A benchmark comparing several matrix multiplication

algorithms

f ib (custom) Iterative implementation of Fibonacci

lif e FSU Conway's life simulation

texture (custom) A single-thread implementation of the synthesis (Sec-
tion 1.2.2) benchmark

qsort FSU An implementation of an integer quicksort algorithm

queens FSU A solver for the eight queens problem

towers FSU A solver for the towers of Hanoi problem

bitcount MiBench Bit counting benchmark
regex (custom) An implementation of a regular expression matching al-

gorithm

diff (custom) A customized implementation of string comparison
based on the dif f program

fact FSU Recursive implementation of Fibonacci

Table 1.1: Single-threaded benchmarks used in this work

1.2.1 Microbenchmark Workloads

Chapters 5 and 6 implement several micro benchmarks to evaluate specific aspects.

The microbenchmark algorithms are given in the relevant sections, and are expressed

at a very low-level EM2 (exposed via C function headers to interact with compiled

22

code). To evaluate the microbenchmarks, we simulate the RTL of a 110-core Exe-

cution Migration Machine (specifically, the EM2 chip), programmed via loading the

benchmark binaries into the appropriate instruction caches. A simple fixed-latency

memory interface was used to model interaction with DRAM, which does not signifi-

cantly affect microbenchmark measurements because the data sets used fit in on-chip

caches.

1.2.2 Parallel Benchmarks

Some aspects of this thesis deal with optimizing the interaction between threads

running on multiple cores of the Execution Migration Machine, so single-threaded

benchmarks are not adequate to demonstrate the behavior associated with parallel

workloads: simple benchmarks have no inter-thread communication, no synchroniza-

tion, and no migration. To study the behavior of parallel workloads, we compile a set

of four parallel benchmarks each utilizing multiple cores on the EM2 platform. We

describe all benchmarks in generic C code and use the ABI library for synchronization

and other tasks, where applicable. All benchmarks are borrowed from previous work

on the EM2 project [36], and evaluated on a bit-accurate ISA simulator emulating

the underlying machine at the instruction level.

Table Scan

The table scan benchmark, tscan, is a single-threaded workload with a large data set

sprawled among many cores in the system. The benchmark is designed to demonstrate

the cache aggregation effect whereby various parts of the data set are cached on their

corresponding home cores, with the thread migrating among the participating cores

to access the data, effectively utilizing a large collective cache: the union of all caches

of participating cores. For the purposes of this work, we benchmark a table scan

algorithm touching a data set of 128 entries per core, spanning 32 cores. Our ISA

simulator does not model the memory hierarchy in detail, so we simply examine the

migration behavior induced by this benchmark.

23

Cross-Validation

The cross-validation benchmark, xvalidate, evaluates a simplified linear regression

model over a training data set, and tests the model against a test set. Because

the choice of data and test sets have a significant effect on the results, cross vali-

dation models and tests the models using several different subsets of the data. The

xvalidate benchmark uses N threads each having local access to one of N partitions

of the data set. Each thread builds a linear regression model using N - 1 partitions of

the data set, and evaluates the model against the remaining partition. No two threads

test against the same partition. By employing a barrier, we orchestrate the migration

behavior in the system, ensuring no evictions due to core contention. Partial context

migration is key to avoid excessive evictions: threads easily make forward progress on

the guest core, where their current data set partition is, meaning run length is very

important in this benchmark. For the purposes of this work, we implement cross-

validation as a linear regression of 32 data set partitions with 128 values in each data

set partition.

Parallel Prefix Sum

The parallel prefix sum benchmark, ppsum, is a parallel benchmark whereby a col-

lection of threads reduces a data set to a set of partial sums of the same cardinality.

Figure 1-3 illustrates this operation, and shows how the benchmark evaluates this

operation in parallel. For the purposes of this work, we implement parallel prefix

sum using 32 threads, each of which is local to a data set partition of 128 values,

meaning the benchmark executes 12 iterations, blocking on a barrier between each

iteration.

Example-Based Texture Synthesis

The example-based texture synthesis benchmark [18], synthesis, is a set of loops that

search an "example" image (a 2d array of integers) for the best-suited pixel (value) to

insert into a synthesized image. In simple terms, it attempts to probabilistically fill

24

Thread 1 Thread 2 Thread 3 Thread 4

ao a, a2 a3 a4 as a6 a7 as a, a, _[a11 [a12 [a13 [a~i als

+ + + ++ + + + + + + + + barrier

+ - + + + + a +- + ++---+-+-+-+ barrier

. ++ barrier

0 + + + + + + + + barrier

1 2 3 4 5 7 8 0 1 2 13 14 is
a Z a , a, , Za Za, Za, a Za Za a Xa, Za, Xa, a,

.0 .0 -0 ' .0 ,- 0 i.0 i0 0 .0 ,0 i_ -0 .0 - 0

Figure 1-3: Illustration of a parallel prefix sum DFG and thread partitioning

out a bitmap with the same statistics as an example bitmap, for instance extending

repeating textures.

This technique is useful for synthesis of non-repeating textures (shown in Figure 1-

4, removal of objects from photographs, image morphing, and super resolution in video

processing. Using a multiresolution algorithm [59] allows us to search for multiple

pixels in parallel. For the purposes of this work, we implement parallel prefix sum

using 32 threads, each of which is local to a portion of 8 x 8 pixels of the example

image, 16 x 16 pixels of a low-resolution prior, and a 32 x 32 values of the synthesized

texture. We run the algorithm for 10 iterations, synthesizing a total of 320 pixels.

1.2.3 Manually Optimized Benchmarks

Due to there being no other compilers available for the EM2 platform, or even for

similar architectures, we are unable to conduct a comparative study to evaluate the

relative efficiency of the compiler described in this thesis. Although quantifying the

absolute efficiency of a compiler is a difficult and imprecise task (the evaluation de-

25

U
Repeat N times to

synthesize an N-pixel
image:

Search example .
for a pixel with
similar context

Figure 1-4: Illustration of example-based texture synthesis

pends heavily on quality of implementation of both the baseline and the source C

code equivalent), we implement three of the parallel benchmarks, specifically tscan,

xvalidate, and ppscan. In Chapter 7, we compare the performance and efficiency of

the compiler in context of these three workloads, and use the comparison to inform

a discussion of the various overheads associated with the EM2 compiler.

26

Chapter 2

EM 2 Core ISA as a Compiler

Target

An instruction set architecture is the language component of an application binary

interface (ABI, which also encompasses a library and the set of conventions that de-

scribe high-level features of programs written for the ABI). Although an instruction

set is a language that is directly interpreted by the underlying hardware, the writer

of the language is seldom human. Instead, most programs are compiled from source

code written in productive high-level languages such as C. In general, the ISA is

built to meticulously describe hardware capabilities, while users rely on a complex

custom compiler backend for translation between a compiler's intermediate represen-

tation and the target machine's ISA. Despite the high expressive power of an ISA

designed this way, the compiler backend for a highly architecture-specific instruction

set is a very complex and inexact tool: the compiler must translate a program be-

tween languages with different fundamental assumptions and goals, often making the

translation process very open-ended, with many conflicting optimization goals. As

a result, a compiler backend targeting a highly specialized ISA is difficult to build,

makes conservative assumptions about the code it compiles, and often introduces

overhead in form of performance bugs and workarounds for conflicting semantics be-

tween the source (IR) and target (ISA) languages. A thorough peephole pass is only

able to fix some of the most localized inefficient instruction sequences.

27

Library
headers

EM 2 ABI
Library

C
Prog

FrontEnd RState Encoding EM
Fr. Scheduling (assembly) Executable

rar Front-End BatCi n d
Optimization Optimization

Figure 2-1: High-level role of ISA translation in the EM2 compiler

This chapter describes the framework we use to ground the entire discussion of the

EM2 compiler backend: we choose the LLVM compiler project to extend with a large

set of EM2-specific transformations and optimizations to implement a complete com-

piler. We begin this discussion by describing the EM2 core instruction set, which is

compiler-efficient by design. We designate the compiler's intermediate representation

a first-class constraint, and derive the ISA by implementing simple and elegant com-

piler backend translation. A high-level view of the compiler backend, and specifically

the role of ISA translation in context of the compiler backend is shown in Figure 2-1.

Although to produce executable code we must solve several additional problems (the

subject of subsequent chapters), this approach ensures that the outstanding subprob-

lems are well-defined, and isolated from other compiler transformations. By designing

the ISA to be maximally compatible with the compiler's internal representation, we

avoid having to figure out a complex translation between two languages with different

fundamental assumptions. Even though this chapter addresses a largely engineering

effort (a fair comparative study between different ISAs is difficult to imagine), we

observe that the resulting set of instructions closely resembles a typical RISC ISA, as

expected for a compiler-centric instruction set. We argue that any lost opportunity at

making the ISA more dense or more expressive as a result of this hardware-software

co-design is overshadowed by an efficient, simple, and modular compiler backend re-

quiring relatively little effort to implement, allowing us to invest additional effort in

28

compiler optimizations.

2.1 Choice of Compiler Framework

When developing a compiler for a custom platform, it is generally not advisable to

build the entire system from scratch. A compiler is a complex and high-value project

with sizable upfront development costs, with only a subset of the work required per-

taining specifically to the architecture the compiler is designed to target. Considering

the difficulty involved in verifying a compiler's correctness, it makes sense to avoid

developing excessive new (and therefore untested) code.

Fortunately, there are numerous existing compiler projects, such as GCC [55],

LLVM [34], and LCC [19], to name a few, designed to target multiple platforms,

all of which offer examples and community experience, making the task of designing

a custom backend more manageable. We found the LLVM compiler infrastructure

project to be well-suited as a starting point for the Execution Migration Machine

compiler because of its modular infrastructure, favorable license [42], and a diverse

set of existing compiler backends [2].

The LLVM compiler is built around a powerful low-level language (The IR [33], or

intermediate representation), which attempts to describe computation in an machine-

agnostic way. Specifically, it maintains a rich set of data types [33], which allows the

backend much flexibility in implementing operators over complex data types in an

efficient manner on the target machine. The LLVM language also makes minimal

assumptions about the target hardware, a good fit for the EM2 project's unorthodox

stack-based architecture.

2.2 Compiler IR Translation to ISA Expressions

To avoid designing a separate language, which may complicate the compiler backend

by forcing a translation between two dissimilar languages, we enumerate an "exe-

cutable" subset of the LLVM intermediate representation - namely the instructions

29

that, given proper scheduling of machine state, can be executed on the EM2 core

datapaths directly. In order to do this, we replace non-executable operators with

one or more "executable" operators, or a procedure call. These transformations are

independent of one another, and can be performed in any order. Program structure

is unaffected. A build script environment [58] ties this set of transformations along

with other transformations detailed throughout this thesis into a complete compiler

backend. In this section, we discuss the transformations of major families of operators

in the LLVM IR into expressions (one or a sequence of "executable" instructions),

the elements of which are directly implemented in the EM2 ISA. This practice of

hardware-software co-design in enumerating the core ISA allows the compiler back-

end to remain modular and easy to verify'. The section also discusses data type

conversion, where applicable. Finally, we present a table listing the LLVM instruc-

tion set 2.1, and how each instruction family maps to the executable subset.

2.2.1 Unsupported language features

The LLVM ISA is powerful, and contains many features for compatibility with ma-

jor architectures and languages. Some operators never arise when compiling generic

C code, and the EM2 compiler treats these features as unsupported. For example,

architecture-specific types such as the x86mmx (MMX [15] type for an x86 archi-

tecture) is unsupported. Metadata types (program annotations) are ignored in the

backend, but are used aggressively during program optimization. Closures and low-

level exception operators are unsupported, as they assume implicit high-level state,

and are not used when compiling languages with straightforward control flow such as

C. Types with no well-defined size (void, unknown types) are unsupported as well,

unless resolved into sized types such as pointers.

'A compiler is never verifiable because it is stateful and does not produce a fixed-length output,
so we refer here to the process of verifying a compiler's output by understanding the compiler
mechanism, and sufficiently testing its implementation.

30

2.2.2 Arithmetic and Bitwise operators

Most math operators are implemented directly, as long as they operate on integer

types that can be represented as a 32-bit two's complement sequence. Operators over

larger integers are broken into multiple operations on smaller integers. Conversion

operators are omitted (no-op) for conversions between types that can be represented

as a 32-bit two's complement sequence, else appropriate conversion sequences are

implemented. Wide types are represented as multiple 32-bit words: a 6 4 = aeh*232+ao

for any arbitrary variable a.

Bitwise operators over wide integer types are trivially emulated using 32-bit opera-

tors. Observe that a64 &b6 4 = (ahi*232 +al.)&(bhi*23 2 +blo) = (ahi+bhi)*232 &(aG+bO).

Therefore, the sequence a10&b10 ; ahi&bhi correctly implements the and operator for a

64-bit type.

Addition is more complex, as it requires a carry propagation. Still, a + b =

(ahi * 232 + al.) + (bhi * 232 + b1o) = (ahi + bhi) * 232 + (al, + b10), so the algorithm for

a 64-bit addition is simple:

Let sumio = al, + bio;

Let c = carry bit from the sumo computation.

Let sumhi = ahi ± bhi ± C;

Multiplicative product for wide types is derived in much the same way: a * b =

(ahi *232 +al,)*(bhi*232 +blo) = (ai* bhi)*261+(ahi*blo)*232+(alo* bhi)*232+(alo*blo).

The carry computation is somewhat involved for computing a wide product.

The front-end compiler does not produce arithmetic operators over types wider

than 64 bits when compiling generic C code.

Complex function units in out-of-order superscalar cores improve performance by

1) using a hardwired datapath to perform the function, which is more efficient than a

software emulation, and 2) allowing integer computation to proceed in parallel (with

proper compiler provisions) while the multi-cycle function unit is busy. It is important

to note these units typically have low utilization. The EM2 architecture is a chip

multicore with over 100 datapaths and features to make thread creation extremely

31

inexpensive. The machine provides a lot of parallelism by virtue of having a large

number of lightweight threads of execution. The advantage of hard-wired datapaths

has less benefit on EM2 relative to high performance single-threaded architectures.

We therefore choose to emulate complex operators using a software library call for

the purposes of this project. Specifically, we omit logic to compute a quotient and

remainder, as well as a floating point unit.

Division and remainder are implemented using a high-radix algorithm (radix

4) [41] to reduce the carry length. The algorithm is written in C for all bit widths

used in the program; divide and remainder instructions are replaced with a procedure

call to the generated code. The algorithm for computing a remainder is given in Fig-

ure 2-2. Division is similar, but must also maintain a quotient variable. Although the

division algorithm suffers from additional cycles needed to orchestrate variables on

the stack, and serializing conditional statements, it is not dramatically slower than a

hardware divider without requiring any additional hardware (a hardware divider is a

very expensive and high-latency function unit). An existing high-quality library [23]

implements floating point in portable C.

2.2.3 Comparison operators and Control Flow

Although many architectures [28, 14] combine control flow instructions with com-

parison instructions (after all, control flow is often conditional on a comparison),

the LLVM IR maintains the two as separate operators. This is useful for architec-

tures [54] that implement comparison operators explicitly. We implement the LLVM

comparison operators directly, as we have done with arithmetic operators, to sim-

plify the backend translation pass. This way, conditional control flow operators are

conditioned on a single boolean argument (booleans are encoded as 32-bit integer,

as in the K&R [29] C specification), and have a single explicit jump target, the next

instruction being the implicit target if the condition is false.

Conditional control flow is makes up a rich set of operators in LLVM, including

a switch operator with an unbounded number of targets. Because all are trivially

reducible to conditional branches and jumps, as shown in Figure 2-3, we include

32

static unsigned short remainder(
unsigned short divisor,
unsigned short dividend,
unsigned short bit-width) {

unsigned char i;

if (dividend == O){
unreachableo;

}
i = bit-width;
while(i > O){
unsigned int dl,d2,d3;

i -= 2;

dl = dividend << i;
d2 = dividend << (i+1);

d3 = dI+d2;

if (divisor < dl)

// nothing
else if (divisor < d2)
divisor -= dl;

else if(divisor < d3)
divisor -= d2;

else

divisor -= d3;

return divisor; // remainder

}

Figure 2-2: Source code for a radix-4 remainder procedure

only these two types of control flow in the "executable" subset of the IR. Multi-

target switch statements are rewritten as a sequence of branches by an optimization

pass before the backend is invoked. Indirect branches (indirectbr) are essentially

a jump, but the IR enumerates all possible branch targets, allowing variables to be

better scheduled across basic blocks (as discussed in Chapter 3).

A call instruction is a jump, but deposits the return address onto the stack.

We do not implement a return instruction, as it is semantically identical to a jump.

33

Branch

Branch

Figure 2-3: Transformation from IR branch to EM2 single-target control flow

Calling convention is used to pass return variables (discussed in detail in Chapter 5).

Wherever possible, we emit position independent code by using branch, jump, and

call offsets, as this eliminates additional instructions needed to set up the branch or

jump target address, and allows for better compression of encoded instructions (more

about compressed encoding in Chapter 4). Labels are preserved until very late in the

backend, when the executable is stitched together from optimized and encoded code

segments. Although this chapter does not discuss the ISA encoding, it is important

to note that any choice of encoding would limit the maximum range of an offset,

affecting overall efficiency of the ISA.

2.2.4 The Phi operator

The phi operator is a special primitive in the IR used to handle ambiguously defined

variables. The LLVM language presents all variables in single static assignment (SSA)

34

form, making analysis simple [17], but this representation does not quite allow a full

range of programs to be written with the flexibility required for a useful intermediate

representation. The phi operator extends SSA by implementing a multiplexer, or

a merge operator [81, effectively renaming one or more variables from a basic block

earlier in the control flow graph, and creating a new variable to hold the selected

value. The operator does not imply any computation, and is statically elaborated in

the EM2 compiler backend by tracking dependencies across basic blocks.

2.2.5 Data Type Conversions

As shown throughout this chapter, we translate operations over wide and complex

types into equivalent sets of operations over types the EM2 architecture can work

with directly. In other words, an IR variable is translated into one or more expression

variables, meaning there exists a surjective mapping from IR variables to expression

variables. The most complex data type conversions are wide integer and floating point,

which are discussed in Section 2.2.2. Smaller integer types are trivially converted to

32-bit integers, although overflow checks are appropriate in some cases. There is no

consensus with regard to correct behavior on overflow among C implementations, so

we take the path of least resistance and ignore overflow conditions in most cases,

except when truncating the variable to a correct bit width.

Pointers and function types are implemented as 32-bit integer addresses into the

global memory, which is consistent with the K&R [29] C specification. The pointer

type is derived from the type it represents, which allows us to correctly perform

memory accesses in case of pointers to large types. The IR has rich compound types

such as vectors, arrays, and structs, all of which we implement. In the case of wide

derived types (member, or contained types), the components of the vector, array, or

structure are aligned to 32-bit boundaries. The executable subset of the IR does not

have operators for these types, so we split them into primitive types that fit into

32-bit integers, much like we do with wide types.

The IR heavily relies on the getelementptr operator, which encompasses all

address math used to determine offsets in nearly all accesses to complex data struc-

35

tures. The getelementptr operator does not describe any dynamic computation,

so we statically interpret as an address lookup or sub-type selection, selecting a

primitive variable in a compound type. In limited cases, the much less power-

ful operators insertvalue, extractvalue, insertelement, extractelement, and

shufflevector occur in the IR, which we implement by simply referencing the ap-

propriate variable within the compound type.

The EM2 compiler backend never packs small data types into 32-bit integers be-

cause unpacking costs extra computation, and therefore extra cycles. We do not

attempt to argue this approach from an efficiency point of view. One side effect is

internal fragmentation of memory words if an abundance of small types are used. For

example, byte-character strings are very sparse in memory.

