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Abstract

Multi-material 3D printing allows objects to be composed of complex, heterogeneous
arrangements of materials. It is often more natural to define a functional goal than
to define the material composition of an object. Translating these functional require-
ments to fabricable 3D prints is still an open research problem. Recently, several
specific instances of this problem have been explored (e.g., appearance or elastic
deformation), but they exist as isolated, monolithic algorithms. In this research, I
propose an abstraction mechanism that simplifies the design, development, implemen-
tation, and reuse of these algorithms. The solution relies on two new data structures:
a reducer tree that efficiently parameterizes the space of material assignments and a
tuner network that describes the optimization process used to compute material ar-
rangement. I provide an application programming interface for specifying the desired
object and for defining parameters for the reducer tree and tuner network. I illustrate
the utility of my new framework by implementing several fabrication algorithms as
well as demonstrating the manufactured results.

Thesis Supervisor: Wojciech Matusik
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

3D printing receives a lot of attention as it aims to democratize fabrication. The ever

expanding range of printing materials allows for fabrication of complex objects with

spatially varying appearance, optical characteristics, and mechanical properties. One

of the most important unsolved problems in this area is how to compute an object's

material composition from a functional or behavioral description. I will call this

process specification to fabrication translation (Spec2Fab). The goal of this work is

to provide a convenient abstraction for specifying such translators. This is necessary

to move past the current direct specification model of 3D printing.

Today, 3D printing of an object requires a material be directly specified for each

voxel inside the object volume. This approach is fraught with difficulties. First, 3D

printable models become specific to a single printer type, i.e., the models are built

from materials provided by a given printer. Consider the inconvenience that would

result from word processing documents being compatible with specific 2D printers.

Second, working directly with printing materials rather than material properties is

extremely challenging for users. Imagine the difficulty in finding the right combination

of printing materials that would provide a specific color, stiffness, or refractive index.

My work is motivated by the recent research efforts in the computer graphics com-

munity to create specific instances of the translation process, for example, subsurface

scattering [9, 11] or deformation properties [5]. However, each of these instances is

a custom, monolithic solution which is difficult to extend, combine, or modify. The
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main insight is that all these process instances share a similar structure. First, they

rely on the ability to accurately simulate the physical properties of an object given its

geometry and material assignment. They use this simulation within an optimization

framework to search the space of all possible material assignments in order to find

the one that best reproduces the desired properties. Due to the combinatorial nature

of the search space the naive optimization approach is not tractable. For example,

when the printing volume has N voxels and each of these voxels can be assigned to

one of M base materials, the search space has NM dimensions. To overcome this

problem, the search space is reduced to a lower-dimensional space using a reduction

model. The goal of the reduction step is to aggressively shrink the search space in

a domain-specific manner such that it still contains good approximations to the op-

timal solution. This search space reduction combined with the right choice of the

optimization algorithm delivers a computationally tractable approximation.

The reduction-optimization structure suggests that it is possible to provide a more

general abstraction mechanism for translating 3D models to printer and material-

specific representations. This key observation leads to my thesis statement:

Spec2Fab processes share a similar structure and often use a small set of common

components.

I take the first step in building a unified model for Spec2Fab translation and

provide a small set of exemplar components as building blocks. Towards this end, I

propose two novel data structures designed to aid the fabrication process:

e The reducer tree is a tree-based data structure that allows us to parameterize

the space of material assignments.

* The tuner network is a data structure for specifying the optimization process.

My solution also provides an API for specifying the desired object, setting up the

simulation, and defining parameters for the reducer tree and tuner network. In gen-

eral, my framework simplifies the construction of new computational fabrication algo-

rithms. More specifically, different components of the process can be easily replaced

and other components easily reused. Various optimization strategies can also be
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explored with lower implementation burden. In order to show these advantages, I

illustrate how existing computational design processes fit into this framework and

how they can be combined. I demonstrate the results of these algorithms on a variety

of different examples fabricated using 3D printers.
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Chapter 2

