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Abstract

High Harmonic Generation (HHG) is a fascinating phenomenon from both fundamental and
technological point of view. It enables the generation of attosecond pulses and can have
applications in EUV lithography and bio-microscopy. HHG can be described by the Three

Step Model (TSM), due to the three stages of the process: ionization, propagation and

recombination.

However, HHG suffers from low efficiencies and a study, which shows the efficiency scaling

with laser and material parameters is essential. For a long time experimentalists were using

only 800 nm driver pulses from Ti:sapphire lasers. With the advent of new light sources like
optical parametric amplifiers, different driving wavelengths became available and thus the

scaling of the single atom response versus drive wavelength has attracted a lot of attention.

A detailed analysis shows that the efficiency scales with wo at the cutoff and wg at the plateau
region for a fixed EUV frequency, where wo is the carrier frequency of the driver pulse.

To understand the limitations of such a light source, we have developed a semi-analytic
model for the computation of the conversion efficiency into a single harmonic for the plateau
and cutoff regions. This model is one-dimensional, uses the TSM for the calculation of

the single atom response and takes laser, material parameters and macroscopic effects into
account. Closed form expressions for the plateau and cutoff regions are derived and used
to calculate efficiencies for 400 and 800 nm driver pulses. The results are compared with

experimental ones showing very good agreement.

In order to investigate long-wavelength driven HHG efficiency, the 1-D model is extended

to three dimensions taking into account spatiotemporal propagation effects, such as plasma

defocusing and losses due to electron-neutral inverse bremsstrahlung. These phenomena
change the phase matching along propagation, resulting in non-coherent harmonic generation
and consequently poor efficiencies. We further study ways to mitigate the effect of plasma

defocusing like the use of Supergaussian pulses and the use of Gaussian pulses with larger
beam waists.

The work presented can help us develop tools for an optimization study of HHG efficiency,
in order to make useful EUV sources.
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Chapter 1

Introduction

The electromagnetic spectrum ranges between radio frequencies (3 kHz to 300 GHz) and

Gamma radiation (frequencies > 1019 Hz) and covers wavelengths between thousands of

kilometers down to a fraction of the size of the atom (Figure 1-1). Most of the part of the

electromagnetic spectrum is used for scientific applications. In this thesis we cover two re-

gions of the spectrum, the mid- to far- infrared (3.5-20 ptm) through the Quantum Cascade

Laser project and the Extreme UltraViolet to soft X-ray range (120 nm up to 0.8 nm or

10 eV-1.5 keV) through the High Harmonic Generation project. The goal of the Quantum

Cascade Laser project is to generate isolated short pulses via active mode locking and to

study the impact of spatial hole burning on pulse shape and stability. The goal of the High

Harmonic Generation project is to study the limits of the efficiency and do a theoretical

efficiency optimization study. The High Harmonic Generation project covers 80% of the

thesis and the Quantum Cascade Laser project, described in Appendix A, 20%.
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Figure 1-1: The electromagnetic spectrum. Figure taken from [1].

1.1 High Harmonic Generation

In High Harmonic Generation (HHG) an atom irradiated by a strong laser field, can generate

a wide spectrum of harmonics into the EUV and soft X-ray region of the spectrum, that

emerge as a coherent, low divergence beam. An intense fsec pulse in the visible range

focuses into a gas generating a broad spectrum of harmonics of the drive frequency down

to really short wavelengths (hundred times lower wavelengths than the driving wavelength).

Starting in 1990's, people discovered how this process works. A strong electric field suppresses

the potential barrier felt by a valence electron of the atom, the electron becomes free and

is accelerated in this laser field, first away and then back towards the atom and when it

recollides it can emit an EUV or X-ray photon (Figure 1-2) [2,3].

In the harmonic spectrum, we see that there is a long "plateau" of constant amplitude

over a large spectral range, followed by a sudden drop of the harmonic emission which is the

cutoff. The cutoff corresponds to the maximum emitted photon energy. Due to the periodic

repetition of the process (ionization, propagation and recombination), the resulting dipole

emission spectrum is discrete and because of the half cycle symmetry of the dipole moment,

only odd harmonics separated by twice the laser frequency wo survive (Figure 1-3).
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1.2 Applications

HHG can be used to develop and utilize compact and powerful soft X-ray sources that will be

of modest size and cost and will enable imaging and spectroscopy applications that in the past

have been only possible at large scale synchrotron and X-ray free electron lasers (X-FELs)

(Figure 1-4). In addition, the radiation from the compact source would offer properties

such as spatial coherence, femtosecond and eventually attosecond time resolution. These

properties are not possible at synchrotrons and hard to implement in X-FELs. For imaging

applications in the water window region, an estimated coherent X-ray flux radiation in the

2-5 nm wavelength range producing 1010 photons/sec in 1% bandwidth is required. Such

flux levels are currently only possible at third generation synchrotrons and with femtosecond

pulses only at X-ray FELs, like SLAC or FLASH.

Figure 1-4: a) Cornell High Energy Synchrotron Source (CHESS) at Cornell, Ithaca, NY, b)
X-ray Free Electron Laser at DESY, Hamburg, Germany.

Some of the applications of HHG are the following:

1.2.1 Angle Resolved Photoemission Spectroscopy

Angle resolved photoemission spectroscopy (ARPES) has the unique ability to resolve the

electronic band structure of materials in momentum space. Photons of energy higher than
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the work function are used to eject electrons and by measuring the energy and momentum

of these photo-ejected electrons, one can obtain the energy-momentum dispersion relation

inside the material (Figure 1-5). ARPES has helped scientists understand the physics of

materials such as graphene and strongly correlated materials. Traditionally, these experi-

ments are performed at synchrotrons which can provide tunable high energy photons. With

the advent of the femtosecond lasers, it has recently become possible to perform ARPES by

using harmonics of lasers. Initially, scientists used fourth harmonics of Ti:sapphire lasers

at 6 eV as the light source. The advantage of using lasers as the light source compared

to synchrotrons is that lasers provide higher energy and momentum resolutions, yielding in

much sharper spectra. Laser-based ARPES experiments [5] can provide 3D dispersion (en-

ergy and two components of momentum) as opposed to 2D dispersion that can be obtained

at synchrotrons. Laser-based ARPES has also made it possible to add time resolution to

these experiments by using pump-probe method to record a femtosecond movie of electronic

band structure after photo-excitation by another laser pulse. However, initial laser-based

ARPES experiments were limited to 6 eV. This seriously restricts the range of accessible

momentum values in k-space. For some problems, the dynamics of interest are near the edge

of the Brillouin zone and are inaccessible to this method. In addition, in order to obtain the

dispersion in the direction normal to the sample surface, one needs to vary the energy of the

light source. For all these reasons there has been a great need in the ARPES community for

HHG-based light sources that can reach to high energies up to 500 eV.

1.2.2 Coherent Water Window X-ray Generation for

Applications in Bio-imaging

The implementation of a powerful coherent X-ray source has been a main goal for researchers.

X-ray microscopy, with a resolution of a few tens of nm, is an emerging technique that has

the capability of bridging the gap between optical (submicron resolution) and electronic

microscopy (few nm resolution) [7]. The spectral range of 284-543 eV (between the Carbon
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hv e-

Figure 1-5: Experimental setup for Angle resolved photoemission spectroscopy (Figure taken

from [6]).

and the Oxygen K-absorption edges), which is called water window region, is attractive for

high-contrast biological imaging.

Between the K edges of Carbon (284 eV, 4.37 nm) and Oxygen (543 eV, 2.28 nm), the

natural contrast between water and Carbon-rich tissues, like proteins and lipids, is quite

strong, as shown in Figure 1-6, which shows the difference in transmission when 100 nm of

water is replaced with 100 nm of carbonaceous compounds [8]. The decrease in transmission

compared to the surrounding water is 5%-10% at 500 eV and 10%-20% at 350 eV.

An intense water window X-ray pulse would allow scientists to capture images of live

cells by instantaneously halting their motion, without the cumbersome staining and slic-

ing preparation needed by electron microscopy. Also the sample's preparation process for

electron microscopy has a high risk of alteration of the structural information.

So far, X-ray microscopy has been possible through synchrotron facilities. Several beam

lines have performed X-ray microscopy in the water window. However, images of live cells

cannot be captured without freezing the sample. In addition, the necessity of long term

planning, and of transfering the samples from the biology laboratory to the beam line are a
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strong drawback for the use of synchrotrons.

HHG using a tabletop laser system is an alternative approach for generating coherent

water window X-rays. However, the output photon flux at 300 eV is still low and the

conversion efficiency around 10- 9 .

1.2.3 Lithography at EUV Wavelengths

The electronics community has always aimed to the miniaturization of integrated circuits

(ICs). The technique which is currently used to produce ICs is photolithography, or optical

lithography, which consists in shining a photo resist, a material sensitive to light, with

an optical beam. The photo resist substrate is the circuit board, and the materials used

to produce circuits are chemically deposited on the pattern drawn by light on the photo

resist. Current techniques are capable of producing sub-100-nm features by using UV light

at 193 nm from excimer lasers, but for further miniaturization it is necessary to use shorter

wavelengths.
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Extreme UV (EUV) lithography is one of the most promising techniques within Next

Generation Lithography (NGL) [9]. EUV lithography uses light at 13.5 nm (92 eV), which

is the wavelength at which Mo/Si mirrors have a relatively high 72% reflectivity [10]. The

present sources of such light are either discharge or laser produced, and suffer from low

efficiency, incoherence and non-directionality.

HHG-based sources using short wavelength drive lasers and femtosecond enhancement

cavities with Helium as the HHG medium may result in highly efficient EUV sources. The

advantage of HHG sources is the fact that they offer the possibility of a spatially coherent

source, when compared to plasma sources and also would not produce debris that may

destroy downstream imaging optics.

1.2.4 Attosecond Pulse Generation

HHG is currently the only experimentally proven method for generating attosecond pulses

[11,12]. Attosecond science has opened the door to real-time observation and time-domain

control of atomic-scale electron dynamics. The time structure of harmonic emission forms

the basis of the generation of attosecond pulses. In order to achieve emission in the fraction

of a femtosecond, we need to filter a limited band of photon energies near their maximum

(cutoff).

For many applications, single attosecond pulses (one burst per laser pulse) are preferred.

For a few-cycle pulse, the highest harmonic radiation is emitted only during the single laser

cycle where the highest electron recollision energies are reached. In this case, the harmonic

spectrum has a smooth and unmodulated cutoff. In the time domain, the smooth spectrum

at the cutoff corresponds to an isolated attosecond burst of radiation.

In the case of multi-cycle laser pulses the release and recollision process is repeated peri-

odically and the discrete structure of the harmonic spectrum is pronounced (i.e. pronounced

peaks at odd multiples of the fundamental frequency). As a result not a single pulse, but a

train of harmonic pulses is generated. The smoothness of the cutoff and emission of single

pulse depend on the carrier-envelope phase .When the laser field is cosine-shaped (OCE=O)
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and consists of few oscillation cycles (few cycle pulse), only one electron (the most energetic

one) with the maximum recollision energy has enough energy to contribute to the filtered

high-energy emission. Correspondingly, only a single high frequency attosecond burst of

radiation is emitted (Figure 1-7).

By appropriately changing the carrier-envelope phase, the cosine waveform of the driving

laser field turns to a sinusoidally shaped one (OCE = r/2) and as a result the attosecond

photon emission changes remarkably. Instead of a single pulse, two identical bursts are

transmitted to the EUV bandpass filter (Figure 1-7). The reason is that in this case there

are two electrons which have equally high maximum recollision energy. So, two attosecond

pulses are generated that are separated by half the laser optical period, because the two

electrons that recollide with the maximum harmonic energy have birth and as a consequence

arrival times separated by half cycle. In the harmonic frequency spectrum the additional

time structure appears as a modulation close to the cutoff.

The shortest duration of a single attosecond pulse is limited by the bandwidth within

which only the most energetic recollision contributes to the emission. In a 5 fsec, 750 nm laser

pulse this bandwidth is about 10% [13]. For photon energies of ~ 100 eV this corresponds

to a bandwidth of - 10 eV, so pulses of about 250 attoseconds are generated. For a photon

energy of 1 keV, a driver laser field with the above properties will lead to a single pulse

emission over a bandwidth of around 100 eV, which corresponds to 25 attoseconds [14].

Taking into account that the atomic unit of time is 24.189 attoseconds, we can say that it is

possible to push the frontiers of attosecond technology near the atomic unit of time.
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1.3 Motivation

HHG suffers from low efficiencies (Figure 1-8). Efficiencies of few times 10- 4 at 20 eV have

been achieved in Xenon [15] and efficiencies in the range of 10~ have been reported in Helium

using 400 nm driver [16], while for 800 nm driver the efficiency is 2-3 orders of magnitude

lower [15, 16]. Using a two-color laser field (400 and 800 nm) improves the efficiency in

Helium [16,17] up to few times 10-, but the efficiency still remains low.

Thus, a detailed analysis of how the efficiency scales with laser and material parameters is

of great importance. Due to the computational complexity of the problem, which includes not

only the microscopic response of the medium but also propagation effects, computed HHG

spectra are often given in arbitrary units, unless parameter fitting is employed to match the

experiments. Accurate quantitative simulation of the HHG efficiency can be extremely time-

consuming and considering the number of variables involved in the HHG process, a systematic

study with several quantities varying simultaneously is prohibitive. No complete expression

for the HHG efficiency and its scaling as a function of various parameters was presented. The

scaling of conversion efficiency was analyzed only in terms of laser wavelengths and pressure.

In addition, in the HHG process there are complicated spatiotemporal propagation ef-

fects, such as plasma defocusing which distorts the pulse and losses due to electron-neutral

inverse bremsstrahlung. These phenomena change the phase matching along propagation,

resulting in non coherent harmonic generation and consequently poor efficiencies. It is crucial

to analyze the influence of those phenomena and find ways to mitigate them.

Thus, by investigating the factors which limit the HHG process and finding ways to

increase the HHG efficiency, we can develop table-top HHG-based EUV/X-ray sources (Fig-

ure 1-9).
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1.4 Preview of Thesis

The goal of this thesis is to achieve theoretical optimization of HHG efficiency. In this direc-

tion, we derived a semi-analytical formula for efficiency in 1-D and we performed numerical

modeling of the problem in 3-D. In Chapters 2-4 we give the context of the work and we

describe the basic modeling of HHG and in Chapters 5-7 we describe our contribution to the

field.

In Chapter 2 we describe the microscopic phenomena of the HHG process and we discuss

in detail one of the most successful models for describing HHG, the Three Step Model. In

this model, HHG is split in three steps, ionization, propagation and recombination.

In Chapter 3 we deal with the macroscopic phenomena. Starting from the wave equation,

we study the propagation of the driving field, initially in 1-D and then in 3-D. We first assume

that the driving field is a plane wave, which is valid if the the pulse is loosely focused, and we

form the harmonic field in such a way that can be used later for the derivation of the efficiency

formula. We then move to 3-D and we describe the four terms of phase mismatch and the

effects of plasma defocusing and electron-neutral inverse bremsstrahlung. One important

result of this Chapter is the dependence of plasma defocusing and inverse bremsstrahlung

on pressure.

In Chapter 4 for completeness and to be self-contained, we give a detailed derivation

of the single atom response in the single active electron approximation of the Three Step

Model.

In Chapter 5 we derive an analytical expression for the calculation of the efficiency at

a given odd harmonic in the plateau and cutoff region. The efficiency formula is based in

the 1-D model and takes the laser and material parameters and macroscopic effects into

account. The main result of this Chapter is that the efficiency per given harmonic scales

with wo in the plateau and with W5 in the cutoff region of the spectrum, where Wo is the

driving frequency.

In Chapter 6 we compare the results of the efficiency formula with experimental results

from the literature for 400 and 800 nm drivers and we show very good agreement. The main
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result is that the efficiency for 400, nm is 1-2 orders of magnitude higher than the one at

800 nm. We also study the effects that interference of long and short trajectories have on

the spectra. In addition, we investigate two different ionization models, the ADK and the

Yudin-Ivanov and we show that the Yudin-Ivanov model, which includes both tunneling and

multiphoton ionization, gives more accurate results especially for short drive wavelengths.

In Chapter 7, we extend the 1-D model to 3-D and we study the generation of radiation in

the water window region of the spectrum by using driver pulses with 2 Pm drive wavelength.

We show that within the range of pressures one might choose for performing the experiment,

at low pressures diffraction enhanced by plasma defocusing is the dominant limitation, at

high pressures loss due to electron-neutral inverse bremsstrahlung is the main limitation and

there is an intermediate regime of medium pressures, where both diffraction effects and loss

due to electron-neutral inverse bremsstrahlung have an effect. These two effects do not allow

phase matching to be maintained for long distance resulting in low efficiencies. Finally, we

explore ways to mitigate the effect of plasma defocusing by using Supergaussian pulses and

Gaussian pulses with large beam waists.

In Chapter 8 we give future directions for the research in this topic.

In Appendix A we describe our work in active mode-locking of QCLs. After describing

the challenges of generating short pulses in QCLs, we study the impact of upper state lifetime

and pumping level on pulse formation and then we move to the role of spatial hole burning in

pulse shape and stability. The main result is that spatial hole burning reduces significantly

the pulse duration, but leads to pulse instabilities and non stationary pulse generation from

the laser.
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Chapter 2

Microscopic Phenomena - Three Step

Model

The dynamics of an atom according to the Three Step Model (TSM) are described in Fig-

ure 2-1. In step (a) the electric field (yellow line) alters the shape of the Coulomb potential,

allowing the electron to tunnel through the barrier. In steps (b) and (c) the electron travels

classically in the continuum (neglecting the influence of the Coulomb potential) and returns

back to the atom when the electric field reverses direction. In step (d) the returning electron

collides with the atom and may be scattered or recombined to the core. In the case of the

latter, a high energy photon is released with total energy equal to the difference between the

kinetic energy the electron gained in the laser field and the ionization potential -I,. However,

there is a chance that the laser field will remove the electron from the ion once for all.

2.1 Ionization

Ionization is the transition from inside to outside of the atom. It is assumed that only a

single electron of the atom is ionized, while the rest of the electrons are frozen in the orbitals.

This is often referred to as the Single Active Electron Approximation (SAEA) [18].

A rough distinction between the various regimes of atomic ionization can be made by con-
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Figure 2-1: The three steps in the High Harmonic Generation Process. Figure taken from

[13].

sidering the value of an adiabaticity parameter called the Keldysh parameter -y = V/p-(2Up),

where U = E0/(4w2) is the time-averaged kinetic energy or ponderomotive energy, EO is the

field amplitude, wo is the driving frequency and I is the ionization potential. The Keldysh

parameter is a measure of how adiabatic the process is and tells us how fast the barrier

moves, while the electron tunnels [19].

For -y >> 1 multiphoton ionization takes place [20]. It is dominant for small fields and

as a consequence many photons are needed in order to achieve ionization. Note that we

consider fields of frequency wo, such that hwo < I, and therefore photoionization by a single

photon is impossible.

For -y < 1 we are in the tunneling regime. In this regime the electric field is high and the

frequency of the laser field is small. The electron ionizes by tunneling under the Coulomb

barrier. This regime is called the quasistatic regime because the variation of the laser field

is so slow that the instantaneous ionization rate coincides with a static one [21]. If w(E) is

the static (Stark) ionization rate as function of the electric field, we have

Ia(t) 2 = exp - w(E(t'))dt' (2.1)

where a(t) is the probability amplitude of finding the atom in the ground state. In fact even

for -y < 2/3 the approximation is satisfactory [22].
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Tunnel ionization depends on the electric field strength in a strongly nonlinear way.

The static ionization rate w(E) is well described in the tunnel ionization regime by the

Ammosov-Delone-Krainov (ADK) formula [21]. The ADK formula is

w(E)= 4 :2)IP(21 + 1) 2(21P) 3 / 2 ) 2n*-1 exp 2(2 p) 3 / 2  (2.2)
n*r (2n*) P EJ 3E

where n* = 1/V /-I and 1 is the total angular momentum quantum number of the valence

orbital, which is 1 for all noble gases apart from Helium (for which it is 0). IF is the gamma

function. We should mention that the magnetic quantum number m is equal to 0 in the

above formula. The ADK formula has also been extended to molecules [23]. The formula

shows the characteristic exponential dependence of the ionization rate on the inverse of the

field strength and due to this nonlinearity, in the case of tunneling field strengths, most

electrons are released at times when the field reaches its peak.

2.2 Propagation

The electron appears in the continuum with zero velocity and is accelerated by the sinusoidal

laser field. We assume that the field is so strong that we can neglect the influence of the

Coulomb potential. This is called the Strong Field Approximation. We then treat the motion

of the electron in the laser field classically. In Figure 2-2 we show the position of the electron

as a function of time for different birth times. The blue color is the electric field. Depending

on the phase of the laser field when the electron appears in the continuum, it may return

back either at the first return to the nucleus or at another return. Also it may not return

back at all.

