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ABSTRACT

It is found that under mild assumptions, feedback system stability
can be concluded if one can 'topologically separate' the infinite-dimensional
function space containing the system's dynamical input-output relations
into two regions, one region containing the dynamical input-output
relation of the 'feedforward' element of the system and the other region
containing the dynamical output-input relation of the 'feedback' element.
Nonlinear system stability criteria of both the input-output type and
the state-space (Lyapunov) type are interpreted in this context. The
abstract generality and conceptual simplicity afforded by the topological
separation perspective clarifies some of the basic issues underlying
stability theory and serves to suggest improvements in existing stability
criteria. A generalization of Zames' conic-relation stability criterion

is proved, laying the foundation for improved multivariable generalizations

of the circle and Popov frequency-domain stability criteria for nonlinear

systems.




1. INTRODUCTION

Examining the conditions of Zames' conic relation stability theorem
[1] =-- a péwerful abstract result including among its corollaries the
Popov, circle, passivity, and small-gain stability criteria (cf. [2]-([6]) --
we have been struck by the observation that the conditions of the
conic relation theorem have an unexpectedly simple interpretation in
terms of a topological separation of the space on which the systems
input-output relations are defined. Our scrutiny of the classical Lyapunov
stability theory (e.g., [71-[8]) has revealed that a similar interpretation
applies to the stability conditions imposed by the Lyapunov theory.
Motivated by these discoveries, we have developed a unified theory of
stability in which the Lyapunov functiéns and the contraction mappings
of previous theories are replaced by 'separating' functionals. The
abstract generality of our approach serves to clarify the roles in
stability theory eof such basic concepts as extended normed spaces,
contraction mappings, and positive-definite, decrescent, radially unbounded
Lyapunov functions.

The conceptually simple view of stability theory afforded by topological
separations has made clear to us some generalizations Zames' results
[1]-[2] -- for example, the 'sector stability criterion' described in
this paper. Our sector stability criterion forms the basis for several

powerful and useful multivariable generalizations of the circle and Popov

stability criteria; these generalizations are described in [9] and are

the subject of a forthcoming paper.



This paper is based primarily on chapters 1-4 of Part II of

M. G. Safonov's Ph.D. dissertation [9].

2. PROBLEM FORMULATION

Our results concern the stability of the following canonical two-

subsystem multivariable feedback system (Figure la)

(x,y) € G

— (2.1)
¥, x) € H (v)
where
ECUQ and v EVe are disturbance inputs to the system;
§_CXe and yE& Ve are the outputs of the system;
G C Xy %Y, and Hw) < Y, x X, are nonlinear
relations which are dependent of the disturbance inputs
}_1_€Ue and zEVe respectively;
-1
u, v, X, and Y are vector spaces.
e’ e e e
It is assumed that (0, 0) € G(0) and that (0, 0) € H(0) so that the
lA set X' is described as a wector space - [10, p. 171] (or, equivalently,
as a 1linear set [11, pp.43-44]) if for any two of its elements x.
and x,, the sum X, + X, is defined and is an element of X, and similaf¥ly
the product ax is defined, 'a' being a scalar ; additionally, the

following axioms must hold
(1) (_}il + _}_{_2) + X, =x + (_}52 + §_3) (associative addition);

3 1
(2) x =X, + X (commutative addition);

LY ety

(3) an element 0 exists in X such
that 0x = 0 for all x in X;

(4) (a:L + az)_}s = ax +ayx

(5) a(_§l +x) = ax, + ax,

(6) (ab)x = a{bx) ' (associative multiplication);

(7) 1x = x.

{(distributive laws)



pair (x, y) = (0, 0) is an equilibrium solution of the undisturbed
system. The system (2.1) defines a relation between input pairs (u, z)GEUe\x Ve
and output pairs (x, X)EEXe X Ve; equivalently (2.1) defines a subset
of the space (Ue x Ue) X (Xe X Ve).
The vector spaces Ue, Ve’ Xe' and Ve are assumed to be extended

normed spaces, defined in terms of collections of normed spaces UT, VT,

XT' and VT and a collection of linear 'projection' operators PT as follows.

Definition: Let Ze be a vector space. If there is a associated with Ze
an interval T and a collection of linear operators PT (T&T) mapping

Ze into the collection of normed spaces ZT (T€T) then Ze is the

extended normed space induced by the collection of operators PT (tTeT).
If, additionally, each of the spaces ZT is an inner~-product space then

we say that Ze is the extended inner product space induced by the

. 2 . .
collection of operators PT. A vector space Ze which is itself a

2One can define a variety of 'extended norm' functionals ||'

| :Z + R U{x}
on the space Ze’ e.g., [1] ¢ e *

1z, = su ||P z]]
or [5] e er L
llg_lle = lim sup llF%E}lZT .

T>(sup T)

Since i]gjle may in general be infinite, the functional { -[I is not
necessarily a norm in the usual sense. However, !I"Ie does define
a norm on the subspace

2 b tzez, | llzll, <

For purposes of stability analysis, we have found that it is not necessary
to introduce the extended norm li-l]e or the normed subspace Z since
the_jtability properties of each.gegze can be determined from the T-dependence
of [|z]]..

T



normed space is presumed to be the extended normed space for which ZT = Ze
for all T, and ZT is the identity operator, unless ZT and/or PT are specifically

stated to be otherwisé.

Comments:

g

The foregoing problem formulation is considerahly more general
than is usual in stability theory. Typically, the interval T represents
time and the spaces Xe" and Ve consist of functions mapping T into Rn;
the operator PT: (Xe, Ve, Ze)~$ (XT' VT' ZT) is typically taken to be

the linear truncation operator [1]

£ (v), ift <t

(Pre O (1) = (2.2)
Q9 ift>rt1

The interval T might typically be taken to be either the non-negative
real numbers R+ {in the case of continuous-time systems) or the set of
non-negative integers Z+ (in the case of discrete-time systems). The
disturbance vector spaces Ue and Ve are typically both either R" {(in the
case of Lyapunov state~space results [7]) or spaces of functions mapping
T into RP {in the case of ‘input-output' stability results [5]).3

In the special case in which the relations GXE) and Ekyj are induced
by disturbance-dependent functional operators §(u): Ve - Xe and H(v): Xe - Ve,
then the system (2.1) may be represented by the eéuivalent set of feedback

equations

3Readers unfamiliar with the notion of a relation, the concept of an
extended normed space, the linear truncation operator, or other concepts
and definitions asscciated with 'input-output' stability theory may

find it helpful to refer to one of the books [3], [4], [6] or the
concise and lucid original exposition of Zames [1].