Related Work

The new data structures draw ideas from previous work in rendering and optimiza-

tion. The reducer tree is inspired by Cook's shade trees [7] and their modern imple-

mentation in current rendering systems (e.g., Maya, RenderMan, etc.). Using these

approaches, complex effects can be achieved by combining a set of basic shading

blocks. The reducer tree also uses a tree data structure that combines a set of prim-

itives to compute a material assignment for each point inside of an object volume

and describes a spatial-partition of the object volume. While there are many space-

partitioning data structures (BSPs, Quad-trees, KD-trees, etc.), they are difficult to

specify by hand and they are typically tied to the object geometry. My reducer tree

is intuitive to construct but sufficiently general for representing material distribu-

tions. In addition, it is specified in an object-independent manner - the same reducer

tree can be reused for processing different objects. My second, new data structure

which is responsible for optimizing material assignment is the tuner network. It is in-

spired by probabilistic graphical models [13] that have been popular for representing

variable dependence in multi-variate optimization problems. These problems can be

parallelized [18] according to the associated graph structure.

This work is also inspired by the many instances of specification to fabrication

translation pipelines that have been proposed recently. These pipelines span a wide

range of functional goals (e.g., mechanical, optical, appearance). They drive the sim-

ulation, optimization, and reductions chosen for each method. One example of such
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processes is recent work on optimizing material composition to achieve prescribed

deformation behavior. Bickel and colleagues [5] have designed a system for manu-

facturing multi-layer composites with a given elastic behavior. Skouras et al. [24]

provide design and construction of balloons with a prescribed shape while inflated.

Furthermore, material optimization has been employed to create mechanical clones

of human faces [6].

Optimizing and manufacturing objects with desired appearance and optical char-

acteristics has also been explored. Weyrich et al. [27] compute surface micro-geometry

that yields a desired BRDF. Similar approaches have been proposed [10, 22] to pro-

duce refractive surfaces that form user-defined caustics. These methods have been

extended to optically decrypt hidden images [23]. Complementary work examines

fabricating surfaces with spatially varying reflectance [19, 20] and diffuse shading [1].

Another set of approaches uses optimization to compute shadow casting surfaces and

volumes [2, 3, 21] that reproduce a given set of input images. Finally, optimization-

based approaches have also been employed to control the subsurface scattering of 3D

printed multi-layered models [9, 11]. I seek to exploit the common form of the above

works in order to generalize them.

There have been studies of material assignment representations in other fields, pri-

marily in mechanical engineering. Here I only list a few representative works. Kumar

et al. [17] describe material composition by dividing a volume into sub-volumes. They

perform material interpolation using local, sub-volume coordinate systems. Jackson

[12] explores several mesh data structures for spatial sub-division. Kou and Tan [15]

give a comprehensive review of spatial partition schemes and material interpolation

functions. Kou et al. [16] use a hierarchy of procedures to define material composi-

tion with a small number of design parameters. They run particle swarm optimization

[14] on the design parameters to minimize thermal stress of an object. Their work fo-

cused on smoothly varying materials. There is no discussion of high-frequency discrete

material assignment for capturing details. They are limited to global optimization

algorithms such as Particle Swarm Optimization because the dependency structure

between the design variables is not modeled. In computer graphics, procedural de-
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scriptions for material assignment have also been studied. Cutler et al. [8] describe

a scripting language for specifying layered solid models and describing material com-

position. Vidimee et al. [26] provide a fabrication language and a programmable

pipeline for specifying material composition directly and precisely throughout a vol-

ume. In contrast, Spec2Fab can be used to design algorithms that only require object

properties rather than a precise description of material assignment.

