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D. Yeaton-Massey,1 S. Yoshida,94 M. Yvert,4 A. Zadrożny,27e M. Zanolin,72 J.-P. Zendri,64c F. Zhang,46 L. Zhang,1

C. Zhao,33 N. Zotov,89 M. E. Zucker,23 and J. Zweizig1

(LIGO-Virgo Scientific Collaboration)

1LIGO-California Institute of Technology, Pasadena, California 91125, USA
2California State University Fullerton, Fullerton, California 92831, USA

3SUPA, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
4Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie,
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5bUniversità di Napoli ‘Federico II’, Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy
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Compact binary systems with neutron stars or black holes are one of the most promising sources for

ground-based gravitational-wave detectors. Gravitational radiation encodes rich information about source

physics; thus parameter estimation and model selection are crucial analysis steps for any detection

candidate events. Detailed models of the anticipated waveforms enable inference on several parameters,

such as component masses, spins, sky location and distance, that are essential for new astrophysical

studies of these sources. However, accurate measurements of these parameters and discrimination of

models describing the underlying physics are complicated by artifacts in the data, uncertainties in the

waveform models and in the calibration of the detectors. Here we report such measurements on a selection

of simulated signals added either in hardware or software to the data collected by the two LIGO

instruments and the Virgo detector during their most recent joint science run, including a ‘‘blind

injection’’ where the signal was not initially revealed to the collaboration. We exemplify the ability to

extract information about the source physics on signals that cover the neutron-star and black-hole binary

parameter space over the component mass range 1M�–25M� and the full range of spin parameters. The

cases reported in this study provide a snapshot of the status of parameter estimation in preparation for the

operation of advanced detectors.

DOI: 10.1103/PhysRevD.88.062001 PACS numbers: 04.80.Nn, 04.25.dg, 95.85.Sz, 97.80.�d

I. INTRODUCTION

General relativity predicts that binary systems of
compact objects lose energy through the emission of
gravitational radiation, a prediction confirmed through
binary-pulsar observations [1–3]. During this process
they emit a characteristic ‘‘chirping’’ gravitational-wave
(GW) signal of predominantly increasing amplitude and
frequency. For neutron stars and black holes the signal
enters the observational band of the initial (at 40 Hz)
and advanced (at 10–20 Hz) ground-based laser-
interferometric detectors (e.g., Refs. [4–6]), sweeping
through the detection band for a few seconds (depending
on the masses of the objects) until coalescence.

The search for GW signatures of compact binary coales-
cence in LIGO’s most recent sixth science run and Virgo’s
science runs 2 and 3 is described in Refs. [7,8]. No detec-
tion was reported. However, the operation of advanced
instruments—Advanced LIGO and Advanced Virgo—
from 2015þ [6,9,10] suggests that the coalescence of
compact binaries could be observed in the not too distant
future [11]. Once a detection candidate has been identified,
the next step in the analysis is to measure the source
parameters and test models that describe the underlying
physics. This step is critical for enabling studies in astro-
physics and fundamental physics in which GW observa-
tions are expected to provide a new view of relativistic
phenomena. One of the signals studied in this work
represents an end-to-end test of this process: a detection
candidate was identified with a false alarm rate of 1 in
7000 years (1:4� 10�4 yr�1) [7] and was fully character-
ized in terms of its physical properties before it was
revealed to be a ‘‘blind’’ hardware injection, i.e., a simu-
lated signal added by coherently actuating the mirrors

of the LIGO and Virgo detectors, without the knowledge
of the data analysts [12].
The ability to accurately estimate the parameters

of coalescing binaries—including the masses of the
components, their spins, the location of a binary on the
sky and its distance, and the implications for new insights
into the underlying physical processes—have been at the
center of several studies. Accurate measurements of the
masses provide information about the mass distribution of
(binary) black holes and neutron stars, clues to determining
the maximum mass of neutron stars (e.g., Ref. [13]), the
underlying neutron star equation of state, the minimum
mass of stellar-mass black holes and the presence or ab-
sence of the so-called ‘‘mass gap’’ [14–16]. Spin measure-
ments are a direct window onto the critical stage of
common envelope evolution, and the details of the super-
nova processes and kicks. Localizing the merger of
compact binary systems on the sky may permit the identi-
fication of the host, and therefore an opportunity for
in-depth studies of the environments in which compact
binaries form (e.g., Refs. [17–22]). If the localization
region in the sky is sufficiently small, a possible electro-
magnetic counterpart could be found and multimessenger
studies of coalescing compact objects would become
possible (e.g., Refs. [23–25]). For instance, the question
of whether compact binaries are the progenitors of short
gamma-ray bursts could be definitively answered. The
direct determination of the luminosity distance to the
source opens new possibilities for low-redshift cosmogra-
phy. In general, coalescing binaries are a laboratory for
tests of the behavior of gravity in the strong-field regime.
Eventually, when multiple detections are available, studies
of source populations will be possible (e.g., Refs. [26,27]),
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as well as more stringent tests of the underlying source
dynamics [28,29].

