Compact Laser-Driven Electron Acceleration, Bunch Compression

and Coherent Nonlinear Thomson Scattering

by

Liang Jie Wong

B.S., University of California, Berkeley (2008)
S.M., Massachusetts Institute of Technology (2011)

ARCHIVES

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

0CT 02 2013

LIBRARIES

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2013

© 2013 Liang Jie Wong. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document in whole or in part

Certified by........oooiiiiiiii e

Certified Dy.....ooiiiii e

Accepted by...ooooiiiiiiii

in any medium now known or hereafter created.

Department of Electrical Engineering and Computer Science

August 29, 2013

-

Franz X. Kirtner
Adjunct Professor of Electrical Engineering
Thesis Supervisor

o

Elihu Thomson Professor of Electrical Engineering
Professor of Physics

0 Thesis Supervisor
e[ (PN B

""""""" Lesli¢ A. Klbdziejski
Professor of Electrical Engineering
Chair, Department Committee on Graduate Students






Compact Laser-Driven Electron Acceleration, Bunch Compression and
Coherent Nonlinear Thomson Scattering

by
Liang Jie Wong

Submitted to the Department of Electrical Engineering and Computer Science
on August 29, 2013, in partial fulfillment of the requirements for the Degree of
Doctor of Philosophy

Abstract

Coherent hard x-rays have many medical, commercial and academic research applications. To
facilitate the design of a table-top coherent hard x-ray source, this thesis studies the linear
acceleration of electrons by optical lasers in unbounded vacuum, the linear acceleration and
compression of electron bunches by coherent terahertz pulses in cylindrical waveguides, and the
generation of coherent hard x-ray radiation by nonlinear Thomson scattering of compressed
electron bunches.

The Lawson-Woodward theorem describes conditions prohibiting net electron acceleration in
laser-electron interactions. We point out how the Lawson-Woodward theorem permits net linear
acceleration of a relativistic electron in unbounded vacuum and verify this with electrodynamic
simulations. By hypothesizing that substantial net linear acceleration is contingent on the field's
ability to bring the particle to a relativistic energy in its initial rest frame, we derive a general
formula for the acceleration threshold, which is useful as a practical guide to the laser intensities
that linear vacuum acceleration requires.

We characterize the scaling laws of linear acceleration by a pulsed radially-polarized beam in
infinite vacuum, showing that greater energy gain is achievable with tighter focusing and the use
of pre-accelerated electrons. We propose a two-color linear acceleration scheme that exploits
changes in the interference pattern caused by the Gouy phase shift to achieve over 90% the one-
color theoretical gain limit, more than twice the 40% achievable with a one-color paraxial beam.

Interested in capitalizing on the larger wavelengths of coherent terahertz radiation to
accelerate larger electron bunches, we study electron acceleration and bunch compression in a
cylindrical metal-coated dielectric waveguide. We numerically predict an achievable acceleration
gradient of about 450 MeV/m using a 20 mJ terahertz pulse, and separately achieve a 50 times
compression to a few-femtosecond duration of a 1.6 pC relativistic electron bunch.

Finally, we numerically study the production of coherent hard x-rays via nonlinear Thomson
scattering for different degrees of laser focusing. We derive an approximate analytical formula
for the optimal incident field intensity that maximizes the radiation intensity spectral peak for a
given output and input frequency.
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Chapter 1

Introduction

This work treats the acceleration and compression of electron bunches by coherent optical
and terahertz light, as well as the generation of coherent x-ray radiation via nonlinear Thomson
scattering. One of the main motivations of our study is to facilitate the design of a table-top
coherent hard x-ray source, for which compact acceleration, compression and nonlinear

Thomson scattering stages are essential.
1.1 Background

Beginning with light in the visible spectrum, the photon has been indispensable to mankind
in its investigation and exploration of the physical universe. The progress of science in recent
centuries has widened the useful range of the electromagnetic spectrum to include frequencies as
high as those of x-rays and gamma rays, which have become essential to further progress. The
multiplicity of commercial, medical and academic research applications requiring brilliant X-ray
sources is reflected in the high demand for beam-time at x-ray laser facilities like the Linac
Coherent Light Source (LCLS) in the U.S.A., the SPring-8 Angstrom Compact Free Electron
Laser (SACLA) in Japan, and the Free-Electron Laser in Hamburg (FLASH) in Germany. In

spite of this high demand, however, such facilities remain few, often distant and challenging to
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access. The beam-time application process at the LCLS, for instance, is so competitive that only
one out of four experimental proposals is approved [L12]. It is unfortunate that the size and
efficiency of x-ray lasers have not scaled with the burgeoning potentials of the technology to
make supply commensurate with demand.

The advent of high-intensity lasers in the optical and terahertz frequency ranges may hold the
key to easing this discrepancy. As early as the 1970s, scientists have considered the use of lasers
to accelerate charged particles [Cha71]. However, it was not until the invention of chirped pulse
amplification by Strickland and Mourou in 1985 [SM85] that laser-driven particle acceleration
began to attract widespread attention. In the decades that followed, demonstrated optical laser
intensities have rapidly soared [MU92, PM94, PPS*99, TM02, BPP*04] to values as high as 10?
W/cm? [BPP*04]. This corresponds to electric fields on the order of 10 V/m, six orders of
magnitude above the approximate 10° V/m in conventional radiofrequency (RF) accelerator
structures.

More recently on the terahertz front, THz pulses with electric fields as strong as 10" V/m
have been generated in GaSe from 30 fs laser pulses via birefringent phase-matching [SLHO8],
with the highest field achieved at 30 THz. THz pulses centered at 0.2-1.0 THz can be efficiently
generated in LiNbO; [HYH'08] via tilted-pulse-front pumping (TPFP) phase-matching. Such
high fields can accelerate electron bunches to the desired energy and compress them to the
desired bunch length over much smaller interaction distances than what is permitted by
traditional RF accelerator technology, where the damage threshold of RF cavities limits the
acceleration gradient to a value on the order of 100 MeV/m. Coherent x-rays are useful in
biomedical imaging [Lew04], in analyzing the structure of proteins [CFB*11] and viruses
[SEM*'11], and in producing real-time movies of molecular interactions during chemical
reactions [Zew00]. In particular, phase contrast x-ray imaging, which requires coherent x-rays in
many implementations, produces much better image quality than conventional absorption
techniques since the refractive index decrement of tissues is typically more than three orders of
magnitude greater than their absorption index in the diagnostic x-ray energy range [Lew04]. The
widespread availability of compact electron accelerators and coherent x-ray sources is thus
highly desirable.

Methods under investigation for compact electron acceleration include the inverse free

electron laser, the inverse Cherenkov effect, plasma acceleration, dielectric-based acceleration
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and vacuum acceleration. These approaches typically involve optical lasers, but forays have also
been made into the acceleration of electrons in vacuum [HFM*11] and in waveguides [YR05] by
coherent THz light.

The inverse free electron laser [Pal72, CPZ85, KSB*01] and the inverse Cherenkov effect
[FP83, SEK96] are respectively, as their names suggest, the reverse of the free electron laser and
Cherenkov radiation processes, so that the electrons gain energy instead of radiating it. Plasma-
based electron acceleration, first proposed by Tajima and Dawson in 1979 [TD79] and
experimentally demonstrated as early as 1995 (e.g. [MZD"95]), involves using optical laser
pulses to excite waves in plasma. The charge separation of the plasma waves creates electric
fields that accelerate electrons. Plasmas can sustain fields that scale as 96(n0[cm'3])”2 V/m, ng
ambient electron number density, so ng = 10'%cm™ yields an acceleration gradient of 96 GeV/m.
Plasma acceleration comes in several varieties [ESL09]. In plasma beat-wave acceleration
[KD83, IMK*84, CMD"93], for instance, two laser pulses of frequencies differing by the plasma
frequency are used to excite the plasma wave. Laser wakefield acceleration [ESK*96, SET*88,
SEK"92], on the other hand, uses a single laser pulse of wavelength equal to or smaller than the
plasma wavelength. In the "blow-out" or "bubble" regime, a high-enough laser intensity expels
all electrons from the axis, leading to the formation of a vacuum bubble, self-injection of
electrons into this bubble and subsequent acceleration of these electrons to high energies. In
2004, three groups ([CTT'04, MMN'04, FGP'04]) achieved electron bunches with an energy
spread of a few percent and a low divergence of several milliradians by operating in the blow-out
regime. Since then, many methods to obtain greater stability, reproducibility and higher electron
energies in electron acceleration experiments have been proposed and demonstrated (see
references in [ESLO9]). These include controlled injection of electrons with colliding laser pulses,
the use of negative plasma density gradients and the use of plasma-channel-guided lasers.

Dielectric-based acceleration may be driven by an external optical laser source or by the
wakefields of another electron bunch (i.e. dielectric wakefield accelerator) [GSC*88, ASB+12,
AJK*12]. Laser-driven dielectric structures for electron acceleration include two-dimensional
photonic crystals [Cow03], three-dimensional photonic crystals [Cow08], photonic crystal fibers
[Lin01, MS04, NSK11] and transmission grating structures [PLB06]. These structures are

expected to sustain an acceleration gradient in the vicinity of 400-800 MeV/m. However, the
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total charge is not expected to exceed 10-20 fC, so the technology is probably best suited for
niche applications that require fewer coherent x-rays [CCE"10].

Vacuum acceleration -- the name we use here for laser-driven particle acceleration in
unbounded vacuum (i.e. no physical structures to guide or block light) -- occurs through either
the ponderomotive force associated with the transverse electric and magnetic field components
(ponderomotive acceleration) [CPZ85, KSB*01, Hor88, ESK95, HFS*95, QM98, MLM97, SZ01,
WHY*01, SK02, HS02, PBRO8], or the force exerted by the longitudinal electric field
component (linear acceleration) [PBC'05, HZT'96, SZ91, Sal07, FPV10, VPP05, KPO7].
Ponderomotive acceleration schemes include vacuum beat wave acceleration [Hor88], in which
the wiggler field of the inverse free electron laser scheme is simply replaced by a second laser;
high-intensity ponderomotive scattering [ESK95, HFS*95, QM98], in which the electron is
scattered away from the laser focus with a high escape energy; the capture and acceleration
scenario [SZ01], in which relativistic electrons are injected at an angle into the laser focus; and
ionization of highly-charged ions near the laser pulse peak [SK02]. Experiments [KSB01,
QM98, HS02] have demonstrated that ponderomotive acceleration may be achieved in reality.
Linear vacuum acceleration schemes typically involve the use of a beam or beam configuration
such that only the z-directed electric field exists on axis. A number of linear acceleration
schemes [PBC'05, HZT'96] that involve terminating the laser field before the accelerated
electron starts losing energy to the field -- so they are not strictly "vacuum acceleration” schemes
according to our usage, but have nevertheless been referred to by that term -- have also been
proposed.

Because of the numerous trade-offs involved, no approach has emerged as a clear winner.
The use of a plasma medium is an attractive way of achieving laser-driven electron acceleration,
for instance, but faces problems like the inherent instability of laser-plasma interactions, which
limits the laser propagation distance and degrades accelerator performance [ESL0O9]. Schemes
that use guiding structures benefit from light confinement, which decreases the required driving
energy and increases the interaction distance, compared to schemes that take place in (effectively)
unbounded vacuum, but suffer from intensity limitations imposed by thermal démage and
dielectric breakdown of the guiding structures. Linear acceleration schemes that use optical
wavelengths instead of THz or RF wavelengths tend to enjoy a higher acceleration gradient,

which favors greater bunch compression and acceleration, but space-charge effects make it
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difficult to confine a bunch of substantial charge within a half-cycle if the wavelength is too
small.

To produce coherent x-rays, it is necessary to compress the longitudinal dimension of the
electron bunches to a value on the order of the desired x-ray wavelength. It is possible to achieve
simultaneous acceleration and compression of an electron bunch with the z-directed electric field
of a transverse-magnetic electromagnetic field at optical and THz frequencies. This is akin to the
idea of velocity bunching scheme [SFO1, FBC*11] proposed for use at RF frequencies to enable
compression of the electron beam at early stages of the accelerator chain when beam energy is
low, which avoids problems related to magnetic compression like beam filamentation, emittance
dilution and coherent synchrotron radiation [FBC*11]. Compressed electron bunches at energies
no more than a few MeV are also interesting for electron beam diffraction (e.g.: [BZO7 , WG12]),
although in the case of a velocity-bunching-type scheme, a method may have to be devised to
separate the compressed electron bunch from the compressing laser pulse (this may be done with
bending magnets if the interaction were in vacuum but the solution here is less straightforward
since the electrons are in a waveguide).

A suitably accelerated and compressed electron bunch may be sent into a counterpropagating
laser pulse to generate coherent x-rays via nonlinear Thomson scattering (or inverse Compton
scattering, as it is sometimes referred to in the literature) [GBK*09], a process involving the
emission of upshifted photons from the transverse oscillations of a relativistic electron in an
electromagnetic pulse [Vac62]. The dynamics and radiation of an electron in an arbitrarily
intense, elliptically polarized plane electromagnetic wave were studied by Sarachik and
Schappert [SS70] for the case of an electron initially at rest, and later generalized to arbitrary
initial electron velocities by Salamin and Faisal [SF96]. The nonlinear Thomson scattering of
continuous intense linearly and circularly-polarized plane waves with electron beams and
plasmas was studied by Esarey et al. [ERS93]. The spatial and spectral characteristics of the
nonlinear Thomson scattering were also analyzed theoretically by many other authors (e.g.
[REB95, Kra04, Gao04, Pop11]). Experiments have been performed demonstrating the features
predicted by nonlinear Thomson scattering theory (e.g.: [CMU98, SLC+96, TRP*03]). All-
optical setups for x-ray and gamma ray generation involving the nonlinear Thomson scattering of

laser-accelerated electrons have also been proposed [CELO1, HLK'03] and demonstrated
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[SLS+06, TCT+12]. At such a pace of progress, table-top temporally-coherent hard x-ray and

gamma-ray sources may well be within reach in the near future.
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1.2 Overview

In Chapter 2, we investigate the idealized scenario in which an electron interacts with a
propagating z-directed electric field. This scenario is highly relevant to the rest of this work
because a propagating z-directed electric field approximates the electromagnetic profile close to
the axis of a cylindrically symmetric transverse-magnetic mode (e.g.: a radially-polarized beam
or the TMy; mode of a cylindrical waveguide). General analytical formulas covering almost all
aspects of the single-particle case are derived. We introduce the phase contour diagram and use it
to illustrate various scenarios that can occur depending on the field intensity, the field's phase
velocity and the initial electron energy. We discuss a phenomenon we call "asymptotic trapping",
which can lead to phase-matching over arbitrarily long distances, so long as the driving laser
field is not depleted. We also present an injection and extraction strategy to maximize energy
gain for a single electron of a certain kinetic energy given the vector potential and phase velocity
of the driving wave.

In Chapter 3, we study the acceleration of a free electron in infinite vacuum along the axis
of a pulsed radially-polarized laser beam. We extend the results of previous studies to include the
case of electrons with non-zero initial velocities. These electrons (which we call “pre-accelerated
electrons”) are injected into the laser beam ahead of the pulse and may be the output of a
preceding acceleration stage. We show that net energy gain can be much greater for a pre-
accelerated electron than for an initially stationary one. In particular, the net energy gain of an
initially relativistic electron may exceed more than half the theoretical energy gain limit (derived
in [FPV10]), which is not possible with an initially stationary electron in the parameter space
studied. The de facto energy gain limit (of half the theoretical energy gain limit) argued by Fortin
et. al. [FPV10] for the initially stationary electron may thus be surpassed with the pre-accelerated
electron.

By extending our parameter space to include powers as low as 5 TW, we show that
substantial acceleration can already be achieved with laser peak powers of a few terawatts.
Finally, we propose and study the direct acceleration of an electron in infinite vacuum by a two-

color pulsed radially-polarized laser beam. This scheme exploits the presence of the Gouy phase
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shift to accelerate a stationary electron by over 90% of the one-color theoretical energy gain limit,
more than twice of what is possible with a one-color paraxial beam of equal total energy and
pulse duration. It is worth noting that sub-wavelength focusing of a single beam can achieve only
about 80% of the theoretical gain limit [MVA*12].

Our studies are conducted using Gaussian beam solutions of the paraxial wave equation.
Recently, it has been pointed out that higher-order corrections in the electromagnetic field are
necessary even when focusing is not tight (i.e. even in the paraxial regime) to accurately model
the electrodynamics of off-axis particles [MVP13]. To ensure that our simulations were accurate,
we compare the on-axis fields of our paraxial solution with those of an exact beam-like solution
of Maxwell's equations and verify that there are no major discrepancies even in the case of tight
focusing. Note that throughout this work, we are careful to use the paraxial beam solution only
for on-axis electrodynamic simulations.

In Chapter 4, we recapitulate the derivation of the Lawson-Woodward theorem, a theorem
which forbids electron acceleration in vacuum under a certain set of conditions. Whenever the
topic of vacuum linear acceleration is broached In the literature (e.g.: in [ESL09]), it is common
to read about the need for physical boundaries to violate the Lawson-Woodward theorem,
without any mention of the fact that an initially relativistic electron is capable of gaining net
energy from a laser beam in vacuum even in the absence of physical boundaries. We point out
how this phenomenon is in full accord with the Lawson-Woodward theorem. By hypothesizing
that substantial net linear acceleration is contingent on the accelerating field's ability to bring the
particle to a relativistic energy in its initial rest frame during the interaction, we go on to derive a
general formula for the acceleration threshold, which is useful as a practical guide to the laser
intensities that unbounded linear acceleration requires under various scenarios.

In Chapter 5, we study the ability of terahertz pulses to accelerate and compress electron
bunches in a cylindrically symmetric, metal-coated dielectric waveguide. We are interested in
this scheme because, compared to optical pulses, terahertz pulses are able to accelerate a larger
number of electrons per bunch by virtue of the longer wavelength of terahertz radiation. We
numerically demonstrate the acceleration of a 1.6 pC electron bunch from a kinetic energy of 1
MeV to one of 10 MeV over an interaction distance of about 20 mm, using a 20 m] pulse
centered at 0.6 THz in a dielectric-loaded metallic waveguide. We also investigate the

acceleration of 16 pC and 160 pC 1 MeV electron bunches, observing that performance does not
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change significantly for a 16 pC-bunch, but deteriorates prohibitively for a 160pC-bunch due to
the overwhelming Coulomb repulsion. Finally, we optimize the dielectric-loaded metal
waveguide design for simultaneous acceleration and bunch compression, achieving a 50 times
(100 fs 1.6 pC electron bunch compressed to 2 fs over an interaction distance of about 18mm)
and 62 times (100 fs to 1.61 fs over an interaction distance of 42 cm) compression for a 1 MeV
and 10 MeV electron bunch respectively. These results were achieved with a 20 mJ laser pulse
centered at 0.6 THz, and encourage the exploration of THz-laser-driven electron acceleration as
a path to compact electron acceleration and bunch compression schemes.

In Chapter 6, we present the classical theory of nonlinear Thomson scattering and derive an
approximate analytical formula for the on-axis intensity spectrum of a single relativistic particle
traveling into a counterpropagating linearly-polarized electromagnetic pulse. From this formula,
we deduce that if we restrict ourselves to the first harmonic and are free to choose any
combination of normalized vector potential and electron energy we like, there is an optimal
incident field intensity that gives the maximum spectral intensity peak for a given output and
input frequency. Beyond a certain point, it is futile to obtain greater monochromatic output by
increasing the intensity of the incident laser pulse. Instead, the amount of charge in the bunch or
the number of cycles in the laser-electron interaction must be increased.

We discuss the algorithms we have implemented to compute the nonlinear Thomson
scattering temporal and spectral profiles. In particular, we describe a method that solves the
electrodynamic equation in advanced time to compute the radiation spectrum via the fast Fourier
transform without the use of any interpolation techniques. We benchmark our code with
analytical formulas for synchrotron radiation and inverse Compton scattering. With our code, we
study the scattering of an optical laser pulse off an electron bunch under different degrees of
laser focusing, comparing the results obtained using the exact pulsed solution (i.e. a pulsed
beam-like electromagnetic field that exactly solves Maxwell's equations) with those obtained
using an ideal pulsed plane wave of the same peak intensity. Features of the radiation observed

and discrepancies between the plane wave and exact pulse results are discussed and explained.
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Chapter 2

Electrodynamics in a longitudinal electric field

Along the beam axis of a cylindrically symmetric transverse-magnetic mode (TMg, mode, p a
non-negative integer) propagating in the z-direction in vacuum or in a waveguide, a particle sees
only a z-directed traveling electric field. The transverse electromagnetic fields vanish on axis and
increase in amplitude until a certain point as one moves away from the axis. This makes
acceleration schemes employing TM,, modes very attractive for the linear acceleration of
electrons. In this chapter, we examine the idealized case of a particle subjected to a continuous-
wave (CW) z-directed planar electric field, with the goal of obtaining physical intuition about the
electrodynamics in linear acceleration schemes based on TMg, modes.

When a charged particle is subjected to a CW z-directed planar electric field, exactly one of
three things will happen: (a) the particle will slip continuously through successive accelerating
and decelerating half-cycles, (b) the particle will be borne along with the wave, slipping
asymptotically towards a certain phase in an accelerating cycle (a phenomenon we call
“asymptotic trapping”) or (c) the particle will be borne along with the wave, oscillating about its
injection phase in the frame of the field. We introduce and use the phase contour diagram to
investigate the conditions under which each of these scenarios take place. In the process, we also
derive analytical formulas and obtain semi-analytical solutions related to the energy and
displacement of a single particle as a function of its injection energy, injection phase and

extraction phase, as well as the amplitude and phase velocity of the driving field.
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Finally, we use the phase contour diagram to devise a general scheme for maximum
acceleration, given an initial electron energy and CW z-directed electric field. Our results show
that for a given initial electron energy, there is a certain field intensity below which maximum
acceleration is achieved with a subluminal wave, and above which maximum acceleration is
achieved with a phase velocity exactly equal to the speed of light in vacuum. The mechanism
that applies in the latter case is asymptotic trapping, which keeps a particle from ever slipping
out of the first accelerating half-cycle the particle encounters, and accelerates the particle with a
practically constant acceleration gradient. We also discuss the limitations of studying electron
acceleration under such idealized conditions. Although the study of an electron in a z-directed
traveling electric field is not new (e.g.: [SFO1], [EP95]), the concept of asymptotic trapping, the
study of superluminal phase velocities and the study of how maximum energy gain scales with
field amplitude and phase velocity in such a model have not been presented elsewhere as of the

writing of this thesis, to the best of our knowledge.

2.1 Equations of motion

Close to the axis of a hollow cylindrical waveguide containing a TMp, mode (p a non-
negative integer), the electromagnetic field is well-approximated by a z-directed electric field of

amplitude Ey > 0:

-

E=E,?=E,cos(ax—xz+y,)z. (2.1)

Note that such a field is also exactly sustained by a sea of charge in vacuum where the charge
density p=£,(V-E) = kg, E, sin(ax — xz + ;Vo), £, being the permittivity of free space. Without
loss of generality, we will consider only the case of k > 0, since we are always free to define our
coordinate system so that this is true.

Consider the action of such a field upon a charged particle of (rest) mass m and charge g,

according to the Lorentz force equation. The charged particle is modeled as a point charge. Let z

denote the particle’s displacement in z and ¢ denote time. Clearly, the particle will move only
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along the z direction, so its velocity V() =cf(¢#)Z, where c is the speed of light in vacuum. We

thus obtain a set of coupled differential equations:

4 (8)= 9Bz B0 oy,
;l; mc mc (2.2)
a P

where y=1/(1 — ,82)1/2 is the relativistic Lorentz factor and = a¥ — xz + ¥. Note that

fl—z = a{l - -E) s 2.3)
dt ,BP,,

where fpn = w/kc > 0 is the normalized phase velocity of the continuous wave z-directed electric
field. There is no loss of generality in the physics of the problem by requiring f,, > 0, since there

is no restriction on the sign of £(0). Combining (2.2) and (2.3) by the chain rule gives us

d . —a,
P g
dz _ Bk

dW 1_16/ ph

cosy
' (2.4)

k4

where ag = —qEy/mcw and k = w/c. The first line of (2.4) may be solved to give
Y= 1By = a,B,, siny —siny, )+ (y—188,,), =GW), 2.5)

where subscript s appended to any variable or expression simply denotes the same variable or
expression evaluated at any particular reference point in phase space (i.e. - yf space). In the

literature, one often finds (2.5) written in the form

H =y = 1B, — B, siny (2.6)
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H is a constant of motion traditionally referred to as the Hamiltonian [SFO1]. (2.5) is readily

solved for yp to give

(G(y/)ﬁ’p B+ G W) -1}, B <1

1-G?
(By) = T;j)”’) B =1 Q.7

(G(W)ﬂph _\/ ﬁh +Gz('//)_1 ph> ﬂph >1

where }n = 1/(1 = B )2 Equivalently, (2.7) may be written as

(B, G B, +G(w)—1 5 <
Bw) = G W) o 2.8
Bu=GONBut G- |

B +G W) e

Note that the choice of sign in (2.7) corresponds to that in (2.8). The validity of these results may
be ascertained by inserting (2.7) into the leftmost side of (2.5) and checking that it evaluates to G.
The following summarizes a few salient properties of (2.5) as an equation with yB as the
unknown:

1. Parameters ao, y, ws, Bon and B must be specified before we can solve (2.5) for y8. For Sy
<1,G=( - ,Bphz)”2 will be true if (but not only if) a physically valid combination of
parameters is chosen. For B, > 1, G may take on any real value. Note that for given ay,
Bon and B, not every combination of y and y, may be physically valid.

2. For Bph < 1, no solutions exist if ,Bph2 + G* - 1 < 0. Exactly one solution exists if ﬂph2 +
G*-1= 0, and two distinct solutions exist if ,Bphz +G*-1>0.Of course, where two
solutions exist, only one of them can be correct for a given combination of ay, ¥, ¥s, Bon
and f;, assuming the combination is physically valid.

3. Where two (distinct) solutions exist for Sy, < 1, we invariably have f8 > S, for the choice

of “+” and B < fi, for the choice of “~” in (2.7) (hence, we can immediately determine
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the correct solution if we know in advance which side of S, the correct solution must lie
on). Where one solution exists for iy, < 1, we invariably have § = .
4. For Bpn = 1, we always have a solution since ﬂph2 + G? — 1> 0. We always have exactly
one solution since only the choice of “~” yields a result satisfying (2.5).
These properties are derived (where applicable) and discussed in greater detail in Appendix A.
With (2.8), we may solve for #(y) and z(y) by numerical integration since (2.3) and the

second line of (2.4) give

ary) _ o
dy  1-BWw)/B,
dzy) __ Bw)/k
dy  1-BW)/B,

2.9

The partially-analytical nature of the problem thus enables us to fully solve the coupled ordinary
differential equations in (2.2) with only numerical quadrature methods, instead of ordinary
differential equation algorithms that are generally more complicated. In general, there are three
types of solutions: trapped orbital trajectories (or trapped orbits), in which the particle oscillates
about a particular zero-crossing of the wave (possible only if fpn < 1); trapped asymptotic
trajectories, in which the particle slips asymptotically towards a certain phase within a cycle of
the wave (possible only if Sy = 1); and untrapped trajectories, in which the particle slips
continuously through the cycles of the wave. Note that care must be taken when integrating (2.9)
for trapped orbits since #(y) and z(y) are then not, strictly speaking, functions of y (i.e. multiple
values of ¢ and z may correspond to a single value of y). Also, different choices of the + sign in
(2.8) must be chosen for different portions of the orbit.

The integration of (2.9) is much more straightforward in the case of trapped asymptotic
trajectories and untrapped trajectories. In these cases, #(y) and z(y) are functions of y and only
one choice of the + sign in (2.8) is applicable, depending on whether B(t) > fpn V't or B(t) < Spn
V t (one of these must be true if the particle is asymptotically trapped or untrapped), throughout

the entire integration.
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2.2 The phase contour diagram and the separatrix

Since we are primarily interested in electrons, we will restrict our discussion to the case of g <
0 hereafter. Nevertheless, all results and conclusions may be translated to the case of g > 0
simply by replacing y by y + 7. In a sense, the restriction g < 0 does not lead to any loss of
generality because g > 0 in (2.1) is mathematically equivalent to the case of g < 0 with a different
value of yy. Note of course that assuming Ey > 0 (which we stated earlier) and q < 0 is equivalent
to simply assuming ao > 0, as far as the mathematics of (2.2) is concerned.

Equation (2.7) may be used to plot the various possible trajectories of a single particle (or the
trajectories of multiple non-interacting particles) in the y- y8 phase space. An example of such a
phase contour diagram is shown in Fig. 2-1, which was made for the case of an electron injected
into a wave travelling at a subluminal phase velocity. The phase contour diagram is periodic in

with a period of 2n. As such, we restrict its domain to —n/2 < y < 3n/2.
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-8.5 0 0 1 1.5

Fig. 2-1: A phase contour diagram, showing various possible trajectories of an electron in a
given z-directed CW electric field. Arrows indicate the direction of electron motion in time along
the phase contour lines. The separatrix, a boundary separating trapped orbits from untrapped
trajectories, is drawn in thicker lines. This phase contour plot was made for the case of ay=

0.1553 and S, = 0.9409.
2.2.1 Subluminal phase velocities

In this section, we restrict our discussion to the case of Sy, < 1. If an electron were to begin in
the field at y = /2, moving in the direction of wave propagation with velocity f = Sy, one can
see readily from (2.1) and (2.2) that the electron’s velocity would never change since the electron
would never experience any force. The trajectory of such an electron is represented by the single-
point "contour" at (1/2, ypnfBpn) in Fig. 2-1 (i.e. where ynfpn is approximately 2.78).

If the electron were to start at any point in phase space other than (n/2 + nm, ypnfon), n any
integer, the electron’s position in phase space would vary with time. The electron would move

along the phase contour line determined by its initial momentum and phase. Fig. 2-1 shows some
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of these phase contour lines. Arrows indicate the direction along the contour in which the
electron moves as time progresses.