As the electron propagates it acquires kinetic energy, due to the electric field and when it

recombines a photon with energy hWEUV = Ip + 0.5m± 2 is emitted. For each value of energy

there is a pair of trajectories, which return back to the nucleus with the same velocity and

as a result the emitted photons have the same energy. The trajectory with the earlier birth

time and as a result the later arrival time is called long trajectory, while the trajectory with
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the later birth time and as a result the earlier arrival time is called short trajectory. In

Figure 2-2, with red color we show a pair of short and long trajectories. Another pair is

shown with green color. The cyan line represents the trajectory which returns back with

the maximum kinetic energy. This corresponds to the highest harmonic also known as the

cut-off [3].
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Figure 2-2: Electron trajectories under the influence of a driving field.

2.3 Recombination

The returning electron can recombine with the parent ion. During the propagation, the

electron wavepacket undergoes quantum diffusion and by the time it returns back to the

atom, it can become several hundred times larger than the atom itself. For 800 nm laser
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hwc =I +3.17 0
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Figure 2-3: Electron trajecotry (solid line) and emission of EUV photon (purple). The
trajectory of the electron which returns back with the maximum kinetic energy is shown

with dashed line.

fields, the electron wave packet has a typical transverse 1/e width of 9 Angstroms by the time

of recollision, much larger than the size of small molecules (typically - 1 Angstrom) [24].

Therefore the wavepacket can be treated like a plane wave. The recombination amplitude is

then the dipole moment between the plane wave and the ground state.

arec = (glxlk) (2.4)

In Figure 2-4 are shown the recombination amplitudes of the noble gases in the length

gauge.
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Chapter 3

Macroscopic Phenomena

In this Chapter we describe the driving field propagation. We start with an 1-D model,

assuming that the driving field is a plane wave propagating without distortion. Then we

move to 3-D, considering the driving field to be a Gaussian pulse in time and space, taking

into account the effects of plasma defocusing and electron-neutral inverse bremsstrahlung.

3.1 General Wave Equation

The general wave equation [26] describing the propagation of an electromagnetic field E(r, z, t)

in an isotropic dielectric medium characterized by an electronic polarization P(r, z, t) is

2 E(r, z, t) 1 02P(r, z, t)
V E(r, z, t) at 2  CC2  (3.1)

where z is the propagation coordinate, r is the transverse coordinate, c is the speed of light

and co is the electric permittivity of free space. We split the polarization P generated by

the gas into its linear and nonlinear parts P(') and PNL and similarly, we can decompose

the displacement D into a linear and nonlinear part.

D =coE + P(1) + pNL = D ) + pNL (3.2)
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Substituting D into the wave equation (Eq. 3.1), we rewrite the wave equation in a form

that isolates the nonlinear polarization as the source for waves generated at new frequencies

1 a2D(1)(r, z, t) 1 2pNL(rZ7t) (33)
V 2 E(rzt) - =OC at 2

For the case of an isotropic material D(1 ) = (1)E, where E1) is a scalar quantity and

using the refractive index of the medium, which we assume for the moment to be independent

of frequency and position, n = VE(1)/co we obtain

V 2 E(rz,t) - n 2 2E(r, z, t) 1 O2pNL(r z, t) (34)
2E ,) 9 t2  COC2 at2

3.2 Model for 1-D Propagation

In the HHG experiment the gas jet is usually located at the focus. If the driving field is

loosely focused, we can approximate it on focus as a plane wave.

We represent the harmonic field and the nonlinear polarization as a sum of their various

frequency components [26]

Eh (r, z, t) = Eq (r, z,t) ek Z (3.5)
q

PNL z t) (r t)eiqklz (3.6)

q

where q is the order of each harmonic, Eq(r, z, t) and pqNL(r, t) are the envelopes of the

harmonic field and the nonlinear polarization respectively. In the following, we assume

that the nonlinear polarization of the medium does not change the fundamental driving

field except for a change in its phase velocity due to the plasma generated. This effect

enters only the wave number k1 , and therefore, the nonlinear polarization envelopes p NL t)

driving the harmonics do not depend on z. By substituting Eq. 3.5 and Eq. 3.6 into
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Eq. 3.3 and performing the paraxial approximation, as well as the slowly varying envelope

approximation, [27] we obtain a wave equation which is valid for each frequency component

of the harmonic field

V q (r, z, t) n 2 0 2Eq(r, z, t) 1 N2 t(r, z, t)

,Eq (r, z, t) +q2ik q k2Eq(r, z, t) - &2 2 &2

(3.7)

We substitute in Eq. 3.7 the Fourier transforms of the harmonic field Eq and the nonlinear

polarization pqN
T

Eq(r, z, Wq) = Eq(r, z, t)eiwqt dt (3.8)
0

and
T

p(r, Wq) = -/7 fpq (r, t) e w'dt (3.9)
0

with wq = qw, and we define pgL(r, Wq) = pdq(r, Wq), where dq is the dipole moment and p is

the density of atoms. Thus

C 72q(r, Z, -q) + (r, W)ei(qki-k,)z - 5E(r, z W) (3.10)
2 zEq(r,ZWq) 2c0c 2

where - is the absorption cross section and D(w) is the dipole velocity.

If we neglect the transverse Laplace operator term V in Eq. 3.10, i.e. convert to a

one-dimensional propagation situation, and introduce atomic units (4wrco = 1), and c = a -1,

we obtain a purely one-dimensional equation for the amplitudes of the plane waves [28]

z (27rap)~q(Wq)e 2

Note, that in our derivation we have neglected the depletion of the fundamental field.

Since ii(w) does not depend on z, i.e. the changes in amplitude and phase of the driving
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pulse are small over the medium length L, the solution to Eq. 3.11 is:

47raf)(w)
Eh() = - g(Ak, L) (3.12)

o-(w)

where

g(Ak, L) = ei(Ak.L)eL/( 2 Labs) (3.13)
1 + 2i(Ak - Labs)

describes the macroscopic response of the medium (Figure 3-1) and Labs, = 1/(pO-) is the

absorption length. If perfect phase matching conditions are satisfied, i.e. Ak = 0, and

the propagation distance L is long compared to the absorption length Labs, i.e. absorption

limited conditions, then jg(Ak, L) = 1 and Eq. 3.12 approaches its absorption limited value

Eh(W) = -47rai(w)/c-(w). Eq. 3.13 is valid for nonlinear optics in general and can be

rewritten as a function of the ratios of medium length to absorption length and coherence

length, Loh = wr/Ak, to absorption length. In general for L > 3Labs, and Le0 h > 5Las the

macroscopic response is at least half the maximum response [29, 30].
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-- L =Ln

0.2- L *
-- L =5*LM
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Medium length (Lab units)

Figure 3-1: Macroscopic response as a function of the ratios between L/Labs and Leh/Labs.
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3.3 Model for 3-D Propagation

The driving field is not assumed to be a plane wave anymore, but a Gaussian pulse in

space and time. The propagation equation for the driving field should include the effects

of diffraction, self-focusing, plasma defocusing, ionization loss and electron-neutral inverse

bremsstrahlung. In the slowly evolving wave approximation, a first order propagation equa-

tion is [31]

T

OE i 2 k 12 1 f2Ed -1 cIB
= k E+ikn2fOCjE2E- W EdT'- ' 2 E- 2 (1 -iw-rTc)pE (3.14)

-Z 2k - 2 2c -00 2ccoRe(E)2 OT
-00

where, E is the complex representation of the electric field; z and r are the propagation

distance and the retarded time in the retarded time frame respectively; k is the wave-vector

at the carrier frequency; V2 is the transversal Laplace operator; n2 is the nonlinear index

of refraction; wp is the plasma frequency; Ip is the ionization potential of the atom; p is the

number density of the ionized atoms; UIB is the cross section for electron-neutral inverse

bremsstrahlung; T, is the electron collision relaxation time. Because of cylindrical symmetry,

E is a function of z , T and the radial coordinate r .

3.4 Phase Mismatch

If the driver field is assumed to be a Gaussian beam,

bE 0  k1 r 2  , 2
El1(r, z, t) = .exp -- exp -21n(2) - esi (3.15)b + 2iz b+2iz

not modified as it propagates in the medium, where EO is the field amplitude, T is the full

width at half maximum, b is the laser confocal parameter, then the polarization of the q-th
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harmonic can always be written as

2z ± 2k(r 2 z
Pq (r, W) = pdq (r, w) exp q (klz - tan-' - - b2+4z2 (3.16)

where the dependence of the dipole amplitude dq(r, w) as a function of the electric field is

not yet determined. With Eq. 3.16 we can write:

c v2ZMq(r, z, wq) e . qkl-kqe (_ -tan- b?)
_q VEq(r, z, wq) q)- wqpdq(r, q)e

2iwq 09z 2coc

2Labs Eq(r, z, wq) (3.17)

The derivative of the dipole amplitude in the frequency domain iWqpdq(r,Wq) is related to

the dipole acceleration

_(Wq) -((q)je-i q
- ziqdq(r,Wq) = -. = (3.18)

where S is the action. Eq. 3.17 can be written as

v2 ( Eq(r, z, Wq) _ 1 _i(ki-kq)Z -CV
2 Eq(r,z) Wq) + - 2q(wc lqeq

2 Z wqz 2coc Z*W

2Labs Eq(r, z, wq) (3.19)

The phase is
2z 2kr 2 z

O(z) = (qk 1 - kq)z - qtan-1  - + qb2 +4Z2 - Sq (3.20)

The two first terms of Eq. 3.20 account for the phase mismatch due to plasma and

neutral dispersion, the third and fourth terms are the geometric phase and the last term is

the dipole phase [32-34]. The difference kq - qkl can be written as qkon(wq) - qkon(wo),

where n is the refractive index and wo is the driving frequency.

The refractive index can be written as n 2 (w) = 1 + x(w), with X(w) being the di-
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electric susceptibility. For an optically thin medium, i.e. X < 1, n(w) = 1 + X(w)/2.

The susceptibility has contributions from the neutral atoms and the plasma and can be

written as X(w) = Xneutral(w) + Xpiasma(w), with Xpiasma/neutra(W) = Nuound/lfeea(W)/e0,

where Nbound/free is the density of atoms and aneutral/plasma(W) is the polarizability. Since

aplasma = -e 2 /mw 2 , the refractive index can be written as

Nbeaneutral (w) _ Nfree e2
n 1 + 2co 2Eo mw 2  (3.21)

where N is the density of the neutral atoms and N is the density of the electrons freed by

ionization [32].

The density of atoms N is equal to PNAtm, where P is the pressure in atmospheres and

NlAtm is the density of atoms for 1 atmosphere. If we define as 6 the ionization level, then

Nb = (1- 6)N and Nf = 6N. Then the refractive index, taking into account the contribution

from neutral atoms and free electrons can be written as

n2=1+ (1 - 6)PNlAtmaneutrali(w) _ JPNAtre 2 /(mw 2) (3.22)
2co 26o

The phase mismatch Ak is equal to the derivative over z of the phase (r = 0) [35]

Ak do
dz
qkOq e2 2 1

=yPN1AIm(1 - 6 )(aneutrai(Wo) - Ceneutrai(wq)) - w PNAt.m - q-± 4 2 - VS
2co 2woc mCO b I + -z2b2

(3.23)

3.5 Plasma Defocusing
T

The imaginary part of - f 2Edr' in Eq. 3.14 describes the plasma defocusing. Plasma

defocusing starts to become important as the free electron density increases and as a result

the higher the pressure the stronger the plasma defocusing. A previous study has shown
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that plasma defocusing in Neon at 80 mbar can significantly reduce the peak intensity of an

800 nm driver pulse and diverges the driver pulse energy within a few hundred microns [36].

This effect not only decreases the cutoff photon energy but also shortens the interaction

length for HHG.

The physical origin of plasma defocusing comes from the difference between the refractive

indices at the center and the wings of the pulse along the radial coordinate r. Inside the gas

jet there is a distribution of atoms. As the driving field propagates along the z direction in

the gas, it ionizes the electrons and plasma (free electrons) is created. Since the intensity

at center of the pulse is higher than the intensity away from the center, more electrons are

ionized at the center than at increasing radii and as a result the center of the pulse "sees"

more plasma. The plasma contribution to the refractive index is negative (see Eq. 3.21) and

as a result the total refractive index at the center of the gas jet is smaller than the refractive

index around the center. Since the velocity is inverse proportional to the refractive index,

the center of the pulse travels faster than that around the center and thus the pulse gets

defocused. Thus, the plasma behaves like a concave lens.

Figure 3-2 shows the peak intensity versus radial coordinate r and propagation z when a

10 mJ, 35 fsec, 2 pm drive wavelength and 177 pm beam waist laser pulse propagates from

negative z to positive z through a Helium jet, 2 mm long, with two different pressures, one

very low (0.1 bar) in Figure 3-2.a and one very high (10 bar) in Figure 3-2.b.

14 14

150 a x10 150 b x10

6

75 4 75

2

-. 1 0 0.1 -0.02 0 0.02

z(mm)

Figure 3-2: Dependence of plasma defocusing on pressure. a) for small pressure of 0.1 bar

there is no plasma defocusing, b) for high pressure of 10 bar plasma causes defocusing of the

pulse at positive z. The colorbar shows the intensity in W/cm2 .
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3.6 Electron-neutral Inverse Bremsstrahlung

Laser radiation is absorbed primarily by inverse bremsstrahlung. Inverse bremsstrahlung is

the process of absorption of electromagnetic wave energy by the plasma, induced by electron-

neutral and electron-ion collisions. It is called inverse because usually the electron has the

energy and generates radiation, but here it first picks up the energy from the radiation and

then it starts to radiate. The cross section for electron-neutral inverse bremsstrahlung is [37]

ke2,
UIB --- e - (3.24)

wmco(1 + (wrc)2 )

where k is the wavenumber, m and e are the electron mass and charge respectively, w is the

driving frequency and r, is the electron collision relaxation time.

In Figure 3-3, is shown the cross section for electron-neutral inverse bremsstrahlung as

a function of pressure for drive wavelength 800 and 2000 nm.

-800 nm
"E -2000 nm

2x104 - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

C0

U 0

J2

* x1

Pressure (bar)

Figure 3-3: Electron-neutral inverse bremsstrahlung cross section as a function of pressure
for drive wavelengths 800 and 2000 nm.
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The electron collision relaxation time -r is inversely proportional to pressure and thus

for small pressures, since wr > 1, the cross section is linearly proportional to pressure. The

electron-neutral inverse bremsstrahlung cross section is small for 800 nm compared to 2000

nm, because the electron does not make such a large motion for the 800 nm wavelength.
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Chapter 4

Single Atom Response

For completeness and to be self-contained, we give a detailed derivation of the single atom

response in the single active electron approximation of the Three Step Model following the

work of Lewenstein and Gordon [18,38].

4.1 The Single Active Electron Approximation

The Hamiltonian of an atom with a single electron in an external field in atomic units and

in the dipole approximation is given by

V2

H = + V(x) - E(t)x + Ip (4.1)
2

In the single active electron approximation the atom under the influence of an electric

field satisfies, in the length gauge, the Schr6dinger equation

V2
Ow()) = Hi()) - + V(r) - E(t)x + i] p@(t)) (4.2)

where we have used atomic units (h = m = e = 1), |/(t)) is the time dependent electron

wave function, V(r-) is the atomic potential, 4, is the ionization potential and E(t) is the
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applied electric field which is polarized along the x direction. Note that we have shifted the

energy scale by Ip, thus the ground state energy of the atom is aligned with the zero of the

energy scale. Following [18,38] the time dependent electron wave function can be written as

10(t)) = a(t)00) + I#(t)) (4.3)

where 10) is the ground state, 1#(t)) represents the continuum

bility that the electron is in the ground state. Then

part and Ia(t) 2 is the proba-

HICO) = a(t)H0) + HI(t)) (4.4)

We know that

2 + V(x) 10) = E110)

where E1 is the eigenvalue (energy) of the ground state. But

both sides Ip, so that the energy level of the ground state 10)

(4.5)

El = -Ip and thus we add in

is zero. Then we have

F V2

[2 +±V(x)±+Ij |0) = (E 1 ±+I,)l0) = 0

Since

H V) = + V(x) + I4 - E(t)x 0) = -E(t)xl0)

H|0(t)) = -E(t)xoz(t) 0) + H1#(t)) (4.8)

and the Schr6dinger equation reads as

i (&(tI)) + (t))) = -E(t)xa(t)j0) + Hk(t)) (4.9)

The above equation is solved in two steps. To compute the amplitude of the ground state,

we use the quasi-static approximation and thus ja(t) 2 = exp -f w(E(t'))dt' ,where w(E)
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is the static ionization rate, given from the Ammosov-Delone-Krainov formula [21]. In order

to get the equation for fq(t)) we apply the projector operator P = 1 - 0f)(0 from the left in

Eq. 4.9. The motivation to do that is that 1#(t)) should be orthogonal to the ground state

wave function. Thus the left hand side of Eq. 4.9 becomes

ip (&(tio)) +| (t))) = i (1 - fO)(0) (&(t)f0) + e(t)))

= i&(t)O) - if 0)(0&(t10) + ife(t))

= i&(t)0) - i&(t)) + iw(t))

=ie~w) (4.10)

since (0| (t)) = 0.

For the right hand side of Eq. 4.9, -E(t)xa(t)10) + H#(t)), we first apply the projector

operator P on the term -E(t)xa(t)0):

-PE(t)xa(t)10) = -E(t)xa(t)10) + J0)E(t)e(t)(0|xJO)

= -E(t)xa(t0)) (4.11)

Then we apply the projector P on the term HI#(t)):

(1 - f0)(0) H#(t)) = H I#(t)) - 10) (OfH(t))

V2

- H#5(t) - f0)(Of 2 + V(x) ± I, - E(t)xfl#(t)) (4.12)

We have (0f - + V(x) + Ip) = A, (010(t)) = 0, and thus the application of the projector

on the term H i(t)), gives Hf#(t)) + f0)(0fE(t)x#(t)). Thus, the right hand side becomes

H#(t) + 0)(0fE(t)xfO(t)) - E(t)xce(t)f0) =

Hvf#(t)) + V(x)fo(t)) + f0)(OfE(t)xl#(t)) - E(t)xcx(t)|0) (4.13)
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where

Hv(t) 1 V2 - E(t)x + Ip2
(4.14)

is the Volkov Hamilonian, i.e. the Hamiltonian of a free electron in the laser field neglecting

the presence of the ionized core.

Thus the Schr6dinger equation Eq. 4.9 becomes

ij (t)) = HV q#(t)) + V(x)#(t)) + 0)(OjE(t)xj#(t)) - E(t)xa(t)JO) (4.15)

If we use the strong field approximation (SFA), assuming that the freed electron does not

"see" the core potential V(x), 1#(t)) satisfies approximately the equation (Volkov equation)

iIo(t)) = Hv (t)jo(t)) - E(t)xa(t)JO) (4.16)

4.2 Volkov Solutions

Initially we want to solve the homogeneous Volkov equation in order to find the time evolution

operator or equivalently the Green's function, which we will use for the evaluation of the

particular solution. The homogeneous Volkov equation is

ilov(t)) = Hv(t)j#v(t)) (4.17)

We assume that the homogeneous solution is a time dependent eigensolution of the velocity

operator k(t) and can be written as

I#v(t)) = e"(') Ik(t)) (4.18)
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with k(t) being the real momentum and f(t) the action. We assume k(0) = k and f(0) = 0.