In this research I focus on constructing a common model for encompassing the

entire Spec2Fab problem. I am motivated by the similarities present in state-of-the-

art algorithms. Table 2.1 shows the coordinate reduction methods as well as the

optimization schemes used in all these prior approaches. A key observation is that

previous works share a common methodology and a common set reduced coordinate

components. These components are then combined with (often off-the-shelf) opti-

mization techniques to form new material assignment algorithms. This suggests that

one could find a small set of components that can be tied together to synthesize ad-

vanced methods. I attempt to identify these components as well as a suitable model

for their interaction.
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Goal

Optical

Optical

Optical

Optical

Optical

Optical

Optical

Optical

Optical

Optical

(Caustics)

(Caustics)

(Relief)

(Reflectance)

(Refraction)

(Shadows)

(Shadows)

(Shadows)

(Subsurface)

(Subsurface)

Table 2.1: The goal type, reduction type and optimization

tional fabrication approaches.

used by prior computa-

'Simultaneous perturbation stochastic approximation (SPSA).
2Simulated annealing (SA).
3Augmented Lagrangian method (ALM).
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Reduced Coordinates

B-Spline Surface

Piecewise Constant Tiles

Height Field

Piecewise Constant Tiles

Piecewise Constant Tiles

Voxel Grid

Layered Materials

Height Field

Layered Materials

Layered Materials

Layered Materials

Height Field

Triangle Mesh

Optimization

SPSA1

SA 2

Gradient Descent

SA

SA

Custom Discrete

Quadratic Program

Custom/SA

Conjugate Gradient

Branch and Bound

Branch and Bound

Newton-Raphson

ALM 3

Mechanical (force)

Mechanical (shape)

Mechanical (shape)



Chapter 3

Design Goals

The design of my general translation framework is guided by the following principles:

" Modularity: Spec2Fab translators are complicated both algorithmically and

from a software engineering point of view. To combat this, any proposed frame-

work must break the problem into a manageable number of small, reusable

building blocks.

" Extensibility: Developers must be able to add their own building blocks to

the system. This allows the system to grow in conjunction with the capabilities

of newer 3D printers.

" Device Independence: Spec2Fab translators should be device independent.

They should be easily adaptable to different types of 3D printers.

" Input Geometry Independence: Spec2Fab translators should be geometry

independent. For example, a process for applying a texture to a 3D printed

object should work for any object.

I separate the Spec2Fab process into two phases, the process configuration phase

and the process use phase. The process configuration phase is typically done once by

a skilled developer who constructs a Spec2Fab translator. The process use phase is

typically performed multiple times by an end-user who is only required to provide an
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object specification (e.g., object geometry and deformation properties) and a target

device.

The process configuration phase produces a Spec2Fab translator which will assign

a desired volumetric material distribution to a user supplied input geometry given a

user specified goal. A developer can describe this phase using two new data structures,

the reducer tree and tuner network. The reducer tree parameterizes a volumetric ma-

terial assignment using a small set of geometry and material nodes while the tuner

network is used to describe an optimization process as a connected set of tuner ob-

jects. Both nodes and tuners can be easily recombined and reused thus making my

framework highly modular. Furthermore, nodes and tuners define abstract interfaces

and thus developers can easily add new types of each. This makes my framework

extensible.

Reducers and tuners are chosen to be independent of printer capabilities. In-

stead, a user can account for printer type by altering the available materials that the

translator may assign to the input geometry. This is important since it grants the

reducer-tuner model device independence. Finally, the geometry nodes of the reducer

tree are designed to function irrespective of input shape. Since the Spec2Fab trans-

lators represented by my data structures use a composition of these node types, they

are geometry independent.

In the following chapters I will describe the reducer tree and the tuner network,

their constituent components and the mechanisms by which they interact.
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Chapter 4

Data Structures

In this chapter, I describe the structure of the reducer tree as well as all types of

reducer nodes that are implemented in my framework. I also show the structure of

individual tuners and how they can be arranged into the tuner network.

4.1 The Reducer Tree

Estimating material assignments at output device resolution is computationally in-

tractable. Therefore, material assignment has to be computed using a reduced repre-

sentation. A developer specifies this representation using a reducer tree. This struc-

ture is conceptually similar to those used in programmable shading systems (such

as Cook's shade trees [7] or Maya Shader Networks). These systems are primarily

concerned with assigning known materials and textures to an object's surface whereas

I am seeking an optimal volumetric assignment from a defined set of materials. In

order to accomplish this task, a developer builds a tree-based data structure which

contains the entire object volume as its root node. I define two classes of reducer

nodes: geometry nodes and material nodes.