To foster familiarity with phase contour diagrams, we present in Fig. 2-2 schematic
illustrations of electron motion (relative to the CW wave) and corresponding phase contour lines
for three general scenarios. Fig. 2-2(a) and (d) deal with the case of a trapped orbit, for which
- 2n < w(f) < ws + 21, Vt (y, being the initial value of y). In this case, the electron is carried
along by the wave and always oscillates about = n/2. This oscillation can be made so large (by
increasing the magnitude of ay, for instance) that the turning points of the electron’s motion
relative to the CW wave occur arbitrarily close to ¥ = -n/2 and y = 3n/2. Physically, what
happens is that the electron gains just enough energy by the time it arrives close to y = 3n/2 to
be just slightly faster than the wave, and the electron loses just enough energy by the time it
arrives close to ¢ = —1/2 to be just slightly slower than the wave. As the electron’s turning points
in Fig. 2-2(a) approach v = —/2 and w = 3a/2, the electron’s phase space orbit in Fig. 2-2(d)
approaches the separatrix. The separatrix is a boundary that separates trapped orbits from
untrapped trajectories. An electron moving exactly on the separatrix will stop at the first point it
encounters that is of the form (3n/2 + 2nmn, y,4f,4), n any integer, and remain there for all time.
Physically, what happens is that the electron arrives at a point where the electric field is zero
with a velocity that matches the wave’s phase velocity exactly. Henceforth, the electron moves

with the wave but never experiences any force.
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Fig. 2-2: Visualization of the electron motion represented by phase contour lines. Schematic
illustrations of electron motion relative to the CW wave E, = Eycos(y) are shown corresponding
to (a) a trapped orbit, (b) an untrapped path below the separatrix (injected electron too slow to be
trapped), and (c) an untrapped path above the separatrix (injected electron too fast to be trapped).
Arrows and crosses in (d), (e) and (f) mark the phase contour lines corresponding to the cases in
(a), (b) and (c) respectively. Arrows (excluding those on axes, of course) indicate direction of
electron motion with time. Colored crosses have been inserted to improve ease of identifying
corresponding electron positions in schematic diagram and phase space. The phase contour plots

were made for the case of ap= 0.1553 and f,, = 0.94009.

Fig. 2-2(b) and (e) correspond to the case of an untrapped trajectory, with the electron slipping
backward continuously relative to the CW wave because the electron never gains enough energy
from each accelerating half-cycle to stay within the cycle. In this case, A(t) < fpn V. Fig. 2-2(c)
and (f) also correspond to an untrapped trajectory, but with the electron slipping forward
continuously relative to the CW wave. Here, £(1) > fpn 7 t. Note that for a given initial electron

energy, the choice of injection (i.e. initial) phase can determine if the electron will be trapped or
untrapped. For initial energies below the minimum or above the maximum of the separatrix,

however, the choice of any injection phase will result in an untrapped trajectory.
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2.2.2 Luminal and superluminal phase velocities

If the phase velocity is luminal (B, = 1) or superluminal (Boh > 1), orbital trapping, which
involves the particle velocity exceeding the phase velocity at some point, is no longer possible.
B(t) < Pon V¢ must be true under any circumstances, so the particle will always be slipping
backward with respect to the wave. For S, = 1, trapping is still possible in the form of a trapped
asymptotic trajectory. For By, > 1, only untrapped trajectories are possible and the separatrix does
not exist.

Fig. 2-2.1 (a) and (d) illustrate the case of asymptotic trapping in a luminal wave. Because f <
Bpr = 1 for all finite particle energies, the particle is in fact always slipping with respect to the

wave, but it slips asymptotically towards a certain phase value in the accelerating half-cycle, and

never slips out of the first accelerating half-cycle it encounters. Hence, the phase slippage of

such a trapped particle becomes increasingly negligible with time (although the slippage never
stops) and after some time the particle effectively experiences a constant accelerating gradient
forever, assuming an electromagnetic beam of infinite length and energy, Note from Fig. 2-2.1 (d)
and (e) that the phase contour diagram in the luminal case resembles that in the subluminal case,
except here only the portion below 8= jnfn is valid (since in the luminal case 8= }nSm, the
widest portion of the separatrix, occurs at infinity). As such, the separatrix for the luminal case
consists only of a bottom arc running to the right, without a top arc running to the left. Any
particle placed in the phase space above this bottom arc will be asymptotically trapped, whereas
any particle placed in the phase space below it will be untrapped. The phase contour lines lying
within the separatrix in the luminal case all run to infinity (in ), asymptotically approaching

constant phase values.
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Fig. 2-2.1: Visualization of the electron motion represented by phase contour lines. Schematic
illustrations of electron motion relative to the CW wave E, = Eycos(y) are shown corresponding
to (a) a trapped asymptotic trajectory in a luminal wave, (b) an untrapped path in a luminal wave
(injected electron too slow to be trapped), and (c) an untrapped path in a superluminal wave.
Arrows and crosses in (d), (e) and (f) mark the phase contour lines corresponding to the cases in
(a), (b) and (c) respectively. Arrows (excluding those on axes, of course) indicate direction of
electron motion with time. Colored crosses have been inserted to improve ease of identifying
corresponding electron positions in schematic diagram and phase space. The separatrices in (d)
and (e) are not only thicker but also of a different color (black) for extra distinctiveness since
many other phase contours run close by it. The phase contour plots were made for ay= 0.1553,

with fyn = 1 in the luminal cases and fp, = 1.01 in the superluminal case.

Untrapped trajectories for the luminal and superluminal cases are illustrated schematically in
Fig. 2-2.1 (b) and (c) (they are identical to each other and identical to Fig. 2-2(b)) respectively,
with the corresponding trajectories shown in Fig. 2-2.1 (e) and (f) respectively. The separatrix
does not exist in the superluminal case because there is no possibility of trapping.

Because asymptotic trapping can ideally keep a particle from ever slipping out of the first

accelerating half-cycle the particle encounters, and accelerate the particle at a practically
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constant acceleration gradient, one intuitively feels that it may be a promising strategy to pursue

for accelerating particles, if the right beam is readily available.

2.2.3 Evolution of phase contour diagrams with field strength and phase

velocity

In this sub-section, we discuss qualitatively how the phase contour diagram and the separatrix
changes from one set of values for normalized field strength ap and normalized phase velocity
Bon to another. A fairly comprehensive overview is given by the collection of phase contour plots
in Fig. 2-2.2, which is organized as follows: All plots in the first column were made for ap = 0.1,
all plots in the second column for ap = 1 and all plots in the third column for ap = 10. All figures
in the same row share the same S, which increases from top to bottom and include subluminal,
luminal and superluminal phase velocities.

When g = 0.1 and f, is very non-relativistic, the separatrix is “eye-like” and approximately
symmetric in yBabout 8 = }nfBm. As By increases (keeping ap constant), the “eye” rises and
widens, but the upper arc swells disproportionately and appears increasingly “mountain-like”,
which also encourages one to fancy the lower arc as a “valley” (imagine looking at a mountain
through a valley between two hills). This widening of the separatrix reflects the increasing range
of velocities an orbitally trapped particle can possess as the phase velocity of the driving field
increases. The disproportionate widening (i.e. the upper arc swells more than the lower arc) is
simply a result of choosing ¥# for the ordinate of the phase contour diagram; if we had chosen
instead for the ordinate, it would have been the lower arc that swells more as the “eye” rises and
the upper arc is increasing squished flat against # = 1. The widest part of the separatrix always
occurs at ¥8= %nBon.

When By, = 1, }nBon is infinite and the widest part of the separatrix occurs at infinity (Y= -
©/2, 31/2), so the phase contour diagram becomes entirely “valley-like”. Although in Fig. 2-2.2
the phase contour diagram appears to change abruptly from the K, = 100 MeV cases (where Kpp
= (Yph — l)mcz) to the B,, = 1 cases, this is only because we chose to show the entire separatrix in

the Kyn = 100 MeV cases. If we had restricted our range of 0 to values within the bottom arc of
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the separatrix, the visual transition in the diagrams from K, = 100 MeV to the Bon = 1 would
probably be more continuous.

For B > 1, the separatrix does not exist because trapping is impossible. The diagrams continue
to look “valley-like”, with the “valleys” becoming shallower as [ increases. This simply
reflects the increasing velocity mismatch between the particle and the wave, and hence a
diminished ability of the wave for particle acceleration.

The trend with which the phase contour diagrams evolve as S, is varied from nonrelativistic to
relativistic to luminal to superluminal velocities is essentially the same for other values of ag. We
can see from the ap = 1 and ag = 10 cases in Fig. 2-2.2 that for larger ao, the subluminal diagrams
become “mountain-like” sooner and the separatrix minimum in the luminal diagram is lower,
which accords with the increased acceleration capability one would expect from a wave with
larger ay. Also, the contours in the diagrams become steeper, which accords with the fact that the
acceleration gradient at every point in phase (where the field is not zero) is now higher.

With some mathematical rigor, we can make even more precise statements about the separatrix
minimum and maximum that may not be obvious from simply studying Fig. 2-2.2:

1. If we keep fn constant, the separatrix maximum increases and the separatrix minimum

decreases as gy increases.

2. If we keep ao constant, the separatrix maximum increases as S, increases. The separatrix
minimum decreases as £, increases for 0 < ¥nfon < ap, and increases as Bon increases for
¥nfon > do. For given ay, the least separatrix minimum possible thus occurs when ¥%nfBn =
ap.

Through all this, bear in mind that we have been assuming without loss of generality that S, >

0, ap > 0. We will elaborate upon this behavior of the separatrix in Section 2.3.2.
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Fig. 2.2: Phase contour
diagrams for various
values of ap and f;,. The
first column of figures ((a)
to (g)) correspond to ap =
0.1, the second ((h) to (n))
to ap = 1, and the third ((0)
to (u)) to ap = 10.
Subluminal phase
velocities considered are
Ko =0.01, 1, 10, 100
MeV. Superluminal phase
velocities considered are
Bon =1.01, 1.001. The
separatrix is plotted as a
thicker line in the
subluminal diagrams. For
the luminal (S, = 1) case,
the separatrix is not only
thicker but also of a
different color (black) for
extra distinctiveness since
many other phase contours
run close by it.
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2.3 Properties of the phase contour diagram

The objective of this section is to present mathematical formulas for a few important features

of the phase contour diagram.
2.3.1 The widest portion of trapped trajectories

The widest portion of the trapped trajectories (as well as that of the separatrix) occurs at yf =
YorBon (for Bpn = 1, this implies y8 — ). This is evident from the fact that (2.7) applied to a
general trapped trajectory has exactly one solution for a given y (and is hence at the widest

portion of the trapped trajectory) when
B +G W) =1. (2.10)
This gives

(1B)w)=GW) B, Yo = VouBons 2.11)

where the second equality was made by noting that (2.10) gives G(y) = (1— ,/)’;,1,2)”2

= 1/ypn
(positive sign chosen for square root because, as seen from (2.5), G(y) > 0if fpn <1, which is in
turn necessary for the possibility of trapped trajectories and the existence of a separatrix). By
solving (2.10) for y, one can also determine the two values of y corresponding to the widest
portion of a phase contour line containing the point (i, (y8)s). Combining (2.5) and (2.10), and
considering only the domain —n/2 < y < 3n/2, we find that the values of y, y on the left and y;

on the right, are given by

(—1—~G(WS)J+Si“'/’s:|, —%<I/IIS”

v = arcsm|: . 5 2.12)

Ay Ppn

V. =7-¥
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Recall from (2.5) that G(w) = (y - yBPpn)s- For Bpn = 1, simply set 1/ypy = 0. Equation (2.12) is a
convenient way of determining yy and y; because many calculators and computational programs
(e.g. Matlab R2011b) return a value between —n/2 and 7/2 by default when the arcsine function is

called with a single argument.
2.3.2 The maximum and minimum of the separatrix

Equation (2.7) may be used to solve for the maximum and minimum of the separatrix, which

both occur at y = n/2. For fpn < 1, we find that

(w)sep max. min = (Glﬁp i pzh + Gl2 - I)Y;h
= yphﬂph (2yphﬁpha0 + l)i- 7ph ﬂthﬁphaO \/},phIBphaO + 1 (2 13)
(}ﬁ)ph s &Y, 4a0(7ﬂ)ph s Yo = 1, 27phﬁpha0 <<1

T 120820, £ 208) 0 ay + 1—51—“)

4 ﬁph = 1’ yphﬁphao >> 1

where G| = 2pna0 + 1/ypn and (pB)ph = yonPpn. Choosing the “+” sign in (2.13) gives the maximum

(191

of the separatrix, whereas choosing the sign gives the minimum. When the phase velocity is
very non-relativistic, the final approximate equality in (2.13) tells us that the separatrix
maximum and minimum are located at approximately equal distances in yf from ypnfpn , With this
distance approximately proportional to (ao(yﬁ)ph)” 2, s0 scaling ag or 7pnBpn DY @ given factor tunes
this distance by approximately the same amount. When the phase velocity is very relativistic, the
maximum of the separatrix occurs at approximately yf = 4(yﬁ)ph2ao, and scaling a¢ by a factor of
4, for instance, affects the separatrix maximum in roughly the same way that scaling (yf)p by a
factor of 2 does. Note that the third term in the relativistic approximation has been included for a

[

more accurate approximation of the separatrix minimum, since when the sign is chosen the
first two terms subtract to O.

- When g, = 1, only the bottom arc of the separatrix exists and the minimum is given by
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=ITVh) gy (2.14)

Not surprisingly, this is also the expression we obtain for the separatrix minimum in (2.13) in
the limit of a very relativistic phase velocity.

In Section 2.2.3, we pointed out that the separatrix maximum increases as ay and/or S
increases. This is immediately apparent just from looking at (2.13) with the ‘+’ sign chosen.

We also noted that for given By, the separatrix minimum decreases as ap increases; that for
given ap, the separatrix minimum decreases as f;, increases when 0 < ¥nBon < ag, and increases
as ﬂph increases when }f,hﬂph > ap; and finally that for given ay, the lowest possible separatrix

minimum occurs when %nfn = ao. Its value is
B (2.15)
These statements on the separatrix minimum are proven in Appendix B.
2.3.3 Asymptotic trapping with maximum acceleration gradient

We have already noted that asymptotic trapping can keep a particle from ever slipping out of
the first accelerating half-cycle the particle encounters, and accelerate the particle with a
practically constant acceleration gradient. For a particle of injected momentum s to be

asymptotically trapped, we must have (in addition to By, = 1)
Ay 2 22— (1-8) 2.16)

If ag = ys(1-4)/2, the particle’s momentum is exactly equal to the momentum of the
separatrix minimum (which occurs at = 1/2). The particle will be asymptotically trapped and
accelerated, asymptotically slipping towards ¥ = 37/2 as its energy grows more and more

relativistic. The travelling wave has a node at i = 37/2, however. Close to this asymptote, the
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acceleration gradient is likely to be very small, and the particle may have to propagate in the
field over a substantial amount of physical distance to obtain a certain desired energy gain.

A better strategy, as far as single-particle energy gain is concerned, would be to asymptotically
trap the particle at or close to ¥ = T, where the acceleration gradient is maximum. Note that the
minimum of the trapped érbits always occur at ¥ = /2. Therefore, the smallest ay (which
involves injecting the particle at y = n/2) required to asymptotically trap a particle of injected

momentum yf such that the particle slips asymptotically towards ¥= ¥, is

Ay min = 2 (1 — ﬂ‘s_) . 2.17)
’ 1-siny,

For ¥, = T, we simply have ao min = 7s(1-£,). exactly twice the smallest ao required to trap the
same particle at ¥, = 37/2.

A larger ay is always more desirable because it corresponds to a higher acceleration gradient.
To attain asymptotic trapping at ¥ = ¥, when ag > aomin, We need to start our particle of given

injection momentum y¢f; at the starting phase

Wo=T— arcsin[M +sin(y,, )}, Ay 2 Ay s — SWq < 37“ (2.18)

a,

where, as in (2.12), we define our arcsine function as one that returns a value between —n/2 and
/2.

In practice, the energy gain from asymptotic trapping will be limited by factors like slippage
of the pulse envelope (since true CW operation is unlikely in reality) relative to its carrier and the

depletion of the driving laser, which is not modeled here.
2.4 Maximum energy gain of a single particle

Given a wave of the form of (2.1) with a specified ao and B, and assuming we have complete

freedom to choose the points at which to inject and extract a particle, we can use the phase
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contour diagram to devise a general scheme for maximum acceleration of an electron of initial
velocity fs. Allow y, to denote the injection phase and y. the extraction phase. Our strategy,
which one obtains simply by studying phase contour diagrams like Fig. 2-1, may be divided into
three scenarios: '

1. If Bs < Bsep min, We choose y; = n/2 and y. = 3n/2. In this scenario, the particle can never be
captured, so we inject it at the start of an accelerating half-cycle and extract it as soon as it
has slipped through the entire half-cycle. For Sy, > 1, the particle can only slip backward
relative to the wave so only this scenario is applicable.

2. If Bsepmin < fs < Pon, We achieve maximum acceleration by allowing the particle to ride the
trapped orbit just inside the separatrix, up to an energy that is arbitrarily close to the
maximum of the separatrix. Hence, we choose y, = 1 — ¢’ (we use “=" here to indicate that
we do not want a point on the separatrix, but one on a trapped orbit close to the separatrix),

where

[G(ws)—Lj-—l} —52’-<;us's%. (2.19)

ph

y,'= arcsin{

Ay iy

ws is simply the value of w corresponding to f along the lower arc of the separatrix,
between —/2 and @/2. Once again, G(ys) = (y — yBBpn)s. Using an injection phase of about
v also leads to the same energy gain, but the distance the particle has to travel is longer.
The extraction phase is simply y. = n/2, the energy peak of all trapped orbits.

In the special case fph = 1, the choice of any starting phase within the separatrix will lead
to arbitrarily large energy gain, since the particle is asymptotically trapped and never slips
from the accelerating half-cycle.

3. If B > Bpn, we choose y, = 3n/2 and y. = 7/2. Although it may be possible to trap the
particle, it is invariably possible to obtain higher energy gain by using an untrapped

trajectory.

This strategy is summarized in Fig. 2-3.
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Fig. 2-3: Tllustration of optimal acceleration scheme for a single electron of given initial velocity

B such that (a) fs < fep min, for which magenta squares mark injection and extraction points; (b)
Bsep min < Ps < PBpn, for which red crosses mark injection and extraction points (note that the
crosses are not exactly on the separatrix, but on a trapped orbit arbitrarily close to the separatrix);
and (c) s > Py, for which green circles mark injection and extraction points. Injection points in

the various scenarios are the points through which the corresponding dotted line passes.

By using (2.7), and the injection and extraction phases we have determined for various

scenarios, we find that the momentum of the particle upon extraction is

(18). = [Gﬂph +8y By +G* - l]r,,,f (2.20)

where G = -2fwap + G(y), S =—1 for Scenario 1; G= 2Bonag + 1/ypn, S = +1 for Scenario 2 (so
(2.20) gives the same solution as (2.13) with the “+” sign); and G= 2fpnao + G(yy), S = +1 for
Scenario 3. As before, G(ys) = (y = 70un)s.
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To give an idea of how the maximum energy gain of a single particle, as obtained via the
strategy outlined above, scales with various ay and f,;,, we plot color maps of maximum final
Kinetic energy as a function of ag and Kyp = (ypn — l)mc2 for electrons of various injected kinetic
energies in Fig. 2-4. The range of f,, in this figure is confined to the subluminal regime. Below
each color map of maximum final kinetic energy, we have also plotted a corresponding map
showing which optimization scenario the maximum energy gain at each point corresponds to.
We observe that Scenario 2 (riding a trapped orbit close to the separatrix) corresponds to the
regime (green) containing the most promising final electron energies, and that within Scenario 2
energy gain improves dramatically with more luminal £y, and larger ao. Also, at small values of
ap, we observe that the phase velocity £, most suitable for accelerating a particle injected with a

velocity of f is one slightly above f; (this once again takes place in Scenario 2).

(a) 10 keV

(c) 10 MeV
0

1 0 1 2

go -1
£ he
(d) 10 keV (e) 1 MeV
0 1 2 o0 1 2 q oo a2
log, O(Kph / MeV) log, ()(Kph / MeV) log, ( Kph / MeV)

Fig. 2-4: Color maps of maximum log;o(K. / MeV) as function of ap and Kyn = (ypn — Dmc?, K.
being the kinetic energy of the particle (an electron in this case) upon extraction, for an injected
kinetic energy K, (with £ > 0) of (a) 10 keV, (b) 1 MeV and (c¢) 10 MeV. (d), (e) and (f)
correspond to (a), (b) and (c) respectively, and show the optimization scenario at each point:

white indicates fs < fep min, 2r€€n Peep min < fs < Ppn and red fs > P
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Before going any further, there are two important points to be made about how figures in this
section like Fig. 2-4 should be understood and the realism of the energy gains presented. Firstly,
note that Fig. 2-4(a) predicts electron acceleration from 10 keV to over 10 GeV with a wave of
ap = 1, Kpn = 100 MeV. Although such a result may seem incredible, recall that with (2.2) we
have assumed a CW beam of infinite length and energy. We have also assumed that the electron
may be allowed to travel an arbitrarily long distance in the wave (in other words, we have
assumed an acceleration facility of potentially infinite length, channeling a single-frequency
TMy, traveling wave of infinite energy). In reality, we would not have a CW beam but at best a
narrowband pulse of finite energy and group velocity, and even if our waveguide continues
indefinitely, the pulse is likely to slip from the electron before the electron has arrived at the
separatrix peak in Scenario 2. Pulse-spreading due to dispersion is also an issue we have not
considered at this point. The design of a waveguide strong enough to withstand fields
corresponding to ap = 1 is yet another challenge.

Secondly, we have optimized only for the energy gain of a single particle. In reality we are
interested in accelerating an electron bunch instead of a single electron. In addition to energy
gain, we would also be concerned about properties like final bunch size, bunch emittance and
energy spread of our accelerated bunch. Since the phase spread of a bunch tends to be larger at
the peak of a trapped orbit than at its side (widest part), extracting the bunch at the peak is not
likely to be optimal if a small phase spread is important. It is also not practical to accelerate a
bunch along a trapped orbit too close to the separatrix, since all particles that fall outside the
separatrix will not be trapped. Non-idealities like space charge, radiation reaction and wakefields
should also be accounted for. The final optimization parameters for a realistic implementation
involving multiple interacting particles are thus likely to be different from what was obtained
here.

With these two points in mind, we nevertheless find that Fig. 2-4 gives a very useful overview
of what kind of ay and S, must be achieved for physics to even permit at all a certain electron
energy gain desired, under the most idealized conditions. This idealized analysis is only the first
step, but an important one, towards an engineering solution. In the upcoming chapters, we will
work with electrodynamic models that are less analytically tractable but closer to reality.

Fig. 2-4 is also instructive in showing us the sensitivity of maximum final kinetic energy to

changes in phase velocity when the latter is close to c. A waveguide designer used to thinking of
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phase velocity in terms of S (instead of y,n) may be tempted to make the approximation By =
0.995 = 0.9995 = 1 for a waveguided travelling field, but this is an egregious assumption where
the acceleration of relativistic particles is concerned: B, = 0.995 corresponds to logio(Kpn/MeV)
= log0(4.62) = 0.665, whereas S, = 0.9995 corresponds to logio(Kpw/MeV) = logo(15.7) = 1.20,
and S = 1 corresponds to K, = 0. From Fig. 2-4 one can tell that these values of Ky, have very
different maximum acceleration profiles as a function of ap (in fact Kpn = oo lies beyond the
plotted range). Extreme precision in phase velocity is therefore paramount in an optimal
waveguide design.

Fig. 2-4 may be more directly useful for low ay. In this case, waveguide damage becomes less
of a concern and the electron is likely to slip from the accelerating half-cycle (whereupon we
would want to extract the electron) before the pulse slips from the electron.

We have already noted that for a given Ky, > K, the energy gain profile is significantly better
for values of qy that fall in Scenario 2 (green) than for those that fall in Scenario 1 (white). The

formula for the boundary between the two regimes may be obtained as

aO,bd = [79 - }’sﬂsﬂph - i] . (221)

7ph 2ﬁph ’

with “=” replaced by “>” (and “agpd” replaced by “ap”) if we wish to refer to the regime
corresponding to Scenario 2. Note that as By, approaches 1, aopq approaches a constant value:
,Bph — 1 = agpa — ys(1-5)/2. This expression for agppq is the same as what we calculated in (2.16)

for the minimum a¢ required to asymptotically trap a particle of a given injected momentum

when the phase velocity is luminal.

Fig. 2-5 presents the maximum energy gain for superluminal phase velocities. As noted before,
the optimization regime always corresponds to Scenario 1 in this case. Since £ can never exceed
1, and B > 1, increasing S, (or decreasing ) for a given ay leads to increasing phase velocity

mismatch and hence a smaller absolute maximum energy gain.
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Fig. 2-5: Color maps of maximum log;o(K. / MeV) as function of a, and superluminal S, K.
being the kinetic energy of the particle (an electron in this case) upon extraction, for an injected

kinetic energy (/3 > 0) of (a) 10 keV, (b) 1 MeV and (c) 10 MeV.

Fig. 2-4 and Fig. 2-5 support the conclusion that optimal acceleration of any injected particle is
achieved by using a wave traveling exactly at the vacuum speed of light (Boh = 1) with ag > yy(1-
B)/2. This agrees with our previous observation that an asymptotically trapped particle stands to
gain infinite energy from a CW beam of infinite length and energy.

Fig. 2-6 and Fig. 2-7 present the same kind of information as Fig. 2-4 and Fig. 2-5 respectively
from a different perspective. Instead of plotting final kinetic energy as a function of a, and Bon
for several values of f, we plot fractional kinetic energy gain as a function of a, and B for
several values of A in Fig. 2-6 and Fig. 2-7. These figures lead us to essentially the same
conclusions as before. We have chosen to plot fractional kinetic energy gain instead of final
kinetic energy in this case because f; is no longer constant within each plot. In Fig. 2-7, it is
interesting to note that for given ay and [, the fractional kinetic energy gain tends to decrease
with increasing £, although the decreasing phase mismatch (4, is moving closer to Bon) is in fact

causing the absolute energy gain to increase.
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Fig. 2-6: Color maps of maximum log;((K. — K(0))/ K(0)) as function of ap and K(0) = (ys -
Dmc’ (with f; > 0), K. being the kinetic energy of the particle (an electron in this case) upon
extraction, for various phase velocities that correspond to electrons of kinetic energy Ky, = [1/(1
- [)’p].,z)”2 - l]mc2 (a) 10 keV, (b) 1 MeV and (¢) 10 MeV. (d), (e) and (f) correspond to (a), (b)
and (c) respectively, and show the optimization scenario at each point: white indicates f; < fsep

mins greeﬂ ,Bscp min < ﬁs < ﬂph and I'ed ﬁﬁ > ﬁph.

. (a) B, = 1.001 " () B,,= 1.01 5
4
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Fig. 2-7: Color maps of maximum logo((K. — K(0))/ K(0)) as function of ay and K(0) = (ys -

yme® (with B, > 0) for various superluminal Bon-
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2.5 Summary and future work

We introduced the phase contour diagram and used it to illustrate the three scenarios that can
occur when an electron is subject to a CW z-directed planar electric field traveling in the z-
direction: (a) slippage, wherein the particle will slip continuously through successive
accelerating and decelerating half-cycles, (b) asymptotic trapping, wherein the particle is borne
along with the wave, slipping asymptotically towards a certain phase in an accelerating cycle and
(c) orbital trapping, wherein the particle will be borne along with the wave, oscillating about its
injection phase in the frame of the field. We derived analytical solutions (2.7) and (2.8) for
normalized momentum and normalized velocity respectively as a function of phase. From (2.7)
and (2.8), we may obtain momentum and velocity as a function of time via the chain rule after
solving (2.9) with an appropriate numerical quadrature method.

Asymptotic trapping is an attractive scenario because it can lead to phase-matching over
arbitrarily long distances, so long as the driving laser field is not depleted. In practice, the energy
gain from asymptotic trapping will be limited by factors like slippage of the pulse envelope
(since true CW operation is unlikely in reality) relative to its carrier and dispersive effects
introduced by the guiding structure. Finally, in Section 2.4, we presented an injection and
extraction strategy to maximize energy gain for a single electron of a certain kinetic energy given
ap and B, of the driving wave. A study of the optimized results shows us that, if allowed to
choose phase velocity (which in reality may be controlled by waveguide design or operation
frequency) for a given field amplitude and initial electron energy, a luminal phase velocity is
optimum if field amplitude and initial electron energy are sufficiently high, otherwise final
energy is maximized at some subluminal phase velocity.

Future work would include the study of optimum trade-off between the group velocity and
the z-directed electric field of actual electromagnetic fields to realize conditions as close as
possible to those required for asymptotic trapping. One could consider studying this scheme in

vacuum, in dielectric/metal waveguides or in plasma channels.
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Chapter 3

Linear acceleration by radially-polarized laser

beams

In the previous chapter, we dealt with an electron in a CW planar z-directed electric field. Such an
idealization enabled us to derive analytical and semi-analytical solutions that gave us insight into the
potentials and limitations of laser-driven linear acceleration schemes (for instance, we found in the
asymptotic trapping scenario that it is possible to phase-match particle and field indefinitely if our z-
directed planar electric field travels at the speed of light in vacuum, assuming the field does not deplete
substantially). A CW planar z-directed electric field, however, is not a solution to Maxwell’s equations
and was studied only because it approximates the electric field on the beam axis of a weakly-focused
TMy, mode in vacuum or in a waveguide. In this chapter, we study the electrodynamics on the beam axis
of an actual pulsed TMy; mode in vacuum where the focusing may be tight enough to cause substantial
variations in phase velocity along the beam axis. Our goal is to understand how the electron energy gain
scales as a function of beam focusing, pulse duration, pulse energy and peak power.

The vacuum TMy; mode is often referred to as the “radially-polarized laser beam” in the literature. It
is attractive for linear acceleration because the z-directed electric field peaks on the beam axis, where the
transverse electromagnetic fields vanish. As a result, particles on or near the beam axis are subjected
primarily to an electric field paralle] to the direction in which they are accelerated, and tend to experience

a minimal of transverse wiggling that tends increase radiative losses. Our discussion follows the analyses
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presented in [WK10] and [WK11a]. In those works, we performed our simulations using paraxial
electromagnetic beam solutions. To verify that these paraxial solutions do indeed closely approximate the
exact beam solution on the beam axis in the regime of interest, we will also present the exact solution for
the pulsed radially-polarized beam — derived in Appendix E according to the steps in [Aprl0] — and
compare the two solutions.

In this chapter, all optimizations are carried out in view of maximizing net energy transfer from laser
pulse to electron. We begin by studying the initially stationary electron. There has been some interest
[Sal06, Sal07, FPV10, VPPOS5, KP07] in the scenario of electrons born (for instance, by ionization) in the
path of the laser pulse, and a previous study by Fortin et. al. [FPV10] showed that an electron can reach
the high-intensity cycles of the pulse without having been released by photoionization near the pulse
peak. The study also concluded that the optimal beam waist at petawatt peak powers lies well within the
paraxial wave regime. The latter conclusion, however, is true only for an initially stationary electron
required to start at the laser focus. We show that after including the electron’s initial position in the
optimization space, we in fact achieve maximum acceleration with the most tightly-focused laser.

