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ABSTRACT

It is found that under mild assumptions, feedback system stability

can be concluded if one can 'topologically separate' the infinite-dimensional

function space containing the system's dynamical input-output relations

into two regions, one region containing the dynamical input-output

relation of the 'feedforward' element of the system and the other region

containing the dynamical output-input relation of the 'feedback' element.

Nonlinear system stability criteria of both the input-output type and

the state-space (Lyapunov) type are interpreted in this context. The

abstract generality and conceptual simplicity afforded by the topological

separation perspective clarifies some of the basic issues underlying

stability theory and serves to suggest improvements in existing stability

criteria. A generalization of Zames' conic-relation stability criterion

is proved, laying the foundation for improved multivariable generalizations

of the circle and Popov frequency-domain stability criteria for nonlinear

systems.



1. INTRODUCTION

Examining the conditions of Zames' conic relation stability theorem

[1] -- a powerful abstract result including among its corollaries the

Popov,circle, passivity, and small-gain stability criteria (cf. [21-[6]) --

we have been struck by the observation that the conditions of the

conic relation theorem have an unexpectedly simple interpretation in

terms of a topological separation of the space on which the systems

input-output relations are defined. Our scrutiny of the classical Lyapunov

stability theory (e.g., [71-[83) has revealed that a similar interpretation

applies to the stability conditions imposed by the Lyapunov theory.

Motivated by these discoveries, we have developed a unified theory of

stability in which the Lyapunov functions and the contraction mappings

of previous theories are replaced by 'separating' functionals. The

abstract generality of our approach serves to clarify the roles in

stability theory of such basic concepts as extended normed spaces,

contraction mappings, and positive-definite, decrescent, radially unbounded

Lyapunov functions.

The conceptually simple view of stability theory afforded by topological

separations has made clear to us some generalizations Zames' results

[1]-[2] -- for example, the 'sector stability criterion' described in

this paper. Our sector stability criterion forms the basis for several

powerful and useful multivariable generalizations of the circle and Popov

stability criteria; these generalizations are described in [9] and are

the subject of a forthcoming paper.



This paper is based primarily on chapters 1-4 of Part II of

M. G. Safonov's Ph.D. dissertation [9].

2. PROBLEM FORMULATION

Our results concern the stability of the following canonical two-

subsystem multivariable feedback system (Figure la)

(x, y) E (u)
(2.1)

(y, X) (v)

where

u CU and v EV are disturbance inputs to the system;

xCX and yEY are the outputs of the system;

Q(u) C X x Y and H(v) C Y x X are nonlinear
e e e e

relations which are dependent of the disturbance inputs

uGU and v Ve respectively;

U , V , X , and Y are vector spaces.
e e e e

It is assumed that (O, 0) G Q(O) and that (0, 0) G f(O) so that the

A set X is described as a vector space [10, p. 171] (or, equivalently,
as a linear set [11, pp.43-44]) if for any two of its elements x
and x2, the sum x + x is defined and is an element of X, and similarly
the product ax is defined, 'a' being a scalar ; additionally, the
following axioms must hold

(1) (x 2) + 3 + x + (x2 + X3) (associative addition);

(2) x1 + 2 2 + x1 (commutative addition);

(3) an element 0 exists in Z such
that Ox = 0 for all x in X;

(4) (al + a2 )x = alx + a2x
~(5) a (x= ax + ax (distributive laws)

(5 -x + x2) =ax + a xl _2

(6) (ab)x = a(bx) (associative multiplication);

(7) ix = x.
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pair (x, y) = (0, 0) is an equilibrium solution of the undisturbed

system. The system (2.1) defines a relation between input pairs (u, v) U x V
e e

and output pairs (x, y)E X x Y ; equivalently (2.1) defines a subset

of the space (U x V e) x (Xe x Ye).

The vector spaces U , Ve, Xe, and Ye are assumed to be extended

normed spaces, defined in terms of collections of normed spaces UT, VT,

XT, and YT and a collection of linear 'projection' operators PT as follows.

Definition: Let Z be a vector space. If there is a associated with Z
e e

an interval T and a collection of linear operators PT (TET) mapping

Z into the collection of normed spaces ZT (TET) then Z is the

extended normed space induced by the collection of operators PT (T T).

If, additionally, each of the spaces Z is an inner-product space then

we say that Ze is the extended inner product space induced by the

collection of operators PT. A vector space Ze which is itself a

2 functionals I I. I le:Ze R U Co}
One can define a variety of 'extended norm' functionals I* e e
on the space Ze' e.g., El[]

|izl _e = sup I IPTZIIz
or [5] T T T

I||z IIe = lim sup IIPZIIz .Z
T+(sup T)

Since Izl Ie may in general be infinite, the functional IHII is not
necessarily a norm in the usual sense. However, II lIe does define
a norm on the subspace

Z A {ZEze I I _ < 001

For purposes of stability analysis, we have found that it is not necessary
to introduce the extended norm I' -Ile or the normed subspace Z since
the stability properties of each z Z e can be determined from the T-dependence

of iIzHI_.3
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normed space is presumed to be the extended normed space for which Z = Z
T e

for all T, and ZT is the identity operator, unless ZT and/or PT are specifically

stated to be otherwise.

Comments:

The foregoing problem formulation is considerably more general

than is usual in stability theory. Typically, the interval T represents

time and the spaces X . and V consist of functions mapping T into Rn;
e e

the operator PT: (Xe', Ye Ze)-* (XT, YT, ZT) is typically taken to be

the linear truncation operator [1]

(pT. c i ) (t), i f t < T }(P - (t) = (2.2)
O , if t > T

The interval T might typically be taken to be either the non-negative

real numbers R+ (in the case of continuous-time systems) or the set of

non-negative integers Z+ (in the case of discrete-time systems). The

disturbance vector spaces Ue and V are typically both either Rn (in the
e e

case of Lyapunov state-space results [7]) or spaces of functions mapping

T into Rn (in the case of 'input-output' stability results [5]) 3

In the special case in which the relations Q(u) and f(v) are induced

by disturbance-dependent functional operators £(u): Ye - Xe and Y(v): X + Y ,

then the system (2.1) may be represented by the equivalent set of feedback

equations

Readers unfamiliar with the notion of a relation, the concept of an
extended normed space, the linear truncation operator, or other concepts
and definitions associated with 'input-output' stability theory may
find it helpful to refer to one of the books [3], [4], (6] or the
concise and lucid original exposition of Zames [1].
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x = G(u) · Y
(2.3)

y= (V) x

(see Figure lb).