2.2.6 Constant Expressions

The LLVM IR treats constants as variables with a known value. For example, in a

given program, all constants with a value (132) are denoted by the same 32-bit variable,

defined to have the value of 1. We add two special instructions to the ISA to handle

constants: push and setihi, which together allow us to create integer constants. The

compiler backend emits special constant expressions that simply output the constant

value. These expressions do not require any special treatment, and can be scheduled

with all other expressions. Aggressive constant folding by the LLVM optimizer avoids

unnecessarily complex constant expressions. An optimization replicating the constant

expression at all points of use instead of passing its value between uses is described

in Chapter 6.

2.3 Evaluation of IR Translation Overhead

The core ISA is summarized in Table 2.2. Although there are a number of special

instructions omitted, mostly pertaining to the hardware stack and system manage-

ment eccentricities of the EM 2 architecture, the core ISA is essentially a subset of the

LLVM IR. The translation mechanism is a series of trivial and independent graph

36

rewrite passes, as detailed Table 2.1, so translation overhead is low.

LLVM Instruction(s) Implementation in EM 2 Expressions

and, or, and xor Bitwise arithmetic operators are implemented directly

for types of 32 bits or smaller (using and, or, b-not and

xor), and are emulated via a library procedure call for

wide integer types.

shl, lshr, and ashr Bit shift operators are implemented directly for types of

32 bits or smaller (using sill, srl and sra), and are

emulated via a library procedure call for wide integer

types.

add, sub, and mul Simple arithmetic operators are implemented directly

for integer types (using add, sub and mul), and are em-

ulated via a library procedure call for wide integer types.

udiv, urem, sdiv, and Integer division and remainder operators are emulated

srem via a library procedure call.

icmp Integer comparison is implemented directly via the fol-

lowing EM 2 instructions: comp-eq, comp-ne (equal-

ity); comp-ugt, comp-uge, comp-ult, comp-ule (un-

signed comparison); comp-sgt, comp-sge, comp-slt, and

comp-sle (signed comparison).

f add, f sub, fmul, The EM2 architecture does not implement a floating

f div, and f rem point unit, so all floating point arithmetic is emulated

via a library procedure call.

f cmp Floating point comparison is emulated via a library pro-

cedure call.

(Continued on next page)

Table 2.1: LLVM instruction families, equivalent in EM 2 Instructions

37

Table 2.1 - continued from previous page

LLVM Instruction(s) Implementation in EM 2 Expressions

fptrunc. .to, Conversions to, from, and between floating point types

fpext . .to, is emulated via a library procedure call.

fptoui..to,

fptosi..to,

uitofp..to, and

sitofp..to

call Procedure calls are directly implemented using call for

absolute addresses, and call-pc for position indepen-

dent code.

ret Procedure call returns are implemented using a jump

(j); return value is passed according to the EM2 calling

convention.

phi NO-OP: phi operators are statically resolved, as dis-

cussed in Section 2.2.4.

va-arg NO-OP: No special instructions are needed to imple-

ment variable argument lists because they are trivially

implemented according to the EM2 calling convention.

br, switch, select, All control flow is reduced to conditional branches and

and indirectbr unconditional jumps. Conditional branches are imple-

mented using branches (b-z and b nz) and jumps (j,

j-pc), as shown in Figure 2-3. IR jumps are imple-

mented directly.

unreachable Not implemented: IR does not specify the behavior of

this operator.

(Continued on next page)

Table 2.1: LLVM instruction families, equivalent in EM 2 Instructions

38

Table 2.1 - continued from previous page

LLVM Instruction(s) Implementation in EM 2 Expressions

extractelement, NO-OP: all static selections of sub-types within a com-

extractvalue, plex type are statically resolved by the compiler.

insertelement,

insertvalue, and

shufflevector

alloca NO-OP: as later shown in Chapter 6, the EM2 compiler

resolves all static allocations at compile time by creating

hardware stack variables.

getelementptr NO-OP: this operator is a selection of a sub-type within

a complex type, and is resolved statically by the com-

piler.

load and store Implemented directly (using fnc-ld and fnc-st) for

types that fit into a 32-bit word. Otherwise broken

into a sequence of adjacent loads and stores. EM2 also

provides additional instructions (ld-em, ld_ra, ld-rsv,

ld, fncld_em, fncld-ra, fnc-ldrsv-em, st-noack,

st-em-noack, st_ra-noack, st_cond, st-em, st-ra, st,

fnc-stem, and fnc-st-ra) to specify low-level behav-

ior; these may violate memory consistency and are not

emitted by the compiler, although these instructions are

used in controlled ways by the ABI library, as shown in

Chapter 5.

trunc . .to, Trivially implemented (NO-OP) for small integer types,

zext . .to, and otherwise emulated via a library procedure call.

sext. .to

(Continued on next page)

Table 2.1: LLVM instruction families, equivalent in EM2 Instructions

39

Table 2.1 - continued from previous page

LLVM Instruction(s) Implementation in EM 2 Expressions

ptrtoint..to, NO-OP: all types are translated into bit fields by the

intoptr . .to, and compiler, so bit conversion operators are trivialized.

bitcast ..to Pointers are implemented as integers in EM2 .

fence, cmpxchg, and Not implemented: the front-end compiler never emits

atomicrmw atomics when compiling architecture-agnostic C. EM2

provides library primitives for synchronization, which

use atomics directly, as discussed in Chapter 5.

invoke, resume, and Not implemented: the front-end compiler never emits

landingpad closures or hardware-supported exceptions when com-

piling C.

intrinsic functions Not implemented: intrinsics that remain to be elabo-

rated at the compiler backend are architecture-specific,

and EM2 does not define any intrinsic functions.

constant functions Constant functions are statically resolved by the com-

piler back-end.

Table 2.1: LLVM instruction families, equivalent in EM2 Instructions

This chapter details an engineering effort in deriving a compiler-friendly instruc-

tion set, but does not attempt to measure the quality of the resulting ISA relative to

other instruction sets. Indeed, a fair comparative study between instruction sets is

difficult to imagine because ISA design decisions carry far-reaching implications such

as changes in implementation patterns, code density, instruction cache behavior, de-

coder complexity, pipeline latency and utilization, and other factors that all affect

overall performance. The core ISA we derived from the IR is very similar to a typical

RISC ISA, but with significant potential for compression, as explored in Chapter 4.

Instead of arguing the quality of our ISA, we observe that this exercise in hardware-

40

EM 2 Instruction(s) High-Level Function

push and setjhi Constant values

and, or, xor, and Bitwise arithmetic
b-not
S11, srl, and sra Bit shift operators

add, sub, and mul Two's complement integer arithmetic

comp-eq, comp-ne, Signed and unsigned integer boolean comparison

comp-ugt, comp-uge,
comp-ult, comp ule,
compsgt, compsge,
comp-slt, and

comp-sle

fnc-ld and fnc-st Simple, blocking memory access. Defers decision be-
tween remote access and migration to hardware predic-
tor. Compiler emits these instructions wherever no ob-
vious migration can be inferred

fnclld-em, fnc-ld-ra, Blocking memory access that specify remote access or
fnc-stem and migration
fncst-em
fnc-st-em-noack, Non-blocking memory accesses (without fnc), and

fnc-st-em-noack, memory accesses generating no acknowledgment packet
fnc-st-ra noack st, (noack). These may break memory consistency, and are
st.em-noack, stem, used by the ABI library (which will be exemplified in

st-em-noack, st-ra, Chapter 5) in highly controlled ways
st-ra-noack andld

fnc-ld-rsv, Atomic memory instructions (based on the load-reserve
fnc_ld_rsvem, and store conditional pattern). These and are used by
f ncdd-rsv-ra, the ABI library to implement synchronization primitives
ld-rsv, ld-rsv-em,
ld-rsv-ra,

st-cond,
fnc-st-cond,

fnc-st-cond-noack
st-em-cond,
fnc-st-emcond,

fnc-st-em-cond-noack
st-ra-cond,
fnc-st-racond, and
fnc-st-ra-cond-noack

call and call-pc Procedure call

jump and jump-pc Unconditional control transfer

b-z and bnz Conditional control transfer

Table 2.2: EM 2 core instructions

41

software co-design by reducing the ISA from the IR allowed us to quickly build most

of a high-quality compiler backend. Although the backend described in this chapter

is incomplete (state scheduling, encoding, optimization are not solved in this chapter,

and are covered in Chapters 3, 4 and 6, respectively), these problems are well-defined

and isolated from other aspects of the backend. This productive approach to design-

ing a compiler backend allows us to invest significant effort in optimizing the result,

arguably producing very good overall results, despite likely missed opportunities at a

more expressive ISA.

To argue low translation overhead, we conduct an experiment: after compiling a

set of representative benchmarks, we symbolically execute them on a simulator, and

examine the traces to compute the overhead incurred in translating the LLVM IR into

the executable subset. This overhead excludes the cost of scheduling variables onto

architected state (a register file equivalent would be spilling and loading the stack

frame into registers); we defer a discussion of stack scheduling overhead to Chapter 3.

The overhead here is defined as Overhead = #co instructions in compiled trace . The results
#instructions in IR, excluding no -ops

are shown in Figure 2-4, showing that control flow contributes most to translation

overhead in nearly every benchmark. Benchmarks using division or wide types incur

significant overhead due to expansion of arithmetic expressions, and memory-intensive

benchmarks incur overhead due to address computation. On average, a single IR op-

erator (excluding IR operators trivialized into no-ops) is translated into an expression

of 1.108 EM2 instructions.

2.4 Summary

In this chapter, we discussed a methodology by which we co-designed a partial com-

piler backend and its target ISA. The result is an efficient set of translation mech-

anisms that implement the rewrite rules of a compiler backend. We argue that the

remaining components of the backend (explored in subsequent chapters) are well-

defined and isolated problems, a property that allows the backend to be modular,

easy to understand and optimize. The approach we take is productive and allows us

42

to build a high-quality compiler in an academic setting with limited manpower.

Workloads for the Execution Migration Machine are given in C, so a high qual-

ity compiler can obtain high quality results despite an ISA with potential missed

opportunities for added efficiency.

43

18%

16% -E Memory Access
0 I Control Flow

14% -l Arithmetic

-S12%

(10% -

8%-0
o 6% -

4% -
40

~0% E
'% - " --0 ~ 0 a

gE r x

Figure 2-4: Overhead incurred translating JR to expressions of EM' instructions

44

Chapter 3

Scheduling Program Variables onto

the EM 2 Architected State

The core ISA instructions defined in Chapter 2 are sufficient to build an expres-

sion that emulates any IR operators emitted by the compiler front-end, assuming

we compile architecture-agnostic (and single-threaded) program written in C. It is

not, however enough to perform any real computation: the expressions operate on

variables, which have only logical meaning, but not yet any specific associated state

in the underlying hardware. The compiler backend must perform additional work

to allocate and schedule hardware resources to variables used by any expression se-

quence. Furthermore, because EM2 cores are stack machines with no register file,

the backend must appropriately order all expressions to ensure all dependencies are

met and the right variables are available at the top of the stack when an expression

executes. Whenever no such ordering exists, the compiler must insert instructions to

stage the stack by rearranging its entries. This is the problem of scheduling variables

onto the EM2 architected state. A high-level view of the compiler backend, and the

role of variable scheduling in the larger context of a compiler backend is shown in

Figure 3-1.

In this chapter, we will define the problem of scheduling expression variables on

to the hardware stack, and propose a two part solution: optimizing expression order,

and allocating state greedily by favoring least-cost-of-access. We formulate a local

45

Library
headers

EM2 ABI
Library

b EM 2

Translation SchedIkng (assembly) Executa

Program Front-End Back-End

F : Optimization rpsingaion

Figure 3- 1: High-level role of 'Variable scheduling in the EM' compiler

stack scheduling algorithm based on the well-studied Koopman's algorithm [32]. We

also formulate an approximating cost-based search algorithm for stack reordering and

a heuristic algorithm for scheduling variables across basic block boundaries. We argue

the complexity of the proposed algorithms, and evaluate several variations using a

range of benchmarks. Finally, we discuss the shortcomings of this scheme, and explore

heuristics to improve our solution in various common scenarios.

3.1 Expression Variables and the Local Stack

The variables over which IR instructions perform computation are defined by a single

static assignment (SSA) [17], followed by zero or more uses (other IR instructions

using the variable as input). Core ISA expression variables follow the same pattern, as

there is a surjective mapping to corresponding IR variables (multiple 32-bit expression

variables may derive from a single IR expression if it is of a complex or otherwise wide

type).

EM2 has no register file, so all expressions take inputs from the top of the stack,

and deposit outputs onto the top of the stack also. Chapter 2 explains how complex

operators are implemented as expressions (sequences of core ISA instructions). For

correctness, the expressions must be given in correct order and communicate internally

via the hardware stack to pass temporary values between instructions. We collectively

46

ble

EM2 Instruction Consumed Produced
push 0 1
sethi 1 1
and, or, xor, and b..not 1 1
S11, srl, and sra 1 1
add, sub, and mul 2 1
comp-eq, comp-ne, 2 1
comp-ugt, comp-uge,
comp-ult, comp-ule,
compsgt, comp-sge,
comp-slt, and comp-sle

(All load instructions) 1 1
(All store instructions) 2 0
call 1 1
call-pc 0 1
jump 1 0

jump-pc 0 1
b-z and bnz 1 0

Table 3.1: EM2 core instructions as producers and consumers of stack values

define these temporary, intermediate values the "E-stack" region (following existing

work [49]), precisely the region used within an expression. Each expression takes a

fixed, statically known number of inputs from the top of the hardware stack, and

produces a fixed, statically known number of outputs, which are again placed on

top of the stack. This means that given a trace of expressions, we can statically

analyze the state of the hardware stack at any point in the trace by considering the

producer and consumer behavior of each prior operator. Table 3.1 enumerates this

producer and consumer behavior of all core ISA instructions, as defined in Chapter 2.

Although the space of all expressions is not enumerable easily, stack requirements

for any expression are trivially calculated by considering the stack behavior of each

instruction in the expression.

Clearly, each expression requires its variables to be at the top of the hardware

stack immediately prior to execution. In order to correctly execute an IR instruction

sequence, we must maintain the following invariant by manipulating the ordering of

the hardware stack as needed:

47

The top of the stack immediately prior to execution of an operator

F(ii ,i 2 -) -4 {01,02, } must be of the form (i,i 2, -.).

Stack manipulation is not derived from the program at a higher level, so we do

not try to figure out how to get those instructions from the source program (any

stack manipulation is strictly overhead, as it does no work relevant to the high-level

program, much like spilling in a register file architecture). Instead, we emit additional

instructions to manipulate the hardware stack as necessary prior to each expression,

bringing the values it takes as input to the top of the stack.

3.2 Stack Access Depth

The stack is a data structure highly optimized for last-in-first-out (LIFO) access

pattern, which is a good fit for many workloads since most variables tend to be short-

lived, used only to communicate intermediate values between adjacent expressions.

In some cases, however, the expression ordering fails to naturally maintain the stack

in correct order, and a deep access (access below the top of the hardware stack) is

required to fetch expression inputs. The stack naturally acts as a cache, and strongly

favors temporal locality, but without the drawbacks of cache evictions due to its

logically infinite size. It stands to reason that most variables fit well into the model

of temporally local caching, and most stack access will therefore be at or near the

top of the stack. To gain insight into stack access behavior, we compile a number

of benchmarks, execute them without a stack (using a directory of variables), and

analyze the resulting traces using an oracle to keep track of stack access depth. We

plot a histogram of stack access depths and relative frequency of stack access in

Figure 3-2. The 8 0 th percentile is marked with a dashed line on each plot. As shown

in the plot, most accesses indeed tend to be shallow, majority falling within the top

2 to 3 stack entries. The expected depth of access is quite low, ranging from 1 to 2

entries depending on the benchmark. More than 80% of accesses are shallower than

4 entries.

48

bsort image matmul fib life texture qsort
10 10 10 10 10 10 10
9 9 9 9 9 9 9
8 8 8 8 8 8 8
7 7 7 7 7 7 7
6 6 6 6 6 6 6
5 5 5 5 5 5 5
4 4 4 4 4 4 4
3 3 - 3 3 3 3 -- 3
2 2 2 2 -- 2 2 2
1 1 1 1 1 1 1
0 0 0 0 0 0 0

mTTTTr n i rr r TfrrIiriT mrrr rrrrmT nTTTTTT rmTTrrr
0% 25% 0% 20% 0% 30% 0% 35% 0% 25% 0% 25% 0% 30%

queens towers bitcount regex diff fact
10 10 10 10 10 10
9 9 9 9 9 9
8 8 8 8 8 8
7 7 7 7 7 7
6 6 6 6 6 6
5 5 5 5 5 5
4 4 4 4 4 4
3 3 3 3 3 3
2 2 2 2 2 2
1 1 1 - 1 1 1
0 0 0 0 0 0

rr rrrT rrrrmrr mnmn nrrr rrrrrrrr rrrrrrr
0% 25% 0% 30% 0% 50% 0% 30% 0% 25% 0% 25%

Figure 3-2: Histograms of stack access depths

3.3 Instructions for Stack Manipulation

The core ISA affords only a rather inefficient facility to perform deep accesses. To

bring the ith (in) element of the stack to the top, making it the 1" entry, we can

store the top n elements into memory somewhere, then load all except in in reverse

order. We are now able to load in last, placing it on top without altering the order

of the rest of the stack. Likewise, to swap elements in and im (assume without loss

of generality that m < n), we are able to store n entries from the stack into memory,

and read them back in reverse of the desired order. Clearly 2n memory accesses are

necessary to perform an n-deep stack access using only the core ISA: a very expensive

operation!

Recall from Section 3.2 that most accesses are quite shallow. Figure 3-2 shows

the distribution of deep accesses with each benchmark. Most accesses tend to be

shallow but in excess of 50% of accesses touch data below the top of the stack. It

stands to reason that by introducing a facility to efficiently manipulate a region of a

49

EM2 Instruc- Instruction Function in RTL
tion

pull n Fpuu(n) : S(io, ii, - - , in, in+1, - - S(in, iOi 1, , in+1,)
pull-copy n Fpuixpy (n) : S (io, i, - - in, ---)4 S(Zin, Z0, Z1, - - ,i,---)
tuck n Ftuek(n) : S(io, ii, i, in+1, -- Stack(ii, i, iO, in+1,)

tuck-copy n Ftuck-copy(n) : S(io, ii, in, - S(io, ii, , in, iO,-)
drop n Fdop(n) S(io, Z1, in ,ia, in+i, 17) -+ S(io, ii, - , in+1, -)

swap n Fswap (n) S(io, ii, - - - ,in, in+ 1 ,) - S(in, 1, -- , io, in+1,-)

main2aux Fmain2aux : {Smain(ZO,), Saux(--)} - {Smain(), Saux(iO, --
aux2main Fau22main : {Smain(-), Saux(io,)} .. {Smain(f, -), Saux(-

Table 3.2: EM2 instructions for stack manipulation

few elements at the top of the hardware stack, we eliminate much of the inefficiency

associated with stack accesses in common workloads. The histograms show that by

allowing stack manipulation instructions to access values up to 4 elements into the

hardware stack, we reduce most accesses to single-instruction operations. In fact,

more than 80% of accesses are trivialized in this manner in all surveyed benchmarks.

Table 3.2 enumerates the instructions added to the EM2 ISA to explicitly manipulate

the stack. The same instructions are plotted on a bullseye diagram in Figure 3-3.

There are, however, occasional variables located deeper than 4 elements on the

hardware stack. Although optimizations introduced later in this thesis help mitigate

this problem, it does not disappear entirely, so we must implement a method for

deep access. Figure 3-4 shows that several classes of variables are particularly asso-

ciated with deep accesses. Constants are frequently a source of overhead, as they are

mapped to a single expression of the same value, and therefore must be communicated

throughout the program much like frequently-used read-only variables. The problem

of scheduling constant values is completely alleviated by a constant replication opti-

mization detailed in Chapter 6. The other variable groups frequently associated with

deep accesses are return addresses, loop invariants, and return values. These variables

have low temporal locality and behave unlike intermediate values, which make up the

majority or variables.

Instead of using memory, as shown in Section 3.3, we borrow from many exist-

50

Restore..