Substituting the ansatz in the homogeneous Volkov equation we obtain

iv) = -f(t)e (t ) k(t)) + ies1 (t ) k(t))

and for the right hand side

Hv(t)|I$v(t)) = -
V
2+

But v = -iV so 2 = -V 2 and since vIk) = kIk) we have

- V 2 k(t)) = k2(t)Ik(t))

So the right hand side of Eq. 4.17 is

(4.19)

(4.20)

(4.21)

HV(t )$v(t )) ( k2(t) + - E(t)xe'f(0jk(t))

and Eq. 4.17 becomes

- f (t)e'f(t)Ik(t)) + izf( t) Ik(t)) =

We can solve Eq. 4.23 as following:

2(t) = k2(t)

and

(t)) = iE(t)xlk(t))

( k2(t) + I) eif(t)Ik(t)) - E(t)xef(0)|k(t))

-lk 2 (t')dt' - IPt

tif E(t')xdt'
-> Ik(t)) = c1 e o

(4.23)

(4.24)

(4.25)
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(4.22)

I) eip(*)|k(t )) - E (t) xei (t)|Ik (t )

I) eif (t)|Ik (t))

+ 1p) -> f (t ) =



But since Ik(0)) = jk), c1 = k) and thus

if E(t')xdt'
vlk(t)) = -iVlk(t)) = -iVe 0

-iJ dx if E(t')x-dt'

-i E(t')dt'-dxe 0 |k) -
if E(t')xdt'

iVe 0 1 k)

t t
if E(t')xdt'

= ] E(t')dt'e 0 1k)
0

if E(t')xdt'
+ ke 0 |k) = (k +

0

jk + J E(t')dt')
0

= k(t)jk(t)) (4.26)

The homogeneous Volkov solution is

- (kA(t')+A(O)) 2 dt'-ikpt
1v(t)) =e 0 I - A(t) -A() (4.27)

which can also be written in terms of a time evolution operator as

(4.28)

Thus the time evolution operator of the Volkov equation in velocity representation Uv(t, t')

also called propagator is:

(kIUv(tt')|k'} = (kje

= 6(k - k' + A(t) - A(t')) exp

t

|k' - A(t) + A(t'))

The time evolution operator (i.e. the Green's function) fulfills the homogeneous Volkov

Equation itself

i Uv(t,t') = HV(t)Uv(t,t') (4.30)
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E(t')dt' )
0

kov(t)) = Uv(t, O)lk)

iIp(t - t') ) (4.29)

if E(t')xdt'
E(t')dt' e 0 |k }

t

(k' - A (t") + A (t') )2 dt" -
2 f

V



and then we can use the Green's function in order to calculate the particular solution of the

inhomogeneous Volkov equation (Eq. 4.16). Thus the particular solution of the inhomoge-

neous Volkov equation is

10(t)) = -if UV(t, t')E(t')xa(t')0)dt' (4.31)
0

The "-" is because in usual Physics notation the Green's function is defined with the opposite

sign. Thus the Green's function is the exponential of the action.

4.3 Dipole Acceleration

We use the improved three step model (ITSM) [38] for the calculation of the dipole accel-

eration. Instead of calculating the dipole moment and differentiating twice in time [18], we

use the Ehrenfest theorem

-&2V(r) + E(t) (4.32)

and thus the expectation value of the dipole acceleration is

S= (7P(t)I (-OxV(r) + E(t)) 1P(t)) = -(i$'(t)IaxV(r)| (t)) + E(t) (4.33)

We drop E(t) since it does not include any high harmonics. So the remaining expectation

value of the dipole acceleration is

z(t) = -ja(t)12(O0V'(r)10) - a*(t)(0|V'(r)JO(t)) - a(t)(4(t)JV'(r)10) - (t)jV'(r)|4(t))

(4.34)

The first term vanishes due to odd symmetry and the last term describes scattering of the

returning electron from the potential (free-free transitions). Thus

S(t) = (t ) + *(t) (4.35)
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with

M(t) = -a*(t)(0|V'(r)j4(t)) (4.36)

For the derivation of the dipole acceleration we expand the particular Volkov solution 14(t))

into plane waves Ik).

(kkk(t)) = -i J(k IUV (t t')E(t')xa(t') 0)dt'
0

We insert in Eq. 4.37 f (k'jk')dk'3 = 1 and thus we have

(kl4(t)) = -i dt'J

Inserting Eq. 4.29, in Eq. 4.38 we get

(4.37)

(4.38)

(k|4(t)) = -ifd
0

x exp, -

tt' dk'36(k - k' + A(t) - A(t'))a(t')E(t')k'\xIO)

2 (k' - A(t") + A(t')) 2dt" - iI(t - t) )

p' = k'+ A(t')

p = k + A(t)

and

we get

(p - A(t)14(t)) =

- iJ dt'a(t')E(t')(p -
0

Defining

(4.39)

(4.40)

(4.41)

t( iI (t - t') ) (4.42)
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Defining the action of the free particle in the laser field

t

we conclude that

(p - A(t)|<p(t)) = -i f dt'a(t')E(t')(p - A(t')|x|0)e-'s(Ptt') (4.44)

0

where A(t) = - f E(t')dt' is the vector potential which describes the electric field.

The standard derivation involves a three-dimensional momentum integration carried out

in the stationary phase approximation and the t' integration carried out later in the saddle-

point approximation. However, much insight can be gained if the t' integration is carried out

first, right away in Eq. 4.44. So, instead of calculating the integral in the action term over

all the birth times t', we only evaluate it at those values at which the derivative of action

with respect to birth time is zero. It should be noted that taking the derivative with respect

to t' is a mathematical method of implementing the Landau-Dykhne formula [39]

The equation for the saddle point is:

1
at,S(p,t, t') -(p - A(t'))2 - Ip = 0 (4.45)

2

For a sinusoidal pulse, many birth times t' = t, (where n=1,2,3,) can satisfy this condition.

Eq. 4.45 has two complex solutions:

P, - A,(t') = ±i 2I + p2 (4.46)

where pj 2 p +p2 is the momentum vector component squared in the y-z plane, orthogonal

to the applied field. The saddle points t' need to be complex to fulfill Eq. 4.45, i.e. t' = t'.it'.

Under the assumption that the imaginary part is much smaller than the period of the driving
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field, i.e. -y = w0t' < 1, the vector potential can be linearized around the real part of the

saddle point and we obtain

px - A,(t') ± iE(t'.)t' = ±i 2 1p + Pj (4.47)

Thus the real part of the saddle point, which is the birth time of an electron with canonical

moment Px, is determined by the solution of p. - Ax(t') = 0, i.e. the particle starts with

zero velocity. The imaginary part is the well known tunneling time given the field E(t'.),

that suppresses the potential barrier of height Ip, [40]

' 2I,+ p /E(t') (4.48)

which holds for small Keldysh parameter -y = wOV"7J/E(t'.).

We set 0 = px - A,(t') and rewriting Eq. 4.43 in terms of t,, and 0 we have

t

S(p, t, t"(pX, 0)) = J dt"(px - A(t")) 2 + 02(t - tn(px, 0)) (4.49)

tn(px,O)

Next we want to expand the above integral about tn(pr, 0 = 0). The Taylor expansion gives

S(p, t, tn(pX, 0)) = S(p, t, t(p, = 0)) t± 2  S At2+! ±S + .. (4.50)

Note that tn(pX, 0) are the (possibly many or none) positive real solutions of Eq. 4.46. Let

us look at the above equation term by term.

Zeroth order:

S(p, t, tn(p, 0 = 0)) = dt"(px - A(t")) 2  (4.51)

tn(px,0=0)

First order:

(Px - A(tn(pX, 0 = 0)))2 (4.52)
a tn (p9,=0) 2
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Since, tn(pX, 9 0) is the saddle point for S(p, t, t,(p, 9 = 0)), the first derivative goes to

zero, as pX - A(tn(px,0 = 0)) = 0

Second order:

02 S
&2n Itn=tn(P,,O=0)

- - (Px - A(tn(p2, 0 = 0))) E(tn, (Px, 0 = 0))

This term goes to zero for the same reason as the first order.

Third order:

a3S
Ot3

n tn=tn(pX,0=0)

(4.53)

- - (pX - A(tn(px, 0 = 0))) E(tn, (Px, 0 = 0)) - (E(tn, (px, 0 = 0)))2

= - (E(tn, (px, 0 = 0)))2

Before we go into expanding the action, let's find At by expanding tn(pX, 0) around

tn(pX,0 = 0)

at
+11±9

102 t

2 092

1 0 3t
3! 0 3 + .

(4.54)

(4.55)

and thus

tn(p,0) = tn(p,0 = 0)

At = t,(pX7,0) - tn(PXI,0 = 0) = 0+
09

1 2
- 02

1 0 3t
+ 03 +.

1 9  1E(tn(pX,9 0 0)) 2

E(tn(pX, 9 = 0)) 2 E3 (tn(pX, 9 = 0)) (4.56)

By taking only the first order term for At and inserting it in the expansion of the action Eq.

4.50 we get:

S(p, t, tn(pX, 0)) = S(p, t, tn(pXI = 0)) - 03
3E (tn (PX,)= )

(4.57)

Eq. 4.57 is the expansion for the action around tn(pX, 0).
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We expand the action in Eq. 4.44 around t.(p2, 0) up to 2 nd order. The first derivative of

the action at the saddle point t,(pX, 0) is zero. Thus

(p - A(t)|1$(t)) =

dt'a(tn(p, 0))E(tn(pX, 0))(p - A(tn (pX, 9)) x10)e -i S(ptt,tn(P',p))+x 2S (t'-tn(x, )

=-a(tn(Px)) I
(4.58)

In Eq. 4.58 we substitute S(p, t, tn(px, 0)) with its expansion around tn(p2, 0), i.e. Eq. 4.57.

At the saddle point 0 = ±i + p2 and then

(p - A(t)I(t)) =

-ia(tn(px)) I
0

(21p+P2 )3/2

dt'E(tn(p, 0))(p - A(tn(PX, 1))1x10)e-iS(,ttn(Px))e- 31El

x I a S t =t_(_X_ O)(t - tn (P x ,0 ))2

For hydrogen-like Is wavefunctions we have

(8vk')2i(2Ip )5/4 v 2

(VIXIO) =-t 3
Tr (2Ip + lo 12)3

(4.60)

Since v = p - Ax(t) and 9 = +i 2Ip +p! at the saddle point, we have Iv12 = (p -Ax(t))2+

p2 and then 2Ip + v 2 = 2I, + p2 + 02 So

- 27/ 2 (2I )5/4  0
(p - A(tn(px, 0)) 1x0) - 7 (2Ip + p2 + 0 2)3 (4.61)

We have set 9 = px - Ax(t'), which is proportional to set 0 = Et' and thus dO =

dt'E(tn(p, 0)). We calculate Eq. 4.59 at the saddle points, thus the integral becomes a sum,
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0

(4.59)

-iS(P't'tn(PX,0))+.L .2S rt~s0

dt'E (tn (Px,0)){(p- A(tn (Px,0))|1 x 0) ei ( * ;,'=tn(PX'O)(t-n P,)



since we sum over all the saddle points and that's why 0 varies from -oo to oc.

(p - A(t) 10(t)) =

- c ( ~ p ) ei (P t tn P z ) 2 7/2 (2 1 p) 5/ 4 (21p -4 2 )3/2

-00

d( 0
(2Ip + p2 + 02)3

x e 2 t'=tn(P,,) _ t'-t ,W

From Eq. 4.53 and since at the saddle point px - Ax(tn(px, 9)) = i 2Ip + pL = ip we get

2 s

('np ,0)

So

(t' - tn(px, 0))2 = - tn(px, 0))2- E(tn(P,0))(t

- E 2 (t' - tn(px, 0))2
2E

and since at the saddle point (and only there) 0 = ti 1 +p2, thus

tn(px, 0))2 =- (92E
-i 2Ip+ p2)

(p - A(t) 10(t)) = 1 a(tn(px))e-S(P' tn'(P))f (E(tn), P1)
nl

27/ 2 (21p) 5/ 4  
(21P+p

2 
)3/2

- e 3 E
wr

cc

J d6
-00

0 exp -( - i /2IP +p2)

(2I + p2 + 02)3
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(4.62)

*1 &2S
ai 8t2 S

2 t2t'=tn (p.,0)

(4.63)

(4.64)

- - E2(t'

and we get

where

(4.65)

(4.66)

(4.67)

= - iPE(tn (Px, 0))

f (E(tn),I p I)



We need now to calculate the integral

0exp (-( - i 2I,+ pi)2)
dO 2I+p2 + 02)3

-020p

00 (e _ O -i}I+iJdO e-i 2I+p '( +i2I,+p)

-00 (3 0 /)

(4.68)

By using the Residue method the integral is equal to

1 d2 0exp(-(-i 2IP+pi)2)

2(i0 + i V 2 I, p L) L

-I

- 2E 4(21p + p2)
(4.69)

. P 1 .1
= E fi 7ri

Thus,

f(E(t), pi) - -27/2(2I,)5/4 (wiQ ) e f 14  - (2Ip)/~
7r \ 8EPf V/(2) EP v/2EP

(4.70)

is the static ionization amplitude into a state with transverse momentum pi, and tn(p,) are

the (possibly many or none) positive solutions of the real part of Eq. 4.46.

Inserting a momentum space completeness before 10(t)) in Eq. 4.36 and using Eq. 4.66 we

construct the expression for the dipole acceleration (,

e= -a*(t )(0\V(r)|1(t)) = -a*(t) 7 d3p(0V'(r)Ip - A(t))(p - A(t)|(t))

= -i* (t) E a(tn(px)) 7 d3p(OIV'(r)lp - A(t))f(E(tn), pi)e-iS(P't't(PX))

nl

(4.71)

where we have taken the imaginary unit i outside of f(E, pi) but we kept the minus sign.

The dipole acceleration at time t is now expressed as a sum over all possible trajectories

arriving at time t, indexed by their possible birth times tn(px) and canonical momentum p at

arrival. The integration over momentum p can again be carried out using the stationary phase

approximation, which describes the impact of quantum diffusion on the dipole acceleration.
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We expand S(p, t, t') to second order around the stationary phase point p, which is given

from VpS(p, t, t') = 0. Thus

S(p, t, t') = S(p, t, t') + V2S(p, t, t1') (472)

with V2S(p, t, t') = t - t' and

S(p, t, t') = S(P, t, t') + (t - t') 2(4.73)
2

leads to

-e/" 4a*(t) 27r 3/2 (tn(px))(0|V'(r)[p - A(t))f(E(t),p)e-iS(Atn(Px))
n t - tn(px )3/

(4.74)

We now want to express f(E,pi) in terms of the static ionization rate w(E). Eq. 4.66 is

the ionized part of the wavefunction projected on a plane wave. In order to obtain the static

ionization rate, we consider the case of constant field E = E0 . We assume that a(t) = 1,

which means that the ground state population is kept constant. In order to find the ionization

rate, we need to perform a three-dimensional momentum integration on the square modulus

of Eq. 4.72. For a constant field there is only one n at most in Eq. 4.72. So Ax = -EOt and

then

px + Eot' =0 - t' = (4.75)
Eo

is the only saddle point and

d3p(p - A(t)|0(t))| 2 = Jd3pf|2 = dpxdpydpzlf|2 (4.76)

We have

px = vx + A (t) = -EOT (4.77)

since v, = 0 (assuming zero velocity at liberation). Since f does not depend on px (i.e.
-3

f(E~~~~~t~,/), P' P -i2- 5 /eIi L3 = I ), the integration over dp, gives -E0 T.
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Performing the integration over dpydp- we get

2(2Ip+p
2 

)3/2

3 E

dpYdpz ( 2 2+p 2E|2

( 2 \3/2
_ 2 (21p)3/2 1+L

e 3E 
2 1

p

(2Ip+ P2
(4.78)

Assuming that pi 0 the integral can be calculated

f dp2(dppe 31 /2 1+

21 2 fdvpe77
2 2 1p

(2I )6 / 4 
-2 (21,)3/2

2E 2  E

-(2 Ip)6/4 
-2 (21p)3/2

2IE12 e 31E

2 - (21p )/2

EJ 2

Since the integration over dp2 gives -EOT

d 3Pjf 2 T (2I2)e (21p)3/2

The static ionization rate is defined as

w(E) - fd 3pf12

T

Thus

w(E) = (2Ip)eaI(21p)
3/

2

2

Since
(2 P)3/4 (21,>3/2

f (E, 0) = - (2 e E)I e-

we can express f(E, 0) in terms of the static ionization rate w(E) [38,41]

f (E, 0)- (21p)1/4 fW(E)
JEJ V/T
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J dpydpzlf|2 Idpydpz

J dpydpzf1 2
=

I (21 )3/2 2

dp,,dpe rF' 21

2
ir|Ej(

(4.79)

(4.80)

(4.81)

(4.82)

(4.83)

(4.84)

(21p 10/4

2JE12



and the expression for the dipole acceleration is [38]

3 1 li _ a (tnb(t)) a(t)VW (E (tnb (0) i t(()=-227r(2I,)4e 4 ( 3 arece- (4.85)
n E(tnb(W(t - tnbt)

where arec = (0 V'(r) Ip - A(t)) is the recombination amplitude [42] and tnb is the birth time

of an electron that returns to the origin at time t and n denotes the classical trajectory

(Figure 4-1). Note, that we have set S(p, t, tn(p-)) Sn (t).

I
0Io -

-1 - - -

.U 2

-2 . .
0.0 0.5 1.0 1.5 2.0

time (multiples of period)

Figure 4-1: The solid line shows the driving electric field. The dotted, dash-dotted and
dashed lines show electron trajectories (n) with the same arrival time, but different birth
times in different half-cycles.

As an example, three trajectories, that arrive at the same time instant, but are born at

different times, are shown in Figure 4-1. Each label corresponds to the birth time of each

trajectory. The trajectory labeled with 1, whose birth time is closest to the arrival time,

travels the shortest distance and thus has the smallest quantum diffusion, while the other two,

labeled with 2 and 3, travel longer and therefore quantum diffusion reduces their contribution

to the single atom response. Thus in Eq. 4.85, we will include only the trajectory with label
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1, since the other two, and earlier ones, contribute considerably less, due to the increased

quantum diffusion.
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Chapter 5

High Harmonic Generation Efficiency

In this Chapter we derive an analytical expression for the calculation of the efficiency at a

given odd harmonic in the plateau and cutoff region. The efficiency formula is based in the

1-D model and takes the laser and material parameters and macroscopic effects into account.

The main result of this Chapter is that the efficiency per given harmonic scales with Wg in the

plateau and with w5 in the cutoff region of the spectrum, where wo is the driving frequency.

5.1 Definition

Of interest is the conversion efficiency for driver pulse energy into a given (odd) harmonic

of wo (Figure 5-1), whose frequency is denoted by Q, and which is given by

fI Eh (j) 12dw
Q-W= 

(5.1)17 00

f I5(w)j2dw
0

T
where E(w) = f E(t)e'dt is the Fourier transform of the driving field.

0
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Figure 5-1: Definition of the efficiency of an odd harmonic. The blue line is the harmonic

field and inside the red box are the limits of the odd harmonic, over which we integrate the

harmonic field. These limits are the even harmonics before and after the odd harmonic.

The driving field is assumed to be a top-hat pulse (Figure 5-2), defined as

E(t) = Eosin(wot) ,0 < t < T (5.2)
0 , elsewhere

The denominator of Eq. 5.1 is the energy of the driving field. We calculate it using the

Parseval theorem.

SE(w)12 dw = E2N7/wo (5.3)

To evaluate the numerator in Eq. 5.1, we express the harmonic field in terms of the dipole

moment acceleration, using
T

((t)e'dt (5.4)
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Figure 5-2: Top hat pulse.

and, substituting it into Eq. 3.12, we obtain

Eh(w) = - g
S2iWo(W) ~

300

(5.5)

T

(Ak, L ) f (t je*'dt

0

In the quasistatic approximation, we can express the ground state probability by the qua-

sistatic ionization rate, which has a half-cycle symmetry in the field of the top hat pulse

t +)

-> (t

where

w(E(t')

0

dt'

(5.6)+ -2
WO

7r

=exp fw(E(t'))dt'] (5.7)

is the depletion factor of the ground state amplitude during each half-cycle.
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The ground state population is assumed to be constant during each half-cycle, which

is an excellent approximation, since the ionization level, and as a result the ground state

population, of each half-cycle changes significantly only at the maxima of the absolute value

of the electric field and stays constant during the interval, where a significant dipole radiation

is generated (Figure 5-3).

L
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I/ 1 * I WY IF \ JJ T . JT T , T.
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* I

0.998-
0

5. 0. 0.991
o 0 2

time (multiples of period)

Figure 5-3: a) Driving field and periods of significant ionization, where launched trajectories
may return to the core atom, shown as dashed lines, b) driving field with corresponding re-
combination events shown in dashed lines and attosecond bursts, c) ground state population

as a function of time indicating periods of strong ionization by dashed lines.

To calculate the Fourier transform of the harmonic radiation field (Eq. 5.5) we need to

calculate the integral of the dipole acceleration. We can calculate this integral numerically,

but we will try to reduce the computational complexity and calculate it analytically, exploit-

ing the symmetry of the EUV pulses that are generated at different half cycles (Figure 5-4).
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Figure 5-4: a) Calculation of Fourier transform of dipole acceleration over the whole time
interval over which EUV pulses are generated, b) calculation for the 1st cycle over which
EUV pulses are generated, using the fact that the dipole acceleration between EUV pulses
generated at different cycles are related with the depletion factor #2, c) calculation of Fourier
transform of dipole acceleration only at the 1st half cycle where an EUV pulse is generated,
using the the fact that the dipole acceleration between EUV pulses generated at different
cycles are related with the depletion factor -#.