Geometry Nodes: A geometry node takes a volumetric region as input and pro-

duces a partition of this region into smaller sub-regions. To demonstrate the flexibility

of the reducer tree, I define a small yet powerful set of partitioning nodes which are
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described as follows (Figure 4-1):

" Plane Node - partitions the space into two half-spaces,

" Column Node - takes as input the number of columns and accordingly partitions

the space,

" Voxel Node - takes as input voxel size and uniformly partitions the space,

" B-spline Node - partitions a volume into two regions cut by a B-spline,

" Stratum Node - takes a single positive distance parameter as an input and

partitions the volume into two regions divided by the iso-distance surface.

Plane Column Voxel B-spline Stratum

Figure 4-1: 2D representations of the geometry nodes used in reducer trees.

Material Nodes: The leaf nodes of the reducer tree are the material parameteri-

zation nodes. These contain a material assignment function A (x) that maps spatial

coordinates to materials. Material nodes can assign a void material to regions of the

volume. Hence, surface displacements and material assignments can be treated in a

unified fashion. While material node can be extended to implement arbitrary material

assignment functions (such as functionally graded materials and lattice structures),

all the following results require only a single type of material node, layered node,

which assigns k material layers of varying thickness to a geometry partition. As a

special case, a constant material for a region can be implemented as a layered node

with a single layer.

Geometry nodes and material nodes can be connected into a tree structure that

describes a material assignment function throughout the input geometry. The essen-

tial property of this data structure is that it naturally adapts to the input geometry.

This key feature allows it to be reused for different shapes. Figure 4-2 shows two
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examples of reducer trees and the resulting geometric distributions of materials. The

tree on the left can be used to produce objects with caustics effects. The input shape

is first divided into columns. Next, each column is sliced by a plane. By assigning

materials to lower parts of the columns, the microfacet surface is created. On the

right, I show a tree for producing objects with subsurface scattering properties. The

input shape is first divided using a stratum node. Then, the outer layer is sliced into

columns, which create a texture once materials are assigned. The inner part of the

object obtains a material with given subsurface scattering properties.

Since the tree describes a nested set of partitions, it can efficiently perform material

queries by passing a query point through the tree until it arrives at a parameterization

node. Note that the reducer tree does not inherently enforce material continuity

between disjoint regions of the object; however, for material assignment problems,

this is neither required nor desired.

Facet caustics

Geometry node

Figure 4-2: Two examples of reducer trees.

tree for subsurface scattering properties.

Subsurface scattering/texture

Material node

Left: A tree for caustics effect. Right: a

19



4.2 Tuners and Tuning the Reducer Tree

I define tuners as an abstract interface between a reducer node and an optimization

algorithm. A reducer node has parameters that control its space partitioning and ma-

terial composition, e.g., stratum node has a parameter which determines its thickness,

column node has parameters that control the width of columns. A tuner is respon-

sible for tuning these parameters to achieve a specified goal. A tuner is comprised

of an optimization scheme, an error metric, a simulator and a goal (Figure 4-3). In

order to create an optimal material assignment, tuner nodes must be attached to

the reducer tree. The developer links each tuner to a reducer node in the reducer

tree. Each tuner then traverses the reducer subtree (rooted at this reducer node) and

constructs a parameter list by querying each visited reducer node. The developer can

label parameters as fixed or free. Tuner nodes contain specific optimization routines

(e.g., a quadratic program solver). The tuner node then uses this routine to optimize

its associated free parameters. During execution, additional information (e.g., pa-

rameters, errors, etc.) from neighboring Tuner Nodes can be obtained via the tuner

network (Section 4.3). Tuner execution can be scheduled (again by the programmer)

allowing both serial and parallel processing.

Meial

Reducer Node simulator

Optimizer Metric

Error

Figure 4-3: A diagram of the tuner workflow. Arrows indicate flow and type of

information passed between the individual tuner components.

