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Abstract
Lexical ambiguity, the ambiguity arising from a string with multiple meanings, is pervasive in lan-
guage of all domains. Word sense disambiguation (WSD) and word sense induction (WSI) are
the tasks of resolving this ambiguity. Applications in the clinical and biomedical domain focus on
the potential disambiguation has for information extraction. Most approaches to the problem are
unsupervised or semi-supervised because of the high cost of obtaining enough annotated data for
supervised learning. In this thesis we compare the application of a semi-supervised general domain
state of the art WSI method to clinical text to the best known knowledge-based unsupervised meth-
ods in the clinical domain. We also explore making improvements to the general domain method,
which is based on topic modeling, by adding features that incorporate syntax and information from
knowledge bases, and investigate ways to mitigate the need for annotated data.
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Chapter 1

Introduction and Background

Lexical ambiguity, the ambiguity arising from a string with multiple meanings, is

pervasive in language of all domains. Word sense disambiguation (WSD) is the task

of resolving this ambiguity by assigning a string to one of its predefined meanings.

The closely related task of word sense induction (WSI) seeks to induce the meanings

directly from data via clustering instead of using a given list. The resolution of

such ambiguity is essential to true language understanding. In the general domain,

it has been shown to improve the performance of such applications as statistical

machine translation (Chan et al., 2007; Carpuat and Wu, 2007), and cross-language

information retrieval and question answering (Resnik, 2006). In the clinical domain,

WSD has a wealth of information extraction applications. Humans are usually able

to easily distinguish different usages because of the context of surrounding words.

Approaches to automatically disambiguating words therefore typically also use such

a context to make decisions.

The largest barrier to accurate WSD methods is the cost of annotating data with

the correct meanings of its instances of ambiguous words. Annotation of text encoun-

tered in clinical settings, such as nurses' notes and hospital discharge summaries, is

particularly expensive in time and resources because it must be performed by medi-

cal experts. Many efforts in WSD therefore focus on unsupervised or semi-supervised

methods, requiring little to no annotated data. They may also use knowledge bases

(KBs), which allow for the incorporation of human expertise without a cost per ap-
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plication.

In this thesis we compare the best known knowledge-based unsupervised meth-

ods for clinical domain WSD with the application of a state of the art method for

general domain WSI to clinical text. The general domain method, which is based

on topic modeling, can be performed unsupervised or semi-supervised. We also ex-

plore making improvements to the general domain method by adding features that

incorporate syntax and KB information. Such features allow us to include some of

the information from knowledge-based disambiguation methods while retaining the

benefits of bottom-up clustering. While the unsupervised methods require no anno-

tated data beyond a knowledge base, the topic modeling method may require a small

amount; we examine the effect that varying this amount has on system accuracy in

an acronym expansion task. The rest of this thesis is organized as follows: in the

rest of chapter 1, we present the WSD problem and motivation for tackling it, as

well as an overview of previous approaches taken; in chapter 2, we describe methods

and present results from successful experiments in general domain WSI that we run

on new data and improve upon; and in chapter 3, we present experiments on clinical

text that compare these general domain methods to clinical domain state of the art

methods, and also present experiments on a dataset of abbreviations. In chapter 4,

we describe implementation choices and difficulties and in chapter 5 we summarize

our contributions and discuss possible future work.

1.1 Problem definition and examples

Lexical ambiguity occurs in text when one string has more than one meaning asso-

ciated with it. Each "meaning" is called a "sense" and in this thesis, we term an

ambiguous word a "target". For example, "The global financial crisis is affecting

even local banks" and "Erosion is a major problem hitting the world's river banks"

use two different senses of the ambiguous target "bank": the first sense is "financial

institution", and the second sense is "side of a river". Most work on WSD has been

done on general English text, but WSD in other domains has also been emerging.

Biomedical and clinical text are areas that have received much attention; despite a

14



more technical vocabulary, ambiguous terms still proliferate. For example, the word

"dress" is used frequently in patient notes, and can mean, among other things, the

act of putting on clothes ("She was using her adaptive equipment for lower body

dressing") or a wound covering ("This dressing is secured with montgomery straps").

Sometimes the distinctions are very finely grained, making it hard for even humans to

distinguish meanings. For example, the action of dressing in the example above has

a fine distinction from the state of being dressed ("Appearance/behavior: Casually

dressed and neatly groomed woman").

WSD can also be applied to the task of expanding abbreviations and acronyms,

which are prolific in clinical notes. Many abbreviations are ambiguous shortened

versions of longer words or phrases, which can be considered their "senses". For

example, "bm" commonly expands to "bowel movement", but can also expand to

"breast milk" or "bone marrow" among other things. Although abbreviations often

have larger numbers of expansions than words have senses, these are usually quite

distinct from each other.

1.2 Motivation

In the general domain, WSD has important applications in information retrieval and

machine translation (Agirre and Edmonds, 2006). Useful information retrieval de-

pends on the disambiguation of ambiguous terms in order to return pertinent results.

For example, with a simple query like "bank," the system cannot know whether to

return pages about financial banks or river banks. Given additional terms in a query,

IR systems could do WSD as a preprocessing step. In machine translation, different

senses of an ambiguous word in the source language may translate to different words

in the target language. Thus a preprocessing step of WSD would make labeled data

for machine translation algorithms more reliable and make the translation task more

straightforward.

Applications of WSD and abbreviation expansion in the biomedical domain focus

on the potential disambiguation has for information extraction. Many medicine-

related tasks stand to benefit from reliable extraction of textual clinical data and
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biomedical journal entries into a structured form. For example, being able to extract

disambiguated characteristics of a patient would make it possible do perform co-

hort selection, the selection of patients with specific characteristics for medical trials,

automatically. More comprehensive presentations of diseases could be accumulated

from massive numbers of clinical notes if the symptoms and diseases could be dis-

ambiguated. In addition to these concrete tasks, any task to which machine learning

methods are applied would benefit from a more accurate representation of relevant

text.

1.3 Related work

1.3.1 Knowledge base: Unified Medical Language Systems (UMLS)

The main KB for the biomedical domain is the Unified Medical Language System

(UMLS) (Bodenreider, 2004), which assigns each medical concept an identifier (CUI).

CUIs are often used as the senses to which WSD disambiguates words. UMLS contains

information on which CUIs are possible for a string and connects CUIs to each other

with relations like "broader than" and "narrower than" among others. It also assigns

each CUI to a "semantic type", a broad category. This information is largely sourced

from other medical vocabularies. Many WSD systems incorporate KBs because the

words to disambiguate may be likely to have nearby words that are semantically

similar, and this similarity would ideally be captured by the KB.

1.3.2 Previous approaches: general domain

Over the past twenty years, a number of unsupervised methods for word sense induc-

tion have been developed, both for clustering contexts and for clustering word senses

based on their distributional similarity (Hindle, 1990; Pereira et al., 1993; Schiitze,

1998; Grefenstette, 1994; Lin, 1998; Pantel and Lin, 2002; Dorow and Widdows,

2003; Agirre et al., 2006). Recently, Brody and Lapata (2009) have adapted the

Latent Dirichlet Allocation (LDA) (?) generative topic model to WSI by treating

each occurrence context of an ambiguous word as a document, and the derived topics

as sense-selecting context patterns represented as collections of features. Yao and
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Van Durme (2011) have continued this line of research, applying the Hierarchical

Dirichlet Process (HDP) model (Teh et al., 2003) to WSI. The advantages of HDP

over LDA lie in HDP's ability to avoid manually tuning the number of clusters to

create by modeling new cluster creation in addition to cluster selection as part of the

algorithm.

However while clinical and biomedical WSD tends to make use of KBs designed

around biomedical terminology, much of the general domain classic bottom-up WSI

and thesaurus construction work, as well as many successful systems from the recent

SemEval competitions, have explicitly avoided the use of existing knowledge sources,

instead representing the disambiguating context using bag-of-words (BOW) or syn-

tactic features (Schiitze, 1998; Pantel and Lin, 2002; Dorow and Widdows, 2003;

Pedersen, 2010; Kern et al., 2010). Lexical ontologies (and WordNet (Fellbaum,

2010) in particular) are not always empirically grounded in language use and often

do not represent the relevant semantic distinctions. Very often, some parts of the

ontology are better suited for a particular disambiguation task than others. In this

work, we assume that features based on such ontology segments would correlate well

with other context features.

Following the success of topic modeling in information retrieval, Boyd-Graber et al.

(2007) developed an extension of the LDA model for word sense disambiguation that

used WordNet walks to generate sense assignments for lexical items. Their model

treated synset paths as hidden variables, with the assumption that words within

the same topic would share synset paths within WordNet, i.e. each topic would be

associated with walks that prefer different "neighborhoods" of WordNet. One problem

with their approach is that it relies fully on the integrity of WordNet's organization,

and has no way to disprefer certain segments of WordNet, nor the ability to reorganize

or redefine the senses it identifies for a given lexical item.