Most of these studies use theoretical estimates of
parameter uncertainty based on the Cramer-Rao bound
[30], which should be valid in the limit of high signal-to-
noise ratio (SNR). Initial detections may be too weak for
this bound to provide useful guidance. Therefore, a com-
plete Bayesian analysis like the one described below must
be used to quantify parameter uncertainties. Other studies
have relied on injections into synthetic data. In this paper,
we will use injections into real data, which introduces a
new set of challenges, including non-Gaussianity and
nonstationarity.

The fact that gravitational waveforms used in the analy-
sis are an approximation to the actual radiation produced by
astrophysical sources and that the measured strain is af-
fected by the uncertainties in the instrument calibration
[31–33] represent additional challenges for making robust
inferences on the underlying physics. To study parameter
estimation in this regime, we have analyzed several artifi-
cial compact binary coalescence (CBC) signals added to
real detector data, including the ‘‘blind’’ injection
described above, added both in hardware and software to
the data collected by the two LIGO instruments (Hanford
and Livingston) and the Virgo detector during the most
recent joint science run, S6/VSR2-3. The use of injections
has been, and continues to be, an essential means to
validate the detection process, and as we report here, has
been naturally extended to the source-characterization
stage of the analysis. Here we exemplify the ability to
extract information about the source physics on a selected
number of injections that cover the neutron-star and black-
hole parameter space over the component mass range
1M�–25M� and the full range of spin parameters. We
consider a spectrum of realistic signal strengths, from
candidates observed close to the detection threshold to
high-SNR events, and various relative strengths across the
instruments of the network. We analyze the signals using a
range of waveform models that demonstrate the interplay
between (some) systematic bias and statistical uncertainty.
To help validate our results, we carry out the analysis with
several independent techniques; these are implemented
within a specially developed software package part of the
LSC Algorithm Library, LALINFERENCE [34].

The paper is organized as follows. In Sec. II we give a
brief overview of the analysis method. While no detections
were claimed in Ref. [7], simulated signals (‘‘injections’’)
were added to the data, both at a hardware level as the data
was being taken and in software afterwards. The hardware
injections were performed to validate the end-to-end
analysis, including parameter estimation on detection
candidates, whereas the injections in software serve as a
useful comparison, free of any calibration error in the
detectors. Here we report on the analysis using six hard-
ware and software injections, including waveform models

for binary neutron star (BNS), neutron star–black hole
binary (NSBH) and binary black-hole BBH) simulations,
described in Sec. III. One of these hardware injections was
performed without the knowledge of the data analysis
teams as part of the ‘‘blind injection challenge’’; it was
successfully detected, as reported in Ref. [7]. We use these
injections to illustrate the possible implications for GW
astronomy in Sec. IV, and we conclude in Sec. V.

II. ANALYSIS

A. Bayesian inference

Each data segment containing an injected signal was
analyzed using a Bayesian parameter estimation pipeline
to calculate the probability density function (PDF) of
the unknown parameters of the waveform model. We will

call ~� the vector containing these parameters. The actual

content and dimension of ~�, i.e. the dimensionality of the
parameter space, depend on the waveform model used for
the analysis (see Sec. II B).

The posterior distribution of ~� given a model H is given
by Bayes’ theorem,

pð ~�jfdg; HÞ ¼ pð ~�jHÞpðfdgj ~�; HÞ
PðfdgjHÞ ; (1)

where pð ~�jHÞ is the prior distribution of ~�, describing
knowledge about the parameters within a model H before

the data is analyzed, and pðfdgj ~�; HÞ is the likelihood
function, denoting the probability under model H of

obtaining the data set fdg for a given parameter set ~�.
The likelihood is a function of the noise-weighted resid-
uals after subtracting the model from the data, and is
thus a direct measure of the goodness of fit of the model
to the data.
The optimal network SNR is defined as

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

det

Z fHigh

fLow

jsdetðf; ~�Þj2
SdetðfÞ df

s

; (2)

where the sum is taken over each detector det with sdet the
signal in that detector and SdetðfÞ its noise power spectral
density (PSD).
Our model for the likelihood function is based on the

assumption that the noise is stationary and Gaussian, and
uncorrelated in different frequency bins. Although we do
not expect this assumption to be precisely true for real
detector noise, limited investigations suggest that this is
an acceptable approximation when the data is of good
quality [35].
The denominator of Eq. (1), PðfdgjHÞ � ZH, is the

evidence for the model H. As it is a normalization
constant, the evidence does not affect the estimation of
the parameters for a particular model H, but it does
allow us to compare the ability of different models to
describe the data. The Bayes factor between two models,
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which quantifies the relative support given to each model
by the data, is given by

Z1

Z2

� PðfdgjH1Þ
PðfdgjH2Þ ¼

R
� pð ~�jH1Þpðfdgj ~�;H1Þd ~�

R
� pð ~�jH2Þpðfdgj ~�; H2Þd ~�

; (3)

where H1 and H2 represent the two different models and
~�, ~� their respective model-parameter vectors. The
parameter spaces can be completely unrelated, even of
different dimensionality, which allows us to compare
models which range from nine parameters in the case
of nonspinning systems, up to 15 in the case of a system
with two spinning components. Throughout we will
quote evidence relative to the Gaussian noise model,
ln ðZÞ ¼ ln ðZHÞ � ln ðZGaussianÞ.