The Fourier transform of the harmonic radiation field Eh(t) is

wo

1
Eh(W) = Eh(t)e-iwtdt -

N-2 (n

E g(Ak2n+ 1 , L)
n=. 2flI

WO

+ ) (n+1)

(t)e-"tdt + g(Ak 2n+ 2, L) J
27r (n+ 1)

(t je-'.dt

(5.8)
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where n denotes the full cycle. The choice of the integration interval comes from the fact that

high order harmonics are only produced after the first three quarters of a cycle of the driver

pulse and we neglect the last quarter of the last cycle for simplicity, (see Figure 5-3.b). Thus

the integration is only over N - 1 full cycles. The Fourier transform is carried out by using

the periodicity of the driver pulse and trajectories in each half-cycle and factoring in the

different half-cycle ionization levels. As said before, the ionization level is constant during

each half cycle and as a result the macroscopic response in each half cycle is independent

of time and can be taken out of the integral. We first consider the case of perfect phase

matching and absorption limited conditions, where the sum over half-cycles can be carried

out analytically.

5.2 HHG Efficiency under Absorption-limited

Conditions

If we assume perfect phase matching over the whole spectrum and absorption limited con-

ditions, then Jg(Ak, L)12 = 1, and we obtain:

2-r

WO N-2

Eh (W) = - J ~i~e"dt # 2n - n (5.9)

0

Thus, the contribution of each half cycle is proportional to the exponentially decaying ground

state population at the time of birth and recombination of the trajectory. We then integrate

the square modulus of the above expression over a frequency range associated with one (odd)

harmonic and finally obtain, an expression for the efficiency defined in Eq. 5.1,

25w4a 2  1 _ 4(N-1) + (1-" ) 2
S= T2-22 1 - I + e - B() (5.10)

EjQ2 .2 (6) (1 -4
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where
57r 2

2wo

B(Q) = J (t)eQt dt (5.11)

2_
0

is the Fourier transform of the dipole acceleration over the first half-cycle of recombination

events that contribute to the harmonic field. The magnitude square in Eq. 5.10 describes the

interference of harmonics emitted in two subsequent half-cycles and the prefactor describes

the sum over the N - 1 contributing cycles.

5.3 HHG Efficiency including Phase-Mismatch

In general, it is difficult, if not impossible, to achieve phase matching over the whole harmonic

spectrum. The ionization level and hence the phase mismatch associated with the plasma is

different for each half-cycle and thus the term jg(Ak, L) (given in Eq. 3.13) varies for each

half-cycle and this variation has to be accounted for in the harmonic spectrum,

4rt N-2 ,r1 w

Eh(W) = -j g(Ak2n+1,L) + e ( g(Ak2n+2, L)
WU 2i-(W) _=e

x )32n e-iwnw ) (t)e-%Lodt (5.12)
0

The expression accounts for the different phase mismatch, Akn, in each half cycle. It

is assumed to be constant during each half-cycle, since the ionization level stays constant

for the time interval where significant dipole radiation is generated, as explained before (see

Figure 5-3). The bracket in Eq. 5.12 accounts for the second half-cycle with its opposite

sign and reduced ground-state population.

Following the same steps as in the case of perfect phase matching and assuming that the

polarizability, which appears in Akn, varies slowly over the bandwidth of one harmonic, we
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obtain

2522 1 N-2 2

rE =2 0 2*- -B(Q) - #: /4 g(Ak2n+1, L) + 3e ~)g(Ak2n+ 2, L) (5.13)
EQ20-2 (Q) N n=o

5.4 Dipole Acceleration Spectrum

The dipole acceleration spectrum B(Q) of the first half-cycle of recombination events, Eq.

5.13, can either be calculated numerically by computing the dipole acceleration for each

classical trajectory, or by using the stationary phase method which enables us to get closed

formulas for the efficiency

57r 57rfuj 1te% =i~ 2~( )E~ > o J &(tfb) a (t) w (E(tnb))
B(Q) = E(t)e-'dt = 227r(2Ip)le f (nb) (t tnb) arece-i(Sn(t)-t)dt

37rn 3,
2wo 2Lo

(5.14)

The phase #,(t) = Sn(t) - Qt, which contains the classical action, varies much faster

than the other factors in the integral (Figure 5-5). Therefore, the major contribution to the

integral comes from the stationary points of the phase. These points are the time instants

at which the derivative of the phase is zero (stationary phase) at~n(t) = 0 =- atSn(t) = Qn.

The two stationary points are clearly visible in Figure 5-5.

From Figure 5-5 we see that the curvature of the phase for the short and long trajectory

is smaller and larger, respectively, which leads to a larger contribution of the short trajectory

compared to the long one, as a result of its smaller quantum diffusion.

In the stationary phase approximation, the slowly varying terms k(tnb)c(t) w(E(tnb)) can
E~tnb)(t-tnb) 7

be moved out of the integral and evaluated at the time of stationary phase, implying the

transition energy of the recolliding electron has to be equal to Q. This condition is fulfilled

twice during each half-cycle and is referred to as short and long trajectories (Figure 5-6).
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Figure 5-5: Oscillation of the phase as a function of arrival times. We denote the saddle
points with the *.

In the stationary phase approximation, the action is expanded up to 2nd order

Sn(t) = gn + Qn - (t - tan) +- t -a2 2 (5.15)2

where tan is the arrival time of each trajectory and Sn = S(tan, tbn) the action of the

classical electron trajectory. Figure 5-7 compares the second order approximation with the

exact action according to Eq. 5.15.

For a particular harmonic of the plateau region both short and long trajectories con-
5ir2wo

tribute and the term D(Q) = f e-i(S(t)-t) can be written as D(Q) = D 8 (Q) + DI(Q),
37r/2wo

where s stands for short trajectory and 1 for long trajectory. We obtain

5- 5W
2w0  2w0

=sl J e-(~ 2a~7(trad - (Sn-tn.) J e- 2 (t-tn)dt (5.16)

2w0 2w0
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Figure 5-6: First derivative of the action as a function of arrival times.

where n stands for either long or short trajectory contributing to that particular harmonic.

The result is

D8 (&2) = e-( ~t" 1 2 a.2 g.

(i+1 8 5
57

K2wo
- tna ) - Erf +

(5.17)
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Figure 5-7: Classical action calculated from the analytical formula (Eq. 4.43) and the second
order expansion (Eq. 5.15).

where Erf is the error function and, therefore,

5 7!
2w0

J (t)e-dt = 22-x(2I i

3w!

2w0

X a(ti,)a(t21) w(E(tis))," (tsD(Q a'(41 i ~(t2l) Vw (E (t11)) rc(l)D(Q(0(tisec(t2)D.()+± 3 cxrec(t 2 )D(G2))
E(t1s)(t2s - ti,) E(t 11 )(t 2 - t1i) 2

(5.18)

In the asymptotic limit the Error functions approach -2 and 2, for the long and short

trajectory, respectively. It turns out that these asymptotic values are excellent approxima-

tions for the times of interest in Eq. 5.18. By taking into account that the second derivative

of the action for the long trajectories is negative and can be written as 199= atS1 I e7, the

closed formula for the efficiency in the plateau region is [43]
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N/2-TW5 Ia12  1 N-2 2
= 0.0107 vE4Q2oU(Q; 2 #4 g(Ak 2.+1, L) +e Ok)g(Ak 2n+ 2, L) X

n=O
2

a (tb,) a(ta,) Vw (E(tb,,)) e-'(,9-Gis a(tbl a (t,,,) Vw (E (tb)) e-0 - 2a-

sin(wotb.)[wO(tas - tbs )/(2w)]3 2  tS \ sin(Wotbl)[wO(tai - tt /(2w)] 3! 2

(5.19)

where, (tbs, tas), (tbl, tai) and S.,1 = S(tas,i, tb,,l) are the pairs of birth/arrival times and

the corresponding classical action for short and long trajectories of a particular harmonic,

respectively. Eq. 5.19 is valid for harmonic energies Q in the plateau region, satisfying the

condition 1 < (Q - Ip)/Up < 3.1. The upper limit allows us to expand the classical action

up to second order and the lower limit is determined by the validity of using the asymptotic

values for the error function used in D, 11(Q) in Eq. 5.17.

The last two terms show two interference mechanisms. The first one is the interference

between each half-cycle and the second one is the interference between long and short tra-

jectories. The first interference mechanism allows only odd harmonics under the condition

# ~ 1. The symmetry can be broken by very intense pulses and in this case even harmonics

can also occur.

The efficiency of a single harmonic in the plateau region scales with w6. This power law

arises from a cubic dependence of the quantum diffusion on the laser cycle period, another

factor of wo is due to the fact that we integrate over a single harmonic and an additional factor

comes from the scaling of the driving field energy with wo, given a fixed number of cycles

and peak intensity. There is an additional dependence on wO from the second derivative of

the action which scales with 1/wo.

As Q increases approaching the cutoff frequency, Qtoff = Ip+3.17Up the two trajectories

merge. At this point of degeneracy (i.e. cutoff) 842Sn(t) = 0 and as a consequence an

expansion of the action up to 3rd order is necessary:

Sn (t) = Sn + Qn - (t - tan) + OSn (t - tan)2 + a3 (t - tan)3  (5.20)
2 6
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B(Q) is reduced to an Airy function which can be evaluated numerically. The respective

birth and arrival times are tbcutoff ~ 1.88/wo and tacxuto ~ 5.97/wo . Thus, the efficiency

at the cutoff point can be written as [43]:

1
r=0.0236

E 16 /3 Q2ff2(Qcutoff) N

N-2 .~ i o 1 lua

x E g(Ak 2n+1 , L) + 3e ( o )g(Ak 2n+2,
n=O

2

L) KOW[E (t bentoff)] (5.21)

where no = ja(tbcut)a(taut) 2 accounts for the intra-cycle depletion of the ground state.
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Chapter 6

Results using 1-D model

In this Chapter we compare the results of the efficiency formula derived in Chapter 5, with

experimental results from the literature for 400 and 800 nm drivers and we show very good

agreement. The main result is that the efficiency for 400 nm is 1-2 orders of magnitude

higher than the one at 800 nm. We also study the effects that interference of long and short

trajectories have on the spectra. In addition, we investigate two different ionization models,

the ADK and the Yudin-Ivanov and we show that the Yudin-Ivanov model, which includes

both tunneling and multiphoton ionization, gives more accurate results especially for short

drive wavelengths.

6.1 Comparison of 1-D Theory with Experiments at

400 nm and 800 nm

The 1-D theory is compared with experimental results of HHG efficiency measurements, us-

ing 400 and 800 nm driver pulses on several noble gases as reported in [44]. Since Ti:sapphire

lasers became a standard high-power femtosecond laser source, most HHG experiments have

been performed at its emission wavelength of 800 nm [8,15]. Typical conversion efficiencies

from Ti:sapphire lasers are in the range of 10-6 to 10-8 for 50-100 eV photon energy. Many
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applications in the < 100 eV range, such as EUV lithography, seeding of X-ray free electron

lasers and attosecond spectroscopy require high energies or average power and therefore,

HHG needs higher efficiencies. For these applications the use of shorter driving wavelength

with slightly higher electric fields than that of 800 nm pulses is a favorable route towards

higher HHG efficiencies, because of the scaling of the single atom response with drive wave-

length, and the reduced plasma dispersion.

Figure 6-l.a shows the HHG efficiencies and spectra obtained experimentally using a 400

nm driver pulse for Argon, Neon and Helium, while Figure 6-1.b shows the corresponding

simulation results. In the experiment, the peak intensity of the driver pulse measured from

the peak power and spot size was 2.7 - 1015 W/cm 2, with pulse energy of 1 mJ for which we

observed the strongest HHG signal. However, our theory suggests that this intensity will

lead to strong ionization, which will make it difficult to achieve phase matching for the EUV

wavelengths. Thus, the actual intensity is estimated to be in the range of 1014 - 1015 W/cm 2

due to spatial effects distorting the beam, like plasma defocusing, which are not taken into

account by the one-dimensional model. Actual measurements at intensities of about 1014

W/cm2 show similar HHG efficiencies, as discussed in [44]. Therefore, in our simulations

based on the one-dimensional model, we adjusted the laser intensity to achieve optimum

phase matching conditions for the half cycle in the center of the pulse. The intensities used

in our simulations are lower than in the experiment. In the experiment, peak efficiencies of

1 - 10 4 at 28 eV are reached for Argon, I - 10- at 34 eV for Neon, and 1 . 10-5 at 53 eV

for Helium, while the peak efficiencies from simulations are 6 - 10- 5 at 33.5 eV for Argon,

2 - 10- 5 at 51.7 eV for Neon, and 4 10- 5 at 66.5 eV for Helium, close to the experiments.

Figure 6-2.a and Figure 6-2.b summarize the experimental and simulation results re-

spectively, for 800 nm drivers. As predicted by the theory, the efficiencies from the 800 nm

driver are 1-2 orders of magnitude lower than that from the 400 nm driver. However, the

cutoff energy is significantly increased to beyond 100 eV with Helium. In the experiment,

the conversion efficiencies at the cutoff are 1 _ 10-7 at 45 eV for Argon, 1 _ 10- 7 at 88 eV

for Neon, and 1 - 10-8 at 110 eV for Helium, while the theory predicts 1 - 10-6 at 41 eV for
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Figure 6-1: a) Experimental results for HHG driven by 400 nm, 1 mJ and 26 fsec driver
pulses with beam waist 30 pim: top row, efficiencies for Argon (50 mbar), Neon (300 mbar)
and Helium (2 bar) using a 2 mm long nozzle; remaining rows, the respective normalized
HHG spectra [44], b) Simulation results for Argon (2.5.1014 W/cm 2 ), Neon (5.3-1014 W/cm 2 )
and Helium (8.5 - 1014 W/cm 2) for the same interaction parameters like in (a).

Argon, I - 10- at 82 eV for Neon, and 1 . 10-8 at 107 eV for Helium.

In our simulations, in Figures 6-1.b and 6-2.b, we observe, in addition to inter-cycle in-

terference which leads to odd harmonics, intra-cycle interference patterns on each harmonic.

We observe, that (a) theoretical HHG spectra do not show clean harmonics like their exper-
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Figure 6-2: a) Experimental results for HHG driven by 800 nm, 35 fsec driver pulses with

beam waist 40 Mm: top row, efficiencies for Argon (50 mbar, 0.6 mJ), Neon (300 mbar, 2

mJ) and Helium (2 bar, 2mJ) using a 2 mm long nozzle; remaining rows, the respective

normalized HHG spectra [44], b) Simulation results for Argon (1.2 - 1014 W/cm 2), Neon

(3.2. 1014 W/cm 2 ) and Helium (7.4 - 1014 W/cm 2) for the same interaction parameters like

in (a).

imental counterpart and (b) that theoretical HHG spectra exhibit an interference structure

even within a harmonic. Both of the aforementioned discrepancies stem from the fact that in

the experiment we collect mostly the radiation from short electron trajectories by optimizing
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phase-matching conditions and overall HHG yield, whereas in the theory the radiation from

both the short and long electron trajectories is included in the harmonic spectrum. The

intra-cycle harmonic structure is caused by interference between the long and short trajecto-

ries, which have the same return energy but different quantum phases [45]. Figure ?? shows

the theoretical power spectrum for Neon with 800 nm driver pulses when we keep both short

and long trajectories (Figure ??.a), short trajectories only (Figure ??.b) and long trajectories

only (Figure ??.c). When we collect only the short trajectories the HHG spectrum shows

clean harmonics without any interference structure. On the other hand, when we collect

only the long trajectories, the harmonics are not clean anymore and there is interference

structure resulting from inter-cycle interferences. These inter-cycle interferences are caused

by the different quantum phases of long trajectories in each half cycle, which are strongly

intensity dependent leading to incoherent addition of the different half-cycle contributions

to the same harmonic. If the driver pulse is flat top, then the intensity would be identical

in each half-cycle, the phases would add up coherently and clear harmonics would appear.

8X104 -- both long and short

4x10 LLAAAAA
60 A__

E 6x10 b only short

0 3x10

3x1 0' C-- only long

1.5x10
4 -

0
30 40 50 60 70 80 90 100

Photon Energy (eV)

Figure 6-3: Theoretical power spectrum for Neon at 800 nm when we keep (a) both short
and long trajectories, (b) only short trajectories and (c) only long ones.
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6.2 Interplay of Multiphoton and Tunneling Ionization

Ionization is the first step in the HHG process and the choice of the proper model to describe

it is crucial in achieving good agreement between theoretical and experimental results. The

most commonly used ionization model is the theory established by Ammosov, Delone and

Krainov, known as ADK theory [21]. This model is preferred due to its computational

convenience and is derived for the case of a DC driving field, which corresponds to -y = 0

and therefore the channel of ionization is pure tunneling. It is commonly used for sinusoidal

driving fields, but it is valid only for small Keldysh parameter for which the field-matter

interaction is a non-perturbative process and tunneling is the main mechanism of ionization.

An alternative and more general method to calculate the ionization rate has been shown

using the Landau-Dykhne method [20, 39]. A detailed discussion on the Landau-Dykhne

method can be found in [46-48]. This method is valid in the adiabatic regime and includes

multiphoton and tunneling ionization and is referred to as Yudin-Ivanov (YI) ionization

theory [20].

When using the ADK theory for calculating the single atom response, a mismatch be-

tween theoretical and experimental results is observed, especially for low-order harmonics

by short driver wavelengths. The Keldysh parameter, which is inversely proportional to the

electric field, is larger in the wings of the pulse than near the peak of the pulse. Additionally,

by decreasing the wavelength of the driver pulse (from 800 nm to 400 nm), the Keldysh pa-

rameter becomes larger than 1 in the wings and multiphoton ionization becomes important.

Hence, ADK theory cannot model the ionization process accurately as it underestimates the

ionization yield. Therefore, we use the YI ionization theory (in Figures 6-1.b and 6-2.b) for

calculation of the HHG spectra and we find that it results in much better agreement with

experimental results than ADK theory.

To get more insight, we compare the ionization rates (Figure 6-4.a and Figure 6-5.a) and

the single atom response (Figure 6-4.b and Figure 6-5.b) calculated for a 400 nm and a 800

nm driver pulse using the ADK and the YI ionization models, respectively. For a 400 nm

Gaussian driver pulse with a peak intensity of 8.5 - 10" W/cm2 (Keldysh parameter y ~ 1)
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the YI ionization rate is higher than the ADK rate, over the entire pulse (Figure 6-4.a),

but the relative mismatch is much more pronounced in the wings (Figure 6-4.a inset). As

a result, there is a noticeable difference between the HHG spectra generated by the two

models, especially for low photon energies (Figure 6-4.b inset). On the other hand, for 800

nm and a peak intensity 7.4. 10" W/cm2 (Keldysh parameter -Y = 0.52) the two models give

similar ionization rates over the entire pulse (Figure 6-5.a) and (Figure 6-5.a inset). The

corresponding spectra generated from the two models are similar over the whole range of

energies (Figure 6-5.b) and (Figure 6-5.b inset).
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Figure 6-4: Ionization rates and spectral intensities of single atom response in Helium for
the same conditions like in Figure 6-1 when using the YI (gray) and ADK (red (dark gray))
theory for 400 nm driver pulses (7 - 1). The insets show the ionization rates for the wings
of the fields and the spectral intensities for the low harmonics pronounced three times.

A time-frequency representation gives a better understanding of a dynamic process in-

volving broad spectral components. For this purpose, we plotted the spectrograms of the

high-harmonic photons for 400 nm and 800 nm driver pulses using YI and ADK ionization

models as shown in Figures 6-6 - 6-8. The spectrograms are calculated using a short-time
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Figure 6-5: Ionization rates and spectral intensities of single atom response in Helium for
the same conditions like in Figure 6-2 when using the YI (gray) and ADK (red (dark gray))

theory for 800 nm driver pulse (-y ~ 0.52). The insets show the ionization rates for the wings

of the fields and the spectral intensities for the low harmonics pronounced two times.

Fourier transform with a Gaussian window function, which has a FWHM of 58 attoseconds.

In Figure 6-6, we notice that the HHG spectrograms generated by the 800 nm pulse are in-

sensitive to the choice of the ionization model. However, this is not the case for the 400 nm

driver pulse in Figure 6-7. The spectrogram shows a higher photon yield over the different

half cycles of the driver pulse when we use the YI model of ionization . This contrast is

further enhanced in the wings of the driver pulse where the Keldysh parameter is the highest

and multiphoton ionization the most prominent (Figure 6-8). Since the ADK model underes-

timates the ionization rate in the wings of the 400 nm driver pulse, which contribute strongly

to low-order harmonics, it drastically underestimates the low harmonic energy photon yield.
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Figure 6-6: Spectrogram of the HHG spectrum from 800 nm driver pulse using (a) ADK

and (b) YI ionization rates respectively. Both models (YI and ADK) predict similar low

frequency photon intensity in the wings of the driver pulse.
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Figure 6-7: Spectrogram of the HHG spectrum with 400 nm driver pulse using (a) ADK and

(b) YI ionization rates respectively. The YI model predicts a much higher low frequency

photon intensity in the wings of the driver pulse than the ADK model.
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Figure 6-8: Harmonic intensity, calculated using YI and ADK theory for low photon energies.