1.3.3 Previous approaches: clinical and biomedical domain

A widely-used application that processes clinical text is MetaMap (Aronson and Lang,

2010), which includes an optional WSD step (Humphrey et al., 2006b). This step
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picks the most likely UMLS semantic type for a word (out of those assigned to its

possible CUIs), and then disambiguates the word to the CUI that had that semantic

type; the semantic type disambiguation is done using statistical associations between

words and "Journal Descriptors" (Humphrey et al., 2006a). This performs fairly well

on the NLM WSD Test Collection of biomedical journal text.

Other approaches use the structure inherent in UMLS to aid the disambiguation

process. Agirre and Soroa (2009; 2010) treat UMLS as a graph whose nodes are CUIs

and whose edges are relations between them. They then run a variant of PageRank

(Page et al., 1999) over this graph to distribute weight over CUIs and pick the target's

CUI with the most weight. McInnes and Pedersen (2011) also consider UMLS a graph,

restricted to a tree in their case. They use tree similarity measures to assign scores

to CUIs of the target based on CUIs of context words. Both of these approaches that

use the graph-like properties of UMLS are susceptible to shortcomings in UMLS's

structure, and tend to improperly favor senses that are more connected and thus

more easily reachable. Both of these approaches are evaluated on data from the

biomedical domain rather than from the clinical domain.

1.3.4 Previous approaches: abbreviation and acronym expansion

Some fully supervised work has been done on the abbreviation and acronym expansion

task, although the annotation process remains as expensive as it is for the general

WSD case. Moon et al. (Moon et al., 2012) conducted experiments on 50 targets

whose majority sense appeared less than 95% of the time. These experiments aimed to

determine a good window for bag-of-words features, a good supervised classifier type,

and the minimum number of instances needed to achieve satisfactory performance.

They found that 125 instances per target with t40 words as features suffice for an

SVM accuracy of 90%.

Compared to general WSD, abbreviation expansion is more conducive to semi-

supervised approaches in which a silver-standard dataset is collected automatically.

A standard way to do this is to search for the long forms in a corpus and then replace

them with their abbreviations (Xu et al., 2012; Pakhomov et al., 2005). The two
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main issues that may arise in this method are the lack of long forms appearing in

clinical text and the differences in contexts surrounding long forms when they do

appear. The latter problem was addressed by Xu et al. (Xu et al., 2012) who altered

the contexts to make them look more like those around abbreviations; however this

yielded only a small improvement. Abbreviation and acronym expansion may use an

already existing inventory of long forms, such as the SPECIALIST Lexicon's LRABR

table (Bodenreider, 2004), or may involve the additional task of inducing an inventory.
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Chapter 2

Improvements in the General

Domain

Although clinical text has many properties distinguishing it from general domain

text, it is reasonable to experiment with new approaches on general domain text first.

General domain text is generally better behaved due to more standard syntax, lexical

items, and even formatting, as well as the maturity of preprocessing tools developed

for it. Therefore before exploring the use of knowledge base information in topic-

modeling-based clinical WSI, we experiment with similar exploitation of knowledge

in the general domain using WordNet (Miller et al., 1990).

2.1 Topic-modeling in WSI state of the art

Brody and Lapata (2009) have proposed a successful adaptation of the LDA genera-

tive topic model to the WSI task, evaluating their system on the SemEval2007 noun

data set. Their system operates over a corpus of instances of each ambiguous target

word. Each instance consists of the target word and a small amount of text serving as

its context, which is described by a set of features. For Brody and Lapata, these fea-

tures include standard bag-of-words features as well as other potentially useful feature

classes such as part of speech n-grams, word n-grams, and syntactic dependencies.

LDA considers each instance to be produced by generating each context feature. A

feature is generated by first picking a sense of the target from a known set of senses

and then picking a feature from an underlying probability distribution specific to that
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sense.

LDA assumes the same prior distribution for all the features of an instance. How-

ever for many classes of features, for example words vs. part-of-speech tags, this is

false. Thus these algorithms do not immediately adapt well when given features from

different classes. Brody and Lapata deal with this in their relevant experiments by al-

tering the LDA model to make it multilayered; different classes are handled separately

in different "layers" and brought together in a weighted combination when necessary.

Their best model, however, showed very similar performance to their model using

only one class: bag-of-words features.

Following the same basic assumptions as Brody and Lapata, Yao and Van Durme

(2011) applied the Hierarchical Dirichlet Process (HDP) (Teh et al., 2003) model to

the WSI task. The non-parametric HDP model allows the algorithm to induce the

number of topics from the data itself, avoiding the limitation of fixing it in advance

or excessive manual parameter tuning, as required by LDA. Yao and Van Durme

(2011) report a statistically significant improvement in the case where the unlabeled

data used for training exhibits a different number of sense patterns per target than

the subsequent evaluation data. In their case, they train using the British National

Corpus and evaluate using Wall Street Journal data (from SemEval2007), which are

both general English corpora but differ in their sources. The fact that HDP induces a

number of clusters, both in initial model training and in subsequent inference starting

from that model, allows this adjustment to occur.

2.2 Proposed improvements

Our proposed improvements seek to integrate the use of information from a general

domain KB, in this case, WordNet. WordNet is an ontology consisting of hierarchies

of groups of words representing concepts, called synsets. Each part of speech has a

separate hierarchy and a hierarchy may have multiple roots. A synset is a parent of

another synset if it is semantically broader, a hypernym. For example, the parent of

'actor' is 'performer', whose parent is 'entertainer', and the path of ancestors goes

up through 'person', 'causal agent', 'physical object', and 'physical entity' before
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reaching the root of the noun hierarchy, 'entity'.

We believe these relations are useful knowledge for WSI because senses often select

for contexts involving particular categories of related words (say, people or objects)

without requiring the exact same words. This selection is often done for elements of

the sentence that are syntactically related to the target word (say, its direct object).

For example, 'deny' has two major senses: 'declare untrue' as in 'the senator denied

the statements to the press' and 'refuse to grant' as in 'the office denied visas to

the students'. These both take the syntactic form 'NP denied NP to NP', so the

senses cannot be distinguished solely via syntax. However examining the direct ob-

ject NP, we see that in the 'declare untrue' sense, we have words like 'statement'

(e.g. 'charges', 'lies'), and in the 'refuse to grant' sense we have words like 'visa'

(e.g. 'approval', 'request'). Figure 2-1 shows the paths from these words to the root

of the noun hierarchy through their hypernyms. Their least common subsumer is

the same - 'message' ('message, content, subject matter, substance') - but lower

levels provide useful distinctions. We hypothesize that if these paths were encoded

in features for topic-modeling algorithms, the clustering would pick out the nodes

on the paths that best distinguish the senses. Bag-of-words features cannot capture

this phenomenon, so we propose a new class of features that combine syntactic and

ontological information. We describe these features more explicitly in section 2.5.2.

2.3 Data description

We use the verbs of the SemEval2010 WSI task data for evaluation (Manandhar et al.,

2010). This data set choice is motivated by the fact that (1) for verbs, sense-selecting

context patterns often most directly depend on the nouns that occur in syntactic

dependencies with them, and (2) the nominal parts of WordNet tend to have much

cleaner ontological distinctions and property inheritance than, say, the verb synsets,

where the subsumption hierarchy is organized according to how specific the verb's

manner of action is.

The choice of the SemEval2010 data over SemEval2007 data was motivated by the

fact that the SemEval2007 verb data is dominated by the most frequent sense for
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entity

abstract entity

communication

message

request statement approval

pleading falsehood sanction

h i visa

Figure 2-1: WordNet hierarchy paths

eso

for potential direct cbjects of 'deny'.

many target verbs, with 11 out of 65 verbs only having one sense in the combined

test and training data. All verbs in the SemEval2010 verb data set have at least two

senses in the data provided.

We train our topic models on unlabeled data from SemEval2010, which contains a

total of 162,862 instances for all verbs.

We evaluate our methods on the 50 verb targets from the SemEval2010 dataset.

Evaluation requires two labeled datasets, as described in section 2.4.3: the mapping

set (distinct from and much smaller than the training set) and the test set. SemEval's

evaluation data is split into 5 mapping/test set pairs, with 60% for mapping (2179

instances) and 40% for testing (1451 instances) in each. Each split is created randomly

and independently each time, and 3354 out of 3630 instances appear in a test set at

least once. There are an average of 3.2 senses per target in the mapping/test sets.

2.4 Model training and evaluation methods

We applied the LDA model (Brody and Lapata, 2009) and the the HDP model (Yao

and Durme, 2011) over a set of features that included bag-of-words features as well

as knowledge-enriched syntactic features. Note that unlike the model proposed by

Boyd et al. (2007), which relies fully on the pre-existing sense structure reflected in

WordNet, under this setup, we will only incorporate the relevant information from
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the ontology, while allowing the senses themselves to be derived empirically from the

distributional context patterns. The assumption here is that if any semantic features

prove relevant for a particular target word, i.e. if they correlate well with other

features characterizing the word's context patterns, they will be strongly associated

with the corresponding topic.

In reality, the topics modeled by LDA and HDP may not correspond directly to

senses, but may represent some subsense or supersense. In fact, the induced topics

are more likely to correspond to the sense-selecting patterns, rather than the senses

per se, and quite frequently the same sense may be expressed with multiple patterns.