Next, we study acceleration of electrons moving with non-zero initial velocities. These electrons, the
output of perhaps an RF gun or a preceding acceleration stage, are injected into the laser beam ahead of
the pulse. We show that the net energy gain can be much greater for a pre-accelerated electron than for an
initially stationary one. Our parameter space includes powers as low as 5 TW, and we will see that
substantial acceleration can already be achieved with laser peak powers of a few terawatts. In particular,
we give an example in which a 5 TW pulse, either 7.5 fs or 15 fs in pulse duration, accelerates an electron
from a kinetic energy of 10 MeV to a kinetic energy of about 50 MeV; and another example in which a
two-stage accelerator employing a 10 TW, 10 fs pulse in each stage accelerates an initially stationary
electron to a final kinetic energy of about 36 MeV. These electron energies are already sufficient for
applications like the production of hard x-rays via inverse Compton scattering [GBK'09].

Finally, we consider the linear acceleration of charged particles with a superposition of two radially-
polarized laser beams. While a one-color pulsed paraxial beam can accelerate an initially-stationary
electron up to only 40% of the theoretical energy gain limit, a two-color pulsed paraxial beam can
accelerate the electron by over 90% of the one-color beam’s theoretical gain limit, for a given total energy
and pulse duration. The scheme succeeds by exploiting how the Gouy phase shift varies the interference

pattern of the on-axis electric field with position along the beam axis. It is worth noting that sub-
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wavelength focusing of a single beam can achieve only about 80% of the theoretical gain limit
[MVA*12].

3.1 Exact and paraxial on-axis electric field formulas for the

radially-polarized laser beam

Our original simulations were performed using the vector fields derived from the paraxial
Gaussian beam according to the procedure presented in Appendix C (Appendix D discusses how
to convert beam to pulse). Before launching into a discussion of our results proper, it is important
to ascertain that the on-axis fields predicted by the paraxial solution closely approximate those
predicted by the exact solution, which we derive in Appendix E.

As discussed in Appendix C, the wave equation for the vector wave

;1 0%A
V'A-——-=0, 3.1
¢’ or G-D
reduces to the paraxial wave equation
9 9’ 0A,
—+ . —2ik—%=0 3.2
(sz dy” JAO oz G2
under the paraxial wave approximation [Hau84]
9°A, 0A,,
— A << 2k —, 33
P % (3.3)

where A= A% = A% and 7= ax—kz+y,. (3.2) is simply a two-dimensional Schrodinger

equation (with z in place of f) that has the well-known Gaussian beam solution

Ay, = Ajfe ", (3.4)
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where f =i/(i+2/2,), p=r/w,, z,=kw, /2 and A, is a normalization constant. For (3.4) to
be valid under the paraxial wave approximation it has to satisfy (3.3) at all points in space-time.

The derivatives of A, are

Lo = L1~ 0%,
<

5 w0 .2 : (3.5)
A =L fo- o2 )o- 10%)-2Ja,,
9z 2 )
As aresult, we have
43| _le} rlli- 1p7Jo- 07)-2) 36

ETETOE i R (a7

where e4= 2/(kwy) is the divergence angle of the beam. From (3.5) or (3.6), one can see that (3.4)

k4

which has been a popular choice for modeling laser beams, does not satisfy the paraxial wave

approximation (3.3) for all points in space-time, regardless of the amount of focusing.
Specifically, when z = 0, r = wy, 04,,/dz =0 but azAOZ / dz° #0, and (3.6) becomes a singularity.

Fig. 3-1 shows the values of (3.6) in r-z space for different divergence angles.
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Fig. 3-1: Color maps of the logarithm (base 10) of the ratio (3.6) for various divergence angles.
In each case we have plotted z from -54 to 54 and r from 0.1wy to 1.9w. For better contrast, we
have artificially limited the color axis from -6 to | (i.e. we have color variations only for values
of (3.6) between 10 and 10). Notice that the singularity at z = 0, r = w, does not disappear
regardless of focusing. These plots show that the Gaussian beam grossly violates the paraxial

wave approximation (3.3) at certain points in space, even for a nominally paraxial beam.

As shown in Fig. 3-1, the Gaussian beam violates the paraxial wave approximation (3.3) at
certain off-axis points in space no matter how small we make the divergence angle. Note,
however, that (3.6) is 0 on the beam axis everywhere. This suggests that the Gaussian beam
formulation, in spite of its deficiencies, may provide an accurate prediction of the on-axis fields.
We now proceed to verify this by comparing the paraxial and exact formulas for the on-axis
electric field of the fundamental radially-polarized beam. The paraxial formulas are derived in

detail in Appendices C and D. The exact formulas are derived in detail in Appendix E.
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Fig. 3-2: Plots of z-directed on-axis (r = 0) electric field E, of the fundamental radially polarized
pulsed beam corresponding to the paraxial solution (red dotted line) and exact solution (blue
solid line), for various values of divergence angle. For each divergence angle the pulse is shown
at five different times: (i) r = -10a/c, (ii) t = -a/c, (iii) t = 0, (iv) t = a/c and (v) 1 = 10a/c, with
initial pulse position z; = 0 and peak power P = 10'* W. Note that all other electromagnetic field

components are Zero on axis.

From Fig. 3-2, we see that on the beam axis, E, of the exact case is very well approximated
by the solution obtained from the paraxial beam. In Fig. 3-2(b) and (c), where the beam is
relatively paraxial, differences in the wings of the pulse are likely due to choice of pulse
spectrum (recall that we use a Poisson spectrum in the exact beam case but a sech pulse in the
paraxial beam case) rather than any fundamental discrepancy. Fig. 3-2(a) shows that the paraxial
solution remains surprisingly accurate on axis even when the beam is focused as tightly as wg =
Ao. Most telling of all, the close match between the power scaling results computed using fields
derived from the paraxial beam [WK10] and the results computed using fields derived from the

exact beam [FPV10] assure us that our model is accurate enough for this problem.

50



3.2 Theory of direct acceleration by a pulsed radially-polarized

laser beam

The physical scenario we study is the following: A free electron, initially at rest or moving in
field-free vacuum, is overtaken by the pulse of a radially-polarized laser beam that exchanges
energy with the electron purely via the laser’s on-axis, longitudinal electric field (i.e. via direct
acceleration). The pulse eventually overtakes the electron, leaving the electron once again in
field-free vacuum, with a velocity generally different from what it had before. The free electron
may have been introduced either by ionization of a target in the path of the pulse, as in [KP07],
or by a preceding acceleration stage. To compute the net energy gain of the electron, we need a
description of the laser pulse and equations to model the electron’s motion.

As discussed in detail in Appendices C and D, we may derive the electric field E and

magnetic flux density B for a pulsed radially-polarized laser beam in vacuum under the

paraxial wave approximation:

E(r.z,0)= Re{E(r, z)e"(”‘*“’)sech(%]} ., B(r.zn= (/31 E(r.z,0)- 7, (3.7
0 C
where
E(rnoy=fipe? 8”—(”?[?— 221 (1- fpz)} B(r.2)=¢L B(r.2)- 7. (3.8)
w, kr c

r,@,z are the cylindrical coordinates and 7, ¢A,2 the corresponding unit vectors; jE\/—_l ;
f=illi+(z/z)); p=riwy: E=ar—kz; 7, Eﬂw02//1 is the Rayleigh range; w, is the beam
waist radius; A is the carrier wavelength (i.e. the central wavelength of the pulse); k =27/4;
@ = kc is the angular carrier frequency; 77, = 1207 Q is the vacuum wave impedance; c is the
speed of light in vacuum; z, is the pulse’s initial position; ¥, is the carrier phase constant; &, is

a parameter related to the pulse duration; P is the peak power of the pulse:
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2u,

P=

[ ar2nrRefE(r.0)x B" (r0) - 2} (3.9)

where 4, is the permeability of free space. Note that peak power is defined here as the average
CW power at the peak of the pulse, which differs from the definition used in Appendix C by a
factor of 2 (this difference is just a matter of convenience). By choosing values of &, such that

the time variation of the sech pulse envelope is large compared to the time variation of the

carrier and using Eq. (3), we may compute the pulse energy E as

pulse

. _ - k2 ) .2
Epp=— [ at| dramE(ro,0xBro.n -z =P| dtsechz(ﬂii) _p2 30
My o= 0 - ¢ ()]

0

We have chosen to model our pulse with a sech envelope because this allows Eq. (3.7) to satisfy the

Maxwell equations in the paraxial wave approximation for £, >>1. As shown in {Mac00], which
discussion we rehash in Appendix D, the same cannot be said for other choices of pulse shapes. In
particular, using a Gaussian pulse exp(— (& + ke, ) / foz ), instead of sech((& + kz, )/ &, ), would cause
Eq. (1) to violate the Maxwell equations at large values of (& +kz,.) (i.e. at the tails of the pulse).

However, as will be seen in the next section, we are able to reproduce the results of [FPV10] — which
used a Gaussian pulse — with our model, showing that the former approach does not suffer much in
accuracy in the parameter space of [FPV10]. This is because the electrodynamics for most cases in
[FPVI10] is primarily influenced by fields close to the pulse peak, where both Gaussian and

sech representations are accurate.
Following the convention of [FPV10], we define the pulse duration 7 to be the single-sidedexp(—1)

duration of the pulse:

z‘=%seoh"' (exp(=1)). 3.11)

Eq. (3.7) thus uniquely defines a pulsed radially-polarized laser beam after we specify six

parameters: carrier wavelength 4, carrier phase constant y, beam waist radius w, , initial pulse
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position z;, peak power P and pulse duration 7. The pulse energy E and parameter &, are

pulse
then fixed by equations (3.10) and (3.11) respectively.
The electrodynamics of an electron in an electromagnetic field, ignoring radiative reaction, is

described by the Newton-Lorentz equation of motion

B _dm) __ (5 4 5xB), (3.12)

where r, @, z in the variables of Eq. (3.12) now denote the coordinates of the electron’s position, m

is the rest mass of the electron, e the absolute value of its charge, p its momentum, V its velocity and
y= 1/ J1— B? is the Lorentz factor, with f = ’ [5‘| and B =1v/c . The total energy and kinetic energy of

the electron are given by E, = ymc” and E, = (¥ —1)mc’ respectively.

- Focusing Envelope ~.

Fig. 3-3. Schematic of simulations at initial time. The electron begins in field-free vacuum.

We consider an electron initially (# = 0) on the beam axis (r = 0) of the laser at z = z(0) (Fig. 3-3),
moving in the longitudinal direction with velocity v(0) = v(0)Z. The electron may be initially at rest
(v(0) =0) or moving (v(0) > 0; we do not consider v(0) < 0). In all cases, we are interested in the net

energy the electron extracts from the laser field as the pulse propagates from a position (effectively)
infinitely far behind the electron to a position (effectively) infinitely far in front of the electron. We do not
limit the interaction distance by use of any additional optics. We also confine our attention to forward

scattering cases (i.e. the electron’s final velocity is in the direction of pulse propagation + z ).

Setting r = 0inEq. (1), we have E = E_Z and B =0, where
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E, ={ V2o 81, P :I sin{ax —kz+2tan” (_z_) +¥, ]sech(w) (3.13)

1+(z/z,) V 7 Z, &

Eq. (3.13) may be seen as the product of three parts: the field amplitude, given by the square
bracketed factor, which is a Lorentzian in z; the continuous wave (CW) carrier, given by the sin(-)
factor; and the pulse envelope, given by the sech(-) factor. The sign of E, is determined exclusively by

that of the CW carrier. If the CW carrier is positive, meaning its argument is between 0 and 7 radians,
an electron traveling in the + z direction is in a decelerating cycle and loses energy to the field. If the CW
carrier is negative, meaning its argument is between 7 and 27 radians, an electron traveling in the + z
direction is in an accelerating cycle and gains energy from the field. An on-axis electron with no initial

transverse velocity component is confined to move along the beam axis (so V(f)=v(t)ZVt ,

r(t) = 0 Vt ). Simplifying (3.12), we obtain the equations

d_,B~__eEZ j{z__

P —cf. 3.14
dt Y’me  dt v=ch G149

Eq. (3.14) may be solved numerically for the electron’s speed, and hence its energy, at any
time. To do so, however, we must first specify the laser field (by specifying 4, ¥,, w,, z;,, P
and 7 ) as well as the electron’s initial position z(0) and speed v(0). As mentioned, we always
set z;, such that the pulse effectively begins infinitely far behind the electron. In addition, we fix
A=0.8um throughout the text, leaving us with a total of six dimensions over which to study or
optimize the problem. Although we fix A, our results may be readily scaled to obtain the results

for any A by nature of Eqgs. (3.13) and (3.14). If we let T=a¥, ¢=2z/z, (with ¢, =z,/z,) and

K=kz, = 2(7£w0 /A), and apply Eq. (3.13), Eq. (3.14) may be cast in the form
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%Téz_ ¢ {1/’( 1’8”0P}Sin(T—K'g'+2tan—'(g)+y/0%ech(m

}’3m02 1+g2 4 & J (3.15)

NS
% >

For given values of x and &, Eq. (3.15) is completely independent of central wavelength
A . The results for any A may thus be obtained from the results for 4 =0.8m by an appropriate
scaling of beam waist w, and pulse duration 7 . Note that x determines the ratio w,/A and &,
determines the number of cycles in the pulse envelope, regardless of A. The scaling in ¢ and z
does not affect the maximum energy gain, only the optimal z,.

By substituting Eqs. (3.7) and (3.8) into Eq. (3.12) and applying p =r/w, along with the
previous normalizations, it is straightforward to generalize our conclusion and see that for given
values of x and &,, the electrodynamic equations are independent of A even for the most
general case where the electron is not necessarily on the beam axis. The acceleration of an (on-
axis or otherwise) electron in infinite vacuum by a pulsed radially-polarized laser beam thus
depends on A only through x and &,. An important consequence of this is that for a given peak
power P, a larger pulse energy is required for exactly the same maximum acceleration at a
larger A if focusing (w,/A) remains constant, because the number of carrier cycles in the pulse
envelope must also remain constant, leading to a longer pulse.

The Gouy phase shift term 2 tan™ (z/ z,) in the argument of the CW carrier in Eq. (3.13) prevents
any particle from remaining in a single cycle indefinitely. As a result, the energy that an electron can gain
from a pulsed radially-polarized laser beam has a theoretical limit AE,, that may be computed by
considering an electron that (unrealistically) remains at the pulse peak and in one accelerating cycle from
the focus to infinity (or from - z,, to z,, which gives the same result, just with a different /), as was

done in [FPV10]:

IR

_ " €/z, 81, P sin{2 tan™! —e &n,P P .
AEM‘L"Z[H(Z/ZO)Z p } (2tan"(z/2,)) \/ p- \/[PW][G v] @3.16)
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where P/ [PW] refers to the laser peak power in petawatts. We will find it convenient to normalize

our energy gain results by AE,  afterwards.

lim

We solve Eq. (3.14) numerically via the Adams-Bashforth-Moulton method (odel 13 of Matlab). In
every case, we ensure that the pulse begins so far behind the electron that the latter is initially not affected
by the laser field. By this we mean that any fluctuation in the electron’s energy is at first (for at least a few
tens of picoseconds) below an arbitrarily small value. We also terminate our simulations only after the
electron’s energy has reached a steady state (equivalently, after electron position z has become so large
that the Lorentzian field amplitude of Eq. (3.13) is negligibly small).

As discussed, Eq. (3.7) satisfies the Maxwell equations only for sufficiently large bearn waists and

pulse widths. To ensure the validity of our simulations, the smallest waist and pulse duration we consider
are respectively w, =2umand 7 =7.5fs , after the fashion of Fortin et. al. [FPV10] and based on
findings by Varin et. al. [VPPO5] that corrections to the paraxial radially-polarized laser beam are small or

negligible for beam waists no smaller than wy =2um . For t27.5fs, & >10, which at least

approximately satisfies the requirement that £, >>1.

3.3 Direct acceleration of an initially stationary electron:

Benchmarking and simulation results

In [FPV10], Fortin et. al. studied the case of a pulsed radially-polarized laser beam incident
on an electron that was initially stationary at the laser focus. The authors concluded that, for the
range of laser peak powers and pulse durations studied, the optimal laser focusing is in general
not the tightest. This conclusion, however, is true only for electrons required to start at the laser
focus (i.e.z(0)=0). Given P, 7 and w, in general, z(0) =0 (or even slightly less than 0, as
the authors suggest) is not the optimal initial position. We find after optimizing over ¥,,- w, - z(0)
space that the optimal focusing is in fact the tightest.

In Fig. 3-4, we plot the maximum energy gain and optimal beam waist computed by optimizing over
¥,-w, space for z(0) =0 (as in [FPV10]). In Fig. 3-4(a), we also plot the maximum energy gain
| computed by optimizing over ¥/ - w, - z(0) space for w, 22 pm (giving optimal w, =2 pm). Our
results for z(0) =0 are clearly in good agreement with those in [FPV10] (slight differences may be
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attributed to our use of a different pulse shape). We see that a substantial increase in maximum energy

gain occurs after including the z(0) dimension in the optimization space. In fact, 15 fs and 20 fs pulses

can approximately give us the energy gain that for z(0) = 0 is achievable only with 7.5 fs and 10 fs

pulses respectively.
2400, - . 16
! Pulse Duration
1 —7.51s |
i I 14
2000; —10fs T
= —15fs - | =2
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S R00F B e | 2
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= | m e
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Fig. 3-4 (a) Maximum energy gain and (b) corresponding optimal beam waist vs. power P from 0.1
to 40 PW for various 7 . All solid lines correspond to z(0) = 0. Dashed lines correspond to optimal

z(0) for w, =2 pm (optimal waist). All cases shown correspond to forward scattering of the electron.

To illustrate how z(0) = 0 is not optimal in general, the energy gain (maximized over ,, space) as a
function of z(0) normalized by z, for a 1 PW, 10 fs pulse is plotted for various waists in Fig. 3-5. As
can be seen, the optimal z(0) approaches the focus as w, increases for given P and 7, but in general

may be quite a distance behind the focus.
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Fig. 3-5 Maximum energy gain vs. normalized z(0) for P =1 PW, 7 =10 fs and various w,.

All cases shown correspond to forward scattering of the electron.
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Fig. 3-6 (a) Normalized maximum energy gain and (b) corresponding normalized optimal initial

position vs. P from 5 TW to 40 PW for various w,andz . All cases shown correspond to forward
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scattering of the electron. Cases of very non-relativistic final kinetic energy are not plotted to reduce

clutter.

We would like to evaluate the power scaling characteristics for various 7 and w,, extending our
region of study to include laser peak powers as low as 5 TW. The results of optimization over - z(0)
space are shown in Fig. 3-6. To improve readability, we have normalized the electron’s maximum energy
gain at each P by the gain limit AE,, (Eq. (10)), and the electron’s optimal initial position by the
Rayleigh range z,. Note that the w, =2 pm plots in Fig. 3-6(a) are just normalized versions of the
dashed lines in Fig. 3-4(a). From Fig. 3-6, we observe the following trends:

a) Given 7 and w,, a threshold power P, exists such that negligible energy gain is obtained for

P< P,. P, is approximately independent of 7 and is approximated by the condition used in

[FPV10] to find the threshold w, for given P with z(0) =0:

87, P
ay=—— [Thin (3.17)
meax, \ =«

where a, is simply the normalized field amplitude of E, at the focus. As discussed in [FPV10], Eq.

(3.17) 1s motivated by the observation made in ponderomotive acceleration studies (e.g. [FPV10]) that
a, 21 is required to access the relativistic regime of laser-electron interaction (except that for
ponderomotive acceleration, a,, is computed with the transverse rather than longitudinal field amplitude).
For w, =2,4,6,8, 10, 12 um, Eq. (3.17) gives P, =4.163x 10°, 6.661x 107, 3.372x 10™, 1.066, 2.602,

5.396 PW (4 sig. fig.) respectively, which by Fig. 3-6(a) are estimates accurate to well within an order of
magnitude.

b) Given 7 and w,, energy gain (whether in MeV or normalized by AFE,_ ) increases with

lim
increasing P . That the normalized gain asymptotically approaches a constant value tells us that
at P>> P, , the energy gain in MeV is approximately proportional to VP , a behavior that has
been noted for the z(0) = 0 case studied in [FPV10].

¢) Given w, and P, energy gain increases with increasing 7 up to an optimal 7 and decreases as

7 increases further. As the given P decreases toward P, , this optimal 7 increases, showing that
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longer pulses are favored at lower powers. A close-up of Fig. 3-6(a) with energy gain in MeV is
shown in Fig. 3-7 to illustrate this. The conclusion of [FPV10] that a shorter pulse leads to greater
net acceleration is thus not generally true.

d) Given 7 and P, energy gain decreases with increasing w,, . As far as we can determine in the

paraxial wave approximation, the optimal focusing for direct electron acceleration is the tightest.

e) Given 7 and w,, the optimal initial position becomes more negative with increasing P for the
vast majority of cases, especially where P >> P, , in Fig. 3-6(b). At P = P, , the optimal initial
position is close to the focus and may even be slightly positive. For P >> P, , the optimal initial
position is negative and approximately proportional to ¥/ P, as we have ascertained by curve-
fitting.

f) Given w, and P, the optimal initial position becomes more negative with increasing 7 for the
vast majority of cases, especially where P >> P, , in Fig. 3-6(b).

g) Given 7 and P, the optimal initial position normalized by z, becomes more negative with

decreasing w, .

& 3
3 /

= / Pulse Duration
o —7.51s|
B gL 8 F S e 10fs |
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& 151s |

-20 fs

Laser Peak Power [PW]

Fig. 3-7 Close-up of plot of maximum energy gain vs. P for various w,and7 .

One may intuitively expect z(0) = 0 to be the optimal initial position in general since, after all, the

theoretical gain limit AE, ~was computed in Eq. (3.16) by assuming an electron that enters an

lim

accelerating cycle at the laser focus and staying in that cycle forever. However, an electron that starts at

rest is bound to slip through a succession of accelerating and decelerating cycles before entering what is
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effectively its final accelerating cycle (that is, the final accelerating cycle that has any significant impact
on its energy) with a velocity that is in general quite different from its initial velocity, so the relationship
between z(0) and the electron’s final energy gain is complicated. We also note that although including
the z(0) dimension in the optimization space significantly increases the electron’s energy gain over the
2(0) = O case, the electron still extracts at best less than AE| / 2 of energy from the pulse. In [FPV10],

it is argued that sub-cycle direct acceleration can only take place from z > z,, to oo, so the energy gain

will always be less than AE, /2 for initially stationary electrons. We show in the next section that by

Hm

using a pre-accelerated electron, we can make the electron enter its final accelerating cycle at a position

z < z,, and extract more than AE,_ /2 of energy from the pulse.

3.4 Direct acceleration of a pre-accelerated electron

For convenience we introduce an artificial parameter D that we call the “protracted collision
position” and define as the position where the electron would coincide with the pulse peak if the electron
were to always travel at its initial speed v(0):

O _ e DEz(O)—ﬂ(O)z,»
D-z(0) D-g, 1- B(0)

(3.18)

For the initially stationary electron studied in the previous section, #(0) =0 so D = z(0) as
expected. For values of D far enough from the laser focus such that the electron always experiences a
negligibly small electric field (resulting in little change in the electron’s velocity from its initial value), D
approximates the actual position where electron and pulse peak coincide, hence our name for it. In
general, however, the position where electron and pulse peak coincide may be very different from D .
Although D may not have much physical significance, it is useful as it allows us to control two variables,

z(0) and z,, simultaneously: After specifying D for a particular simulation, we use Eq. (3.18) and our
knowledge of the electric field profile to determine the set of values z(0) and z; closest to the focus but

such that the effect of the electric field on the electron is initially below an arbitrarily small amount (i.e.

the pulse effectively begins infinitely behind the electron, so the electron effectively begins in field-free
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vacuum). Simply setting z; to be an arbitrarily large negative number will of course also produce an

accurate simulation, but the simulation time will be unnecessarily long.

In Figs. 3-8 and 3-9, we plot the maximum energy gain (normalized by AE, ) and the

corresponding optimal D (normalized by z,) vs. P with w, and the electron’s initial kinetic energy

E,(0) as parameters. Fig. 3-8 and Fig. 3-9 correspond to the case of 7=7.5 fs and 7 =15 fs

respectively. In Fig. 3-10, we plot the normalized maximum energy gain vs. E x(0) with P and w, as

parameters for 7 =10 fs. The plots in Figs. 3-8 and 3-9 are obtained by optimizing over ¥,-D space.

From these figures, we observe the following trends:

a)

b)

Given 7 and w,, P, decreases with increasing E,(0). Given 7 and E,(0), P, increases
with increasing w, . P, is approximately independent of 7 , as in the v(0) =0 case.

Given 7, w,, and P, there exists an initial kinetic energy threshold E,,, such that negligible
energy gain is obtained for E, (0)< E,, . Given 7 and w,, E,,, decreases with increasing P .
Given 7 and P, E,, increases with increasing w,. E,,, is approximately independent of 7 .

Although some of these trends are evident from Fig. 3-10, they may all be directly inferred from
(), which tells us that P, is a strictly decreasing function of E x (0) (given 7 and w, within the

parameter space studied). Note also that if P, is a strictly decreasing function of E MR
P=P, ifandonlyif £, (0)=E,, .

Given 7, w, and P, energy gain increases with increasing E «(0) at least up to a certain
E; (0). As can be seen from the w, =2 pm plot in Fig. 3-10(a), the energy gain starts to fall

after a certain £ (0) .
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Fig. 3-8 Normalized maximum energy gain and corresponding normalized optimal D vs. P from 5

TW to 40 PW for various w,and E  (0): (a), (b) non-relativistic E (0); (c), (d) marginally-relativistic

E, (0); and (e), (f) relativistic E, (0). 7 =7.5 fs. All cases shown correspond to forward scattering of

the electron. Cases of very non-relativistic final kinetic energy are not plotted to reduce clutter.

d) Given E;(0), w, and P, energy gain increases with increasing 7 up to an optimal 7 and

decreases as 7 increases further. As the given P (E, (0)) decreases toward P, (E,, ), this

optimal 7 increases, showing that longer pulses are favored at lower powers.
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e) Given E,(0), 7 and P, energy gain decreases with increasing w,. Once again, the optimal

focusing for direct electron acceleration is the tightest as far as we can determine in the paraxial

wave approximation.
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f) Given E, (0), 7 and w,, the energy gain in MeV increases with increasing P . The energy gain

normalized by AE,  also increases with increasing P at non-relativistic £ (0), but this is not
true in general at relativistic £, (0), as is evident from Figs. 3-8(e) and 3-9(e). Fig. 3-10
corroborates our conclusion by showing that the normalized energy gain increases with

increasing P for values of E, (0) up to a few MeV, but ceases to always do so beyond this
range. Hence, although greater energy gain in MeV can always be achieved (for given E (0),
7 and w, ) by increasing P and optimizing parameters, the fraction of the theoretical energy
gain limit extracted may in fact become smaller if E (0) is relativistic.

g) At non-relativistic £, (0), D decreases from its value for the v(0) =0 case with increasing
E . (0) . That this decrease is small accords with physical intuition because relative to the speed
of the pulse (¢ ), an électron with non-relativistic £, (0) is practically stationary so one would
expect the optimal D to be very close to that for the v(0) =0 case. This reasoning, of course, no
longer applies at relativistic £ (0). It is evident from the plots of D in Fig. 3-10 that beyond a
certain £, (0) (around 1 MeV) for each plot, the slope of D with respect to E (0) is no longer
always negative, and D itself may be located up to hundreds of times the Rayleigh range beyond

the laser focus.

Energy Gain [MeV]

% 0 20 40 60 80 100 120 140 160 180
Protracted Collision Position / z0

Fig. 3-11 Maximum energy gain vs. normalized D for 7 =7.5fs,w, =2 pmand E (0) =10 MeV

for various P . All cases shown correspond to forward scattering of the electron.
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E, (0) =10 MeV, and optimal ¥, and D . Inset “close-up 2" zooms into the point at which the electron

enters its effectively final accelerating cycle.

The discontinuities in Figs. 3-8(f) and 3-9(f) are due to the existence of multiple energy gain local

maxima in D for certain combinations of E,(0), 7, P and w, . The cause of the discontinuity around
P =0.15 PW for the w, =2 um case of Fig. 3-8(f) is illustrated in Fig. 3-11, which plots energy gain,
maximized over y, space, as a function of D . Although each local maxima varies continuously as P

increases from 0.14 PW to 0.3 PW, the global maximum jumps at some point from one of the local
maxima to the other, resulting in the discontinuity in Fig. 3-8(f). Similar situations are responsible for the
discontinuities in Fig. 3-9(f).

As we have noted, a pre-accelerated electron can gain more than half the theoretical energy gain limit.
It does so by entering its effectively final accelerating cycle within a Rayleigh range after passing the laser
focus. Fig. 3-12 shows a plot of kinetic energy vs. displacement for one of the cases picked from the

w, =2 pum, E,(0) =10 MeV curve in Fig. 3-8. As we can see, the electron coming in from the left

enters its effectively final accelerating cycle with a kinetic energy of a few tens of keV at a displacement
of about z =0.633 z, < z,, and leaves the interaction region with a final kinetic energy of over 90 MeV.
The energy gain of over 80 MeV is clearly more than half the theoretical gain limit, which in this case
(P =173 TW)is about 129 MeV by Eq. (3.16).

To give an example of how relatively low-power lasers may be used in a direct acceleration scheme,
we see that for either 7 =7.5 fs (Fig. 3-8(e)) or 7 =15 fs (Fig. 3-9(e)), a pulsed radially-polarized laser

beam of w, =2 umand P =5 TW can accelerate an electron from an initial kinetic energy of 10 MeV to
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a final kinetic energy of about 50 MeV. Egs. (3.10) and (3.11) give us pulse energies of about 45 mJ and
90 mJ for the 7.5 fs and 15 fs pulse respectively. This shows that lasers can already be very useful for
electron acceleration at relatively low powers, just that the electrons must be pre-accelerated (preferably
to relativistic speeds) to extract substantial energy from the laser pulse. Although it appears from our
results that a smaller improvement in normalized energy gain is obtained with a pre-accelerated electron
at higher laser powers, this does not discount the possibility of substantial improvements at these higher
powers if we increase E (0) to values beyond the range studied.