(2.3)
(see Figure 1b).

3. SEPARATION INTERPRETATION OF STABILITY THEORY

To provide motivation and a conceptual framework for the development
that follows, it is instructive to digress at this point by explaining
how to give a simple geometric interpretation to the eonic-relation
stability theorem (Zames [1l], Theorem 2a) and to one of the principal
theorems of Lyapunov stability theory.4

Conic Relation Theorem

The conditions of the conic relation stability theorem involve

'conic' regions of the type (see Figure 2)

[Tgmexd ||, < 2llxl ]

cone (c,r) & {xpex xV,

<y-(c+r)x, y-(c-r)§>T_<_O for all TE€T}
(3.1)

for all teTH(x,yleX x Y,

where ¢ and r are scalars called the cone center and cone radius,
respectively.5 It is said that a relation HCZXe X Ve is inside

Cone {c¢, xr) if

4The circle Popov, passivity, and small~gain stability theorems as well
as the sufficiency part of the Nyquist theorem follow as corollaries

to Zames' conic relation stability theorem; this is demonstrated in [1]-
{2]. These and still other results can be proved via the Lyapunov theory
{cf. [12]).

5'I‘he notation Cone (¢, r) is non-standard; Zames [1l] uses the notation
{c=r, c+r}.



HC Cone (¢, r); (3.2)

H is strictly inside Cone (c, r) if for some r' < r,
H C cone (c, r') C Cone (c, r) (3.3)

The notions of gutside and strictly outside are defined analogously

using in place of Cone (c, r) its complement. A property of conic
regions such as (3.1) that is central to the geometric interpretation
of Zames' conic-relation stability theorem is that the complement of
such a conic region in Xe X Ve corresponds to either a conic region (if
¢ < r) or the complement of a conic region (if ¢ > r) in Xe X Ve, as
may be seen by comparison of Figure 2a with Figure 2b. For reasons that
are not entirely apparent, the conditions of Zames' conic-relation
theorem also require that Ue, Ve’ Xe' and Ve be ident;ical extended inner
product spaces and -that the disturbances EEXe and z@&{e enter additively;

i.e., if (_}51, _y_l)é_ﬂ_(y_)_ and (12, g_z)e_g—(u), then, respectively,

’

(x, + ¥, _zl)e H(0) (3.4)

(x, + ur x,)€ G(0) (3.5)

(see Figure 3). Subject to these restrictions on the class.of systems
considered, the conditions of Zames' conic relation theorem state quite
simply that a sufficient condition for the feedback system (2.1) to be
globally stable is. that (for appropriately chosen center and radius

parameters ¢ and r), the relation G_(O) be strictly inside Cone (¢, r)C Ve X Xe



and the relation H(O) be inside the region of Xe b3 ye corresponding to
the complement of Cone (c, r) (see Figure 4). The interpretation of

the conic relation stability theorem in terms of a topological separation

is immediately evident: the interior of Cone (¢, r) and the interior

of the complement of Cone (c, r) form a topological separation [13]

of the space Xe X Ve [less the equilibrium point (x, y) = (Q, 0) and
other points on the boundary of Cone (¢, r)] into two disjoint regions,
the closure of one region containing all non-zero pairs (x, y) € H0)
and the interior of the other region containing all non-zero pairs

(x, y) such that (y, x) € G(0).

Lyapunov Stability Theorem

In the continuous—time state-space stability problems typically
attacked by Lyapunov methods, the system under consideration is often

given in the form (see Figure 5)

x(t) = £(x(t), t); x(0) = x,
where
A
t 6R+ 2 [0, «]

x(t) € R for all t €R_

This system can be interpreted in terms of the system (2.3) as

- t '
x = [x(©)1 = ( x + J x(r)d‘t) .= Gwy
‘: + \0 teR+ "
= [y(t)] o= lEIx () ,t]] = H(V)x :
L L t&ER, 4@[&( } ])t€R+ . >
v =o0el = {0} |
=z x€l = 'an .
. 2 =%, J

(3.6)

(3.7)



where T = R_, _:g_EXe and y eVe and where X and Y are the extended

normed spaces

X, = {x: R >R’ | xis once differentiable} (3.8)
n
Yo = {g+ R >R} . (3.9)

induced by the identity operator

P.x = x for all x (3.10)

mapping Xe and Ve into the normed spaces

)(T = Xe (3.11)

with norm

and

= 2
VT Ve (2.13)
with (degenerate) norm

Helly = o (3.14)

One of the main fheorems of Lyapunov stability ([8], Theorem 4.1)
states‘ that if in some neighborhood of the origin of the state space
Rn there exists a positive~definite decrescent Lyapunov function V(E' t)
such that its derivative VV(x, t)£(x, t) + F (x, t) is negative semi-
definite in this neighborhood, then the solujl:ion x(t) £ 0 is stable in

the sense of Lyapunov; i.e., for every constant € > 0, there exists a

constant §(g) > 0 such that ||x ]]Rn_<_6(e) implies ||x| IT < € for all T.
o' "




The stipulation that V(ﬁ, t) be positive definite ensures that
every pair (x, y) satisfying x = Q(Q) + ¥y lies inside the subset of

X xVY,
e e

{x, v | fOT [(Wi(x, t)]Tz(t) + g—z-(gc_. t)dt

= {(x(T)) =~ V(xo) = V(x(T)) > 0 for all TET}. (3.15)

The condition (3.15) ensures that, in some neighborhood of the origin
of Xe X Ve, every pair (x, y) satisfying y = H(0).x lies 'outside' the

set (3.15), i.e., is contained in the set
{x, v | _[()Tvv(g_(t))z(t) + —g%(gs(t) ,t)dt < 0 for all T € T}. (3.16)

The results of this paper show that it is more than just a coincidence
that the conditions of such powerful stability results as the conic-
relation stability theorem and the foregoing Lyapunov stability theorem
correspond to the existenée of a topological separation. The results
show in essence that one can use any such partitioning of Xe % Ve into
two disjoint regions, provided that the 'distance' between the two regions
is positive and increases as the 'distance' from the equilibrium increases.
What constitutes suitable measure of 'distance' is the subject of our

main results in §5.

4. NOTATION AND TERMINOLOGY

In this section some of the standard terminology from the stability
literature (e.g., [1], [7]) is reviewed and, where necessary, generalized
so as to be applicable to the broad class of stability problems admitted

by our abstract problem formulation.