We describe how we deal with this in section 2.4.3.

Five models are trained for each target using the same parameters and data. This

is done to reduce the effect of randomization in the training algorithms on our results,

though the randomization is also present in the inference algorithms and we do not

perform more than one inference run per model.

2.4.1 Formal model description

The LDA model is more formally defined as follows: Consider one target word with

M instances and K senses, and let the context of instance j be described by some set

of Nj features from a vocabulary of size V. These may be the words around the target

or could be any properties of the instance. LDA assumes that there are M probability

distributions Oj = (Ojl, j2,..., ORjK), with Ojk = the probability of generating sense k

for instance j, and K probability distributions #k = (#kI, #k2,... , # Ov), with Okf =

the probability of generating feature f from sense k. This makes the probability of

generating the corpus where the features for instance j are f1 fj2, ... , fjNj

M Nj K

P(corpus) = [1 H Ojk4
'kfj

j=1 i=1 k=1

The goal of LDA for WSI is to obtain the distribution Oj. for an instance j* of interest,

as this gives each sense's probability of being picked to generate some feature in the

instance, which corresponds to the probability of being the correct sense for the target
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word in this context.

The corpus generation process for HDP is similar to that of LDA, but obtains the

document-specific sense distribution (corresponding to LDA's Oj) via a Dirichlet Pro-

cess whose base distribution is determined via another Dirichlet Process, allowing for

an unfixed number of senses because the draws from the resulting sense distribution

are not limited to a preset range. The concentration parameters of both Dirichlet

Processes are determined via hyperparameters.

2.4.2 Training methods

LDA

Our process for training an LDA model uses the software GibbsLDA++ (Phan and

Nguyen, 2007), which uses Gibbs sampling to assign topics to each feature in each

instance. Initially topics are assigned randomly and during each subsequent sam-

pling iteration, assignments are made by sampling from the probability distributions

resulting from the last iteration. We use the hyperparameters tuned by Brody and

Lapata (2009), a = 0.02, # = 0.1.

We run 2000 iterations of Gibbs sampling while training a model (the software

default). To obtain 0 for a test instance of interest, we run GibbsLDA++ in "inference

mode", which initializes the training corpus with the assignments from the model and

initializes new test documents with random assignments. We then run 20 iterations

of Gibbs sampling (the software default) on this augmented corpus.

HDP

The HDP training and inference procedures are similar to LDA, but using Gibbs

sampling on topic and table assignment in a Chinese Restaurant Process. We use

Chong Wang's program for HDP (Wang and Blei, 2012), running the Gibbs sam-

pling for 1000 iterations during training and another 1000 during inference (the soft-

ware defaults), and using Yao and Van Durme's hyperparameters H = 0.1, ao -

Gamma(0.1, 0.028), -y ~ Gamma(1, 0.1). This software does not directly produce 6

values but instead produces all assignments of words to topics. This output is used
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to compute
_ count(words in document j labeled k)

count(words in document j)

Since new topics can appear during inference, we adjust these probabilities with

additive smoothing using a parameter of 0.02 to avoid the case where all words in a

test instance are labeled with topics unseen during mapping; this case would make

prediction of a sense using our evaluation methods impossible.

2.4.3 Evaluation methods

Following the established practice in SemEval competitions and subsequent work

(Agirre and Soroa, 2007; Manandhar et al., 2010; Brody and Lapata, 2009; Yao and

Durme, 2011), we conduct supervised evaluation. In this type of evaluation a small

amount of labeled data, the "mapping set", is used to map the induced topics to real-

world senses of the ambiguous words. Predictions are then made on labeled instances

from a test set and performance is evaluated. The mapping produced is probabilistic;

for topics 1,..., K and senses 1,.. ., S, we compute the KS values

= count(instances predicted k, labeled s)

count(instances predicted k)

Then given 6j., we can make a prediction for instance j* that is better than just the

most likely sense for its most likely topic. Instead we compute

K

argmax8 1 E OjkP(slk),
k=1

the sense with the highest probability of being correct for this instance, given the topic

probabilities and the KS mapping probabilities. The supervised metrics traditionally

reported include F-score and recall, but since our WSI system makes a prediction on

every instance, we report accuracy here.

To select the best system configuration, we use leave-one-out or 50-fold cross-

validation (whichever has fewer folds for a particular target) on the mapping set.

For each fold, we create the test set (the fold) and a mapping set (all the other folds),
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yielding the overall accuracy on the original data set when the results are combined.

Since the SemEval2010 evaluation data has 5 different mapping sets, one for each

60/40 split, to obtain accuracy for a model we do cross-validation on each and aver-

age the results. We perform this process for each of our 5 trained models and again

average the results to get an overall accuracy for the configuration.

We make predictions on the instances in the 5 test sets slightly differently than we

do in cross-validation. Instead of averaging over our 5 trained models per target, on

each instance we predict the sense that the majority of those models predicted. If a

majority does not exist, we choose a prediction arbitrarily from the senses predicted

the most for this instance.

Significance testing for test set results is done with paired two-tailed t-tests. Each

of the 3354 distinct test instances (appearing in 1 to 5 of the test sets) is treated as a

separate sample. On any particular occurrence of that instance, the system is either

right or wrong, getting a 0 or 1 accuracy. Instead of averaging these accuracies over

the number of test sets in which the instance occurs, we consider a system's prediction

on the instance to be the sense it predicted in the majority of the test sets in which

the instance appears; we subsequently use the 0/1 accuracy of this prediction. Again,

if no majority exists, we choose a prediction arbitrarily from the senses predicted the

most times for this instance.

2.5 Features

We use three types of features: bag-of-words features, token-populated syntactic fea-

tures, and ontology-populated syntactic features. Instead of using a multi-layered

LDA model, we attempt to mitigate the effects of using multiple classes of features

by choosing extra features whose distributions are sufficiently similar to the bag-of-

words features. We describe these classes in more detail below.

For tokenization, sentence boundary detection, and part-of-speech tagging, we use

OpenNLP (OpenSource, 2010). We remove the stopwords and stem using the Snow-

ball stemmer. For collapsed syntactic dependencies we use the Stanford Dependency

Parser (Klein and Manning, 2003).
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2.5.1 Bag of words

Following previous literature (Brody and Lapata, 2009), we use a 20 word window

(excluding stopwords) for BOW features. In our experiments, a smaller window size

of 6 words, chosen to represent a more immediate context, produced similar but worse

performance.

2.5.2 Syntactically and ontologically based features

In including additional features, we wanted to capture the syntactic information

around the target word and some of the semantic information of those syntactically

related words. To capture syntactic information, we use the dependency parses done

during preprocessing and focus on words directly connected to the target word via

a dependency relation. To capture semantic information, we search for a context

word in WordNet (Miller et al., 1990). If found, we traverse the WordNet hierarchy

upwards from each of its synset nodes, and at each node we visit, include a feature

for that node concatenated with the syntactic relation connecting the original word

to the target in our instance. We obtain features like noun-1930- W-00001930-N-

1-physicaLentity-gov-dobj for a target word's direct object that is a physical entity

according to WordNet.

2.6 Results

With all our results we include the most-frequent-sense (MFS) baseline for compari-

son. This baseline is the accuracy achieved if the prediction on all instances of a target

was the sense for that target that was present the most in the labeled evaluation set.

We also refer to that sense for each target as its MFS.

2.6.1 Cross-validation

We use cross-validation on the mapping set to select the best system configuration.

The following system aspects were varied across different runs: (1) topic modeling

algorithm (HDP or LDA), (2) included feature types (bag-of-words with different win-

dow sizes, populated syntactic features, ontology-populated syntactic features), and

(3) number of topics (i.e. sense patterns) for the LDA model. The best configuration
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is then tested on the evaluation data.

Table 2.1 shows cross-validation results for some of the relevant configurations on

the SemEval2010 dataset.

For LDA, we start with bag-of-words using 3 topics because the mapping set av-

erages 3.2 senses per target, and increase to 6 topics. We find an accuracy increase

up to 5 and a decrease at 6. Then for 5 topics, we add our ontological features

and see how they affect accuracy. The best of these configurations is the 20 closest

non-stopwords bag-of-words (20w) with 5 topics, achieving 71.2% accuracy. Adding

ontological features neither helps nor hurts this configuration, as seen in the table.

The best HDP configuration outperforms the LDA configurations with low numbers

of topics. This configuration combines the 20 closest non-stopwords bag-of-words

(20w) with WordNet-populated syntactic dependencies (+WN1h) and achieves 72.5%

accuracy. We evaluate two other configurations using HDP as well: 20w +WN1h-

limited, which is 20w +WN1h minus those features from WordNet within 5 hops of

the hierarchy's root; and 20w +Synt, which is the 20 closest non-stopwords bag-of-

words plus syntactic dependencies 1 hop away from the target word populated with

the stemmed token at that position in the sentence.

As shown in Table 2.1, WordNet-based populated features do introduce some gain

with respect to the syntactic features populated only at the word level. Interestingly,

removing the top-level WordNet-based features, and therefore making the possible

restrictions on the semantics of the dependent nouns more specific, does not lead to

performance improvement.