(a) For 40 eV and 400 nm driver pulses and (b) for 60 eV and 800 nm driver pulses. These

ionization theories predict very different harmonic intensity, especially in the wings of the
400 nm driver pulse where -y is the largest.
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Chapter 7

Results using 3-D model

In this Chapter, we extend the 1-D model to 3-D and we study the generation of radiation in

the water window region of the spectrum by using driver pulses with 2 Pm drive wavelength.

We show that within the range of pressures one might choose for performing the experiment,

at low pressures diffraction enhanced by plasma defocusing is the dominant limitation, at

high pressures loss due to electron-neutral inverse bremsstrahlung is the main limitation and

there is an intermediate regime of medium pressures, where both diffraction effects and loss

due to electron-neutral inverse bremsstrahlung have an effect. These two effects do not allow

phase matching to be maintained for long distance resulting in low efficiencies. Finally, we

explore ways to mitigate the effect of plasma defocusing by using Supergaussian pulses and

Gaussian pulses with large beam waists.

7.1 HHG using Long Wavelenghs

One important application of HHG is the creation of a coherent soft x-ray light source. As we

have mentioned in Chapter 1, the spectral range between K-absorption edges of carbon (284

eV) and oxygen (543 eV), called the water window, can be used for high resolution biological

imaging, since in this energy range water has low absorption for soft x-ray radiation, while

carbon atoms absorb it [8]. An intense ultrafast water-window X-ray pulse would allow us
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to capture images of live cells by instantaneously halting their motion, preserving structural

information that is lost in the samples preparation process for electron microscopy [49].

There are two ways to extend the cutoff (Eq. 2.3). The first one is using a higher laser

intensity, which has the disadvantage of leading to higher ionization levels and consequently

to higher plasma density, making phase matching impossible. The phase mismatch between

wavevectors of the driving and the harmonic fields is a very important limiting parameter

for the conversion efficiency. The second way to extend the cutoff is by using longer drive

wavelengths, as was first proposed by Lewenstein [18] and was explored experimentally as

early as 2001 in Argon [50], and numerous work both theoretical and experimental followed

[51-56].

Unfortunately the extension of the cutoff by increasing the drive wavelength comes with

a dramatic decrease in the conversion efficiency. The conversion efficiency scales from the old

to the new cutoff wavelength with w9 [28]. Thus increasing the drive wavelength by a factor

of two, which increases the cutoff frequency by about a factor of 4, leads to an expected

reduction of the single atom response by about 500.

We can increase the efficiency by increasing the number of atoms, which is achieved by

working at high pressures or long medium lengths. It is fortunate that Helium and Neon

which have high ionization potentials, which means we can work at high intensities, have

low absorption cross sections and as a result long absorption lengths in the water window

range (Figure 7-1) [57, 58]. This fact allows us to scale the pressure all the way up to 100

bars and have a reasonably sized medium length.

The inability to achieve phase matching limits the efficiency dramatically, as we can see

in Figure 7-2, where we calculate the conversion efficiency per eV when a 10 mJ, 35 fsec, 2

Mm drive wavelength and 154 pm beam waist Gaussian pulse in time and space, propagates

through a 2 mm Helium jet with pressure 10 bar, when phase matching is not achieved

(Ak $ 0) (blue curve) and when phase matching is achieved (Ak = 0) (red curve). The

gas jet is located on the focus of the beam. The value of the beam waist corresponds to

an intensity at t = 0, which is 1.3 times the critical intensity I, at which the plasma and
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Figure 7-1: Absorption lengths of noble gases in water window region for pressure of 1 bar.

the neutral terms of the phase mismatch balance each other, as we will discuss below. We

see that when Ak = 0, the efficiency per eV is three orders of magnitude higher than the

case that Ak # 0. The case (Ak = 0) is not realistic, since it is impossible to achieve phase

matching for the whole range of energies, but we present it here to show the limitation that

Ak imposes to efficiency.

The phase mismatch Ak is the sum of the plasma-neutral contribution, the Gouy phase

shift and the dipole phase. Here we consider the change in phase mismatch with z due to

propagation effects. The effects, summarized in Chapter 3, include diffraction, which changes

the beam width and intensity after propagation, plasma defocusing, which further alters the

wavefront of the drive beam, thus enhancing the effects of diffraction, and driver field losses,

which are dominated by inverse bremsstrahlung. Considering these effects, we may rewrite

Eq. 3.23 in terms of the macroscopic quantities that change during propagation, i.e. beam

width and intensity. The Gouy phase may be written as a function of beam width wo, the

plasma-neutral contribution as a function of beam width and intensity and the dipole phase
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Figure 7--2: Efficiency per eV for HHG driven by 2000 n, 10 mJ and 35 fsec Gaussian pulse
in time and space with beam waist 154 pim in Helium when Ak 54 0 (blue curve) and when

Ak = 0 (red curve). The efficiency for Ak = 0 is three orders of magnitude higher than the

case that Ak =rl 0.

as a function of intensity.

Ak(z) = AkGuy (WO (Z)) + Akplasma-neutral (I(w (z) , z)) ± Akdipole (I (Z)) (7.1)

It is much harder to achieve phase matching in this long wavelength regime for two main

reasons. First, the harmonic order q is high and second since we would like to work at high

pressures the phase matching becomes very sensitive to intensity and wavefront. When q is

high, changes in pressure and/or intensity (beam waist) change the phase mismatch Ak very

quickly. In addition, the higher is the pressure the stronger is the plasma created, which

distorts the wavefront and this leads to rapid changes of beam shape and intensity with

propagation. Thus, achieving phase matching is harder, since the phase matching condition

changes rapidly with propagation.

As this Chapter will show, the main limitation to achieve high conversion efficiency
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in long wavelength-driven HHG in a gas cell is the extreme sensitivity of Ak to changes

in wavefront and intensity during propagation. This behavior is the result of the large

number of atoms we employ in order to make up for the low single atom response and boost

the conversion efficiency. We show that within the range of pressures one might choose

for performing the experiment, at low pressures (0.1-1 bar) diffraction enhanced by plasma

defocusing is the dominant limitation, at high pressures >20 bar) loss due to electron-neutral

inverse bremsstrahlung is the main limitation and there is an intermediate regime of medium

pressures (1-20 bar) where both diffraction effects and loss due to electron-neutral inverse

bremsstrahlung have an effect.

In Figure 7-3, is shown the peak intensity of the driving field versus radial coordinate

r and propagation z for the same parameters like in Figure 7-2 apart from the pressure

and the medium length, whose product however is kept constant. The peak intensity is

plotted for cases at which the product of pressure and medium length is kept constant, so

that the number of atoms is the same for all four cases. In Figure 7-3.a (pressure 1 bar

and medium length 20 mm) and 7-3.b (pressure 10 bar and medium length 2 mm) the

effects of diffraction and plasma defocusing are dominant and in Figure 7-3.c (pressure 100

bar and medium length 200 pm) and 7-3.d (pressure 1000 bar and medium length 20 pm),

which correspond to higher pressures and consequently smaller medium lengths, the effect of

absorption due to electron-neutral collisions is the dominant phenomenon. In Figures, 7-3.c

and 7-3.d the diffraction and as a result the plasma defocusing have a minimal role since the

Rayleigh length is for this set of parameters is 36.2 mm.

The HHG efficiencies for the four cases presented in Figure 7-3 are shown in Figure 7-

4. We see that the efficiency depends highly on the pressure. In the following sections we

investigate the factors leading to these outcomes.

At high pressure and short medium length the dominant effect is the absorption due

to electron-neutral inverse bremsstrahlung. For pressure 320 bar, at which the electron-

neutral inverse bremsstrahlung cross section has its highest value, the peak intensity shows

the highest absorption due to electron-neutral collisions (Figure 7-5).
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Figure 7-3: Peak intensity versus radial coordinate r and propagation z when a 10 mJ, 35
fsec, 2 pm drive wavelength and 154 pum beam waist Gaussian pulse propagates through a
Helium jet, for a) pressure 1 bar and medium length 20 mm, b) pressure 10 bar and medium
length 2 mm, c) pressure 100 bar and medium length 200 lim, d) pressure 1000 bar and
medium length 20 pam.

In the following section, we will study the effect of change of phase matching with

propagation distance z which limits the coherence length, and the losses due to electron-

neutral inverse bremsstrahlung. These phenomena were not taken into account in the 1-D

study. For all these effects we will define quantities which enable us to appreciate the

importance of the different macroscopic phenomena in harmonic generation. Finally, due to

the nature of the 3-D problem, which is very sensitive to phase matching, we should expect

some very complicated spatial-temporal properties to the generated harmonics.
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Figure 7-5: Peak intensity versus radial coordinate r and propagation z when a 10 mJ, 35
fsec, 2 pm drive wavelength and 154 pum beam waist laser pulse propagates through a Helium

jet, for a) pressure 100 bar and medium length 200 pm, b) pressure 320 bar and medium

length 62.5 pm. The colorbar is in W/cm2
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7.2 Observation of Variation in Coherence Length dur-

ing Propagation

In this section we look how the driving and harmonic fields vary along z for a case with the

same parameters like in Figure 7-2. The driving field evolution along propagation distance

z as a function of radial coordinate r and time t is shown in Figure 7-6. In Figure 7-6.a the

pulse is at the beginning of the medium and in Figure 7-6.b the driving pulse has propagated

and the peak of the pulse does not happen anymore at t = 0, but at an earlier time. In

Figures 7-6.c, 7-6.d, 7-6.e and 7-6.f, which correspond to later points along z, the plasma

highly distorts the driving pulse and is shown specifically how the plasma, which is generated

by the front of the pulse, highly distorts the back of the pulse.
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Figure 7-6: Driving field intensity as function of radial coordinate r and time t for different
points along the propagation distance z. The colorbar is in W/cm 2

The generated harmonic spectrum from the driving field in Figure 7-6 as we propagate

along z is shown in Figure 7-7. From the beginning of the medium until z=-800 pm, we see

buildup of harmonics up to 200 eV and until we reach z=-400 pm not much happens in the

water window. Around z=-250 jpm we see an abrupt generation of water window radiation,

but for the rest of the propagation we see no buildup of the harmonic field. We observe

only a gradual loss. The reason is that due to large phase mismatch, Lcoh is short. Thus,
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harmonic generation takes place at limited points in z.
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Figure 7-7: Harmonic field as function of radial coordinate r and EUV energy for different
points along the propagation distance z.

The generation of harmonics at specific points in z is more evident when we integrate

the HHG spectrum for the energies in the water window range and we plot it as a function

of radial coordinate r and propagation distance z (Figure 7-8). We observe that we have an

abrupt generation in z and for different points in r, the points in z that generation takes

place are different. The light in the lower half of the water window starts to decay due to

EUV absorption, while in the higher frequencies there is less absorption.

In Figure 7-8.b, there is a 1.2 mm length (between -200 pm up to 1 mm) over which

photons in the water window range (284-543 eV) are generated. For z between -200 /pLm

up to 200 Mm and r = 65ptm the water window radiation has the highest values and then

drops, remaining slightly constant until the end of the medium. The drop in intensity

matches very well the rate of absorption of Helium in the water window region (Figure 7-

8.a). Phase matching happens at a particular radius (65 /Lm) because at this radius the

ionization probability has the proper value.

In Helium at 10 bar, the absorption length at 400 eV is 5.6 mm while the absorption

length at 300 eV is 2.3 mm (Figure 7-8.a). Since the absorption length for the smallest

energies of the water window region is significantly shorter than the one for the higher
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energies of that region, we expect that the initial high value of the intensity of the integrated

spectrum for z between -200 pm up to 200 pim is followed by a significant drop, due to the

absorption length of all water window energies. On the other hand, the almost constant

intensity of the integrated spectrum between 200 pm up to 1 mm is due to the absorption

length between 400 and 543 eV, since the absorption length for the range 284 up to 400 eV

is smaller and as a result the intensity drops faster.

The previous argument is illustrated in the next two Figures. In Figure 7-8.c is shown the

integrated harmonic spectrum of Helium over the water window energies between 284-400

eV as a function of radial coordinate r and propagation distance z, while in Figure 7-8.d is

shown the integrated harmonic spectrum of Helium over the water window energies between

400-543 eV as a function of radial coordinate r and propagation distance z. In Figure 7-8.c

the intensity of the harmonic spectrum drops along z from its peak value at z=-200 pm,

while in Figure 7-8.d the intensity stays almost the same. The reason is the fact that the

absorption length for the energy range 284-400 eV is smaller than the range 400-543 eV,

which means that the HHG yield in the range 284-400 eV is absorbed more than the HHG

yield in the range 400-543 eV.

7.3 Effect of Beam Waist and Intensity Change on

Phase Matching

Here we take the simplistic approach giving a measure of how sensitive the phase matching

is to beam waist changes due to diffraction and to intensity changes due to electron-neutral

inverse bremsstrahlung.

In order to study how quickly phase mismatch changes along propagation, we take the

derivative of phase mismatch Ak with z.

96



b15ra

350 400 450
Energy (eV)

500

I-

d

-1000 -500 0 500 1000
z (Pm)

0 500 1000
z(pm)

Figure 7-8: a) Absorption length of Helium for 10 bar at the water window range, b) HHG
spectrum integrated over the water window energy range, as a function of radial coordinate
r and propagation distance z, c) HHG spectrum as a function of radial coordinate r and
propagation distance z integrated over the energy range 284-400 eV, d) HHG spectrum as a
function of radial coordinate r and propagation distance z integrated over the water window
energy range 400-543 eV.
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If we group the terms in Eq. 7.2 in terms of beam waist change and intensity change, we

see that diffraction (beam waist change) has effect on Gouy phase shift, plasma-neutral and

dipole phase contribution, while electron-neutral inverse bremsstrahlung (intensity change)
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affects the plasma-neutral and the dipole phase contribution (Eq. 7.3).

Oak ~aAkGouy (MAkplasma-neutral 19 911 wo
ow0 ~~ ± yQdipoIeJ -J,az awo aI oz w 8o I z

S(Akplasma-neutrai + a dipoie 9 (7.3)

At high pressures the electron-neutral inverse bremstrahlung acts faster than diffraction,

while for low pressures the diffraction is dominant. We will ignore the contribution of the

dipole phase to phase matching, since it is a second order term in z and the analysis becomes

complex. Thus, we focus on the plasma-neutral and Gouy terms.

The optimizing conditions under which the macroscopic response is more than half the

maximum response are Lmed > 3 Lab, and Le0h > 5 Labs, which means that the smallest ratio

under which phase matching conditions are partially fulfilled is Lmed/Lcoh = 0.6. When

Ak = 0 then Lined/Lcoh = 0. Thus for Lmed/Leoh between 0 and 0.6, Ak does not vary

dramatically and we can consider that phase matching is preserved.

7.3.1 Effect of Diffraction

In Figure 7-9 are shown the plasma-neutral contribution to phase mismatch for different

pressures and the Gouy contribution (black curve) as a function of beam waist. The points

at which the curves cross with the black one, correspond to the beam waists for which

the plasma-neutral contribution and the Gouy contribution balance each other and phase

matching is achieved, i.e. Ak = 0. The higher is the pressure the smaller is the beam waist

at which Ak = 0.

Looking at the relative slopes, the rates of change at the crossing points, which corre-

spond to beam waists for which Ak = 0, we see that the higher is the pressure the steeper

is the slope which translates to the fact that a tiny change in intensity rapidly changes the

phase mismatch. The differences between the curves with orange, red, blue, purple and

green colors in Figure 7-9 are factors of pressure times plasma neutral contribution. There

is a much higher sensitivity of phase mismatch to beam waist (intensity change) as pressure
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Figure 7-9: Plasma-neutral contribution for different pressures and Gouy phase shift (black
curve) contribution to phase mismatch at 400 eV, as a function of beam waist for pulse 2
mJ, 35 fsec, drive wavelength 2.06 pm in Helium.

increases, but this translates to a much smaller length at which the driving and harmonic

field can propagate and stay in phase.

In addition, we want to study how Lmed/Leoh changes as a function of beam waist for the

plasma-neutral and Gouy phase shift contributions to phase mismatch, as shown in Figure 7-

10. If Lmed = 3 Labs (one of the two conditions for optimum harmonic generation) and since

Leoh = 7r/Ak, then Lmed/Leoh = Ak- Lab,. The black curve is the change of Lmed/Loh versus

beam waist, due to plasma neutral contributions. The plasma-neutral contribution is now

fixed because it is pressure independent. The other curves show the change of Lmed/Loh

versus beam waist for different pressures due to Gouy phase shift. The pressure dependence

is due to the absorption length, since Gouy phase shift is pressure independent. The points

at which the curves cross are the waists for which Ak = 0. Following the black curve shows

how much a change in intensity changes phase matching through the plasma neutral balance,

and following the other curves shows how much a change in beam waist affects the phase
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mismatch due to the Gouy phase shift.
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Figure 7-10: Lmejj/Leoh as a function of beam waist due to plasma-neutral contribution (black
curve) and Gouy phase shift contribution for different pressures at 400 eV for pulse 2 mJ,
35 fsec, drive wavelength 2.06 ILm in Helium.

The orange curve (1 bar) has a larger slope than the red one, meaning that Lmed/Lcoh

is more sensitive to a change due to the Gouy phase shift. However at higher pressures (10

bar and 100 bar) the red curve has a higher slope than the purple and green curves and

thus Lmed/Loh is more sensitive to a change in intensity due to plasma-neutral balance. So

change in intensity plays more role than change in beam waist for high pressures.

Starting with the beam waist change, we define a beam waist sensitivity parameter B,

which measures how quickly phase matching is affected by the beam waist change. It is

equal to the fractional change in beam waist wo, when Lmed/Lcoh goes from 0 (Ak = 0) to

0.6 and is defined as

B= (7.4)
W0 ..I&=0

Lcoh
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The slope of Lmned/Lcoh versus beam waist i 0 , for the beam waist at which Lmed/Lcoh = 0 is

d (-4jz) _A(~~ .
Lcoh L coh 0(.

dwo AwO AwO
oh =O)

and from Eq. 7.4 and Eq. 7.5

B -. (7.6)
WO =. 0 d

Lcoh dwo
WOL

We also want to calculate how long the field can propagate with phase matching, varying

from 0 to a value at which Lmed/Leoh = 0.6. In other words, we want to find the distance

over which diffraction does not change the beam waist a lot.

The variation of waist due to diffraction is given by

W1 = W0 + (7.7)

where ZR is the Rayleigh length. The beam waist sensitivity parameter B is

W/ -WOz
B 0 1 + -Z - 1 (7.8)

WO - \\ZR)

and, from Eq. 7.8, we can define the propagation tolerance parameter zt,, which shows

how long the beam can propagate with phase matching varying from 0 to value at which

Lmed/Loh = 0.6. Thus

ztol = zR B + 1)2 -- 1 ZR-/--B (7.9)

Grouping the sensitivity parameters when the beam waist changes, for HHG in Helium

using a 2.06 Mm driver pulse with energy 2 mJ and duration 35 fsec we get:

101



Table 7.1: Sensitivity parameters for beam waist change for HHG in Helium using a 2.06

pm driver pulse with energy 2 mJ and duration 35 fsec

P(bar) wo(Ak = 0) I(Ak=O) 6(t = 0) B (%) Ecutoff Labs,(400eV) b(mmn) zt0, 3Lab

(Am) (W/cm 2 ) (%) (eV) (mm) (mm) (%)

1 158.77 1.35. 1014 8. 10-7 7.44. 10-3 185.22 56.62 76.88 0.46 0.276

3 94.83 3.8. 1014  0.004 5.05- 10~3 474.87 18.87 27.42 0.13 0.243

5 85.81 4.64. 1014 0.023 2.44. 10-3 574.51 11.32 22.45 0.078 0.231

10 81.89 5.09- 1014 0.046 1.53. 10- 3  628.35 5.66 20.45 0.056 0.333

100 79.43 5.41 . 1014 0.07 1.11 10~3 667.08 0.56 19.24 0.045 2.667

where P denotes pressure, wo the beam waist, I the intensity, 6 the ionization probability,

Ecutoff the cutoff energy and b the confocal parameter.

From Table 7.1, looking at the last column ztd/3Labs, we see that the higher is the pres-

sure the bigger is the fraction of the medium length over which phase matching is preserved.

However, the higher the pressure the smaller is the tolerance to beam waist change, column

B, but this quantity is less important than zto/3Labs. The higher the pressure, the higher

the ionization probability 6 at which phase matching is achieved and as a result the efficiency

gets higher. The higher the pressure the smaller the Labs and as a result the smaller Lied we

need, which results to less diffraction and less defocusing. Small medium lengths are more

practical for performing the experiments. In addition, the higher the pressure (the smaller

the confocal parameter) the smaller the beam waist we need to achieve phase matching, but

in this case diffraction is stronger. On the other hand, the higher the pressure the higher

the losses, due to electron-neutral inverse bremsstrahlung. However, this is not taken into

account here. Also we do not take into account the sensitivity of phase matching to shot to

shot fluctuations of the peak power, which affects phase matching through the plasma and

neutral elements.