I Figure 3-3: Bullseye diagram of EM. stack instructions I

ing architectures [48, 141 and implement an auxiliary hardware stack with limited

capabilities. Two additional instructions (main2aux, and aux2main) are introduced

to move a value between the main stack and the auxiliary stack, as previously shown

in Table 3.2. Not only does this auxiliary stack naturally accommodate many of

the values that do not naturally gravitate towards the top of the stack when needed

(return addresses, loop variables, etc.), but it also allows us to efficiently re-organize

the stack without involving memory, as shown in Algorithm 1.

Although the algorithm looks expensive due to its abundance of control flow, it

51

is important to realize that all decisions are elaborated statically at compile time,

and only stack manipulation operators are emitted (shown as emphasized). Similar

algorithms for deep deletion, deep insertion, deep removal, and deep copy are trivially

derived by modifying the deep swap algorithm accordingly. Figure 3-5 illustrates the

overhead, in number of EM2 stack instructions executed for each type of deep access.

These operations are emitted in self-contained instruction sequences, and are therefore

independent of other work in the system (cache interference is not considered), so such

analysis without experimental data is appropriate. Deep access is trivial for depths up

to 4 elements (by design, as discussed in Section 3.3), but the cost begins to increase

linearly for greater depths. Copy operations are the most expensive. Tuck and pull

are among the cheapest operators, while drop is the least expensive of the lot.

52

7 - ,-

6 -,-- ,-

5 -

v 4
(n)
o 3

------ - - - ----- J L- ----- I
0 E a)

0 >0
I I I I I

:a 0
a) C al)

CIS~

Figure 3-4: Depth of access for common variable types

Input: i, j E N (assume without loss of generality that i > j);
Stack of the form (ao, ai, &2, . . - , aj-1, aOj, a+, * * , , ai_1, ai,
Output: Stack of the form (No, ci, a2, - -,a 1, ai, aj+,, ai_1, a,);
begin

Let n = 0, m = 0;
while i, is not topmost, and ii is > 4 elements deep do

move a value from main to auxiliary stack;
n =n+1;

while ii is > 4 elements deep do
Let d = min(4, depth of(ii) - 3);
tuck i3 d elements down the stack;
for I to d do

move a value from main to auxiliary stack;
m =m +1;

// Aux. stack contains n + m elements in reverse of their original order.
swap ii and ij;
while m > 0 do

Let d = min(m, 4);
for 1 to d do

move a value from auxiliary to main stack;
M = m - 1;

pull ii to the top of the main stack;

// n items remain on the aux. stack in reverse of their original stack order.

while n > 0 do
move a value from auxiliary to main stack;
nr=n-1;

Algorithm 1: Deep-swap two stack entries using a secondary stack

3.4 Allocation and Scheduling of Local Expression

Variables

So far, we are able to compile a C program into a sequence of expressions, as shown in

Chapter 2, and have the vocabulary and facilities to allocate and rearrange variables

on the hardware stack. We must now devise a scheme to judiciously insert stack

manipulation instructions into the sequence of expressions to ensure the program ex-

ecutes correctly. In other words, we must schedule the abstract notion of "variables"

used by the expression sequence onto concrete hardware resources, namely the hard-

53

0

e- swap x
-A- tuck cp -
+- pulLcpo

O ---- tuck
-0- pull -
---- drop

--- -C13 2-

> LO .*

0

0 2 4 6 8 10

Access depth

Figure 3-5: Analytical model for overhead of a deep stack access

ware stack. Normally, variables are mapped to a software stack frame and explicitly

cached in a register file, a relatively easy problem given that software stack frame

accesses allow arbitrarily deep access without an increase in access cost. An arbitrary

scheduling of variables onto the hardware stack, however, often leads to an abundance

of deep stack manipulation, which contributes to much unnecessary overhead.

In order to produce a clean, well-argued solution, we must avoid whole-program

optimization and bound our discussion to a concrete subset of the program. We

choose to localize the scheduling problem to "straight-line" code segments, otherwise

known as basic blocks [39]. Doing so is advantageous because the absence of control

flow ambiguity allows us to solve the variable allocation and scheduling problem in

each basic block in isolation, since any basic block always executes in its entirety.

Given any expression E in the program, we can determine the basic block it belongs

to by considering the longest expression sequence B, such that E E B, and B has no

control flow ambiguity. It must be true that B is always evaluated as a unit. Control

may only be transferred to the first expression in B; conversely, the last expression in

B must transfer control to another basic block in the program. It must follow that a

54

a

d d -StackPu Jh i g

Push 3 3 3 3 3 3 Dim

S+!d ? ? E LT-Stack

J2 J~ 2 2 f
DSXIe eeee e e

j~i3J ~Time

(stack grows up)

Figure 3-6: Variables in E-, L-, and T-stack regions

basic block is any sequence of instructions immediately following a terminal (branch,

jump, or another control flow operator), and ending with the next terminal. We will

discuss variable scheduling across basic blocks in Section 3.6.

3.4.1 Stack regions: E-stack, L-stack, and T-stack

Recall that we have previously defined a region on top of the stack used within an

expression: the E-stack. The E-stack is scheduled implicitly by construction, as the

instruction sequence comprising an expression is written statically by the compiler

designer. We now define two additional stack regions: the local stack (L-stack), which

is used to communicate variables within a basic block, and the transfer stack (T-

stack), which is used to pass variables between basic blocks. Clearly, since the E-stack,

L-stack, and T-stack are used to communicate variables among different organization

levels in the program hierarchy, it must follow that these regions must not overlap.

Logically, values may be moved between the stack regions, usually without any explicit

instructions (simply by moving the imaginary boundary between the regions). Much

like the stack frame, these regions reside on top of the logically infinite stack structure

(which grows and shrinks with the call hierarchy), and together comprise the software

stack frame for a given function (Shown in Figure 3-6). In this section, we will limit

our discussion to L-stack scheduling, deferring T-stack scheduling until Section 3.6.

55

3.4.2 Methodology for Local Expression Variable Scheduling

Given the definition of the L-stack region, we are able to better formulate and expand

the invariant defined in Section 3.1:

" The E-stack must be empty.

" The L-stack immediately prior to execution of an operator

F(ii ... ,i2 ...) -+ {01,02, - - - must be of the form (i 1 ,i2, 7--).

" The L-stack at any point while executing a basic block must be precisely

the set of all live variables [4] at this point.

" The T stack must be empty.

These invariant statements must be maintained in order to correctly execute a

sequence of expressions comprising a basic block. This section will survey several ap-

proaches: a naive greedy in-order approach, an optimal global solver, and an approach

based on a well-known stack scheduling algorithm.

3.4.3 In-Order Stack Allocation

The most straightforward approach to variable scheduling is to traverse the sequence

of expressions in order, and manipulate the L-stack into a correct ordering for the

next expression to execute. To this, we explicitly pull the expression inputs to the

top of the stack before each expression. We must be careful to maintain the set of live

variables [4] before and after each expression to avoid deleting a value prematurely,

or leaving unused data on the stack when the basic block terminates. The algorithm

used in this approach is shown in Algorithm 2.

This algorithm traverses the set of expressions once, and also requires a live vari-

able analysis [4] (a single separate pass over the set of expressions, accumulating live

variable list at each expression), so overall algorithm complexity is linear in time.

56

Input: Basic block B = (Fi, F2 , - - -);
Let (ii, i 2 , - - -) denote the prior variables on the stack before B executes;
Assume that the last expression in B populates the posterior T-stack, and
takes as input U(T-stack variables V control flow paths originating from B);
begin

for VFi : (i1i 2,- -) -+ (01,702,- -) E B. do
for Vii of B in reverse order: do

if ii E Li, where Li is the live set after F then
immediately prior to F, copy ii to the top of the stack;

else

immediately prior to F, pull ii to the top of the stack;

for Voi of B: do
if oi Li, where Li is the live set after F thenL immediately after Fi, drop oi from the stack;

Algorithm 2: In-order L-stack scheduling

The performance of the algorithm, however, is a more complex issue. Clearly, the al-

gorithm makes no effort to reduce scheduling overhead, blindly rearranging the stack

as needed at every expression. Instead of reasoning about asymptotic bounds for

worst-case behavior of the scheduling logic, we directly measure the overhead with a

set of representative benchmarks in Section 3.4.6.

3.4.4 Optimal Stack Allocation

To better understand best-case overhead of the local variable scheduling for the EM 2

architecture, we also consider a scheduling algorithm built to find a variable assign-

ment with lowest overall cost. Given a basic block B = (F 1, F2 , - - -), where each

expression is of the form Fi : (ii, i 2 , - - -) - (01, 02, - - -), we observe that a variable

placed onto the stack maintains its position, even though the stack may grow or shrink

above it (the stack remains unchanged below, except in cases of deep accesses). This

is illustrated in Figure 3-7. By artificially treating a slice through the stack as hor-

izontal (thick dotted line in the diagram, the "horizon"), we may better visualize

the movement of values in the stack adjacent to the imaginary horizon. Overhead in

the form of stack operations is only introduced if the variable is "moved" via pull,

57

tuck 4
add
push 7
push 1
and
add
pull I tuck 1
pull -cp 0 push 1
push 1 add
compslt add
drop 4
branch (not taken)

o u
CL * 5~U

1 1

I 7N1 a a c [c1 1
V11V2 bilba b2 b2 b3 a a a a a b3 b3b4va a a a bb3 b3b3 ab

V2% a a' 9(b3 b3- ~ 3]b3b3hja

?I ?I ?I ?I ?I ?I ?1 ?2 ?2 ? - ?1 ?21 ?2 2 2 7 ?2

2 ?2 2 ?2 ?2 2 2 T EAE" hEE **0 IM"h
J (stock grows p)

Figure 3-7: Stack behavior: deep variables maintain their position

tuck, or other stack instructions. Some movements are more expensive than others,

as dictated by the depth of access; we previously presented the costs associated with

deep access in Section 3.3. Given a set of start and end positions (the definitions and

uses), we find a set of "moves" such that the total cost of these moves is minimized.

Each variable must remain below the top of the stack during its lifespan.

Normally, it is impractical to exhaustively search the space of schedules, so a

compiler would employ various heuristics to find an acceptable, but not necessarily

optimal, schedule [53]. When solving for the optimal schedule, we cannot resort to

these tricks, and instead use a number of search optimizations to prune the space

of optimizations. We employ a subset of the methods used in previous work [38] to

dramatically trim the search space, allowing the optimizer to run to completion in

minutes for most benchmarks. We use branch and bound to quickly discard "bad"

schedules if the cost of a partial schedule exceeds the minimal cost observed for a full

schedule. We also eliminate tree-shaped subgraphs, from the scheduling problem, as

these are trivially reduced by enumerating their operators in reverse polish order. In

the few cases where optimal scheduling took in excess of several minutes to schedule

a basic block, we manually schedule a portion of the basic block and re-run the

scheduler.

58

3.4.5 Modified Koopman Stack Allocation

Koopman's stack scheduling algorithm [32, 31] is an early attempt to solve the

scheduling problem for a stack architecture. Koopman does not consider the stack

scheduling problem at a basic block level, or any well-defined subset of the program

("I just used ad-hoc techniques as necessary" [32]). He post-processed the textual

output of GCC and inserted stack operations in place of loads and stores, where possi-

ble, to "promote" variables to the stack, and out of memory. The algorithm works by

annotating all instructions as producers and consumers of variables by enumerating

the variables defined and used in the code sequence. Koopman then creates a sorted

queue of variables, ordered by the distance between the definition and use. In queue

order, he tucks the variable to the bottom of the stack at its point of definition, and

pulls it to the top at the point of its use.

In this thesis, we adapt Koopman's algorithm for our L-stack scheduler. We

modify the algorithm to add efficiency by observing that a variable need not be copied

to the bottom of the stack, but only placed below any other currently scheduled

variables. We define the set of all variables scheduled by the algorithm in a basic

block b to be exactly the L-stack region for b. We also extend the algorithm by

introducing the notion of deep uses. Consider an addition operator: it consumes

two variables: a left-hand side (LHS) and right-hand side (RHS). While LHS is read

from the top of the stack, RHS implies a 1-deep access. To correctly handle these

operators, we always give preference to def-use pairs containing a RHS use. Extending

this to expressions with multiple inputs, we always give preference to variables with

the deepest uses when performing local scheduling. Algorithm 3 details the modified

Koopman's stack scheduler, as used in this work. The algorithm is linear, give a

sorted collection of def-use pairs, giving a total complexity of O(NlogN) in time.

59

Input: Basic block B =(F1, F2 , ...),
where F : (ui,u2 , - - -) -(di, d2 , -)VF E B;
1). enumerate all variable defs and uses;
2). Pd = {def of v, subsequent use of v}Vv;
3). Pu = {use of v, subsequent use of v}Vv;
4). Q = Pd U Ps, ordered by span - RHS depth;
Let S be an array of empty stacks, such that SI = BI;
begin

for p= (vd,vu) E Q do
Let v denote the variable;
Let idd, idu denote the indexes of the expressions spanned by the pair;

dd = ISiddI
du= ISid.I;
tuck dd Vd to the top of the L-stack.
for i = idd to id, do
L Append v to Si.

if vd is a use then
I (pull-copy du), moving Vd to the top of the L-stack, if needed.

else

L (pull d,) moving Vd to the top of the L-stack, if needed.

Algorithm 3: Modified Koopman's scheduler

3.4.6 Evaluation of Local Stack Allocation Algorithms

To evaluate the three schemes for scheduling expression variables onto the hardware

stack, we compile a diverse set of benchmarks and schedule all basic blocks in each

program using each of the three schemes proposed in this section. When executing

the benchmarks, we must use a dictionary of variables to correctly communicate

values across basic block boundaries (this sub-problem will be addressed later in this

chapter, in Section 3.6). Analyzing the traces, we measure overhead as the ratio of all

instructions, including stack manipulation, to the instruction count in the sequence

of expressions only. This quite literally gives the overhead of scheduling in each of the

surveyed benchmarks. The results are shown in Figure 3-8. The modified Koopman

scheme performs nearly as well as the optimal scheduler, but runs in O(NlogN)

time, where N is the number of variables in the basic block. The optimal scheduler,

although marginally more efficient in general, takes exponential time, and is clearly

not practical for a compiler application. The greedy in-order scheme performs poorly

60

,260% -
0240% -

.

'220% -
200% -

ca
180% -

?160% -
cmi40% -
:3120% -

=100% -

G80% -

.c60% -
> 40% -

5 20% -
0
-j 0% -

Koopman's

0
CAn0

75
E

Figure 3-8: Overhead associated with surveyed L-stack scheduling schemes

in comparison. The modified Koopman scheduler is clearly the best choice among

algorithms surveyed for the EM2 compiler, and adds on average 0.6 instructions per

expression (within 11% of optimum) to schedule all local variables.

3.5 Expression Reordering for Efficient Scheduling

The portions of the compiler backend implemented so far give us a legal sequence

of expressions for each basic block, but the ordering within the sequence is dictated

by the front-end, and may not be optimal for mapping to a hardware stack-based

architecture. Consider for example a sequence of expressions reducing several values

to a sum, as shown in Figure 3-9. For the purposes of this discussion, we overlook

any algebraic optimizations that may trivialize the example. Clearly the order of

61

[S In-Order
0 Optimal
0 Modified

cr :-0

a)
CD
CM
Wu
E

U).0 4-.:~ C.,

k)

--_ m

IVAN N'INN

+ + + + add

add add
add add)

add sub
add -- add

sub add
sub sub

add + add

Figure 3-9: Operator order is flexible, up to dependencies

operations is largely irrelevant as long as dependencies are met in that any correct

ordering produces the same result, but the scheduling overhead associated with some

orderings may be an improvement over other sequences.

Observe that a perfect stack schedule is trivial for a data flow graph (DFG) pre-

sented in reverse polish notation. The left hand side of any operator is mapped to the

stack above the right hand side, so by expanding the right hand side of the root op-

erator completely before expanding any of the left hand side, we ensure that no stack

manipulations at all are necessary to correctly execute the set of expressions. Un-

fortunately, real-world workloads seldom lend themselves to perfect schedules: many

variables are used more than once, and often at very different levels in the DFG. These

"imperfections" make an ideal ordering (an ordering requiring no stack manipulation

at all) unlikely, although very low-overhead orderings are achievable.

3.5.1 Topological Sort to Enumerate Expression Sequences

Variables are simply logical entities that enumerate dependencies. In other words,

variables do not correspond to explicitly managed, long-lived state. Instead, they

simply enumerate explicit dependencies in the data flow graph: an expression defining

some variable v must execute before another expression that uses v. If a variable is

used by multiple expressions, these may be executed in any order provided their

62

(stock grows to the left)

AA push A

push A A B B push B
push B A B C push C
push op 1 B C B CA1B.C pull 2

sub _E_ B I B C IB IA pull _pp 2
push C C__E BB A sub
pull 2 B CE D E B A E tuck 2
sub D E A B E pull 1
add FD E sub

Figure 3-10: Data flow graph with efficient and inefficient linearization

dependencies are met. In fact, any correct sequence of expressions is a linearization

(topological sort) of the DFG induced by its variables. It is important to note that

there exist dependencies in addition to those made explicit by variables: implicit

dependencies occur due to data being passed via memory, or via procedure calls.

Although it is possible to analyze and handle dependencies with sufficient effort,

this work takes a conservative approach (thereby avoiding a complex, open research

problem) and maintains memory access interleaving, as well as the order of function

calls relative to each other and to memory accesses. Using this knowledge, we can

easily enumerate the entire space of correct orderings by enumerating topological sorts

of the DFG, taking care to reject any sequence that violates implicit dependencies.

Figure 3-10 shows a DFG with an efficient linearization, and an equivalent but severely

inefficient linearization. This section surveys a number of different approaches to

selecting an efficient ordering and discusses the complexity and other characteristics of

each. Finally we evaluate these approaches against a set of representative benchmarks

in Section 3.5.2. As a baseline, we evaluate the unmodified expression sequence as

emitted by the compiler front-end. This approach has no overhead in terms of compile

time, but has unknown quality of result, as the front-end compiler does not optimize

for minimal stack scheduling overhead.

63

Greedy Ordering

The simplest scheme constructs a topological sort in order, one expression at a

time. Each time, the expression F : (i1 , i 2, - -) -+ (01, 02, - - -) is selected such that

(i1 , i2 , - - -) minimizes the edit distance for current order of variables on the hardware

stack. By looking ahead and maintaining a live variable set, we avoid all backtracking,

meaning the algorithm runs in linear time.

Bottom-Up Greedy Ordering

The reverse of the previous scheme builds the topological sort from the final expression

backward, observing that the last expression of a basic block is a terminal (transfers

control flow), and is therefore fixed. The cost metric is the same as in the forward

greedy ordering approach. This approach dramatically reduces the search space, and

therefore the amount of backtracking, and yields better results: most basic blocks

implement a reduction, whereby a set of variables is combined by various expressions

into a smaller set. By scheduling in reverse order, the greedy scheduler is better able

to explore the graph depth-first, as if it were a tree, thereby finding generally better

schedules.

Optimal Ordering

The optimal scheme enumerates all topological sorts, schedules them all using the

modified Koopman algorithm, and selects the lowest cost sequence of expressions

(using an edge intersection heuristic to eliminate obviously bad linearizations early).

This approach is extremely costly in both time and memory, and is not fit for im-

plementation as part of a compiler. It is included to show an upper bound on the

quality of scheduling results.

Optimizing Bottom-Up Ordering

The optimizing reverse ordering scheme is a hybrid between the reverse greedy scheme

and the optimal ordering. Much like the optimal ordering, it enumerates the space

64

induced by topological sorting over the DFG, but unlike the optimal scheme, it is

not allowed to explore the entire space. Instead, optimized reverse ordering proceeds

breadth-first, selecting only branches within a parameterized cost margin of the cost

of a greedy choice. Overall cost of a sequence is evaluated by scheduling it using the

modified Koopman algorithm, and calculating the overhead. We benchmark several

variants of the optimizing bottom-up scheme by varying the margin parameter. The

margins evaluated are: {2, max(3, 10%), max(4, 20%), max(5, 30%)}. In the case of

margin= 2, we simply select 2 lowest-cost branches greedily at each decision point

when building the set of linearizations. For all other margins, we use a percentage

of the lowest cost, but also take care to limit the absolute number of branches taken

(to avoid long run times in case of reductions where all decisions carry the same

overhead). The complexity of this scheme varies with how much of the search space

is actually evaluated, dictated by the choice of margin. This scheme is bounded search

in the entire space of possible linearizations, ordered by a greedy local heuristic.