Relations (cf. [ 11])

A relation _g is any set of the form FCX x ¥; i.e., a relation
is any subset of the Cartesian product of any two sets. A relation
ERTC X x Y can be represented equivalently as a mapping of subsets of X
into subsets of Y and in this regard is merely a generalization of"‘the
notion of a function mapping X into Y. Some operations involving relations
are defined below.
Image: The image :R_[A] of a set AC X under a relation —g CXxVis

the subset of Y

e

-E[A] vy | (x, p € TS- for some x €A} . (4.1)

For —}SO € X, we may denote 72.[{2:_0}] using the abbreviated notation _R- . _}50

or B—’-{-O

Inverse: The inverse of a relation R < X X V is the relation R IC VY x X

= I | — ; 4.2

R é{(z_._}gEVxX[(gt_,l)EB} (4-2)
clearly, the inverse always exists.
Composition Product: The composition product of the relations ﬁl C X x V
followed by 72'2 C Y x 7 is the relation _ﬁz ° 72-1 CXxZ

fz ° 72—1 4 {(x, z) € XX Z | there exists y € ¥ such that

(3:_,'y_) Ggl and (y, 2) 6?2 . (4.3)

Sum: If _R-l' ﬁz C X x VY and if addition is defined on Y, then the sum

of the relaticns _R_l and R2 is the relation

10




R. +R é{(gg,y_)éxxylg_e)(andz_=ll+12
for some lle Bl x and y_ze 82 x}. (4.4)
Graph: If G is a function mapping of points x € X into points Gx & Y,
then the graph of G is the relation

G

~

Graph (G) é {ix, e XxV ‘

|%

€Xandy = 93{_}

Stability Terminology

Class K (cf. [7, p. 71):

A function ¢ mapping the non-negative real numbers R,into non-negative
real numbers R is d;afined to be in class K, denoted ¢ & K, if ¢ is
continuous, strictly increasing and ¢(0) = 0.

Positive Definite; Decrescent; Radially Unbounded: Let Xe be an extended

normed space and T be the associated interval; let S be a subset of

Xe containing the point x = 0; .a functional n: S x T >+ R is said to be

positive definite on S if both

i) for some ¢ in class K, all x €S and all TE& T
n, v 296 (Hxlp (4.6)
and,

ii) for all T&€ T

mo, T = 0 (4.7)

a functional n: Xe X T ~ R is said to be decrescent on S if for some

¢ in class Kand all TE T

o < nx, 0 2 ¢ (|[x]lD. ' (4.8)



A functional n: Xe X T >+ R is said to be radially unbounded on S if

there exists a continuous non-decreasing function ¢: R+ g R+ with

lim ¢(a) = = such that for all TET and all x&S
o >

nx, 2 o |x]]D)- (4.9)

Neighborhood: For any extended normed space Xe' any set AC Xe’ and

any non-negative number 0O, the neighborhood N(A;d) is the set
N(A;Q) 4 {xEXe] for some EOQA'
|tz -2 || <o for all T€T} (4.10)

If A consists of a single point, say Xy We may use the abbreviated

notation N(g;_o;a) A N({g{_o};oa) . A set S is said to be a neighborhood

of a set A if for some € > 0

N(A;e) C S; (4.11)

if X, is a point, the set S is said to be a neighborhood of %, if for

some € > O N(_}go; g) C S.
ltx, ) ||: for any normed spaces X, ¥ and any (x, y)€ X x ¥, the notation

”(?E' ) H is in this paper defined to mean:

' 1/2
e pll & di=ll® « gD (4.12)
clearly, (2.10) defines a norm on X X Y. So, for example, Xe X Ve is
~ ’ 1/2
an extended normed space with associated norm H(z:_, y) l !T = ({ ]51 ]Tz + HZ| l"tz) .




Gain; Incremental Gain: Suppose )(e and Ve are extended normed spaces;

let"?"CXe X Ve. If for some scalar k < ® and for all x& Xé and all TE€T,
F xc n(lo}; x||x| |- . (4.13)

then F has finite gain; the smallest k for which (2.11) is satisfied

is. called the gain of f If for some k < », all _)_:_l, _}_{_26 Xe’ and all T&T,

fﬁzc NF x s kllx, - ][0, (4.14)

then F has finite incremental gain; the smallest such k is called the

incremental gain of F. A function F: Xe > Ve is said to have finite
(incremental) gain if the relation Graph (F) has finite (incremental) gain.

Bounded; Stable ; Finite-Gain Stable: Let Xe and Ve be extended normed

spaces; let FC Xe X Ve; let AC Ve. If there exist neighborhood continuocus

of A, say S, and a non-decreasing function ¢: R — R+ such that for all x&S
Fx cniA; ¢(]]x[] 01 (4.15)

then F is bounded in S about the set A; if $ €K then we say F is stable

about the set A; if ¢ is linear (i.e., ¢ of the form ¢(||£||T) = kch_HT),

then we say that F is finite-gain stable about the set A. If, in the
foregoing, the neighborhood S can be taken to be the entire space Xe’
then 'bounded in S' becomes simply bounded, 'Stable’ becomes globally

stable and finite-gain stable becomes globally finite-gain stable. When

A = {0}, then we say simply that F is bounded in S , or globally stable,

or globally finite-gain stable, respectively (i.e., we omit the phrase

'about the set A').

13



Comment s

It is necessary that-stability be defined here, because there is
no standard definition in the literature. The definition varies in
subtle ways ffom author to author (cf. [1], [4]1, [14]1), and even among
papers with a common author (e.g., [li and [14]). The motivation for
the present choice of definition is two-fold. First, the definition
is more flexible than previous definitions of stability in that

1) inputs need not enter additively, and

ii) by allowing discuséion of stability about an arbitrary set, the
definition permits one, in principle, to address certain special issues
in stability theory, e.g., the stability of time-varying functions or
sets gf time~-varying functions such as the limit cycles of autonomous
systems. Second, the definition meshes well with the classical notion
of stability in the sense of Lyapunov (cf. [8]), coinciding when the
magnitude of the system input is taken to be the Euclidean norm of its
initial state and the state trajectory is presumed to lie in the extended

normed space Xe defined in (3.8) - (3.11).
Comment :

It is noteworthy that'in the case of linear systems, the definitions
of bounded, stable, and finite-gain stable coincide: for such systems ¢
can always be taken to be linear: e.g., in (2.13), pick any X, with

: ' - s
lx,!] # 0 and replace ¢(|lx|| ) by o' (|lxllp = llxl], + 6¢llx, 111
(cf. Theorem 5.4 in [15]). Consequently, when speaking of linear systems,

the terms bounded, stable, and finite-gain stable may be used interchangeably.