From the last column of the Table 7.1 we can conclude that the higher is the pressure the

longer Ak is preserved. Since there are 3 parameters that are changing in the last column,

Ztol/ 3 Las, goes through a local minimum and grows again. As the pressure increases, Labs
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and as a result the medium length shrinks, we win since there is not any beam propagation.

The medium length is shrinking faster than the diffraction length, so there is not significant

change of the beam waist over the medium length.

Regarding the optimum values for each of the columns in Table 7.1, we conclude the

following. The optimum beam waist is the one with the highest value within the water

window range, since it gives less defocusing. The optimum intensity is the one with the

lowest value within the water window region, since it results to less wavefront distortion. The

optimum ionization probability 6 is the one which has the closest value to the 6 for which

only neutral and plasma contributions to Ak are taken into account. Also the higher the

ionization probability, the higher is the efficiency. For the beam waist sensitivity parameter

B we would choose the highest one within the water window range. The optimum Lab, are

the ones which give practical medium lengths up to 2 cm. Finally, for ztoi/3Labs, the higher

value it has the better, since this means that we can propagate longer in the medium without

Ak deteriorating.

7.3.2 Effect of Electron-neutral Inverse Bremsstrahlung

As mentioned earlier, the effect of electron-neutral inverse bremsstrahlung is dominant for

high pressures and short medium lengths, as it is shown in Figure 7-11, which is for the

same parameters like Figure 7-3, without including the effect of electron-neutral inverse

bremsstrahlung. Comparing Figure 7-11.c with Figure 7-3.c and Figure 7-11.d with Figure 7-

3.d respectively, it is clear that the electron neutral inverse bremsstrahlung is dominant, the

higher the pressure and the shorter the medium length.

For the intensity change, given the amount of electron-neutral collisions, we will calculate

the length over which the beam can propagate, so that phase matching varies from 0 to value

at which Lmed/Lcoh = 0.6. We will call this length electron-neutral collision tolerance.

The slope of Lrned/Lcoh versus intensity I, for the intensity at which Lrned/Lcoh = 0
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Figure 7-11: Peak intensity versus radial coordinate r and propagation z without including

the effect of electron-neutral inverse bremsstrahlung, when a 10 mJ, 35 fsec, 2 pm drive

wavelength and 154 pm beam waist laser pulse propagates through a Helium jet, for a)

pressure 1 bar and medium length 20 mm, b) pressure 10 bar and medium length 2 mm, c)

pressure 100 bar and medium length 200 pm, d) pressure 1000 bar and medium length 20

pm. The colorbar is in W/cm2

(Ak =0) is

d( )_ me-d _0.

dLc ALc 0. (7.10)

In AddiiAn

In addition,

-_ (7.11)
dz d Az

Lcoh

and we get

AI Az - (7.12)
dz _

L coh
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From Eq. 7.10 and Eq. 7.12 we get the electron-neutral collision tolerance

Az 1 0.6

dz -coh d /

Ico L4o=Oi(g=o)

We can express _ as following:
Lcoh

The absorption of the driving field due to electron-neutral collisions is

OE _ -IB
--- 2 (1 + iwr)pE (7.14)az 2

We have

E12 = E*E + E =E* -IE12 P (IB(I+ iw-r) - IE12 PB( - iw-r) = -pO-IB IE12 (7.15)az 9z 09Z 2 2

and in Eq. 7.13
d= -p Led = 0) OIBI (Led = 0) (7.16)
dz '-Lcoh / \Loch /

Lcoh

In addition to the electron-neutral collision tolerance, we define the electron-neutral collision

length, which is the length at which the electron-neutral collision reduces the intensity by e,

equal to 1/(pc-IB).

Grouping the sensitivity parameters when the intensity changes, for HHG in Helium using

a 2.06 pm driver pulse with energy 2 mJ and duration 35 fsec we get:
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Table 7.2: Sensitivity parameters for intensity change for HHG in Helium using a 2.06 pm

driver pulse with energy 2 mJ and duration 35 fsec

P(bar) wo(Ak = 0) I(Ak=O) J(t = 0) Ecutoff Labs,(400eV) 1/(pOIB) Az(m) 3L

([pm) (W/cm 2 ) (%) (eV) (mm) (M) (%)

1 158.77 1.35- 1014  8- 10-7 185.22 56.62 1.29. 106 1.246. 10 7  7.33- 109

3 94.83 3.8. 1014 0.004 474.87 18.87 2.53 6.99- 10- 4  1.23

5 85.81 4.64- 1014 0.023 574.51 11.32 0.1898 1.19 -10-5 0.03

10 81.89 5.09- 1014 0.046 628.35 5.66 0.024 7.97. 10~ 7  4.7- 10-3

100 79.43 5.41 _ 1014 0.07 667.08 0.56 1.7- 10-4 3.8- 10-9 2.24- 10-4

From Table 7.2, looking at the last column Az/3Labs, we see that the higher the pressure

the shorter is the fraction of the medium length over which phase matching is preserved. This

is expected since the higher is the pressure the stronger is the effect of the electron-neutral

inverse bremsstrahlung.
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7.4 Mitigation of Plasma Defocusing

As we discussed before, the effect of plasma defocusing is significant and does not permit

phase matching. We want to reduce the effect of diffraction and consequently of plasma de-

focusing. We wish to test three possible ways of achieving that: a) choose a beam shape that

diffracts less (i.e. Supergaussian pulse), b) make a larger Gaussian beam which will diffract

less and c) minimize diffraction by shortening the medium length and increasing the pres-

sure. However, the last way increases the effect of electron-neutral inverse bremmstrahlung

loss and thus it is not favorable.

7.4.1 Supergaussian Pulse

The beam shape that we choose in order to reduce the effect of diffraction is the Supergaus-

sian pulse, which has the form:

E = E exp - (7.17)
\WO}

where EO is the field amplitude, r is the radial coordinate, wo is the beam waist and n is the

order of the Supergaussian. The shape of the Supergaussian makes the wings to diffract less

than the ones of the Gaussian pulse and as a result the effect of plasma defocusing is less

significant in the Supergaussian than the Gaussian.

In Figure 7-12 we see how the Supergaussian pulse evolves as it propagates along z for

t = 0, as a function or radius r. The Supergaussian pulse experiences diffraction, which

causes energy to move off axis and as a result the pulse becomes less flat. Wings diffract

more than the center and there is a strong local diffraction at the edges. The edges move

outwards and we see a drop of peak intensity.

At low pressures plasma defocusing is more important than the loss due to the electron-

neutral inverse bremsstrahlung. At high pressures the loss due to the electron-neutral inverse

bremsstrahlung is more important. Both phenomena are present in both cases and what

matters is their relative strength. There is this intermediate regime between 10 bar and 100

bar, where it is unclear which of the two phenomena is dominant.
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Figure 7-12: Supergaussian pulse as a function of radius r for t = 0 as it propagates along z.

In Figure 7-13 is shown the peak intensity at t = 0 when a 10 mJ, 35 fsec, 2 pm drive

wavelength and 177 pm beam Gaussian pulse (n = 2) propagates through Helium when a)

only diffraction is included, b) diffraction and plasma defocusing are included and c) the

electron-neutral inverse bremsstrahlung cross section is taken into account. By looking at

Figure 7-13 we conclude that plasma defocusing has a dominant role. However, losses due to

electron-neutral inverse bremsstrahlung have also influence. This argument is supported in

Figure 7-14 where is shown the peak intensity at t = 0 and r = 0, along propagation distance

z when a) only diffraction is included, b) diffraction and plasma defocusing are included and

c) the electron-neutral bremsstrahlung cross section is taken into account. The green and

blue curves are set by the plasma defocusing. The loss is reducing the intensity and the slope

dI/dz (intensity dependence of Ak) is a larger negative number for the blue curve than the

green one at the start. Thus, the initial drop of peak intensity is faster, due to inverse

bremsstrahlung. Without the losses, the pulse can propagate a little bit more without the

peak intensity at t = 0 to drop. Thus, losses due to electron-neutral bremsstrahlung play an

important tole, although is the plasma defocusing that is dominating the overall trend.

We move from a Gaussian (n = 2) to a Supergaussian (n = 6) beam. A Supergaussian
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Figure 7-13: Peak intensity at t = 0 versus radial coordinate r and propagation z, when
a 10 mJ, 35 fsec, 2 pm drive wavelength and 177 pm beam waist Gaussian pulse (n = 2)
propagates through a Helium jet when a) only diffraction is included, b) diffraction and
plasma defocusing are included and c) the electron-neutral bremsstrahlung cross section is
taken into account. The colorbar shows the intensity in W/cm 2
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Figure 7-14: Peak intensity at t = 0 and r = 0 versus propagation z when a 10 mJ, 35 fsec,
2 pm drive wavelength and 177 pm beam waist Gaussian pulse (n = 2) propagates through
a Helium jet when only diffraction is included (red), diffraction and plasma defocusing are
included (green) and the electron-neutral bremsstrahlung cross section is taken into account
(blue).
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beam shape has two advantages relative to a Gaussian one:

" the Supergaussian pulse has the right intensity (the one for which Ak = 0 is preserved)

for a wider range of radii

" the Supergaussian pulse experiences less diffraction and thus less of a drop of intensity

as the pulse propagates (dI/dz smaller)

The diffraction length for the Supergaussian is longer and thus we expect the losses due

to the electron-neutral inverse bremsstrahlung to dominate, although we work in the 10 bar

pressure regime. In Figure 7-15, is shown the peak intensity at t = 0 when a 10 mJ, 35 fsec,

2 pm drive wavelength and 177 ptm beam Supergaussian pulse (n = 6) propagates through

a Helium gas jet when a) only diffraction is included, b) diffraction and plasma defocusing

are included and c) the electron-neutral bremsstrahlung cross section is taken into account.

Losses due to electron-neutral inverse bremsstrahlung are dominant and stronger than the

n = 2 case. Thus, moving to a Supergaussian beam shape for 10 bar pressure does not help

a lot. It would help for lower pressures. In Figure 7-16 is shown the peak intensity at t = 0

and r = 0 along propagation distance z when a) only diffraction is included, b) diffraction

and plasma defocusing are included and c) the electron-neutral inverse bremsstrahlung cross

section is taken into account. It is evident that losses play a dominant role.

Comparing n = 2 with n = 6 case, diffraction for n = 6 is weaker and thus losses

dominate the initial drop of peak intensity. The same behavior (dominance of losses) is also

observed for n = 10 (Figures 7-17 and 7-18).

In Figure 7-19 is shown the peak intensity at t = 0 and r = 0 for the different beam

shapes. Initially everything drops along the rate that we would expect due to the loss, but

in n = 2 case diffraction sets in quickly and power drops. As we move from n = 2 to n = 6

and then to n = 10 cases the initial slope is the same. It is really important to understand

how long is the region that reasonable Ak at the start of propagation can be achieved and

the losses are really important in order to appreciate what is happening.

Comparing the HHG efficiencies for the three cases (Figure 7-20) we conclude that there

is a large increase in efficiency when we move from a Gaussian (n = 2) to a Supergaussian
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Figure 7-15: Peak intensity at t = 0 versus radial coordinate r and propagation z when
a 10 mJ, 35 fsec, 2 pm drive wavelength and 177 pim beam waist Gaussian pulse (n = 6)
propagates through a Helium jet when a) only diffraction is included, b) diffraction and
plasma defocusing are included and c) the electron-neutral bremsstrahlung cross section is
taken into account. The colorbar shows the intensity in W/cm 2
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Figure 7-16: Peak intensity at t = 0 and r = 0 versus propagation z when a 10 mJ, 35 fsec,
2 pm drive wavelength and 177 Mm beam waist Gaussian pulse (n = 6) propagates through
a Helium jet when only diffraction is included (red), diffraction and plasma defocusing are
included (green) and the electron-neutral bremsstrahlung cross section is taken into account
(blue).
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Figure 7-17: Peak intensity at t = 0 versus radial coordinate r and propagation z when a

10 mJ, 35 fsec, 2 pm drive wavelength and 177 pm beam waist Gaussian pulse (n = 10)
propagates through a Helium jet when a) only diffraction is included, b) diffraction and

plasma defocusing are included and c) the electron-neutral bremsstrahlung cross section is

taken into account. The colorbar shows the intensity in W/cm 2
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Figure 7-18: Peak intensity at t = 0 and r = 0 versus propagation z when a 10 mJ, 35 fsec,
2 pm drive wavelength and 177 pm beam waist Gaussian pulse (n = 10) propagates through

a Helium jet when only diffraction is included (red), diffraction and plasma defocusing are

included (green) and the electron-neutral bremsstrahlung cross section is taken into account

(blue).
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Figure 7-19: Peak intensity at t = 0 versus radial coordinate r and propagation z when a 10
mJ, 35 fsec, 2 pm drive wavelength and 177 pm beam waist laser pulse propagates through

a Helium jet for n = 2 (red), n = 6 (green) and n = 10 (blue) Supergaussian beam shape.

(n = 6) beam shape and a smaller one between n = 6 and n = 10. Moving from n = 2

to n = 6 we have advantage one (right intensity for a wide range of r) and a little bit of 2

(diffraction is slower), but already at n = 6 advantage two is mitigated by the losses. Moving

from n = 6 to n = 10 we have just advantage one.

The efficiency gets higher for higher Supergaussian order n, since as we go to higher

n there is a wider region over radius r, where there is the proper ionization probability to

achieve phase matching (Figure 7-21). This proper ionization probability is depicted in white

color and we can see that the higher the n the longer is the region over r that this ionization

level is achieved.
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Figure 7-20: HHG efficiency in Helium for a 10 mJ, 35 fsec, 2 pm drive wavelength and 177
pm beam waist laser pulse for n = 2 (red), n = 6 (green) and n = 10 (blue) Supergaussian
beam shape.
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Figure 7-21: Ionization probability at t = 0 versus radial coordinate r and propagation z
when a 10 mJ, 35 fsec, 2 pm drive wavelength and 177 /pm beam waist laser pulse propagates
through a 2 mm Helium jet for a) n = 2, b) n = 6 and c) n = 10 Supergaussian beam shape.

The white region in each place shows the region over which ionization level for Ak = 0 is
achieved. The colorbar is in %
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7.4.2 Gaussian Pulse with Larger Beam Waist

Another way to reduce the effect of diffraction and consequently of plasma defocusing is by

increasing the beam waist of the Gaussian pulse. The larger is the beam waist the smaller

is the effect of diffraction.

In Figure 7-22 is shown the peak intensity versus radial coordinate r and propagation z

at t = 0, when a Gaussian pulse with peak intensity 5.56-1014 W/cm 2 , duration 35 fsec, 2

pm drive wavelength propagates through a 2 mm Helium gas jet, when the pulse energy is

1.1 mJ with beam waist 58.73 pm (Figure 7-22.a and 7-22.d), 10 mJ with beam waist 177

pm (Figure 7-22.b and 7-22.e) and 100 mJ with beam waist 559.97 pm (Figure 7-22.c and

7-22.f). In the upper panel (subplots a, b and c) the electron-neutral inverse bremsstrahlung

is not taken into account, while in the lower panel (subplots d, e, and f) is taken into account.

For energy 1 mJ the cases with and without inverse bremsstrahlung are identical with

strong defocusing. Moving to energy 10 mJ the plot of peak intensity with and without

inverse bremsstrahlung are not quite identical but still not very different, with the inten-

sity dropping faster at the begin of the medium when the inverse bremsstrahlung is in-

cluded. Moving to 100 mJ, plasma defocusing is gone away and intensity is maintained

for longer distance. Diffraction hurts less, but the role of inverse bremsstrahlung is more

significant, with the drop of intensity at the begin of the medium being significant, when

inverse bremsstrahlung is taken into account (compare the drop of intensity at the begin

of the medium for Figures 7-22.c and 7-22.f) and thus we cannot do better as we move to

higher energies. As soon as defocusing is limited, the role of the electron-neutral inverse

bremsstrahlung becomes crucial.

In Figure 7-23 are shown the efficiencies for the three different energies. The higher is

the energy and consequently the beam waist, the higher is the efficiency.

As we go to higher energy and larger beam waist the effect of diffraction is mitigated and

thus a longer coherence length is maintained. However, as soon as the plasma defocusing

starts to decrease, the electron-neutral inverse bremsstrahlung starts to increase and begins

limiting how long the coherence length is maintained.
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Figure 7-22: Peak intensity versus radial coordinate r and propagation z at t = 0, when
a Gaussian pulse with peak intensity 5.56-1014 W/cm 2 , duration 35 fsec, 2 pm drive wave-
length propagates through a 2 mm Helium gas jet for a) energy 1.1 mJ and beam waist
58.73 pm without inverse bremsstrahlung, b) energy 10 mJ and beam waist 177 pm with-
out inverse bremsstrahlung, c) energy 100 mJ and beam waist 559.97 pm without inverse
bremsstrahlung, d) energy 1.1 mJ and beam waist 58.73 Mm with inverse bremsstrahlung,
e) energy 10 mJ and beam waist 177 Mm with inverse bremsstrahlung, f) energy 100 mJ and
beam waist 559.97 pm with inverse bremsstrahlung.

Comparing the approach of using Supergaussian pulses with the one of using Gaussian

pulses with larger beam waists, we see that in the latter approach we do not have the

advantage of the Supergaussian where more points in the radial coordinate are contributing.

When we go to a larger beam waist we only have the benefit of having a longer diffraction

length, but as soon as the plasma defocusing becomes less significant, the electron-neutral

inverse bremsstrahlung becomes important.
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Figure 7-23: HHG efficiency for Gaussian pulse with peak intensity 5.56-104 W/cm 2 , dura-
tion 35 fsec, 2 pIm drive wavelength propagates through a 2 mm Helium gas jet for a) energy
1.1 mJ with beam waist 58.73 pm (blue), b) energy 10 mJ with beam waist 177 Jim (red),
c) energy 100 mJ with beam waist 559.97 jIm (green).
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Chapter 8

Conclusions and Future Directions

In this thesis we did a study for the theoretical optimization of HHG efficiency. This study

can be summarized in three parts:

" Derivation of a semi-analytical formula for the computation of the conversion efficiency

into a single harmonic, using an 1-D model, and comparison of the theoretical results

with experimental ones

" Extension of the model to three dimensions and study of the influence of spatial effects,

like plasma defocusing and electron-neutral inverse bremsstrahlung to the driving and

harmonic fields

" Investigation of ways to mitigate the effect of plasma defocusing by using Supergaussian

beam shapes and using Gaussian pulses with larger beam waists

We developed a semi-analytical model for the computation of the conversion efficiency

into a single harmonic for the plateau and cutoff regions. This model is one dimensional,

uses the Three Step Model for the calculation of the single atom response in the single active

electron approximation and takes laser and material parameters and phase matching effects

into account. The analytical formula shows that the efficiency per harmonic scales with wg

at the plateau and wg at the cutoff region of the spectrum. We compared the results from

our theory with experimental results at 400 and 800 nm showing excellent agreement. The

efficiencies at 400 nm were 1-2 orders of magnitude higher than the ones at 800 nm verifying
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the formula prediction. In addition, we investigated the effect of the interference between

short and long trajectories on the spectra. We also studied two different ionization models,

the ADK and the Yudin-Ivanov and we showed that the Yudin-Ivanov model, which includes

both tunneling and multiphoton ionization, gives more accurate results especially for short

drive wavelengths.

We extended the 1-D model to 3-D and we studied in detail the effect of plasma defo-

cusing and electron-neutral inverse bremsstrahlung. We did this study in order to generate

radiation in the water window region of the spectrum by using driver pulses with 2 pm drive

wavelength. We showed that within the range of pressures one might choose for perform-

ing the experiment, at low pressures (0.1-1 bar) diffraction enhanced by plasma defocusing

is the dominant limitation, at high pressures (>20 bar) loss due to electron-neutral in-

verse bremsstrahlung is the main limitation and there is an intermediate regime of medium

pressures (1-20 bar) where both diffraction effects and loss due to electron-neutral inverse

bremsstrahlung have an effect. These two effects do not allow phase matching to be main-

tained for long distance, as the driver pulse propagates through the medium, resulting in

short coherence length and consequently to low efficiencies.

Finally, we explored ways to mitigate the effect of plasma defocusing by using Super-

gaussian pulses and Gaussian pulses with large beam waists. Moving from Gaussian to

Supergaussian pulses has the advantage of having the right intensity to achieve phasematch-

ing for a wide range of r and also of experiencing less diffraction. Using Gaussian pulses with

larger beam waists has the advantage of mitigating the effect of diffraction and maintaining

a longer coherence length. Both approaches to mitigate plasma defocusing showed increase

in efficiency.