3.5.2 Evaluation of Expression Reordering Schemes

To evaluate the expression ordering schemes, we compile a diverse set of benchmarks,

reorder the expressions in each basic block using each of the schemes described in

Section 3.5.1, and schedule them using the modified Koopman algorithm. When

executing the benchmarks, we must use a dictionary of variables to correctly commu-

nicate variables across basic block boundaries, as this sub-problem will be addressed

later in this chapter in Section 3.6. Analyzing the traces, we define overhead as the

ratio of all instructions (including stack manipulation) to the instruction count in

the sequence of expressions only. The results are shown in Figure 3-11. Surpris-

ingly, the unmodified expression sequence emitted by the front-end yields relatively

good schedules, sometimes outperforming the reverse greedy approach. The forward

greedy approach performs poorly across the board. In many cases, the optimizing

reverse ordering scheme approaches the efficiency of optimal ordering, even with a

small margin. We chose to implement the latter, with margin=max(3, 10) as part

of the standard compiler back-end flow, achieving good, low-overhead linearizations

65

c275% -

8250% 0 Unmodified ES Bottom-Up Optimizing (2)
-o225% - 1 Greedy M Bottom-Up Optimizing (10%)
a)200% - Bottom-Up Greedy S Bottom-Up Optimizing (20%)

175% - Optimal N Bottom-Up Optimizing (30%)

;1 50% -

:125% -

100% -
C/)
w) 75%,

-~50%

>25%1

-o
t: 00%

W' E 0
. E Ca .

E .2

Figure 3-11: Local scheduling overhead with surveyed expression re-ordering
schemes

quickly for most benchmarks.

It is important to note that the order of the expression sequence in a basic block

has far-reaching implications in the Execution Migration Machine, beyond efficiency

of stack scheduling, because it impacts migration behavior and potentially causing or

alleviating a high eviction rate. Various optimizations can be applied by altering the

cost function of the optimizing reverse ordering approach, as explored in Chapter 6.

3.6 Variable Scheduling Across Basic Blocks

The last sub-problem we need to solve in the EM2 compiler backend is scheduling

of T-stack variables. Although we are able to produce high-quality schedules at a

basic block level, we must pass variables between basic blocks to correctly execute

a program. Much like in the case of basic block scheduling, we must maintain an

invariant, whereby before we transfer control to a basic block B, the T-stack must

consist of all variables used by posterior basic blocks of V, but not defined by them:

66

Before a basic block b is evaluated, the T-stack must contain precisely

{def (B,,io, n (use(b) U (use(Bosterior}, where:

* prior(b) = {bpriorjbpri,, E B, and bpricn -+ b}, meaning there exists a control

flow path (consisting of one or more edge) that takes bpri, to b.

" posterior(b) = {bposterio\bposterio. E B, and b -+ bposterior}, meaning there

exists a control flow path by which bposteria, is reachable from b.

" use(b) and def(b) are sets of variables used within b and defined within b,

respectively.

Two approaches are possible: either the T-stack contains exactly the set of vari-

ables stated in the invariant, and the source basic block must populate the T-stack

differently depending on the control flow decision, or the T-stack contains the union

of the T-stack required sets for all control flow targets of b. In case of the latter, each

basic block must drop elements depending on the source of the basic block. We im-

plemented the former scheme, as the control flow expression is already well-equipped

with the required branch structure and information to correctly populate the T-stack

with relevant variables.

A more complex question is the order of variables in the T-stack. Here, an optimal

schedule is difficult to formulate, as a given T-stack schedule affects overhead in not

one but several basic blocks - a very complex optimization problem to address, and

not one we can evaluate statically due to overheads being highly dependent on the

control flow paths taken by a program.

To produce a good T-stack assignment, we schedule basic blocks in reverse: the

CFG of a function has well-defined return points (sinks on the graph), which execute

last regardless of the path a program takes through the CFG. When ordering basic

block expressions and applying the modified Koopman algorithm to schedule the L-

stack (as detailed earlier in this chapter), we are able to modify the terminal expression

to correctly populate the T-stack. This is easy because posterior basic blocks will have

been scheduled, making the live variable analysis trivial. In case of loops, a basic block

67

must be scheduled with incomplete knowledge of the output T-stack (because it has a

CFG edge to itself). We optimize such basic blocks to loop on themselves - a sensible

approach given the fact that most loops run for many iterations. Using this heuristic,

we are able to order the T-stack variables in a way that incurs least overhead in the

target basic block, and achieves good results overall. It must be noted, however, that

this approach is merely a heuristic, as whole-program optimization at this level is

expensive and highly complex.

We do not evaluate the T-stack scheduler in isolation because the T-stack performs

local scheduling as part of its algorithm. We therefore evaluate the entire compiler

backend by compiling a set of representative benchmarks, order and schedule the T-

stacks as detailed above, using optimizing reverse ordering and the modified Koopman

algorithm to perform local scheduling. We profile the benchmarks using an ISA

simulator for the EM2 project. We compute total overhead by tallying the ratio of

all instructions executed relative to non-stack instructions, as before. The results

are shown in Figure 3-12. The overall scheduling overhead is approximately 40%

for the majority of benchmarks, with the notable exception of life, which consists

of predominantly short basic blocks and a lot of control logic, causing additional

overhead in each phase of variable scheduling due to high control flow ambiguity.

matmul, regex, and diff were compiled from large, convoluted bodies of source code,

and also exhibit high levels of control flow ambiguity. texture has long, arithmetic-

heavy basic blocks, and is scheduled relatively efficiently. On average, 5.2 stack

manipulation instructions are needed per basic block. The scheduling overhead added

by the T-stack pass is about 12% on average (T-stack scheduling is necessary to make

a program executable). It is obvious that scheduling at the basic block level is more

efficient per variable than inter-block scheduling. This makes sense because a basic

block can be scheduled in isolation, while T-stack scheduling choices can have far-

reaching implications, and are constrained by control flow ambiguity. If done in the

context of just-in-time compilation, the scheduler may be able to process entire traces,

achieving high-quality schedules for frequently taken paths through the control flow

graph, improving overall scheduling efficiency.

68

2150%

0125%
COCD
C1 00%
0

.G 75%

50%

CD)
: 25%

0%

0 (D M a)a a
cams E 0 a) 6)

0 E co 0 -
4-. 0

Figure 3-12: Total overhead due to stack scheduling in compiled programs

3.7 Summary

In this chapter, we explored the set of mechanisms by which symbolic state (variables)

is scheduled onto hardware resources. More specifically, we discussed expression or-

dering and scheduling of variables within and across basic blocks. We defined the

notions of expression, local, and transfer stack regions, and used these to precisely

formulate invariants and optimization goals throughout this thesis. We evaluated a

diverse set of algorithms for each phase of the compiler backend, and selected the

modified Koopman algorithm for scheduling variables within each basic block, a flex-

ible algorithm driven by a configurable cost function for expression ordering, and

a simple set of heuristics for variable passing between basic blocks. The compiler

backend is now able to implement C programs for the Execution Migration machine

(symbolic, as instruction encoding has not yet been discussed), achieving reasonably

low overhead incurred due to variable scheduling onto the EM2 architected state.

69

70

Chapter 4

EM2 Instruction Set Encoding for

a Dense Instruction Stream

So far we discussed an entire compiler backend which, in collaboration with a stock

front-end and platform-independent optimizer, translates programs written in C to

the EM2 instruction set architecture. While this system is enough to simulate the

execution of programs, and to conduct many architectural studies, we cannot yet

build a binary executable: we have not designed the ISA encoding to be interpreted

by the EM2 hardware. Our choice of encoding is very important, as it affects the

performance of a system in two ways: decoder complexity directly affects the rate at

which instructions can be issued, and encoding density affects code size, and there-

fore instruction cache efficiency and DRAM bandwidth utilization, thereby affecting

performance of the entire system. Figure 4-1 shows the role of instruction encoding

in the lager context of a complete compiler backend. A sparsely encoded ISA results

in excessive code size, which results in low instruction cache efficiency, and excessive

bandwidth required by the network and memory sub-system. On the other hand, a

complex encoding requires a complex hardware decoder, which may limit overall sys-

tem performance due to latency, power, area, or other constraints. A good encoding

is both easily decodable and dense, improving the instruction cache miss rate, band-

width, and reducing the overhead incurred by additional instructions due to variable

scheduling, as discussed in Chapter 3

71

EM 2ABI

(i ransiation bcneauing H5D : Executable

C
Program Front-End Back-End

;Optimization Optimization

Figure 4-1: High-level role of instruction encoding in the EM2 compiler

In this chapter we discuss the encoding problem in abstract terms and derive

an upper bound on instruction stream density (lower bound on code size) with and

without microcoded "super instructions". We then propose and evaluate a set of

different encoding mechanisms, discuss the associated decoder complexity, and show

that a naive but compressible encoding performs relatively well, while requiring no

complex decoder logic. As a result, we can achieve a dense instruction stream, which

helps mitigate the overhead of explicit scheduling of data. Finally, we show that the

proposed encoding scheme reduces variable scheduling overhead on code size to only

12% relative to a naive encoding.

4.1 General Practices for Instruction Encoding

Reduced Instruction Set Computer architectures (RISC [44]), have similar (albeit

register-based) instruction sets to the EM2 ISA. These architectures typically encode

their instructions as 32-bit binary sequences, but it is important to note that RISC

instructions are relatively dense [28]. They encode not only the operator, but also the

source and destination registers to perform the operation on, and often an immediate

(instruction-encoded constant) as well.

A sparse encoding results in large code size, a particularly sensitive point for a

stack-based architecture. Unlike RISC-type architectures, a program running on EM2

72

incurs some code size overhead by needing to explicitly manipulate the hardware

stack. The jury is still out on whether this overhead is significantly worse than

register loading and spilling [7]. Although this may be due to a severely understudied

problem of compiling for a hardware stack-based architecture, the colloquial wisdom

is that stack architectures tend to execute more instructions to perform the same

work as a register file architecture [44]. A dense instruction encoding is therefore

very important to compensate for any code density lost due to stack management.

A good instruction encoding also allows for a simple, high-performance decoder: for

example, a context-free encoding allows for a stateless, combinational circuit, whereas

any context awareness forces the decoder stage to consume a clock edge, and employ

conservative added delays for hold time safety.

4.2 The EM 2 ISA is Sparse

The EM2 instruction set is obviously sparse in comparison with a RISC-like instruc-

tion set: where each RISC instruction encodes a lot of information, most EM2 in-

structions encode only the operator selection, although a few also encode one or two

constants. In this section, we attempt to reason about the EM2 instruction set den-

sity in abstract terms, deriving a lower bound for the number of bits required per

instruction, on average. We do not assume constant instruction bit width - doing so

would negate the highly sparse nature of most stack instructions.

4.2.1 Ideal Encoding as a Baseline

To establish an ideal, an upper bound on instruction density, we measure the aver-

age ideal instruction bit width in a set of benchmarks. The ideal encoding density

varies with differences in the instruction stream. For example, an encoding may

theoretically offer a 1-bit representation of the add instruction, but a 10-bit represen-

tation of subtraction, causing addition-rich traces to be more densely encoded than

subtraction-rich ones. For this thought exercise, we ignore the decoder implementa-

tion, and assume the memory subsystem is capable of fetching instructions of any bit

73

width and any alignment. To maintain relevance, however, we require the instruc-

tion set encoding to be context-free. We compile a representative set of benchmarks,

execute them symbolically, and analyze the traces to determine the ISA information

density.

Given a trace of EM2 instructions, we need to determine the average bit width of

each instruction if the trace is encoded to a minimal number of bits, with the con-

straints discussed above. In other words, we are given a set of instruction commands

I and a trace detaining their relative frequency of the form T = {i f}, such that

T(i) = f, and E T(i)Vi = 1.

With this information, we want to formulate a bijective mapping F : i -+ b from

I to ZN, where N = IIl such that the cost function I * E(T(i) * log2 (b))Vi, where

b = F(i)) is minimized. In English, we want to find the bijection (decodable encod-

ing scheme) F that minimizes average bit-width of the instructions in a given trace

T. This is equivalent to the space of permutations over ZN, which has asymptotic

complexity of O(N!), where N is the number of distinct instruction commands (for

example two branches with different offsets are distinct instruction commands) so it

is not practically enumerable for our purposes.

Fortunately, there is a very simple and effective heuristic: because we want to

minimize a sum, we need only to minimize each of its terms. To do so, observe

that log2 (i) is monotonically increasing over i E ZN, so we want to assign the most

frequently occurring instruction commands to the smallest numbers in ZN. We can

do this in constant time, given T is stored as a sorted histogram. Figure 4-2 shows

a whisker plot of the instruction bit widths given a minimal encoding optimized to

most compactly represent a given benchmark.

It is clear from this evidence that the stack ISA is very sparse: compared to

a typical RISC instruction set [28, 54], which densely utilizes all 32 bits of each

instruction word, the ideal encoding scheme only uses 6 to 8 bits per instruction on

average, with maximum (encountered in one of the benchmarks) bit width being 12

bits. The bit width of the widest instruction in this encoding is 19 bits (instructions

not present in the trace are encoded also!). It is also evident that our instruction

74

12 F

10- -- - '--

se eeisfo abe ai wit enoig altog hI vrgebtwdho h

a) th figar aas a ta M3a
ast

Alhuhvr efiiet th ida ace ei no praial mlmnala

deie ea ayfr ach bnhark trcadi ao ersnaieo l rgas

00 0

a ar

There4dingDiptibized f hetutitor bedhsih pelrsireletively pnodyin

sped enefit fom varable, sitwidgth encoding alfho4ghitshe average -i wimuth ofess

favtrucbio stais rehatieyoet the mdaienigwimum ussomy itsrequntl overage.iTh

inxtrctinong reureesgnificanteresitionglece information, wh franinfbetitself

sn bre asetad shd a s i meaurem a a

Alhuhvr fiitth ial ceei o prcall *mlm e as

4.2.2 deinda ithnoregadd ecodrcmlxiyngeveteenoigi

apleat h b t ace ahwn an ecdn o1 bis on avrg - a muhls

faorbl sttiti tha the idea enoig whc use ony6btvrg. The

4.. Ida MicrocodedI Encoding

Some instruction sets include "super instructions" - special binary sequences that

trigger a sequence of instructions to be executed. This scheme allows sequences

75

of instructions frequently occurring together to be encoded as a unit, potentially

improving the overall code density.

We establish an ideal encoding baseline for this approach as well by building a

dictionary of all instruction sub-sequences in a given trace. We must take care to

limit the set of expressions we consider, however. If we were to encode sequences of

unbounded length, any program would be reducible to a single half-used bit, deref-

erencing a microcoded sequence of instructions that implement the entire program

(this is obviously not practical). For a more informative discussion, we consider mi-

crocoded sequences of finite length, up to and including L E N instructions, where L

is a fixed variable. Given L E N, we build an encoding, in the same manner as in the

previous exercise, encoding a sequence whenever doing so improved the cost function

(the trade-off here is that by encoding extra "super instructions", the cardinality of

the instruction command set increases, increasing the maximum instruction bit width,

thereby affecting the average). Whenever encoding a sequence is beneficial, we take

care to exclude its sub-sequences from the histogram: for example, when encoding

an equality comparison and a branch together, we update the histogram not to count

the sequence as occurrences of either a comparison or a branch. Figure 4-3 shows

the effect of maximal microcoded sequence length on overall instruction density. The

multi-cycle scheme improves on the single-cycle ideal scheme in that the average bit

width is reduced to 4-7 bits per instruction, but maximum bit width increases to 15.

A unit sequence length (L = 1) is identical to the ideal single-cycle encoding analyzed

in the previous exercise. The ideal multi-cycle scheme is only given as lower bound

on instruction bandwidth, as this approach requires tremendous decoder complexity,

likely requiring large look-up table and a capability to fetch and decode misaligned

instructions across cache lines.

4.3 Encoding the EM 2 ISA

Ideally, we would like to encode the EM2 instruction set using an encoding func-

tion that represents all programs of interest favorably, and yields a simple and high-

76

d

II

14
13
12
11
10
9
8
7
6
5
4
3
2

I

E

0 0) ~0 CU

.0

Figure 4-3:
coding

performance decoder. To do so, we propose and discuss several encoding schemes,

evaluating them in much the same way as the ideal scheme was evaluated earlier in

this chapter.

4.3.1 Naive 32-bit Encoding

Much like in a RISC-like instruction set [28], we designate the various fields in each

instruction to a set of bits in a 32-bit word. More specifically, we partition the word

as shown in Figure 4-4, assigning the 16-bit immediate field used by instruction-

coded constants and PC-relative control flow operators. A full word of data is more

than enough to encode all instructions in this manner, meaning the decoder logic

is minimal. This a safe and conservative (albeit inefficient encoding), and is the

encoding implemented in our chip [36].

77

'Ca,
0
CD

W 0)

0

Average and maximum instruction widths with ideal multi-cycle en-

0 L=1 U L=3 C (maximum bit width)

0 L=1 0 L=3 0 (maximum bit width)
E L=2 N L=4

I I II

i-
0 8

4.3.2 Dense 8-bit Encoding

To better match the largely sparse nature of the EM2 instruction set, we create a byte-

sized encoding. Because 8 bits is insufficient to encode the immediate fields of several

instructions, we change the semantics of these operators to read their immediate val-

ues from the hardware stack. This makes constants somewhat problematic, requiring

us to use eight separate instructions to initialize a 32-bit constant. To be consis-

tent, we count all overhead instructions introduced in this manner as a single, larger

instruction, meaning a constant requires 64 bits of the instruction stream. Further

overhead is actually incurred due to underutilized datapath cycles. The instruction

encoding is very dense, meaning the decoder is a dense two-level circuit of combina-

tional logic, though with good per-instruction performance. This encoding is similar

to those used by ultra low-power stack and accumulator-based microcontrollers.

4.3.3 Compressible Encoding

While the 32-bit scheme densely encodes a few of the EM2 instructions (precisely the

instructions requiring a large immediate value), most operators do not require such a

wide instruction word. Conversely, while the 8-bit encoding captures much of the ISA

fairly well, it suffers greatly from overhead incurred when splitting long instructions

into inefficient instruction sequences.

We combine the two schemes via a compressible encoding [25]: extending a naive

32-bit encoding (truncated to 31 bits in this case) with tuples of 4 instructions encoded

78

31 16 15 8 7 0

operator mmediate (8b) m

operator immediate

operator

Figure 44: Naive 32-bit instruction encoding for EM'

as a single word. Each instruction in the tuple is represented using a byte (except the

first, which only uses 7 because the decoder must differentiate compressed and uncom-

pressed instructions). By employing a variable width encoding, we take advantage

of the largely sparse ISA by encoding it densely, while accommodating instructions

with big immediate values. Typically, a variable instruction width introduces a slew

of difficult problems. Firstly, by allowing instructions to be encoded as non-uniform

sequences of bits, instruction alignment becomes non-uniform as well, meaning an

executable may maliciously or erroneously transfer control to an address that does

not correspond to the start of an instruction. The decoder happily translates such

control flow transfers as a new instruction stream, which has a completely different

meaning than the first, making variable width programs extremely difficult to analyze

and secure. Another issue occurs when long instructions are not aligned to cache line

boundaries: if an instruction resides in two separate cache lines at the same time,

additional hardware must be implemented to handle the odd case of missing two

cache lines simultaneously. We alleviate this problem by compressing tuples of 4 (or

fewer) instructions into a single word, or "super instruction". Branch targets, as well

as all encoded instructions, must align to word boundaries, meaning each instruction

belongs to precisely one cache line.