5. FUNDAMENTAL STABILITY THEOREM

An abstract result which provides an aggregate characterization
of the set feedback system outputs achievable with a specific system

input is now stated. We refer to this result as our fundamental stability

theorem because stability tests of both’ the input-output type and the
Lyapunov state-space type can be derived from this result. The stability
implications the result are found to have a simple interpretation in
terms of 'topological separation' of the product space )(e X Ve on

which the systems dynamical relations are defined.

Theorem 5.1 (Fundamental Stability Theorem): Let S be a subset of

Xe X Ve. Suppose that real-valued functionals d(x, y, T). nl(}_c_, ¥ Ty

nz(u, T) , n3(_\1, T) and n4(§, Y, T) can be found such that for each T&T

GwNs < {(x, p | atx, y, D

2 N g, T - Ny, )} (5.1)

Hwns © (g |ax g D

< g T - xoy, DI (5.2)
Then every solution (x, y) of (2.1) in S satisfies the inequality

nout(:_c_, ;, ) < nin(_u_, v, T) (5.3)
for all T&T, where

n (5.4)

e
3
+
3
>

out

>

n,

15



Proof: Suppose (x, y) is a solution of (2.1) and that (x, y)€S. Then,

x Yy € Gw N Fwmn s. (5.6)
By (5.1) - (5.2) if follows that for all T&T

a(x, y, T) _>_. _nl(gc_. L T - nylw, T) (5.7)

ax, y, T < n,(¥, Ti - Ny(x ¥, T) : (5.8)
Substracting (5.7) from (5.6) and adding nin to both sides yields

nin(p_, v, T) > (n1(§. ¥ T o+ n,x, ¥, 1)
- nz(g, ) - naly, T) o+ nin(E, v, T))

= nout(gc_. ¥, T (5.9)

which proves Theorem 5.1 [:::]

The importance of Theorem 5.1 is that it provides an aggregate
characterizaticn of the set of output pairs (x, y) in S that are
' achievable by input pairs (u, v) in sets of the form {(u, v) I nin(gj v, T)
f.constant}. By imposing the additional restriction that the functional

n

out is positive definite on S, this inequality may be used to establish

the stability properties of the system (2.1) by establishing a (u, v)-dependent
bound on || (x, gjl!T. When, additionally, S = Xe X Ve then the stability
properties thus determined are global. The following corollary to

Theorem 5.1 illustrates this.

Corollary 5.1 (Boundedness & Global Stability):

a) (Boundedness) If in Theorem 5.1
i)y § = Xe x Ve '
is positive definite and radially unbounded, and

ii) nout

16




iii) n,_ is bounded,
in

\

then the system (2.1) is bounded. .
b) (Global Stability) If in Theorem 5.1
i = X
i) S Xe Ve ,
ii) n is positive definite and radially unbounded, and

out

iii) nin is decrescent,

then the system (2.1) is globally stable.
c) (Global Finite=-Gain Stability) If in Theorem 5.1
i = X
i) S Xe Ve
and 0 and

ii) for some strictly positive constants €_, €

1’ 72!

for all (x, y) Xe X Ve

n o xy, D > el pllo®
out 1 ; (5.10)
N @ v, 0 < ey ([l@ »|lp™,

then the null solution of (2.1) is globally finite-gain stable.

Proof: We prove each of the results (a) - (¢) in sequence.

a) Since nOut is positive~definite radially-unbounded and since
nin is bounded, Fhere exist continuous non-decreasing functions ¢out= R+ - R.+
and ¢in: R+ > R+ with ¢out(0) = 0 and ¢out strictly increasing and

lim ¢out(a) = o guch that
Qo > x

o @ ol < &y D (5.11)
and

¢, @ v, o < 0 (@ eallp - (5.12)




. -1 . .
Evidently ¢out exists and is decrescent, so

e pll, < ¢dle ol

-1

where ¢ = ¢out

o ¢in' Clearly ¢ is continuous and non~decreasing,
so the system (2.1) is bounded.

b) Taking ¢out’ ¢in and ¢ as in (a), it follows that

e ol 2 odl@ ol

is positive definite and radially unbounded and since nin

-1
& and ¢in are decrescent and hence

Since nout

is decrescent, it follows that ¢ou
¢ = ¢out-1'° ¢in is likewise decrescent. It follows from (5.14) that

the null solution of (2.1) is globally stable.

c) From (5.10) and the inequality (5.3), it follows that

[e ]
el pllp” < & <0 @y D

o
< slle ollp
and hence
82 " 1/0
e ol < N @ ol -

It follows that the null solution of (2.1) is globally finite-gain

stable. : [:::]

Comments:

The stability conditions of Corollary 5.1 may be interpreted

and conceptually motivated in terms of a 'topological separaticn'.

18
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(5.14)

(5.15)

(5.16)




For simplicity we consider only the case of global stability (part (b) of
Corollary 5.1) -- a similar interpretation is possible for the other
parts of Corollary 5.1. We further assume for simplicity that n 4 =0

so thét nout = nl -- this entails no loss of generality since every case
may be reduced to this by substituting d + n 4 for d. For each T& T,

the functional d(x, y, T) serves to 'topologically separate' the space

Xe X Ve into two disjoint regions, viz. the region where d(x, y, T) >0
and the region where d(x, y, T) < 0, the set {(x, y) | d(x, y, T) =0}
forming the boundary. The positive-definiteness of nout ensures the
undisturbed relation E(g) lies entirely in the region where d(x, y, T) <0
and that every non-zero point of the undisturbed relation -E;-I (0) lies

in the complementary region where d(x, y, T) > 0. Consequently, the

null solution (x, y) = (0, 0) is the unique solution of the undisturbed
system (2.1) -- this is prerequisite to global stability. We can vizualize
la(x, y» T | as defining the T-dependent distance of each point (x, y) e Xe X Ve
from the boundary set {(x, y) | d(x, y, t} = 0 , the sign of d(x, ¥, T)
determining on which side of the boundary the point lies. The positive
dgfiniteness and radial unboundedness of Mgt SPSures for every (x, y)