3. SEPARATION INTERPRETATION OF STABILITY THEORY

To provide motivation and a conceptual framework for the development

that follows, it is instructive to digress at this point by explaining

how to give a simple geometric interpretation to the conic-relation

stability theorem (Zames [1], Theorem 2a) and to one of the principal

theorems of Lyapunov stability theory.4

Conic Relation Theorem

The conditions of the conic relation stability theorem involve

'conic' regions of the type (see Figure 2)

Cone (c,r) A {(x,y)Xe x Ve [(y-cx)JI < rIlxlIT

for all TET}i((x,y})EX x <y-(c+r)x, y-(c-r)x> <0 for all TET}

(3.1)

where c and r are scalars called the cone center and cone radius,

respectively.5 It is said that a relation HCX x V is insidee e

Cone (c, r) if

4The circle Popov, passivity, and small-gain stability theorems as well
as the sufficiency part of the Nyquist theorem follow as corollaries
to Zames' conic relation stability theorem; this is demonstrated in [1]-
(2]. These and still other results can be proved via the Lyapunov theory

(cf. [12]).

5The notation Cone (c, r) is non-standard; Zames [1] uses the notation
tc-r, c+r}.
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HC Cone (c, r); (3.2)

f is strictly inside Cone (c, r) if for some r' < r,

IC Cone (c, r') C Cone (c, r) (3.3)

The notions of outside and strictly outside are defined analogously

using in place of Cone (c, r) its complement. A property of conic

regions such as (3.1) that is central to the geometric interpretation

of Zames' conic-relation stability theorem is that the complement of

such a conic region in Xe x Ye corresponds to either a conic region (if

c < r) or the complement of a conic region (if c > r) in Xe x Ye, as

may be seen by comparison of Figure 2a with Figure 2b. For reasons that

are not entirely apparent, the conditions of Zames' conic-relation

theorem also require that Ue, Ve, Xe, and Ye be identical extended inner

product spaces and that the disturbances uCX and vyY e enter additively;
e e

i.e., if (x1 , yl)i((v) and (Y2' x2)EG(u), then, respectively,

(X1, + v, (1) ¢ (O) (3.4)

(Y2 + u, x2) G(0)

(see Figure 3). Subject to these restrictions on the class of systems

considered, the conditions of Zames' conic relation theorem state quite

simply that a sufficient condition for the feedback system (2.1) to be

globally stable is that (for appropriately chosen center and radius

parameters c and r), the relation Q(O) be strictly inside Cone (c, r)C Ye x Xe
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and the relation H(0) be inside the region of Xe x Y corresponding to

the complement of Cone (c, r) (ee Figure 4). The interpretation of

the conic relation stability theorem in terms of a topological separation

is immediately evident: the interior of Cone (c, r) and the interior

of the complement of Cone (c, r) form a topological separation [131

of the space Xe x Ye [less the equilibrium point (x, y) = (0, 0) and

other points on the boundary of Cone (c, r)] into two disjoint regions,

the closure of one region containing all non-zero pairs (x, y) E f(O)

and the interior of the other region containing all non-zero pairs

(x, y) such that (y, x) E q(0).

Lyapunov Stability Theorem

In the continuous-time state-space stability problems typically

attacked by Lyapunov methods, the system under consideration is often

given in the form (see Figure 5)

x(t) = f(x(t), t); x(0) = (3.6)

where

t E R+ [0, c]

x(t) e Rn for all t ER

This system can be interpreted in terms of the system (2.3) as

t -it X, + | y(T)d - = G(u)y-x - x(t)ItR = ( x +
0 +

- H(v)x

V =OE = {0}

RnU = x EU R
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where T = R+, xEX and Y and where X and Y are the extended
+- e e e e

normed spaces

Xe = {x: R+ Rn x is once differentiable} (3.8)

Y = {y: R Rn} (3.9)
e +

induced by the identity operator

P x = x for all x (3.10)

mapping Xe and Ye into the normed spaces

X = X (3.11)
T e

with norm

I I IT = tE i, TI 1l.X(t) 'Rn (3.12)

and

Vr = V (3.13)
T e

with (degenerate) norm

I lYllT :0 (3.14)

One of the main theorems of Lyapunov stability ([8], Theorem 4.1)

states that if in some neighborhood of the origin of the state space

Rn there exists a positive-definite decrescent Lyapunov function V(x, t)

such that its derivative VV(x, t)f(x, t) + - (x, t) is negative semi-at -

definite in this neighborhood, then the solution x(t) - 0 is stable in

the sense of Lyapunov; i.e., for every constant £ > 0, there exists a

constant 6(S) > 0 such that <ix || n< 6 () implies |xjI < £ for all T.
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The stipulation that V(x, t) be positive definite ensures that

every pair (x, y) satisfying x = Q(0) - y lies inside the subset of

X xY,
e e

{(x, Y) ft [VV(x, t)] Ty(t) + V(x, t)dt

- V(x(T)) - V(x0) = V(x(T)) > 0 for all TET}. (3.15)

The condition (3.15) ensures that, in some neighborhood of the origin

of X x Y , every pair (x, y) satisfying y = H(0).x lies 'outside' the

set (13.15), i.e., is contained in the set

{(x, y) I X TvV(x(t))y(t) + ~t(x(t),t)dt < 0 for all T ET}. (3.16)

The results of this paper show that it is more than just a coincidence

that the conditions of such powerful stability results as the conic-

relation stability theorem and the foregoing Lyapunov stability theorem

correspond to the existence of a topological separation. The results

show in essence that one can use any such partitioning of X X Y into
e e

two disjoint regions, provided that the 'distance' between the two regions

is positive and increases as the 'distance' from the equilibrium increases.

What constitutes suitable measure of 'distance' is the subject of our

main results in §5.