In this best configuration, HDP produces an average of 18.6 topics, far more than

the number of real-world senses. We investigated the possibility that its improvement

over LDA might be due to this larger number of topics, testing the same feature

combination on LDA with 12 topics. This does produce a similar accuracy, 72.2%,

and the simpler bag-of-words features with 12 topics yield an accuracy drop to 70.2%,

similar to the drop seen between HDP 20w +WN1h and HDP 20w.
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Configuration Cross-validation accuracy
MFS 69.6%
HDP, 20w +WN1h 72.5%
HDP, 20w +WN1h-limited 70.8%
HDP, 20w +Synt 71.3%
HDP, 20w (HDP baseline) 69.7%
LDA, 5 topics, 20w +WN1h 71.2%
LDA, 5 topics, 20w 71.2%
LDA, 12 topics, 20w +WN1h 72.2%
LDA, 12 topics, 20w 70.2%

Table 2.1: Cross-validation accuracies using the SemEval2010 mapping sets.

2.6.2 Test

We test the configuration with the best cross-validation accuracy from HDP (20w

+WN1h) and compare ourselves to the participant system that performed best under

this supervised evaluation metric for verbs, Duluth-Mix-Narrow-Gap from the Uni-

versity of Minnesota Duluth (Manandhar et al., 2010). The comparison is shown in

Table 2.2. This system has an accuracy of 68.6% and we exceed its performance with

73.3% accuracy using HDP 20w +WN1h. We also show these results for the 12 topic

LDA configurations that performed well in cross-validation.

Using the significance testing methods described in section 2.4.3, the difference

between Duluth-Mix-Narrow-Gap and the best HDP configuration (20w +WN1h)

is statistically significant (p < 0.0001), as is the difference between the HDP 20w

+WN1h and 20w (p < 0.001). Similarly, the improvement of the 12 topic LDA

configuration 20w +WN1h over Duluth-Mix-Narrow-Gap is significant (p < 0.0001),

as is the improvement over LDA 12 senses, 20w (p < 0.05).

Given this improvement of ontological features over bag-of-words features, we tested

the configuration HDP 20w +Synt (bag-of-words plus syntactic features populated

with just stemmed tokens) even though it had not matched the best configuration

in cross-validation. The test set accuracy was 73.4%, essentially matching the 73.3%

accuracy of the ontological configuration, HDP 20w +WN1h.
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System Accuracy
MFS 66.7%
HDP, 20w +WN1h 73.3%
HDP, 20w +Synt 73.4%
HDP, 20w (baseline) 71.2%
LDA, 12 topics, 20w +WN1h 72.5%
LDA, 12 topics, 20w 71.1%
Duluth-Mix-Narrow-Gap 68.6%

Table 2.2: Test set accuracies, SemEval2010 verbs

2.7 Discussion

Having found that most of the gain of the ontological features is in fact from the

inclusion of syntax in those features, we can examine the features most strongly

associated with each cluster in the trained models and see whether (1) any syntactic

features are in those top features, and (2) if so, whether they are distinguishing

properties of the senses corresponding to those clusters.

For example, the verb 'operate' has two prevalent senses in the SemEval2010 cor-

pus: "work in a particular way" and "run something". The feature effici-advmod,

which corresponds to the instance containing the adverb 'efficiently' modifying 'oper-

ate', is present in the top features for four of the topics HDP generated, and indeed

the training instances assigned that topic are instances where operate means "work

in a particular way". Another topic corresponding to that sense of 'operate' has

how-advmod as one of its top features. Meanwhile many of the other topics contain

some syntactically-motivated top features like ownrconj (e.g. an organization "owns

and operates" a business), companyrnsubj (e.g. a company operates a fleet), and com-

pany-dobj (e.g. a large company operates a small company). The instances assigned

those topics are instances where 'operate' typically means "run something".

We can do the same examination in the models trained with ontology-populated

syntactic features as well. Each node on the path from a given synset to the root

generates its own ontological feature, so when many nodes that activate the same

sense have a common hypernym, that hypernym is likely to "float to the top" -

become more associated with the corresponding topic.
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Consider the following two senses of the verb 'cultivate': "prepare the soil for crops"

and "teach or refine". Some the topics generated by the HDP 20w +WN1h model

correspond to the first sense and is associated with examples about cultivating land,

earth, grassland, waste areas while others generated by the same model correspond

to the second sense and is associated with examples about cultivating knowledge,

understanding, habits, etc. One of the top-scoring features for the former topics is

locationrdobj which corresponds to the direct object position being occupied by one of

the 'location' synsets, with direct hyponym nodes for 'region' and 'space' contributing.

For some of the latter topics, cognition-dobj is selected as one of the top features,

which is an ancestor of 'habit' and 'knowledge', both of which are often used with

'cultivate' in the instances for "teach or refine".

Having obtained some significant if small improvements over our baselines by

adding features reflecting syntactic and ontological information, we continue experi-

ments with similar features on clinical text, described in sections of chapter 3.
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Chapter 3

Experiments on Clinical Text

As in the general domain, knowledge-based approaches are popular for clinical text

WSD in part because of the existence of a standard KB that compiles phrases rep-

resenting medical concepts and describes relations between these concepts. Such

approaches, which require no task-specific annotated data, are used in the current

state of the art methods (McInnes et al., 2011; Agirre and Soroa, 2009). Here we

use two such methods that utilize graph algorithms on UMLS, running them here on

a new dataset, and run the topic-modeling algorithms described in chapter 2. We

compare the results, obtaining far better results with the topic-modeling approach.

We also experiment with integrating knowledge into this approach.

The comparison we make between the unsupervised knowledge-based approaches

and the topic-modeling approach from the general domain is a comparison between

unsupervised methods and semi-supervised methods, as our evaluation of the topic

models requires a small amount of labeled data. However at their core, the topic mod-

eling algorithms are unsupervised, inducing clusters from the data. The labeled data

makes it possible to map these clusters, often many-to-one, onto real-world senses,

but this may not be necessary in all applications. For example, a machine learning

system using bag-of-disambiguated-words instead of bag-of-words features might gain

slightly from having the multiple clusters corresponding to one sense collapsed into

that sense, but on the whole would only require the clustering. Conversely, a system

using disambiguation on patient records to select patients with specific properties for
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a study would be useless without the mapping step that picks a sense for an instance.

Because of this second type of application, we further investigate the effect of the

mapping set size on accuracy and the feasibility of automatically creating a mapping

set.

3.1 Data

3.1.1 Evaluation Data

We evaluate our methods on two clinical text WSD datasets, the Mayo WSD Corpus

(Mayo) (Savova et al., 2008) and the Clinical Abbreviation Sense Inventory from

the University of Minnesota (Abbr) (Moon et al., 2012). Although we use Abbr to

examine our performance on abbreviations, Mayo also contains a few targets that are

abbreviations.

Mayo dataset

Mayo consists of 50 ambiguous clinical term targets. 48 targets have 100 instances

and 2 have 1000 instances. Each instance contains a sentence or two of context and

a manually assigned CUI representing the sense of the target or "none" if there is no

such CUI. We remove the instances labeled "none" for evaluation in our experiments.

For topic-modeling experiments, we split Mayo 70%/30% into a mapping set and a test

set. The mapping set is also used for cross-validation experiments in which we tune

topic-modeling parameters and choose feature types. Our PageRank- and path-based

experiments use a subset of 15 of the 50 targets all of whose assigned CUIs appear

in one source vocabulary of UMLS, SNOMED CT (Systematized Nomenclature of

Medicine - Clinical Terms). SNOMED CT provides a path up its hierarchy for each

CUI, making the calculations necessary for these methods fast. We also report our

topic-modeling results on this subset, in addition to on the full set, for comparison.

Abbreviations and acronyms dataset

Abbr consists of 75 ambiguous clinical abbreviations with 500 instances each. Like

Mayo, the instances consist of a few sentences of context and a manually-assigned

label, although these labels are the long forms of the abbreviations and are not con-
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nected to UMLS CUIs. If an instance uses an abbreviation in a non-clinical way, the

instance is labeled as general English. If an annotator is not sure of the sense, the

instance is labeled as unsure. If an annotator determines that the abbreviation was

used erroneously, the instance is labeled as a mistake. The 75 targets all have MFS

accuracies of less than 95% and 7 have at least one general English instance. We ex-

periment with using mapping and cross-validation sets consisting of up to 120 of each

target's instances, the largest multiple of 10 less than the 125 determined by Moon

et al.'s experiments on 50 of the targets (2012) as sufficient for supervised methods.

We do not try mapping sets exceeding 125 instances because with that many anno-

tations, one could use them in Moon's successful supervised methods. The remaining

380 instances per target are used for testing.

3.1.2 Training data

We obtain unlabeled training data for the topic-modeling algorithms from nurses'

notes and discharge summaries in the MIMIC II (Multiparameter Intelligent Moni-

toring in Intensive Care) databases (Saeed et al., 2011). At the time of training data

extraction, MIMIC consisted of 27,059 deidentified records, each corresponding to a

single patient (not necessarily unique). Instances are collected for each target by com-

paring the targets to whitespace-delimited tokens in MIMIC; if a target matches, an

instance is created from the closest 100 tokens to that token. Instances that overlap

in content are allowed. We collect up to 50,000 instances to keep processing feasible.