(2, y) e ?Ii_('g} that this distance is positive and grows unboundedly as
H(gg, y) l Lr increases. In this conceptual framework, the quantity

n, (u, T) is simply an ﬁpper bound on the "distafxce" that ?I (u) shifts
toward the boundary as a consequence of the disturbance, u. Similarly,
the 'distance' of F(_O_) from the boundary is non-positive and n3 (v, T)

is an upper bound on the distance that -I'T(_\L) shifts toward the boundary as
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a consequence of v. Because solutions of (1.1) must lie in the set
@I(E) M F(_\_f_), we see that the "distance" of Nn(x, y, T) must be less

than the sum nz(g_, T) + Ny(w, T, i.e.,

Noge s L@ T < Ny, T + ny(v, © &n, ( v,17) (5.17)

Because the "distance" nout(-}i' ¥y, T) increases unboundedly as I x, | l'r
increases, it is evident from (3.4) that H(_}g, y) | IT is bounded; this
is illustrated in Figure 6. The fact that nin and, hence, r‘,z and n3
are decrescent ensures that vanishly small u and v will produce vanishly
small shifts ¢>1(3, T) and ¢,(v, T) in the respective relations .(EI (w)
and Ef_(g) . This establishes the global stability of the system (5.1).

In view of the foregoing, one may loosely interpret Corollary 5.1
as saying tha‘t stability can be assured if one can find some real-valued
functional (viz. d(x, y, T)) which separates the set ?I ()R E(Q_) less
the pair (x, y) = (0, 0) into the component parts _gl(p_) - {(9_, g)} and
E{(Q_) . The conditions that nin be decrescent and that nout be positive
definite may be viewed as technical conditions that are imposed to
rule-out 'peculi‘ar' situations in which either the amount of separation
fails to grow with disténce from the origin in the Xe X Ve ‘plane' or
in which the systefn is ill-posed in the sense that small disturbances
(u, v) produce disproportiately large changes in thé input-output relations
G(uw) and g(z) .

It is noteworthy that Theorem 5.1 and Corollary 5.1 make no reference

to loop transformations, multipliers, contraction mappings, or any of the
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other mathematical paraphernalia usually associated with input-output

stability results (cf. [3] - [6]). This is a consequence of the fact

that, in contrast to most previous input—-output stability criteria, no

fixed-point theorems (e.g., the contraction mapping theorem) are used in

the proof of Corollary 5.1 and Theorem 5.1. This underscores the fact

that existence of solutions =-- and existence is always assured when fixed~-

point theorems are employed -- is not central to the issue of stability.

Rather, in stability analysis, we are concerned primarily with ascertaining

that all existing solutions are stable. Existence of solutions, which

relates to the 'well-posedness' of the system equations, can be deduced

from entirely separate considerations [4, pp. 93—101].5
The Lyapunov stability result discussed in §3 is a special case

of Corollary 5.1 in which the separating functional d(x, y, T) is taken

to be

: T
d(x, y T) =f Wix(t), t)y(t) + -g%(x(t), t)dat
0
where V(§! T) is the 'Lyapunov' function. With this choice of d(x, y, T)

and with G(u) and H(v) as in (3.7), it follows

t 3V
f Wix(e)k(t) + == (x(t), t)dt
0

= Vix(th, 17 - V(x(0), 0)

i) dx, g, T)

for all (x, y) satisfying

x = §(§0)'z=fy(t)dt v X
0

5Well-posedness tests, based on considerations other than stability, are
provided in [4]. However, it should be noted that (in contrast to the view
taken here and elsewhere in the literature, cf. [1], [6], [14]), reference
[4] defines well-posedness to be prerequisite to any discussion of
stability or instability.
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, T
ii) ax, y, 0 = f VW(x(£))E(x(t), £) + -%{—(g:_(t). t)dt
0

for all (x, y) satisfying

y(t) = £(x(t), t).

Evidently when V is positive definite and decrescent and when
Vix, 8)E(x, t) + %%(i, t) £ 0 for all x and t, then the conditions

of Corollary 5.1 are satisfied with

nl(_}g. T = V(x(, 1)
and with

N (EO) = V(Eor 0)

ny =N, = 0.

This establishes that Lyapunov stability results can be treated as
corollaries to Theorem 5.1.

Not surprisingly, Zames' powerful conic relation stability theorem
can also be shown to be a corollary to Theorem 5.1. To prove this and
to demonstrate the power‘of our results, a generalization of Zames'

conic relation theorem is now developed.

6. THE SECTOR STABILITY CRITERION

The conic relation stability theorem of Zames is generalized in
this section to permit the utilization of the more flexible definition

of sector which follows.
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Definition (Sector): Let Xe and Ve be extended normed spaces

and let Ze be an extended inner product space. For each TET let

A
f(_}f_r Y T) = Flly + flle lel + 522X> (6.1)
where fijg_ =0 (i, 3=1, 2) and fll Forr Yo > 2, and F12 Fogt Xo > Yoo

Then the sector of F is defined to be

e

Sector (f) {x, e Xe X Veb | for all €T

o}. (6.2)

IA

F(i‘_l Y, T)

For notational convenience, the functional F will be denoted equivalently

by the 2 X 2 array

fll flz
F é . r (6.3)
R ~21 ~22
Definition k(inside,- outside, strictly inside, strictly outside): A subset

& of X X V is said to be inside Sector (F) if AC Sector (F) A

{(x, y_)é‘Xe X Ve | for all TE€T f(:_c_, ¥, © < 0}; Ais said to be 1ctly_
inside Sector (F) if for some € > 0, A C {(x, Z.)EX-@ x Ve | for a1l T€T

Fix, 3o 0 < -€ll(z, p |12} X is said to be outside sector (F) if

g'C {(_;_:_, y_)EXe X Ve I for all T.€T F(x, y, T) > 0}; and, A is said to

be strictly outside Sector (F) if for some -€>0, A C {(x, PEX x Y, |

for all T ET, f(_}_i_' Y, T) 2 el] (x, ¥) | ITZ}-
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We now state a stability result based on Corollary 5.1 that
employs sectors to accomplish the requisite 'topological separation'
of the space Xe X Ve. The proof, which involves a straightforward --
but tedious =-=- verification of the conditions of Corollary 5.1, is

in Appendix A.