Figure 4-4 shows a simple example in which two tuners are attached to sibling

nodes in a reducer tree. The first tuner is responsible for layered and void material

nodes while the second is responsible for several layered material nodes.
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Tuner-reducer node connections

Figure 4-4: Two tuners attached to a reducer tree. Each tuner is responsible for

tuning the nodes in its attached subtree (denoted by shapes with similarly colored

outlines).

4.3 Tuner Network

For many fabrication problems, tuners should not act in isolation. For instance, an

optimal material assignment at a given point depends on the material assignment

in the neighborhood. Tuning the free parameters without taking into account this

dependency usually yields suboptimal results. Therefore, I allow the tuners to share

information according to a user-specified graph structure. This allows my framework

to interface with a wide range of existing graph-based optimization and inference

algorithms. For example, Figure 4-5 shows one of the tuner networks.

Tuner-tuner node connections

T w

Connetion

Figure 4-5: One example of tuner network that is used in experiments.
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In this network, each node is connected to its four neighbors. In the following

chapters, tuners enclosed in dashed boxes are connected in this form. Tuner networks

do not always exhibit this regular connectivity. For instance, tuners can be completely

unconnected (Figure 4-4) or be organized into groups which feature intra- but not

inter-group connections.
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Chapter 5

Process Configuration

In this section I show each step of process configuration. At the same time I describe

my implementation of the reducer tree and tuner network data structures.

5.1 Defining the Reducer Tree

A reducer tree can be constructed expediently using existing geometry and material

node types. Reducer trees are not restricted to use only existing node types. New

node types can be added by extending the ReducerNode class (see Figure 5-1). In

particular, implementing a new geometry node type requires providing the function

getOutputIndex. This function takes, as input, a 3D position and returns the id

of its child (Geometry or Material) that contains this 3D point. This function also

computes a local coordinate for this child node. Performing computations in local

coordinates allows us to abstract away the geometry of a given object. Implementing

a new MaterialNode type requires specifying the getMaterial function which takes

a 3D point and returns the material at this point in the local geometry coordinate

system. Both types of nodes have an evaluate function which is responsible for

updating their internal states. This function is used by the tuner network to modify

the internal state of the nodes. As an example, we show a reducer tree for performing

texture mapping (see Figure 4-2). We also provide the corresponding pseudo-code

(see Algorithm 1).
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ReducerNode

int getMaterial(vec3 x)
SearchSpace getSearchSpace()

void evaluate(State s)

MaterialNode

int getMaterial(vec3 x)
void evaluate(State s)

Subclass

GeometryNode

int getOutputindex(vec3 x)
void evaluate(State s)

Figure 5-1: Abstract interface for Node and its two subclasses.

1. Create a root node R from inputMesh

2. Subdivide R into outer layer 0 and inner volume V (

Stratum Node)

3. Subdivide 0 into set of columns C (Column Node)

4. For each column c in C

5. Subdivide c into two layers (Layer Node)

6. End

Algorithm 1: Constructing a reducer tree for texturing

5.2 Defining a Tuner

Recall that a tuner consists of four components: a simulation, an error metric, an

optimizer and a goal (Figure 4-3). Certain combinations of goal, metric and sim-

ulator are not compatible (i.e., a deformation simulator is not compatible with an

error metric that compares images). Our API checks and prevents such incompatible

combinations of components. The optimization algorithm can request the error value

for a given state using a callback function getError 0 which is defined by the tuner.

Additional callback functions can be defined by the developer depending on the needs

of the algorithm. For example, the branch and bound algorithm requires a custom

function to compute error bounds for a given state.
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5.3 Binding Tuners

Tuners are assigned to nodes in the reducer tree using the setNode function. Once

assigned, a tuner can optimize the parameters of its associated subtree. Reducer

nodes provide a getSearchSpace function which returns all free variables in the node

subtree. In order to make tuners as flexible as possible we provide a Parameter class.

Parameters can be either discrete or continuous, they can have associated bounds,

and they can be marked as free or fixed.

5.4 Establishing the Tuner Network

The tuner network is an undirected graph that describes connections between tuners.