4. NOTATION AND TERMINOLOGY

In this section some of the standard terminology from the stability

literature (e.g., [1], [7]) is reviewed and, where necessary, generalized

so as to be applicable to the broad class of stability problems admitted

by our abstract problem formulation.
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Relations (cf. [ 1])

A relation R is any set of the form R C X x Y; i.e., a relation

is any subset of the Cartesian product of any two sets. A relation

R C X x V can be represented equivalently as a mapping of subsets of X

into subsets of V and in this regard is merely a generalization of the

notion of a function mapping X into Y. Some operations involving relations

are defined below.

Image: The image R[A] of a set AC X under a relation R C X x V is

the subset of V

R[A] A {y I (x,y) R for some x A} . (4.1)

For x0 E X, we may denote R[{x}] using the abbreviated notation R x

or Rx.

Inverse: The inverse of a relation RC X x V is the relation R ICY x X

1? =A {(y, x) Vx X I (x, )ER} (4.2)

clearly, the inverse always exists.

Composition Product: The composition product of the relations R1 C X x Y

followed by R C V x Z is the relation R2 o 1R C X x' Z

° 1 AOR {(x, z) X X Z I there exists y G Y such that

(x, y) R1 and (y, z) R2 2 (4.3)

Sum: If R R C X x V and if addition is defined on V, then the sum

of the relations R and R is the relation
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R + 12 - {(x, y) X x Y I x EX and y = y1 + 2

for some Y1E R1 x and z2ER 2 x (4.4)

Graph: If G is a function mapping of points x ~ X into points Gx C YV

then the graph of G is the relation

- _ Graph (G) _ {(x, y) X x Y I

x X and y = G x }

Stability Terminology

Class K (cf. (7, p. 7]):

A function P mapping the non-negative real numbers R+into non-negative

real numbers R+ is defined to be in class Kj denoted ~ E K, if ~ is

continuous, strictly- increasing and 4(O) = 0.

Positive Definite; Decrescent; Radially Unbounded: Let Xe be an extended

normed space and T be the associated interval; let S be a subset of

Xe containing the point x = 0; .a functional fn: S x T + R is said to be

positive definite on S if both

i) for some ~ in class K, all x S and all T ~ T

n(x, I) > 0 (IXIT) (4.6)

and,

ii) for all T E T

T(O, T) = 0 (4.7)

a functional n: X x T + R is said to be decrescent on S if for some

¢ in class K and all T E T

0 < n(x, T) < I (IXI I'T) (4.8)
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A functional n: X x T + R is said to be radially unbounded on S ife

there exists a continuous non-decreasing function 4: R+ - R+ with

lim ¢(a) = o such that for all T T and all x S

n(x, T) > W~lIXII). (4.9)

Neighborhood: For any extended normed space Xe, any set A C Xe, and

any non-negative number a, the neighborhood N(A;a) is the set

N(A;a) A {xCXeX for some OEA,

1j(x - A|) i < a for all T =T} (4.10)

If A consists of a single point, say x0, we may use the abbreviated

notation N(x;o;a) g N({ };a). A set S is said to be a neighborhood

of a set A if for some E > 0

N(A;E) C S; (4.11)

if 2 is a point, the set S is said to be a neighborhood of x if for

some s > 0 N(x ; S) C S.

I I (x, Y) I: for any normed spaces X, V and any (x, y)E X x V, the notation

11 (x, y)l1 is in this paper defined to mean:

A12 +21/2
Y (11X; (4.12)

clearly, (2.10) defines a norm on X x Y. So, for example, X x V is
e e 1/2

an extended normed space with associated norm Ill(x, y) = ( 11i ( l +| IYll)

12



Gain; Incremental Gain: Suppose X and Y are extended normed spaces;
e e

let FCX x Y If for some scalar k < - and for all x X and all T T,~ e e e

F XC N({O} ; kIxI IT). (4.13)

then F has finite gain; the smallest k for which (2.11) is satisfied

is.called the gain of F. If for some k < a, all x1, x2EXe, and all T T,

X2 CN( xl; kix - 21 I), (4.14)

then F has finite incremental gain; the smallest such k is called the

incremental gain of F. A function F: X -+ YV is said to have finite~ ~ e e

(incremental) gain if the relation Graph (F) has finite (incremental) gain.

Bounded; Stable; Finite-Gain Stable: Let X and Y be extended normed
e e

spaces; let F C X X Y ; let A C Ye. If there exist neighborhood continuous
e e e

of A, say S, and a non-decreasing function ~: R+ - R such that for all xES

'F x CNEA; ~(j IjI)I (4.15)

then F is bounded in S about the set A; if~EK then we say F is stable

about the set A; if ~ is linear (i.e., ~ of the form p(I lxl I_) = kl xl IT),

then we say that F is finite-gain stable about the set A. If, in the

foregoing, the neighborhood S can be taken to be the entire space Xe,
e

then 'bounded in S' becomes simply bounded, 'stable' becomes globally

stable and finite-gain stable becomes globally finite-gain stable. When

A = {o}, then we say simply that F is bounded in S , or globally stable,

or globally finite-gain stable, respectively (i.e., we omit the phrase

'about the set A').
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Comment:

It is necessary that stability be defined here, because there is

no standard definition in the literature. The definition varies in

subtle ways from author to author (cf. [1], [4], (141), and even among

papers with a common author (e.g., [1] and [14]). The motivation for

the present choice of definition is two-fold. First, the definition

is more flexible than previous definitions of stability in that

i) inputs need not enter additively, and

ii) by allowing discussion of stability about an arbitrary set, the

definition permits one, in principle, to address certain special issues

in stability theory, e.g., the stability of time-varying functions or

sets of time-varying functions such as the limit cycles of autonomous

systems. Second, the definition meshes well with the classical notion

of stability in the sense of Lyapunov (cf. [8]), coinciding when the

magnitude of the system input is taken to be the Euclidean norm of its

initial state and the state trajectory is presumed to lie in the extended

normed space Xe defined in (3.8) - (3.11).