Only a subset of the ISA may be compressed in this manner: 7-8 bits is insufficient

to represent the entire ISA, as discussed in Section 4.3.2. Realizing that this scheme

is a limited case of a "super instruction" 32-bit encoding with a maximum sequence

length of 4, we use the same frequency analysis technique used to compute ideal

multi-cycle encoding to derive the set of instrucitons used most frequently. 128 of

these common opcodes are encodable as the head byte of the 4-instruction tuple.

The other three may use the full 8 bits, for a total of 256 compressed instructions.

The instruction encoding is illustrated in Figure 4-5. We take care to separate the

"training set" and the evaluation benchmark. The compressed instructions used when

executing each benchmark are computed from the union of all other benchmarks,

excluding the test program, as is done in experiments utilizing cross-validation [24].

79

0 Ideal Single-Cycle U Naive 8-bit
E Naive 32-bit U Compressible

0 (maximum bit width)

0 73 -0)
.eD !L

0 -E
E w

E
0.

Figure 4-6: Average and maximum bit widths for surveyed EM2 instruction en-
coding schemes

4.3.4 Multi-Cycle Compressible Encoding

By extending the already dense compressible encoding scheme with "super instruc-

tions" we initially attempted to further increase the efficiency of the compressible

encoding scheme. We pursued two different schemes: super-instructions encoding a

sequence of 4 without individually decodable members (requiring a table lookup to

80

3130 24 23 16 15 8 7 0

[operator Immediate (8b) E ie (8b

[operator immediate

operator

I operator I operator 2 Z perator 3 operator 4 1

Figure 4-5: Compressible instruction encoding for EM2

59 -
54 -

49 -

44-
39 -
34-

29 -

24 -

19 -

14 -

9-
4 -

a ,I

(D
C)
Cu

AS

I

translate the 32-bit word into 4 individual instructions), and a separate scheme al-

lowing longer sequences to be encoded as a 32-bit word. Both schemes suffered from

high decoder complexity, and observed seemingly irrelevant sequences appearing fre-

quently. After further investigation, it became clear that much larger program traces

would need to be surveyed to produce a representative encoding with large sets of

"super instructions", especially if long sequences are permitted. Neither scheme is

included in the evaluation.

4.4 Evaluation of ISA Encoding Schemes

We evaluate the encoding schemes by compiling a set of representative benchmarks,

and executing them on an ISA simulator for the EM2 architecture. We then post-

process the benchmark traces to analyze the average and maximum bit width of the

instructions evaluated in each trace. Specifically, we evaluate the naive sparse (32-

bit) encoding, the naive dense (8-bit) encoding, as well as the compressible encoding.

We use the ideal single-cycle encoding as a lower bound to illustrate the relative

efficiency of each encoding scheme. The results are shown in Figure 4-6. The naive

sparse scheme fails to take advantage of the sparse nature of the EM2 ISA, both

its average and maximum instruction bit width are trivially 32 bits, well in excess

of the ideal scheme. The naive dense scheme performed relatively poorly as well:

although each encoded instruction is exactly 8 bits wide, many instructions were

split into instruction sequences, as the encoding does not permit large immediate

fields required by the EM2 instruction set. These sequences were counted as a single,

wide instruction, raising both the maximum and average bit width of the naive dense

scheme to 56 and 27 bits, respectively. The texture benchmark showed the naive

dense encoding scheme to be particularly inefficient due to numerous control flow

instructions and offset memory accesses: all instructions requiring a lengthy sequence

to implement the immediate offset. The compressible encoding scheme performed

relatively well, with an average bit width of 12 bits, approaching ideal efficiency.

Maximum bit width for this scheme is trivially 32 bits, as the encoding scheme is

81

identical to the naive sparse scheme in its uncompressed form.

4.5 Conclusion

In this chapter, we discussed the problem of encoding the EM2 instruction set. Be-

cause the ISA is stack-based, it suffers from overhead in form of additional instructions

needed to explicitly manage the hardware stack, contributing to a larger code size.

To mitigate this problem, we observe that the ISA is quite sparse, and devise a dense

encoding to compress the instruction stream, thereby reducing code size significantly.

Specifically, we discuss the problem of encoding an ISA in abstract terms, and derive

an upper bound for instruction density for use as a baseline for evaluating candidate

encoding schemes. We then propose several schemes to encode the EM2 instruction

set, and demonstrate that a compressible ISA scheme performs best among the meth-

ods surveyed. We show that this encoding approaches ideal instruction density, but

does not require a stateful or otherwise complex, slow decoder

A dense instruction encoding increases effective instruction cache size (in that

a large number of instructions can be cached in each line of the cache), decreasing

miss rate and network bandwidth required. Another benefit is that a dense encod-

ing negates code size overhead from explicit stack management produced by variable

scheduling, as discussed in Chapter 3. While variable scheduling expands the in-

struction stream by adding 0.33 stack operations per instruction on average, the

compressible encoding scheme reduces the code size to 37.5% of a simple 32-bit en-

coding used by many RISC processors. As a result, the code size of a EM2 program

incurs only 12% overhead due to stack variable scheduling relative to a naive 32-bit

encoding.

82

Chapter 5

Library for Synchronization in the

EM 2 Execution Model

In previous chapters, we designed and evaluated subsystems of a compiler capable of

transforming architecture-agnostic C code into an executable program for the EM2 ar-

chitecture. The compiler is optimized for the EM2 execution model and produces rel-

atively efficient machine code across a range of representative single-threaded bench-

marks. Despite this result, the EM2 execution model must capture the machine's

key characteristics, chief among them being that EM2 is by design a highly paral-

lel machine. With over a hundred threads of execution united by a scalable shared

memory abstraction, we must provide affordances to allow the programmer to de-

scribe parallel workloads. Unfortunately, because our platform fundamentally differs

from well-established computer systems, we found no existing libraries that easily

conform to the EM2 architecture. This thesis makes no attempt to solve the paral-

lelizing compiler problem in the general, and instead delegates the parallel software

problem to the programmer by providing a set of interfaces and library primitives to

enable thread creation, communication, and synchronization.

In this chapter, we design and evaluate a basic set of synchronization primitives

optimized for the EM2 architecture. Although synchronization primitives are only a

small set of a rich application binary interface (ABI) for a multi-threaded environ-

ment, we use this discussion to illustrate the design methodology and optimization

83

goals for library primitives in general. Unlike most library blocks, which simply expose

an architectural feature and require straightforward engineering effort, performance

and correctness of synchronization primitives is intricately tied to the on chip network

and memory subsystems. We discuss how and why a naive implementation of a lock

fails when using remote access for mutual exclusion. Using the insights gained from

this discussion, we design and optimize a low-level lock, and a high-level low-overhead

lock primitive. Finally, we discuss the multicast subroutine of a barrier implementa-

tion, and describe an optimization achieved by relaxing the ABI memory consistency

model in a controlled way for the barrier implementation. Throughout the discus-

sion, we demonstrate ways in which migration is an enabling technology for thread

synchronization. We show how migration and remote access can be used together

to optimize the performance, network utilization, and scalability of synchronization

primitives on EM2 .

5.1 ABI Library

In Chapter 2, we introduced the ABI as a union of a language, a library, and a

set of conventions that make them interoperable. The compiler aptly describes the

language component of an execution model, exposing computation resources via the C

programming language, but some useful constructs cannot be efficiently implemented

on top of this abstraction. Such primitives are not excluded from a usable computer

system; implementers break abstractions established for the programmer in controlled

ways to provide a library written below the ABI abstraction, as shown in Figure 5-

1. For example, thread creation and destruction is impossible in pure C, as the

language has no concept of threads of execution. A programmer is able to use threads

via a library, such as pthreads [11], implemented below the architecture-agnostic

abstraction. By adhering to the same conventions as the compiler at library interfaces,

implementers can create functions interoperable with compiled code, but have the

option to deviate from the execution model.

84

Libra
head

C
Program

ry
ers

E 2 ABI
Library

State Encoding EM 2

Front-End IR State Encoding EM 2
Translation Scheduling (assembly) Executable

Front-End Back-End
Optimization Optimization

Figure 5-1: ABI library and its role in the compiler toolchain

5.1.1 Calling convention

Before we can create a useful library of primitives for the EM2 architecture, we must

discuss the EM2 calling convention. Normally a function call creates a stack frame in,

with function arguments passed as variables in the new stack frame, and return values

passed as variables in the prior frame. Some architectures cache the variables in a

register file to reduce function call overhead. The Execution Migration Machine has

a hardware stack, making argument passing trivial: a function call can be exposed

as an operator that takes arguments from the stack in argument order, and deposits

any return values on the top of the stack also, much like a basic block expression. No

interaction with the memory subsystem is necessary. This convention is illustrated in

Figure 5-2. Both the library and the compiler implement this same calling convention,

making the library interoperable with compiled programs.

5.2 Bit Movement Metric

The EM2 project revolves around the idea of achieving a scalable shared memory

abstraction by eliminating shared state, relying on local decisions to eliminate hand-

shakes, and minimizing network traffic. The bit movement metric is a central concept

in this discussion: movement of bits is arguably a good approximation for power effi-

85

int max(int b, int c)(
return (b>c)?b:c;

m max(1,2);

push 2;
push 1;

push addrmax();
call pc;

drop a;

tuck 2; Call Address 1Address
pullcp 1; 2

pull cp 1; Call
comp slt ; 'a r 1 11 Return

branch 2; 1 222222 r Value

juL 2; ce'C
dr 1; -- -- -

ucp 2; C d (stck grows up) Ade

juxnpc; 2_____________c _____

Figure 5-2: EM2 calling convention

ciency (much of the expense of parallel workloads is incurred in the on-chip network

due to communication and synchronization of threads), and helps illustrate scala-

bility [13]. The criterion by which we optimize all library primitives is the same

bit movement metric: by minimizing bits moved (network flits * travel distance),

we improve the scalability and latency (fewer blocking handshakes) of the primitives

discussed in this chapter.

5.3 The Lock Synchronization Primitive

In a parallel program where multiple threads use memory concurrently, accesses to

shared state are serialized and may result in ambiguity: when executed, a multi-

threaded program follows one of many possible interleavings of memory accesses, a

source of non-determinism. In a massively parallel computer system such as EM2 ,

inter-thread communication is of particular importance because a large number of

communicating threads creates countless interleavings, only a subset of which may

describe correct behavior. Without a means to enforce a correct interleaving, data loss

or even livelock may occur. To avoid this problem, we design a lock primitive [21] to

allow programmers to implement mutual exclusion and explicitly orchestrate correct

interleavings where a well-defined behavior is desirable for program correctness or

performance.

86

Input: AL - address of a lock in memory;
3 a time such that Mem[ALI = 0 (lock is logically "free").
Output: Mem[ALI = 1 (Lock is logically "acquired").
while true do

begin critical section
if Mem[ALI = 0 then

Mem[AL] <- 1;
break;

else

L //lock is not free. Retry

Algorithm 4: Naively acquire a lock primitive

Input: AL - address of a lock in memory;
Mem[AL] = 1 (lock is logically "acquired").
Result: Mem[ALI = 0 (The lock is logically "free").
begin

L Mem[AL] <- 0;

Algorithm 5: Naively release a lock primitive

5.3.1 Naive Lock Primitive

A lock primitive is essentially an affordance for mutual exclusion given by two in-

terfaces: acquire() and free(). The algorithm to acquire [21] a lock is given by

Algorithm 4. To release a lock, no exclusion mechanism is needed: the entity releasing

the lock must already own it, so exclusion is already guaranteed. The free 0 routine

is given by Algorithm 5.3.1.

To implement the lock, we must implement a critical section, an atomic sequence.

The EM2 architecture allows atomics using a linked load (fnc-ld-rsv, among oth-

ers) and a conditional store (fnc-st-cond, among others), as shown in Section 2.3.

These instructions do not implement a read-modify-write sequence by themselves,

and therefore do not execute as an uninterruptible sequence. Instead, fnc-d1rsv

87

20 -

C., S15-

10 - Livelock,
does not complete(0

5 -
a)

'C

w - ------- ---- '0
S I I I I I

1 2 3 4 5 6 7 8 9 10

number of participating threads

Figure 5-3: Livelock in naive lock implementation on EM2

begins the sequence, and if any thread accesses memory before the write occurs, the

store conditional instruction fails [26].

A critical section makes no forward progress if interrupted, meaning deadlock

is possible if two threads compete for multiple resources creating circular depen-

dency [37]. Worse yet, livelock may occur if the critical section is interrupted every

time [57]. To demonstrate this behavior, we implement the lock primitive as shown

above, and record the number of times each thread attempts a critical section to

acquire the lock. Figure 5-3 demonstrates the naive lock implementation livelocks al-

most immediately with even a small number of competing threads due to reservation

breaking.

5.3.2 Analysis of the Naive EM2 Lock

To better understand the livelock behavior, we design an experiment to show how

low-level behavior causes application-level livelock. The EM2 architecture has two

mechanisms for memory access: remote access and execution migration. The EM2

hardware migration predictor [51] can dynamically select which of the two provide

88

Input: AL - address of a lock; Input: AL - address of a lock;
3 a time such that Mem[AL] = 0 3 a time such that Mem[AL] = 0
(lock is logically "free"). (lock is logically "free").
Output: Mem[ALI = 1 Output: Mem[ALI = 1
(Lock is logically "acquired"). (Lock is logically "acquired").
while TRUE do while TRUE do

L (f--ra-xsv Mem[ALI; begin unevictable critical section

if L = 0 then L inIem-.sv Mem[AL];

Mem[ALI - 1ncst-o ; if L = 0 then
if fnc-stra-cond succeeds Mem[AL] fn'-.s-em-cod 1
then if fnc-st-raecond

break; succeeds then
else I break;

L //interrupted, Retry else

else L //interrupted, Retry

L //lock is not free. Retry else

Algorithm 6: Acquire a lock primi- L //lock is not free. Retry
tive via remote access (RA) Algorithm 7: Acquire a lock primi-

tive via execution migration (EM)

better expected bit movement using simple reinforcement learning. For the purposes

of this discussion, however, we separately examine two lock implementations: one

using remote access only, and one using execution migration. Algorithms 6 and 7

shows the RA-only and EM-only lock algorithms side by side. The release routine

is naive, and uses remote access, for both EM and RA locks because migration is

obviously wasteful here. Algorithm 8 details the benchmark we use to evaluate each

lock. Each thread acquires the lock one thousand times (K = 1000). C is minimized

to maximize contention. The EM implementation forces each iteration to self-evict

to the home core, preventing a thread from acquiring the lock multiple times after a

single migration.

Figure 5-4 demonstrates the completion time for benchmark behavior for various

numbers of threads contending for the same lock. Figure 5-5 demonstrates the bit

movement associated with each benchmark. It is clear that the RA-only lock performs

89

Input: AL - address of a lock in memory;
K - number of repeated trials;
C - Critical section length;
for i E [1 to K] do

acquire(AL);
wait(C);
release(AL);
self-evict;

Algorithm 8: Lock benchmark

46 -
E execution migration

41 - remote access
(D

31 2
0

()
26

lcks

S21

E 16
0
0)0

1 2 3 4 5 6 7 .8 9 10

number of participating threads

Figure 5-4: Completion time of benchmarks using EM-only and BA-only naive
locks

better, both in terms of completion time and bit movement, than the EM-only lock

when little or no contention is induced by the benchmark. This stands to reason

because migration generates a larger network message than remote access, and incurs

additional delay due to serialization and deserialization.

As the contention increases, however, the RA-only lock fails. The lock suffers

from reservation breaking: increasing contention increases the rate with which threads

attempt to acquire the lock, meaning the lock core is receiving fncld.ra-rsv requests

90

"0 15-
0 execution migration

13 |remote access

Cu 7

3 -
1 -i0

E 1

1 2 3 4 5 6 7 8 9 10

number of participating threads

Figure 5-5: Bit movement observed for benchmarks using EM-only and RA-only
naive locks (normalized to number of threads)

at a higher rate, breaking prior reservations and stalling forward progress. Livelock

occurs when the expected time between remote load reserve requests becomes less

than the critical section length, as shown in Figure 5-6 as a scatter plot of expected

lock retries vs. expected time between load reserve requests. The critical section

for the RA-based lock routine is 4 instructions long; livelock balloons when expected

time between requests falls below 4 instruction commits.

Interestingly, the EM-only lock implementation appears to be resilient to the reser-

vation breaking behavior. The cause is not immediately apparent: after a migration,

the core hardware ensures several instructions commit in the guest context before al-

lowing another guest to enter the core, evicting the 1 visitor. A small C was chosen

for the benchmark, making livelock impossible by ensuring the guest core executes

the critical section entirely before allowing another guest to break the reservation. To

better illustrate this behavior, consider Figure 5-7 where we vary C to show that a

longer critical section can indeed be interrupted, causing livelock, albeit not as readily

91

15- 01o 01
14 - 0
13 -

- 12 -0

1011
10

8 9- b 0

8--

3 6_ .10
E 5 0 0 0

:3> (D
a 4 IM1 00
-0 1-1 FW 0
2 3 -2-0* 00

w 1 00 00
I I I I I I

0 2 4 6 8 10 12

Expected time between requests

Figure 5-6: Livelock occurs when time between reservation-breaking requests is

shorter than critical section length

as the in RA-only lock (due to the serialization latency limiting the load reserve rate

in the lock core).

Because only a few variables are needed to complete the critical section, the EM-

based lock benefits from a partial context migration. In fact only 3 values are sent,

meaning the bit movement statistic is not much higher for the EM lock than for the

RA lock - strong evidence that partial context migration is a far better option for

mutual exclusion than RA. The guests attempting to acquire the lock are serialized on

the network, however, potentially causing problems for other work using the network,

and cannot execute until they enter the guest context. The hardware predictor, as

utilized in the naive experiment at the beginning of this chapter, learns that remote

access is most appropriate for the lock's free routine: the run length of the free

routine is minimal, and the utility of a migration is very low, as only a small number

of instructions can be executed on the guest core. Likewise, the predictor favors

remote access for the acquire routine because, when successful, its run length is very

92

CD,

CO
CD

-0

0

(D

Cu

0
cc
Cu

ca

30 -

25 -

20 -

15 -

10 -

5-

0-

Figure 5-7:
gated

-,- I
F I

I ~ ~

5 6 7 8 9 10 11 12 13 14

Critical section length (instructions)

EM-only lock also livelocks if lock critical section is artificially elon-

short, meaning migration utility is low. Conversely, when the routine fails to acquire

the lock, it generally gets evicted by another thread, and is ignored by the predictor's

reinforcement learning mechanism.

5.3.3 EM-RA Hybrid Lock

Clearly, the EM-only lock implementation is far superior to the RA-only lock, as

it is correct, and avoids deadlock. The EM lock does, however have a number of

shortcomings, chief among them its heavy use of the on-chip network to arbitrate

the lock. When the lock is owned, the threads trying to acquire the lock relentlessly

migrate to the lock core, evicting each other frequently. Worse yet, contexts queue

up in the network, potentially causing other problems.

To address these shortcomings, we would like to check whether a lock is available

prior to initializing a migration. We issue an RA load, which checks whether the lock

is free (without breaking an existing reservation if the lock is being acquired) before

migrating, and forgo the migration altogether if the lock is owned. The lock acquire

93

Cu

CL

0.

0 0

0

I

Input: AL - address of a lock in memory;
I a time such that Mem[ALI = 0 (lock is logically "free").
Output: Mem[ALI = 1 (Lock is logically "acquired").
while TRUE do

Lra (+n--- Mem[AL];
if Lra = 0 then

begin unevictable critical section

Lem (fnc.-1dem.rsv Mem[AL];
if Lem = 0 then

Mem[AL] (fnc-st-emcond

if fnc..stem-cond succeeds then
break;

else

L //critical section was interrupted. Retry

else

L //lock is no longer free after migration. Retry

else

L //lock is not free. Retry

Algorithm 9: Acquire a lock primitive using a hybrid EM-RA routine

algorithm is given by Algorithm 9; while the free routine is naive and uses remote

access, just as in our previous lock implementations.