Tuner nodes store a list of their neighbors. Only neighboring tuners are allowed to

exchange information. In our current implementation, this is accomplished using a

shared memory array. As an example, we show how to construct and initialize a tuner

network for a simple optimization scheme - a Simulated Annealing algorithm [25] (see

Algorithm 2). The tuner network also requires a schedule that specifies in what order

individual tuners should be executed. This schedule is specified by the developer.

Once the tuner network is constructed, the process configuration phase is complete.

We obtain a compiled executable that computes desired material assignment from an

input specification.
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Algorithm 2: Connecting and executing the tuner network

5.5 Process Use

The compiled program, which executes the tuner network, takes five types of argu-

ments: the input geometry, the goal, the simulation configuration, a set of materials

and the target 3D printer specification. After the tuner network is executed, the

parameters of the reducer nodes in the reducer tree are set. It is then straightforward

to compute the material assignment at arbitrary resolution. Since, a typical multi-

material 3D printer requires a volumetric model with per voxel material assignment,

we can simply iterate over all voxels in the volume. We obtain the material assign-

ment by evaluating (getMaterial) of the reducer tree root at the center of each voxel

location. This representation can be easily converted to a printer specific format for

output. For the Objet500 Connex printer used in this paper we extract material

isosurfaces which are submitted to the printer as STL files.
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1. for each Tuner Ti attached to a plane

2. for each Tuner Tj adjacent to Ti

3. add Tj to Ti's list of neighbors

4. end

5. end

6. iterate N times

7. for each Tuner Ti

8. set temperature for Ti's optimizer

9. run Ti

10. end



Chapter 6

Experiments

In order to evaluate capabilities of our system, I have implemented a number of

existing translation processes. Furthermore, the ease with which different algorithm

components can be combined enables the creation of two new translation processes.

The first combination is an algorithm that can produce objects with desired refractive

properties and an associated texture. The second algorithm applies a desired texture

to an object with prescribed deformation behavior. All of these processes, both from

prior work and new ones, should easily fit into our framework. I printed the objects

using a Stratasys Object500 Connex multi-material printer. The following paragraphs

provide a detailed description of how the individual algorithms can be designed with

my system.

6.1 Spatially-varying Albedo

I have designed a Spec2Fab translator that allows 3D printing of textured models

(Figure 6-1). The reducer trees and the tuner networks for producing these results

are presented in Figure 6-2. Being able to apply precisely specified spatially-varying

albedo values to printed models is a crucial capability. However, no standard pro-

cesses have been designed for this task so far. The input to the texturing algorithm is

a shape and its desired albedo texture. Since the texture is only affected by materials

close to the surface, I use a stratum node to divide the input shape into a thin shell
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Goal Specification Printed result Goal Specification Printed result

Figure 6-1: The reducer-tuner model enables creating objects of arbitrary shapes with

embedded textures.

and an inner volume. I then divide the outer layer into columns. The set of print-

able colors is expanded by stacking translucent materials using the LayeredMaterial

Node. The number of layers is fixed to the number of print materials. The reduced pa-

rameters are the thickness values of each material layer. For each column, the tuner's

optimizer looks up the proper stacking that produces the closest albedo value. Due

to printer resolution, the range of albedo values that can be achieved is quantized. I

therefore implement an error diffusion algorithm by connecting neighboring tuners.

In this simple algorithm, the simulation is a table lookup using measured albedo value

corresponding to different base materials.

28



Geometry node
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S Tuner

J Tuner network

Figure 6-2: Reducer tree for texture.

6.2 Heterogeneous Subsurface Scattering

I have replicated the subsurface scattering process of Hasan et al. [11] using a tree

shown in Figure 6-3. A 3D printed chessboard is shown in Figure 6-4. The input

to this algorithm is a 3D mesh along with subsurface-scattering profiles defined at

a set of surface points. We use the same reducer tree as in the texture example

thereby simplifying the process configuration phase. Since the reducer tree adapts to

the input geometry, I can apply the same marble material to arbitrary meshes such

as the dome shown in Figure 6-5. The only difference is that I allow each column

to have four layers of varying thickness and material. I use a branch and bound

optimization algorithm which has been modified to handle continuous parameters by