As another example, we note from Figs. 3-7 and 3-10 that a two-stage laser accelerator employing a

pulsed radially-polarized laser beam of w, =2 pm, 7 =10 fs and P = 10 TW (giving a pulse energy of

about 120 mJ) in each stage can accelerate an initially stationary electron to a kinetic energy of about 6.3
MeV in the first stage, and thence to a kinetic energy of about 36 MeV in the second stage. Note that the
same pulse may be used in both stages, since the pulse transfers a negligible fraction of its energy to the
electron in the first stage. Clearly, direct acceleration of electrons to substantial energies in infinite
vacuum can in principle be realized without the use of petawatt peak-power laser technology. Lasers with
peak powers of a few terawatts are already capable of accelerating electrons to energies of tens of MeV,
high enough for applications like the production of hard X-rays via inverse Compton scattering
[GBK'09]. In addition, recall that we have limited our studies to w, 2 um. If energy gain continues to

increase with tighter focusing for waist radii below 2 um, it is likely that much more impressive results (at

least in terms of energy gain) may be obtained with lasers focused down to an order of a wavelength.
Because the electron in Fig. 3-12 moves at a relativistic speed for most of its trajectory, one may

mistakenly expect its energy gain to be approximately 0. This is supported by the egregious

approximation that v(#) = ¢ V¢, which enables an analytic computation of energy gain as (allowing « to

be some constant determined by the particle’s location relative to the center of the pulse envelope)

AE,. =" ddeE,)=[ d { ¢ 5 P}sm@tan e/z)+w,)=0  (3.19)

Our exact numerical simulations reveal that this is not the case. Although the electron is relativistic
for most of its trajectory, the few places at which it becomes non-relativistic are sufficient to produce an

asymmetry that prevents the actual integral of force over distance from vanishing.
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This observation also encourages the hypothesis that the highest £, (0) with which an electron may
be substantially accelerated by a pulsed radially-polarized laser beam is on the order of the theoretical

gain limit AE,,_, because AE,, also represents the maximum deceleration of a pre-accelerated electron.

lim °

If E,(0) isrelativistic and E, (0) >> AE,_, the laser field can never at any point decelerate the electron

lim *
to non-relativistic speeds so v(¢) = ¢ V¢ would be true and Eq. (3.19) would hold. This hypothesis may
be extended to any other direct acceleration scheme if a corresponding AE,, expression may be found
for it. The electron’s energy gain for a given laser should thus decrease after some point as

E . (0) continues to increase, and become negligible for E, (0) >> AE . This implies that there exists a

lim *
second set of power and initial kinetic energy threshold values (i.e.: different from the P, and E,

predicted by (3.17)) observable only at values of E, (0) beyond the range studied given our range of P .
This "second threshold” places an upper bound on E (0) given P (and continues to place a lower
bound on P given E,(0)) for non-negligible acceleration. In the next chapter, we see that our
hypothesis is correct and that an analytical formula can be derived to approximate the threshold for net

acceleration of an on-axis electron in infinite vacuum by a radially-polarized beam for any initial electron

velocity.

3.5 Two-color laser-driven direct acceleration of an electron in

infinite vacuum

In this section, we show that a two-color pulsed beam can accelerate an electron by over 90%
of the one-color beam's theoretical gain limit, for a given total energy and pulse duration. The
scheme exploits how the Gouy phase shift will vary the interference pattern of the on-axis
electric field with position along the beam axis. For most cases well above the threshold power
for electron acceleration, maximum acceleration is obtained with an acceleration-favoring
interference of fields only as the electron enters its effectively final accelerating cycle.

The two-color pulsed beam is the sum of two co-propagating pulsed radially-polarized laser
beams, with central angular frequencies @ and 2w, of equal pulse duration, peak power and
Rayleigh range. The electron begins at rest on the beam axis in field-free vacuum (the pulse

begins infinitely far away) and ends moving in field-free vacuum after the pulse has completely

69



overtaken it (the setup is identical to that in the previous sections, with the one-color beam

replaced by a two-color beam). On the beam axis all transverse fields vanish, leaving the
longitudinal electric field E,, which is obtained by summing the E, components of two one-

color beams:

E.= [1+1(/zj0zo e J[Sin((éwa)wg sl vy )y, +u) Sed{i: Zi)

(3.20)

where & = ar —kz ; z, = w,’ /A is the Rayleigh range; k =27/1 = @/c; w, is the waist radius
of the fundamental harmonic beam; ¥, = 2tan”’ (z/ zo) is the Gouy phase shift; 77, = 1207 Q is
the vacuum wave impedance; z; is the pulse’s initial position (effectively —oo); ¢ is the speed
of light in vacuum; &, = arr/ sech ™ (exp(- 1)), where 7 is the pulse duration; y, and y, are

phase constants; P/2 is the peak power of each pulse; z(0) is the initial electron position.
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Fig. 3-13. Plots of h = \/E[sin((f +y, )+ sin(2§ +y, )] for various v, .

Our results should closely approximate those for the more general case of a slightly off-axis,
non-relativistic electron, due to the electron confinement property of the transverse fields [Sal06,
Sal07] and the fact that the laser pulse and phase move at or beyond the speed of light.

Consider the function h=+0.5 [sin(f +y, )+ sin(2§ +y, )] , to which Eq. (3.20) is
proportional except for a translation in £ and ¥, plotted in Fig. 3-13. The phase ¥, in Eq.
(3.20) controls the field pattern produced by interference at each position along the beam axis.
For instance, setting ¥, = £ would cause the field pattern to evolve, due to the Gouy phase shift,
in the order (c)-(d)-(a)-(b)-(c) as the laser pulse propagates from z=—oo to —z,, 0, z, and o
respectively. We also note that of all possible patterns, the one in Fig. 3-13(b) seems to favor
electron acceleration most, since its ratio of most negative to most positive value is largest in
magnitude. The position where the Fig. 3-13(b) wave pattern occurs is given by
2, =z, tan(xz/4+y, /2).

We numerically solve the Newton-Lorentz equations of motion using the Adams-Bashforth-
Moulton method (odel 13 of Matlab). Although we set 4 =0.8 pm here, our results are readily
scalable to any A since the electrodynamic equations are independent of A under the
normalizations T=ax, ¢ =z/z, (with ¢, =z,/z,) and x =kz, =2(mw,/A)’ (as was explicitly
shown for the one-color beam in the previous sections). We sweep over P -7 -w, space and

optimize over ¥, - ¥, - z(0) space for electron energy gain normalized by the one-color

theoretical energy gain limit AE,  given by (4.2.10). As Fig. 3-14(a) shows, the two-color beam
with peak power P/2 in each beam, and therefore the same total power as the one-color beam

(4 =0.8) with peak power P, can accelerate an electron by more than 90% of the one-color

beam’s theoretical gain limit, whereas the one-color beam can manage less than 40% in the

parameter space studied.
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Fig. 3-14. Plots of (a) maximum normalized energy gain (b) corresponding optimal ¥, (for two-

color case) and (c) corresponding optimal normalized z(0) vs. peak power.
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Fig. 3-14(b) shows that well above the threshold power, the optimal ¥, lies between 7/2
and 37[/ 2, i.e. the Fig 3-13(b) wave pattern occurs between z =0 and z =o0, with a tendency to
be around 7z (the Fig. 3-13(b) wave pattern occurs around z = z,). This accords with physical
intuition because a) due to the Gouy phase shift the electron can enter its effectively final
accelerating cycle only after z=0 and b) when determining the best position for the Fig. 3-13(b)
pattern, one must strike a compromise between the Lorentzian decay (due to beam divergence) in
Eq. (3.20) and the fact that the acceleration-favoring Fig. 3-13(b) patterﬁ will be maintained over
a greater distance the further from the focus it occurs, due to the smaller rate of change with
distance of the Gouy phase shift. Fig. 3-14(c) shows that the optimal initial position of the
initially-stationary electron for the two-color beam tends to be slightly more negative than that

for the one-color beam with the same peak power P, pulse duration 7 and waist radius w,.
We have omitted plots of optimal ¥, vs. P because they consist of points erratically

scattered between O and 27 radians, with no discernible pattern as a function of P . This

apparently erratic behavior arises from the fact that the optimal ¥, varies rapidly over a small

interval in P, and this rapidly-varying pattern can be captured only with simulations of a very
high density that are too expensive in terms of simulation time for the method we use here. In

practice, one will have to seek the optimal ¥, manually during an experiment or run a

simulation specially for that case, given all other optimal conditions from our analysis.
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Fig. 3-15. Variation of kinetic energy with electron displacement of an electron hit by a pulse. In

each case, w, =2 um and 7 =10 fs, with all other parameters optimized. Crosses on the solid

curve indicate the positions where the Fig. 3-16 plots are generated.

Applying the same method by which AE,  was formulated for the one-color beam gives us a
theoretical gain limit for the two-color beam: AE,, ,.=2"?AE, (given P). This may lead one

to expect a two-color beam of total power P and a one-color beam of power 2P to be
comparable in electron acceleration capability. However, the former in fact significantly
outperforms the latter for P well above the electron acceleration threshold. As Fig. 3-15 shows,
an electron in a 0.1 PW one-color beam slips through several accelerating and decelerating
cycles, gaining and losing substantial amounts of energy, before finally entering its effectively
final accelerating cycle. When the one-color beam is intensified to 0.2 PW (and optimum
conditions re-computed), the final electron energy increases, but so have the heights of the
intermediate energy peaks, which reduce net acceleration in this case by pushing back the
position where the electron enters its final accelerating cycle. The two-color beam scheme

achieves smaller intermediate peaks by varying the laser's interference pattern to increasingly

74



favor acceleration as the electron moves forward past the focus (Fig. 3-16), adopting the
acceleration-favoring Fig. 3-13(b) pattern only as the electron enters its effectively final
accelerating cycle, instead of maintaining the same peak accelerating field at every position as

the one-color beam does.
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Fig. 3-16. E_ profile of laser pulse at selected positions of the electron's trajectory for the two-
color P =0.1 PW case in Fig. 3-15. Circles at z = z, indicate the electron's position. (a), (b), (¢)

and (d) correspond respectively to the crosses in Fig. 3-15 from left to right.

Note that our scheme is fundamentally different from vacuum beat wave acceleration [Hor88,

ESKO5], which also uses a superposition of co-propagating laser beams, but which accelerates
electrons by the beat wave arising from the —ev X B (ponderomotive force) term in the Lorentz
force equation F =——e(E +V xE’), whereas our scheme accelerates electrons by the —eE term,

using the Gouy phase shift to vary the overall interference pattern with position along the axis.
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3.6 Summary and future work

In this chapter, we studied the direct acceleration of a free electron in infinite vacuum along the axis
of a pulsed radially-polarized laser beam. By introducing appropriate normalizations to the
electrodynamic equations, we have shown that our results for 4 = 0.8 m may be readily scaled to obtain

the results for any 4. An important consequence of this is that for a given peak power, a larger pulse

energy is required for exactly the same maximum acceleration at a larger A if focusing (w, /4 ) remains

constant, because the number of carrier cycles in the pulse envelope must also remain constant, leading to
a longer pulse.

In all cases studied (regardless of power, pulse duration and electron initial speed), the
greatest acceleration is achieved with the most tightly-focused laser. Also, the optimal pulse
duration is a function of power, with shorter pulses favored at higher powers and longer pulses
favored closer to the threshold. In all cases studied, energy gain in MeV increases with
increasing peak power, but the energy gain normalized by the theoretical energy gain limit does
not always do so. Greater acceleration may be achieved with pre-accelerated electrons. The net
energy gained by an initially relativistic electron may even exceed more than half the theoretical
energy gain limit, which is not possible with an initially stationary electron in the parameter
space studied. We have also given some examples of how electron acceleration by tens of MeV
is in principle demonstrable with laser powers as low as a few terawatts.

Finally, we proposed and studied the direct acceleration of an electron in infinite vacuum by
a two-color pulsed radially-polarized laser beam. This scheme exploits the presence of the Gouy
phase shift to accelerate a stationary electron by over 90% of the one-color theoretical energy
gain limit, more than twice of what is possible with a one-color beam of equal total energy and
pulse duration.

Future work includes the study of multi-color acceleration schemes (e.g.: three-color, four-
color) that can possibly lead to energy gains beyond the one-color gain limit. A comprehensive
treatment of the effect on electron bunch properties like energy spread and emittance of single-

color and multi-color linear acceleration schemes in vacuum is also pending.
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Chapter 4

A general threshold for net linear acceleration in

unbounded vacuum

In the previous chapter, we explored the scaling laws associated with the linear acceleration
of charged particles with pulsed radially-polarized beams in unbounded vacuum. Here, we
broach the fundamental question of how net linear acceleration (linear acceleration referring,
once again, to the fact that the force experienced by the particle is linearly proportional to the
electric field) is possible in unbounded vacuum, and derive a general formula that may be
applied to approximate the acceleration threshold of a given laser beam configuration (not just
radially-polarized laser beams).

Proposals to achieve net linear acceleration in vacuum often introduce material boundaries to
limit the region of laser-electron interaction [ESL09, HZT'96, ESK95, SK92, PBS05, PBC05,
SZ91]. The prospect of material damage places limits on the intensity of the laser light that can
be used and hence the peak acceleration gradient. Proposals to accelerate electrons in unbounded
vacuum have sometimes been met with controversy (e.g.: [Haa95, SEK'96, Haa96]) revolving
around the Lawson-Woodward theorem, a theorem that describes conditions under which net
acceleration of a charged particle by an electromagnetic wave is impossible. The objective of this
chapter is two-fold: firstly, to show that the Lawson-Woodward theorem does not preclude the

possibility of net linear acceleration of charged particles (including initially-relativistic particles)
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in unbounded vacuum; secondly, to test our hypothesis that a charged particle in unbounded
vacuum can be substantially linearly accelerated only if the accelerating field is capable of
bringing the particle to a relativistic energy in its initial rest frame during the interaction. We
verify the accuracy of this hypothesis by deriving an approximate formula for the threshold of
net linear acceleration in unbounded vacuum, and showing the close correspondence between

our formula and the results of numerical simulations using the exact equations.

4.1 The Lawson-Woodward theorem

The Lawson-Woodward theorem [ESK95] states that, under certain conditions, the net
energy gain of a relativistic electron interacting with an electromagnetic field in vacuum is zero.
These conditions are:

(1) The laser field is in vacuum with no walls or boundaries present,

(ii) The electron is highly relativistic (v~c) along the acceleration path,

(iii) No static electric or magnetic fields are present,

(iv) The region of interaction is infinite, and

(v) Ponderomotive effects (nonlinear forces) are neglected.

In order to achieve net energy gain, one or more of the above conditions must be violated.
The proof of the Lawson Woodward theorem is as follows [ESK95]:

Suppose an electron of charge q in vacuum travels along the z-axis (x = 0, y = 0) and
interacts linearly with the E, component of a propagating electromagnetic field. Its net energy

gain is then

AU =4[~ dzE, . 4.1

The z-directed electric field component of an electromagnetic wave in vacuum may be

generally formulated as:

E

Z

(Zz)-lj‘dkxjdk)fz (kx,ky)exp[i(kxx +k,y+k z— at)] 42)
= (27)" [k [dk E,(k,.k,Yexpli(k,z - ax)] ’ '
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where k. = \/a)z /¢* =k, —k,’ . From Gauss' law we also have that

pts. S Al = (4.3)

Substituting (4.2) and (4.3) into (4.1) gives

—k, Btk k
iy <0y ")exp[i(k:z—ax)]}. (4.4)

oo q oo
BB =115 o) bt Tk
oI e, = [ el ek

For the proof to proceed, it is necessary to set t = z/c, which is to say, assume that the particle
always travels at approximately the speed of light ¢ (condition (ii) of the Lawson-Woodward

theorem). Doing so, we get

k.-

=~ | T

4] oo B, = ST, dy k. [k,

k k.
ks )exp{i(k: —QJZ}
z c

S(k. —wlc)

4.5)
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k_ k.
= gl fak, )

K el

Next, transform into the polar coordinates (where k|, = /k +k“,2 and ¢= arctan(ky /k.,_))

to get

_EJ.‘ (k\"k_\')

|

q|® dzE_=q[dk k [d¢ Sk.—wlc). (4.6)

Now note that
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Putting (4.7) into (4.6) gives us

k, -Ek,,k,)S(k,)

co -k, Il k
ot -tamn [ 1)
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L

=0<:>[kl S0k, -E:?(kx,ky)-—)Ojl

where we obtain a net energy gain of 0 if the condition in the second line applies, which it should
for most laser beams of practical interest. This concludes the proof of the Lawson-Woodward
theorem.

To appreciate the possibility of linear acceleration in vacuum, it is important to note that the
proof of the Lawson-Woodward theorem is contingent upon the assumption that ¢ = z/c, i.e. that
the particle is very relativistic throughout the interaction with the laser beam. However, we see
from the simulation in Fig. 3-12 that an initially-relativistic particle interacting with the purely-
linear force of a propagating electromagnetic wave in vacuum may be decelerated to non-
relativistic speeds at some point, breaking condition (ii) (even as (i), (iii), (iv) and (v) continue to
hold) and preventing progress from (4.4) to (4.5) in the above proof. Thus, net acceleration by a
propagating electromagnetic wave in unbounded vacuum is permitted by the Lawson-Woodward

theorem.

4.2 A threshold for net linear acceleration by a propagating field

in unbounded vacuum
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What exactly are the laser and particle parameters such that the Lawson-Woodward theorem
would permit net linear acceleration in unbounded vacuum? Based on the fact that the proof of
the Lawson-Woodward theorem is contingent upon the assumption that ¢+ = z/c, one would
hypothesize that a charged particle (regardless of initial energy) in unbounded vacuum can be
substantially accelerated by a force linear in the electric field of a propagating electromagnetic
wave only if the accelerating field is capable of bringing the particle to a relativistic energy in its
initial rest frame during the interaction. By "substantial acceleration" we mean the ratio of final

to initial particle energy ¥, / 7,>>1. Based on this hypothesis, we derive a formula for the

threshold power and compare the formula with the results of exact numerical simulations over a
broad range of parameters for different kinds of pulsed laser beams. The accuracy with which the
formula matches our numerical simulations lends credence to our hypothesis and sheds light on
the physical mechanism that enables net linear acceleration in unbounded vacuum: namely, that
the ability of the accelerating field to bring the particle to a relativistic energy in its initial rest
frame is critical to substantial net linear acceleration.

We will always assume that the pulse starts far enough behind the particle that the particle is
initially in field-free vacuum, and that the particle's final energy is evaluated when the particle is
once again in field-free vacuum (long after interaction with the pulse). In the rest frame of the

on-axis particle (of charge ¢ and mass m ) traveling at its initial (¢ = 0) z-directed velocity v, in

the lab frame, the Lorentz force accelerates the particle as
(7 'B ). 4 g (00,2.1) = A(z,)sin(axt — B(z)), (4.9)
mc

where the last equality makes an assumption about the on-axis form of the electric field
E,(x,y,z,1), the longitudinal component of the electric field in the laboratory frame. v = fic is
the particle velocity and y = 1/ \/I——,Bz , where c is the speed of light in vacuum. Primes indicate
variables in the initial particle's rest frame, so the Lorentz transform gives z =y, (z'+v0t’) and
t= 70(t'+(v0 / cz)z'), ¥, being the initial y. Let a particle be considered relativistic if |}ﬁ| >g,,
where g, is some reasonable value on the order of 1. The mathematical statement of our
hypothesis is
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where M (f(x),x) is the maximum of f over x, M(—)EM(M(-,WO),z(O)). v,€[0,2x) is
the carrier-envelope phase and z(0)e& (—oo,0) the initial particle position. Among the most

commonly-studied fields are the radially-polarized laser beam [ESK95, SK92, WK10, VPP05
Sal07 KP07 WKI11, SHKO08, FPV10], for which E_ (0,0,z,1)=L, sin(y,)sech(& /&) , and the

configuration of crossed Gaussian beams [[ESK95, Haa96, PBS05, SMKO03], for which
E (0,0,z,r) =L X sin(y,)sech(&. /&) . L, = 1/8770P/7t'/(zo(1+ {2)), w =ax—kz+2tan” {+y,,
E=ar—k(z-z,) , Lcssine\/m/(wo(l+22)) , X . =exp(-b*) ,
b =22 tan? 0/le*(1+22)), v, =@ —kzcos@-2Zb* +2tan"' Z +y, , £ =ax—k(zcosb-7,) ;
@ is the angle each beam makes with the axis in the crossed-beams scheme; A is the carrier
wavelength; z, = w,’ //1; k=27/A=w/c; w, is proportional to the beam radius; { = z/z,;
Z={cosO; €=w,/z,; 1, is the vacuum wave impedance; z;, is the pulse’s initial position
(effectively —oo); & controls the pulse duration; P is the total peak pulse power ( P/2 peak

power for each pulse in the crossed-beam scheme). Note that in either case, the field is of the
form assumed in Eq. (4.9). Since we seek the boundary of negligible acceleration, where the
particle energy does not change substantially according to our hypothesis, the particle

approximately remains at its initial speed throughout (v = v, # ¢ Vt), so z(t') = ¥,(%,2(0) + v,t'),

1(t') = ¥, (t+v,7,2(0)/c*). Eq. (4.9) may be solved as

P VB W) = [ d5 A, sin(@s) - Ba(s')
~ | t;gs'A(z(s'),t(s'))sin(a)}'os'-B(z(t'))}’Ovos'+const.) , “.11)

= AG)
oy, [L- B(z(t"))v, /@)

cos(a)yot'—B(z(t' ) yovot'+const.)
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where BEdB/dz and t'(O)z—vO}'oz(())/cz. To arrive at the second line of Eq. (4.11), we
Taylor-expanded B(z) and discarded higher order terms (assuming this is valid). We then
integrated by parts and noted that A(z,r) =a(z)sech(£/&,), the product of the beam and pulse

envelopes, varies slowly compared with the carrier sinusoid to arrive at the third line. We then

insert Eq. (4.11) into Eq. (4.10) to get

=V | e |
M(70]>>]—>M(‘wyl B(z)vo/a)l } >>g,, (4.12)

where the optimizations over ¥, and z(0) allowed us to set the sinusoid and the pulse envelope

respectively in Eq. (4.11) to their maximum value of 1. It is straightforward to verify, by taking
first and second derivatives, that M 's first argument in Eq. (4.12) is maximized at z=0
(ignoring singularities) for both the radially-polarized laser beam and the crossed-beams cases.

For the radially-polarized laser beam, Eq. (4.12) becomes

M—(ZLJ»I—)P» 72(1--¢ )f(g”mc ] z (4.13)
) q€

Setting B, =0 in Eq. (4.13) gives the threshold power for an initially stationary electron

obtained by a different procedure in [WK10]. For the crossed-beams configuration, we have

2
Vs ) gbmc2 ¥4
1- P> 6\1— e 4.14
(%j» s P> 71— fycosel e)f(qgsmgj : @.14)

Eqgs. (4.13) and (4.14) (and (4.12), of which they are special cases) are useful analytical
approximations of Eq. (4.10), but only when the assumptions we have made in obtaining them

are valid. For instance, when y, >>1 in the case of Eq. (4.13), or ¥, >>1 and cos@ =1 in the
case of Eq. (4.14), the width of a(z(#')) in t' may be comparable to the period of the sinusoidal

carrier in ¢', contrary to our assumption in Eq. (4.11) that A varies slowly with respect to the
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sinusoidal carrier in the particle's frame. In such cases, one would expect Eq. (4.12) to be a
relatively poor estimate of Eq. (4.10). To compare our theory with the results of exact numerical
simulations, we solve Eq. (4.9) and dz/dt=v using a fourth-order Runge-Kutta algorithm,
optimizing for energy gain over ¥, - z(0) space in various two-dimensional parameter sweeps.
These are plotted in Figs. 1 and 2, where the corresponding acceleration threshold (setting
g, =1) hypothesized in Eq. (4.10) as well as the analytical approximations obtained from Egq.
(4.12) are also displayed. In all plots, Eq. (4.10) approximates the threshold of substantial
acceleration with high accuracy, and Eq. (4.12) is a fair approximation of Eq. (4.10) most of the
time.

Fig. 4-1 shows several parameter sweeps for electron acceleration by a pulsed radially-
polarized beam. For many plots, we have chosen &; =13.37 because it corresponds to a FWHM
pulse duration of 10 fs for 4 =0.8um. Fig. 4-2 shows parameter sweeps for the crossed-beams
configuration. We note from Figs. 1(a)-(b) and 2(a)-(b) that the threshold power does not
decrease indefinitely with increasing K(0), but scales as ¥; when £, — 1 (one intuitively
expects this behavior from the fact that the theoretical energy gain limit scales as P> [WKI10,
FPV10]). This implies that, unlike conventional accelerators, effectively-unbounded linear

particle accelerators cannot be cascaded indefinitely for greater gain: the energy of an output

particle is ultimately limited by the peak power of the strongest laser in the cascade.
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Fig. 4-1: Color maps of log,, (¥, / %) (¥ / ¥, being ratio of final to initial particle energy) for

linear electron acceleration by a pulsed radially-polarized laser beam as a function of various

parameters: initial kinetic energy K(0) and peak pulse power P for normalized pulse duration
&, =13.37 and (a) normalized beam radius w,/A=10, (b) w,/A=2.5; w,/A and P for
£, =13.37 and (c) K(0)=0.1MeV, (d) K(0)=10MeV ; &, and P for w,/A=6.25 and (e)
K(0)=0.1MeV , (f) K(0)=10MeV . Solid black lines demarcate the acceleration threshold

predicted by our hypothesis. Dotted black lines correspond to the analytical approximation of

this boundary.
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Fig. 4-2: Color maps of log,,(7,/%,) (¥, /¥, being ratio of final to initial particle energy) for

linear electron acceleration by the crossed-beams configuration as a function of various

parameters: initial kinetic energy K(0) and total peak pulse power P for normalized pulse
duration &, =13.37, (a) normalized beam radii w,/A=15 and crossing angle 6=45", (b)
wy/A=3.75 and =45"; w,/A and P for & =13.37, (c) K(0)=10MeV and 6=251/nw,,
(d) K(0)=10MeVand #=60"; 6 and P for & =13.37, (e) w,/A=6.25 and K(0)=0.1MeV,
(H wo//1=6.25 and K(0)=10MeV . Solid black lines demarcate the acceleration threshold

predicted by our hypothesis. Dotted black lines correspond to the analytical approximation of

this boundary.
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4.3 Summary and future work

We present a full derivation of the Lawson-Woodward theorem, a theorem which forbids
electron acceleration in vacuum under a certain set of conditions. We point out that one of these
conditions is broken when a particle is not always relativistic throughout its trajectory in
unbounded vacuum. This permits an initially relativistic particle, interacting with the linear
forces of a focused laser beam, to gain (or lose) net energy even in unbounded vacuum.

Our simulations support our hypothesis that substantial net linear acceleration is contingent
on the accelerating field's ability to bring the particle to a relativistic energy in its initial rest
frame during the interaction, at least for the types of beams and range of parameters considered
in this chapter. In the process, we have derived a general formula for the acceleration threshold,
which is useful as a practical guide to the laser intensities that linear acceleration in unbounded
vacuum requires. The fact that a relativistic particle can be further accelerated by linear
acceleration in unbounded vacuum is important because this enables the injection of a relativistic
particle beam, which is more resistant to space-charge effects than a non-relativistic beam is.
Although we have illustrated our theory with electron acceleration by a radially-polarized laser
beam and the crossed-beams configuration, our theory may be readily extended to any other
unbounded linear acceleration scheme that can be described by an equation of the general form
in Eq. (4.9).

Future work includes the derivation of an analytical approximation to the energy gained by a

relativistic electron interacting with the linear forces of an electromagnetic pulse.
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Chapter 5

Electron acceleration and bunch compression by

coherent terahertz pulses in waveguides

Following our work on the electrodynamics of single particles in laser fields at optical
frequencies, preliminary simulations have shown that radially-polarized pulsed laser beams
focused to a spot size on the order of a few wavelengths are capable of accelerating only
something on the order of 10 fC of electrons, which is useful only for niche applications where
few coherent x-rays are needed. Research into the use of optical photonic crystals for electron
acceleration -- where the intensity of the unbounded vacuum schemes we have been studying is
traded off for the longer interaction length provided by a guiding structure -- have also predicted
accelerated electron bunches of similar sizes (see [CCE'10] and references therein). To
accelerate electron bunches on the order of 1 pC or greater, it appears that a shift to longer
wavelengths is necessary. The terahertz spectrum, which lies between the optical spectrum and
the RF spectrum of conventional accelerators, suggests itself naturally.

In this chapter, we demonstrate the capabilities of waveguides optimized for acceleration
and/or compression of relativistic electron bunches by coherent THz pulses. The relativistic few-
femtosecond pico-Coulomb electron bunch achieved in the bunch compression scheme has
applications in single-shot few-femtosecond electron diffraction [SM11]. We choose to study

dielectric-loaded cylindrical metallic waveguides for their ease of manufacturing and theoretical
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evaluation. The THz frequency range is chosen as the operation range because it appears to strike
a compromise between the large wavelength and low acceleration gradient (due to breakdown
limitations) of RF radiation and the small wavelength but high acceleration gradient of optical
radiation. Note that a higher acceleration gradient is more favorable for bunch compression and
acceleration, but space-charge effects make it difficult to confine a bunch of substantial charge
well within a half-cycle if the wavelength is too small. The absence of plasma in a vacuum-core
waveguide scheme precludes problems associated with the inherent instability of laser-plasma
interactions. Although using a guiding structure leads to intensity limitations, it also increases
acceleration efficiency due to a smaller driving energy required and a larger interaction distance.

The high thermal conductivity and breakdown properties of chemical-vapor-deposited
diamond at THz frequencies are well-recognized, and has led to its use in waveguides for
wakefield acceleration [AJK*12] and other applications involving intense terahertz radiation
[YTU"01]. For this reason, we use diamond for the dielectric throughout this study and assume a
relative dielectric constant of & = 5.5 [Kub09]. We employ the fundamental transverse-magnetic
waveguide mode (TMy; mode) because every field component in this mode vanishes on axis
except for the z-directed electric field, so an electron bunch close to the axis will be accelerated
mainly in the forward direction.

Fig. 5-1 illustrates an example of concurrent compression and acceleration of an electron
bunch in our scheme. We present this example before any technical discussion to give some
preliminary intuition of the electrodynamics that ensues when a 1 MeV electron bunch (obtained,
for instance, from an RF gun) is injected into a coherent THz pulse propagating in a dielectric-

loaded cylindrical metal waveguide.
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Fig. 5-1. Illustration of electron bunch acceleration and compression by a TMy; coherent THz
pulse in a dielectric-loaded (diamond) cylindrical metal waveguide: The 8-cycle pulse is centered
at 0.6 THz, with group velocity 0.399c and phase velocity c. The 1.6 pC-bunch has an initial
mean kinetic energy of 1 MeV. Steps of the bunch evolution include: (a) arriving at the rear of
the pulse, (b) slipping through an accelerating and compressing quarter-cycle, (c) maximum
longitudinal compression and (d) transverse and longitudinal expansion as the electron bunch
emerges from the head of the pulse. Each black dot indicates a macro-particle, with 1000 macro-
particles used in the simulation. The color maps in (a)-(d) show the value of E, in the y = 0 plane.