As directions for future research, it would be important to understand better the effect

of dipole phase on phase mismatch and how it could be used for our advantage in order to

counteract with the Gouy phase shift. This would result in concentrating only on neutral

and plasma terms of plasma defocusing which can be treated easier. In addition, it would

be very useful to quantify how the ratio of medium length to diffraction length scales with
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pressure. This would help us understand how long the phase matching can be maintained.

Finally, a study on the spatiotemporal effects and on the quality of the generated attosecond

pulses would be crucial.

The contribution of the work presented in this thesis is twofold. It reduces the computa-

tional complexity of calculating HHG efficiencies and helps us appreciate the various spacial

effects. We strongly believe that this work can help the research community to develop tools

for an optimization study of HHG efficiency for making useful EUV sources.
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Appendix A

Dynamics of Actively Mode-locked

Quantum Cascade Lasers

Quantum Cascade Lasers (QCLs) are semiconductor lasers that emit in the mid- to far-

infrared region of the electromagnetic spectrum. QCLs were first demonstrated by Federico

Capasso and his group at Bell Laboratories in 1994 [59] and they have become the most

prominent and compact coherent light source in the mid-infrared. While conventional semi-

conductor lasers are bipolar devices and have an upper state lifetime ranging from hundreds

of psec up to nsec, QCLs are unipolar devices with an upper state lifetime that is in the few

psec range. In QCLs, the emission wavelength, the gain spectrum and the carrier transport

characteristics can be engineered over a wide range of values.

Figure A-1 depicts an energy diagram showing two stages of a QCL. Each stage consists of

an active region and an electron injector. The moduli squared of the relevant wavefunctions

are also shown. Electrons are injected from left to right and emit a laser photon at each

stage as they cascade down the structure. The electron injectors are composed of quantum

wells with very thin barriers. As a result, electronic states extend over many layers and form

narrow energy minibands separated by minigaps.

An electric field is applied so that electrons are injected from the minibands ground state

g into the upper state of a laser transition level 3 of the active region. The thinnest well in the
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active region enhances tunneling of the electron from the injector into the upper state. For

laser action to occur, the electron population in state 3 must exceed that of state 2. So the

relaxation time for the transition from state 3 to state 2 must exceed the electron lifetime in

state 2. The relaxation time between 2 states is largely controlled by the emission of optical

phonons. Increasing the state separation, increases the relaxation time. To maximize the

population inversion, the energy separating states 2 and 1 is designed to be equal to the

phonon energy, so that electrons in states 2 quickly go into level 1. To prevent accumulation

of electrons in level 1 the exit barrier of the active region is made thin, which allows rapid

tunneling into a miniband in the adjacent injector.

INJECTOR
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finff

[1:
55.1 g U

Figure A-1: Energy diagram showing two stages of a QCL.
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A.1 Introduction

Short pulse generation from QCLs emitting in the mid-infrared region (3.5-20 Pm) could serve

many applications ranging from time-resolved spectroscopy [60,61], and nonlinear frequency

conversion [8, 62, 63] to high-speed free space communication [64] and frequency metrology

[65].

The gain bandwidth of QCLs is large enough to potentially generate sub-picosecond mid-

infrared laser pulses due to the flexibility offered by band structure engineering. The most

common technique for ultrashort pulse generation is mode locking, in which the longitudinal

modes of the cavity are phaselocked either by an internal mechanism (passive mode locking)

or by an external (active mode locking). However, short pulse generation from QCLs by mode

locking is difficult due to the fast gain recovery time [66,67]. In intersubband transitions (i.e.

transitions between quantized conduction band states in semiconductor quantum wells), the

carrier relaxation time is very fast due to optical phonon scattering. As a result, the upper

state lifetime in QCLs is typically one order of magnitude smaller than the roundtrip time,

40-60 psec, of typical few mm long laser structures [66,67]. Usually, this situation prevents

the occurrence of mode locking, i.e. stable pulse formation. The reason is, that the gain

fully recovers before the next pulse arrives or even immediately after the pulse if the gain is

fast enough, which leads to less amplification of the peak of the pulse than its wings. Due

to this process the pulse lengthens in time and the laser approaches continuous wave (cw)

lasing. On the other hand, if the gain recovery time is longer than the cavity roundtrip time,

the gain saturates with the average power in the laser cavity and does not shape the pulse

significantly (Figure A-2). Therefore, most recently, QCLs with long upper state lifetime

have been fabricated by implementing a superdiagonal gain structure. Upper state lifetimes

of 50 psec, similar to the cavity roundtrip time, have been achieved. Using such structures,

an actively mode-locked QCL [68,69] that produced stable and isolated picoseconds pulses,

as confirmed by interferometric autocorrelation measurements, was demonstrated. Stable

operation with these devices was obtained by current modulation of only a short section of

the waveguide, while the whole waveguide was biased slightly above threshold.
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In this work, first the impact of upper state lifetime and pumping level on pulse formation

is discussed without taking spatial hole burning into account. Then the role of spatial

hole burning (SHB) in pulse shaping, destabilization of mode locking and interaction with

fast gain recovery and saturation is clarified, beyond what has been discussed previously

in [69,70], by extensive numerical simulations. SHB significantly reduces the pulse duration

by supporting broadband multimode operation. However, it leads to pulse instabilities and

non stationary pulse generation from the laser.

a Ab

I0time time

Figure A-2: Intensity (black line) and inversion (red line) for a) fast gain recovery time and
b) slow gain recovery time.

A.2 Prior Work on Multimode Regimes in QCLs

There are several previous works in which multimode regimes in QCLs were observed [64,71-

73]. In [71] self mode locking of CW pumped QCLs was claimed. The lasers were emitting

broadband optical spectra over a wide range of DC pumping levels. In the photocurrent

spectrum a strong, stable and narrow (less than 100 kHz) peak was observed, which indicated

long term coherence of phase relationships between the longitudinal modes. However, no

autocorrelation data were reported from which one could infer the formation of a stable

train of ultrashort pulses separated by the cavity roundtrip time.

In [64] active mode locking in QCLs, by modulating the laser current at the cavity

roundtrip frequency, was pursued. Again, evidence of mode locking was deduced from the
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measured broadband optical spectra, as well as from the power spectra of the photocurrent.

When the detuning between the driving frequency and the roundtrip frequency was large,

only one mode was lasing. As the detuning was decreased more and more modes were

lasing and a narrow beat note at roundtrip cavity frequency appeared. Information about

the temporal profile of the generated pulses and proof for true short pulse generation can

be obtained with second order autocorrelation measurements. Due to the lack of second

order autocorrelators in the mid-infrared at that time, there was no direct evidence that the

circulating waveform was consisting of a train of periodic isolated pulses with a stable steady

state pulse shape.

Once autocorrelation techniques based on two photon absorption quantum well infrared

photodetectors (QWIPs) [74, 75] became available, it was discovered that the wideband

multimode operation in QCLs is due to phenomena, such as spatial hole burning and the

Risken-Nummedal-Graham-Haken (RNGH) instability [70, 76]. Recently, it was proposed

that self-induced transparency (SIT) together with a fast saturable absorber may be used to

passively mode lock QCLs [77].

A.3 Device Model and Modulation Scheme

The actively mode locked QCL, which we will study in the following is schematically depicted

in Figure A-3.a. A detailed description of a specific device can be found in [69]. The laser

cavity is formed by two semiconductor/air interfaces, which shall be located at z = 0 and

z = L, where L is the cavity length. The cavity is divided into a short and a long section

(Figure A-3.b). Both sections are assumed to be equally and continuously pumped (DC

pumping) with a current density J = p x Jth, where Jth denotes the threshold current density

and the pump parameter p shows how many times the laser is pumped above threshold.

Active mode locking is achieved by sinusoidal modulation of the pump current injected

into the short, electrically isolated, waveguide section with the roundtrip frequency of the

passive cavity. The modulation is supposed to drive a large number of longitudinal modes
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b

DC+RF DC

Figure A-3: a) Device used in the experiment, b) Modulation scheme for the actively mode

locked QCL. The cavity is in total 2.6 mm long and the short modulator section at the

beginning of the cavity is 240 um long.

above threshold by creating modulation sidebands resonant with neighboring modes. The

pump current of the small section is then given by J = Jth x [p ± msin(27rfRt)I, where m is

the modulation amplitude relative to threshold.

The modulation of the injection current into the short section leads to temporal variation

of the roundtrip gain that a pulse can experience, favoring pulsed operation. The common

approach to achieve active mode locking is by periodic modulation of the intracavity losses.

Here, we modulate the gain. The short section of the cavity acts as a gain modulator, and

the long section is pumped to transparency or to slight net gain, helping to compensate the

other losses in the laser cavity.
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A.4 Numerical Model of QCLs

The dynamics of a QCL can be described by a three level model [78] as it is shown in Figure

A-4.a. It assumes that all QCL stages are identical and that laser action occurs between

levels 2 and 1, the upper and lower states of the laser transition. Level 0 corresponds to the

superlattice which connects to the next QCL stage, which is again described by the upper

laser level 2. The current density J driven through the device by an external voltage acts as

the pump current density from level 0 to level 2. T2 1 is the lifetime of the upper level, T10 is

the lifetime of the lower laser level, that couples to the superlattice. In reality, there is also

a superlattice transport time, TSL, that describes the time it takes for the carriers to travel

between different stages, which we neglect here. The rate equations for the 3-level system

shown in Figure A-4.a reads

2

0

J

1

Figure A-4: a) Three-level system which describes QCL
that we use in the simulations.

dynamics, b) Open two-level model

dIV 2 - J - Ih(N
2 -N 1) - N 2dt T21

dN1  1 1
-= -Iph(N2 - N1) + -N 2 - -- N

dt T21 T1o

dNo -
dt T10

(A.1)

(A.2)

(A.3)
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where N2, N and No are the population sheet densities of levels 2, 1 and 0 respectively, J

is the pump current density from level 0 to the upper lasing level 2, o- is the cross section

for stimulated emission between levels 2 and 1 and Iph is the photon flux at the transition

frequency f21. If the relaxation rate 1/TO is very large in comparison with the stimulated

and spontaneous transition rate from level 2 to 1, which is UIph(1 - N1/N 2) + 1/T 21, then

level 1 will stay empty at all times, i.e. N = 0. This is especially the case in the laser here,

since it is never pumped far above threshold and the ratio T21/TO ~ 100. Thus even for

sub-picosecond short pulses the stimulated emission rate would never exceed the decay rate

1/TO, which would lead to significant build-up of population in the lower laser level.

Assuming that the lower lasing level stays empty, we can describe the QCL dynamics

by an open two-level model (Figure A-4.b) for simplicity. The rate equations for the 2-level

system shown in Figure A-4.b read

dN2N
2  (A.4)

dt = JTIN2 1

N1 = 0 (A.5)

The population inversion in the open two-level model is effectively the upper state popu-

lation. The gain recovery time in the two-level model is then equal to the upper state lifetime

T2 1 and the pump current density fills the upper laser state 2 at a given rate determined by

the injected current density. The two-level model does not include the superlattice transport

dynamics since it is derived from the three level model (Eq. A.1-A.3) which also does not

involve this transport and this may be one reason for some of the remaining discrepancies

between the theoretical and experimental results.

A.5 Maxwell-Bloch Equations

To describe the interaction of the laser field with the gain medium, we expand the two level

rate equations to full Maxwell-Bloch Equations [70], that also take the coherent interaction
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between the field and the medium into account. The dynamics of polarization and inversion of

the gain medium is described by the Bloch equations (Eq. A.6-A.7) and the pulse propagation

through the gain medium located in the Fabry Perot cavity is described by the wave equation

(Eq. A.8). The electric field propagates in both directions resulting in standing waves.

d E _Pca (.6
tPb = iWPab + i-A (A.6)h T2

dE A 2 A(
atA = A - 2%' (pao - Pab) - - + D a2 (A.7)

O2EE = 2(Pab + rho-*o) (A.8)

where Pab is the off-diagonal element of the density matrix, A = pbb - pao is the population

inversion, w is the resonant frequency of the two-level system, d is the dipole matrix element

of the laser transition, D is the diffusion coefficient, E is the electric field, N is the number of

two-level systems per unit volume, n is the background refractive index, T is the upper state

lifetime, T 2 is the dephasing time and A is the pumping rate, that is directly proportional

to the injection current J in the rate equations. In the model, we modulate the gain in the

short section via the pump parameter A = Ath x [p + msin(27rfRt)] and in the long section

A = Ath x p. The last term in Eq. A.7 accounts for spatial diffusion of the inversion, i.e. of

electrons in the upper laser level along the plane of the layers.

The waves traveling in the two directions are coupled as they share the same gain

medium. This gives rise to SHB: the standing wave formed by a cavity mode imprints a

grating in the gain medium through gain saturation. As a result, other modes may become

more favorable for lasing and multimode operation is triggered.

We make the following ansatz for the electric field, the polarization and the inversion:

E(z, t) = [E* (z, t)-i(t-kz) + E+(z, t)ei(wtkz)] + E*(z, t)ei(t+kz) ± E_(z, t)ei(t~kz)

(A.9)

pab(Z, t) = 77+(z, t)e-i(wt~kz) + n_ (Ztei(wt+kz) (A.10)
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A(z, t) = Ao(z, t) + A 2 (z,t)e2ikz ± A- 2,kz A

where k = ri/c. The + and - subscripts label the two directions of propagation. E and 7

are the slowly varying envelopes in time and space of the electric field and the polarization,

respectively. The spatially dependent inversion is written as a sum of three terms, where AO

is the average inversion and A 2 is the amplitude of the inversion grating. AO and A 2 vary

slowly in time and space.

We substitute Eq. A.9-A.11 into Eq. A.6-A.8, and perform the slowly varying envelope

approximation obtaining the following set of equations [13]:

Ti Ndk
- tEi = ~0E - 2 * ~ lE+ (A.12)

Bei= (di A+TEy) 9 (A.13)
2h T2

id AOatAO = A + - (E ,q+ + E*.q_ - c.c.) (A.14)

a = ±id (E*,q_ - *E-) - + 4k2D) A± (A.15)

For compact notation we introduced: A+ A 2 and A- A*. (A)*-A2. The

last term in the equation for the electric field represents the waveguide losses. The model

assumes fixed waveguide losses, 1. In addition to the waveguide losses there are also losses

upon reflection from the waveguide facet, which are in the case considered here 53% on

each end of the laser due to the reflection from the semiconductor air interface, which is not

contained in the propagation equations (Eq. A.12-A.15), but included in the simulation. In

fact the low facet reflectivity is the major source of loss in this laser so that other small

loss variations in the device due to changes in the operating conditions are expected to be

of minor importance and can be safely neglected. In contrast to [70], we do not include

any effective saturable absorber effects due to potential Kerr-Lensing, since we compare the

simulations later with experimental results from devices with a wide ridge (8-20 pm), where

such effects are greatly reduced as discussed in [70].
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For simulation purposes, i.e. elimination of noncritical model parameters, we normalize

the field with respect to the dipole matrix element, i.e. Rabi frequency, and correspondingly

polarization, inversion, inversion grating and pumping as follows: -, n 2 ,

A0  Ndo 0 , A 2  =d$kA 2 and A Nd- A. The equations transform to

n
-8t5 = -+ - i + - 1E± (A.16)

C

= +- (A.17)

AO=l + i *+ +& _- C.C.) T (A.18)

= t - * - + 4k2D) AL (A.19)

For ease of interpretation of the simulation results and matching of model parameters to

the experimentally realized operating conditions, which are always related to the threshold

pump current, we derive the threshold pumping and threshold inversion for cw-lasing. The

continuous wave steady state polarization for E+ = = is

Z - ( O + A2) E (A.20)
2

which can be substituted in Eq. A.16. Thus for the forward propagating field we find

- 2 - -zaz + Ca,) E = 2AO + A2) E - 1E (A.21)

Thus the gain is y = T2 (AO + A 2) /2. At threshold the electric field vanishes and we

obtain from Eq. A.18 for the inversion AO = AT 1 and since there is no grating, A 2 = 0. We

therefore find that the small signal gain is given by go = AT1T2/2. At threshold the gain is

equal to the losses, thus the pumping at threshold must be Ath = 21/T1T 2 and the inversion

at threshold is Ath = 21/T 2 . For the following, we normalize the plots for the inversion

always with respect to the threshold inversion Ath for ease of interpretation.
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Spatial hole burning is associated with the amplitude A2 of the inversion grating that

couples the electric fields propagating along the two directions in the laser. As can be seen

from Eq. A.19 the inverse lifetime of the gain grating is given by Tg1 = T- 1 + 4k 2D, i.e.

it is the sum of the terms due to diffusion of the carrier density modulation and the inverse

carrier lifetime, since the latter is the rate by which carriers are homogeneously injected in

each volume element. SHB is strong in mid-IR QCLs since the strength of diffusion, which

combats the carrier density modulation, scales with the square of the wave number k [13],

which is about an order of magnitude smaller for mid-IR QCLs than for semiconductor lasers

in the visible. In steady state, Eq. A.18 shows that the term i - 4*E) that drives

the inversion grating in Eq. A.19 scales with AO/T 1 . So, in steady state, the strength of

the carrier density modulation or gain grating is & 2 ~ o/(1 + 4k 2 DT1 ). In AlInAs-InGaAs

heterostructures, the diffusion coefficient D is 46 cm 2 /sec at 77 K and for vacuum wavelength

6.2 pum, we obtain 4k 2 D = 0.2 THz. In regular mid-IR QCLs (T1=5 psec), 4k 2D is roughly

the same as 1/T 1 and SHB is strong (A2 ~ 0.5A 0 ). Even for a longer upper state lifetime,

such as Ti = 50psec, which is the case for the superdiagonal QCL structures discussed here,

the effects of SHB cannot be neglected (A2 ~ O 01). Due to the fast gain recovery time of

QCLs, carrier diffusion can not suppress SHB, in contrast to standard semiconductor lasers.

A.6 Parameters

The parameters that stay fixed and are used in all examples in this paper, if not otherwise

explicitly noted, are given-in Table A.1. It is important to note, that for the QCL with

superdiagonal gain structure discussed here, the roundtrip time is almost equal to the gain

recovery time, T 1, a fact that enables stable mode locking as explained before.
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Table A.1: Parameters used in simulations if not otherwise noted

A.7 QCL Dynamics without Spatial Hole Burning

First, the steady state behavior of the laser is investigated when SHB is not included in the

Maxwell-Bloch equations (i.e. A' = 0). Initially the continuous wave steady state solution

of the model is determined when the current modulation is switched off. Figure A-5 shows

the resulting total intracavity intensity and normalized inversion. That means, in each point

of the cavity there is a forward and a backward wave and we add the intensities of both

waves to the total intensity at each point. The total intensity increases slightly towards the

facets of the cavity to compensate for the output coupling losses and as a result the gain is

more strongly saturated at the edges than in the center of the cavity.

For completeness, Figure A-6 shows the pumping, the inversion and the intensity versus

time for a point inside the short (modulated) section. The inversion does not follow the

pumping current instantaneously, because the modulation frequency is close to the inverse

gain recovery time (i.e fR = 17.86 GHz and 1/T1 = 20 GHz) and as a result the inversion

is delayed by almost 90 degrees compared to the pumping. Also, the gain peak does not
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Quantity Symbol Value

Gain recovery time T1 50 psec

Dephasing time T2 0.05 psec

Linear cavity loss 1 10 cm-1

Roundtrip time TR 56 psec

Roundtrip frequency fR 17.86 GHz

Cavity length L 2.6 mm

Modulator section length L. 0.24 mm

Facet reflectivity R 53%
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Figure A-5: Steady state intensity (blue line) and inversion (green line) in the cavity without
SHB and without modulation for DC pumping p=1.1 after 1785 roundtrips.

coincide with the pulse maximum. The front of the pulse extracts gain so it is more amplified

than the back of the pulse experiencing the reduced gain, due to the long gain recovery time

compared to the pulse duration. As a result, the group velocity of the pulse is increased.

Second the laser dynamics under current modulation is studied. Figure A-7 shows the

intensity of the output pulses from the QCL at the right end of the laser cavity, (i.e. the

laser output is monitored as a function of time) for different DC pumping levels and con-

stant modulation amplitude (m=5). As expected, isolated pulses with a steady state pulse

shape are formed by the strong gain modulation in the short gain section. For increased

DC-pumping levels of the long gain section, the pulse energy or average output power is

increasing. The pulse duration depends on the pumping level. This can be understood by

the fact that the long section acts as an amplifier with a recovery time on the order of the

cavity roundtrip time. Although the gain is slow, with a recovery time equal the cavity
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Figure A-6: Pumping, inversion and intensity for a point inside the modulation section for

p=1.1 and m=5 without SHB.

roundtrip time, it leads to substantial reshaping of the pulse towards longer pulses, i.e. sup-

pression of multimode operation. When the DC pumping level is close to threshold (p=1.1)

the pulse is weak and therefore only weakly saturates the amplifier leading to minimum pulse

lengthening during propagation through the long section. The long section mostly helps to

compensate for the waveguide and facet losses. With increasing DC pumping (p=1.4 5 and

p=1.61), the pulse energy and with it the gain saturation and pulse lengthening increases,

explaining the increase in pulse duration with increased pumping.