Comment:

It is noteworthy that in the case of linear systems, the definitions

of bounded, stable, and finite-gain stable coincide: for such systems ¢

can always be taken to be linear: e.g., in (2.13), pick any 2 with

lbl | 1 0° and replace (1I xlI T) by ' (| I'x IT) = )[I Ix IT

(cf. Theorem 5.4 in [15]). Consequently, when speaking of linear systems,

the terms bounded, stable, and finite-gain stable may be used interchangeably.
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5. FUNDAMENTAL STABILITY THEOREM

An abstract result which provides an aggregate characterization

of the set feedback system outputs achievable with a specific system

input is now stated. We refer to this result as our fundamental stability

theorem because stability tests of both the input-output type and the

Lyapunov state-space type can be derived from this result. The stability

implications the result are found to have a simple interpretation in

terms of 'topological separation' of the product space Xe x Ye on

which the systems dynamical relations are defined.

Theorem 5.1 (Fundamental Stability Theorem): Let S be a subset of

Xe x Ye. Suppose that real-valued functionals d(x, y, T), nl(X, y, T),

n2(U, T), 3(v, T) and n4 (x, y, T) can be found such that for each TET

G(u) n S c {(x, y) I d(x, y,T)

> nl (x, y, T) - fl2(u', )} (5.1)

H(v) n S C {(y, x) d(x, y, T)

< n3 (v, T) - n4(X , y, T)}. (5.2)

Then every solution (x, y) of (2.1) in S satisfies the inequality

nou t ( X, y, T) < nin(u, V, T) (5.3)

for all TGT, where

1n A nl + n4 (5.4)
nout = 4

nin A 2 + n13 (55)
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Proof: Suppose (x, y) is a solution of (2.1) and that (x, y)ES. Then,

(x, y) E G(u) n (v) n S . (5.6)

By (5.1) - (5.2) if follows that for all T T

d(x, y, T) > nl(X, y, t) - 12(u, T) (5.7)

d(x, y, T) < n3(v, T) - n4 (x, y, T) (5.8)

Substracting (5.7) from (5.6) and adding nin to both sides yields

nin(U, V, T) > (nl(X'y, YT) + n4 (x, y, T)

- r2(u, T) - n3 (v, T) + nin(u, v, T))

oUt(X x Y, T) (5.9)

which proves Theorem 5.1 

The importance of Theorem 5.1 is that it provides an aggregate

characterization of the set of output pairs (x, y) in S that are

achievable by input pairs (u, v) in sets of the form {(u, v) I ni (u, v, T)

< constant}. By imposing the additional restriction that the functional

pout is positive definite on S, this inequality may be used to establish

the stability properties of the system (2.1) by establishing a (u, v)-dependent

bound on [ y(x, Y) T' When, additionally, S = Xe X Ye then the stability

properties thus determined are global. The following corollary to

Theorem 5.1 illustrates this.

Corollary 5.1 (Boundedness & Global Stability):

a) (Boundedness) If in Theorem 5.1

i) S = X x Y
e e

ii) nout is positive definite and radially unbounded, and
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iii) .inis bounded,

then the system (2.1) is bounded.

b) (Global Stability) If in Theorem 5.1

i) S = X x Ye,e e

ii) nout is positive definite and radially unbounded, and

iii) ni is decrescent,

then the system (2.1) is globally stable.

c) (Global Finite-Gain Stability) If in Theorem 5.1

i) S = X x Ye e

ii) for some strictly positive constants s1, s2, and a and

for all (x, y) X x Y
e e

pout( ' y, T) _ (IIx __llX (5.10)

in (U_, VI.) E< (_ I (u, V1x) I1 

then the null solution of (2.1) is globally finite-gain stable.

Proof: We prove each of the results (a) - (c) in sequence.

a) Since pout is positive-definite radially-unbounded and since

ni. is bounded, there exist continuous non-decreasing functions out: R+ + R
in out + +

and in: R -+ with out(0) = 0 and 4out strictly increasing and

lim cout(C) = o such thatout

out(1(x-' z)11) < nou t (x, , I) (5.11)

and

in (u, v, ) < Tin (11(u, v,)T) . (5.12)
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-1
Evidently out exists and is decrescent, so

| | (((X, Y) I (UT V) IT)(5.13)

where ( = out oP .in Clearly ( is continuous and non-decreasing,

so the system (2.1) is bounded.

b) Taking (out' in and ( as in (a), it follows that

II(x, Y) I < Q(P((u, v)I ) (5.14)

Since nout is positive definite and radially unbounded and since in

is decrescent, it follows that out and .in are decrescent and hence

-1
= Pout o (i is likewise decrescent. It follows from (5.14) that

out in

the null solution of (2.1) is globally stable.

c) From (5.10) and the inequality (5.3), it follows that

.1(1(x , )_IIT) <- nout(X", Y,'T) < nin(u, v, T)

< £2E(|| U V) | |T) (5.15)

and hence

I Ii (_X, ) I 2 (5.16)

It follows that the null solution of (2.1) is globally finite-gain

stable. L

Comments:

The stability conditions of Corollary 5.1 may be interpreted

and conceptually motivated in terms of a 'topological separation'.
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For simplicity we consider only the case of global stability (part (b) of

Corollary 5.1) -- a similar interpretation is possible for the other

parts of Corollary 5.1. We further assume for simplicity that n4 0- 

so that nou t = n1 -- this entails no loss of generality since every case

may be reduced to this by substituting d + n4 for d. For each T T,

the functional d(x, y, T) serves to 'topologically separate' the space

Xx Ye into two disjoint regions, viz. the region where d(x, y, T) > 0

and the region where d(x, A, T) < 0, the set {(x, y) I d(x, y, T) = 0}

forming the boundary. The positive-definiteness of out ensures the

undisturbed relation H(0) lies entirely in the region where d(x, y, T) < 0

and that every non-zero point of the undisturbed relation G (0) lies

in the complementary region where d(x, y, T) > 0. Consequently, the

null solution (x, y) = (0, 0) is the unique solution of the undisturbed

system (2.1) -- this is prerequisite to global stability. We can vizualize

[d(x, Y, T) [ as defining the T-dependent distance of each point (x, y) E Xe X Y

from the boundary set {(x, A) I d(x, y, 1T = 0 , the sign of d(x, y, T)

determining on which side of the boundary the point lies. The positive

definiteness and radial unboundedness of nout ensures for every (x, y)