We ignore case while matching targets to tokens except for targets from the abbrevi-

ation dataset that have a general English sense, in which case we only consider the

token to match the target if it is in uppercase.

3.2 State of the art methods on clinical text:

PageRank- and path-based approaches

3.2.1 Path-based methods

We perform path-based experiments in which UMLS is used as a tree where the nodes

are the CUIs and the edges are a subset of the relations (only broader/narrower and
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parent/child relations) (McInnes et al., 2011). A similarity score between any two

nodes is obtained from a tree distance metric, and a target word w is disambiguated

to the sense s that has the largest cumulative similarity to the context words.

The general formula for picking s is:

s = argma'xiEsenses(w) E weight(wj, w) * max sim(si, n)
wj Econtext(w) nESenses(wj)

where the argmax is taken over all possible CUIs for w (as listed in UMLS), the sum

is taken over words in the context of w, and the max is taken over possible CUIs for

each context word. The function sim represents the similarity between nodes si and

n in UMLS and the function weight represents the amount of weight (importance)

this context word should have in the calculation. Both of these functions may be

varied but we use a uniform weight function and the similarity measure wup (Wu and

Palmer, 1994), which depends on the depth of each node and the depth of their ics,

or least common subsumer, which is the deepest node that is an ancestor of both.

2 * depth(lcs(cl, c2))

depth(ci) + depth(c2)

3.2.2 PageRank-based methods

We also perform experiments using the methods of Agirre and Soroa (2009), which

tackle clinical WSD using variants on the PageRank algorithm (Page et al., 1999). In

these methods, PageRank is run on the graph whose nodes are all the CUIs in UMLS

and whose edges are the relations present between them. PageRank was originally

developed by Page et al. (1999) to give web pages a score so they could be ranked

in the results for a Google search. It aimed to produce higher scores for pages that

had more and higher scoring pages linking to them; one might consider these pages

popular. After PageRank is run, the target is disambiguated to the most "popular"

CUI, the one with the most weight. Intuitively, each sense of each context word has

some weight to spread around, and it should spread more of it to target word senses

that are more similar to it - that is, closer to it in the UMLS graph.

38



Agirre and Soroa (2009) present two major ways to alter the UMLS graph based

on the context around a target word: create a subgraph based on the context and

run traditional PageRank (SPR), or use the whole graph but run PageRank with a

non-uniform ("personalized") initial weight vector (PPR). In SPR, the subgraph is

created by identifying the nodes associated with each concept in the instance, finding

the shortest paths in the whole graph between each pair of these nodes, and including

in the subgraph exactly the nodes on those paths. In our experiments, we approximate

the shortest path between two nodes as the concatenation of their paths to their least

common subsumer, treating UMLS as a tree. Although traditional PageRank's initial

vector is uniformly weighted over the graph, we also experiment with distance-based

weighting where each node's weight is inversely proportional to its distance from the

target in tokens. In PPR, all of UMLS is used as the graph but the initial vector is

weighted such that only nodes associated with concepts in the context have nonzero

weights; other nodes, including the nodes associated with the target itself, receive

zero weight. Experiments with distance-based versus uniform weighting were also

performed for PPR. We use 40 iterations of PageRank for SPR and 20 for PPR. Our

results reflect the original paper's results in finding PPR to be more effective than

SPR.

3.2.3 Results

In all experiments we present accuracy as our performance measure; since our systems

make predictions on every instance, this is the same as precision, recall, and f-measure.

We take the macroaverage over all our targets.

Table 3.1 shows our best path- and PageRank-based results on the SNOMED CT

subset of the Mayo dataset. The accuracies are 42.5% for the path-based and 48.9%

for the PageRank-based. For comparison, we also show the MFS baseline, 56.5%,

and a preliminary result from the topic-modeling approach we describe in the next

section, 66.9%. As the table shows, we found these KB-based methods to be much

less accurate than even the MFS baseline, and therefore we concentrated on topic-

modeling experiments, which did beat that baseline.
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Configuration Accuracy
MFS 56.5 %
PPR, 20 closest concepts, all rels, init. vec. weight by inv. dist. 48.9%
SPR, 20 closest concepts, path to root, init. vec. weight by inv. dist. 43.5%
Path: wup, concepts in 70 word window, uniform concept weighting 42.5%
LDA cross-validation, 20 closest words, 5 topics 66.9%

Table 3.1: Accuracies on SNOMED target subset of Mayo data

In the table, we describe each configuration using a shorthand that indicates the

algorithm type, the context, and then any algorithm-specific configurations, such as

the initial vector weighting scheme in PageRank. The PPR configuration used the 20

closest concepts to the target, created its graph using all UMLS relation types, and

weighted the initial PageRank vector by inverse distance. The SPR configuration used

the 20 closest concepts, created its graph using each concept's path to the hierarchy

root, and weighted the initial PageRank vector by inverse distance. The path-based

configuration used the similarity measure wup, used concepts in a 70 word window

around the target, and weighted context concepts uniformly when calculating the

similarity score. The preliminary LDA run used the 20 closest non-stopwords and

created 5 clusters.

3.3 Topic-modeling on Mayo

The LDA and HDP topic-modeling algorithms are applied to clinical text in the same

ways they were applied to general domain text; refer to section 2.4 for algorithm

descriptions and hyperparameters.

3.3.1 Features

Data preprocessing

The generation of features to use in the topic models requires some preprocessing

on the data. For each instance, we tokenize the text, find sentence boundaries, POS

tag the tokens, and run dependency parsing on the sentence containing the target,

as we did for general domain data (described in section 2.5). For the clinical text,

however, we use the POS tagger and dependency parser from ClearNLP (Choi, 2013)
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and models provided with the software that had previously been trained on clinical

text. We also perform an additional preprocessing step: identifying the (possibly

ambiguous) medical concepts in the instance. Identification of medical concepts uses

the UMLS English normalized string table (mrxns-eng) to look up strings consisting of

at most six tokens; the string is considered a medical concept if its normalization from

the UMLS's Lexical Variant Generation program (LVG) (Bodenreider, 2004) is found

in that table. LVG tokenizes a string, stems each token, alphabetizes the tokens, and

joins them on spaces. Each token is assigned to the longest concept it belongs to,

if any. The identified (possibly ambiguous) concepts' CUIs and normalizations are

recorded for future use. This method of identifying concepts is by no means foolproof;

often false positives are found when single-token stopwords appear in UMLS and

therefore are assigned concepts in this method.

UMLS Features

In addition to the basic bag-of-words features, we use UMLS to generate more feature

classes. One is the similar "bag-of-concepts" features - an unordered set of some num-

ber of the closest concepts as identified during preprocessing. These are represented

by their normalizations.

We also experiment with features based on syntactic and ontological relation infor-

mation. Manual examination determined three syntactic hops to be an appropriate

window in which important syntactic relations are found. Therefore the candidates

for generating these syntactic and ontological features are concepts that include to-

kens connected to the target by three or fewer syntactic hops. Both of these feature

types take the form of a token or piece of information from UMLS attached to syntac-

tic dependency information, just as for the general domain (see section 2.5.2). When

more than one hop is involved, dependency information for all hops is included and

the order of relations is preserved. Purely syntax-based features are then created by

prepending the stemmed token from the dependency relation to this information.

Two types of UMLS-based features are generated for each of the relevant concepts'

possible CUIs: ancestor features and semantic type features. We define the "Kth
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ancestor" of a CUI c to be all CUIs that have "parent" (PAR) or "broader than"

(RB) relations to any of the "(K - 1)th ancestors" of c, and we define the "0th

ancestor" to be c itself. The degree of parent branching in UMLS is high, however;

unlike a true tree where each node has exactly one parent, UMLS CUIs often have

many parents. Due to this high fan out, we only generate 0th through 2nd ancestors.

A feature is produced from each ancestor by prepending the ancestor's CUI to the

syntactic information.

UMLS also contains a semantic type for each CUI, which groups it into a coarse

category like "finding" or "disease or syndrome". These semantic types have IDs

(TUIs) and are arranged in a hierarchy, in this case a true tree so each type has

only one parent (e.g. disease or syndrome -+ pathologic function -+ biologic function

- natural phenomenon or process - phenomenon or process -+ event). A feature

is produced from a semantic type by prepending the type's TUI to the syntactic

information. We experiment with one feature class using just the type of the concept

and one using the type of the concept plus all types in the path up to the root of the

semantic type tree.

3.3.2 Results and Discussion

Evaluation is performed as described in section 2.4.3.

In all of our configuration comparisons, we are always comparing averages taken

over all targets. Results for individual targets or small groups of targets do not

necessarily reflect the average, and the ordering of the system configurations differs

across targets. In the average, some very large differences could offset several small

differences.