The high dimensionality of the parameter space and the
complicated structure of the likelihood function make it
impractical to exhaustively calculate posterior quantities.
Instead we rely on stochastic sampling of the posterior
PDF, which provides us with an approximation of the
underlying true distributions, e.g. by binning the samples
to produce histograms. The analysis was performed using
LALINFERENCE [34], which allows calculation of the prior,

likelihood and templates using standardized functions.
Because accurate sampling of the posterior PDF is a
difficult task, we used two independent sampling
algorithms on all but a few cases, cross-comparing results
to confirm convergence. These were based on Markov
Chain Monte Carlo (MCMC) [36,37] and nested sampling
[38] techniques, and were included in the LALINFERENCE

package. We found good agreement between the two tech-
niques, giving us confidence in the results. For a sample of
the cases we used a third algorithm, MultiNest [39], as an
additional check. The nested sampling and MultiNest al-
gorithms directly produce an estimate of the evidence [40];
we also computed the evidence from MCMC results using
direct integration [41].

B. Waveforms and source parameters

Unless otherwise specified we shall use a system of units
in which c ¼ G ¼ 1. The waveform as measured at a
generic detector can be written in the frequency domain
as [42]

sðf; ~�Þ ¼ ½Fþð�; �; c Þhþðf; ~�0Þ
þ F�ð�; �; c Þh�ðf; ~�0Þ�e2�if�t; (4)

where
(i) Fþð�; �; c Þ and F�ð�; �; c Þ are the known antenna

beam pattern of the detector, which gives the
amplitude response of the antenna to the þ and �
polarizations;

(ii) � and � are the right ascension and declination of
the source;

(iii) c is the polarization angle (see, e.g., Ref. [43]);
(iv) �t is the time delay between the arrival of the signal

at the detector and at a common reference frame
(e.g., the center of the Earth), a known function
of � and �;

(v) hþðf; ~�0Þ and h�ðf; ~�0Þ are the two independent

polarizations of the signal, with ~�0 ¼ ~� n f�; �; c g
(i.e. ~�0 includes all the waveform parameters except
for right ascension, declination and the polarization
angle).

The actual form of hþðf; ~�0Þ and h�ðf; ~�0Þ depends on
which model one is considering.
The GW signal can be written using the post-

Newtonian (pN) expansion [44]. We used a total of nine
different waveform models (or approximants) in our
analysis, including the TaylorF2 (which gives a pN-based,
analytic expression for the frequency-domain waveform)
[45,46], SpinTaylorT4 (which is a time-domain pN model
supplemented with spin-precession equations) [47]
and IMRPhenomB (which is a TaylorF2-like wave-
form model supplemented with a merger-ringdown and

TABLE I. List of the waveform models used for the analysis. ‘‘Aligned’’ refers to both spin vectors being aligned to the orbital
angular momentum of the binary. ‘‘STPN’’ refers to the SpinTaylor post-Newtonian waveform for precessing binaries in LAL [34]. In
all models, the inspiral phase of the binary evolution is described by the pN expansion to 3.5 pN order (2.5 pN for spin effects when
included) in phase, and 0 pN in amplitude, unless otherwise specified.

Model Name Spin effects Merger and ring-down Reference

TF2 TaylorF2 no no [45]

TF2_2 TaylorF2 @ 2 pN no no [45]

TF2_RS TaylorF2 RedSpin aligned no [46]

ST_NS Nonspinning STPN no no [47]

ST_SA Aligned spin STPN aligned no [47]

ST Full STPN yes no [47]

IMRPB IMRPhenomB aligned yes [48]

TF2_25a TaylorF2 @ 2.5 pN no no [45]

ST_25a Full STPN @ 2.5 pN yes no [47]

aUsed only for the blind hardware injection.
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calibrated to agree with numerical relativity simulations)
[48] approximants with binary spin parameters either dis-
abled, set aligned to the orbital angular momentum, or
enabled and allowed full freedom of orientation. Table I
lists the approximants used. For example, the TaylorF2
waveform at lowest amplitude order can be written in the
frequency domain combined with the stationary-phase ap-
proximation [42],

hþðfÞ ¼ 1þ cos 2�

2dL
hðfÞ; (5)

h�ðfÞ ¼ i
cos �

dL
hðfÞ; (6)

where

hðfÞ ¼ M
5
6

�
2
3

ffiffiffiffiffiffi
5

24

s

f�7=6e�ic ðfÞ; (7)

c ðfÞ ¼ 2�ftc ��c � �

4
þ 3

128�v5

XN

k¼0

�kv
k; (8)

with

v � ð�ðm1 þm2ÞfÞ13:
We see that the two polarizations depend on six parame-

ters (the �k are known functions of M and � [45], up to
N ¼ 7).

(i) M. The chirp mass of the system: M ¼
ðm1m2Þ3=5ðm1 þm2Þ�1=5, where m1 and m2 are the
component masses.

(ii) �. The symmetric mass ratio, defined as � ¼
ðm1m2Þ=ðm1 þm2Þ2.

(iii) m �. The inclination angle, i.e. the angle between
the orbital angular momentum vector and the line
of sight.