Theorem 6.1 (Sector Stability Criterion): Let f be a 2 ><;2 array as
in (6.3); let the fij,(i, j = 1, 2) have finite incremental gain; let
the mappings ofu & Uinto g(g_) and v&Vlinto El-.(z) be bounded (respectively,
globally stable; respectively globally finite-gain stable) about the

respective sets 5(9_) and F{'(Q) . If 51 (0) is strictly inside Sector (F)

and if F(g) is outside Sector (F), then system (1.1) is bounded

(respectively, globally stable; respectively, globally finite-gain stablé) .
Proof: See Appendix A.
Comments:

The reciuiremgnt in Theorem 6.1 that the functions mapping of u&l
into _9-(2) and v€l into E(z) be bounded about the sets g(p_) and ET(Q)
should not be confused with the more restrictive requirement that the .
subsystems g and -ﬂ- be 'open~loop bounded, i.e.,; that the mappings of (u, y)
into g(g_)_x and (v, x) into El-(y_)x be bounded about {(0, 0)}. For example,
if the disturbances u and v enter additively as in Figure 3 -~ and this
is the only case considered in the majority of the input—ou_.tput stability

literature -- then the boundedness requirement placed on the mappings
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@f’) and H}-) in Theorem 6.1 is automatically satisfied (with finite gain!).

Thus, the boundedness restriction on the mappings 5}*) EEQ.F(') is actually
very mild; it can be vigwed as a sort of well-posedness condition on the
feedback equations, ensuring that small disturbances do not produce
unbounded}y large dislocations of the dynamical relations in the Xe X Ve—
'plane' -~ cf. [4, p. 90] condition WP.4.

Comparison of the definition of Sector (f) with Zames' conic
sector (3.1) shows that

1 -(c + r)
Cone (¢, r) = Sector

1 -(c = 1)

Zames' conic relation stability criterion is a special case of Theorem
6.1 that results when sectors of this form are employed and the class of

systems considered is restricted to the additive-input type depicted

in Figqure 3.

Some Properties of Sectors:

Zames' [1, App. Al demonstrates that his conic sectors have several
properties which make them especially well-suited to feedback system
stability analysis. Our more general sectors have similar properties,

some of which are enumerated in the following lemma.

Lemma 6.2 (Sector Properties):

(k)

be operators mapping into extended inner product
(k)

Let F,.. and F, .
~17] ~17]

Z (k) 0 =0; le
e

ot

spaces Ze and respectively; let Fij9-= 0 and F_.

~ij - =

A, B and K(k) be relations on extended normed spaces; let (0, Q)€ A,
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— w— *
B, A(k>; let a and b be scalers with ab > 0; let M and M be operators
*
i < > =< > '
with the property that Mgi, Z,>0 2z, M z,>0 for all 20 EQEEZe

and all TET. Then the following properties hold:

i) (Complimentary Sector) /- -
f1F F
A inside Sector ~11 ~12
fZl f22
Sie . - Z
F F :
A outside Sector ~L L2 ; (6.4)
N —_—— i F
‘fZl ~22J
furthermore, (6.4) holds with inside and outside replaced respectively by
strictly inside and strictly outside.
ii) (Multiplier)
* *
F F a M*-F a M*-F
Sector ~11 ~121 1= sector ~ ~ ~ ~l2 (6.5)
WPy MFy b For - bFo
iii) (inverse Relation) _ N
F. F
A inside Sector ~11 ~12
| Fa Fa2
F Fo]
A’ inside Sector 4 ~12 ~i1 . (6.6)
522 fZlJ

Furthermore, (6.6) holds with inside replaced by strictly inside throughout.

iv) (Sums of Relations) If B = Graph (B) and if Fll and le

are linear, then
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A inside Sector ~11 ~12
) Fa
- = |F (F B+ F
(A - B) inside Sector ~11 ~11 ~ <12
o Fy Bt By

~21 ~21

If (Z - Tb has finite gain, then (6.7) holds with inside replaced by

strictly inside throughout.

v) (Composition Products of Relations)

a) If B = Graph (B), then
h - F F

B °.K inside Sector ~11 ~12
1 Fas
—_— F - B F
A inside Sector ~21  ~ ~12
f&l ) § fzz

b) If A = Graph (A) and if A-l' exists, then

~
p—

. r .
B o A inside Sector ~11 ~12
3 ([F21 Fao
’ -1
F F . - A.
B inside Sector ~11 ~12 ~-1
‘ _f21 Faa A
c) 1If A = Graph (A), then |
F.. = A F
B inside Sector ~11  ~ ~12
- fa "8 D
F F
A o B inside Sector ~11 ~12
Far Fas
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Furthermore, if A has finite gain, then (6.8) - (6.10) hold with inside

replaced by strictly inside throughout.

vi) (Composites of Relations)

wwwe§={“gn’.“'gm)’Qﬂ%.“'lmn!(QM,XWHEFM
= . (1) n, _ (1) (1) (n)
for all k = 1, ..., n}; suppose fij(é- ¢ oeeer £) = (fij £, coes fijg_ )
for (i, j = 1, 2); and suppose that Ze = Ze(l) X .o X Ze(n) and that
n
(1) (n) _ (k) (k)
<(_z_l Poeeer 29 )>’L‘ —;. 2z, ' 2, >T
Then, '
: F F
A inside Sector ~11 . ~12
’ le ' fzz

<
g K g ()

K{k) inside Sector S~ ~12 for all k = 1,...,n.
~ T F_R g (K (6.11)
~21 ~22 :

Furﬁhermore, (6.11) holds if inside is replaced by strictly inside

throughout.

vii) Properties (i) = (iv) hold if throughout inside is replaced by

outside and strictly inside is replaced by strictly outside.
Proof: See Appendix B.
Comment:

Properties (i) and (ii) of Lemma 6.2 provide a parameterization
of the various representations of a sector. Property (iii) establishes
the relation between sectors containing the inverse relation Ki. Properties

(iv) = (vi) permit the characterization of a sector containing the
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relation of a complicated multivariable system using knowledge of
sectors associated with subsystems comprising the system and knowledge
of the interconnection structure of the system -- these properties

have application to the analysis of the stability of multivarible systems.