Cross-validation

Selected results from cross-validation runs are shown in table 3.3.2. Cross-validation

was 50-fold. The process worked much like that for general English: LDA configura-

tions were run first, starting with simple bag-of-words and bag-of-concepts features

to assess a good basic configuration and a good number of senses. These config-

urations compared models trained on the 20 or 6 closest non-stopwords (20w, 6w)
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Configuration Cross-validation accuracy
MFS 60.1%
LDA, 6w, 6 topics 65.7%
LDA, 20w, 6 topics 65.7%
LDA, 6w +6c +Synt, 6 topics 66.5%
LDA, 6w +6c, 6 topics 66.0%
LDA, 6w +UST +Synt, 6 topics 65.0%
LDA, 6w +USTall +Synt, 6 topics 61.8%
LDA, 6w +UA2 +Synt, 6 topics 60.4%
LDA, 20w +UST +Synt, 6 topics 65.5%
LDA, 20w +USTall +Synt, 6 topics 63.4%
LDA, 20w +UAO +Synt, 6 topics 65.6%
LDA, 20w +UA1 +Synt, 6 topics 64.4%
HDP, 6w +6c +Synt 70.2%
HDP, 6w +6c 69.7%
HDP, 6w 68.5%
HDP, 20w 65.5%

Table 3.2: Mayo cross-validation accuracies for various topic-modeling configurations

or concepts to the target (20c, 6c); 20 was chosen for comparison with the path-

and PageRank-based methods, and 6 was chosen to compare a smaller context. The

best of these LDA configurations used 6w and 6 topics was found to be the best of

these. Syntactic and ontological features as described above were combined with bag-

of-words configurations and the results recorded. Word-populated syntactic features

within 3 hops are denoted Synt; UMLS semantic type features using just the lowest

semantic type are denoted UST ("UMLS Semantic Type") and those using the whole

path are denoted USTall; and UMLS ancestor features using k parents are denoted

UAk ("UMLS Ancestor"). Combinations of features are denoted in this text with '+'

before each additional set. The best two LDA configurations were 6w +6c, and 6w

+6c +Synt, each using 6 topics. Cross-validation was run on HDP for bag-of-words

configurations and some of the better LDA configurations.

The failure of ontology-based features UAk to help disambiguation may suggest

noisy "parent" relations. To investigate this, we generated the ancestor features

again, but instead of using parent relations to find ancestors, we used the paths-to-

root that UMLS has for CUIs in the SNOMED CT vocabulary. This leaves some

context concepts without any ancestors generated (not in that vocabulary), but the
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Table 3.3: Mayo test set accuracies

features that do get generated are less noisy. We regenerated UA2 in this way, called

USA2 ("UMLS SNOMED Ancestor"), and compared its performance with UA2 by

comparing two configurations: (1) LDA, 6w +UA2 +Synt, 6 topics and (2) LDA, 6w

+USA2 +Synt, 6 topics. The former had cross-validation accuracy 60.4%; the latter

had 64.5%. This higher accuracy is still lower than bag-of-words, however (65.7%),

so noisy relations must not be the only problem.

Test

Accuracies on the test set (30% of the Mayo data, usually 30 instances) are reported

using the majority prediction over the 5 trained models as described in section 2.4.3.

Configurations to test were chosen from the cross-validation runs; the best bag-of-

words models were chosen, as were the best overall (6w +6c +Synt for both LDA

and HDP). The LDA test runs showed the same relative accuracies of configurations

as cross-validation - the extra features showed a gain over bag-of-words. This gain

is small but somewhat significant: p = 0.0176, t = 2.376, df = 1975. However HDP

showed the opposite ordering from cross-validation; this may be partially due to the

small number of instances in the test set, as the difference between HDP, 6w +6c

+Synt and HDP, 6w is not significant (p = 0.0643, t = 1.851, df = 1975). The

difference between the best HDP configuration on the test set, 6w, and its LDA

counterpart 6w with 6 topics, is significant: p = 0.0020, t = 3.094, df = 1975.

Discussion

Cross-validation showed that of the UMLS-based additional features, only bag-of-

concepts (6c) produced any gain above the bag-of-words baselines. This implies that

UMLS only helped disambiguation in identifying and consolidating concepts, and
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Configuration Test set accuracy
MFS 66.7%
LDA, 6w +6c +Synt, 6 topics 76.9%
LDA, 6w, 6 topics 75.0%
HDP, 6w +6c +Synt 76.4%
HDP, 6w 78.1%



that its graphical properties, which were used in features USTall and UAk, were

unhelpful or harmful. This is perhaps not surprising given the poor performance of

our path- and PageRank-based disambiguation methods, which rely completely on

UMLS relations.

The fact that even limiting ancestor features to those of concepts in the SNOMED

CT vocabulary's hierarchy, which conforms to a tree structure, does not produce a

higher average accuracy than bag-of-words suggests that it is not just the high fan-out

that causes problems.

This raises the question of why relations between concepts increased accuracy in

the general domain as described in chapter 2 but decrease it here. The answer may

lie in the differences between WordNet and UMLS. WordNet's synsets and hyper-

/hyponym relations have been carefully created while UMLS's CUIs and relations

come from many disparate sources and do not undergo the meticulous scrutiny that

parts of WordNet do. This does not address the fact that the UMLS semantic type

hierarchy did not prove helpful, because that hierarchy is smaller and its quality is

easier to control. It may perform too coarse a clustering for use in a WSI task with

fine sense distinctions.

The Mayo dataset in particular seems to have very fine sense distinctions. For

example, the senses of the target 'iv' that appear as labels in Mayo are: C0348016 In-

travenous, C0559692 Intravenous fluid replacement, C0745442 Intravenous Catheters,

and C0677510 Roman Numeral IV. The first three of these CUIs are labels for some

instances that are quite similar:

" Review of systems show no contraindications to local, IV, or general anesthesia

(C0348016)

" Patient received IV fluids (C0348016)

" They wanted to give him an IV for hydration (C0559692)

* Treated with steroids and IV, clindamycin as well as Levaquin (C0559692)

" The patient had IV, 02, and a monitor (C0745442)
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" This would be a T4, N2, MN staging, likely stage IV, as we did not have CT-scan

of the chest (C0677510)

" Minor adjustments were made for stack splint to allow for distal interphalangeal

joint flexion on IV (C0677510)

These three similar meanings for IV differ only in semantic type (spatial concept,

therapeutic or preventative procedure, and medical device respectively), three sides

of the same base IV concept.

3.4 Topic-modeling on abbreviations: mapping set size experiments

The high cost of obtaining manually annotated data that motivates finding effec-

tive unsupervised and semi-supervised disambiguation methods also motivates mak-

ing semi-supervised methods use as little annotated data as possible. In our topic-

modeling approach, this corresponds to the size of the mapping set. We experiment

with the effect of this size on accuracy using the Abbr dataset.

3.4.1 Methods

Our experiments on Abbr use the 50 targets used by Moon (2012). We randomly

choose 120 of the 500 instances per target in Abbr to comprise the largest mapping

set. We then create smaller mapping sets by removing 10 elements each time until

only 10 are left, yielding mapping sets 1, .. ,12 of sizes 10, 20, ... , 120 where set k is

contained within set k + 1.

To perform the mapping set size experiments, we pick one LDA and one HDP

configuration that performed well on the Mayo data and train models for those on

the training set generated for Abbr from MIMIC. We then use each of the 12 sets

in turn as the mapping set, and test on the 380 instances not found in any of the

mapping sets. As we are only interested in the effect of mapping set size on accuracy

in these experiments, we do not further vary the configuration on which the models

are trained; therefore we may not be using the optimal configuration for abbreviation

and acronym expansion, simply one that we have reason to believe is adequate. The
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Figure 3-1: Abbr test set accuracy by mapping set size

configurations we have chosen are: LDA with 6 closest words, 6 closest concepts, and

6 topics; and HDP with 6 closest words and 6 closest concepts.

3.4.2 Results

Figure 3-1 shows the accuracies achieved by these methods on the Abbr test set (380

instances/target) as the size of the mapping set is varied. The test set MFS is also

shown as a baseline. Test set accuracies are reported using the majority prediction

over the 5 trained models as described in section 2.4.3. As with the Mayo dataset,

the HDP configuration has better accuracy for all mapping set sizes, and it levels

out around 70 instances; the LDA configuration levels out around 60. The accuracies

get quite high, above 85%, but fall short of those achieved by Moon et al. in their

experiments varying the amount of labeled data for training in supervised algorithms

(2012).