(x, j) E G (o) that this distance is positive and grows unboundedly as

I I (, )| IT increases. In this conceptual framework, the quantity

2 (u, T) is simply an upper bound on the "distance" that G (u) shifts

toward the boundary as a consequence of the disturbance, u. Similarly,

the 'distance' of H(0) from the boundary is non-positive and n3(v, T)

is an upper bound on the distance that H(v) shifts toward the boundary as
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a consequence of v. Because solutions of (1.1) must lie in the set

G (u) n HM(v), we see that the "distance" of fn(x, y, T) must be less

than the sum n2(u, T) + n3(v, T), i.e.,

nU t(x , y, T) < n 2 (u, T) + T3(v, T) a ~in(u, V,% ) (5.17)

Because the "distance" nout(x, y, T) increases unboundedly as (x, Y) 11T

increases, it is evident from (3.4) that | (x, y) I|T is bounded; this

is illustrated in Figure 6. The fact that nin and, hence, r 2 and n3

are decrescent ensures that vanishly small u and v will produce vanishly

small shifts -l(U, T) and ~2(v, T) in the respective relations G (u)

and M(v). This establishes the global stability of the system (5.1).

In view of the foregoing, one may loosely interpret Corollary 5.1

as saying that stability can be assured if one can find some real-valued

functional (viz. d(x, y, T)) which separates the set G (O) U H(O) less

the pair (x, y) = (0, 0) into the component parts G (0) - {(0, 0)} and

T(O). The conditions that nin be decrescent and that nout be positive

definite may be viewed as technical conditions that are imposed to

rule-out 'peculiar' situations in which either the amount of separation

fails to grow with distance from the origin in the X x Ye Iplane' or

in which the system is ill-posed in the sense that small disturbances

(u, v) produce disproportiately large changes in the input-output relations

G(u) and M(v).

It is noteworthy that Theorem 5.1 and Corollary 5.1 make no reference

to loop transformations, multipliers, contraction mappings, or any of the
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other mathematical paraphernalia usually associated with input-output

stability results (cf. [3] - [61). This is a consequence of the fact

that, in contrast to most previous input-output stability criteria, no

fixed-point theorems (e.g., the contraction mapping theorem) are used in

the proof of Corollary 5.1 and Theorem 5.1. This underscores the fact

that existence of solutions -- and existence is always assured when fixed-

point theorems are employed -- is not central to the issue of stability.

Rather, in stability analysis, we are concerned primarily with ascertaining

that all existing solutions are stable. Existence of solutions, which

relates to the 'well-posedness' of the system equations, can be deduced

from entirely separate considerations [4, pp. 93-101].

The Lyapunov stability result discussed in §3 is a special case

of Corollary 5.1 in which the separating functional d(x, y, T) is taken

to be

fT av
d(x, y T) = VV(x(t), t)y(t) + a(x(t), t)dt

where V(x, T) is the 'Lyapunov' function. With this choice of d(x, y, T)

and with G(u) and H(v) as in (3.7), it follows

i) d(x, y, T) = VV(x(t)*(t) + V (x(t), t)dtat

= V(x(T), T) - V(x(O), 0)

for all (x, y) satisfying

x = G()) y y(t)dt +

5Well-posedness tests, based on considerations other than stability, are
provided in [4]. However, it should be noted that (in contrast to the view
taken here and elsewhere in the literature, cf. [1], [6], [14]), reference
[4] defines well-posedness to be prerequisite to any discussion of
stability or instability.
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T

ii) d(x, y, T) = C VV(x(t))f(x(t), t) +-t-(x(t), t)dt

for all (x, y) satisfying

y(t) = f(x(t), t).

Evidently when V is positive definite and decrescent and when

V (x, t)f(x, t) + '-(x, t) < 0 for all x and t, then the conditions

of Corollary 5.1 are satisfied with

n (X, T) = V(x(T), I)

and with

ra2(s) =- V(x, 0)

n3 = n4 -

This establishes that Lyapunov stability results can be treated as

corollaries to Theorem 5.1.

Not surprisingly, Zames' powerful conic relation stability theorem

can also be shown to be a corollary to Theorem 5.1. To prove this and

to demonstrate the power of our results, a generalization of Zames'

conic relation theorem is now developed.

6. THE SECTOR STABILITY CRITERION

The conic relation stability theorem of Zames is generalized in

this section to permit the utilization of the more flexible definition

of sector which follows.

22



Definition (Sector): Let Xe and ye be extended normed spaces

and let Ze be an extended inner product space. For each TGT let

F(x, y, T) F11<F + F 2x F21Y + 2 2x> (6.1)

where F..0 =0 (i, j = 1, 2) and F , F21 Y Ze and 1 , X2 Y.
~i] - 1 1 21 e e 12 22 e e

Then the sector of F is defined to be

Sector (F) A {(x, Y)Xe x Ye I for all T· T

F(x, y, T) < 0}. (6.2)

For notational convenience, the functional F will be denoted equivalently

by the 2 x 2 array

f-l f12
F [ ll 22 (6.3)

Definition (inside, outside, strictly inside, strictly outside): A subset

T of X .x Y is said to be inside Sector (F) if A C Sector (F) A
~ e e 

{(x, Y)Xe x Ye for all ITT F(x, yZ, ) < 0}; A is said to be strictly-.

inside Sector (F) if for some £ > 0, AC {(x, y)X e x Y. I for all TqT

F(x, Z, T) < -e i (X, }; A is said to be outside Sector (F) if

AC {(x, v)CX x Y for all ToGT F(x, y, T) > 0}; and, A is said to

be strictly outside Sector (F) if for some --s>0, A C { (x, y) Xe Xe

for all T ET, F(xt, y, t) > I(x, xy) 23
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We now state a stability result based on Corollary 5.1 that

employs sectors to accomplish the requisite 'topological separation'

of the space Xe x Ye. The proof, which involves a straightforward --

but tedious -- verification of the conditions of Corollary 5.1, is

in Appendix A.