The EM-RA hybrid lock dramatically improves network utilization, reducing bit

movement, which serves to reduce lock contention and improve completion times

when the lock is shared by a lot of threads, as shown in Figure 5-8. Figure 5-9 shows

bit movement associated with the hybrid lock algorithm. The hybrid lock does have

some overhead, requiring an additional handshake prior to migration, which makes it

slower and more costly when few sharers are involved. Another consequence of the

additional handshake is that when the lock is freed, no threads are queued on the

network to acquire it. Only after a remote access handshake do threads attempt to

migrate and acquire the lock, meaning the lock is free for a short period after each

eviction. This is behavior is shown in Figure 5-10, which compares lock utilization

(ratio of time the lock is free to time owned) and reveals that the hybrid lock forfeits

some lock occupancy for its various benefits.

94

5.3.4 Self-Arbitrating Lock for Low Bandwidth

Taking the idea of minimizing bit movement further, we can address the retry behavior

of the EM2 lock. Although this optimization is not suitable for fast, fine-grained locks,

it serves to dramatically reduce network traffic associated with the lock by offloading

arbitration from the network to the lock core [20, 16].

The idea is to eliminate retries completely: when thread Ta attempts to acquire

a lock already owned by thread Tb, it adds itself to a queue of waiting threads, then

self-evicts to its home core and spins on a local lock (located in the home core's

cache, therefore no network traffic is generated). When the lock is released by thread

Ta, the releasing thread arbitrates the lock (selects the next thread in the queue, for

example), and notifies the winning thread T that it won arbitration. The lock is

never released - it is simply transferred from Ta to T, meaning lock utilization is

95

46-
4 execution migration

a 41 - M remote access
0 em-ra hybrid

~36-

31
0

26

21

- 16 -
0

E 6- 0 0 0
1 lamp&]

1 2 3 4 5 6 7 8 9 10

number of participating threads

Figure 5-8: Completion time with RA, EM, and EM-RA locks

15-
execution migration

1 remote access13j -0 em-ra hybrid

0 11

9

7u 7
(D

2 5-
0.

5 -

1 2 3 4 5 6 7 8 9 10

number of participating threads

Figure 5-9: Average bit movement per thread observed with RA, EM, and EM-
RA locks

E

S75%
0 -

E

50% -
R > >4 > >

igu25 0 execution migration
D 10 remote access

- 0% em-ra hybrid

1 2 3 4 5 6 7 8 9 10

Figure 5-10: Lock utilization observed with RA, EM, and EM-RA locks

optimized also.

The lock data structure (the queue) must be guarded by a fine-grained lock, such

96

Input: Aguard - address of a lock in memory;
L - variable to represent lock state;
Q - a shared queue, initially empty;

Output: thread has logically acquired the self-arbitrating lock.

begin
acquire(Auard);
if L is 'free" then

L <- "acquired";
release(Aguard);

else
Let Lsieep be a new lock on the thread's home core.;
acquire(Lsieep);
Q.append(Lie,);
release(Aguard);
acquire(LIee,); // Sleep on the newly allocated lock at home core.
// When Liep is remotely released, the thread won arbitration, and
owns L.

Algorithm 10: Acquire a self-arbitrating lock primitive

as the EM-RA lock. The algorithms for acquiring and freeing the self-arbitrating

lock are shown in Algorithm 10 and Algorithm 11, respectively. Figure 5-11 and

Figure 5-12 shows the completion time and bit movement, respectively, comparing

the EM-RA lock and the self-arbitrating lock, as well as the other locks evaluated in

this chapter. The self-arbitrating lock allows very high utilization in a high-contention

scenario because it does not arbitrate the lock on the network. When a thread releases

the lock, it is transferred to the next waiting thread (if any). The high utilization

of self-arbitrating locks is shown in Figure 5-13. While the self-arbitrating lock is

very efficient and scalable, it is relatively expensive (requires an EM-RA lock to

guard the internal data structure). The guard lock theoretically may suffer from high

contention, but this has not been observed in practice, and can be easily remedied by

implementing an exponential back-off scheme [5], as the self-arbitrating lock is not

well-suited for fine-grained mutual exclusion anyway.

97

Input: Aguard - address of a lock in memory;
L - variable to represent lock state;
Q - a shared queue;
Output: thread has logically released the self-arbitrating lock.
If any threads were waiting, another wins arbitration and owns L.
begin

acquire(Aguard);
if Q is empty then

L <-- "free";
else

Let Lieep <- Q.removeFirstO;
release(Lee,);
// Another thread owns L; L is not "freed" during the transaction.

release(Aguard);

Algorithm 11: Release a self-arbitrating lock primitive

46-
M execution migration

41 - 0 remote access
0 em-ra hybrid

36 - U self-arbitrating
CE

31
0

26 -
CU

21 21
0)A

16
C
0 S11

E~ 6 0 0

1 2 3 4 5 6 7 8 9 10

number of participating threads

Figure 5-11: Completion time with self-arbitrating lock vs. other locks

5.4 The Barrier Synchronization Primitive

Although the lock primitive is sufficient to compose a rich synchronization library

including message passing, semaphores, and other high-level primitives, the synchro-

98

Ca

a)

Ca
.

E
9!
0
E

15
14
13

11
10
9
8
7
6
5
4
3
2
1

execution migration
0 remote access
o em-ra hybrid
1 self-arbitrating

1 2 3 4 5 6 7 8 9 10

number of participating threads

Figure 5-12: Average bit movement per thread observed with self-arbitrating lock
vs. other locks

:6100% -

0

a 75% -
E

0

50% -

0

M execution migration
25% 0 remote access

0 em-ra hybrid
C self-arbitrating

- 0%

1 2 3 4 5 6 7 8 9 10

number of participating threads

Figure 5-13: Lock utilization observed with self-arbitrating lock vs. other locks

nization barrier offers insightful architecture-specific optimization. A barrier [40, 52]

is a synchronization tool used to orchestrate program "phases": the barrier ensures

99

that all participating threads perform work associated with the same phase, prevent-

ing threads from pulling ahead of the rest. The barrier's main routine is wait 0,

which blocks the thread until all other threads have cleared the barrier, as illustrated

in Figure 5-14.

The main challenge in implementing the barrier is its multicast mechanism: when

all but one thread have reached the barrier, and are now blocked, the last thread

executing wait 0 must communicate to the rest that the barrier is clear. While

this seems simple, ENC [13] (the on chip network of the EM2) makes numerous

design decisions to eliminate the need for broadcast-like messages. For this reason,

implementing a multicast on EM2 is relatively expensive: multiple individual messages

must be sent, each with a handshake, meaning multicast is serialized as a sequence

of round-trip handshakes. This behavior is enforced in the ABI to ensure memory

accesses are core consistent: memory stores made by a single core are observable as

occurring in their correct order by any other core.

We can break the ABI convention in a localized, controlled way to to implement

an efficient multicast: by deviating from a safe memory consistency model, we avoid

a sequence of blocking memory accesses, and instead issue a number of non-blocking

requests, then wait for the round-trip handshakes to complete in parallel. By ob-

serving that the order in which a multicast message is delivered to its recipients is

irrelevant, we can defer the handshake and avoid serializing messages comprising the

100

B=allocate barrier(4); Iterationl Iteration 2 Iteration 3 TIME

Thread 1: (work) (work)
4 threads perform:

while (. . .) Thread 2: (work) (ok
(work) Thread 3: (work) (work)

wait(B);
Thread 4: (work)(work)

broadcast

Figure 5-14: Synchronization barrier functionality

Input: Aguard - address of a lock in memory;
N - an integer number of threads participating in the barrier;
{Lt} - one local lock for each participating thread, initially "owned";
B - an integer initialized to N;
Output: routine returns only after all participating threads have called it.
acquire(Aguard);
if B > 1 then

B = B - 1;
release(Aguard);
acquire(Lt); //Sleep on local lock Lt

else

// wake all waiting threads
for tremote E { other participating threads } do

L Mem[Lt) t*-ra-noack 0; //Non-blocking messages

B = N ;
release(Aguard);

Algorithm 12: Efficiently synchronize multiple threads of execution

multicast [60]. The barrier Algorithm is now relatively simple, and is given by Algo-

rithm 12. Local locks are essential for the barrier to perform well, as busy waiting

on the Lt locks does not generate network traffic. This barrier implementation is

advantageous compared with a barrier on a directory-based architecture: only one

broadcast is sent when the barrier is cleared, as opposed to a broadcast to update

the barrier semaphore once per thread on a directory-based machine.

To evaluate the barrier, we benchmark a short loop and block on each itera-

tion. We vary the number of participating threads, and compare the efficient barrier

implemented above with a naive barrier (which uses a series of blocking messages

by repeatedly calling free (Lt) instead of a non-blocking multicast implemented by

st-ra-noack. The completion time is shown in Figure 5-15 relative to performance

of a single participating thread, and demonstrates the dramatic improvement in both

performance and network utilization brought about by an efficient multicast. To

further prove the concept of multicast messages, we evaluate a multicast with N

recipients for N E Z10 on an RTL implementation of a 110-core EM2 chip. The mul-

101

-e- no multicast messages -

3.5 - - optimized with multicast

3.0 -

2.75 -

c2.5 -

a) 2.25 -

2.9-

: 1.75 -

O 1.25 -

1.0 - -
I I

2 4 6 8 10

number of participating threads

Figure 5-15: Completion time with optimized vs. naive barrier

ticast scales as expected; completion times are plotted in Figure 5-16. Bit movement

is not significantly affected by the multicast implementation.

5.5 Conclusion

In this chapter, we use a bit movement metric introduced in related work for the EM2

project as an optimization guideline throughout the chapter to study and implement

highly optimized synchronization primitives for the execution migration platform.

Specifically, we defined a calling convention and used it to implement a simple library

primitive for mutual exclusion (a lock). We then demonstrated livelock behavior re-

sulting from naive use of remote access atomics for mutual exclusion, and analyze the

behavior of various atomic operators available on EM2 in the context of a simple lock.

After benchmarking the simple lock primitive and reasoning about its shortcomings

in abstract terms, we use the insights gained to create a hybrid EM-RA algorithm for

a mutual exclusion lock, and show that not only does it not livelock, but also performs

102

10 -e- no multicast messages
-A - optimized with multicast

8

CM 6

4a

0

D3 -

2 4 6 8

number of participating threads

Figure 5-16: Multicast time with optimized vs. naive implementation, evaluated
in EM2 RTL

and scales well, both in terms of wall time and network utilization (bit movement).

By further addressing the busy retry behavior of fine-grained locks, we describe a

self-arbitrating lock optimized for the EM2 execution model. The self-arbitrating

lock, albeit too expensive for fine-grained exclusion, exhibits excellent scaling and

performance for coarse-grained locks. Finally, we examine a barrier synchronization

primitive, observe that its performance is hindered by a broadcast sub-routine (ex-

actly the operation avoided by design at all levels of the EM2 architecture) and design

an efficient multicast technique by breaking the memory consistency provided by the

ABI in a localized, and controlled way. Throughout the chapter we discuss execution

migration, and partial context migration specifically, as an enabling technology for ef-

ficient thread communication and synchronization: threads are serialized onto a core

by migration, providing a degree of mutual exclusion at the network level, making

exclusion relatively inexpensive to implement in EM2 . We also definitively show that

partial context migration is more adept for mutual exclusion than pure remote access,

103

and discuss local locks for efficient thread sleep requiring no network bandwidth.

104

Chapter 6

Compiler Optimization for EM 2

The compiler problem in general consists of numerous sub-problems, many of which

are not unique to EM2 . Architectural variation exists among compiler targets, but

does not affect how high-level optimizations such as constant propagation are done.

Furthermore, a compiler capable of lowering generic software to a specific target

architecture is a monumental engineering effort, and is not generally well-suited for

an academic project. Realizing this, we made an effort not to tackle the grand project

of designing a compiler in its entirety. Instead, we rely on a well-established compiler

infrastructure (LLVM) for front-end translation, high-level optimization, and analysis.

In Chapters 2 to 4, we detailed the design of a custom compiler back-end to extend the

LLVM framework and allow a programmer to target the Execution Migration Machine

using C. Much of the effort discussed so far consisted of mapping execution to our

unorthodox stack architecture, the subject of Chapters 2 to 4, but we have not yet

discussed the high-level goal of compiling parallel workloads for the machine. While

the compiler is correct, it does not optimize for the multi-threaded nature of most

programs we expect to run. Although the ABI library touched upon in Chapter 5

provides many programmer interfaces for thread management, communication and

synchronization, it remains true that the compiler is unaware of, and fails to optimize

for key aspects of the machine, most notably execution migration, variable migration

context size, and limited guest context size.

In this chapter, we design several classes of compiler backend transformations

105

to improve performance and efficiency of compiled code on EM2 . Figure 6-1 shows

the role of EM2-specific optimization in the context of the entire compiler backend.

Before we begin the discussion of specific techniques, we formulate our optimization

goals, describe our parallel benchmarks, and discuss sources of possible inefficiency

and propose two areas of optimization to improve compiled programs: migration and

code size. Specifically, we analyze causes of migrations, and show that the majority of

observed core misses are not beneficial, and should be eliminated wherever possible.

We also discuss why code size reduction serves our optimization goals in multiple ways.

Applying insight gained, we design and discuss several compiler optimizations to

improve both migration efficiency and code size, ranging from simple transformations

using the commutative property of some operators to complex rewrite passes to move

many variable allocations out of memory onto the hardware stack. We also add a

last-level peephole optimization to apply localized, fine-grained transformations to

already compiled code. Finally, we evaluate several combinations of these passes

and show that we are able to significantly improve both completion time, and bit

movement for all benchmarks surveyed.

106

Library
2ABI

headers
Library

IR State Encoding EM 2

Front-End Translation Scheduling (assembly) Executable

C
Program Front-End

OFii o lptimization i

Figure 6-1.: High-level role of back-end optimization in the EM2 compiler

EM2 ABI
LibraryI

Library
headers

6.1 EM2 Compiler Optimization Goals

In order to inform any optimization effort, we must discuss the metric(s) by which

we gauge quality of resulting code. Performance in terms of wall clock time is an

obvious measure by which we may judge optimality, as is the bit movement metric

introduced in Section 5.2. Unfortunately, both metrics require a trace to measure,

meaning the program must be executed to evaluate either. Not only is program

evaluation impractically time-consuming in the context of a compiler, the results

are highly data-dependent (for example, factorial (1) evaluates much faster than

f actorial(100)) and therefore requires information not available statically at com-

pile time. We must formulate simpler optimization metrics as heuristics for measures

of actual performance. To do so, we investigate major areas of improvement by which

we can expect the compiler to affect program execution, and discuss our optimiza-

tion goals in low-level terms. Specifically, we investigate migration behavior, which

affects network bandwidth and overall program efficiency, and code size, which af-

fects performance of individual threads, instruction cache use, and run lengths of

migrations.

6.1.1 Migration Behavior

Migration plays a central role in program performance on the EM2 system. Remote

access and EM provide a shared memory abstraction, and all memory accesses use one

of either mechanisms. Even for single-threaded programs, not all memory accesses

are local if the program touches memory not native to its home core - a result of

careless data placement or a working set large enough to exceed the core's memory

space. Although execution migration potentially offers significant improvements in

network utilization, and performance, it must be used judiciously to do so, as it also

carries a significant overhead. Frivolous migration easily increases network congestion

and thread idle time, decreases core availability, and may result in ping pong eviction

patterns, all contributing to overhead in both performance and bit movement in major

ways.

107

An ideal compiler for the EM2 platform would be able to infer high-level program

structure from C and programmer input, and optimize migration behavior accord-

ingly. Unfortunately such work remains an open and challenging research problem,

so we must rely on a set of heuristics to inform program optimization where migra-

tion is concerned. Simply speaking, our goal is to improve the utility of migration in

the compiled program, which we restrict to increasing the utility of each migration

(whole-program optimization with high-level goals lies well outside the scope of this

thesis). We do not try to discover opportunities for additional execution migration

via data placement optimization [43] or parallelization [22], and instead modify the

migrations induced by the program's memory access as it is described by the pro-

grammer. In light of this, we seek to promote "good" migration (improves overall

performance or bit movement) by reducing "bad" migration (introduces excessive

overhead) by eliminating remote memory accesses wherever possible. To do this, we

look into the causes of execution migration, which are enumerated in Table 6.1.

The relative frequency of each type of migration is shown in Figure 6-2 for a small

set of non-optimized benchmarks. While some core misses may be beneficial to pro-

gram efficiency, many occur because the program accesses the software stack. For the

benchmarks surveyed, more than 70% of core misses were due to stack frame accesses

- implicit state stored in memory (these are shown on the figure as Native Core Miss

(implicit)). Conflict evictions are a result of other migration types, and can only

be addressed by decreasing contention system-wide by the rate of migration. The

other migrations, namely evictions due to underflow and overflow, which collectively

make up the vast majority of all observed evictions, are strictly overhead and only

decrease program efficiency. The compiler must eliminate these wherever possible. A

run length heuristic [51] captures this optimization goal well: for each migration, we

want to maximize the number of instructions executed on the guest core before a core

miss or an eviction. The compiler's metric for optimization is simple: we want to

reduce or eliminate potential for core misses (which occur at memory instructions),

underflows and overflows (rearranging instructions to increase run length).

108

Migration type native/guest description

core miss native, guest memory access to a location not local to the

current core

eviction guest another thread evicts the current thread due

to a core miss

underflow guest the thread self-evicts because it needs data

from the stack not available in the guest con-

text

overflow guest the thread self-evicts because the guest con-

text does not have enough free space on the

guest stack to execute an instruction

Table 6.1: EM2 migration types and corresponding causes

C Native Core Miss (implicit) N Conflict Eviction
EZNative Core Miss (explicit) 0 Underflow Eviction
EGuest Core Miss N Overflow Eviction

synthesis

ppsum
xvalidate

tscan 7

0% 20% 40% 60% 80% 100%

% of total migrations

Figure 6-2: Relative frequency of migration sub-types on EM2

6.1.2 Code Size

We previously discussed the issue of code size at length in Chapters 2 to 4. Excessive

code size affects program performance by increasing network congestion and instruc-

tion cache miss rate. More specifically, excessive instruction count increases variable

scheduling overhead and hardware stack access depth, and therefore decreases run

length of migrations due to stack overflows and underflows. By reducing instruction

count, the compiler would effectively both reduce total work to execute a program,

and improve the program's migration and network bandwidth utilization at the same

109

time. The heuristic for code size optimization is trivial: each instruction removed

from the compiled program improves performance and bit movement.

6.2 Parallel Workloads for Evaluating Optimiza-

tions

This chapter discusses the compiler as a tool to lower parallel programs onto the

EM2 architecture, and single-threaded benchmarks are not adequate to demonstrate

the behavior associated with parallel workloads: simple benchmarks have no inter-

thread communication, no synchronization, and no migration. Section 1.2.2 describes

the programs used to produce parallel workloads to evaluate compiler optimizations

proposed in this chapter.

6.3 Optimizations for Reduced Instruction Count

As stated previously, reducing instruction count improves both core and migration

efficiency, as well as bandwidth utilization in the system. We describe two optimiza-

tions for code size: constant replication and commutative operators to reduce

scheduling overhead. We briefly discuss a relaxed consistency model optimization,

but leave it for future work.

6.3.1 Commutative Operators

We discussed scheduling optimization in detail previously in Chapter 3. There are,

however, other techniques we can employ to further reduce overhead incurred due

to scheduling of variables onto the hardware stack in EM2 . One such technique is

the reversal of commutative operators, the rewrite rules are listed in Table 6.2, and

exemplified by a small DFG in Figure 6-3. The performance improvement is shown

in Figure 6-4: instruction count decreases an average of 8%. Similar magnitude of

improvement in stack access depth is also observed.