7. DISCUSSION

Our fundamental stability theorem (Theorem 5.1) is of significance

largely because it permits a clear understanding of the basic issues
involved in stability analysis; this is enabled by the relatively high

level of aﬁstraction in our formulation of the stability problem, In
particular, Corollary 5.1 makes it clear that if one can find a 'topological
separation' of the product space Xe X Ve such that the undisturbed

relation ?i(g) lies in one component of the separated space and the

undisturbed relation HXQ) lies ‘'strictly’' in the other component, then

o
%

R

under mild conditions closed-loop stability can be concluded. The
conceptual simplicity of this abstract view of stability theory may

prove to be of considerable pedagogical value, since it is possible

to relate the conditions of the various input-outpuﬁ and Lyapunov

stability criteria to the simple geometric notion of topological separation.
Also, the conceptual simplicity of the topological separation viewpoint
serves to elucidate the general approach that must be taken to generate

new results such as the sector stability criterion (Theofem 6.1). Our

sector stability criterion leads fairly directly to powerful new

multivariable generalizations of the circle stability criterion

for nonlinear systems, as is demonstrated in [9].
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One of the implications of using sets (such as the components
of a topological separation) to bound the dyhamical'relations of a
system is the possibility of determining the qualitative behavior of
a system -- and even bounding its quantitative behavior -- using only
a coarse knowledge of the system. The stability margins (e.g., gain
margin and phase margin) of a simplified model of a feedback system can
be thusly characterized, providing a measure. of robustness against the
destabilizing effects of modeling errors -- this is demonstrated in
[9]1. Also, bounds on a poorly defined or imprecisely modelled system's
transient response can be found. using the inequality (5.3), allowing

one to deduce the relative degree of exponential stability or instability.

30




Appendix A: Proof of 6.1

We apply Corollary 5.1, taking d(x, y, T) to be the map

(x, x)G?I (u).

>0, for every (:_co,

0 cif |l |] =0
dx, y» ) = -1
mTf(il ¥ T, if || (x| IT#O (A1)
We begin by establishing (5.1). Let udll be fixed and take
Applying the Schwartz inequality, we have that for some
=T
_zo)Gg (0), and every TET
e Il - ax g o= -<(Fly + Fon, (Forx * Fpp®)>
= ‘I(E_Ol XO)”T.d(EQ’ y_or T)
= <(Fpg¥y HFipxg) e UE, Y - Foyyg) + (Fyox - Foox,
- <UFy - Fiyyg) + (Fpx = Frox) by (Fypy - Froxd>y
2
> el ) |17
= Ny + Frox e 1Py - Fopyy) ,
+ (Fypx = Fopxp) 11,
- HUEy = Frygg) + (Frpx = Froxgd 1l
Fao®) 1z
2
> el =y x) 7
- (| xyr x ) 1) k|| l(x, y) - (0 ¥ 1110)
- &0 P -z )l Y  kll@ep D @2

Al

)1>

T



where the latter inequality follows with k<« an upper bound on the
gain and incremental gain of Fij(i, j =1, 2). Since by hypothesis
the map of ucl into _G-(_g_) is bounded, there exist a continuous increasing

(1)

function Py R+ R+ and a point (_:50 P zo(l)) Ggl (0) such that

for every T&T

(1)

e » - ™ g™l <opdlally. (a3a)

2

Also, for all TE€T, there exists a point (§_0 r Yo

2y g gl (0) such that

(2)

e » -« gl < e ol (a3b)

namely the point (5_0(2)', 10(2)) = (0, 0). From (A3a, b) it follows

that there exists an (3_:0, XO)E gI (0) such that for all T&T

i v = &y g1l < min Ul 91 e dlalld, e
e ol - e dlully < e gl 22 lle ol @

and, from the former inequality in (a5) ,‘ it follows that for all TT
2
g g HT 2 e ol dlallp « e pllp. @6

Substituting (A4), (A5), and (A6) into (A2) and dividing by H(g{_, y) | !T,

it follows that for all (x, X)G_C;I(E) and all T€T,

A2




dze vy, 2 et pll-20, al [

|v

2
2x%p, (| laf |

2
k%o, (}lul 0. (27)

Taking ¢,,6,:R_ > R, N, (%, ¥, T) and n,(u, T) to be

+
¢, (@) A e.q (a8)
9y 4 (2e + 3% p (o) (29)
&y = o (e ol (a10)
Ny, = o, (ffuf]) (al1)

we see that qblEK is linear and radially unbounded and that for all

(x, l)é-gI(g) and all TET

d(_}_{.IX_IT) _>_ ﬂl(_}il Yr T) - ﬂz(g, T) (al2)

which establishes (5.1).
Proceediné in an analogous fashion to establish (5.2), we have that
for some p2:R+ > R+, every (x, y) € _f;l_(y_), and every T&T
dlx, ¥, T Snylv, T =N, (x, ¥, T) (313)
where n,(v,T) = ¢3(HZHT) = 3k202([|v[ |T)' ny(x, ¥, T 20;
as before k<® is an upper bound on the gain and incremental gain
of fij(i, 3 =1, 2) and 92’ like pl, is continuous and increasing.

Thus, -

Mgt & Lr O = ellx, v [ (a14)

and

2 2
N @ ¥, T) = (26 + 3k )pl(HB_HT) + 3k 02(l|1HT). (A15)
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Clearly nout is positive definite, radially unbounded and satisfies the
constraint imposed by (5.10) with o = 1. Since nin is clearly bounded,
it follows from Corollary 5.l1-a that (2.1) is bounded. If additionally
the maps taking u into -(?(1._1_) and v into F(y_) are globally stable (globally
finite-gain stable) about the respective sets G(0) and H(0), then p,

and 02 may be taken to be in class K (may be taken to linear) from which
it follows that nin is decrescent (satisfied (5.10) with o = 1) and
global stability (global finite—gain stability) of (2.1) follows from

3

Corollary 5.1-b (Corollary 5.l1-c).
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Appendix B: Proof of Lemma 6.2

We prove properties (i) - (vii) in sequence.