3.5 Automatic mapping set creation

Abbreviation expansion is a unique subtask of WSD in that previous work has been

performed on obtaining noisy, labeled corpora for training. This data has been used

in supervised abbreviation expansion. The topic-modeling approach to WSI does

not require large amounts of mapping data, as seen in section 3.4.2, but with vast
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numbers of possible ambiguous targets, automatic generation of this data would make

the method much more scalable. We experiment with this idea by creating a mapping

set for the targets in Abbr from notes in MIMIC. Following the methods of Xu et

al. (2012) and Pakhomov (2005), to obtain labeled instances for an abbreviation we

look for instances of that abbreviation's long forms in MIMIC (using exact string

matching), collect a small context around each one we find, and replace the long form

with the abbreviation, labeling the instance with the long form that was originally

there. For example, "the patient remained on antibiotics, off pressors and on a ms

drip for comfort" is part of an instance labeled 'morphine sulfate' while "The patient

is a 41-year-old man with advanced ms who is paraplegic secondary to this" is part

of one labeled 'multiple sclerosis' and "UNDERLYING MEDICAL CONDITION:

33 year old woman with ms s/p MVR in '79 presenting with dyspnea, worsening

functional capactiy" is part of one labeled 'mitral stenosis'. We find the long forms

for matching by looking up the abbreviations in LRABR, a table of the SPECIALIST

Lexicon. Because MIMIC is so large, to keep this task feasible we limit ourselves

to collecting 1000 instances per long form. Xu et al. (2012)'s instances come from

dictated discharge summaries, which contain fewer abbreviations and more long forms

than written notes, so they also "transform" their instances by replacing long forms

of other abbreviations with their corresponding short forms in order to make the text

look more like notes in which abbreviations are naturally found. We do not perform

this step, as MIMIC is quite abbreviation-rich and Xu et al. did not find a large gain

from it.

We intended to use this mapping set in experiments with our models trained on

MIMIC data and our Abbr test set. However after collection, we found that the long

forms from LRABR that appeared in MIMIC were very different from the ones in

the Abbr labeled data. For each target, examining the forms with > 1% frequency

or that are in the top 3 forms yields only 21/75 targets with more than one form in

common between the automatically collected set and Abbr. Most of these common

forms have very different frequencies between the two corpora and only a few look

promising.
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Target MFS LDA LDA HDP HDP
6w +6c, 6w +6c, 6w +6c, 6w +6c,
6 topics 6 topics
auto-mapping Abbr mapping auto-mapping Abbr mapping

bm 89.7% 26.1% 89.7% 18.7% 89.7%
cva 58.7% 75.8% 96.6% 38.7% 96.3%
er 88.9% 93.2% 88.9% 78.2% 93.7%
mr 65.0% 94.2% 94.7% 84.2% 93.7%
ms 55.0% 85.8% 91.8% 58.2% 92.4%
otc 93.4% 93.4% 93.4% 31.3% 97.1%
pda 72.9% 90.8% 90.3% 38.2% 91.3%
ra 79.7% 65.0% 79.5% 03.4% 95.0%

Table 3.4: Results of using an automatic mapping set for eight targets and comparison
to using a gold-standard mapping set

We try the automatically created mapping set as the mapping set for the existing

trained models for eight targets: bm, cva, er, mr, ms, otc, pda, and ra. These targets

were chosen because of their higher overlap of senses between the mapping set and the

Abbr test set. Table 3.4 shows the results of both the LDA and HDP configurations

from the previous abbreviation experiments. These results are contrasted with the

results from the 70-instance Abbr mapping set. Surprisingly, HDP with the automatic

mapping set performs exceedingly poorly, while LDA with this set does similarly to

LDA with the Abbr mapping set on 5 of the 8 targets: er, mr, ms, otc, and pda (within

10 percentage points). The targets' sense distributions in the automatically created

mapping set do not all look equally reflective of the Abbr test set, but how "good"

a distribution looks (for example, whether the MFS of the automatically created set

is the same as that of the test set) does not seem to predict how close the accuracies

are.
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Chapter 4

Implementation considerations

Developing a WSD software system involves combining and chaining many compo-

nents. Not all components will need to be executed on every system run. Instances

containing the ambiguous words must be represented in RAM and on disk. Expensive

processing performed on them must be saved on disk as well.

4.1 Languages used

The backbone of the system was written in Java; we frequently take advantage of

abstract classes and threading. Many of the components are also in Java, including

third-party APIs used for various preprocessing steps. The main tools that run LDA

and HDP are third-party applications written in C++. We chose the HDP tool

to be consistent with past work whose methods we were using and chose the LDA

tool due to the speed of C++. Many scripts were required to do small amounts of

processing such as altering feature files and scoring results, as well as larger amounts

of processing such as reading large text files to gather instances of ambiguous targets.

These scripts were written in Perl. Scripts that wrapped multiple runs of the Java

system were written in Bash.

4.2 Modularity in processing

Tasks needed for WSD are often discrete and unrelated. To ensure that only needed

tasks are performed, we use a configuration file that, among specifying many task-

specific parameters, specifies whether a task should be performed. The tasks fall into
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four general categories: preprocessing, feature generation, training, and disambigua-

tion. Sometimes tasks were completely unneeded for the workflow of a disambiguation

method; in particular, the path- and PageRank- methods replicated on clinical data

in chapter 3 only did preprocessing and disambiguation.

It was also important to us to be able to swap out different choices for ways to

perform the tasks. In our implementation, these took the forms of different classes.

All our classes that performed tasks in the workflow inherited from a common abstract

superclass; sometimes there was another abstract layer in between this superclass of

all tasks and the individual classes. This was seen particularly in feature generation,

as there were actions that all feature generating classes had to do the same way, as

well as in concept identification.

Preprocessing generally included some or all of: tokenization, sentence boundary

detection, part-of-speech (POS) tagging, dependency parsing, and concept identifica-

tion.

Feature generation used preprocessing results and produced files of features that

would be used in training and disambiguation steps. Usually the bulk of work for

feature generation was in preprocessing.

Training involved feeding feature files into external software that produced models

for use in disambiguation.

Disambiguation, which included cross-validation and test runs, required running the

external software used in the training step on the test or cross-validation instances,

then performing supervised evaluation. This last step in the WSD workflow always

produced a "results" file for scoring, which had one line per disambiguated instance

and listed the instance's ID, target word, prediction, and true label.

In order to separate tasks into separate system runs, information must persist

between the runs. We did this simply by keeping files on disk in corpus-specific

directory trees. Files stored included the raw text of instances, annotations on those

instances (for example, dependency relations in the sentence of the target word),

input feature files, and model files. We used a lot of disk storage, but for our group

this was cheaper than the extra time of redoing processing.
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4.3 Parallelism

To speed up processing when it does have to be done, we made extensive use of

threads to parallelize computation. The parallelization was done at two granularities,

either by instance or by target.

Tasks that could be parallelized by instance included most preprocessing - tokeniza-

tion, sentence boundary detection, POS tagging, dependency parsing, and concept

identification all only depend on the context of one instance at a time. It was useful

to parallelize at the finest possible granularity because not all targets had the same

number of instances, and what's more, not all instances took the same amount of

time (especially for dependency parsing).

Tasks that could only be parallelized by target included most training and testing.

The models take all instances for a target into account. In cross-validation, there

was some room to do more parallelization because many runs had to be done for each

target (one per fold). We took advantage of this, though not as cleanly as parallelizing

by target or instance.

We typically used 5 threads for preprocessing and feature generation, and 10 for

training, testing, or cross-validation. This was performed on a shared 12-core machine

with hyperthreading.

4.4 RAM use

We found that parallelizing as much as possible was sometimes at odds with keeping

our RAM usage acceptable. When this occurred, typically during preprocessing since

all instances would be in memory at the same time despite being processed in parallel,

we would break up the runs by target, doing only a couple (or as few as one) at a

time. A better way to address this might have been a change in architecture to do all

desired preprocessing steps on each instance without requiring one step to be done

on all instances before moving to the next step. An instance's pertinent information

would then have been written to disk as soon as it was done, and could be dropped

from memory.
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4.5 Caching

Occasionally expensive processing was performed that was likely to be common to

multiple instances. This mostly occurred when performing look-ups of strings or CUIs

in the UMLS database, which was not hosted locally. In these cases, we cached the

results per component. The cache got a reasonable number of hits and provided a

modest speed-up.
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Chapter 5

Summary and Future Work

5.1 Summary

In this thesis we have shown that a successful general domain topic-modeling method

for word sense disambiguation continues to work well in the clinical domain despite

the differences in properties exhibited by the domains. We have also shown that

incorporating features beyond bag-of-words may be helpful; in particular, populated

syntactic dependencies provide useful information in the disambiguation process. We

investigated populating these dependencies with ontological information from knowl-

edge bases, but when this produced a gain it was limited, and in some situations it

was a harmful addition, perhaps due to the quality of the resource from which the

information was taken.

As labeled data is scarce for the WSD problem, we looked into the necessary amount

for the topic-modeling approach's subsequent mapping step. In these experiments,

on an abbreviation expansion dataset, we found that after 60-70 labeled instances

performance levels out. While it would be ideal if annotation could be avoided alto-

gether with a noisy but automatically collected mapping set, which might be possible

for abbreviation expansion using standard techniques, we found that at least for our

abbreviation data, the long forms differed too greatly between the data we were pre-

dicting on and the inventory we had as a reference.
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5.2 Future work

Future work on this problem should continue to explore ways to integrate knowledge

into the topic-modeling WSI algorithms. We did no tuning to find the best levels

at which to end feature collection in the knowledge base hierarchies we used, but we

expect it would have produced better results than our typical technique of going all

the way to the hierarchy root.

Further experiments should also involve obtaining better sources of knowledge to

integrate. Instead of using a knowledge base like WordNet or UMLS that is universal,

one could investigate the use of automatic thesaurus construction algorithms to create

relations better suited to the relevant data.