(iv) dL. The luminosity distance to the source.
(v) tc. An arbitrary reference time, usually chosen to be

the time of coalescence of the binary.
(vi) �c. The phase of the waveform at the reference

time tc.
Together with �, � and c , these six parameters form the

nine-dimensional vector ~� for the TaylorF2 model. The
upper value of the index k in Eq. (8) determines the phase
pN order, with N ¼ 0 being the lowest order (0 pN) and
N ¼ 7 the 3.5 pN order. We assume that the eccentricity of
the binary system is negligible, as radiation reaction
circularizes orbits efficiently before the signal frequency
enters the detector’s observational band [49]. We can also
see from Eqs. (5) and (6) that the inclination � and distance
dL are strongly correlated. This correlation is illustrated
in Sec. III.

When spins are present and we constrain the spin vectors
to be aligned with the orbital angular momentum of the

binary, we need two additional parameters, bringing ~� to
11 parameters. We use the spin magnitudes a1 and a2,

defined as ai � ð ~si � L̂Þ=m2
i , where ~si and mi are the spin

and mass of the object i, and L̂ is the unit vector along the
orbital angular momentum. To account for both aligned
and antialigned cases, we allow ai to be in the range
½�1; 1�. When generic spins are considered, we need six

additional parameters, and ~� becomes a 15-dimensional
vector. In this case the spin magnitudes ai, defined as
ai � j~sij=m2

i and in the range [0,1], and four angles specify
the orientations.
The presence of arbitrary spins will alter both the

amplitude and phase of the signal. The pN expansion of
the phase evolution is changed to include additional terms
dependent on the components of the spin vectors. If the
spins are not aligned with the orbital angular momentum,
then the spin-orbit and spin-spin coupling will cause the
orbital angular momentum vector to precess around the
total angular momentum vector. As this implies that �
(and c ) become time dependent, the values of these quan-
tities at the GW frequency 40 Hz are used for parameter
estimation. We refer the reader to Ref. [47] for more details
about SpinTaylorT4.
The pN approximation is valid for the inspiral phase of

the binary, when the two objects are still far apart [50,51].
For this reason, the TaylorF2 and SpinTaylorT4 waveforms
must terminate at an approximate point where they begin to
break down, with the TaylorF2 ending at the innermost
stable circular orbit [45,46] frequency of a test particle
orbiting a Schwarzschild black hole, and the SpinTaylorT4
terminating at the minimum energy circular orbit [47].
IMRPhenomB waveforms extend the signal into the
merger and ring-down stages of the binary coalescence,
making use of a phenomenological model tuned by
comparison with numerical relativity simulations. These
later stages take place at higher frequencies than the
inspiral, and hence are more important for higher-mass
systems where the frequency scale is lower, and where
the merger and ring-down contribute a larger proportion
of SNR by being in a more sensitive band of the detectors.
For the analysis of nonblind hardware and software

injections (the first seven models of Table I), we considered

the pN expansion either up to the 2 pN order in phase or up
to the 3.5 pN order in phase (2.5 pN for spin effects when

included), and 0 pN in amplitude. For the blind hardware

injection we used approximants at 2.5 pN order in phase, as

the blind injection only included terms up to this order
[7,12] (see Sec. III C below). The different waveforms use

different post-Newtonian expansions of the binary phase,

and do not give identical results in general. When analyz-
ing a real GW signal, the ignorance of the higher-order pN

terms will cause a systematic bias in the inference of the

binary parameters, and using a range of different approx-
imants here will give us an indication of the size of this

error compared to the statistical uncertainty in the results.
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C. Priors

As shown in Eq. (1), the posterior distribution of ~�
depends on both the likelihood and prior distributions of
~�. We used the same prior density functions (and range) for
all the analyses, uniform in the component masses with the
range 1M� � m1;2 � 30M�, and with the total mass con-

strained by m1 þm2 � 35M�. This range encompasses
the low-mass search range used in Ref. [7], where 1M� �
m1;2 � 24M� and m1 þm2 � 25M�. The prior density

function on the location of the source was taken to be
uniform in volume, constrained between luminosity dis-
tances dL 2 ½1; 100� Mpc. We used an isotropic prior on
the orientation of the orbital plane of the binary. For
analyses using waveform models that account for possible
spins, the prior on the spin magnitudes, a1, a2, was taken
to be uniform in the range [0,1] (range ½�1; 1� in the
spin-aligned cases), and the spin angular momentum
vectors were taken to be isotropic.

The computational cost of the parameter estimation
pipeline precludes us from running it on all times; therefore,
the parameter estimation analysis relies on an estimate of the
coalescence time as provided by the detection pipeline [7].
In practice, a 200 ms window centered on this trigger
time is sufficient to guard against the uncertainty in the
coalescence-time estimates from the detection pipeline;
see for instance Refs. [52,53]. Our results are not signifi-
cantly affected by other astrophysically sensible choices of
priors. For the SNRs used in this paper, our posteriors are
much narrower than our priors for most parameters.