Proof of Property (i):

F F
A inside (strictly inside) Sector ~11 ~12 |
le Fzz . (B1)

p—

2
(<P + Foxe Fyy + Py < el i,

for some € 2 0 (¢ > 0), all TET, and all (x, X_)EX (B2)

<

2
(<Flg + B ~Fpy = Fpoxop > ¢ | o7

for some € > 0 (¢ > 0), all TET and all (x, VEA (B3)
< Fll Fl.?.
A outside (strictly outside) Sector - ~ (B4)
far T |
This proves property (i).
Proof of Property (ii):
F F
(x, y) € Sector ~11 ~12
- M-F. MeF (B3)
~ ~21 ~ ~22
- - - ' <
{<Fpag + Frome MeFyy + MeFypx> <0
for all TET (B6)

Bl




<

< -F > 4+ <
Flaye ME v + <Fpp

> < > <F
M- Ezzx tt flzx’ M f21y +

< 0 for all TET
1 * | 1
=< . > —< >
g <M Fly, pFpy iy, + 5 < al-Fpy, bF 2%
s o< aF x, bF y>_ +i- < al -F _x, b x>}
ab ~ ~12=" TL21%T  ab ~ ~12=' T
< 0 for all TET
<
aM Fly+aM flzx, bF y+bF22 .
i- 0 for all TET.
— M-F + all-F
a . a .
(x, y) € Sector ~ ~ ~ 12
bF) bF )2
From (B5) - (B1C), property (ii) follows.
Proof of Property (iii):
) F F
A inside (strictly inside) Sector ~11 ~12
I:'21 522

e

2
<F lx + F X, F2l.¥_ + 5222;_>1- ..<_ _e‘ ‘ (?.E' X.) ‘}T

for some € > 0 (€ > 0),

B2

all TET, and all (i,y_)E_A-

>
z, M4 fzzx T

(B7)

(B8)

(B9)

(B10)

(B1l)

(B12)




<=

Fppx + Fyy Fppx + By < el 0|17
for some €>0 (¢ >0) , all T€T , and all (Z,E)GKI

I ~ ~
A" inside (strictly inside) Sector 12 11

22 L1
This proves Property (iii). )
Proof of Property (iv):
Let k = Gain (A - B). Then,
F F
A inside (strictly inside) Sector ~11 ~12
fZl 522

2
Fax + Fox By + Fypxer < el pfl;

for all (x, y_)EK‘, some € > 0 (¢ > 0) and all TET

<Fly-F,;Bx+F.,-Bx+F x
2
Foix -, -Bx+ FopBx+ Fx 2 -l (z, p| |T

for all (x, z)eX, some € > 0 (£ > 0) and all TET

Fa-Bx + (F;B +Fpx

2
Far@ = Bx) + (Fy sB+F, x> < -eH(_:g, vl
for all (x, y)EA, some € 20 (€ > 0), and all TET

Fpg ot (F B+ Foix Fof+ (Fy B+ fzz)

2
<-ell@g + Boll? < -ellx] |2 < H<Xr;1> |12

for all (x,7)€ (A - B), some €>0 (€>0), and all T&€ T

B3

(B13)

(B14)

(B15)

(B1s6)

(B17)

(B18)

(B19)



F (

(A - B) inside Sector- ~11
A - B) 1inside .
~21 (

-B
FlaB+F

-B
ForB+ iy

)
)

arid ,~provided k<® and (B15) holds with the parenthetical strictly inside,

F
(A - B) strictly inside Sector ~11
EZl
This proves property (iv).
Proof of Property (v):
Let k = Gain (A).
(a) B o A inside {strictly inside) Sector

<

+ >
<Fix Pz Py + Foox

(Fi:B+Fps
(Fyy B+ Fy
Fin F12
Fo1 Faa

< el pll;

for all (x, X_)G_B— oA, some € >0 (e >0), and all TE€T

<F._By y + >
FiaBr + Fioxe P By #F x>0

~ B T2
< el B |12 < -el x|

- ~ 2
<l DIl

for all (x, ¥)&€ K, some € > 0 (e > 0) and all TET

=

‘B F
A inside Sector ~1l ~ ~12
Fa1°B Fa2

B4

)
)

(B20)

(B21)

(B22)

{B23)




and, provided k<® and (B21l) holds with the parenthetical strictly inside,

——

F_-B F
g-strictly inside Sector ~11 ~ ~12 (B24)
a8 fzzd
= o T —Fll F12
(b) § ° é inside (strictly inside) Sector - ~ (B25)
_f21 Fa2
<Foy+ F Al Ax, Foy + F A Axs_ < |l p 2
A1 T 12 D0 ol T D"l TE e 2 Dy
for all (x, y)EB o A, some € >0 (€ > 0), and all TET . (B26)
Fpx + P AR By + P AR < el [ATR |
2 -1.12
<-ellgl? + 11875112
2 11112
< -ellylZ + SHEND
K
< -e -min{1, 1%} © || (%, y)Hi
| for all (%, y)€B, some € > 0 (¢ > 0) and all TET (B27)
= - =1
F F_-A
B inside Sector o e (B28)
~ F F_-A
L21 ~22°%

and, provided k<» and (B25) holds with the parenthetical strictly inside,

z fla Fi2 A
B strictly inside Sector ~ it ~-l (B29)
Fa1 Fyo A

B5




(c) B inside (strictly inside) Sector ~1l ~ ~12 " (B30)
For A Fao
2
<f11 Ay + F le él + 5225?1 f.'ell(fj Z)I‘T
for all (x, X_)C_B-, some € > 0 (€ > 0), and all T€ T . (B31)
F Y+F x, F §+F x> <-€le Yl|2
@ 11= ~12=" 215 ~22— T — =r &iig

2 2 2 1 i
=T+ HgllD < -edxllT + 5 -11E 715

< -e * min{1, 1/%%} - || (x, “z')ll,zr

for all (x, y)EA o B, some € > 0 (¢ > 0), and all TET (B32)
F F

A o B inside Sector ~11 ~12
Fa Faa

and, provided k< and (B30) holds with the parenthetical strictly inside,

. F F
A o B strictly inside Sector ~11 ~12 (B33)
f21 f22
This proves Property (v).
Proof of Property (vi): (k) (k)
=(k) ' fll fl2
A inside (strictly inside) Sector (k) (%)
fZl 522

for all k=1, ..., n (B34)

(k) (k) (k) (k) _ (k) (k) (k) (k) _(k),q,2
RETRID AR S P SRR IR AR S PP S NE S Al ] b

for ail x™, y¥HeT®, some €™ >0 ()5 0y, a11 e,

’

and all k=1, ..., n » (B35)
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‘ (k) (k) (k) (k) (k) (k)
Z Fpx v EL, T Yy

= -min{e(k)

(1) (n) ) (

for all ((x 7" ,...,x" "), (X(l reeery n)))Er:(, for some €

(k)

(e >0) k=1,...,n, and for all TET

A inside (strictly inside) Sector ~11

~21

This proves Property (vi).

Proof of Property (vii):

This follows directly from property (i).
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+ Py

n
< -min{e ® | k=1, ..., n} - le(i(k),
k=1

(k) _ (k)
X

(k) |2
x Iz

| k=1, ..., n ¥ o, L1y, @My )2

{k) >0
(B36)
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Fig. 4. - Two-dimensional geometric interpretation of Zames'

conic relation theorem..
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