allowing discrete increments. I implement a bound estimate callback function specific

to this problem. Each column is optimized independently using the algorithm. The

simulation computes a scattering profile for a given stacking and the error metric

compares the simulated and goal profiles using squared error.
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Figure 6-3: Reducer tree for heterogeneous subsurface scattering effect.
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Figure 6-4: A marble chessboard with prescribed subsurface scattering properties

produced by Hasan et al. [11]. The insets show the samples under thin line illumi-

nation, and the graph shows the convergence of tuners for 10 out of 100 scattering

profiles used in the example. The error is measured by square distance between two

profiles, each containing 400 coefficients.
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Figure 6-5: A marble dome produced by the subsurface scattering reducer tree.
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6.3 Goal-based Caustics

I have configured two different processes for computing goal-based caustics. While

they define exactly the same goal, they have very different reducer trees and tuner

networks. The first process is based on the work of Papas et al. [22]. It computes a

set of micro-lenses which produce the desired caustic image as shown in Figure 6-6.

The image is pre-processed into a set of Gaussian distributions. Each distribution is

matched with a micro-lens. The optimization applies simulated annealing to permute

the location of these micro-lenses in order to construct a smooth surface. The micro-

lenses are represented using plane nodes. The complete reducer tree is shown in

Figure 6-7. In the tuner network, each tuner is connected to its four neighbors.

During the execution of an individual tuner, the optimization algorithm makes a

randomized decision about whether or not to swap its micro-lens with one of its

neighbors based on smoothness of the surface. The tuners are executed many times

until a user-specified convergence criterion is met.

The second process is based on the work of Finckh et al. [10] (Figure 6-8). I use a

B-spline node to represent a smooth surface (Figure 6-9). This is in contrast to the

potentially discontinuous surface in the method above. The reduced parameters are

the height of each spline control point. I implement a simple caustics simulator for

height fields. The simulated image is compared to the goal image using mean squared

error.
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Microfact ErrOr
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Figure 6-6: 3D printed lens arrays that produce a caustic image of Einstein. The

algorithm is proposed by Papas et al. [22]. Below we show convergence plots for the

microfacet optimizations. The portrait is available from the United States Library of

Congress's Prints and Photographs division, now in the public domain.

C) Geometry node

Material node

* Tuner

Tuner network

Figure 6-7: Reducer tree for facet caustics.
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0.25.
0
60.15.

M 0.05.

0

Smooth surface error
- - - - - - - - - - - - - -

- - - - - - - - - - - - - -

Iterations 10000

Figure 6-8: A smooth surface that produces a caustic image of Einstein. The algo-

rithm is proposed by Finckh et al. [10]. Below we show convergence plots for the

smooth surface optimization.

0
Geometry node

Material node

Tuner

Figure 6-9: Reducer tree for smooth caustics.
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6.4 Elastic Behavior

In the spirit of Bickel et al. [4], I have implemented an algorithm to compute mate-

rial distribution based on a desired force-displacement response. The input to this

algorithm is a mesh, a simulation configuration, and a desired shape. Simulation

configuration includes vertex constraints and forces applied to the mesh. For this

example, I use a co-rotational finite element method (FEM) simulation with linearly

elastic materials to estimate the objects deformation. For the reducer tree (Figure 6-

10, I use a voxel partition to divide the object into a low-resolution grid. I assign

a single material to each grid cell. The FEM simulator queries the reducer tree for

material assignments at arbitrary spatial locations. I use the same branch and bound

algorithm as in our subsurface-scattering process but with a different bound compu-

tation callback function. I use the mean squared distance between the simulated and

the desired shapes as the error metric. I have designed a simple experiment to vali-

date this process in which I set the goal of our optimization to be a given deformed

state (Figure 6-11).

Geometry node

Material node

* Tuner

Figure 6-10: Reducer tree for elastic behavior.
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Figure 6-11: A 3D printed book with prescribed deformation behavior under load.

The plot shows the error (in meters) as a function of iteration number of our branch

and bound based tuner. The blue line shows the smallest error seen so far while the

red line the tuner's progress exploring material subtrees [4].