Theorem 6.1 (Sector Stability Criterion): Let F be a 2 x 2 array as

in (6.3.); let the F...(i, j = 1, 2) have finite incremental gain; let
~!3

the mappings ofU.E Uinto G(u) and v V into H.(v) be bounded (respectively,

globally stable; respectively globally finite-gain stable) about the

respective sets G(O) and H(O). If G (0) is strictly inside Sector (F)

and if H(0) is outside Sector (F), then system (1.1) is bounded

(respectively, globally stable; respectively, globally finite-gain stable).

Proof: See Appendix A.

Comments:

The requirement in Theorem 6.1 that the functions mapping of uEU

into G(u) and vEV into H(v) be boundedabout the. sets G(O) and H(0)

should not be confused with the more restrictive requirement that the

subsystems G and H be 'open-loop bounded, i.e.; that the mappings of (u, y)

into G(u)y and (v, x) into H(v)x be bounded about {(0, 0) }. For example,

if the disturbances u and v enter additively as in Figure 3 -- and this

is the only case considered in the majority of the input-output stability

literature -- then the boundedness requirement placed on the mappings
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G(') and H(-) in Theorem 6.1 is automatically satisfied (with finite gain!).

Thus, the boundedness restriction on the mappings G(') and R(') is actually

very mild; it can be viewed as a sort of well-posedness condition on the

feedback equations, ensuring that small disturbances do not produce

unboundedly large dislocations of the dynamical relations in the X x Y -
e e

'plane' -- cf. [4, p. 90] condition WP.4.

Comparison of the definition of Sector (F) with Zames' conic

sector (3.1) shows that

-(c + r)
Cone (c, r) = Sector -( c r)

Zames' conic relation stability criterion is a special case of Theorem

6.1 that results when sectors of this form are employed and the class of

systems considered is restricted to the additive-input type depicted

in Figure 3.

Some Properties of Sectors:

Zames' [1, App. A] demonstrates that his conic sectors have several

properties which make them especially well-suited to feedback system

stability analysis. Our more general sectors have similar properties,

some of which are enumerated in the following lemma.

Lemma 6.2 (Sector Properties):

(k)
Let F.. and F ( be operators mapping into extended inner product

spaces Z and Z (k) respectively; let F..0 = 0 and F.. (k) = 0; let
e e_ -- -1

A, B and A be relations on extended normed spaces; let (0, )E A,
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- ~(k) *
B, Ak); let a and b be scalers with ab > 0; let M and M be operators

with the property that <Mzs, Z2> = M< z> for all z z 2 e
~- -2 Z' 2 Z--' z2 e

and all TET. Then the following properties hold:

i) (Complimentary Sector)

A inside Sector

21 -22

A outside Sector C 11 12] ; (6.4)

furthermore, (6.4) holds with inside and outside replaced respectively by

strictly inside and strictly outside.

ii) (Multiplier)

Sector (t[11 .12, = Sector ([a M*Fll a *F(6.5)

M 21 M 22 b F 21 b F22 2

iii) (inverse Relation)

A inside Sector 22 

XI " inside Sector (6.6)

Furthermore, (6.6) holds with inside replaced by strictly inside throughout.

iv) (Sums of Relations) If B = Graph (B) and if F11 and F21

are linear, then
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inside Sector 1F22 )

(A - B) inside Sector (6.7)

f2l (f21 B + F22) J

If (A- B) has finite gain, then (6.7) holds with inside replaced by

strictly inside throughout.

v) (Composition Products of Relations)

a) If = Graph (B), then 

o Ainside Sector 11 12

21 22

A inside Sector ([ F ) (6.8)

-1

b) If A = Graph (A) and if A exists, then

B ° ~ inside Sector i( ul|)

B inside Sector (6.9)

c) If A Graph (A), then

B inside Sector (L A F12

IF11 12

A o B inside Sector ([l 1l2 (6.10)

27



Furthermore, if . has finite gain, then (6.8) - (6.10) hold with inside

replaced by strictly inside throughout.

vi) (Composites of Relations)

Suppose I {((x(1 ) x fn)) ((1) y(n)) ( (k ) (k)) (k)

for all k = 1, ..., n}; suppose Fij (() , , in) = (F .. Fijn))

for (i, j = 1, 2); and suppose that Z = Z () x x Z (n) and that
e e e

n

<(z (1) )(n) (k) (k)
-l ) Al >T -1l 'z 2 T

Then,

A inside Sector

_21 ' 22

1(k) inside Sector for all k (k1,...,n.
~re F 2 (6.11)

Furthermore, (6.11) holds if inside is replaced by strictly inside

throughout.

vii) Properties (i) - (iv) hold if throughout inside is replaced by

outside and strictly inside is replaced by strictly outside.

Proof: See Appendix B.

Comment:

Properties (i) and (ii) of Lemma 6.2 provide a parameterization

of the various representations of a sector. Property (iii) establishes

the relation between sectors containing the inverse relation I. Properties

(iv) - (vi) permit the characterization of a sector containing the
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relation of a complicated multivariable system using knowledge of

sectors associated with subsystems comprising the system and knowledge

of the interconnection structure of the system -- these properties

have application to the analysis of the stability of multivarible systems.

7. DISCUSSION

Our fundamental stability theorem (Theorem 5.1) is of significance

largely because it permits a clear understanding of the basic issues

involved in stability analysis; this is enabled by the relatively high

level of abstraction in our formulation of the stability problem. In

particular, Corollary 5.1 makes it clear that if one can find a 'topological

separation' of the product space X x Y such that the undisturbed
e e

relation G (Q) lies in one component of the separated space and the

undisturbed relation H(0) lies 'strictly' in the other component, then

under mild conditions closed-loop stability can be concluded. The

conceptual simplicity of this abstract view of stability theory may

prove to be of considerable pedagogical value, since it is possible

to relate the conditions of the various input-output and Lyapunov

stability criteria to the simple geometric notion of topological separation.