(e)-(h) is identical to (a)-(d) respectively, except that the color maps show E, instead of E,.

Note that the work pursued here differs from the study presented in [YRO05], which discusses
the design of a uniformly-accelerating 100 MeV/m coherent THz pulse-driven waveguide
accelerator. Here, we study the acceleration as well as bunch compression capabilities of a
coherent THz pulse of finite duration. Moreover, the presented simulation results for coherent
THz pulse-driven acceleration and compression cannot be taken for granted or inferred by
scaling the results from studies at optical or RF frequencies, because of the non-negligible
impact of space-charge.

In Sec. 5.1 and 5.2, we furnish a technical discussion of the equations upon which our model

rests. In Sec. 5.3, we demonstrate the acceleration of a 1.6 pC electron bunch from a kinetic
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energy of 1 MeV to about 10 MeV over an interaction distance of about 20mm, using a 20mJ
pulse centered at 0.6 THz in a dielectric-loaded metallic waveguide. The implications of using an
arbitrarily distant injection point, as well as the prospects of dielectric breakdown and thermal
damage for our optimized design are also analyzed. In Sec. 5.4, we investigate the acceleration
of 16 pC and 160 pC 1 MeV electron bunches. In Sec. 5.5, we optimize the dielectric-loaded
metal waveguide design for simultaneous acceleration and bunch compression, achieving a 50
times (100 fs 1.6 pC electron bunch compressed to 2 fs over an interaction distance of about 18
mm) and 62 times (100 fs to 1.61 fs over an interaction distance of 42 cm) compression for 1

MeV and 10 MeV electron bunches, respectively.

5.1 Relativistic electrodynamics in a waveguide and simulation

algorithms

This section introduces the equations governing the behavior of an electron bunch in the
vacuum-filled core of a waveguide, and discusses our approach in modeling this behavior. The
electron bunch is made up of N interacting electrons that may be modeled classically as N point

charges propagating according to Newton’s second law:

dp; (1)

N — — —
. FX)+ Y FP(O+FY () +F" (1), with i=1,...,N, (5.1)
; ,

J=l
J#i

where p,(t) =y, (t)mv,(z) is the momentum of electron i at time 7, with m, v, , and
Vv, = 1/ \1— B’ being its rest mass, velocity and Lorentz factor, respectively. B E’B,.I , B=v/c

and c is the speed of light in vacuum.

According to (5.1), each electron i is subject to four kinds of forces: the force 17",.d exerted by

the driving electromagnetic field, the sum of forces 1—5,",p exerted directly by other electrons j, the
force wa exerted by wakefields that result from electromagnetic fields of other electrons

reflecting off the waveguide walls, and finally the radiation reaction force I_firr that the electron
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experiences as a result of its own radiation. In this study, we neglect F;Wf because the relatively

short propagation distances and bunch lengths make the effect of wakefields negligible. For
acceleration studies involving long propagation distances, or multiple bunches of substantial
charge, wakefields should be taken into consideration by implementing formulas derived in
previous studies [KHY"10]. We also neglect the radiation reaction force since the employed
scheme accelerates the electrons primarily via the longitudinal component of the electric field,
with minimal transverse wiggling. Consequently, radiation losses are negligible. Electrodynamic
studies in which the radiation reaction force plays a significant role have commonly employed
the Landau-Lifshitz formula [LLL87] for the force.

The force F‘i" exerted by the driving field on electron i is given by the Lorentz force equation:
F ()= q[E, (0. 7.(1) + 5,00 x B, (1. E (1) . (5.2)

where ¢ is the electron’s éharge and 7, its position. Ed (t,7) and Ed (t,r) are respectively the
electric field and magnetic flux density of the driving field. Similarly, we write the force ﬁf’f’

that electron j exerts on electron i as
Fone (0 = qlE (. F 1) +5,(0% B, (1, 7:(1))] | (5.3)

where E ;(,7) and B ;(£,7) are respectively the electric field and magnetic flux density due to

electron j. These fields are derived by solving Maxwell’s equations for a moving point charge in

vacuum via the Liénerd-Wiechert potentials and the resulting electromagnetic fields are [Jac75]

B 4 1 wp(F) e o (o ()
E.(1,F)= p— 77,-3,,*,.(;:)R,-,r, (?){ ;Z(Z)R,-,,; (?)+ C[ti’a(r)><(u,.,,~i(r)><———C H}

B.(.r)=1(
C

R 5.4)
(FIXE,(t,7))

05
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where ¢, is the permittivity of free space, \;),. the acceleration of particle i, R;, (F)= }? ";x(t» ,
U ;(r)= zA”~ (F)—v,(%)/c and n;(r)= dt/dr =1 —i:.’; (r)- \7,.(?,.)/0 . £, =1£(t,7) is the retarded time
along particle i’s trajectory corresponding to time ¢ and observation point 7 . Given f and 7, the

retarded time 7, solves the implicit equation

(5.5)

If 17",." is the only non-zero term on the right-hand side of (5.1), the equation is simply an

ordinary differential equation. With inter-particle interaction described by (5.3) and (5.4), the
right-hand side of (5.1) becomes a function of 7 as well as ¢, and the equation is no longer an

ordinary differential equation. Note that (5.4) considers both the velocity field (near-field) and
the radiation field (far-field), which are given by the first and second term respectively. If the
effect of the radiation field is insignificant and we assume that each particle always travels at its
current velocity during each time step, (5.4) can be simplified to a function of only ¢, making (5.1)
an ordinary differential equation and reducing the computation of inter-particle forces
considerably. The formulas that should replace (5.4) are then the space-charge formulas obtained
by Lorentz-boosting the Coulomb field of each electron from the electron’s rest frame to the lab
frame. These formulas are used in particle tracer programs like the General Particle Tracer (GPT)
[GPT]. A more detailed discussion of (5.4), (5.5) and the GPT space-charge formulation is given
in Appendix F.

We chose not to use externally-provided software packages in part to ascertain, by
implementing (5.4), the significance of non-uniform motion and electron radiation in inter-
particle interaction. It turns out that for the regime investigated in this chapter, the use of the
exact formulas in (5.4) affects overall acceleration and bunch compression results negligibly, and
for computational efficiency one may simply revert to the Lorentz-boosted Coulomb fields in
modeling inter-particle interaction.

We solve (5.1) using a fifth-order Runge-Kutta algorithm with adaptive step-size [PTV*92]. If
the exact inter-particle fields (5.4) are used, we adapt the Runge-Kutta algorithm to the problem

by maintaining a history of 7 and p,, i=1,...,N, in a ring buffer. At each time ¢, cubic spline
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interpolation is applied to compute the retarded time (5.5) needed in (5.4). Gaussian-distributions
of electrons in 6-dimensional phase space are generated by applying the Box-Muller
transformation to the normalized output of the rand() function in C, and computations of
variance and covariance (required for emittance calculations) are performed using the corrected
two-pass algorithm [CGL83]. Multi-core processing capabilities are implemented using OpenMP.

In this study, we are interested in simulating bunches on the order of pCs and tens of pCs,
implying that we deal with 10" — 10® electrons. To speed up the computational process, each
particle i = 1,...,N is treated as a macro-particle — with the charge and mass of a large number of
electrons — instead of a single electron. We can verify that this approach is a good approximation
if the solution converges as the number of macro-particles increases while the total number of

electrons is kept constant. We have verified this for all results presented in this chapter.

5.2 The pulsed TM; mode in a dielectric-loaded metallic

waveguide

For a general multilayer cylindrical waveguide, we obtain continuous-wave (CW) solutions by

solving the Helmholtz equation in cylindrical coordinates:

Ccw 2 .
B+ L2020 e D e
z h h

where k = alc = 2n/A, o being angular frequency, ¢ the speed of light in vacuum and A the
vacuum wavelength. E V= w(ryexp(i(ax - k7 + I@)) and H,"V = wh(ryexp(i(ax - kz + I@)) are
the complex CW longitudinal electric and magnetic fields respectively, k is the propagation
constant, r the radial coordinate, ¢ the azimuthal coordinate, z the direction of propagation along
the waveguide, and / a non-negative integer that determines the order of azimuthal variation.
According to (5.6), a general solution for ¥, in layer i of an n-layer cylindrical waveguide (the

core counts as layer 1) is

v.,(N=A,1,(hr+B. Y, (h1), r_ <r<r, i=1,...n, (5.7

!
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where ro =0, r, =00, and r; for 0 < i < n is the radial position of the boundary between layers i
and i+1. J; and Y, are Bessel functions of the first and second kind respectively, A..; and B, are
constant complex coefficients within each layer and h; = (a;,-(/l),ur;i(ﬂ)kz - 5", &.; and 4. being
the dispersive relative permittivity and permeability respectively of the dielectric in layer i. The
general solution for ¥4 is identical in form to (5.7) except that “e” should be replaced by “h” in
all subscripts. In the core, it is usually expedient to express (5.7) using the modified Bessel
function of the first kind I;, whereas in the final layer (which extends to infinity), it is usually
expedient to express (5.7) using either the modified Bessel function of the second kind K; for
confined modes or the Hankel function of the second kind H* for leaky modes. These functions
are all exactly represented by (5.7) if we allow the coefficients and arguments of J; and K| to take
on complex values.

The transverse electromagnetic fields are obtained from the expressions for E, and H, via
Ampere’s law and Faraday’s law. By matching boundary conditions among adjacent dielectric
layers (continuity of E,, H,, Ey, Hy), as mathematically described in [YYM78] for the Bragg fiber,
we obtain a characteristic matrix which has a non-trivial nullspace (zero determinant) if and only
if a solution to (5.6) exists. Given /, along with the dimensions and dielectric properties of the
waveguide layers, we determine numerically the set of values {k, x} for which the characteristic
matrix has a zero determinant. This set of values {k, x} constitute the dispersion curves of the
waveguide for a mode of azimuthal order /, and the 4n coefficients Ac,;, Be.i, An; and By, i=1,...,n,
are the components of a 4n-long vector in the corresponding nullspace. The real-valued z-

directed electric field E,; of a pulse in any layer i is constructed by an inverse Fourier transform:

E, (ltrz,¢)= Re{f F(w)Eﬁf"(l,w,t,r,z,gb)da)} L, Sr<r,i=l.,n, (5.8)

H

where F(@)is the complex envelope in the frequency domain. The same inverse Fourier
transform is also applied to the other field components to obtain their real-valued puised versions.

The structure we consider in this chapter is a vacuum core with a single layer of dielectric of
relative permittivity & = 5.5 (a candidate for such a dielectric is diamond [Kub09]) with an

external copper coating. The spatial mode of interest is the TMy; mode (i.e. / = 0 and radial
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variation is of the lowest order), for which only the E,, E; and H, field components exist. The E,
field peaks on axis whereas the transverse fields vanish, so an electron bunch concentrated at the
waveguide axis will experience forces mainly along the direction of propagation. This facilitates
longitudinal compression and acceleration of the bunch without significant transversal wiggling,
which is undesirable since it tends to increase radiative losses.

To excite the TMO1 mode of the cylindrical waveguide, it would be necessary to apply a
radially-polarized (preferably TMO1) beam to the waveguide. Studies on coupling linearly-
polarized THz pulses into cylindrical metal waveguides show that the dominant modes excited
are the TE11, TE12 and TM11 modes [GIM'00], so a linearly-polarized incoming beam is
unlikely to serve our purpose. Although THz pulses generated by optical rectification are
typically linearly-polarized, the direct generation of radially-polarized THz pulses has been
demonstrated [CDL*'07, WZP*09]. Alternatively, a scheme to convert linearly-polarized THz
pulses into radially-polarized pulses may be adopted [GBA*08].

Equation (5.8) provides a rigorous way to compute the electromagnetic field at any point in
space and time required for an electrodynamic simulation. However, performing a summation
over a large number of frequency components at every time step for every macro-particle is
computationally expensive. To obtain an analytical approximation for more efficient numerical

simulation, notice that in the vacuum-filled core, the CW TMy; mode is of the form:

ESY = A I (gr)e ™™

K A ap—
EY = A, 21, (gr)e@™ (5.9)
1
k
Hﬂv =—E",
NeX

where g; = (K — &)k is the radial wavevector and 1 is the vacuum impedance. We
need to make three more assumptions in the remainder of the formulation: Firstly, variations in
propagation constant x across the spectrum are small enough that their effects on magnitude can
be ignored. Secondly, variations in x are negligible above the second order. Thirdly, the
imaginary part of x() is negligible beyond its 0" order term, and the quadrature term produced

by this imaginary part in E, does not contribute significantly to the field. Hence, Taylor-
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expanding k(@) about central angular frequency @ we have k(@ + Aw) =Ky — 0 +
KIA@+ Kka(A a))2f2, where «; denotes the real part of the i derivative of k(@) with respect to @ at
@w= a. 0. > 0 to be physically valid and represents field attenuation per unit distance.

To obtain the approximate analytical field solution, the rightmost expressions of (5.9) should
be inserted into (5.8). Assuming a transform-limited Gaussian pulse at z = 0, we have E,(z =0, 1)
~ exp(-(f/T[))2/2)€Xp(iCl,bt), where @y = koc 1s the central frequency and Ty is the half-width at 1/e
intensity, related to the full-width-at-half-maximum (FWHM) intensity Trwum as Trwam =
2(In2)"*T; = 1.665 5. This is related to the spectral FWHM intensity width A@kwinm as A@rwim

= 4In2/Tywum. Finally, we have

ar—rna) (Aar, P —i[’r‘Am%(AwJJJ: N
Ez:l (ra 2) = Re Iﬂ(ql.{]r)el hi—Kpz j Aﬂc 2 e 2 el{,(ddAa)

_ G=mle=z)P (5.10)
E [1,(q,0r) . 2n,1[|+(x::17;,3f}

bz ]

-alz-z,)

€

where Ay is an arbitrary complex constant which role is replaced in the second line of (5.10) by
IE;ol, which represents the amplitude of the longitudinal field at t = 0 and z = z; = z,, with z; being
the initial position of the pulse peak. g; o is g; evaluated at a. z; is the position of the start of the
waveguide, where pulse attenuation begins, and before which (5.10) does not apply. Note that
setting z; # 0 implies that some special pulse, not transform-limited, is being coupled into the

waveguide. We set z, = 0 for all simulations in this chapter. The carrier phase yr is given by

1—x,(z-2 )V x,z/T,’ 5
;y1.:a)”r—xuz+( (e=z )] ko2l Ty —atan[%}-%. (5.11)
(

where ¥ is a real phase constant. The corresponding E,, E; and H, fields are approximated as

| koE..(t.r,2
Ky, 1(do7) El;,(r,z)tan(y/T), H[p._](t,r,zjz——ﬁ—-n ra ).

E ;i(t,r,:{) =—
' qi0 Lo(q0r) KoNo

(5.12)
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where ko = ap/c. Essentially, (5.10) and (5.12) furnish an approximate analytical description of a
TMo, pulse moving with an approximate phase velocity and group velocity of vy, = ab/xo and v,
= 1/k; respectively in the vacuum core of a cylindrical waveguide. If z; = 0, the pulse at the start
of the waveguide (z = z; = 0) is a transform-limited pulse with a peak longitudinal electrical
amplitude of |E,l. The primary reason for introducing z; in our formulas is to control when the
pulse arrives at the start of the waveguide without having to compromise the intuitive convention
of having t = 0 as the initial time (when the simulation begins and the initial electron bunch starts

evolving according to (5.1)).
3.3 Acceleration of 1.6 pC electron bunches

3.3.1 Optimization procedure and acceleration results

In this section, we optimize the dielectric-loaded metal waveguide for electron bunch
acceleration and perform a rudimentary thermal damage and dielectric breakdown analysis to
verify the realism of the scheme. We numerically demonstrate the acceleration of a 1.6 pC
electron bunch from a kinetic energy of 1 MeV to one of 10 MeV, using a 20mJ 10-cycle pulse
centered at 0.6 THz. Note that for a 10-cycle pulse, Adxwam/@ = 4n2/(@Trwnnm) =
4In2/(2110) = 4.41%. As will be seen in the results, some longitudinal compression is also
inadvertently achieved in the process.

Optimizing the dielectric-loaded metallic waveguide for bunch acceleration involves adjusting
a large number of parameters, including operating frequency, choice of waveguide mode,
waveguide dimensions, laser pulse energy and pulse duration, the type of dielectric, the type of
external conductor and initial electron bunch properties. To make this optimization tractable, we
fix all parameters in advance based on the available technology except for three degrees of
freedom: i) the carrier-envelope phase yg, Vii) the initial position of the pulse z; (with initial
position of electron fixed at z = 0), and iii) the radius of the vacuum core ry. In particular, we fix
the phase velocity at vy, = ¢ and the center frequency at fy = 0.6 THz, which limits the dielectric

thickness d to specific values depending on r;. However, because acceleration results can be very
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sensitive to small variations in the value of vy, we take the liberty of treating vy, as an
optimization parameter (but ensuring that vy, = ¢) after using vy, = ¢ to determine properties of
the TMy; waveguide mode. Therefore, four degrees of freedom are ultimately considered. In
practice, after the waveguide has been fabricated according to the optimal specifications, the
operating frequency should be perturbed to vary the phase velocity until maximum electron
acceleration is achieved. As long as the perturbation is small, the waveguide properties should be
very close to those determined for vp, = ¢ and fy = 0.6 THz. The electron acceleration process is
much more sensitive to small variations in vp, than to small variations in any other parameter
caused by perturbing the operating frequency alone.

Fig. 5-2(a) shows a color map of the operation frequency as a function of r; and d. As noted
before, we define the operation frequency as the frequency of the TMg; mode in the waveguide
corresponding to vy, = c. Fig. 5-2(b) shows a color map of the final electron kinetic energy of a
single electron of initial kinetic energy 1 MeV, optimized over g, z; and vpn (ensuring that vy,
=~ c), as a function of ry and d. We see that greater electron acceleration is generally achieved at
higher operation frequencies. However, choosing a very small wavelength makes it challenging
to accelerate a large number of electrons due to smaller waveguide dimensions. As pointed out
previously, the emergence of promising techniques to generate radiation in the vicinity of 0.6
THz [FPA*10] encourages us to make that choice of frequency, which has been marked out by
the black contour line in Fig. 5-2(a). The same line is drawn in Fig. 5-2(b), and the optimized
final kinetic energy, read along that line, is reproduced in Fig. 5-2(c), where an optimal choice of
d = 32 pum, corresponding to a vacuum core radius of r; = 380um, is evident. In Fig. 5-2(d), we
plot the dispersion curves corresponding to the waveguide with d = 32 pm, ry = 380 pum, to show
that at the operating frequency, the TMy;, dispersion curve of our waveguide design is
sufficiently linear within the 4.41% intensity FWHM spectral bandwidth. Hence, the

electromagnetic fields are well approximated using (5.10) and (5.12).
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Fig. 5-2: Determination of the optimal waveguide for electron acceleration: (a) Color map of
operation frequency as a function of core radius r; and dielectric thickness d, (b) Color map of
final kinetic energy of a single electron of initial kinetic energy 1 MeV, optimized over ¥ and z;,
as a function of r; and d. The black line in (a) and (b) correspond to an operation frequency of
0.6 THz. The value of the color map in (b) along the 0.6 THz operation line is plotted in (c),
where the optimum value of d is identified as d = 32 pum. (d) The dispersion curves

corresponding to the final waveguide design.

The parameters of the final waveguide design are d = 32 um, r; = 380 pum, vp, = 0.99c, v, =
0.7¢c, o= 5.21 m", Trwum = 16.7ps, K = 4.54x107% s*/m. The 20 mJ pulse yields a |E,g| of about
0.9GV/m. The initial parameters of the 1.6 pC, 1 MeV electron bunch with which we will
demonstrate the acceleration are o, = 0y = 0, = 30um (a 100fs bunch) , oy, = Gygy = G, = 0.006,
where Gy, for instance, denotes the standard deviation of yf,. 10000 macro-particles, Gaussian-
distributed in every dimension of phase space, were employed in the simulation.

Fig. 5-3 shows the evolution of bunch parameters as a function of mean particle position. We

see from Fig. 5-3(a) that the 1.6 pC-bunch is accelerated from 1 MeV to 10 MeV of kinetic
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energy in about 20mm, without any of its other properties deteriorating prohibitively. The
corresponding average acceleration gradient is about 450 MeV/m. Note from Fig. 5-3(b)-(d) that,
depending on the extraction point, the final bunch can possess a smaller transverse and
longitudinal spread compared to the initial distribution, but the final energy spread is degraded

from the initial spread.

20F (a)
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Fig. 5-3: Evolution of bunch parameters with mean bunch position for acceleration of a 1.6 pC
electron bunch from 1 MeV to 10 MeV (kinetic energy) in about 20mm: (a) normalized mean
energy, (b) relative energy spread, (c) transverse spread and (d) longitudinal spread. The symbol
o stands for the standard deviation of the variable in the subscript. Solid and dashed lines
correspond to simulations with and without space charge respectively. 10000 macro-particles are
used for the simulations. ¥ = 1.347m and koz; = 10.967. A 20 mJ, 10-cycle (16.7 ps), 0.6 THz-

centered pulse is considered.

5.3.2 Injection point considerations

In our analysis, we have assumed the freedom to inject the electron bunch into any point of the
electromagnetic field. According to our computations, the optimum injection point for the
electron bunch is a point within the pulse (albeit in its tail). This may be challenging to realize if

both the electron bunch and the electromagnetic pulse enter the waveguide from vacuum. The
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objective of this section is to consider injection of the electron bunch at a point with negligible
electric field values and assess the amount by which our predictions would change. The optimum
THz waveguide for this case is a waveguide with ry = 338 um and d = 33 um. In addition, vy, =
0.981c, w = 1.497, kozi = 137.73. We ensure that the electric field’s amplitude at the injection
point is negligible by making the amplitude 7.4x10™°|E,ql. The evolution of the electron bunch is
shown in Fig. 5-4, where we observe a final kinetic energy of 8.4 MeV (instead of the 9MeV
observed before). The smaller energy gain in this case is partly due to the dispersion and
attenuation that the pulse suffers from before the injected bunch begins interacting with the pulse.
A final energy close to what is predicted in the previous section should therefore be achievable if
the electron bunch and THz pulse can interact before the pulse has travelled too far along the

waveguide.
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Fig. 5-4: Evolution of bunch parameters with mean bunch position for acceleration of a 1.6 pC
electron injected at a distant point from the THz pulse peak: (a) normalized mean energy, (b)
relative energy spread. Solid and dashed lines correspond to simulations with and without space

charge respectively. 10000 macro-particles were used for the simulations.

5.3.3 Thermal damage and dielectric breakdown considerations

In this section, we assess the feasibility of the scheme from Section 4.1 in terms of its thermal
damage and dielectric breakdown prospects. One concern is that the high energy injected into the
waveguide and consequent energy dissipation would raise temperature of the copper coating
beyond its melting point. Another concern is dielectric breakdown due to the high electric field

values in the dielectric.
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The energy dG transferred to a differential segment of copper at position z (z = 0 being the start

of the waveguide) is related to the associated temperature rise A@= 0—& as

dG = dmc,CAB. (5.13)

The differential mass dmc, = pcu(2mr&)dz, where pe, is the density of copper and & is the skin
depth. & is the original temperature of the copper and C its specific heat capacity. Ignoring
dispersion for simplicity (and because it is negligibly small here), we write the power

propagating down the waveguide, averaged over the rapid carrier fluctuations, as

=xilz=2,))
P(t,z)=Pe T e7%, 720, (5.14)

where Py is the average power that flows into the start of the waveguide when the pulse peak
arrives there. Noting that P = —dG/dr and that partial derivatives are relevant here because z and 7

are independent coordinates, (5.13) can be written as

oP(r,z) 26(t.z
- (_gz :pc.uznrzciC—éf——). (5.15)
Solving (5.15) for 8 gives us
o T [ | 25—« e_[":"}_dt (5.16)
s =y —— == 2 : .
d p(“uﬂ’éﬁsc - T[}-

A0,7) — G gives the net temperature rise after the pulse has passed entirely through point z:

hal o2

Olo,z7)— 6, =
( ) ! p(?u\/T_[rZé‘sC

(5.17)
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A,7)is plotted in Fig. 5-5(a) for & =27 °C. The relevant parameters for copper at 0.6 THz
are pc, = 8940 kg/m’, C = 385 J/kg/’C and & = 0.084 um.
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Fig. 5-5: Plots used to assess thermal damage and dielectric breakdown prospects for the scheme
in Section 4.1. (a) Final temperature of copper cladding assuming initial temperature of 27 °C (z
= 0 is the start of the waveguide), and (b) Field profile of the TMy; mode in the transverse
direction of the cylindrical waveguide under study. Discontinuities occur at material boundaries

(once at the vacuum-diamond interface and again at the diamond-copper interface).

From the values in Fig. 5-5(a), the fact that the melting point of copper is 1084 "C and also that
we have even neglected the conductivity of copper, we can conclude that the metal coating in the
designed waveguide withstands the passage of the pulse without melting.

Fig. 5-5(b) shows a typical profile of the electromagnetic amplitude of a mode in the transverse
direction of the waveguide. The breakdown electric field for diamond has been reported as 10-20
MV/em, depending on impurities. Reading off the plot we note that the maximum value of the
electric field in the dielectric region is about 8 MV/cm. This is close to the breakdown limit
though still under it, showing that it would not be feasible to enhance the performance of our
design by increasing the peak power of the accelerating pulse. Since we are relatively far from
the melting point, an increase in available pulse energy should be used to increase pulse duration

instead of peak power.
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5.4 Acceleration of 16 pC and 160 pC electron bunches

In this section, we explore the acceleration of electron bunches of greater charge. We see that it
is feasible to use the dielectric-loaded metallic waveguide to accelerate electron bunches as large
as 16 pC, but that this is not possible when the charge increases to 160 pC. All other bunch
properties (including an initial kinetic energy of 1 MeV) remain the same from Section 4.1. We
use a 20 mJ, 10-cycle, 0.6 THz-centered pulse, and the same optimized waveguide and injection
conditions as in Section 4.1. Fig. 5-6 shows the evolution of the electron bunch for 1.6 pC, 16 pC

and 160 pC-bunches. The effects of space charge are included in all computations.
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Fig. 5-6: Evolution of bunch parameters with mean bunch position for optimized acceleration of
1.6 pC, 16 pC and 160 pC electron bunches: (a) normalized mean energy, (b) relative energy
spread, (c) transverse spread and (d) longitudinal spread. Using a 160 pC is not feasible and is
shown only in (a) and (b). All results include space charge. 10000 macro-particles are used for
all simulations. ¥ = 1.34m and kozi = 10.967. A 20 mJ, 10-cycle (16.7 ps), 0.6 THz-centered

pulse is used in all cases.

From Fig. 5-6(a) and (b), we observe that there is little difference in the mean kinetic energy

and energy spread evolution of a 16 pC-bunch and a 1.6 pC-bunch. The energy spread of a
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160pC-bunch, however, deteriorates prohibitively and the bunch is not significantly accelerated.
Since this rules out the feasibility of accelerating a 160 pC-bunch, we have omitted its plots from
Fig. 5-6(c) and (d). The inability of the waveguide to accelerate a 160 pC-bunch is due to the
overriding strength of the Coulomb repulsion, driving the electrons into the walls of the
waveguide before significant acceleration takes place. Fig. 5-6(c) explains how the 1.6 pC and
16 pC-bunches are able to have such similar energy and energy spread profiles during the
acceleration: the greater Coulomb repulsion in the 16 pC Coulomb is counter-balanced by larger
transverse inter-particle spacing. Fig. 5-6(d) shows that due to the larger amount of space charge,
the 16 pC expands rather rapidly compared to the 1.6 pC-bunch after the pulse has slipped
behind the bunch, so a 16 pC-bunch accelerated via this scheme is likely to be useful for a

shorter duration after being fully accelerated.

5.5 Concurrent phase-limited compression and acceleration of

1.6pC bunches

In this section, we optimize our waveguide design for simultaneous acceleration and bunch
compression. We demonstrate phase-limited (longitudinal) bunch compression of 50 and 62
times for electron bunches of initial kinetic energy 1 MeV and 10 MeV respectively. By “phase-
limited” we mean that the maximum compression results do not change substantially when space
charge is removed from the simulations.

As in previous sections, we use a 20 mJ, 0.6 THz-centered pulse. For each case (the 1 MeV
case and the 10 MeV case), the waveguide and injection conditions are optimized exactly as
described in Section 4.1, except that in addition to 4, zi, r1, and vp,, we also optimize over pulse
duration 7rwum (keeping total energy constant at 20 mlJ), for a total of five optimization
parameters. The initial conditions of the electron bunch, unless otherwise specified, are the same
as those in Section 4.1.

To optimize for simultaneous acceleration and compression, the figure-of-merit found to be
most useful is the ratio of energy to bunch-length of the electron bunch. Unlike in Section 4.1,

where we optimized using a single particle, here we optimized using 100 macro-particles and
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included the effects of space charge. The optimized results are then verified with simulations that
use 10000 macro-particles.

For the 1MeV case, our optimized parameters are yp=0.73%, kozi = 13.3w, r = 447
wm, Tewam = 13.1 ps (7.86 cycles). The evolution of the electron bunch parameters under these
optimal conditions are presented in Figs. 5.7(a)-(c), where we observe a small net acceleration
and a phase-limited compression of the electron bunch from 100 fs (30 wm) to about 2 fs over an
interaction distance of about 18 mm. Note that there is a limited time window during which the
electron bunch remains maximally compressed. Conceptually, this is unavoidable due to the
presence of space charge which causes the bunch to expand after the bunch has slipped from the

laser pulse.
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Fig. 5-7: Concurrent compression and acceleration of a 1.6 pC electron bunch under optimized
conditions, with a compression factor of 50 and 62 achieved for initial kinetic energies of 1 MeV
and 10 MeV respectively. The evolution of (a) normalized mean energy, (b) relative energy
spread and (c) longitudinal spread are shown for a | MeV bunch subjected to a 20 mlJ, 7.86-cycle

(13.1ps), 0.6 THz-centered pulse (¥ =0.731 and koz; = 13.37). Similarly, the evolution of (e)
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normalized mean energy, (f) relative energy spread and (g) longitudinal spread are shown for a
10MeV bunch subjected to a 20 mJ, 102.3-cycle (170.5 ps), 0.6 THz-centered pulse (g = 1.02%
and koz; = 2067). Blue solid curves and red dashed curves indicate simulations with and without

space charge respectively. 10000 macro-particles were used for all simulations.