6.5 Combining Deformable Object and Spatially-

varying Albedo

The first of my new translation processes combines spatially-varying albedo and elas-

tic deformation properties (Figure 6-12). This is a very useful combination since when

modeling objects we would like to specify both their appearance and "feel". In this

process, the input shape is divided into a thin shell and an inner volume (Figure 6-

13). I optimize for the deformation behavior and the texture independently due to

the limitations of our current FEM simulator. As the outer shell is very thin, it has

negligible influence on overall object deformation.
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Figure 6-12: A miniature of Earth with prescribed deformation behavior.
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Figure 6-13: Reducer tree for combining texture and elastic behavior.
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6.6 Combining Caustics and Spatially-varying Albedo

My second new combined translation process incorporates both smooth caustics and

texture mapping (Figure 6-14). More specifically, I compute a transparent slab with

a texture image that, when illuminated, casts a prescribed caustic image. The input

slab is split into two pieces using a plane node as shown in Figure 6-15. The top piece

is tuned to produce an input image. The material in the top piece is then fixed. The

bottom piece is then tuned to produce a caustics image.

Figure 6-14: A textured smooth surface producing a designed caustics image under

proper illumination.

Geometry node

Maial node

Tuner

Tuner network

Fiur 6- Re e .. f cmb- - J

Figure 6-15: Reducer tree for combining texture and smooth caustics.
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Chapter 7

Discussion

Through my series of experiments, The reducer tree and tuner network have allowed

me to reuse a large number of software components. In the extreme case, I arrive

at my subsurface scattering algorithm by trivially adapting the same reducer tree for

texture mapping objects. The power of component reuse is further elucidated by the

presence of column nodes in most examples and by the reuse of optimization schemes

(such as branch and bound) in multiple algorithms. The reducer tree and tuner

network make these similarities easy to observe and exploit. The only component

whose reusability was not demonstrated in this proposal is simulation. In this work,

I have aimed to fabricate objects with a wide range of physical properties and this

necessitates the use of a wide range of simulation algorithms. Finally, once a whole

process is configured, it is independent of input geometry and goal parameters. For

example, I have run the spatially-varying albedo process with different geometries

and input textures.

The reducer-tuner model is ideally suited for multi-material printing capable of

producing objects with a wide range of different properties. In order to showcase these

strengths, I have fabricated my examples for an Objet500 Connex - a phase change

inkjet printer that uses photopolymers with a wide range of optical and mechanical

properties. Even though only two materials can be used and mixed within a single

object, my framework has been proven to be very useful. As the number of materials

that can be printed simultaneously will grow, I expect the methodology presented
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here to increase in utility. For other types of 3D printing technologies, Spec2Fab

framework has a reduced use. In the case of 3D printing using a single, rigid material

(e.g., fused filament fabrication or Stereolithography) the framework can be used to

tune geometry of objects. For plaster-based 3D printers that produce full-color 3D

prints, Spec2Fab framework can be employed to compute proper texturing of objects.
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Chapter 8

Conclusion

In this research I have taken the first step towards solving an open problem in com-

putational fabrication - creating a general translation process that transforms user-

defined model specifications into printer and material-specific representations. My

process relies on two data structures to make this general translation process expres-

sive and computationally tractable: a reducer tree and a tuner network. I have shown

how existing instances of this translation can be expressed and combined within my

system. I believe that my API and its reference implementation will simplify and

encourage development of new translation processes.

My system offers many exciting opportunities for future work. First, it would be

extremely useful to implement many additional simulators in order to allow computing

a variety of other properties, e.g., structural soundness, stability, material cost, and

printing time. These simulators could be employed to expand the range of possible

user-defined specifications. Similarly, only relatively simple error metrics have been

proposed within the tuning process. The development of more sophisticated and,

in particular, perceptually-driven material metrics remains a relatively unexplored

research area. Finally, it would be very beneficial to couple my API with a visual

interface to further simplify the task of translator construction. It is not obvious

what the best visual interface for specifying functional or physical properties of these

objects is and more research in this area is necessary.
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