110

(stack grows to the left)

2 2
copy 2 2
1 12 2
add 3 2
swap 2 3

F

Figure 6-3: Example
optimization

(stack grows to the left)

2 2
2 2 copy

+ + 1 2 2 1
> < 3 2 +

Reverse the F <
comparison operator

of a DFG rewritten using the commutative operators

6.3.2 Constant Replication

As discussed in Section 2.2.6, each constant maps to a single expression that evalu-

ates to the value of the constant. Each use of a constant is treated as a variable use,

and is scheduled along with all other values on the stack, incurring scheduling over-

head. An obvious optimization would instead insert the constant expression wherever

it is needed, removing the constant variables from the scheduling problem entirely.

Figure 6-5 shows an example DFG before and after the constant replication op-

timization. Figure 6-6 shows code size measured for several benchmarks after this

optimization. As expected, the benefit of a simplified scheduling problem outweigh

the cost of additional instructions needed to create the constant value. Most con-

stants are 32-bits wide, and take 1.6 instructions to initialize. Without constant

111

synthesis
ppsum

xvalidate
tscan

I I I I I J I 1 17 I

50% 60% 70% 80% 90%

Relative code size with optimization

Figure 6-4: Instruction count after the commutative operators optimization

Source pattern Target pattern

add a b add b a
and a b and b a

or a b or b a
xor a b xor b a

mul a b mul b a
comp-eq compeq b a

com-ne com ne b a

comp.ugt com.ule b a
compuge com-ult b a

comp.ult com.uge b a

comp-ule com.ugt b a
comp-sgt com.sle b a

comp-sge com-slt b a

compslt com.-sge b a
comp.sle com-sgt b a

Table 6.2: Rewrite rules

(stack grows to the left)

2 2
copy 2 2
1 12 2
add 3 2
swap 23
> F

for the commutative operators optimization

(stack grows to the left)

2 2
2 1 1 2 121

2 + 3 add

- Replicate constants 2 3 2
foreachuse F <

(Less stack expansion)

Figure 6-5: Example of a DFG rewritten using the constant replication op-
timization

replication, at least one instruction is needed to copy the constant value for multi-

ple uses. Scheduling overhead eliminated by constant replication clearly exceeds

0.6 instructions per constant because the overall code size is reduced by this opti-

mization.

112

6.3.3 Relaxed Memory Consistency

Another potential optimization comes in form of a relaxed memory consistency model:

the compiler strictly maintains the ordering of all memory accesses for core consis-

tency, which severely limits its ability to rearrange expressions. By relaxing this re-

quirement, expressions can be ordered more freely, potentially allowing lower-overhead

linearizations of the DFGs induced by each basic block. We do not implement or eval-

uate this optimization, leaving it for future work.

6.4 Optimizations for Core Misses

Core misses occur as a result of memory instructions addressing memory not associ-

ated with the current core. Although some of these instructions are a direct result of

the programmer's data placement and access pattern, some correspond to variables

in the stack frame - implicit state mapped to memory by the compiler. In this sec-

tion, we discuss two optimizations: aggressive static promotion to remove these

stack frame variables from memory, and promote them to variables in the hardware

stack, and memory access clustering, which reduces core misses by grouping memory

accesses.

113

synthesis

ppsum
xvalidate

tscan

50% 60% 70% 80% 90%

Relative code size with optimization

Figure 6-6: Instruction count after the constant replication optimization

6.4.1 Memory Access Clustering

To implement this optimization, we extend the cost function first discussed in Sec-

tion 3.5.1 to favor DAG linearizations that place memory access instructions closely

together. The idea behind this optimization is that accesses made within a basic

block are likely to be to the same data structure, or closely related data structures,

both likely affined to the same core. The memory access instructions are therefore

likely to send requests to the same core, meaning a single migration may be able

to cover all accesses without evictions, thereby reducing core misses. The scheme

is not very effective due to EM2 's strong memory consistency, severely limiting the

potential for memory access clustering. We do not present benchmark results for this

optimizations, as they do not clearly illustrate the optimization as advantageous.

6.4.2 Static Promotion

A much more aggressive optimization is exemplified by static promotion. By treat-

ing all statically allocated memory (stack variables in C) as hardware stack variables

not backed by memory. Doing so decreases the rate of memory accesses substantially,

as shown in Figure 6-7, but increased scheduling overhead due to additional variables.

Interestingly, this optimization works very well with partial context migration, as the

hardware stack acts as a natural cache, sending values required for the instructions

to be run at the guest core along with the context. Without static promotion, all

accesses to these values would require memory loads, and would result in a core miss.

Figure 6-8 shows the instruction overhead incurred by adding stack frame variables

to the variables scheduled in the hardware stack. Figure 6-9 shows the reduction in

migration rate, and specifically the core miss rate achieved by this optimization.

6.5 Underflow and Overflow Optimization

Underflow and overflow misses are unavoidable in EM2 because the guest context

does not back its hardware stack with memory. In other words, while the native core

114

synthesis
ppsum

xvalidate
tscan

25% 35% 45% 55% 65% 75% 85% 95%

Relative memory access rate with optimization

Figure 6-7: Memory access rate after the static promotion optimization

synthesis
ppsum-

xvalidate
tscan

100% 120% 140%

Relative code size with optimization

Figure 6-8: Code size after the static promotion optimization

Core miss rate E Migration rate

synthesis
ppsum

xvalidate

tscan

30% 40% 50'% 60% 70% 80% 90%

Migration rate with optimization

Figure 6-9: Migration rate after the static promotion optimization

is able to swap lower portions of the hardware stack in and out of memory, the guest

context is limited to 16 entries, and is unable to store any more without "overflow-

115

ing", causing an eviction back to the thread's home core, where the stack can be

refilled from memory. Similarly, after migrating to a guest context, a thread may

use all of the stack values made available with the migration and "underflow", again

forcing an eviction back to the home core where subsequent stack entries are cached.

These evictions are strictly overhead: they occur because resources implicitly needed

to execute additional instructions on the guest context are unavailable (perhaps due

to an inefficient instruction sequence). Even though we cannot completely eliminate

these misses, we try to reduce them as much as possible, as they make up a significant

portion of all migrations, and directly limit guest run length. In this section, we pro-

pose three optimizations to improve underflow and overflow behavior: context size

estimation for partial context migrations, expression reordering f or improved

run length, and a library primitive to optimize bulk data transfers using migration

and the hardware stack.

6.5.1 Context Size Estimation

Partial context migration can greatly improve run length: if the migration executes

a reduction-like sequence, where the stack shrinks as values are reduced into a result,

a larger migration generally corresponds to a longer run length, so we want to take

more. Conversely, if we are reading or producing a lot of data at the guest core, we

want to take less to avoid overflow, and return with a full stack.

Because the critical run length that makes a migration advantageous is rather

short, and because run length is influenced by program phase and other dynamic

variables, the EM2 architecture provides a hardware migration predictor to select

between migration and remote access based on a reinforcement learning mechanism.

Although explicit selection of EM or RA is allowed, and we use this abundantly

in the ABI library described in Chapter 5, we allow the predictor to learn whether

to RA or to EM for compiled code. One thing we can do however is calculate the

partial context size the predictor should take. Because each instruction has static pro-

ducer and consumer behavior (as previously explored in Section 3.1), we can make

intelligent decisions about context size. The context size estimation pass does

116

this by enumerating likely migration sites (memory accesses), and tracking maximum

stack expansion and contraction after each potential migration. We try to maximize

run length, choosing to migrate a well-sized context to maximize a utility function:

we choose the largest N such that to execute N instructions remotely, we have to

carry fewer than kN values. k may be tuned to improve results given relevant parallel

benchmarks. We assume that all migrations are from home to guest for this optimiza-

tion to simplify our model. To evaluate this optimization, we assume the predictor

does not learn migration sizes, but instead reads them from metadata embedded in

the instruction stream. We run the benchmarks on an ISA simulator and show the

optimization effect on relative rates for overflow eviction, underflow eviction, and rel-

ative average run length in Figure 6-10. We set k = 0.5, although future work may

benefit from tuning the coefficient on a per-application basis.

117

U Relative underflow rate 0 Relative run length
E _ Relative overflow rate

E130%
C120% -
CD
-0110% -

1100% -
N
E 90% -

0- 80% -
: 70% -
-60% -

CZ

CD
C

tscan xvalidate ppsum synthesis

Figure 6-10: Relative rate of eviction due to under and overflow, and relative

average run length after context size estimation

6.5.2 Expression Reordering for Improved Run Length

The expression reordering f or improved run length optimization extends the

above scheme by aggressively re-ordering basic block expressions. We modify the

cost function used to select a DFG linearization in Section 3.5.1 to favor expression

sequences with maximal expected run length after each memory access (likely migra-

tion sites). Although the optimization is applied at the basic block level, a similar

approach can be used for trace optimization in the context of a JIT compiler [56]

to produce efficient expression sequences optimized for loops and other hot paths of

execution. Even in its current form, the optimization departs from efficient stack

scheduling early in the compiler backend, instead favoring run length as the primary

optimization goal. Because a sub-optimal stack schedule results in higher scheduling

overhead, there is a trade-off between extended run length and compact code offered

by this optimization. This optimization affects scheduling overhead in a significant

way, so we defer its evaluation until Section 6.7, when we consider it in combination

with other passes.

6.5.3 Bulk Data Transfer

A common pattern in multi-threaded workloads is bulk data transfer. EM2 is designed

to allow efficient read-write sharing via fine-grained execution migration and remote

access, but read-only sharing introduces core contention and incurs a significant per-

formance penalty. A local copy of read-only data is therefore useful for removing core

communication for read-only data sets. Algorithm 13 shows a naive approach to bulk

memory transfer: each iteration performs a remote load and a local store, meaning

the predictor learns to use remote access, therefore performing N remote access loads

to transfer N words of data, with 2N network messages of 2 flits each.

This operation can be implemented very efficiently as a library primitive by explic-

itly using partial context migration to transfer data on the hardware stack, instead

118

Input: Aremote - address of an array in remote memory
A 10, 1 - address of an array in local memory.
N - size of the array to be copied.
Result: Mem[Aoai + i <- Mem[Aremote + i]Vi E ZN-
begin

for i E ZN do
Let t = Mem[Aremote + i];

Mem[Ar ±+ i =t;

Algorithm 13: Copy memory from remote memory via a naive compiled loop

of remote access. By unrolling the loop and performing several loads prior to storing

the loaded values, we can use migration to transfer several values simultaneously. We

can further optimize this algorithm by factoring out address computation, as shown

in Algorithm 14 (simplified). As a result, only N migrations are used, each requiring

approximately 12 flits. Using an RTL implementation of the EM2 , we benchmark

the bulk memory copy algorithm relative to the naive loop for several values of N,

and show both completion time and bit movement improvements in Figure 6-11 and

Figure 6-12, respectively. Although this is not strictly a compiler optimization pass,

it may be possible for an aggressive compiler to discover the memcpy pattern in pro-

grams [47] in future work.

6.6 Last-Level Peephole Optimization

Most transformations described throughout this thesis rely only on local knowledge,

and therefore may require cleanup to remove no-op instruction sequences. Typically, a

compiler employs a last-level peephole optimization to remove redundant instructions

and other inefficient sequences. These changes may be as simple as pruning jumps of

unit length to somewhat complex transformations performing algebraic optimizations

of arithmetic sequences. In the EM2 compiler, we use a peephole optimization to

perform a small set of localized optimizations:

119

Input: Aremote - address of an array in remote memory

Alo,, - address of an array in local memory.
N - size of the array to be copied.
Result: Mem[Aiomi + i] +- Mem[Aremote + i]Vi E ZN-
begin

Let M = N;
for i E (15 * ZM) do

// migrate to remote guest context on first remote load Let

to = Mem[Aremote + i];
Let ti = Mem[Aremote + i + 1];
Let t 2 = Mem[Aremote + i + 2];
Let t 3 = Mem[Aremote + i + 3];

Let t 14 = Mem[Aremote + i + 14];
// migrate back to native core due to core miss on first store store
Mem[Aremote + i] = to;
Mem[Aremote + i + 1] = t1;
Mem[Aremote + i + 2] = t2;
Mem[Aremote + i + 3] = t3 ;

L Mem[Aremote + i + 14] = t14;

Algorithm 14: Copy memory from remote memory via an efficient bulk transfer

-e- Naive compiled loop
- ,- Optimized bulk transfer

cP

0 10 20 30 40 50

Data words transferred (N)

Figure 6-11: Relative completion time of an optimized bulk data transfer vs.
naive compiled loop

120

LO

C)

0D

P

0

a)
E
:;M

C

0

0

60

a

-e- Naive compiled loop -
! o --- Optimized bulk transfer - '

00

I I I I I I I

0 10 20 30 40 50 60

Data words transferred (N)

Figure 6-12: Relative bit movement of an optimized bulk data transfer vs. a
naive compiled loop

* Offset memory addressing: A constant add producing an address for a memory

access is folded into the memory instruction's offset immediate field, eliminating

an addition instruction and a push instruction used to initialize the constant.

* Trivial control flow transfers: many basic blocks terminate with unconditional

jumps transferring flow control to another basic block in the same function.

Because the basic blocks are emitted by the back-end in reverse topological

order, many of these jumps simply advance the PC by one. These instructions

are removed.

* Deep stack accesses are remapped to the auxiliary stack, where possible.

* After expressions are flattened into a sequence of instructions, the peephole

pass attempts to reorder instructions to remove stack manipulation.

The peephole pass does not process an entire program as a unit - doing so would

be prohibitively expensive, and would not be useful because peephole optimizations

can only be applied at the basic block level, where no control flow ambiguity exists. In

121

00
0

V
+O

Na) CD I ..

S -e- tscan
C -A- xvalidate

-+- ppsum
C -_-- synthesis

2 4 6 8 10 12

Peephole window size

Figure 6-13: Effect of peephole window size on code size of result

fact, after the expression sequences of IR basic blocks are flattened into instructions,

the number of basic blocks may increase because some expressions use branches and

jumps internally to implement complex operators. After expressions are flattened,

the average number of instructions per basic block is approximately 13 across the

benchmarks evaluated in this thesis, meaning a peephole window in excess of 13

instructions is underutilized for many basic blocks. Moreover, increasing windows

size yields diminishing returns with respect to code size, as illustrated in Figure 6-13.

We fix the peephole window size at 6 instructions, as it yields good results with low

compile-time overhead.

Any changes to the program made by the peephole pass may invalidate addresses

and offsets used by the program (for example, if the program uses a jump 9 instruction

to advance to a particular basic block, and the previous block is shortened from 8 to

5 instructions, the control flow transfer must be updated to jump 6). For this reason,

we enumerate all control flow transfers and their targets before applying the peephole

optimization. The optimization may only be applied between transfers (over basic

blocks), and the addresses of all labels (targets) must be re-evaluated afterwards.

122

6.7 Collective Evaluation of Optimizations

To evaluate the optimization passes, we must look at them as a unit, evaluating the

cumulative effect of all optimizations on the program output. We use the optimized

compiler output as a baseline to evaluate the effect of various subsets of optimizations

described in this chapter. Some optimizations are clearly beneficial, and do not

significantly interfere with other optimizations. Specifically, constant replication,

commutative operators, and the peephole pass add little overhead, but produce

superior instruction streams. We consider all three optimizations a unit, and do not

consider the efficiency of subsets of these passes. Static promotion and expression

reordering f or improved run length, on the other hand are in conflict with other

optimizations, meaning we must explore the trade-off offered by omitting or including

these optimizations in the compiler flow. In this section, we benchmark the four

parallel programs surveyed in this thesis, and show their code size (instruction count

in the trace) in Figure 6-14, and migration rate in Figure 6-15, both normalized to the

unoptimized baseline. To better illustrate the effect of the optimizations, we also show

the relative rate of eviction due to underflow and overflow in Figure 6-16. Finally,

we analyze the relative bit movement and benchmark completion time in Figure 6-17

and Figure 6-18, respectively.

Static promotion performs very well, reducing overall migration rates substan-

tially by eliminating many core misses despite an increase in eviction rates due to

additional variables scheduled onto the hardware stack. Expression reordering

for improved run length, on the other hand has limited effect (likely due to con-

straints imposed by a conservative memory consistency model), and interferes with

other optimizations, especially static promotion (likely because it schedules a large

number of additional variables onto the hardware stack; sub-optimal schedules result

in deep accesses, negating the goal of the Expression reordering for improved

run length optimization). A relaxed memory consistency model would likely make

many of the optimizations described in this chapter more effective.

123

Ca
E
0130%

120%-
-0110%-
.N100% - - - - - -

E 90%
- 80%

S 70%
.1 60%
a>
Ca simple (constant, commutative, peephole

0 simple + Static promotion
0 simple + Expression reordering
a All optimizations

tscan xvalidate ppsum synthesis

Figure 6-14: Effect of optimizations on benchmark code size, relative to unopti-

mized code

6.8 Summary

In this chapter we addressed a major limitation of the EM2 compiler, namely its lack

of awareness of key characteristics of the execution migration platform. Most work-

loads we expect to run on the EM2 platform are highly parallel, and utilize migration

for communication, so a compiler designed to optimize single-thread performance on

a stack core is insufficient to produce high quality code for EM2 . To address this

shortcoming, we designed and evaluated several compiler backend optimizations in

an attempt to improve migration behavior and code size of compiled code. Although

many opportunities for optimization remain unexplored, the passes described in this

chapter significantly reduce frivolous migration by eliminating many opportunities for

core misses, stack overflows, and stack underflows, resulting in lower overall eviction

rate, and therefore better utilization of the EM2 platform. Specifically, we describe

three beneficial optimizations: expression rewriting to take advantage of commutativ-

ity of several EM2 instructions, constant replication to trivialize scheduling of constant

124

5110%
CU

E100% -

90% -

-o 80% -
N

70% -

- 60%
0

O M simple (constant, commutative, peephole
&_ simple + Static promotion

C> * simple + Expression reordering
CCO 0 All optimizations

tscan xvalidate ppsum synthesis

Figure 6-15: Effect of optimizations on benchmark migration rate, relative to
unoptimized code

values and reducing total scheduling overhead and last-level peephole optimization

to remove dead code and better utilize the auxiliary stack. We also describe two ag-

gressive optimizations: removing statically allocated variables from memory in favor

of the hardware stack (which breaks some unsafe code, but dramatically improves

core miss rate), and reordering expressions to decrease the rate of evictions due to

overflow and underflow. These are not always safe, but may improve performance

and efficiency of compiled programs significantly.

125

-5110% -
CU,

E100% -

D 90% -

80% -

70% -

60% -
0

0
CU

M

simple (constant, commutative, peephol
simple + Static promotion
simple + Expression reordering
All optimizations

synthesistscan

and overflow evic-Figure 6-16: Effect of optimizations on benchmark underflow
tion rate, relative to unoptimized code

U

U
EJ

126

ppsum

Ca
E
Z130%
>120%

-0110%-
.a) %----- - - - - - - - - - - - --- - - - - - - - - - -
E 90%
0C 80%
5 70%
-0 60%/
aD

U simple (constant, commutative, peephole
0 simple + Static promotion
M simple + Expression reordering
0 All optimizations

tscan xvalidate ppsum synthesis

Figure 6-17: Effect of optimizations on overall benchmark bit movement, relative

to unoptimized code

xvalidate

E
.130%
0>120%
-0110%(D

.N100%
E 90%
0 80%
5 70%
2 60%

Q)

CO

- -- - - - - - - - - - - - - - - - -

E simple (constant, commutative, peephole
E0 simple + Static promotion
o simple + Expression reordering
* All optimizations

xvalidatetscan

Figure 6-18: Effect of optimizations on overall
tive to unoptimized code

benchmark completion time, rela-

127

synthesisppsum

- ---- -

128

Chapter 7

Conclusion

In this thesis, we discussed a productive programming and execution model for EM2

and designed a compiler backend for LLVM to target the Execution Migration Ma-

chine. We also designed a library of optimized high-level primitives for thread com-

munication and synchronization, as well as a set of compiler optimization passes to

best reflect and utilize the underlying hardware by increasing migration run length

and code density while reducing frivolous migration. We investigated costs associated

with compilation to a stack-based architecture with hardware support for fine-grained

migration in an effort to better understand ways in which a typical compiler flow may

altered to yield better results when targeting EM2 . We use the insight gained to im-

plement a series of algorithms to efficiently schedule program state onto the hardware

stack, and produce several compiler optimizations to further improve compiler output.