D. Data description

Data from the multidetector network consisting of two
LIGO instruments (H1 and L1) and Virgo (V1) were used
coherently in the analysis. From each detector a total of 32
seconds of data [� 30;þ2 s] around the global positioning
system time of the injection were analyzed. The initial
frequency of the analysis was 40 Hz, which is low enough
so that the detectors are not significantly sensitive to the
start of the signals and template. The sampling rate was
2048 Hz (4096 Hz for the BNS, Sec. III A 2), correspond-
ing to a 1024 Hz (2048 Hz) Nyquist frequency, high
enough to include the entire waveform for all models

except IMRPhenomB, which has a negligible contribution
to the signal-to-noise ratio at higher frequencies. The
32-second segments of time-domain data were Tukey
windowed, with a 0.4 s roll-off on either side of the seg-
ment. The PSD of the instrumental noise was estimated
using 1024 s of data after the end of the analyzed segment.
We verified that varying the methods of PSD estimation
(using �512 seconds spanning the signal trigger time, and
using median and mean estimation methods) had a negli-
gible effect on the parameter-estimation results—smaller
than the systematic uncertainties of parameter estima-
tion—although varying the time during which the PSD is
estimated can have a significant effect (see Sec. III D).
Calibration errors, which can influence the reconstructed

amplitude, phase, and timing of the data [31], have the
potential to affect parameter-estimation results. An analysis
of the effect of calibration errors, which considered mock
errors similar to those expected during the S6 and VSR2/3
runs, concluded that such errors are unlikely to cause a
significant deterioration in parameter-estimation accuracy
[33] at the moderate SNRs considered in this paper.

III. SIMULATIONS

Over the course of the LIGO S6 and Virgo VSR2/3
science runs a series of hardware injections have been
carried out where the arm lengths of the three detectors
were physically changed to simulate the passing of a GW.
As an end-to-end test of the search pipeline during the

science runs, a signal was added to the data via a hardware
injection, without the data analysts’ knowledge (‘‘blind’’).
The parameters and template family were revealed only
after the search was complete, and we include a retrospec-
tive analysis of this blind injection in Sec. III C (see
Ref. [12] for the parameter estimation carried out before
the injection was revealed).
We have also added several simulated software injec-

tions into real detector noise from those runs. Below, we
describe the results of parameter-estimation analysis on
several of these injections, whose parameters are listed in
Table II. We present the posterior probability density func-
tions on the source parameters using a coherent, multi-
detector data model with the seven waveform families

TABLE II. Parameters of hardware (HW) and software (SW) injected signals discussed in
Sec. III. Nonspinning injections were generated using the EOBNR [54] waveform model,
whereas spinning injections used the SpinTaylor model. The SNR column shows optimal
network SNR, Eq. (2).

Sec. HW/SW M (M�) m1 (M�) m2 (M�) dL (Mpc) � ð	Þ ja1j ja2j SNR

IIIA 1 HW 3.865 4.91 4.02 36.2 26 0 0 13

III A 2 HW 1.502 1.808 1.647 5.94 138 0 0 36

III B 1 SW 4.76 6 5 30.0 1.1 0.6 0.8 19

III B 2 SW 2.99 10.0 1.4 16.0 0.5 0.7 0 13

III C HW 4.96 24.81 1.74 24.37 109 0.57 0.16 16
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described above. In Appendix A we present 90% credible
intervals obtained using the waveform models in Table I
for each injection in Table II.

A. Nonspinning hardware injections

1. Binary black hole

We first describe the analysis of a hardware injection
corresponding to a binary black hole with nonspinning
4:91M� and 4:02M� components, injected at a network
SNR of 13 (SNRs of 8.7 in the Hanford and Livingston
detectors and 4.4 in the Virgo detector). This injection

was made with effective one-body numerical relativity
(EOBNR) waveforms, using the EOBNRv1 version as
described in Ref. [54].
Figure 1 shows a comparison of the posterior PDF of the

mass parameters for different models. The chirp mass has a
low statistical uncertainty of 
1%, with the greatest sta-
tistical uncertainty claimed by models that allow for non-
zero spin magnitudes due to interparameter degeneracies.
The 90% credible intervals on the chirp mass obtained with
TaylorF2 templates just exclude the true value, an indica-
tion of the systematic bias due to the waveform differences
between the injected EOBNR waveform and these

FIG. 1 (color online). (Left) Posterior probability distributions for the chirp mass M of the nonspinning BBH hardware injection
(Sec. III A 1) for the seven signal models considered. The injected value is marked with a vertical red line. (Right) Overlay of 90%
probability regions for the joint posterior distribution on the component masses m1, m2 of the binary. The true value is marked by the
blue star. Models which allow for nonzero spins find wider PDFs for the coupled mass parameters.

FIG. 2 (color online). Joint posterior probability regions for the location and inclination angle of the nonspinning BBH hardware
injection (Sec. III A 1) for the seven signal models considered. (Left) The binary is constrained to two neighboring regions of the
sky. (Right) The distance and inclination, like the sky location, are estimated with a similar accuracy in models that include or
exclude spins.
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templates. These differences are also responsible for the
particularly strong bias in the mass ratio for 2.0 pN
TaylorF2 templates, exceeding the statistical measurement
uncertainty in this parameter. In contrast, we find that by
using the 3.5 pN TaylorF2 templates the systematic bias is
reduced to less than the statistical uncertainty at the 90%
credible interval. The uncertainty in the mass ratio is
typically larger than that in the chirp mass, leading to the
characteristic thin, correlated joint distribution for m1 and
m2 evident in Fig. 1 (right).