For the 10 MeV case, our optimized parameters are Y= 1.02%, koz; = 206m, r; = 597
um, Tewnm = 170.5ps (102.3-cycle). The evolution of the electron bunch parameters under these
optimal conditions are presented in Figs. 7(d)-(f), where we observe a phase-limited compression
of the electron bunch from 100 fs to 1.61fs over an interaction distance of 42 cm. Although the
bunch is compressed by a slightly larger factor than in the 1 MeV case, the much larger
interaction distance suggests that the superior strategy to obtain a high energy, compressed bunch

is to compress it before acceleration.

5.6 Summary and future work

Achieving an efficient, practical compact accelerator for electron bunches of substantial
charge will likely involve a tradeoff between the large wavelengths but low acceleration gradient
of RF accelerators, and the high acceleration gradient but small wavelengths available at optical
frequencies. The trade-off between acceleration gradient and wavelength, together with the
emergence of efficient methods to generate coherent pulses at THz frequencies, make electron
acceleration at THz frequencies a promising candidate for the substantial acceleration and
compression of pico-Coulomb electron bunches. In this chapter, we numerically demonstrated
the acceleration of a 1.6 pC electron bunch from a kinetic energy of 1 MeV to one of 10 MeV
over an interaction distance of about 20 mm, using a 20 mJ pulse centered at 0.6 THz in a
dielectric-loaded metallic waveguide. We have also analyzed the implications of using an
arbitrarily distant injection point, as well as the prospects of dielectric breakdown and thermal
damage for our optimized design.

In addition, we investigated the acceleration of 16 pC and 160 pC 1 MeV electron bunches,
observing that performance does not change significantly for a 16 pC-bunch, but deteriorates
prohibitively for a 160pC-bunch due to the overwhelming Coulomb repulsion. Finally, we

optimized the dielectric-loaded metal waveguide design for simultaneous acceleration and bunch
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compression, achieving a 50 times (100 fs 1.6 pC electron bunch compressed to 2 fs over an
interaction distance of about 18mm) and 62 times (100 fs to 1.61 fs over an interaction distance
of 42 ¢cm) compression for a 1 MeV and 10 MeV electron bunch respectively. These results were
achieved with a 20 mJ laser pulse centered at 0.6 THz, and encourage the exploration of THz-
laser-driven electron acceleration as a path to compact electron acceleration and bunch
compression schemes.

Future work includes research on ways to minimize the growth of the energy spread at the
points of maximum compression in Fig. 5-7. Possible solutions include the use of chirped or
ellipsoidal electron bunches [LVL04]. The severity of the mismatch between the group velocity
of the terahertz pulse and the speed of the electron also encourages the exploration of terahertz

acceleration and bunch compression schemes in vacuum.
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Chapter 6

Coherent nonlinear Thomson scattering of

compressed electron bunches

In the previous chapters, we studied the acceleration and compression of electrons by
coherent laser pulses. Since a major application of relativistic, compressed electron bunches is
the generation of coherent x-rays, we now proceed to investigate the coherent nonlinear
Thomson scattering (or low-energy inverse Compton scattering, as it is sometimes referred to in
the literature) of electron bunches by a pulsed linearly-polarized optical laser beam in vacuum.
Most numerical studies on the nonlinear Thomson scattering of multi-particle electron bunches
have used a plane wave or a focused beam satisfying the paraxial wave equation to model the
laser pulse. Here, we study both a plane wave model as well as one that exactly solves the
Maxwell equations (see Appendix E). As pointed out in Section 3.1 and Appendix E, the paraxial
Gaussian beam that is often used as a solution to the paraxial wave equation grossly violates the
paraxial wave approximation at certain points in space regardless of beam waist width, making
its validity in modeling off-axis particle electrodynamics questionable. Electrodynamic
simulations comparing the results using the paraxial Gaussian beam to those using an exact
solution of the Maxwell equations have also been performed, showing a large discrepancy in off-

axis electrodynamics between the two cases even for a weakly-focused laser beam [MVP13].
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In this chapter, we present the classical theory of nonlinear Thomson scattering, discuss an
optimization scheme based on the approximate analytical formula for the on-axis intensity
spectrum of nonlinear Thomson scattering, and study the results of scattering an optical laser
pulse off an electron bunch under different degrees of laser focusing. The incident pulse we use
is a 1 pm, 10-cycle pulse with a peak power of 0.55 TW. In each case, we compare the results
obtained using the exact pulse solution with those obtained using an ideal pulsed plane wave of
the same normalized vector potential ag. Our purpose is threefold: Firstly, we want to investigate
how the radiation spectrum changes and the on-axis brightness scales with increasing focusing;
Secondly, we want to determine how the planar pulse and exact pulse results diverge as focusing
increases; Thirdly, we are also interested in how the scattering pulse affects the electron bunch
itself at different degrees of focusing. The effects of space charge is included in all our
simulations. All numerical simulations are performed using code written in the C programming
language, with multi-core processing capabilities enabled via OpenMP. Benchmarks for our code

based on analytical theory are presented in Section 6.2.5.

6.1 Theory of multi-particle radiation

6.1.1 Radiation from a single particle

The electromagnetic fields in the time domain, namely (5.4), are useful for modeling particle-
particle interaction in classical electrodynamic simulations. When the radiation of a particle
bunch is important as an output of a system, it becomes relevant also to study the fields in the
frequency domain. As the observation position becomes increasingly distant from the radiating
particle, the near-fields (proportional to 1/R%) become increasingly insignificant relative to the
far-fields (proportional to 1/R). If our detector is sufficiently distant, we may ignore the near-

fields in (5.4) and write the electromagnetic radiation of a single particle as

, 6.1)
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where we have removed the functional dependencies to avoid clutter. A prime on a variable
indicates that it is evaluated using physical quantities of the radiating particle at the retarded time.

The magnetic field is always perpendicular to the electric field and power flows in the direction

i', the unit vector pointing from the retarded position of the particle towards the observation

point. Specifically, the radiated intensity has the form

E (6.2)

where pgis the permeability of free space. The total radiated energy is

U = [[{-§)R2drdg

2 n A~ v o s (6'3)
=L(i) | %i'x((i'—v—)xv—)dtdﬂ
g,c\ 4n n c) c

where the inner integral integrates over all present time, and the outer integral integrates over the

entire solid angle. The correct variable of integration for the inner integral is ¢, not retarded time

r', because S is the energy radiated per unit area per unit present (or observation) time. Note that
the quantities in the inner integral are all evaluated at the retarded time even though the integral
is over the present time. Since the sphere over which the integral takes place has radius R’, this
sphere is centered on the particle at its retarded time. To switch between retarded and present

time, we differentiate (5.5) to find
=7 . 6.4)

When the retarded particle is moving in the same direction as i' at a very relativistic speed

(¥ >> 1), (6.4) becomes
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ST i P S (6.5)

In other words, if the retarded particle is very relativistic, an event that occurs for a brief duration
dt’ at the retarded time is registered in a duration dz’ that is much briefer — by something on the
order of two Lorentz factors — at the observation point, at the present time. (6.5) lies at the heart
of the principle of synchrotron radiation, in which a pulse released in a duration At’ at the
retarded time is detected in a duration 77°At’ by the observer in the present. The observed
radiation spectrum is thus about a factor of 1/77° times broader than the radiation spectrum at the
emission point, and radiation at very high frequencies can be generated in this way.

To calculate the radiation spectrum, we will find it useful to evaluate the Fourier transform of

the electric field:

- I T -l
E(r,w)=EJ.E(r,!)e dt

1 l — =y ’ (6'6)
— q j - ?Ix (’:\r_ 1} X L -iw(t'+R‘l(')dtu
27w 4nec?’ ' R ¢l &

where we changed the variable of integration from the present time to the retarded time in the
second equality. If we assume that R' is infinite (i.e. the observational sphere is infinitely far

away) so that {' is not a function of 1, we also have the identity

i{if'x(f'xiﬂz 1, f'x[(f‘—szi} , (6.7)
dr| o c n c) c

with which we may simplify (6.6) to give

E:(F,a)) _ L q gemﬂ'lr-l‘f‘x(fuxi}:i(u(f'—;‘-f'.f(-}dtn . (6.8)
27w 4nec R c
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6.1.2 Radiation from multiple particles

Ultimately, we are interested in radiation from electron bunches and so it would be useful to
extend the analysis of the previous sub-section to the case of multiple particles. While the
collective electromagnetic fields is simply the sum of the contribution of each particle, owing to
the linearity of Maxwell's equations, it is not so straightforward to compute the total resulting
intensity. To do so, we make the simplifying assumption that the observation sphere is infinitely

far away (the same assumption that took us from (6.6) to (6.8)), which implies that

i'= i,'=1,'=..., where i:' is the unit vector pointing from particle i to the desired point of

observation. We then have

(e i)l
The resulting total emitted energy is then given by
U = [[{5)Rdd0 = | J' ZE oy (6.10)
By Parseval's theorem, we know that (6.10) may be written equivalently as
U= H 2z ZE Rdaio 6.11)

The integrand in (6.11) is in units of J/(rad/s)/sr and we shall refer to it as the intensity
spectrum. The integrand in (6.10) is in units of J/s/sr and we shall refer to it as the angular

intensity. The intensity spectrum may be formulated from (6.8) as
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where the advanced time is defined as
Loy = r‘—’lj' . (6.13)

The physical interpretation of the advanced time is simply the observation time minus some
arbitrary constant number.

Writing (6.12) as an integral over the advanced time reveals that (6.12) may be solved via a
fast Fourier transform (FFT) algorithm if the integrand can be computed at regular intervals of
the advanced time. Since the expression in square brackets (in (6.12)'s last line) is real, the
resulting Fourier transform must be conjugate symmetric in frequency, and its squared-modulus
must be symmetric in frequency. The (two-sided) intensity spectrum (6.12) is thus always
symmetric about f = 0. The one-sided spectrum is obtained by doubling (6.12) and ignoring the

negative-frequency portion of the spectrum.

6.1.3 Computational methods for the intensity spectrum

According to what the last line of (6.12) suggests, we may compute the intensity spectrum by
accumulating the expression in square brackets, summed over all particles, at regular intervals of
advanced time, and then apply the fast Fourier transform to the resulting data. This enables us to

compute the intensity spectrum by the fast Fourier transform without the use of any interpolation
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techniques. To accumulate the data at regular intervals of advanced time, it is convenient to solve
the electrodynamic equation in advanced time t,4, instead of ¢. In other words, where we used to

have

, (6.14)

(6.15)

instead.

With (6.15), we can easily control our ordinary differential equation solver to land on regular
intervals of f,q,. This is not easy to do with (6.14) since t,, is a function of both 7 and the
particle’s position. In addition, the integrand of the intensity spectrum expression can be directly
computed and stored at each step (so storage of individual particle properties is unnecessary). A
challenge associated with solving the electrodynamic equation in advanced time, however, lies in
the initialization of particles, since it is more natural for the user to specify the particle bunch at
an initial ¢ instead of an initial #,4,, which then varies from particle to particle according to its
displacement from the origin. In our algorithm, we deal with this problem by programming the
solver to start at the smallest 7,4, of all the particles, and assuming that every particle with a
larger initial value of 7,4, travels at its initial velocity until it arrives at the t,qv associated with the
user-specified initial ¢ and its user-specified initial position. We also ensure that the solver lands
precisely on the initial #,4y of each particle, whereupon said particle arrives at its user-specified
initial position with its user-specified initial velocity and begins interacting with the driving field

and the fields from other particles.
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Another challenge is the implementation of space charge. We can still implement the
approach discussed in Appendix F.2 by assuming that each particle travels at a constant velocity
between its retarded time and the retarded time of the particle it is acting upon (recall that since
the particles are at the same advanced time at each time step, their retarded times must differ if
their positions differ). This seems a reasonable approximation given that, in the first place, the
space charge computation approach in Appendix F.2 is premised upon being able to make the
approximation that each particle moves at a constant velocity for all time, at every time step.

One major drawback of solving the electrodynamic equation in advanced time is that the
electrodynamic equation must be re-solved for each observation direction, which makes a sweep
over the solid angles computationally expensive if many particles are involved. A faster method
for the purposes of sweeping observation angle involves solving the electrodynamic equation in
retarded time (i.e. (6.14)), interpolating the resulting data to obtain their values at constant
intervals of advanced time, computing the integrand of the intensity spectrum expression from
these values and then applying the fast Fourier transform to obtain the intensity spectrum. We
have also implemented this alternative algorithm using cubic spline interpolation.

A third algorithm, which does not involve the storage of the history of each individual
particle for purposes of cubic spline interpolation afterwards, involves directly interpolating for
the observed fields for all solid angles of interest while solving the electrodynamic equation in
retarded time. Compared with the second algorithm above, this approach has the advantage of
being scalable to a very large number of particles (>10% because it avoids having to allocate
memory to store the history of the mechanics of each individual particle. However, one cannot
then apply a cubic spline interpolation to determine the properties of each particle at the desired

advanced time and a linear interpolation must suffice, at least in a straightforward approach.

6.2 Analytical solutions and benchmarking of code

6.2.1 Synchrotron radiation of a single particle

Suppose a particle moves at speed v in a circle of radius p in the x-z plane (y=0). This is an

1dealized model of a betatron. The kinematic equations are
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The electron motion is illustrated in Fig. 6-1 below.

H.y

(6.16)

(6.17)

Fig. 6-1: Illustration of a single electron (purple circle) moving in a circular trajectory in the x-z

plane, emitting radiation in the positive z-direction.

We are trying to solve for (6.12) given the kinematics in (6.17). Here, the second line of

(6.12) is the form we will find most convenient, and we reproduce it again for easy reference:
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Setting {'= % (i.e. the observation direction of interest lies in the positive direction along the

z-axis), the cross product in the integrand of (6.18) may be written as

-1 2
; 'x(f 'xv—j =—fv sin(iz') ~—3l . (6.19)

3
z,v_ﬁ[i,v_i[L,-J ] (6.20)
clp 3Mp

where the second-last approximate equality involved a Taylor series expansion of the sine
function and neglecting higher-order terms, and the last approximate equality involved assuming
that the particle is highly relativistic (y>> 1).

Substituting (6.20) and (6.19) into (6.18) gives the two-sided intensity spectrum:

2 2 2
d-I 3q_ 2 w 2 w
= — | K, | — |, 6.21
dadQ 87e,c” [a) ] " [a) ) ©2D

which contains the critical frequency, given by
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w, =35, (6.22)
P

and the modified Bessel function of the second kind of fractional order:

- I3 1 1
fo rsmbx[ﬂgrﬂdr=-\/—§K2,3(x). (6.23)

In the case of a betatron with a static magnetic field given by

B=B,3, (6.24)

p="2 (6.25)

For the cases of inverse Compton scattering (i.e. nonlinear Thomson scattering) or the free
electron laser, the particle motion is approximately sinusoidal and the radius of curvature is not

as straightforward to determine. We treat this in the following sub-section.
6.2.2 Radius of curvature

The general formula for the radius of curvature of the trajectory z(x) of a particle moving in

the x-z plane is given as

_ [1 + (dz/dx)’ ]3/2
P dizld®

(6.26)
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For the (approximately) sinusoidal motion of the electron in inverse Compton scattering and
the free electron laser at low intensities, we may assume normalized velocities £, ~ 1, fx << B,

and simplify (6.26) to

el 6.27)
d
g2

" dx

Substituting in the appropriate expressions, we find that the radius of curvature for inverse

Compton scattering is

mnc
. , 6.28
p 21g1E,/c (6.28)

where Ej is the electric field amplitude of the incident electromagnetic field. The expression for

radius of curvature in an undulator is very similar:

~ e
lqlB,’

p (6.29)

where By is the amplitude of the static magnetic field created by the undulator magnets. The
extra factor of 2 in the denominator of (6.28) arises from the fact that the magnetic field of the
plane wave also contributes to the transverse electron motion in the inverse Compton scattering
case. Note that our model of the undulator really applies only close to the axis of the undulator.
For a more comprehensive undulator model refer to [HKO07].

Substituting (6.28) or (6.29) into (6.21) will give the intensity spectrum for a half-cycle of
transverse electron motion in inverse Compton scattering or the free electron laser respectively.
Of course, these processes typically consist of multiple cycles. We generalize (6.21) to the
multicycle case in the following sub-section and obtain our final analytical expression for

radiation from a transversely-oscillating relativistic electron.
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6.2.3 Analytical intensity spectrum of a transversely-oscillating relativistic

electron

A single electron passing through the alternating fields of a counterpropagating
electromagnetic wave or an undulator may be approximated by a series of electrons executing
circular motions. This is illustrated in Fig. 6-2. The backscattered radiation wavefront emitted in
a certain phase of the electron's transverse oscillation travels at the speed of light, just slightly
faster than the electron. When the electron, after a full cycle of motion, arrives at the
corresponding phase in its new cycle, it emits another wavefront that lags behind the one
previously emitted by a very small duration. The separation between these wavefronts is
precisely the wavelength at which the scattered radiation constructively interferes. Note that this
coherence mechanism is distinct from the frequency up-conversion mechanism of (6.5). Both

mechanisms are involved in the free electron laser and inverse Compton scattering.

(b)

Fig. 6-2: (a) Illustration of the basic mechanism of the free electron laser, showing how each
successive radiation wavefront lags behind the previous one by a duration of about (1-5,)Ao/c,
where Ay is the period of the undulator, and v, and f.=v,/c are implicitly time-averaged values.
This process may be analytically approximated as (b) a series of electrons executing properly-
phased circular motions. The purple circles represent electrons. A, denotes the wavelength of the

scattered light.
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Fig. 6-2 also applies for inverse Compton scattering, except Ao then denotes half the
wavelength (not the full wavelength) of the counterpropagating beam. Using the model in Fig. 6-
2 (b), we suppose we have a string of particles (j = 0,1,2,...,2N-1), where N is the number of

undulator or laser periods, spaced apart regularly in space and time:

ax _ (—1)fvsin(1(t—ﬁﬂ)]
dt P 2y

e

As before, we assume v~c. Allowing i'= 2 for particle j, we can derive the multicycle

(6.30)

versions of (6.19) and (6.20) respectively as

f’x(f’xzj =—(=1)’zv sin(l[z"— AD =~—(-1) fci(t'—ﬂj' , (6.31)
c P 2v Yo 2v

and

A

LA f—ﬁsin(-"_(z'_lﬁn _ A
¢ ¢ P 2v 2c
o e )

' 2 . 3
LA (t._Jﬂoj
2y*  6p° 2v

Substituting (6.31) and (6.32) into (6.18), we get the two-sided intensity spectrum:
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where @, =3y c/p and @, =27 c/A, , where
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2
~ ﬂ", 1+%0 4 20
2y° 2

In (6.34), the second-last approximate equality assumes 7 >>1 and the last approximate equality
assumes <<1, (1 +a, / 2)/ 2y* << 1 where 8 is the angle away from the z-axis. Since we deal

only with the on-axis case here, &= 0 for the purposes of our formulation. For inverse Compton
scattering a, =— gE,/mc® , whereas for the free electron laser a, =—qB,/m®.

Note that (6.33) is simply (6.21) with an extra interference factor, which is not a surprising
result given our model in Fig. 6-2(b). To understand (6.33) better, it helps to see the expression
as a product of three factors: the first factor that is proportional to #, the second factor that is
contained in the square parentheses, and the third factor that captures the interference. The first
factor is constant for a given electron energy. The synchrotron radiation envelope represented by
the second factor shifts its peak frequency, but does not change its height, as at, changes. The
third factor has peaks occurring at @= a(2i+1), i an integer, with the height of each peak given

by 4N?. These properties are illustrated in Fig. 6-3.
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Fig. 6-3: Plots of (a) the synchrotron radiation envelope factor and (b) the coherent interference

envelope factor in the analytic expression of inverse Compton scattering.

From Fig. 6-3(a), we note that the peak occurs around 0.4 ... When @, << @, the first
harmonic of the interference factor occurs far in the right tail of the synchrotron radiation
envelope. As @, draws closer to @, assuming that N and the first factor in (6.34) do not vary in
the process, the first harmonic's peak intensity increases as it approaches the envelope maximum
near 0.4 @.. After arriving at this envelope maximum, the peak intensity of the first harmonic
falls as a./@ is increased further, and the maximum spectral intensity is attained instead by
higher harmonics. The expression @/ is given for both inverse Compton scattering and the

free electron laser as

Der =3a(,[1 +““}. (6.35)

Note that our treatment applies only for the case of normal incidence. As we increase ag, we
thus expect the peak intensity of first harmonic to increase initially, reach its maximum around a
=1, and then fall as ay is increased any further. As ap increases, the maximum intensity peak also
shifts toward higher harmonics. This accurately reflects the observation in [SF96] that at
sufficiently high intensities the low-order harmonics are suppressed while the higher-order

harmonics are enhanced. The individual dependencies of @, and @, are
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where p = 1 for the free electron laser and p = 2 for inverse Compton scattering, and a is the
frequency of the driving light. The location of the first harmonic relative to the synchrotron
radiation envelope may thus be set via ay, and the frequency of the first harmonic along with the
maximum intensity of the entire spectrum then controlled by adjusting Y. ay can also be adjusted
in principle but is limited by the availability of coherent light sources at the desired frequency in
practice. For this reason, most nonlinear Thomson scattering schemes that have been proposed

limit themselves to light in the infrared regime.

6.2.4 Optimum radiation harmonic and scaling of optimum peak intensity

with output wavelength

In this sub-section, we show that our model predicts that, for a given incident frequency an,
desired frequency ab. and number of cycles N, with freedom only in the choices of ag, yand
harmonic number m, the maximum on-axis spectral intensity is always achieved with the
fundamental harmonic m = 1. We also show that when the incident frequency (but not the
desired frequency) is varied, keeping interaction length and total charge constant, this maximum
on-axis peak intensity is predicted to scale as a.

We begin by making a, our desired frequency, since the synchrotron radiation envelope
peaks at ax,. Next, we note that the intensity spectrum scales as 72 Treating (6.35) as a cubic
equation in ag and solving for its one real root as a function of x = @,/ @, we find that (6.36) may
be re-cast as (once again, p = 1 for the free electron laser and p =2 for inverse Compton

scattering)
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As we see from Fig. 6-3(a), the peak of the synchrotron radiation envelope occurs at around
@ = 0.4 .. Positioning the peak of the m"™ harmonic at this frequency involves setting x = 2.5m.
Making this substitution in (6.37), we obtain 7; as a function of m and @./a. For given incident
frequency @, peak emission frequency @, and technology (p), ;; depends only on 1/a,, which

we plot in Fig. 6-4. We see that the spectral intensity is maximized with a choice of m = 1.

10 20 30 40

Harmonic number

Fig. 6-4: Plot of 1/a; as a function of the harmonic number. Note that only odd harmonics are

considered because, as Fig. 6-3 shows, constructive interference occurs only at odd harmonics.

Of course, it is naive to assume that the maximum spectral intensity for a fixed output
frequency is achieved when the desired harmonic coincides exactly with the synchrotron
radiation envelope peak. A more rigorous way of obtaining the maximum spectral intensity for
given @,/ @y, charge g, and number of cycles N, is to repeat the optimization but without the

constraint @y, =0.4a,. To do so, let y = @/ @, and @, =ma. (6.33) may then be written as
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Note for completeness that we also have
2
= L 7;.(”;‘; /2) (6.39)
0

We seek to maximize (6.38) by varying only m and y. Plots of (6.38) and (6.39) as a function

of y for various m are shown in Fig. 6-5.
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Fig. 6-5: Plots of (a) normalized spectral intensity peak, (b) corresponding a, and (c)
corresponding normalized }3 as a function of parameter y = @/ @, for various harmonic
numbers m. The black cross in each plot marks the point corresponding to optimum intensity in
y-m space. The purple dashed vertical line marks the value of y corresponding to the result of the
"naive" approach wherein @b, =0.4a@, was assumed. Here, the optimal @, 1s determined as

0.054 ..

From Fig. 6-5, we see that regardless of the choice of a,,, the maximum intensity is always
achieved with the first harmonic if no restrictions are placed on ay and ¥ We also note that the

value of the maximum intensity obtained by this optimization is not far off from the value
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obtained by setting @ = 0.4 @, namely, on the order of 1. We will later see that in exact
electrodynamic simulations where the incident pulse has a smoothly-varying (e.g.: Gaussian)
temporal envelope, the variation of ag and 7y during the laser-electron interaction lead to spectral
broadening and peak shifts that cause the optimum @, to fall roughly between 0.054 @, and

0.4 . in practice. The observation that the maximum normalized on-axis spectral intensity is on

the order of 1 allows us to write this maximum value as

2 2a72
€L 3gN o, (6.40)
dadQ|  4priec

The three factors in (6.40) with which the maximum spectral intensity may be most readily
controlled are: (a) Amount of charge, with the intensity scaling as qz, where ¢ may be interpreted
here as the total charge (this assumes every particle in the bunch radiates coherently on-axis); (b)
interaction length, with the intensity scaling as N°, where N is the number of cycles; and (c) the
ratio @y /an. If the amount of charge and the interaction length L is kept constant, then intensity
scales as abh since N~anL. However, if the charge is allowed to vary, the ability of longer-
wavelength schemes to accommodate a larger amount of charge may give longer-wavelength
schemes an advantage over shorter-wavelength schemes where on-axis intensity is concerned in
the end. Non-linearities that appear at large N, even for small ay [HAS+10, AAG*11], also make
it difficult to increase peak spectral intensity indefinitely by only increasing N, and are another

factor in favor of longer-wavelength schemes for a given interaction length.

6.2.5 Benchmarking the code

In this subsection, we compare results obtained from the analytical expressions for
synchrotron radiation and inverse Compton scattering, which we derived in the previous sub-
sections, with the results of the same scenarios simulated with our code. We find excellent
agreement between the results of our code and those of our theory.

In the synchrotron radiation scenario, we assume a particle traveling in a constant magnetic

field of 1 T at a kinetic energy of 10 MeV. The analytical formula of relevance is (6.21). Fig. 6-6
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compares the numerical and analytical results. As can be seen, the curves practically lie directly

on one another.
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Fig. 6-6: On-axis one-sided intensity spectrums of a single electron in a betatron, computed using
our code and the analytical formula. "Num. Exact" refers to the advanced-time version of the
code, which does not involve interpolation; "Num Interp." refers to the retarded-time version of
the code, which employs cubic spline interpolation to achieve uniform spacing in advanced time

of particle properties for the fast Fourier transform algorithm.

In the inverse Compton scattering scenario, we study the intensity spectrum from a single
electron traveling at a kinetic energy of 43.02 MeV into a counter-propagating electromagnetic
plane wave of peak ap = 0.7 with a Gaussian temporal pulse profile. The intensity FWHM of the
electromagnetic pulse contains 100 cycles, and we correspondingly set N = 100 in our analytical

formula (6.33). Our results are plotted in Fig. 6-7.
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Fig. 6-7: On-axis one-sided intensity spectrums of a single electron in an inverse Compton
scattering scheme, computed using our code and the analytical formula. "Num. Exact" refers to

the advanced-time version of the code.

We see from Fig. 6-7 that the analytical formula predicts the peak frequencies in the
simulation very well. However, the spectral peaks in the simulation are much broader and lower
than those in theory. This is consistent with the fact that variations of ay and 7y during the laser-
electron interaction when the temporal pulse profile is smoothly-varying lead to spectral

broadening and peak shifts, as has been observed previously in the literature [Kra04].

6.3 Nonlinear Thomson scattering with coherent electron bunches

and relativistic electron sheets

In this section, we use our code to compute the radiation spectrum emitted by single electrons
and relativistic electron sheets, which we idealize as two-dimensional sheets of electrons with a
negligible spread in the z-direction (at least at the start of the simulation). Our study of
backscattered radiation from these sheets is motivated by our interest in compressing electron
bunches via interaction with a high intensity TMO1 laser mode to sub-nm lengths for coherent
inverse Compton scattering. Schemes to directly generate relativistic electron sheets by

propagating an intense laser pulse through a plasma to form a breaking wake wave [BET03] or
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by propagating an intense laser pulse through a thin nanofilm [KCH"07] have also been proposed.
Experiments [PMK'07] have verified the principle of coherent backscattering off these
relativistic electron sheets. In our multi-particle studies, we are interested in studying how the
emitted spectrum of an electron sheet changes as gy changes (by varying the beam waist of the
incident laser beam) for a given incident pulse energy and pulse duration. We model our linearly-
polarized laser pulse with a plane wave as well as with a pulsed beam solution that exactly solves
the Maxwell equations (c.f. Appendix E). Interest in the generation of attosecond x-ray pulses
via nonlinear Thomson scattering with tightly-focused laser beams [LLC06, LLC05, LXL*10] is

additional motivation to examine the tight-focusing scenarios.

6.3.1 Nonlinear Thomson scattering spectrum of a coherent electron bunch

In this sub-section, we investigate the nonlinear Thomson scattering of a Gaussian-pulsed
optical plane wave off an ideal coherent electron bunch, which we model with a single macro-
particle. We show that there is fair agreement between the behavior of the computed on-axis
intensity spectrum as ag is changed and the predictions of our approximate theory in Section 6.2.
However, the overlap of higher harmonics at large values of ay [Kra04] makes our simple
model's prediction that the maximum peak intensity is always achieved by the fundamental mode
no longer true.

Consider a coherent 1.6fC electron bunch -- which we may effectively model as a single
macro-particle of charge -1.6fC -- traveling with a kinetic energy of 30 MeV into a
counterpropagating pulsed linearly-polarized (along the ¢ = O direction) plane wave of
wavelength 1 um, a¢ = 0.1 and duration 100 cycles. The intensity profile and spectral intensity at

various inclination angles @ for azimuthal angles ¢ = 0 and ¢ = 7/2 is shown in Fig. 6-8.
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Fig. 6-8: Color maps of (a) intensity spectrum as a function of photon energy and inclination
angle 0, and (b) intensity profile as a function of observation time and & for azimuthal angle ¢ =
0. (c) and (d) are the same as (a) and (b) respectively except that ¢ = n/2. Here, a 30 MeV, -1.6
fC macro-particle (which we use to model a 1.6 fC coherent electron bunch) collides with a

counterpropagating infrared laser pulse of ap = 0.1 and duration 100 cycles.