7.1 Quality of Compiled Code

Before concluding the thesis, we would like to discuss the overall quality of code

produced by the EM2 compiler. Unfortunately, since no other compiler is available,

we are unable to mount a credible comparative study and instead are forced to dis-

cuss the performance of the compiler in absolute terms. To do so, we compare the

performance (in terms of completion time and bit movement) of several benchmarks

compiled using the EM2 compiler flow described in this work with a manual best-

129

effort implementation of the same benchmarks. Of course the comparison is not quite

"apples-to-apples" because the result depends largely on the quality of manual im-

plementation: the compiler works at a higher level of abstraction, and is bound by

a calling convention and other constraints, while the manual implementation may

restructure computation in ways not available to a compiler because a programmer

can restructure non-essential computation freely. Although a highly subjective ap-

proach, this comparison helps demonstrate the compiler is adequate. We compare

the compiled and manual implementations of three benchmarks introduced in Sec-

tion 1.2.2: ppsum, xvalidate, and tscan. Table scan relies on efficient migration to

perform queries without excessive eviction. The cross-validation benchmark relies on

a minimally-sized context and very long run length to migrate to several guests before

returning to the native core. The parallel prefix sum benchmark relies on efficient

bulk data transfer.

Completion time and bit movement measurements are shown in Figure 7-1 and

Figure 7-2, respectively. Code size for compiled benchmarks is 150%-200% larger than

the manually optimized assembly (executable size is significantly larger due to linked

libraries, which may not be used by the benchmark). The parallel prefix sum bench-

mark compiles well because it derives most of its performance from an efficient bulk

data transfer, usable via an optimized library primitive (described in Section 6.5.3.

Compiled table scan also performs relatively well, as its overall performance does not

dramatically deteriorate from a slight increase in code size and reduction in migra-

tion efficiency incurred during compilation. The cross-validation benchmark on the

other hand performs poorly due to its reliance on a coarse-grained migration pat-

tern: eviction has a strongly negative effect on this benchmark's performance. To

better illustrate coarse-grain migration orchestrated by the manual implementation

of xvalidate, we show the relative migration rates for compiled and manually op-

timized versions of this benchmark in Figure 7-3. The figure clearly shows that the

manual implementation is able to avoid eviction and allow multiple guest contexts

to be visited before returning the thread back to its home core. This is possible

because the manual implementation explicitly orchestrates migrations to completely

130

avoid unnecessary evictions and carries minimal data needed to process an entire data

partition in each context.

One obvious shortcoming of the compiler is its inability to take advantage of

coarse-grained migration orchestration due to lack of precise control over context size

and run length. Doing so is possible (albeit difficult) in low-level assembly. Despite

the somewhat high overhead of compiled code relative to full-custom assembly, the

C programming language offers a very productive abstraction, allowing the program-

mer to quickly write large, complex programs, optimizing critical code primitives

separately, where necessary.

131

ppsum

xvalidlate

tscan

100% 140% 180% 220% 260%

Relative completion time

Figure 7-1: Performance of compiled parallel benchmarks relative to hand-
optimized assembly

ppsum--
xvalidate

tscan

100% 140% 180% 220% 260%

Relative bit movement

Figure 7-2: Bit movement in compiled parallel benchmarks relative to hand-
optimized assembly

E] Native Core Miss (implicit) N Conflict Eviction
P Native Core Miss (explicit) 0 Underflow Eviction
U Guest Core Miss E Overflow Eviction

asm
compiled

I I I I I

0% 20% 40% 60% 80% 100%

% of total migrations

Figure 7-3: Migration behavior in compiled and hand-optimized xvalidate
benchmark

7.2 Future work

Although the EM2 compiler performs relatively well, much remains to be investi-

gated before a programmer is able to write complex programs efficiently targeting

the Execution Migration machine at a high level only.

7.2.1 Relaxed Memory Consistency Model

The EM2 hardware supports a relaxed memory consistency model, but the compiler

implements memory accesses in a very conservative way, ensuring full core consistency

(making sure that any core sees the memory accesses made by any other core in the

correct order). This conservative requirement limits the compiler's ability to reorder

memory accesses, thereby limiting the ability of several compiler optimizations to

improve compiler output. Many architectures expose an execution model with a

much more relaxed memory consistency model, requiring the programmer to explicitly

insert memory barriers to restrict memory access reordering for correctness. Exposing

a relaxed memory model in the context of EM2 may yield significantly more efficient

code by allowing the compiler more freedom to reduce frivolous migration.

132

7.2.2 Memory Anti-Aliasing

Pointer analysis is notoriously difficult with C: the language treats a very large chunk

of disorganized, type-free state (the memory) as a first-class citizen of the program-

ming model. While this makes sense from the point of view of the underlying hard-

ware, it makes compiler optimization very difficult wherever memory is accessed: data

dependencies may be passed via memory in complex ways, meaning the compiler is

seldom able to eliminate unnecessary memory operations, much less to reorder them.

C code may be analyzed to some extent, determining which pointers are necessar-

ily independent. A compiler may be able to use this information to better optimize

program behavior. A more straightforward approach would be to compile from a

higher-level language, one without a notion of a typeless memory, and therefore not

requiring the solution to a complex inference problem to maintain correctness through

optimization.

7.2.3 Profiler-Informed Optimization

Variable scheduling across basic blocks in the EM 2 compiler is driven by a simple

heuristic (discussed in Section 3.6). By allowing the program to be evaluated, even

with a randomized data set, we may be able to use the control flow statistics to

better optimize the most frequently taken paths through the program. Doing so

would dramatically reduce variable scheduling overhead due to control flow ambiguity

(because the control flow ambiguity would be reduced by the profiler). The profile may

also help disambiguate the memory access pattern, allowing significant optimizations

by way of memory operation reordering.

7.2.4 Trace Optimization

Taking the idea of profile-based optimization further, we discuss the idea of just-in-

time (JIT) compilation. By deferring last-level compilation and optimization until

specific sections of the program are executed, the compiler would be able to iteratively

optimize the program using dynamic knowledge such as the memory access pattern

133

and control flow paths in the context of a specific data set the program runs on.

Entire traces may be optimized using basic block scheduling techniques, resulting in

lean, efficient code.

7.2.5 Inference of High-Level Operations

Many operators cannot be expressed in C unambiguously. For example, bulk memory

transfer discussed in Section 6.5.3 can be implemented many different ways iteratively

alone, but has a specific highly optimal implementation in the EM2 platform. If the

compiler is able to infer high-level operations such as movement of large blocks of data,

synchronization, or use of specific data structures, it would be able to implement these

high-level primitives in the most architecture-efficient manner available. Even if the

programmer is aware of the eccentricities of the underlying machine, many low-level

optimizations may not be expressible above the ABI, requiring the use of a library

for efficient high-level operators.

7.2.6 Improved Data Placement

In the EM2 machine, data placement has far-reaching implications on system behav-

ior in the context of a multi-threaded program. Consider a workload where threads

actively read and write a large data structure. The programmer may be able to dis-

tribute the structure across memory associated with all participating cores, spreading

out the communication pattern. The programmer may also allocate the entire struc-

ture contiguously in memory associated with just one core, causing all accesses to be

serialized at that core, resulting in high network congestion and a high eviction rate.

Ideally, the compiler would be able to analyze a given data placement, either statically

or using dynamic information from a profiler or a JIT engine, and detect performance

bottlenecks, allowing the programmer to specify a better data placement. Taking the

concept of intelligent data placement further, the compiler may be to statically place

allocations to specific cores. For example, all data not shared with other threads

is most appropriately allocated on the thread's native core to prevent unnecessary

134

communication between cores. In a more advanced optimization, the compiler may

cluster related data structures on adjacent cores (or the same core), or partition large

data structures across multiple cores for better load balancing.

7.2.7 Dynamic data placement

Another approach to solving the data placement problem allows data to be moved in

order to iteratively improve the data placement based on the observed access pattern.

By employing a core address table (CAT), specific address ranges may be assigned

to a new core, and this assignment may be updated dynamically to effectively move

data, affecting migration behavior. By treating data structures as nodes with with

weighted connections induced by the program's access pattern. We can treat this as

a system of springs, and iteratively alter the data affinity to reduce total energy -

produce a better data placement.

7.3 Summary

In this chapter, we conclude the discussion of the EM2 execution model and compiler

by comparing the compiler output to manual, hand-optimized implementations of

equivalent functionality. We show that the compiler produces adequate machine code

in absolute terms, and discuss its limitations. Finally, we discuss future directions in

which this work may be improved.

135

136

Bibliography

[1] Mibench version 1.0. http://www.eecs.umich.edu/mibench/, August 2013.
Last retrieved 2013-08-14.

[2] Writing an llvm backend. http: //lvm. org/docs/WritingAnLLVMBackend .html,
August 2013. Last retrieved 2013-08-14.

[3] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compil-
ers: Principles, Techniques, and Tools (2nd Edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2006.

[4] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers Principles, Tech-
niques, and Tools. Addison Wesley, 1986.

[5] T.E. Anderson. The performance of spin lock alternatives for shared-memory
multiprocessors. Parallel and Distributed Systems, IEEE Transactions on,
1(1):6-16, 1990.

[6] Chris Bailey. Inter-Boundary Scheduling of Stack Operands: A preliminary
Study. 2000.

[7] Chris Bailey, Huibin Shi, and Mark Shannon. Towards scalable parallelism with
stack machines.

[8] Gianfranco Bilardi and Keshav Pingali. Algorithms for computing the static
single assignment form. J. ACM, 50(3):375-425, May 2003.

[9] Jeffery A. Brown and Dean M. Tullsen. The shared-thread multiprocessor. In
Proceedings of the 22nd annual international conference on Supercomputing, ICS
'08, pages 73-82, New York, NY, USA, 2008. ACM.

[10] John Burkardt. C benchmarks. http: //people.sc. f su.edu/jburkardt/c-src/c-src.html,
August 2013. Last retrieved 2013-08-14.

[11] David R. Butenhof. Programming with POSIX threads. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1997.

[12] Koushik Chakraborty, Philip M. Wells, and Gurindar S. Sohi. Computation
spreading: employing hardware migration to specialize cmp cores on-the-fly.
SIGOPS Oper. Syst. Rev., 40(5):283-292, October 2006.

137

[13] Myong Hyon Cho, Keun Sup Shim, Mieszko Lis, Omer Khan, and Srinivas De-

vadas. Deadlock-free fine-grained thread migration. In Proceedings of the Fifth

ACM/IEEE International Symposium on Networks-on-Chip, NOCS '11, pages

33-40, New York, NY, USA, 2011. ACM.

[14] Intel Corporation. Intel-64 and ia-32 architectures software developer's manual.

[15] Intel Corporation, Carole DuLong, Mickey Gutman, and Mike Julier. Complete

Guide to Mmx Technology. McGraw-Hill Professional, 1997.

[16] David Dice, Virendra J. Marathe, and Nir Shavit. Lock cohorting: a general

technique for designing numa locks. In Proceedings of the 17th ACM SIGPLAN

symposium on Principles and Practice of Parallel Programming, PPoPP '12,
pages 247-256, New York, NY, USA, 2012. ACM.

[17] Dietmar Ebner, Florian Brandner, Bernhard Scholz, Andreas Krall, Peter Wie-
dermann, and Albrecht Kadlec. Generalized instruction selection using ssa-

graphs. SIGPLAN Not., 43(7):31-40, June 2008.

[18] Alexei A. Efros and Thomas K. Leung. Texture synthesis by non-parametric

sampling. In Proceedings of the International Conference on Computer Vision-

Volume 2 - Volume 2, ICCV '99, pages 1033-, Washington, DC, USA, 1999.
IEEE Computer Society.

[19] Christopher W. Fraser and David R. Hanson. A Retargetable C Compiler: Design

and Implementation. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1995.

[20] James R. Goodman, Mary K. Vernon, and Philip J. Woest. Efficient synchro-

nization primitives for large-scale cache-coherent multiprocessors. SIGARCH

Comput. Archit. News, 17(2):64-75, April 1989.

[21] Gary Granunke and Shreekant Thakkar. Synchronization algorithms for shared-
memory multiprocessors. Computer, 23(6):60-69, June 1990.

[22] Mary H. Hall, Saman P. Amarasinghe, Brian R. Murphy, Shih-Wei Liao, and
Monica S. Lam. Detecting coarse-grain parallelism using an interprocedural
parallelizing compiler. In Proceedings of the 1995 ACM/IEEE conference on

Supercomputing (CDROM), Supercomputing '95, New York, NY, USA, 1995.
ACM.

[23] John Hauser. Softfloat. http://www.jhauser.us/arithmetic/SoftFloat.html,
August 2013. Last retrieved 2013-08-14.

[24] Douglas M. Hawkins, Subhash C. Basak, and Denise Mills. Assessing model fit
by cross-validation. Journal of Chemical Information and Computer Sciences,
43(2):579-586, 2003.

138

[25] John L. Hennessy and David A. Patterson. Computer Architecture, Fourth Edi-
tion: A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2006.

[26] Damien Imbs and Michel Raynal. Trying to unify the 11/sc synchronization
primitive and the notion of a timed register. In Proceedings of the 2012 IEEE 26th
International Conference on Advanced Information Networking and Applications,
AINA '12, pages 326-330, Washington, DC, USA, 2012. IEEE Computer Society.

[27] Hai Jiang and V. Chaudhary. Compile/run-time support for thread migration.
In Parallel and Distributed Processing Symposium., Proceedings International,
IPDPS 2002, Abstracts and CD-ROM, pages 9 pp-, 2002.

[28] Gerry Kane and Joe Heinrich. MIPS RISC architectures. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1992.

[29] Brian W. Kernighan. The C Programming Language. Prentice Hall Professional
Technical Reference, 2nd edition, 1988.

[30] Philip Koopman. Usenet nuggets.

[31] Philip Koopman. Stack Computers: The New Wave. Computers and their
applications. Ellis Horwood Limited, 1989.

[32] Philip Koopman. A preliminary exploration of optimized stack code generation.
Journal of Forth Applications and Research, 6, 1992.

[33] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the international sympo-
sium on Code generation and optimization: feedback-directed and runtime opti-
mization, CGO '04, pages 75-, Washington, DC, USA, 2004. IEEE Computer
Society.

[34] Chris Lattner and Vikram Adve. The llvm compiler framework and infrastruc-
ture tutorial. In Proceedings of the 17th international conference on Languages
and Compilers for High Performance Computing, LCPC'04, pages 15-16, Berlin,
Heidelberg, 2005. Springer-Verlag.

[35] Mieszko Lis, Keun Sup Shim, Myong Hyon Cho, Christopher W. Fletcher, Michel
Kinsy, Ilia Lebedev, Omer Khan, and Srinivas Devadas. Brief announcement:
distributed shared memory based on computation migration. In Proceedings of
the 23rd A CM symposium on Parallelism in algorithms and architectures, SPAA
'11, pages 253-256, New York, NY, USA, 2011. ACM.

[36] Mieszko Lis, Keun Sup Shim, Myong Hyon Cho, Ilia Lebedev, and Srinivas
Devadas. The execution migration machine. Technical report, Massachusetts
Institute of Technology, August 2013.

139

[37] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mis-
takes: a comprehensive study on real world concurrency bug characteristics.

SIGPLAN Not., 43(3):329-339, March 2008.

[38] Martin Maierhofer and M.Anton Ertl. Local stack allocation. In Kai Koskimies,
editor, Compiler Construction, volume 1383 of Lecture Notes in Computer Sci-
ence, pages 189-203. Springer Berlin Heidelberg, 1998.

[39] Abid M. Malik, Tyrel Russell, Michael Chase, and Peter Beek. Learning heuris-
tics for basic block instruction scheduling. Journal of Heuristics, 14(6):549-569,
December 2008.

[40] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable syn-
chronization on shared-memory multiprocessors. ACM Trans. Comput. Syst.,
9(1):21-65, February 1991.

[41] P. Montuschi and L. Ciminiera. Algorithm and architectures for radix-4 divi-
sion with over-redundant digit set and simple digit selection hardware. In Sig-
nals, Systems and Computers, 1991. 1991 Conference Record of the Twenty-Fifth
Asilomar Conference on, pages 418-422 vol.1, 1991.

[42] The University of Illinois. Ncsa open source license (ncsa).
http: //opensource. org/licenses/UoI-NCSA . php, August 2013. Last
retrieved 2013-08-14.

[43] Sriram Padmanabhan. Data placement in shared-nothing parallel database sys-
tems. PhD thesis, Ann Arbor, MI, USA, 1992. UMI Order No. GAX93-08416.

[44] David A. Patterson and John L. Hennessy. Computer Organization and De-
sign: The Hardware/Software Interface. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 3rd edition, 2007.

[45] Stephen Pelc and Chris Bailey. Ubiquitous forth objects. EuroForth, 2004.

[46] Krishna K. Rangan, Gu-Yeon Wei, and David Brooks. Thread motion: fine-
grained power management for multi-core systems. SIGARCH Comput. Archit.
News, 37(3):302-313, June 2009.

[47] Tiark Rompf, Arvind K. Sujeeth, Nada Amin, Kevin J. Brown, Vojin Jovanovic,
HyoukJoong Lee, Manohar Jonnalagedda, Kunle Olukotun, and Martin Odersky.
Optimizing data structures in high-level programs: new directions for extensible
compilers based on staging. SIGPLAN Not., 48(1):497-510, January 2013.

[48] David Seal. ARM Architecture Reference Manual. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2000.

[49] Mark Shannon. A c compiler for stack machines. Master's thesis, University of
York, United Kingdom, 2006.

140

[50] Mark Shannon and Chris Bailey. Global stack allocation (register allocation for
stack machines). In Procedings of EuroForth 2006, 2006.

[51] Keun Sup Shim, Mieszko Lis, Omer Khan, and Srinivas Devadas. Thread mi-
gration prediction for distributed shared caches. Computer Architecture Letters,
Sep 2012.

[52] Jun Shirako, David M. Peixotto, Vivek Sarkar, and William N. Scherer. Phasers:
a unified deadlock-free construct for collective and point-to-point synchroniza-
tion. In Proceedings of the 22nd annual international conference on Supercom-
puting, ICS '08, pages 277-288, New York, NY, USA, 2008. ACM.

[53] Mark Smotherman, Sanjay Krishnamurthy, P. S. Aravind, and David Hunnicutt.
Efficient dag construction and heuristic calculation for instruction scheduling. In
Proceedings of the 24th annual international symposium on Microarchitecture,
MICRO 24, pages 93-102, New York, NY, USA, 1991. ACM.

[54] Inc. SPARC International. The SPARC architecture manual: version 8. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1992.

[55] Richard M. Stallman and GCC DeveloperCommunity. Using The Gnu Compiler
Collection: A Gnu Manual For Gcc Version 4.3.3. CreateSpace, Paramount,
CA, 2009.

[56] Toshio Suganuma, Toshiaki Yasue, Motohiro Kawahito, Hideaki Komatsu, and
Toshio Nakatani. A dynamic optimization framework for a java just-in-time
compiler. SIGPLAN Not., 36(11):180-195, October 2001.

[57] Kuo-Chung Tai. Definitions and detection of deadlock, livelock, and starvation
in concurrent programs. In Proceedings of the 1994 International Conference on
Parallel Processing - Volume 02, ICPP '94, pages 69-72, Washington, DC, USA,
1994. IEEE Computer Society.

[58] Guido van Rossum and Fred L. Drake. Introduction to PYTHON 2.6. CreateS-
pace, Paramount, CA, 2009.

[59] Li-Yi Wei. Texture synthesis by fixed neighborhood searching. PhD thesis, Stan-
ford, CA, USA, 2002. AA13038169.

[60] Jenq-Shyan Yang and Chung-Ta King. Designing tree-based barrier synchroniza-
tion on 2d mesh networks. IEEE Trans. Parallel Distrib. Syst., 9(6):526-534,
June 1998.

141