Figure 2 shows a selection of PDFs for the extrinsic
parameters of the binary black hole (BBH) source: the
recovered sky position, distance and inclination angle.
The binary can be constrained to two neighboring regions
of the sky representing the reflection of the source loca-
tion through the plane of the detectors, which cuts this
contiguous region in two. The correlations between intrin-
sic parameters (masses and spins, see Refs. [55–57]) and
extrinsic parameters are generally weaker than correlations
between different parameters within the same group. Thus
both models that include and models that exclude nonzero

spins have similar statistical measurement uncertainties
for extrinsic parameters.
Finally, Fig. 3 shows individual posteriors for the

two dimensionless spin magnitudes, obtained using the
model ST (Table I), full-spin SpinTaylor post-Newtonian
(STPN) waveforms. Although spin is not very strongly
constrained, particularly for the lower-mass secondary,
both spin measurements are consistent with the true value
of 0 spin. The absence of a strong constraint is due to both
the small difference in masses and nearly face-on inclina-
tion. This inability to constrain the spin is reflected in the
evidence for each template family, shown in Table III,
where all models have the same evidence within the error
bars.

2. Binary neutron star

We also analyzed a hardware injection simulating a
nonspinning neutron-star binary system with 1:81M� and
1:65M� components, injected at a network SNR of 36
(SNR of 26 in the Hanford detector, 17 in the Livingston
detector and 20 in the Virgo detector). This injection was

FIG. 3. Posterior probability distributions for the dimensionless spin magnitude of the heavier (left) and lighter (right) components
of the binary from the nonspinning BBH hardware injection (Sec. III A 1), as inferred in the model ST (Table I), full-spin STPN.
The injection was made with a1 ¼ a2 ¼ 0.

TABLE III. Logarithm of the evidence lnðZÞ relative to the Gaussian noise model for each
injection and each waveform family obtained via direct integration. The numbers come with
statistical error bars of �5.

Sec. TF2 TF2_2 TF2_25 TF2_RS ST_NS ST_SA ST ST_25 IMRPB

IIIA 1 69 70 - 70 69 71 71 - 73

III A 2 686 699 - 694 685 697 694 - 668

III B 1 154 146 - 153 158 158 157 - 155

III B 2 48 48 - 50 50 52 64 - 52

III C - - 136 - - - - 213 -

PARAMETER ESTIMATION FOR COMPACT BINARY . . . PHYSICAL REVIEW D 88, 062001 (2013)

062001-11



made with the same EOBNR waveform family as in
Sec. III A 1 above.

Figure 4 shows a comparison of the posterior PDF
of the mass parameters for the different models. The
chirp mass has a low statistical uncertainty of &0:1%
thanks to the high network SNR, with the greatest
statistical uncertainty claimed by models that allow for
nonzero spin magnitudes due to interparameter degener-
acies, similar to Sec. III A 1. The greater statistical un-
certainty of the IMRPhenomB waveform model stems
from the fact that this model does not describe such a

low-mass system (m1 þm2 < 10M�) very well [48].
Correspondingly, it has the lowest Bayes factor in
Table III. The 90% credible intervals on the chirp mass
obtained with TaylorF2 templates include the true value.
Unlike in Sec. III A 1, the merger present in the injected
EOBNR waveform happens at a frequency (1.2 kHz)
where the detectors are not very sensitive. Figure 5
shows the extrinsic parameters of the BNS source: sky
position, distance and inclination angle. In this case, the
data were such that the injected distance and inclination
angle lie far outside the 90% credible intervals. This

FIG. 4 (color online). (Left) Posterior probability distributions for the chirp mass M of the nonspinning BNS hardware injection
(Sec. III A 2) for the seven signal models considered. The injected value is marked with a vertical red line. (Right) Overlay of 90%
probability regions for the joint posterior distribution on the component masses m1, m2 of the binary. The true value is marked by the
blue star.

FIG. 5 (color online). Joint posterior probability regions for the location and inclination angle of the nonspinning BNS hardware
injection (Sec. III A 2) for the seven signal models considered. (Left) The binary can be constrained to two regions of the sky
representing the reflection of the source location through the plane of the detectors. (Right) The distance and inclination, like the sky
location, are estimated with a similar accuracy in models that include or exclude spins. The data were such that the injected distance
and inclination angle are far outside the 90% credible intervals.
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could be due to a particularly unlikely noise realization,
some nonstationarity or non-Gaussianity in the noise
(i.e., a ‘‘glitch’’), or some issue with the way the hard-
ware injection was carried out.

B. Spinning software injections

1. Binary black hole

We simulated the signal from a binary black hole with
misaligned spinning components with a SpinTaylor soft-
ware injection. This binary consists of 6M� and 5M�
black holes, with dimensionless spin magnitudes of 0.6
and 0.8, misaligned with the orbital angular momentum

by angles of 40	 and 150	, respectively, and an optimal
network SNR of 19 (SNR of 17 in the Hanford detector, 6.5
in the Livingston detector and 4.9 in the Virgo detector).
The misalignment between the spins and the orbital angu-
lar momentum causes the plane of the binary to precess,
producing both amplitude and phase modulations in the
received GW signal (see Sec. II B).
Figure 6 shows a comparison of the posterior PDFs

of the mass parameters inferred with different template
models. The mass ratio is again severely biased for the
2 pN TaylorF2 model, which is not surprising for a 3.5 pN
injection with spinning components as both the pN order
and the spin alter the phase evolution of the signal.