In Fig. 6-8, we see that the pulse profile in both frequency and time domains appear to die
out more quickly with increasing & when ¢ = 0 than when ¢ = n/2. This makes intuitive sense
because the transverse oscillations of the electron take place entirely along the ¢ = 0 direction,
and the larger range of displacements associated with the ¢ = 0 direction is naturally associated
with a smaller range of emission angles. The on-axis intensity spectrum and intensity profiles are
plotted in Fig. 6-9(a) and (b) respectively. Integrating the intensity spectrum over the photon
energies give the total emitted energy per unit solid angle (i.e. energy density), which we plot as
a function of @ and ¢ in Fig. 6-9(c). Fig. 6-9(d) is like (c) except the integral over the photon

energies has been restricted to a 0.1% bandwidth about the peak photon energy.
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Fig. 6-9: Plots of (a) on-axis one-sided intensity spectrum and (b) on-axis intensity profile for the
scenario in Fig. 6-8. Colormaps of energy density as a function of azimuthal and inclination
angle are plotted in (c) for total energy and in (d) for the energy contained in 0.1% of the peak

emission frequency.

The duration of the temporal pulse in Fig. 6-9(a) is about 23.7 as (the intensity FWHM
duration of a Gaussian pulse fit). The on-axis 0.1% bandwidth (BW) flux density computed from
Fig. 6-9(b) is about 1.451 uJ/sr/(0.1% BW). The total energy radiated is 2.18 nJ. The energy
contained in the 0.1% bandwidth is 3.59 pJ, which corresponds to 1277 photons of energy 17.57
keV. This corresponds to an efficiency of 0.1277 monoenergetic 17.57 keV photons per electron.

We now repeat the same scenario except that we have a 10-cycle instead of a 100-cycle pulse.

Our results are shown in Fig. 6-10 and 6-11.
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Fig. 6-10: Color maps of (a) intensity spectrum as a function of photon energy and inclination
angle 6, and (b) intensity profile as a function of observation time and & for azimuthal angle ¢ =

0. Same scenario as Fig. 6-8 except we use a 10-cycle pulse.
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Fig. 6-11: Plots of (a) on-axis one-sided intensity spectrum and (b) on-axis intensity profile for
the scenario in Fig. 6-10. Colormaps of energy density as a function of azimuthal and inclination

angle are plotted in (c) for total energy and in (d) for the energy contained in 0.1% of the peak

emission frequency.
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In Figs. 6-10 and 6-11, the on-axis pulse duration (Gaussian-fitted FWHM) is 2.37 as. The
on-axis 0.1% bandwidth (BW) flux density is about 16.3nJ/sr/(0.1% BW). The total energy
radiated is 0.218 nJ. The energy contained in the 0.1% bandwidth is 0.325 pJ, which corresponds
to 116 photons of energy 17.57 keV. This corresponds to an efficiency of 0.0116 monoenergetic
17.57 keV photons per electron.

Comparing the 100-cycle (Figs. 6-8 and 6-9) and 10-cycle (Fig 6-10 and 6-11) simulations,
we observe that the peak on-axis spectral intensity scales as N?, the spectral width scales as 1/N,
the pulse duration scales as N, the pulse peak is independent of N, the total emitted energy scales
as N and the range of inclination angles over which monoenergetic radiation is emitted scales as
N2, All this accords with our theory in Section 6.2 as well as the findings of traditional free
electron laser theory [Kim89]. From Figs. 6-8 and 6-10, it is also evident that the peak frequency
of the intensity spectrum shifts more drastically as 6 increases in the 100-cycle case compared to
the 10-cycle case.

To study how the on-axis intensity spectrum varies with ao, we plot in Fig, 6-12 the on-axis
intensity spectrum for the case of a single macro-particle with -1.6 pC of charge traveling with a
kinetic energy computed from (6.39) for a spectral peak in the vicinity of 18 keV (69 pm). The
counterpropagating Gaussian-pulsed linearly-polarized plane wave has a central wavelength of 1
um. Once again, we consider 10-cycle and 100-cycle pulses. More data corresponding to each

curve in Fig. 6-12 is presented in Table 6.1.
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Fig. 6-11: Plots of on-axis one-sided intensity spectrum for nonlinear Thomson scattering off a
single macro-particle of charge -1.6 pC of charge traveling with a kinetic energy computed from
(6.39) for a spectral peak in the vicinity of 18 keV. The incident wave has a central wavelength
of 1 um, an ao given in the legend of the plots and a pulse duration of (a) 10 cycles and (b) 100
cycles. (c) and (d) are the zoomed-out versions of (a) and (b) respectively. Note that what
appears to be dense fluctuations in (c) and (d) are really a multiplicity of peaks that resolve into

smooth, continuous curves (such as we have in (a) and (b)) upon zooming in.

138



Theoretical | 10-cycle 15t | 10-cycle 1t | 100-cycle 15t| 100-cycle 15
a, /0, harmonic harmonic harmonic harmonic
frequency |energy density | frequency |energy density
[keV] [photons/s/sr [keV] [photons/s/sr
10.1%BW] /0.1%BW]
0.1 16.6335 18.022 5.952x1012 18.0214 5.298x10'4
0.4 |1.5432 18.522 7.231x1013 18.1299 1.652x1013
0.7 10.7650 18.9082 1.037x10'4 18.1895 2.175x10%
1.0 |0.4444 19.1228 1.177x101 18.2343 2.404x1015
1.3 {0.2780 19.2679 1.226x10' 18.2618 2.470x10%
1.6 {0.1827 19.3588 1.230x104 18.2783 2.460x1015
1.9 10.1251 19.4245 1.215x10% 18.293 2.420x1015
2.4 10.0716 19.5074 1.180x10M 18.3162 2.343x101
3.8 10.0213 19.5754 1.109x104 18.3329 2.2x1015

Table 6.1: Table of peak photon energy and energy density corresponding to the curves in Fig. 6-
11. The energy densities were computed by integrating the intensity spectrum over the range of

photon energies of interest.

In Fig. 6-11, we see that the intensity peak of the first harmonic increases as ag is increased,
but more and more slowly as ay approaches a value around 1.0, and the intensity peak starts to
decrease gradually after a certain point. That the first harmonic intensity does not rise
indefinitely with increasing ag agrees with the predictions of our approximate theory illustrated
in Fig. 6-5. However, the theory predicts the optimal ay only fairly well (prediction of optimal ag
around 2.66, whereas in our simulations the value is highest at 1.6 in the 10-cycle case and
highest at 1.3 in the 100-cycle case, which we can also see in Table 6.1; because 0.1% BW is so
small, energy density approximately scales as intensity peak here). Nevertheless, the actual value
of the intensity peak varies so slowly with ay around the optimum that the theory can still be
relied upon to give an intensity peak very close to the maximum. The discrepancies between the
results of the approximate theory and those of the simulation are due to two main reasons: Firstly,
the broadening of the first harmonic as g increases, as observed also in [Kra04], and secondly,

the shift of the peak intensity that is also a result of the variation in the electron's kinetic energy
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as it traverses the Gaussian pulse. This shift decreases as the pulse is broadened from 10 cycles
to 100 cycles.

In Figs. 6-11(c) and (d), we also see the overlap of higher harmonics observed in [Kra04], as
well as the observation in [SF96] that at high laser intensities, the lower harmonics are
suppressed while the higher harmonics are enhanced. The increase in nonlinearities as one
increases the number of interaction cycles [HAS'10] for the same aq is also evident as we go
from the 10-cycle to the 100-cycle pulse.

According to the theory in Section 6.2, the maximum spectral intensity is always achieved
with the fundamental mode for a given desired output photon energy, assuming ay and y can be
varied freely. However, the theory does not take into consideration the overlap of higher-order
harmonics, which can potentially increase the intensity at higher harmonics. In Fig. 6-12, we use
the 10-cycle ap = 3.8 case in Fig. 6-11(a) to illustrate this. Scaling the value of y down (without
changing ao) so that the strongest harmonic coincides with the first harmonic of the original
spectrum, we see the height of the strongest harmonic decrease proportionally with y, as expected,
but it still surpasses the original peak, making the use of higher harmonics to achieve greater

peak spectral intensity a feasible measure in nonlinear Thomson scattering.
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Fig. 6-12: An example illustrating how greater spectral intensity at a given output photon energy
(19.6 keV here) may be achieved by using a higher harmonic. Conditions are as in the ay = 3.8,

10-cycle case in Fig.6-11. (b) is a zoomed-in version of (a).
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6.3.2 Multiparticle simulations of nonlinear Thomson scattering off

relativistic electron mirrors

In this sub-section, we study how the emitted spectrum of a relativistic electron sheet
changes as ay changes (by varying the beam waist of the incident laser beam) for a given incident
pulse energy and pulse duration. We model our linearly-polarized laser pulse with a plane wave
as well as with a pulsed beam solution that exactly solves the Maxwell equations (c.f. Appendix
E).

We model a 1.6 pC relativistic electron sheet using 400 macroparticles. For the purposes of
this study, the initial sheet is highly idealized, with zero positional spread along the z axis, a
Gaussian spread of standard deviation 1 pm in the x and y directions and zero momentum spread.
Space charge is turned on. The incident laser pulse is a 10-cycle pulse of varying intensity (ao is
the parameter varied in this study) and central wavelength lpm. In the case of the exact pulsed
beam solution, we fix the peak pulse power at 0.55 TW. The degree of focusing required to attain
the various ap considered in this study is given in Table 6.2. We adjust the kinetic energy of the
electron sheet via (6.39) in each case to target a photon energy of 17.6 keV. In all cases, the

electron sheet encounters the pulse after about 1 ps of propagation in free space.

a, | wyli &4
0.1 | 35.73 | 000891
0.4 |8916| 0.0357
0.7 | 5.09 | 0.0625
1.0 | 3.58 | 0.0895
1.3 | 273 | 0.117
1.6 | 220 | 0.144
19 | 1.85 | 0.172

Table 6.2: Amount of focusing corresponding to various ap (computed on-axis at the pulse peak)
for an exact pulsed beam solution of Maxwell's equations for a 10-cycle, 0.55 TW peak power

and central wavelength 1um pulse. wy is the beam waist radius and divergence angle 4 = 1/n/wy.
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Fig. 6-13 shows the radiation spectrum corresponding to laser pulses of peak ao = 0.1, 0.4,
0.7 and 1.0. We see that the extent of the radiation spectrum in 6 is smaller here in the single-
particle scenarios studied in the previous subsection. This is not surprising since a larger source
size is generally associated with a smaller range of emission angles. For ap = 0.1 and ag = 0.4, the
plane wave and exact pulse results agree closely. When ag is as high as 0.7, the radiation
spectrum in the exact pulse case has started to diverge significantly from that in the plane wave
case. This is once again not surprising since from Table 6.2, the beam waist radius at ag = 0.7 is
about 5 pm, which is within an order of magnitude of the size of the electron sheet. The
nonlinear Thomson scattering spectrum thus deteriorates because different parts of the
relativistic electron sheet experience substantially different effective ag. At ap = 1.0, the spectrum
has degraded so much that the peak photon energy has shifted Signiﬁcantly from the targeted
photon energy of 17.6 keV. Fig. 6-14 show the spectra for ay > 1.0.
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Fig. 6-13: Spectra of radiation from a relativistic electron sheet for a counterpropagating laser
pulse of peak normalized potential (a) ap = 0.1, (b) ap = 0.4, (¢) ap = 0.7 and (d) ap = 1.0. In each
case we plot (i) the spectrum from an incident plane wave, (ii) spectra from an incident pulse that
exactly satisfies Maxwell's equations (iii) on-axis spectra from the plane wave (blue) and exact
pulse (red) cases. Results are obtained for ¢ = 0 on the infinitely-distant observation sphere. Full

details of the relativistic electron sheet and incident pulse are given in the text.
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Fig. 6-14: Same as Fig. 6-13 except now we consider (a) ap = 1.3, (b) ap = 1.6, and (c) ap = 1.9.

In Figs. 6-13(d) and 6-14, we note that increasing ay shifts the peak to larger and larger
photon energies. This is because the electrons seeing the intended ay, which occurs on-axis, are
relatively few compared to those seeing the ap away from the axis. One could adjust the energy
of the electron sheet to shift the peak to the desired photon energy, as we illustrate in Fig. 6-12,
but that would lead to an even lower spectral peak. We also notice that at lower photon energies,
the radiation in the exact pulse case is emitted over a broader and broader range of 6 as a
increases from ap = 0.1 to ay = 1.0. This indicates that a smaller and smaller (in transverse
dimensions) group of electrons experience an ay close to the on-axis ag. The smaller transverse
size of this radiating group of particles naturally leads to a wider range of emission angles. We
conclude that the beam width of a focused laser beam should exceed the width of the electron
bunch by at least an order of magnitude in order for the plane wave approximation to hold.

Relevant data computed for the cases in Figs. 6-13 and 6-14 is presented in Table 6.3.
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Plane wave |Plane wave Gaussian| Plane wave Exact pulse Exact pulse Exact pulse
a, Gaussian pulse 0.1% Gaussian pulse | on-axis peak |0.1% bandwidth | total emitted
pulse on-axis | bandwidth energy | total emitted | photon energy energy energy
peak photon | (photons/0.1% BW) energy (keV) (photons/0.1% 8))
energy )] BW)
(keV)
0.1 |17.5662 1847.5877 2.4423x10°10 17.5914 1837.8903 2.4266x10°10
04 |18.0518 21578.7774 3.6791x10° 18.1327 21224.3004 3.5435x10°
0.7 |18.4391 30398.1963 1.0061x108 18.8107 25996.0368 8.7425x10”
1.0 |18.6523 34600.3002 1.7848x108 24.2915 3721.8168 8.4056x10°
1.3 |18.7939 36349.1639 2.6019x108 29.8255 2781.5812 7.0795x10°°
1.6 [18.8988 36792.1725 3.4153x10°8 37.978 1828.6882 6.8489x10
1.9 |18.966 36675.7091 4.232x10% 46.3794 1672.1966 7.4308x10°

Table 6.3: Peak photon energy, emitted energy in 0.1% bandwidth about the peak and total
emitted energy for the cases shown in Figs. 6-13 and 6-14. The total emitted energy was
computed by integrating over all ¢ and assuming the detector spans an emission angle 0 < 6 <

X107,

From Table 6.3, we see that the monochromatic (i.e. 0.1% bandwidth) emitted photon count
in the plane wave case increases rapidly at low ay as gy increases, but the growth slows rapidly as
we approach ag ~ 1.0. There is a point beyond which the energy reflected from a relativistic
electron sheet cannot be increased substantially by simply increasing in the intensity of the
incident laser pulse. Instead, the charge of the bunch or the number of cycles in the interaction
length must be increased to achieve a greater count of monochromatic emitted photons.

Fig. 6-15 shows the evolution of the electron bunch statistics for the ag = 0.1 case in Fig. 6-
13(a), for the plane wave and exact pulse models. We see that the statistical evolution is very
similar in both cases, as the closeness in their radiation spectra already leads us to expect. Fig. 6-
16 shows the instantaneous particle distribution at ¢ = 1.004 ps, which is slightly after when the
bunch coincides with the peak of the pulse. We see very similar particle distributions in both the
plane wave and exact pulse cases. Fig. 6-16(b) shows that the longitudinal force (absent in the
plane wave case) experienced by the particles in the exact pulse case are about 3 orders of
magnitude less than the transverse force, and so the former have hardly any effect on the

electrodynamics of the bunch.
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The effects of the longitudinal force become very significant in the case of tight-focusing,
however, as we see in Figs. 6-17 and 6-18, which are the same as Figs. 6-15 and 6-16
respectively but for the ag = 1.6 case in Fig. 6-14(b). During interaction with the pulse, the
longitudinal spread and emittance of the bunch are worse by about 2 and 3 orders of magnitude
respectively when the exact pulse model is used instead of the plane wave model. The increase

of the longitudinal spread to 10"

m alone is sufficient to affect results significantly since this
spread is on the order of the desired emission wavelength, and will cause the temporal coherence
of the x-ray output to deteriorate. Fig. 6-17(b) shows that the maximum mean transverse
momentum achieved by the bunch is noticeably smaller in the exact pulse case than in the plane
wave case, which explains the shift of the spectral peak to higher frequencies under the exact
pulse model. In Fig. 6-18, we see that the longitudinal force of the exact pulse is now only about
30 times smaller than the transverse force during the laser-electron interaction. The particle
distribution is spread out over a larger longitudinal space owing to the significant effect of the
longitudinal force. It is interesting to note that switching from a plane wave to an exact pulse
model, even in the tightly focused case, does not affect the energy spread of the bunch
significantly: In Fig. 6-17(d), we do see the longitudinal momentum spread increase by an order

of magnitude, but this has hardly any effect on the relative energy spread (shown in 6-17(f)) due

to the high energy of the electrons.
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Fig. 6-15: Statistics of the electron bunch for the ay = 0.1 case in Fig. 6-13(a): (a) mean Lorentz
factor (normalized energy), (b) mean normalized momentum, (c) spatial spread (d) normalized
momentum spread, (e) emittance and (f) relative energy spread. Angular parentheses around a
variable denote the mean of the variable. The symbol ¢ denotes the standard deviation of its
subscript variable. Dotted lines correspond to the plane wave model, solid lines to the exact pulse

model.
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Fig. 6-16: Particle distribution in the y=0 plane at t = 1.004 ps in the ay = 0.1 case of Fig. 6-13(a)
for (a) the plane wave model and (b) the exact pulse model. Color maps show the force in the y =
0 plane for a particle moving in the z direction at the speed of light. (¢) and (d) are zoomed-in
versions of (a) and (b) respectively. Forces are normalized by gk, where q is the particle charge

and k is the wavevector.
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Fig. 6-17: Statistics of the electron bunch for the @y = 1.6 case in Fig. 6-14(b): (a) mean Lorentz

factor (normalized energy), (b) mean normalized momentum, (c) spatial spread (d) normalized

momentum spread, (e) emittance and (f) relative energy spread. Angular parentheses around a

variable denote the mean of the variable. The symbol ¢ denotes the standard deviation of its

subscript variable. Dotted lines correspond to the plane wave model, solid lines to the exact pulse

model.
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Fig. 6-18: Particle distribution in the y=0 plane at = 1.004 ps in the ap = 1.6 case of Fig. 6-14(b)
for (a) the plane wave model and (b) the exact pulse model. Color maps show the force in the y =
0 plane for a particle moving in the z direction at the speed of light. (¢) and (d) are zoomed-in
versions of (a) and (b) respectively. Forces are normalized by gk, where ¢ is the particle charge

and k is the wavevector.
6.4 Summary and future work

In this chapter, we have presented the classical theory of nonlinear Thomson scattering and
derived an approximate analytical formula for the on-axis intensity spectrum of a single
relativistic particle traveling into a counterpropagating linearly-polarized electromagnetic pulse.
From this formula, we deduce that if we restrict ourselves to the first harmonic and are free to
choose any combination of normalized vector potential ay and electron Lorentz factor y we like,
There is an optimal ap that gives the maximum spectral intensity peak for a given output and
input frequency. Beyond a certain point, it is futile to obtain greater monochromatic (by which
we mean 0.1% bandiwidth) output by increasing the intensity of the incident laser pulse. Instead,

the amount of charge in the bunch or the number of cycles in the laser-electron interaction must
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be increased. Our approximate theory also concluded that the maximum spectral intensity at a
given output frequency is always obtained with the first harmonic. This is no longer true when
nonlinearities are taken into account, as we show by computing the radiation spectrum of a
particle interacting with a Gaussian-pulsed plane wave in Fig. 6-12: higher-harmonics may
indeed be useful in achieving higher peak spectral intensities.

We used the analytical formulas we derived for synchrotron radiation and inverse Compton
scattering to benchmark our radiation code. We also discussed the implementation of different
algorithms: one involving solution of the electrodynamic equation in retarded time and linear
interpolation, another solution of the electrodynamic equation in retarded time and cubic spline
interpolation, yet another solution of the electrodynamic equation in advanced time and no
interpolation required. Each approach has its advantages and disadvantages, which we also
discussed.

Finally, we studied the scattering of an optical laser pulse off an electron bunch under
different degrees of laser focusing. The incident pulse is a 1 pm, 10-cycle pulse with a peak
power of 0.55 TW. In each case, we compare the results obtained using the exact pulse solution
with those obtained using an ideal pulsed plane wave of the same normalized vector potential a.
From our results, we conclude that for an actual laser pulse to approximate an ideal plane wave
as far as the radiation spectrum of an electron bunch in nonlinear Thomson scattering is
concerned, the beam waist width of the laser focus should be at least an order of magnitude
greater than the transverse width of the electron bunch. Tight-focusing causes electrons at
different transverse locations of the bunch to experience a substantially different ag, leading to
weak emission over a large range of inclination angles at photon energies associated with the on-
axis ay, due to the relatively small size of the part of the bunch that experiences an gy close to the
on-axis dayg.

Future work includes a more comprehensive characterization of coherent x-ray generation
via inverse Compton scattering with an exact pulse solution in vacuum under various focusing
and pulse duration conditions. Since (6.38) tells us that the maximum spectral intensity is
proportional to g°ax for fixed interaction length (which scales as Nwy) and output frequency,
where ¢ is total charge and ay the input frequency, it appears beneficial to consider lower input
frequencies. This is because the increase in the amount of charge that can be accommodated at a

lower frequency is likely to more than offset the intensity's proportionality to . This prompts

150



us to look more closely at nonlinear Thomson scattering schemes using incident Terahertz pulses,
which has been proposed before [HFM*11]. As intense coherent electromagnetic sources become
available at an increasing number of places in the electromagnetic spectrum, a study pertaining
to the optimum input frequency for nonlinear Thomson scattering given a fixed amount of charge

in an electron bunch will also be highly relevant.
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Appendix A

The objective of this appendix is to derive and discuss the properties of (2.5) as an equation

with yf as the unknown. For convenience we reproduce (2.5) here:
Y=10, =G, (A.1)

where y = (1 + (38)*)"2. G is in the most general case a function of given parameters ag, y, ys, Spn
and f;, and will be treated as a constant parameter for our purposes here. Physics requires that y,
vB. G, Pph €%, y =1 and IBl < 1. As the particle approaches the speed of light, Bl — 1 = y —. Recall
we have assumed that B, > 0, without any loss of generality in the physical problem. We plot the

expression y — yBf;n as a function of yB for various values of By, in Fig. A-1.
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Fig. A-1: Plots of y — yffs as a function of yf for the various values of S, indicated in the
legend. The inset zooms into the plot near the origin so that the minima of the curves

corresponding to Sy, < 1 are more easily seen.

Several features are immediately evident from Fig. A-1:

1. Regardless of B, the curves become asymptotically linear when Iygl >> 1. This is obvious
from (A.1) since y — yffon = pB(1 = Pon), y8 >> 1 and y — yBBon = —yp(1 + Ppn), yf << —1.
2. A curve that corresponds to Sy, < 1 has a minimum which occurs at £ = By, y — pBfpn = (1 -

ﬁphz)uz_ This is easily proven mathematically by taking derivatives of y — yBB,n with respect

to yp.
3. For Bon = 1, y — yBfpn — 0 as f — 1. Otherwise, y — yBfpn > 0. y — yBfpn is a strictly
decreasing function of yf for finite yf.

4. For fpn > 1, y — yBf,n spans the entire range of K, and is a strictly decreasing function of yf.

It is straightforward to solve (A.1) as a quadratic equation. We get

"= (Gﬂph B +G’ —l)r,fh, B #1, (A2)
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The case for Bn = 1 may be solved separately (we get exactly one solution for a given G) and
is not complicated so we do not address it here. We need to verify that the results in (A.2) are

solutions to (A.1) by inserting (A.2) into (A.1). Doing so gives

Bon v pzh +G*-1% G‘ - }/phzﬂph (GIBph ty pzh +G? - 1), (A.3)

Y- }ﬁﬂph = 7ph2

where the choice of sign corresponds to that in (A.2). The right side of (A.3) evaluates to G if the
inserted yf is a solution of (A.1).

When fpn < 1, ﬂph(ﬂph2 +G* - 1)”2 < G and we see that (A.3) yields G for either choice of
sign. Hence, every physically valid choice of G yields two solutions for 8, the solutions being
identical if and only if ﬂph2 +G?—1=0. This agrees with the observation about Fig. A-1 made in
Point 2 above. Since the minimum occurs at # = f, we are guaranteed that 8 = B, in the case of
one distinct solution. In the case of two distinct solutions, we are guaranteed that 8 < Sy, for the
choice of “~ and f > Sy for the choice of ‘+” in (A.2). This fact has been used to determine the
correct values of § in (2.20), which gives the final normalized momentum of a particle under
maximum acceleration conditions, for the different scenarios.

When B, > 1, however, ﬂph(ﬁphz +G* - 1)'?> G and (A.3) evaluates to G only for the choice
of “=". Also, ,Bphz v+ G-1> 0, so a solution always exists. Hence, we have exactly one solution

when S, > 1, which is reflected in Point 4 on Fig. A-1 above.
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Appendix B

~ The objective of this appendix is to prove the following statements made about the separatrix

minimum in Sections 2.2.3 and 2.3.2:
1. For constant B, the separatrix minimum decreases as ao increases
2. For constant ao, the separatrix minimum decreases as S increases for 0 < ¥nfn < go, and
increases as S, increases for %non > ao, so that for given ay, the least separatrix minimum
possible occurs when ¥n8on = ao.

Note that we assume without loss of generality that By, > 0, ap > 0. For given S, and ay, the

formula for the separatrix minimum is given in (2.13) as:

()ﬁ)sep min }/phﬁph (2 7phﬂphaﬂ + 1) - }/ph \/47/phﬂpha0 Jyphﬁphao + l : (B ' 1)

Taking the partial derivative of (B.1) with respect to ay, we have:

P YonBono +1/2
2 (B =2y, B F-2 — T
8a0 (}ﬁ)“""““ (yphﬁp )2 L m{ \/a\/yphﬂphao +1

\/ 7phﬂplla02 +a,+ 1/ 47’ph18ph
\/ 7phﬂpha02 +a,

= 2(7phﬂph)2 - zyphzﬂph (B2)

< 2}’ph2prh (ﬂph - 1)< 0.

This proves Point 1 above (that for constant S, the separatrix minimum decreases as ap

increases).

Next, we take the partial derivative of (B.1) with respect to ¥%n/f5on:
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d
A(B),

()ﬂ)sup min 4“[}(%6)1,h e K 2ﬂph\/(7ﬁ)ph a, \/(}ﬂ)ph a, +1

 Vaao 0Bt + 1 Vo /0B, (B.3)
\](}ﬂ)ph \/(}ﬁ)pha[,+1 '

The sign of this expression is plotted over a large range of ay and ¥/ in Fig. B-1. From the
plot, and the fact that (B.3) is continuous in ag and ¥/, we infer that there is a zero-crossing at
YoulBon = ao. We can directly verify this by making the substitution in (B.3). From the sign on
either side of the zero-crossing, we can also tell that this turning-point is a minimum in Jn/5m

(note that ayg is constant and /4, is the variable in question here). These observations allow us

to confidently infer Point 2 above, even though a rigorous mathematical proof is not given.

-2 0 2
log, \(a)

Fig. B-1: Color map of the sign of the expression (B.3) as a function of ay and JSBn. Red

denotes positive, blue negative and white (numerical) zero.

When ¥%nfBn = ao, the separatrix minimum is the least it can possibly be for fixed ay. Its value

is then

(Jﬂ)scp min min = —a(l * (B4)

156



Appendix C

The objective of this appendix is to derive formulas for the paraxial electromagnetic fields of
the radially-polarized Laguerre-Gauss (LG) vacuum modes without azimuthal variation, as well
as formulas for properties like peak power and second irradiance moment of these beams. We
will denote a LG beam with no azimuthal variation in vacuum using the symbol TMy,, where p
gives the order of its radial variation. A general LG beam in vacuum is denoted LGy,, where [
gives the order of its azimuthal variation (LGg, is thus synonymous with TMg,). We do not
consider beams with azimuthal variations for particle acceleration since the lack of continuous
rotational symmetry in the transverse plane (being the x-y plane in our choice of coordinate
system) makes the beams unlikely candidates for effective acceleration of particle bunches along
the beam axis. We thus treat only the TMg, beams here. To benefit a more general audience, this
exposition assumes a reader not familiar with solving Maxwell’s equation in vacuum. The reader

may also skip to Section C.4 for a summary of the formulas derived here.

According to Maxwell’s equations, the electric field E and magnetic field H evolve in

vacuum as

V-gE=0

V-H=0

Vo Ol | (C.1)
ot

Vxﬁ=a€—°E
ot
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where £, and g, are the vacuum permittivity and permeability respectively. As described in any

standard electromagnetics text (e.g. [Jac75]), the solutions for E and magnetic flux density

—

B= ,uoﬁ may be expressed in terms of vector potential A and scalar potential @ as

F=-2_vo
B

ot (C.2)

=VxA

»

This is readily verified by substituting (C.2) into the second and third lines of (C.1), namely,
Gauss’s law for magnetism and Faraday’s law respectively. Substituting (C.2) into the first and

last lines of (C.1) — namely, Gauss’s law and Ampere’s law respectively — give partial
differential equations that are used to solve for A and & . Before we proceed to obtain these
equations, note that the same electromagnetic fields in (C.2) are obtained when we replace A

and ® by A' and P’ respectively such that

A=A+VV

, (C.3)
o=0-2
ot

where V is an arbitrary function of space and time. We partially remove this degree of freedom

by imposing an additional constraint on A and @ known as the Lorentz gauge:

1 0® -
——==-V-A, C4
c’ ot €4

where c is the vacuum speed of light: ¢= 1/ v €, . From the form of (C.4), one can see that the
Lorentz gauge is Lorentz invariant, meaning that Lorentz-boosting into a different inertial frame

of reference will transform A and @ into a different pair functions that will nevertheless

continue to satisfy an equation of the form (C.4). For a gauge that is not Lorentz invariant, such
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as the Coulomb gauge (V-A=0), the gauge is fixed in one inertial frame of reference, but
changes in form when one moves to a different frame. Under the Lorentz gauge, V in (C.3) must

satisfy the additional constraint

2
\%% —iza—‘,/=0, (C.5)
c¢” ot
which results from substituting (C.3) into (C.4). To obtain the partial differential equations that

can be solved for A and @, we substitute (C.2) into the first and last lines of (C.1) and simplify
the result using (C.4) to get

-
V%—%aa j‘ =0

C1 ach (C.6)
vie-—2 = -9

c? or?

A valid solution for A and & must satisfy both (C.4) and (C.6). Fourier transforming into the
frequency domain, (C.4) and (C.6) become

=0, (X))
0

where k = @/c and the tilde (~) sign above any variable denotes the Fourier transform of that

particular variable.