Also, the conceptual simplicity of the topological separation viewpoint

serves to elucidate the general approach that must be taken to generate

new results such as the sector stability criterion (Theorem 6.1). Our

sector stability criterion leads fairly directly to powerful new

multivariable generalizations of the circle stability criterion

for nonlinear systems, as is demonstrated in [9].
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One of the implications of using sets (such as the components

of a topological separation) to bound the dynamical relations of a

system is the possibility of determining the qualitative behavior of

a system -- and even bounding its quantitative behavior -- using only

a coarse knowledge of the system. The stability margins (e.g., gain

margin and phase margin) of a simplified model of a feedback system can

be thusly characterized, providing a measure of robustness against the

destabilizing effects of modeling errors -- this is demonstrated in

[9]. Also, bounds on a poorly defined or imprecisely modelled system's

transient response can be found.using the inequality (5.3), allowing

one to deduce the relative degree of exponential stability or instability.
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Appendix A: Proof of 6.1

We apply Corollary 5.1, taking d(x, y, T) to be the map

d~~x , 0 if II (x,) )I IT= o

I y, T) if ( I I 0 (Al)

We begin by establishing (5.1). Let uEU be fixed and take

(x, )9IG (u). Applying the Schwartz inequality, we have that for some

£>0, for every (~, YOGI (0), and every T T

I I (X, Y) I IT d(x, , T) = -<(F y + ) (21 + F22) T

=I I (X yO) I IT (-O d YO!
-<(Fll + F ) [(F21-21) + (FF -f F220

< l FllyO) + (F122 - fl220) (F21Y - f22)>T

II(F11YO +12!0)11 l [F

+ (Fx -x F 2220)] T

- II[(F11Y +- o) + c x_ -F20o)] -IT

IFI (FF21( - F2 ) ! 

->_ (kO1(, YO) I IT

- (k11(EO' YO) 11c) · (kl[.(cX, y) - (,o) YO)] IT)

- (k| I [(X, ) - (o, Y) 11 ) · (k I (x, Y) IT) (A2)
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where the latter inequality follows with k<o an upper bound on the

gain and incremental gain of F.ij (i, j = 1, 2). Since by hypothesis

the map of auU into G(u) is bounded, there exist a continuous increasing

function Pi: R+ + R and a point ( 1)2 (1) ) 1 (0) such that

for every IE T

|I[ Y.) (- (1) I ( )- )I IT < pl(I luI_) (A3a)

Also, for all TET, there exists a point (x (2) I (2)) 0 GI(0) such that

I(2) (2) , II (x, Y) IT (A3b)

namely the point (x (2) ()) = (0, O). From (A3a, b) it follows

that there exists an ( Y, yo)CI'(O) such that for all TXT

Il(x, y) - (, o4)]IT_ < min {I1(x, Y)11T, Pl(Ilul IT}, (A4)

I ( - I l - P1( I ) < (, y) II _ < 2 (* y) I (A5)

and, from the former inequality in (A5), it follows that for all ~T

(xo, o) 11 I I I I IT) + I I (X) T) (A6)

Substituting (A4), (A5), and (A6) into (A2) and dividing by I (, YI IjT,

it follows that for all (x, y)- 1 (u) and all t'.T,
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-,--, y_, T, > - , ,- II T '',1 - IT,

- 2k2p 1(l IHuI _

-k2pl(IIT) (A7)

Taking 1,~2:R+ R+, Tl1(x, y, T) and n2(u, T) to be

1 ( a) _-a (A8)

( aQ) _ (2c + 3k2 p) P ( a ) (A9)

1 _X, Y, T) = 1I lCIC X )IIT) (A10)

T2I(u, T) =A ( I I - I IT(All)

we see that E1iK is linear and radially unbounded and that for all

(x, y) GI (u) and all T T

d(x,y,T) > l(x, y, T) - -2 , T (A12)

which establishes (5.1).

Proceeding in an analogous fashion to establish (5.2), we have that

for some p2 :R+ R+, every (x, y) E H(v), and every 'ET

d(x, y, T) < L 3 (v, T) - 4(x, y, T) (A13)

where r3(v,) = 3( I Iv IT) = 3k P2 (IIvI IT), n 4 (x, y, ) - 0;

as before k<- is an upper bound on the gain and incremental gain

of F.. i(i, j = 1, 2) and P2, like P1 ' is continuous and increasing.

Thus, -

pout(x, y, T) = £I IX, y IT (A14)
and

rn (u, V, T) = (26 + 3k2 )plCllulf + 3k2 p2C||vII ). (A15)
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Clearly nout is positive definite, radially unbounded and satisfies the

constraint imposed by (5.10) with a = 1. Since nin is clearly bounded,

it follows from Corollary 5.1-a that (2.1) is bounded. If additionally

the maps taking u into G(u) and v into H(v) are globally stable (globally

finite-gain stable) about the respective sets G(O) and H(0), then P1

and P2 may be taken to be in class K (may be taken to linear) from which

it follows that nin is decrescent (satisfied (5.10) with a = 1) and

global stability (global finite-gain stability) of (2.1) follows from

Corollary 5.1-b (Corollary 5.1-c).
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Appendix B: Proof of Lemma 6.2

We prove properties (i) - (vii) in sequence.

Proof of Property (i):

T inside (strictly inside) Sector ( 11 f12 

{<F y + F xF Fy + Fx> < (, ) 
-11- -12- -21Y -+ 22- T - I I ) I I

for some S > 0 (S > 0), all TCT, and all (x, y)EA (B2)

{<F 1 1 y + F2x, -F T - IF X> I (x, Z) I

for some £ > 0 (S > 0), all TE=T and all (x, y)EA (B3)

A outside (strictly outside) Sector ( l 2) (B4)

This proves property (i).

Proof of Property (ii):

(x, y) E Sector l 2

{12x + F x M21 z + 22x>T -< 

for all T= T (B6)
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<11y MF 21y> + <FllY, M'F22 x>T + <F12x, M'F21Y>T + <F 2x, MT'22 x>

< 0 for all TCT (B7)

{ < aM *F11 bF21 X>T + < aM Fyll Y, bF2 2x>T
ab a-11-

1 * 1 <
ab < aM*- bF21> + a < aM *F x bF x> }
ab - -12x- 2lT ab -12- _22-TY

< 0 for all TC T (B8)

<aM for + all x, + bF(B9)

< 0 for all T CT\ (B9)

a M 11 + a M 'F12

(x, y) C Sector (Bl0)

bF21 bF 2

From (B5) - (B10), property (ii) follows.

Proof of Property (iii):

A inside (strictly inside) Sector K1 [12 (Bll)

<Flly+ , F 21 F 2 2.