FIG. 6 (color online). (Left) Posterior probability distributions for the chirp mass M of the spinning BBH software injection
(Sec. III B 1) for the seven signal models considered. The injected value is marked with a vertical red line. (Right) Overlay of 90%
probability regions for the joint posterior distribution on the component masses m1, m2 of the binary.

FIG. 7 (color online). Joint posterior probability regions for the location and inclination angle of the spinning BBH software
injection (Sec. III B 1). (Left) The binary’s true location lies just outside of the 90% credible interval. (Right) The degeneracy in
distance and inclination prevents either parameter from being accurately constrained individually.
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Figure 7 shows the recovered sky location, distance and
inclination angle of the source. For all these parameters
the injection value lies just outside of the 90% credible
regions.

The spin magnitudes are again poorly constrained, with
nonzero support across the entire allowed range, as shown
in Fig. 8. Even though the injected signal was simulated
from a system with high spin magnitudes (0.6 and 0.8), the
low difference in masses, the near antialignment of the
spins with the orbital angular momentum and especially
the face-on inclination conspire to give the poor spin
estimates. In addition, with this weak precession effect,
the spin tilts (angles between the spin vector and the orbital
angular momentum) are also poorly constrained. A com-
parison of the evidences in Table III indicates that all
models have the same evidence within the error bars.

2. Neutron star–black hole

We simulated the signal from a neutron star–black
hole system with misaligned black-hole spin components
with a SpinTaylor software injection. This binary consists
of a 10M� black hole with dimensionless spin magnitude
of 0.7, misaligned with the orbital angular momentum by

an angle of 130	, and a 1:4M� nonspinning neutron star, at

an optimal network SNR of 13 (SNR of 7.9 in the Hanford

detector, 9.2 in the Livingston detector and 3.6 in the Virgo

detector).
Figure 9 shows a comparison of the posterior PDFs

of the mass parameters inferred with different tem-
plate models. Figure 10 shows the recovered sky loca-
tion, distance and inclination angle of the source. The
joint distance-inclination posterior degeneracy prevents
either parameter from being measured precisely. The
model describing the data most accurately—with the
highest Bayes factor in Table III—is the Full STPN,

which delivers the most accurate parameter estimates,

as is expected since this model was used for the

injection.
Figure 11 shows the posterior PDFs for the spin parame-

ters. The spin magnitude of the neutron star is uncon-

strained due to the large difference in masses. The spin

of the more massive black hole encodes more information

in the waveform, but is also poorly constrained due to the

almost face-on inclination.

C. Blind hardware injection

The search pipeline described in Ref. [7] identified a
GW candidate occurring on 16 September 2010 at
06:42:23 UTC. A Bayesian analysis was performed using
the algorithms and implementations described above,
where parameter estimates varied significantly depending
on the exact model used for the gravitational waveform.
Following the completion of the analysis, the event was

revealed to be a blind injection. Further investigation

revealed several problems with the pre-un-blinding

parameter estimation:
(i) The template signal included phase corrections only

up to 2.5 pN order, which is an outlier in the
post-Newtonian expansion; see Ref. [58]. At that
time (before the blind injection was revealed as
such) parameter estimation was not carried out
with templates at this order, leading to a significant
bias in the mass ratio, and hence the component
masses.

(ii) The signal to be injected in the Hanford and
Livingston sites had the wrong sign, making the
signal incoherent between the LIGO and Virgo
detectors. This caused strong biases in the estimated
values of the extrinsic parameters.

FIG. 8 (color online). Posterior probability distributions for the dimensionless spin magnitude of the heavier (left) and lighter (right)
components of the binary from the spinning BBH software injection (Sec. III B 1), as inferred in the model ST (Table I), full-spin
STPN; the true values are shown with vertical red lines.
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(iii) Lastly, an injection software bug artificially set
to zero one of the phase terms in the injected
waveform.

We present here an analysis using templates at
2.5 pN order in phase, performed after the un-blinding.
We artificially introduce a sign flip in the templates for the
Hanford and Livingston detectors in order to match the
injected waveform. Figure 12 shows a comparison of
the posterior PDFs of the mass parameters for TaylorF2
and SpinTaylor waveform models. The fully spinning, pre-
cessing analysis with SpinTaylor templates at 2.5 pN order
in phase (i.e., the same template as used in the injection, up
to the injection software bug) centers on the correct masses
for this neutron star–black hole system,m1 ¼ 24:81M� and
m2 ¼ 1:74M�. However, the systematic bias due to fixing

the spin to zero in the analysis of this spinning injection is
very significant, and leads to the wrong conclusion that a
BBH system is observed if the TaylorF2 model is used.
Figure 13 shows the recovered sky position, distance and

inclination angle of the source. The sky location recovered
is contained in several distinct regions, spread in an arc on
the sky. This behavior is consistent with two detectors
contributing the majority of the SNR 15 for this source
(an SNR of 11 in the Hanford detector, 9.8 in the
Livingston detector and 4.1 in the Virgo detector). On top
of this first-order constraint, spin projection effects can
break the degeneracy, as discussed in Ref. [59].
The large difference in masses, m1 ¼ 24:81M�, m2 ¼

1:74M�, in combination with the high inclination allows
for the magnitude of the spin of the massive component to

FIG. 9 (color online). (Left) Posterior probability distributions for the chirp mass M of the spinning NSBH software injection
(Sec. III B 2) for the seven signal models considered. The injected value is marked with a vertical red line. (Right) Overlay of 90%
probability regions for the joint posterior distribution on the component masses m1, m2 of the binary.