C.1 The paraxial wave equation

It is relatively complicated to obtain analytical solutions for a focused laser beam satisfying

(C.7) (although we do undertake this in Appendix E, following the approach of [Apr10]). It pays
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to see if we ‘can simplify (C.7) into a differential equation for which analytical solutions are

readily available. Let the vector potential A be polarized in one Cartesian direction, say, the z-

direction;

—_

A=AZ=A "3, (C.8)

where n=a —kz+y,, ¥, being a phase constant, and we have set A= A, with the
intention of treating A, as a time-independent envelope that varies slowly with z compared to

the carrier factor e'”. The time-independence of Ay, simply means that (C.8) is a CW solution.
We will broach the matter of converting CW solutions of laser beams into pulsed solutions under
the paraxial wave approximation in Appendix D. The assumption that A,, varies slowly in z has

been argued to lead to solutions that closely approximate the electromagnetic fields of a weakly-
focused laser beam (see [Hau84] or any standard optics text).

Putting (C.8) into the second line of (C.7), we obtain

9 9 &
( dz

., 0
e + 8y2 + Bzszoz —21k—A'¥Z— =0. (C9

Since Zo; is assumed to vary slowly in z, it is often assumed in what is known as the paraxial

wave approximation that [Hau84]

0°4y,| __|, 94,
Z 2k —2&, C.10
Eahnra (10
which simplifies (C.9) to
3 ¥ A,
o+ 2 A, -2ik %o g, C.11
(aﬁ s ]A‘k " x 1D
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(C.11) is a very pleasing result because it is simply a two-dimensional Schrodinger equation
in free space (with z in place of t), which has been studied to a great extent in nonrelativistic
quantum physics. One of the most well-known solutions to (C.11) is the Gaussian beam.
Although the Gaussian beam solution has enjoyed a lot of popularity as a model for the free-
space propagation of weakly focused laser beams, it should be noted that the Gaussian beam in
fact grossly violates (C.10) at certain points in space away from the beam axis, regardless of
focusing, as we show in Section 3.1. Throughout this thesis, we have used the Gaussian beam
solution only to model on-axis electrodynamics, and have moreover taken care to ensure that on-
axis fields of paraxial beam agrees with those of the exact beam (derived in Appendix E) in our
regime of interest (c.f. Section 3.1). The use of the Gaussian beam solution to model free-space
electrodynamics away from the beam axis has been argued to be unreliable even for a weakly-
focused beam [MVP13].

Once a solution to A. is obtained, we may derive the electromagnetic field of a radially-

polarized laser beam via (C.2) as

E‘ - _ﬁ)eir]|:f a-A‘(): i 2[_ 21k aA(): - a-A?: Jj|

k* droz dz 07"
@ ipl 94, |, 0A,
~ @ in| 9% | 55 Oy . C.12
ke [r or t dz g !
_ ~ o OA
B = —ge'7 %o
g or

All that remains to obtain the real electromagnetic fields of a radially-polarized beam is to

solve (C.11) for A,_ and then take the real part of (C.12).

C.2 Radially-polarized Laguerre-Gaussian modes in free space

A cylindrically-symmetric solution to (C.11) is the Laguerre-Gaussian beam:
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A &@m{

=Ab"m{

= =

] L,2p* 1 f P)(fp)e™
i (C.13)

P
Jﬁ@ﬁvhJ=

."‘h‘m

where f=i/(i+2/z,). z, is the Rayleigh range of the fundamental mode (this physical
interpretation of z, is justified by the result for the second irradiance moment computed in C.3)
and p=r/w,, with w, related to z, by gz, Ekwn2 /2. L’P(x) is the generalized Laguerre

polynomial, which is given by the Rodrigues equation:

+i)
L! = m p wi . C]4
h(-x) mz”( (p_]n)|([+’n)"n!.l ( )

The derivatives of (C.13) (for [ = 0) relevant for evaluating (C.12) are

P 4, (e {i] (@J(_ L+2f'L)

dar ¥ Wo
) , (C.15)
aipf-=A0(fe—ﬁﬂz{-?{} .L|: (]— fo +2pf) L4p’f _lf Iz}

where L=L (2p* 1 fF), L'=dL) (x)/dx | =—L, ,(2p* | fF). A, is a scaling factor that

=2p°If
may be taken as a real positive number without any loss of generality. We now proceed to derive
formulas for the peak power and second irradiance moment of the beam.

C.3 Beam properties

Peak power P is given by
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jRe )Re(B, Jrdr

2
] rdr
=0

j[sz(, # (- 122p?)-2L, 20" pap

p=1=0

_ 2me I Re [BAU

2nc

:FE,‘CA(]BE"[L () +AL (0L, () +4L (x)]dx
0

To proceed, recall the three-point rule
L’,,(X) = L’,f' (x)— U,'f_l, (x),
and the Laguerre polynomial orthogonality relation (for integer /, m and n)

(n+1)
n!

m

In e’ (DL (Hdr=

We then have

p=2%T " A, e 107 (x)dx

Hy

:7[_0‘4{}2(219_{_1)

“(l

where the second equality is due again to application of (C.17) and (C.18).

A, as a function of P:

_ HoP
A nc(2p+1)°

(C.16)

(C.17)

(C.18)

(C.19)

We may also write

(C.20)
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The second irradiance moment <r3> of a beam is often used to measure the tightness of its

focusing:

[Jaais.),
)= angs),

_ W, 'L (L“ (x)+ 2Ll,_,(x)):dx
2 [Txe (L o+2L (ofax | 655
W -, I
=2(2—;+T)L e (Li(x)_Li_g(x)) dx
_(pPape)

@2p+1) °°
where the angular brackets with subscript t refer to a time average, S. is the Poynting vector

S =ExH in the z-direction, and we have again used (C.17) and (C.18) in our derivation. For p
= (0, the second irradiance moment is simply wnz, lending physical significance to w, as the

waist radius of the beam.

C.4 Summary of formulas for radially-polarized Laguerre-

Gaussian paraxial beams with no azimuthal variation

Here we give a summary of the salient formulas used or derived in this appendix. Consistent
with the paraxial wave approximation (C.10), we found the electric field E and magnetic flux

density B of a radially-polarized beam to be given by

el
U

L@y [ BAO 57 9y }
. (C.22)

oot
Il

Q.J
3
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where @ is the CW angular frequency, k = @/c and 7= a —kz+y, . The partial derivative

expressions corresponding to a Laguerre-Gaussian beam with no azimuthal variation are given

by

M. - p (e {L} [ij(— L+2f°L)

? B b W,
, (C.23)
e (e (iJ i{iL(l —for+2pf )= Lap 0 S F}
9z f 2y <y
where L=L (2p° 1 f ), L'Edlf:,(x)/dxlrzzp_,mg =-L_2p*1fF). f=ifli+z/z,), z, is the

Rayleigh range of the fundamental mode and p = r/w,, with beam waist radius w, related to z,
by z, = kw[,2 /2 . L’p(x) is the generalized Laguerre polynomial, which is given by the Rodrigues

equation:

L[,,(-’C) e i(_])m (P + t)' xm .

C.24
m=(0 (P _m)'(l + m)'ln‘ ( )

The constant parameter A, is used to set the peak power P via the relation

P
= /* . C.25
i nc(2p+ l) { )

Finally, the second irradiance moment, which may be used to compare the degree of focusing

between beams of different orders, is given by

5 _(p2+p+l) 5
(r')= 2p+1) O o
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True CW operation is impossible in reality since a CW beam contains infinite energy
(although of course a CW approximation can be very accurate when the actual pulse duration is
very long). Appendix D discusses how to construct a pulsed solution from a paraxial CW beam

solution without resorting to a complicated inverse Fourier transform.
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Appendix D

The objective of this appendix is to show how to construct a pulsed solution from a paraxial
CW beam solution, and to derive an approximate formula relating pulse energy to peak pulse
power and pulse duration. The results of this appendix apply to any paraxial beam, not just the
radially-polarized Laguerre-Gaussian beams.

Our first task is to determine a pulse envelope for a CW beam solution of the paraxial wave
equation consistent with the paraxial wave approximation. Our derivation follows the procedure

in [Mac00]. To begin, consider the pulsed scalar potential

A=Ae"g(n), (D.1)

where 17 =@ — kz +y,, as before, and 7, = @ —kz +y,, with y, being some constant that we
can use, for instance, to control the initial pulse position z, by setting ¥, = kz,. g(n,) is the
pulse envelope which form it is now our goal to determine and A;_ is some function of space

(but not time) that satisfies the paraxial wave equation

g 9 0A,.
—2ik—22=0. D.2
{sz i dy’ JA‘” : 0z B2

In other words, (D.1) is simply (C.8) multiplied by a pulse envelope. The original wave

equation that A should approximately satisfy is
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1 9°A

ViA-——"=0, D.3
c’ ot ( )
Substituting (D.1) as an ansatz in (D.3), we obtain
. ¥ 2 dleg(m)]0A,,
i N IS 42 oI L=, D.4
"8 n )(Bf dy’ 9z’ JAO“ ' 0z 0z (=)

Applying the paraxial wave approximation (C.10) to remove the second derivative with

respect to z, we finally obtain

O L9\, 5 |, _.8'(m)
(axf“La_v?JA": > [l 'g(m)}

1l

0 (D.5)

where g'(7,)= dg(n,)/d 7, - (D.5) reduces approximately to (D.2) — and so (D.4) is approximately

solved — if the proposed form for g(n,) satisfies

g.(ﬂl)

<1, Vn. (D.6)
8(771)

As pointed out in [Mac00], (D.6) is arbitrarily well satisfied by a sech pulse

dlp)=se h[gj

é:in tanh[%‘]}

for a large-enough value of the parameter &, . This is not true for a Gaussian pulse:

(D.7)

<<1, Vp,

@
g(m)
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gg:tu:s (77] ) = exp{_ ZI__J
S
(D.8)

‘ sauss ﬂll 2771
ga.u“ | ‘fu

The second line of (D.8) is violated for values of 7, that are too large, which correspond to

the region in the wings of the pulse. Because of this, we are motivated to use a sech pulse
envelope to model our pulsed beam solution.
To convert the CW beam fields (C.22) to the fields of a pulsed beam, we simply multiply the

fields with the pulse envelope g(7,). This is consistent with (D.6) because it assumes that, when
(D.1) is substituted into (C.2), terms proportional to derivatives of g(?]]) are negligible compared
to those proportional to g(ﬂ]). To approximate the pulse energy in terms of peak pulse power P

and the pulse duration parameter d_’,"u, we write

U= [deffaas,
- { [drsec hz(r:iﬂ [[dA(S, cw), (D.9)

{Lﬂﬁziﬁ

w |2 )

which is consistent with our assumption that the carrier varies rapidly with respect to the pulse

envelope. S, is the Poynting vector in the z-direction and S, ., is likewise but computed from

fields with the pulse envelope removed. The pulse duration parameter & is related to the number
of cycles nipwnm in the intensity full-width-half-maximum (FWHM) of the pulse as
Diwid 3 56447, - (D.10)

B arcsechil. JE'
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In many of our simulations, we control our pulse duration parameter via the number of cycles
ngw in the half-width-1/e-maximum of the field FWHM instead, after the convention of

publications like [FPV10], so we have

Ry 2T

" arcsech(exp(-1))

~3.79091,, . (D.11)

Note that for a given &, nyy, and ngy,,, are by definition very close to each other, which

makes the choice of either convention for defining pulse duration a mere academic exercise for

most purposes.
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Appendix E

The objective of this appendix is to describe the procedure by which we compute the fields of
an exact pulsed beam solution to Maxwell’s equations in free space. In addition to what is
outlined in [Apr10], we also describe issues related to the numerical implementation of the field
solutions and how to overcome them.

We begin with the observation made in [Aprl0] that an exact solution to the Helmholtz

equation

VP 4+ k2P =0 (E.1)
exists in form
¥ = C, exp(—ka) S“I‘c(]f ) (E.2)

where R =+/r’ +(z+ia)’ , a is known as the confocal parameter, and Cy is a (possibly complex)

normalization constant used to determine the power of the beam. The factor exp(— ka), while not

necessary in solving (E.1), is essential in preventing (E.2) from blowing up for even moderately

large values of a.

E.1 Reduction to the paraxial beam scalar potential
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Before going any further with (E.2), we would like to verify that it reduces to the paraxial
beam scalar potential in the limit of large a. A rearrangement of the paraxial potential (C. 8)

(with (C.13)) for the fundamental mode (p = 0) gives

A=A, fe explin)

; k2 (E.3)
lZO 1 . ?
= ex expli
A°z+iz0 p(z(zﬂ'zn)) plin)
In the limit of large a,
R=yr*+(z+ia)f
2
= (z +ia) 1+( - j , (E4)
Z+1a
=~z+ia+ r
(z+ia)

where the last approximate equality involved a Taylor expansion of the square-root, assuming r
is small enough for this to be valid. Substituting (E.4) into (E.2) gives the exact-solution

counterpart to (E.3):

sin(k ~)
kR

exp| ik z+ia+—r—2~— —exp| -ik z+ia+———rz~—)
- k) P 2z +ia) p2 2z +ia)
2i(z +ia + n_’kJ
Az +ia) ,(E.5)

exp(ik[zz + 2(; ia))j exp(~ 2ka)- exp(z_(-z%j

2i(z +ia)

P expli(ar + v, ) = C, expli(a + v, ) - ka)

= C, expli(ax + v,

=~C, expliz7)

2

z& i ex —lﬂ(—r——ex (in)
2 G+ia) P 2z+ia))7F
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where the approximate equality in the second line involves approximating R as in (E4), the
approximate equality in the third line involves ignoring the r-dependence in the magnitude and
the approximate equality in the last line involves dropping the backward-propagating term,

which factor of exp(—2ka) makes it negligible compared to the forward propagating term for ka

>> 1, as is the case for a weakly-focused (i.e. paraxial) beam.
Except for a constant factor, the expression in the final line of (E.S5) is equivalent to that in
(E.3) when we set zg = a. We thus conclude that (E.2) reduces to the paraxial beam solution in

the limit of large a.
E.2 From CW potential to time-domain pulsed potential

We would like to construct a pulsed scalar potential in the time-domain from the CW
potential (E.2). We follow the recommendation of [Aprl0] in performing an inverse Fourier

transform with the Poisson spectrum. The inverse Fourier transform of the Poisson spectrum is

, (s +1) s

J: { (L]S+] @’ exp=s 0/ w,) o( w)} expliar)im= (1 _ iwotj“"“ ’ E6)

where the expression in the square brackets is the Poisson spectrum. s is a parameter related to

the pulse duration, @, the peak angular frequency of the spectrum, I'(-) the gamma function and

() the Heaviside step function. As noted in [Apr10],

. -s5-1 2
(1—“"0’) ~exp ————+igyt |, s>>1, (E.7)
§ 2s/ w,

which allows us to relate s to the number of cycles in the intensity FWHM of the pulse nipwnm as

2
s 2__..(”11?“;”) =~ 14240 " = (3.7 ) (E.8)
n
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The time-domain scalar pulse which frequency domain spectrum is proportional to the

product of the Poisson spectrum and the CW potential (E.2) is then

expli e e
W= ¢, 2 (1) (E9)
kR
where f, =1 —i(wotik0§+ik0a +§1/1), ¥, is the phase constant associated with the carrier-
s

envelope phase (much like in , Appendix C) and ¥, is a constant that can be used to control
the initial position of the pulse (much like in ¥, Appendix C). C, may be taken as a real

normalization constant.

E.3 From scalar potential to vector electromagnetic fields

From (E.9), we would like to obtain vector electromagnetic fields of our mode of choice.

Recall from Appendix C that in the Lorentz gauge,

1 9P

——==_V-.A

c? or

- 19%A

ViA-— =0, E.10
¢’ ot? ( )
1 9°d

Vip - — =0
c? or?

Since W(¢) is a solution of the wave equation, we may determine A and & by, for instance,

setting A = W(r)i where i is a unit vector in one of the Cartesian directions, and integrating for
® via the first line of (E.10). An alternative approach that avoids integration involves using the

Hertz potentials I1, and I1_, related to A and @ via the relation
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&=-V.1I

=

Lo, o o E1)
- a; +MOVXHm

A

Substituting (E.11) into the first line of (E.10), one sees that the Lorentz gauge is

automatically satisfied. Substituting (E.11) into the last two lines of (E.10) gives us wave

equations for I1_ and I1_:

V2, -iza;}e ~0
‘1 aztr”l . (E.12)
VI, —5—52=0
mooe? oo

Substituting (E.11) into (C.2) gives us the electromagnetic fields in terms of the Hertz

potentials:

E=VxVxII, -y, ag[“‘
!
o,
ot

(E.13)

H=VxVxII_+¢g,

To get the fields of a linearly-polarized pulsed beam, we set 1:Ic =¥(% and I1_ =0 to

obtain

2 2 2 2
E,=|-% az+a, +9a 39 |w
ay” dz° oxdy  0x0z

, , , (E.14)
Y
A, =|9e, 2 e, 2 |W

“’ [yg(’ oz ayat}
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To get the fields of a radially-polarized pulsed beam, we set IT, = ¥(#)2 and I1_ =0 to

obtain

. 3 .19( 9
PR A PR
Ear [raraz rar( or H
¢€o

, (E.15)

Note that higher-order generalizations of (E.2) would allow us to model higher-order vacuum

modes. Some of these solutions have been explored in [Apr08].

E.4 Circumventing numerical singularities by Taylor series

expansion

The presence of factors of l/ R in the analytical solution for the electromagnetic fields makes

a straightforward numerical computation of the fields challenging where R is close to 0 in

magnitude. To avoid numerical errors, the formula for W(z) that we use when R is close to 0

involves a Taylor series expansion of (E.2) about R = 0. Specifically,

Y(r)

=G [(wio] o } k =) R ) expliar)dw

r(s +1) L (@Qn+1)
)w 1 ,  (E.16)
S

" (o
"Z (,c’"“ 2n+1 Y ar

- CO 3 _,ZM_( l)n[zl"fl‘ (s+m)}f‘s‘2”‘2

s (2n + 1))

m=1

where f =1——1(w0t+ikoa+l//l). Note that we no longer have factors of 1/ R to deal with.
s

When asked to compute the value of a field at a certain point in space-time, our algorithm first
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tests to see if ’R ’ < £, where £is a value between O and 1 (a reasonable value is 0.5), and uses the

field formulas computed from (E.16) if ’ﬁ] < &. Otherwise it uses the field formulas computed

from (E.2).
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Appendix F

The objective of this appendix is to give a more thorough discussion of the electromagnetic
fields of a moving electron (5.4), as well as to present the space-charge formulas to which one
may reduce (5.4) if one may assume that the velocity of each electron changes negligibly enough

between the retarded time and the present time.

F.1 Electromagnetic fields of a moving electron

As in the main body of the text, let Ei(t, r) and Bi(t, r) be respectively the electric field and

magnetic flux density observed at time ¢ and position 7, due to particle i moving in vacuum.
These fields may be obtained via the Liénard-Wiechert potentials, which solve Maxwell’s

equations for a point charge moving in vacuum [1]. The observed electromagnetic fields are:

E(1.7)=-—1 1 40 L (F)x| i (?)x‘j—‘*‘l
v 4me, ”,%E(F)R;,?,.(F) 7,-2,7,.R-,;‘.(?) c| o ¢ (F.1)

where &, is the permittivity of free space, ¢ the particle’s charge and c the speed of light in

vacuum. r,, ¥

is °

2 172 . " .
/ CZT are respectively the position, velocity,

R,(F),

v, and 7’,-,3'—‘(1"";,5

acceleration and Lorentz factor of particle i at time s. I:’i,s(?)—z?—r. , R, ()=

t.s
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i, (r)=i, (F)-V,

is

c . (Fy=di/ds,

’

=1-i, (F)-V,, Je=i (F)-i, (F) and

~

fi=s
f,.’s(?) = IQM (7')/ Rm(?) is the unit vector that points from particle i's position at time s toward the
observation position 7. The term in (F.1) that falls off as the inverse of the inter-particle distance
Ri.?,. is known as the radiation field (far-field), whereas the term falling off as the inverse of Ri,;i2
is known as the velocity field (near-field).

Although our notation appears complicated, we prefer it when introducing (F.1) because it
makes the functional dependencies of every variable clear: 7, (¥), for instance, is simply read as

“the variable 77 corresponding to particle i at time s and observation point 7 ”. £ = £(t,7) is the

retarded time along particle i’s trajectory corresponding to observation time ¢ and observation

point 7. Given observation coordinates ¢ and 7, the retarded time 7 solves the implicit equation

(F.2)

In other words, the retarded time is defined so that the following is true: The difference between
the observation time and the retarded time is exactly equal to the time taken by light in the
medium to travel the éhortest distance possible (i.e. in a straight line) between the particle’s
position at the retarded time and the observer’s position. The reason the retarded time is not
equal to the present time ¢ is because light needs time to travel from one point to another. Fields
(note that we write “fields” instead of “radiation” because we refer to both near-fields and far-
fields, both of which need time to travel) arriving at 7 at time ¢ must have been emitted at an

earlier time by the particle. This earlier time is precisely the retarded time 7 that we seek. Fig.

F-1 illustrates the physical significance of several quantities in (F.1) and (F.2).
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Radiation emitted by j
at time 7 arrivingat 7 Observer
at time ¢ & L.r

Virtual
present
position of

v

tj"}.?j’ Jg Trajectory if particle’s particle j
Retarded velocity h%ld rt:mﬂint;zdd
s constant since retarde
position _Of L7 G timel
particle j A
Present

position of
particle j
Fig. F-1: Diagram illustrating physical significance of quantities defined in the text. At time t,
fields (including near-fields and far-fields) emitted by the particle (particle j) arrives at the
observer’s position 7. The time at which the particle emitted the field is known as the retarded

time.

Fig. F-1 introduces a new term: the “virtual present position” of a particle. This is simply the

position the particle would have occupied had it remained traveling at a constant velocity since
the retarded time in question. R, ; (F)iii_z (F)=R; (F)f”- (r)-v,; (R,.‘E_ (F)/c) then has the physical

significance of being the displacement of the observer from the virtual present position of
particle i. In the case where a particle really travels with a constant velocity, the present position
precisely coincides with the virtual present position. Note that in any case, the electric near-field
(the first term of the first line in (F.1)) points in the direction from the virtual present position

toward the observation position.

Because (F.2) must be solved implicitly for 3‘: , it may not be obvious that there is at most one

solution for 7, given observation coordinates (7,x,v,z). To see this, consider the function

3 7 —7(s) .

C C

(F.3)
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When f = 0 in (F.3), (F.2) is recovered (with s set to Z ). Solving (F.2) is thus equivalent to
finding the zero-crossing of f in (F.3). To prove that f has at most one zero-crossing — and hence
that (F.2) has at most one value of 7, corresponding to a given (¢,x,y,z) — it is sufficient to show

that the derivative of f with respect to s is never 0. This is done as

3i:—1+z°i’s(?)-i)'i(s)/c¢0 : (F.4)
s

where we know the derivative is never O since that would require the particle to travel exactly at
the speed of light in vacuum, which it never can due to its non-zero mass. From the way f is
composed of physical quantities, it is reasonable to assume that f varies smoothly and
continuously in s. If fis smooth and continuous and has no stationary point in s, f must be either

strictly increasing or strictly decreasing in s. This allows for at most one zero crossing. Note that

our proof did not use the fact that £ < ¢, which causality requires.
The fact that 7 has at most one solution for given (z,x,y,z) and given source particle i implies
that if we choose (z,x,y,2) to lie along the world line of this particle i, £ =t is the only solution

since £ =t is clearly one of the solutions. This has an important implication for computing
space-charge using (F.1) in vacuum electrodynamic simulations: (F.1) cannot be used to compute
the effect of electromagnetic fields emitted by a certain point particle on itself, since then

R, ; =0 and (F.1) predicts infinite electromagnetic fields acting on the particle. This is akin to

how it is nonsensical to use Coulomb’s law to predict the electrostatic force of a certain
stationary point charge on itself. The radiation reaction experienced by a particle when it radiates
must be taken into account by other terms in the electrodynamic equations.

In our simulations, when the computed R,; between two distinct particles is smaller than a
certain value (for electrons, this value may be chosen to be the classical electron radius, of about
2.82x10"°m), we assume that the affected particle experiences no forces from the source particle.

In other words, we consider the two particles to be part of a larger macro-particle for the

purposes of the computation.
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The total electromagnetic field observed at time ¢ and position 7 due to a particle bunch

moving in vacuum is given by

E@,7)= E (L7
_ f : F.5
B(t,F) =) B,(t.F) )

As we have mentioned, (F.1) includes both the near-field and the far-field, which are given
respectively by the first and second term in the first line. In simulating the inter-particle
interactions of a localized particle bunch, the far-field — which is proportional to the inverse of
the inter-particle distance R — is often insignificant compared to the near-field, which is
proportional to the inverse of R”. For greater computational speed, one may thus choose to drop
the far-field component of the calculation.

If the effect of the radiation field is insignificant and we assume that each particle always
travels at its present velocity during each time step, (F.1) can be simplified to a function of only ¢,
making (2.1) an ordinary differential equation and reducing the computation of inter-particle
forces considerably. The formulas that should replace (F.1) are then the space-charge formulas
obtained by Lorentz-boosting the Coulomb field of each electron from the electron’s rest frame

to the lab frame. These formulas are used in particle tracer programs like the General Particle

Tracer (GPT) [27].
F.2 Space-charge in the limit of a constantly-moving particle

It is possible to take inter-particle interaction into account while keeping the Lorentz force
equation as an ordinary differential equation if we make the approximation that each particle has
always been traveling at its present velocity at a given time step, and that the effect of the
radiation field is insignificant. This is done in many particle tracking algorithms including the
General Particle Tracer (GPT) [5].

In this case, to compute the force exerted on particle i by particle j, we transform into the rest
frame of particle j, compute the static Coulomb force that j exerts on i in this frame, and

transform this force back into the laboratory frame. This involves two Lorentz boosts: one into
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the rest frame of j and one back into the laboratory frame, for each particle j. Let i be located at
observation point (¢,7) in the laboratory frame. The electromagnetic fields that i experiences due

to j are then

) (F.6)

where all non-primed variables are evaluated in the laboratory frame (at time #) and all primed

variables are their Lorentz-transformed counterparts in the rest frame of particle j. Eij' is the

2 ~1/2
) .In

static Coulomb field that j exerts on i in the rest frame of j, 8, =V,/c and ¥, = (l - kB ;

the rest frame of j, we have

7~ T q;;j
! 41180‘?;1."“
(F.7)
7' = )3
o= i (=
’;]_’;j+},j+l(’;'j" j)ﬁj
where r, =7 -r,(1) = R N(F) is the displacement vector pointing from the position of j to that of i

at time ¢. To see that (F.6) and (F.7) give precisely the electromagnetic fields in (F.1) and (F.5)

when the particles are assumed to travel at velocities that are constant in time, we simplify (F.1)

for the case of a single particle j traveling at v, for all time and acting on a particle i located at

observation point (7,7):

o 3]

. 1
i
P2 li- (5,158, /e[

E(,7)=—1——
41t£OIr,.j

(F.8)
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Note that all variables of particle j in (F.8) are computed at the observation time t. Fig. F-2

illustrates some of the relevant variables used in (F.7) and in deriving (F.8).

particle / at time ¢, position 7

particle j at

- particle j at time ¢
retarded time 7;

Fig. F-2: Schematic illustrating the physical significance of quantities used in (F.7) and (F.8).

Particle j travels at constant velocity v, and its fields act on particle i.

We can re-write 7,'in terms of 6, and r; as

r'=lr l(fc sind, +7y, 0056’,) ; (F.9)
where Z and X are orthonormal basis vectors such that Z points in the direction of particle j’s

travel and X lies in the plane of both particles, as defined in Fig. F-1. Substituting (F.9) into (F.6)
and (F.7) for a single particle j acting on i gives us

Baiy=y,—T__y 4 z
) = i FE — i 3 *
f47f€0|ru" ! 4ne, |:|;‘~U|yj\/1—(l17jlsin9,’/c)z:|

(F.10)

which is precisely (F.8). To see that the magnetic fields in (F.6) and (F.1) are also consistent,
note that

3} 4t F.11
AR ¢ FLY
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The first term of (F.11) is parallel to E in (F.10), whereas the second term of (F.11) is parallel to

the second term of E within the summation in (F.6). As aresult, we have

- ~ v, - B.XE,'
1ij ;_(?)xE(t,F)=—l——’x(7jEij')=—7—"~B—’———L : (F.12)
c cC [o}

The left-hand side of (F.12) is the expression for B given in (F.1), whereas the rightmost side of

(F.12) is the expression for B (associated with particle j) given in (F.6). Using (F.6) and (F.7) to
approximate the inter-particle forces is thus equivalent to using the exact formulas (F.1) and (F.5)
under the assumption at every instant in time that the particles have been travelling at their

respective instantaneous velocities for all time.
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List of Acronyms

RF Radio-frequency

CW  Continuous-wave

THz  Terahertz

™ Transverse-magnetic

TMo, Transverse-magnetic mode of azimuthal order O (i.e. no azimuthal variations) and radial
order p

LG Laguerre-Gauss/ Laguerre-Gaussian

LGy,  Laguerre-Gauss mode of azimuthal order / and radial order p.

FWHM Full-width-half-maximum

FFT  Fast Fourier transform

FEL  Free electron laser

ICS Inverse Compton scattering
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Partial List of Symbols

Ey Electric field amplitude
& Permittivity of free space
Y Carrier's total phase

Wo Carrnier phase constant

q Charge

m Mass

w Angular carrier frequency
A Wavelength in vacuum

k Magnitude of wavevector

c Speed of light in vacuum
Particle speed normalized to ¢

14 Relativistic Lorentz factor

DBon Phase velocity normalized to ¢

% Relativistic Lorentz factor of a particle moving at normalized speed By

K Kinetic energyof a particle moving at normalized speed S,

do Field vector potential, ap= gEy/(mcw,

Gly) a,pB, (siny —siny, )+ (- 188 o )S , where subscript s denotes initial
conditions

H Hamiltonian

P Peak pulse power

Wo Beam waist radius

20 Rayleigh range (zo = nwo*/4)
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dadQ2

Vacuum impedance

Pulse duration parameter (proportional to pulse duration)
Kinetic energy of particle

Protracted collision position

Mean of variable x

Standard deviation of variable x

Number of interaction cycles in nonlinear Thomson scattering

Critical frequency of synchrotron radiation

Spectral intensity of nonlinear Thomson scattering radiation in J/(rad/s)/sr
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