11Y+ -12-' -2l + F-2 2x>- - x I )I 

for some £ > 0 (£ > O) , all TET, and all (x,L)(_ A (B12)

B2



<1 2 x + F 1 , F2 2 x + F21ZY > -< _ 1 (II x) 1 Ii

for some s>0 (S > O) , all TET , and all (y,x) I (B13)

i inside (strictly inside) Sector ( 12 (B14)

This proves Property (iii).

Proof of Property (iv):

Let k = Gain ( - B). Then,

fil f15A inside (strictly inside) Sector ([f1 (B15)

<Flz +F x, F 2 +F 2x-- < -£|(x,- uI) 

for all (x, y)A', some £ > 0 (s > 0) and all TET (B16)

<F5X- l l'B x + ll ' B.x + F2 x

F y-f 1 x + F 1 . x + F2> < - (X, ) 11

for all (x, y) A, some £ > 0 (S > 0) and all TCT (B17)

<F(y -B x) + (F -B + Fll)x,

z1(Y - B X) + (F 'B +F )x> < -E1 |(x, ) 112

for all (x, y)E A, some £ > 0 (s > 0), and all TCT (B18)

<F Y+ (F l8 + F )x, + (F + + F )x>

< -_sj(xj+ Bx)|12 < -_ilxII2 < -+ I(x)j
for all (xy ( -B) , some >0 (>0), and allk T B9)

for all (x,~) E (A - 9), some s>0 (6>0), and all Te T (B19)
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F (11 + F 12)1/(A - B) inside Sector- ( LI

\LF21 (-21 -:22J

and ,;-provided k<- and (B15) 'holds with the parenthetical strictly inside,

(A - B) strictly inside Sector -11 (ll- 12 (B20)

LF21 (21 22)

This proves property (iv).

Proof of Property (v):

Let k = Gain (A). F
(a) B o A inside (strictly inside) Sector f11 F12(B21)

<11 + F12 x F2ly_ + F22 x> -£l | (X, Y) I !2

for all (x, y)EB o A, some £ > 0 (£ > Q), and all TET (B22)

<Fl + F,1 2X' F21B +F22X>

< £-I i (X, 2 I -2 

-: 1 2
1 + k21 T(x_ I I 

for all (x, Y)E A, some s > 0 (C > 0) and all TET (B23)

A inside Sector (12V
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and, provided k<- and (B21) holds with the parenthetical strictly inside,

T strictly inside Sector 1(B24)

(b) 0 o A inside (strictly inside) Sector (ll F12] (B25)

<F Y + F *A -Ax, FY + A A F< -A< -11 (x ) 112
-114c- 12 -- -22 - T

for all (x, y)EB o A, some s > 0 (S > 0), and all TE T .(B26)

fllZ + i2A- R, F21Y + F22A-l~>T ' - oi(A-1, Y)112<F y+F A< -E (A-114- _12- - 21 F A22 i T

<-( I IYI2 + IIA-1-I 12

< -£1( 11y2 )
< -£ 'min {1, 1/k 2 } · I|I (x, y) I I2

for all (i, y)EB, some s > 0 (C > 0) and all TET (B27)

B inside Sector (B28)

and, provided k<o and (B25) holds with the parenthetical strictly inside,

strictly inside Sector (B29)

\F21 F-2'A -11
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(c) B inside (strictly inside) Sector12 (B30)

... f

<nA -1- 214 _22E1 12' <F11 Y + FA2X, F21 .A + F22 - (, Y 

for all (x, y) CB, some s > 0 ( > 0), and all TlCT . (B31)

> ~llY + 1 2x, F2l1 + F22X < --lix, Yyljl

-= -£(~ + |X|yli -cIIr2 +- | 2i(1 . 2

< -· * min{l, l/k2 } · II (x, ) 11T

for all (x, j.)CA o B, some S > 0 (C > 0), and all T CT (B32)

0 o f inside Sector

and, provided k<- and (B30) holds with the parenthetical strictly inside,

A strictly inside Sector 2 (B33)

o strictly inside Sector I f2(B33)

This proves Property (v).

A(k) inside (strictly inside) Sector 11(k) 12(k

F21k) (k)22
for all k ... ,n (B34)

<F (k) yk) + F xk) F (k) y(k) + F (c) X> < -(k) iix (k),y(k))II 2

11 1y -2E 21 22 - T

for all Cx , )E W , some C > 0 C( " > 0), all TETf

and all k = 1, ...,n B35)
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n < f(k) (k0) (k) (k), (k) (k) (k)x(k)
-I 1 -21 -22

k--l n

< -min{(k) i k=l, ., n} - E II(x(k) ,y(k)12
k=l

=-min{ (k ) I k=l, ... , n I- II((x(1) (yn) (n))) l2

for all ((x(1) x(n)) (n) (1).. (n)))A, for some £(k ) > 0

(k)(E > 0) k = 1,...,n, and for all TCT (B36)

A inside (strictly inside) Sector (lF1 (B37)

This proves Property (vi).

Proof of Property (vii):

This follows directly from property (i).
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(a) Canonical two-subsystem multivariable
feedback system
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(b) Special case: G(Q) and H(v) operators

Figure 1
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Fig. 2. Conic regions with center c and radius r.
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Fig. :3. Feedback system with disturbances entering additively.



L = I Cone (c,r)

1 Complement of
Cone (c,r)
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Fig .4. Two-dimensional geometric interpretation of Zames'
conic relation theorem.
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Fig. 5. Feedback representation of systems considered by Lyapunov
methods.



d(x, y, T) = 0 (the 'boundary')

~11~ d(x, y, T) < 0 (region containing (0_))

d(x, y, T) < ne V ' ,) (region containing ,t(v)

m-'~ d(x, y, T) > fnl(x, ,:T) (region containing p(0))

d (x,,y, T > 2i (x yT) -2 (uT) (region containing C, (v))

3 (v,T) > d(x, y,T) > nI(xyT) - 2(u,T)
(region containing ,(v) fl G (u))

Fig. 6 Visualization of the conditions of Theorem 5 .1 in the
"X xY -plane" -- the solution (x,X) must lie in the region

e e _. -

containing both M(v) and ±(u).