Finally, as mentioned in section 2.1, this thesis chose to keep feature distributions

relatively close to that of bag-of-words, but features with more varied distributions

could be included by using Brody and Lapata's multilayered models (2009).

56



References

E. Agirre and P.G. Edmonds. 2006. Word Sense Disambiguation: Algorithms and Applications.
Text, speech, and language technology. Springer.

Eneko Agirre and Aitor Soroa. 2007. Semeval-2007 task 02: Evaluating word sense induction
and discrimination systems. In Proceedings of the Fourth International Workshop on Semantic
Evaluations (SemEval-2007), pages 7-12.

Eneko Agirre and Aitor Soroa. 2009. Personalizing PageRank for word sense disambiguation. In
Proceedings of the 12th Conference of the European Chapter of the Association for Computational
Linguistics, EACL '09, pages 33-41, Stroudsburg, PA, USA. Association for Computational Lin-
guistics.

Eneko Agirre, David Martinez, Oier L6pez de Lacalle, and Aitor Soroa. 2006. Evaluating and
optimizing the parameters of an unsupervised graph-based wsd algorithm. In Proceedings of the
First Workshop on Graph Based Methods for Natural Language Processing, TextGraphs-1, pages
89-96, Stroudsburg, PA, USA. Association for Computational Linguistics.

Eneko Agirre, Aitor Soroa, and Mark Stevenson. 2010. Graph-based word sense disambiguation of
biomedical documents. Bioinformatics, 26(22):2889-2896, November.

Alan R. Aronson and Frangois-Michel M. Lang. 2010. An overview of MetaMap: historical perspec-
tive and recent advances. Journal of the American Medical Informatics Association : JAMIA,
17(3):229-236, May.

Olivier Bodenreider. 2004. The Unified Medical Language System (UMLS): integrating biomedical
terminology. Nucleic Acids Research, 32(suppl 1):D267-D270, January.

Jordan Boyd-Graber, David Blei, and Xiaojin Zhu. 2007. A topic model for word sense disambigua-
tion. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning (EMNLP-CoNLL), pages 1024-1033.

Samuel Brody and Mirella Lapata. 2009. Bayesian word sense induction. In Proceedings of the 12th
Conference of the European Chapter of the Association for Computational Linguistics, EACL '09,
pages 103-111, Stroudsburg, PA, USA. Association for Computational Linguistics.

M. Carpuat and D. Wu. 2007. Improving statistical machine translation using word sense disam-
biguation. In Proc. of EMNLP-CoNLL, pages 61-72.

Y. S. Chan, H. T. Ng, and D. Chiang. 2007. Word sense disambiguation improves statistical machine
translation. In Proc. of A CL, pages 33-40, Prague, Czech Republic, June.

Jinho D. Choi. 2013. ClearNLP. https : //code.google.com/p/clearnlp/. Computer software.

B. Dorow and D. Widdows. 2003. Discovering corpus-specific word-senses. In Proceedings of the
10th Conference of the European Chapter of the Association for Computational Linguistics, pages
Conference Companion pp. 79-82, Budapest, Hungary, April.

Christiane Fellbaum. 2010. Wordnet. Theory and Applications of Ontology: Computer Applications,
pages 231-243.

Gregory Grefenstette. 1994. Explorations in Automatic Thesaurus Discovery. Kluwer Academic
Publishers, Norwell, MA, USA.

Donald Hindle. 1990. Noun classification from predicate.argument structures.

Susanne M. Humphrey, Chris J. Lu, Willie J. Rogers, and Allen C. Browne. 2006a. Journal descrip-
tor indexing tool for categorizing text according to discipline or semantic type. AMIA ... Annual
Symposium proceedings / AMIA Symposium. AMIA Symposium.

57



Susanne M. Humphrey, Willie J. Rogers, Halil Kilicoglu, Dina Demner-fushman, and Thomas C.
Rindflesch. 2006b. Word sense disambiguation by selecting the best semantic type based on
journal descriptor indexing: preliminary experiment. J. Am. Soc. Inform. Sci. Tech, 57:96-113.

Roman Kern, Markus Muhr, and Michael Granitzer. 2010. Kcdc: Word sense induction by using
grammatical dependencies and sentence phrase structure. In Proceedings of the 5th International
Workshop on Semantic Evaluation, pages 351-354, Uppsala, Sweden, July. Association for Com-
putational Linguistics.

Dan Klein and Christopher D. Manning. 2003. Accurate unlexicalized parsing. In Proceedings of the
41st Annual Meeting on Association for Computational Linguistics - Volume 1, ACL '03, pages
423-430, Stroudsburg, PA, USA. Association for Computational Linguistics.

Dekang Lin. 1998. Automatic retrieval and clustering of similar words. In Proceedings of the 17th
international conference on Computational linguistics - Volume 2, COLING '98, pages 768-774,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Suresh Manandhar, Ioannis Klapaftis, Dmitriy Dligach, and Sameer Pradhan. 2010. Semeval-
2010 task 14: Word sense induction & disambiguation. In Proceedings of the 5th International
Workshop on Semantic Evaluation(SemEval), pages 63-68, Uppsala, Sweden, July. Association
for Computational Linguistics.

B.T. McInnes, T. Pedersen, Y. Liu, G.B. Melton, and S.V. Pakhomov. 2011. Knowledge-based
method for determining the meaning of ambiguous biomedical terms using information content
measures of similarity. AMIA Annual Symposium Proceedings, 2011:895.

George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and Katherine Miller. 1990.
Wordnet: An on-line lexical database. International Journal of Lexicography, 3:235-244.

Sungrim Moon, Serguei Pakhomov, and Genevieve B Melton. 2012. Automated disambiguation of
acronyms and abbreviations in clinical texts: window and training size considerations. AMIA
Annu Symp Proc, 2012:1310-9.

OpenSource. 2010. Opennlp: http: //opennlp.sourceforge.net/.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The pagerank citation
ranking: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab, November.
Previous number = SIDL-WP-1999-0120.

Sergeui Pakhomov, Ted Pedersen, and Christopher G. Chute. 2005. Abbreviation and acronym dis-
ambiguation in clinical discourse. AMIA ... Annual Symposium proceedings / AMIA Symposium.
AMIA Symposium, pages 589-593.

P. Pantel and D. Lin. 2002. Discovering word senses from text. In Proceedings of A CM SIGKDD02.

Ted Pedersen. 2010. Duluth-wsi: Senseclusters applied to the sense induction task of semeval-2. In
Proceedings of the 5th International Workshop on Semantic Evaluation, pages 363-366, Uppsala,
Sweden, July. Association for Computational Linguistics.

Fernando Pereira, Naftali Tishby, and Lillian Lee. 1993. Distributional clustering of english words.
In Proceedings of the 31st annual meeting on Association for Computational Linguistics, ACL
'93, pages 183-190, Stroudsburg, PA, USA. Association for Computational Linguistics.

Xuan-Hieu Phan and Cam-Tu Nguyen. 2007. Gibbslda++: A c/c++ implementation of latent
dirichlet allocation (lda).

P. Resnik. 2006. Word sense disambiguation in NLP applications. In E. Agirre and P. Edmonds,
editors, Word Sense Disambiguation: Algorithms and Applications. Springer.

58



Mohammed Saeed, Mauricio Villarroel, Andrew T. Reisner, Gari Clifford, Li-Wei Lehman, George
Moody, Thomas Heldt, Tin H. Kyaw, Benjamin Moody, and Roger G. Mark. 2011. Multipa-
rameter intelligent monitoring in intensive care ii (mimic-ii): A public-access intensive care unit
database. Critical Care Medicine, 39:952-960, May.

Guergana K. Savova, Anni R. Coden, Igor L. Sominsky, Rie Johnson, Philip V. Ogren, Piet C.
de Groen, and Christopher G. Chute. 2008. Word sense disambiguation across two domains:
Biomedical literature and clinical notes. Journal of Biomedical Informatics, 41(6):1088 - 1100.

H. Schiitze. 1998. Automatic word sense discrimination. Computational Linguistics, 24(1):97-123.

Yee W. Teh, Michael I. Jordan, Matthew J. Beal, and David M. Blei. 2003. Hierarchical Dirichlet
Processes. Journal of the American Statistical Association, 101.

Chong Wang and David M. Blei. 2012. A Split-Merge MCMC Algorithm for the Hierarchical
Dirichlet Process, January.

Zhibiao Wu and Martha Palmer. 1994. Verbs semantics and lexical selection. In Proceedings of
the 32nd annual meeting on Association for Computational Linguistics, ACL '94, pages 133-138,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Hua Xu, Peter D Stetson, and Carol Friedman. 2012. Combining Corpus-derived Sense Profiles with
Estimated Frequency Information to Disambiguate Clinical Abbreviations. AMIA Annu Symp
Proc, 2012:1004-13.

Xuchen Yao and Benjamin Van Durme. 2011. Nonparametric bayesian word sense induction. In
Graph-based Methods for Natural Language Processing, pages 10-14. The Association for Com-
puter Linguistics.

59