For the purpose of comparison with later simulation and experimental results, Figure A-8

shows the normalized spectral intensities and Figure A-9 shows the computed Interferometric

Autocorrelation (IAC) traces for the three cases in Figure A-8.a-c. When DC pumping is

close to threshold many modes are lasing and locked (Figure A-7.a) and as a result the

pulses are fairly short, as we can see in Figure A-7.a. As DC pumping increases we can
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Figure A-7: Intensity profile of output pulse train for modulation with AC-amplitude m=5
for different DC pumping levels without SHB. a) p=1.1 b) p=1.45, and c) p=1.61

see in Figure A-8 that the pulses become longer in time and from the spectra we observe

that fewer modes are lasing due to the intensity smoothing effect of a saturating and fast

recovering gain in the long section. For low DC pumping level the ratio of peak to background

is 8:1 (Figure A-9.a), which verifies that the pulses are isolated. IAC traces for higher DC

pumping levels start to overlap. For the case without SHB, the IAC traces and in fact the

computed electric fields do not show any chirp i.e. nontrivial phase over the pulse.
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a
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0.0
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Figure A-8: Spectral intensities for modulation with AC-amplitude m=5 for different DC
pumping levels without SHB a) p=1.1 b) p=1. 4 5, and c) p=1.61

As we will see later, these do not fully account for what is found experimentally and

inclusion of SHB is necessary to explain the observations.
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Figure A-9: Interferometric autocorrelation traces (IACs) for modulation with AC amplitude

m=5 for different DC pumping levels without SHB a) p=1.1 b) p=1.45, and c) p=1.61

A.8 Experimental Observations

The experiments are described in detail in [69]. The experimental results show the same

general trend of pulse lengthening with increased DC pumping, however there is a major

difference. The pulses in the simulations are in general longer in time than the pulses observed

experimentally. For the case of a DC pumping parameter p=1.1, the pulse in Figure A-

7.a is close to a Gaussian with a 7 psec FWHM duration. The measured interferometric

autocorrelations for different pumping levels are shown in Figure A-10, and in particular for

p=1.1 in Figure A-10.a, assuming a Gaussian pulse shape, a FWHM pulse duration of 3 psec

is extracted. The experimentally observed spectra are also much more broadband compared

to the theoretical ones from the simulation. This indicates that SHB is important and must

be incorporated in the model.

A.9 QCL Dynamics with Spatial Hole Burning

To include SHB in the model we use Eq. A.16-A.19 in the simulations. The total inversion

now consists of the average inversion A0 and the inversion grating. The interference of the

two counter-propagating waves produces a standing wave pattern in the optical intensity,

which in turn varies spatially the saturation of the laser medium. Due to the spatial gain

grating more modes start lasing, however as we will show below this grating does not become
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Figure A-10: Measured interferometric autocorrelation traces (IACs) for modulation with
AC amplitude m=5 (35 dBm applied RF-power) for different DC pumping levels. a) p=1.1
(340 mA) b) p=1. 4 5 (450 mA), and c) p=1. 61 (500 mA). [69]

stationary. The wave, as it propagates, is reflected from the nonstationary grating at some

positions (SHB interferes with mode locking) and this leads to differential and time varying

phase shifts between the modes. Thus, in the presence of SHB the modes acquire nonlinear

phase shifts and with it also the pulse. Like in the case without SHB, the DC pumping level

should be close to threshold so that the pulses do not lengthen too much.

To obtain insight into the non-stationary gain grating, the continuous wave solution of

the model is determined in the absence of a current modulation. In Figure A-11 we show the

inversion along the cavity for DC pumping 1.1 times above threshold at three different times

about 5000 roundtrips apart. As the number of roundtrips increases, the average inversion

and the inversion grating continue to evolve and never reach a steady state. The inversion

profile and inversion grating show a degree of randomness. If there would be a steady state,

one would expect that due to the large losses per roundtrip the system would certainly come

into steady state within at least a hundred roundtrips. This is not the case.

If we increase the DC pumping to 2 times above threshold, the degree of randomness in

the grating is further increased due to the increase in the number of modes that are lasing,

see Figure A-12.

In the following, we show the intensity and the inversion profiles in the cavity when the

modulation is switched on, for various time instants and different DC pumping levels. In
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Figure A-11: Average inversion AO (blue line) and total inversion along the cavity length
including the inversion grating (red line) for DC pumping p=1.1 and no modulation after a)

5357 roundtrips, b) 10714 roundtrips c) 17857 roundtrips.

1.4A 1A- b I

1.3. 1.3- 1.3-

.2

1.1 1.1
01.1

O.O O.06 O.12 O.1S 0.24 0.00 O.b6 O.2 O.1S 0.24 O.0 O.06 O.12 O.1S 0.24

z(cm) z (cm) z (cm)

Figure A-12: Average inversion AO (blue line) and total inversion along the cavity length
including the inversion grating (red line) for DC pumping p=2 and no modulation after a)

5357 roundtrips, b) 10714 roundtrips c) 17857 roundtrips.

Figure A-13 the DC pumping is 1.1 times above threshold. When the pulse is reflected from

one of the facets, Figure A-13.a and c, a grating is formed due to the presence of forward

and backward waves. Since there are isolated pulses produced, there is no grating when the

pulse is propagating in the middle of the cavity, Figure A-13.b. However, there is still some

gain grating left over at the left end of the waveguide, where the pulse was reflected last and

consequently the grating has not yet decayed completely.

If we increase the DC pumping to 2 times above threshold (Figure A-14) there are no

longer isolated pulses per roundtrip. The pulse has broken up into multiple beats of the

lasing modes, due to the large and too fast recovering gain in the long waveguide section

and a gain grating is observable over the full length of the laser cavity.
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Figure A-13: Intensity profile (blue line) and total inversion (red line) along the cavity for
DC pumping p=1.1 and AC amplitude m=5 a) when the pulse is reflected off the left facet
and propagates to the right b) when the pulse is in the middle of the cavity and propagates
to the right c) when the pulse is reflected off the right facet and propagates to the left.
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Figure A-14: Intensity profile (blue line) and total inversion (red line) along the cavity for
DC pumping p= 2 and AC amplitude m=5 a) when the pulse is reflected off the left facet
and propagates to the right b) when the pulse is in the middle of the cavity and propagates
to the right c) when the pulse is reflected off the right facet and propagates to the left.

Note, in both Figure A-13 and A-14 there is a discontinuity in the inversion at the

boundary between the short modulated section and the long, continuously pumped section.

Similar to Figures A-7 up to A-9 we simulate the laser dynamics under current modula-

tion in the presence of SHB. The simulation results shown in the following are snapshots of

the laser dynamics after simulating 10,750 roundtrips (0.6 Its). Figure A-15 shows the nor-

malized time averaged spectral intensities that are generated by Fourier-Transformation of a

29 roundtrip long time series, and Figure A-16 shows the intensity of the output pulses at the

end of the QCL cavity for different DC pumping levels and constant modulation amplitude

(m=5) for a duration of about three cavity roundtrips. As explained above, the generated
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pulse trains and spectra do not reach a true steady state, but rather remain dynamic on

the few percent level. If we compare the spectral intensities in Figure A-15 with the ones

in Figure A-8, where no SHB is included, we see that many more modes are lasing in the

presence of SHB in agreement with the experiment. For DC pumping close to threshold

(p=1.1) the phases between the modes are locked to the values favoring the formation of an

isolated pulse and the main peak of the pulse becomes as short as 2 psec (Figure A-16.a).

With increasing DC pumping level, more modes start lasing (Figure A-16.b, c), since the

magnitude of the inversion grating becomes stronger. At the same time, the intensity profile

of the pulses becomes more structured (Figure A-16.b, c). The reason for the structure is

the decorrelation of the phases between the modes due to SHB. Also the speed of the gain

modulation, which stays fixed, is no longer capable to lock all modes of the increasingly

broadband spectrum. Furthermore, with increased DC-pumping, passive gain modulation in

the amplifier section, due to gain saturation by the pulse and partial gain recovery, becomes

stronger and again the peak of the pulse experiences less gain than the wings, destabilizing

short pulse generation.
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Figure A-15: Spectral intensities for modulation with AC amplitude m=5 for different DC
pumping levels including SHB a) p=1.1 b) p=1.45, and c) p=1.61

The computed IAC traces for the three cases in Figure A-16 are shown in Figure A-17

and reflect the structure that is observed in the intensity profiles. As DC pumping increases,

we observe in the IAC traces more and more substructure. The simulation traces back this

sub-structure to the nonlinear phase introduced by SHB.
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Figure A-16: Intensity profile of output pulse train for modulation with AC amplitude m=5
for different DC pumping levels including SHB a) p=1.1 b) p=1.45, and c) p=1.61
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Figure A-17: Interferometric autocorrelation traces (IACs) for modulation with AC am-
plitude m=5 for different DC pumping levels including SHB. a) p=1.1 b) p=1.4 5 , and c)
p=1.61

The grating decay time T is always smaller than the upper state lifetime T 1 , see Eq.

A.19. When the effects of carrier diffusion are negligible, i.e. Tg becomes close to T1 , the

strength of SHB increases (the amplitude of the inversion grating relaxes slower) and the

side lobes in the IAC become more pronounced. In Figure A-18.a we see the effect on the

side lobes when T increases from 5 psec (used so far) to 10 psec. The same behavior also

occurs when T decreases. As explained before, decrease in T results in increase of the effect

of SHB and subsequent deterioration of the pulse quality as it is shown in Figure A-18.b.
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Figure A-18: Interferometric autocorrelation traces (IACs) for modulation with AC ampli-

tude m=5, and DC pumping level p=1.1 a) for T, = 50 psec and Tg = 10 psec b) for Ti =

5 psec and Tg = 2.5 psec. Comparing the two figures with Figure A-17.a we see that the

structure is more pronounced in these figures due to the stronger SHB.
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Appendix B

Derivation of Equation 3.10

In this appendix we derive in detail Eq. 3.10 following the slowly varying envelope ap-

proximation in the harmonic field. We can represent the harmonic field and the nonlinear

polarization as a sum of their various frequency components [26]

(B.1)Eh(r, z, t) = Ehq(r, z, t)
q

PN(rzt) q (rL zt)

and

(B.2)

where q is the order of each harmonic. Each frequency component is presented as:

Ehq(r, z, t) = Eq(r, z, t)eikqz (B.3)

and

pNL = pNL iqklz (B.4)

where Eq(r, z, t) and p NL(r, t) are the envelopes of the harmonic field and the nonlinear

polarization respectively. By substituting them in Eq. 3.4 we obtain

aEhq _ O Eq ikqz + ikqEqeCkqz
9z az (B.5)
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a 2 Ehq = 2 eikz + 2ikq & eik z - k 2 Eqeikqz (B.6)

In the paraxial approximation, we neglect the second derivative of the envelope compared

to the wave number of the field. Using in addition the Fourier transforms of the harmonic

field and the nonlinear polarization in Eq. 3.7 we get

( 2 VI q r(rq), Wik _E(r z ) 2 ikqZ
S(r, z, W) + 2ikq 'z' - k2Eq(r, z, wq) + - (qw) (r, z, Wq) e

= - 12NL W iqkiz (B.7)
EC

The refractive index is n = nreal + inimag (nreal > nimag and that nreal ~~ 1) and since

kq = wqnreal/C the left hand side of the previous equation becomes

I 5 (r, z, wq) + 2iL (9 ' 4'-+ 2inimag (, r, ) eikqz (B.8)

The absorption coefficient at frequency wq is r, = wqnimag/C , which is equal to po(w)/2

where p is the density of atoms and a is the absorption cross section. Thus

Vjq(r, z wq)e ikqZ ±2iZ Wq) ±+ Eq(rzWq) eikqz _ - NL Wq)iqklz

(C V2 (, + zEq(rz,wq) p (W)(, r ikqz =NL jjL )eiqk z
S\2iwq I 7Z q 9Z ± 2 tq (7 , q} Eciqq(

(B.9)

The nonlinear polarization is equal to pNL (r, wq) = pdq(r, wq) with ib (r, wq) iWqdq(r, wq)

we get Eq. 3.10
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Appendix C

Derivation of Energy of a Single

Harmonic

In this Appendix we will show that the energy in a single harmonic is given by

2(m+1)wo

J dwlh(w) 
I'

2mwo

2

ii±i~r (1-2 47a 2 1- (/ 3 4)N1l
1 + - 2 ) (t)e tdt 2w0 1 -4

0
(C.1)

From Eq. 5.8 the Fourier transform of the harmonic field is

2,T

Eh~w) = Vr2iwou(w)I 0~ teWd
(C.2)

assuming perfect phase matching over the whole spectrum and absorption limited conditions.

As said before, the Fourier transform is carried out by using the periodicity of driver pulse

and trajectories in each half-cycle.

We show that

I (t)e-iwtdt

0

(N1 N-2
T,2n ein!-

n(t)e- =0dt E e- L',

0 n=O

(C.3)
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If we split the integral in a sum of integrals over each period Eq. C.3 becomes

wo

I
0

e~-t(t)e-'wtdt =

2w(n+l)

N-2 2w

E j
n=0 7r

WO

Each term in Eq. C.4 can be written as

2w(n+1)
U

0
0

2/
"

0

2wr
"0

c(t)e-'wtdt=

0
(t

.27r- 2
g+n-WO)e-'e- '" d

and since (t + n ) =2n-(t) Eq. C.5 becomesWO

2w(n+1)

J (t)e-wtdt =

WO

Thus
27r(N-1)

LUO

J (t)e-'wdt =

0

27
U

0

2 e-'e 2' r dt

0

27
WO N-2

(teit #2ne-iwn-f Z = 2 w

0 n=0
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The energy in a single harmonic is given from the integral of the square modulus of the

harmonic field over a frequency range associated with one (odd) harmonic is

2(m+1)wo

J dw Ih(w)12

2mwo
2_

47c 2

27w 2
2(m+l)wo 2N-2

dw J (t)e-dt E #2n e-in

2mwo 0 nw0

4wa 2

2- 2

I we Qdt
0

27r 2
WO

0 t e- dt

0

2(m+1)wo

J d

2mwo

2(m+l)wo

J d

2mwo

N-2

W E2ne

2

-%wn 2
7uwO

N-2

S( f 32(n+k)e-iw(n-k),

kn=0

(C.8)

The integral over dw is non zero only for n = k, so we get

2(m+1)wo N-2

2mwo n=0

1 4(N-1)
=12w0

Thus, we infer that the energy in a single odd harmonic Q is

2(m+1)wo

J dwLt (w)1
2

2mwo

1
2wr

47rc 2

Go-(w)

27r 2
WO

J (t)edt

0

1 - 4(N-1)
2w 0

In the high harmonic generation process the recombination events happen each half-cycle,

and thus

J (t)e- "dt = (i

0
+ Oe"(1 L)

where we used
Ir

(t + -) = -03(t) = Oe'%(t)
WO

27r

27r

(C.9)

(C.10)

7rLJO
0(t)e-""dt
0

(C.11)
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Thus the energy in a single harmonic is given from

2(m+1)wo

J dwlEh(w)
2

2mwo

IT_ 2((47 2 wo -Qd
+ 6e(1- ~ te dt

0

2 1 _ (4)N -1

(C13

(C.13)
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Appendix D

Numerical model in 3-dimensions

In this Appendix we will describe the numerical model for the simulation of the wave equation

in 3 dimensions in cylindrical coordinates, assuming that the driving field propagates in free

space

V2 n 2 02
VE (rT,Z, t) - y-(.1

c2 t2 0 (D.1)

Eq. D.2 can be rewritten as

V2 (92 n 2 &2
V 2E(r, z, t) + -2 E(rT, Z, t) - E(r, z, t) = 0 (D.2)

We introduce the slowly varying envelope function E(rT, z, t) = E(rT, z, t)ei(kz-wt) and we

apply the slowly varying envelope approximation

-E(rT, z, t) =9 k(rT, z, t)ei(kz-wt) + ikE(rT, z, t)ei(kz-wt) (D.3)
Dz Bz

092 a2 (z-l a (zw) 2 Z ~ik-t
zE(r, Z, t) = -(rT, z, t)ei(kz-t) + 2ik-E(rT, z, t)ei(kz-t) - k 2k(rT, z, t)ei(kzwt)

(D.4)

aE(r, z, t) = aE(rT, z, t)e2(kz-t) - wE(rT, z (kz-t) (D.5)
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2E(r, z, t) = 2  (rT, z, t)ei(kz-wt) - 2iw a (rT, z, t)ei(kz-wt) - W2 t(rT, z, t)e i(kz-t)

(D.6)

We consider that the envelope 5(rT, z, t) varies slowly on the scale of an optical wavelength

or an optical period, i.e. = < and W

This results in

V2 2 n 2 OE5(rT z, t) 2n2
V 2 5(rT, z, t) + 2ik+ (rT, z, t) - k 2 E(rT, z, t) + 2iw +W) ± -(rT, z,t)

0ZC
2 at C2 (D.7)

After substituing k = nw/c in Eq. D.7 we get

V 2E(rT, z, t) + 2ik +
(z 0

We introduce the retarded time frame

and Eq.D.8 can be written as

tildeE(rT, z, t)
C at

nz

C

z =z

aV 2E(rT, z, t') = 2ik-E(rT, z, t') = 0
Oz

where we dropped the tilde on the pulse envelope. Eq. D.11 is the one we use to simulate

the propagation of the driving field in free space.

Assuming cylindrical symmetry (0/0# = 0) Eq. D.11 can be written as

02
0 E(r , t')

Or2
+ -- E(rT, z, t') + 2ik-E(rT, z, t') = 0

r ar az
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The solution of Eq.D.12 at each point in z is

E(z + dz) = E(z)exp V2 dz (D.13)

where

v2 2 I a
T = 02 + (D.14)

Or2 r Dr

For r = 0 g = 0 so that the electric field has physical meaning. The term 1 needs

special treatment. Taking the Taylor series expansion of the electric field at r=0

aE r 2 0 2E r 2 a 2E
E(r) = E(0) + r + 2 _ = E(0) + - (D.15)

r rO 2a r=O2 rr=

Taking the fist derivative on both sides of Eq. D.15 we have

OE 02E 1 E a 2E
- =r - -2 (D. 16)

=r Or2 o rr= 0 O 2 r=0

At the end boundary in r we set the electric field equal to 0.

We use the finite difference method to model Eq. D.14. Using the method of undetermined

coefficients (centered scheme) we will find the weights 6j' that approximate the derivatives

dtmE

drm  ~ 6E (D.17)
r=ri j=l
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Our interpolating polynomial will be of 6th order. For whatever m (in our case m = 1 and

m = 2), 1 = i - 3, r = i + 3 (centered scheme) and uniform spacing Ar we have:

d mE i+3

drm ~ Ej
r=r i j=i-3

= 6"3Ei- 3 + 6i_22Ei- 2 + 67_1Ei-1 + 6iEi + 6Ji 1 Ei+1 + 6i 2Ei+2 + 6E 3 Ei+3

- 3ArE' +

- 2ArE' +

(3Ar)2 E"
2

(2Ar)2 E"
2

- ArE+ 2AE)" --ArE> 2 ~

+ ArEl + 2 "

± 2ArE' +

± 3ArE' +

(2Ar)2

2

(3Ar)2
1

2

(3Ar)3 E(3) (3Ar)4 E (4)
6 24 0

S(2Ar) 3E) +
6

6

+ 6E

'+(2Ar) 3 E
6

'O + (3r )'"+ 6 EO3

(2Ar)4 E (4

24 0

+ 24 E

24 E

- (3Ar)5 E (5 )

120 0

(2Ar)5E (5 )

120 0

- E 5 )

120

+ 120 5)

+(2Ar)4FE4 +±± 24 +

S(3Ar)4 EO(4) +± 24 ~

+ (3Ar)6 E(6 )
720 0

+ (2Ar) 6 E(6)
720 0

± (Ar)E6 FO6)

(2Ar)5 E F 5

120 E

(3Ar)5 )E
120 ~

± (2Ar)6 E()
720 E

720 E

(D.18)

Thus the derivatives are approximated by

1DE _
r or r=r

a 2 E

ar2 r=ri

1 - Ei- 3 + Ei-2 - E_1 + 2Ei+1 - Ei+2 + Ei+3

(i - 1)Ar

E'-3 - !E- 2 + 'Ei_1

= 6 3Eo

+" 72 E0

+ jl 1 (E0

+" Ji Eo

±6 2 (EO

+ 6J 3 (EO

)

Ar
(D.19)

Ar 2 (D.20)
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