FIG. 10 (color online). Joint posterior probability regions for the location and inclination angle of the spinning NSBH software
injection (Sec. III B 2). (Left) The binary is localized well on the sky. (Right) In this case, the true value lies outside of the 90% credible
interval of the joint distance-inclination marginalized probability density function.
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be measured with an accuracy
10%, as shown in Fig. 14.
Meanwhile, the spin of the light component is uncon-
strained, and the posterior on its magnitude is consistent
with the prior. Correspondingly, the evidences in Table III
favor the spinning model. Signals from face-on binaries are
louder than signals from high-inclination sources, making
a face-on binary more likely to be detected. As such the
poor spin constraints in the previous sections are more
representative of the expected observations. However, the
study presented here does not include a statistically suffi-
cient number of signals to cover the range of possible
measurements. A wider study is ongoing to predict more
accurately the constraints the LIGO/Virgo network will be
able to put on spins.

A deeper analysis of the data around the blind hardware
injection revealed some non-Gaussian behavior of the
Livingston detector before and during the injected signal.
From Fig. 15 it can be seen that the analysis of the Hanford
detector data or Livingston detector data alone produces
mass estimates consistent with the full network analysis
using data from all three detectors, but the Livingston
detector data cannot constrain the parameters as precisely
as the Hanford detector data, showing multiple modes.
This leads us to conclude that detector glitches have
the potential to reduce parameter-estimation accuracy.
However, the coherent analysis of the data from the multi-
detector network increases robustness against the effect
of a glitch in a single instrument by requiring that the

FIG. 11 (color online). Posterior probability distributions for the dimensionless spin magnitude of the heavier (left) and lighter
(right) components of the binary from the spinning NSBH software injection (Sec. III B 2), as inferred in the model ST (Table I),
full-spin STPN; the true values are shown with vertical red lines.

FIG. 12 (color online). (Left) Posterior probability distributions for the chirp mass M of the blind injection (Sec. III C) for signal
models at 2.5 pN. The injected value is marked with a vertical line. (Right) Overlay of 90% probability regions for the joint posterior
distribution on the component massesm1,m2 of the binary. The bias introduced by an analysis with amodel which disallows spin is clear.
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recovered parameters are consistent with all data sets. This
effect could be mitigated by including such glitches in the
model of the data, as suggested in Ref. [60].

D. The effects of different noise realizations

To exemplify the effect of noise on the recovered PDFs,
ten software injections (see Fig. 16) with parameters
identical to the nonspinning BBH hardware injection
(Sec. III A 1) were created with injection times in succes-
sion at 10-second intervals. With each injection at a differ-
ent time, the estimated PSDs were also (slightly) different
(see Fig. 17), reflecting the slow change of the PSD as a
function of time. All the signals were both injected and

recovered using the TaylorF2 signal model to eliminate
systematic effects from using the wrong waveform family.
Figure 16 shows the joint distributions of the recovered
component masses as well as the distance and inclination.

The spread of the 90% credible intervals for different

injection times is comparable to the spread observed using
different waveform models, as shown in Figs. 1 and 2,

illustrating the dependence on the specific model and

realization of the noise used. Fixing the injection time for

a series of different PSDs gives narrower PDFs than in
Fig. 16. For the particular data segment considered here,

the same is also true for a fixed PSD and a series of

injection times but to a lesser extent. We plan to address

FIG. 13 (color online). Joint posterior probability regions for the location and inclination angle of the blind injection (Sec. III C).
(Left) The sky location is constrained to several distinct regions lying along a half circle on the sky. (Right) Again, the characteristic
V-shape degeneracy in distance and inclination is evident.

FIG. 14 (color online). Posterior probability distributions for the dimensionless spin magnitude (left) and tilt angle (angle between
the spin vector and the orbital angular momentum, measured at 40 Hz, right) of the heavier component of the binary from the blind
injection (Sec. III C), as inferred with model full-spin STPN at 2.5 pN order in phase (Table I); the true values are shown with vertical
red lines. The large difference in masses allows for the spin of the massive component to be measured. On the other hand, the spin of
the light component is unconstrained.
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this in the future by performing the analysis with a model

in which the PSD is not fixed, but parametrized as a
function of a suitable set of unknown parameters to be
marginalized over. For the ten software injections the true
injected parameter is found within the given 90% credible
interval in 90% of the injections, as expected. Figure 18
shows a direct comparison between a nonspinning BBH
hardware injection and three software injections replicated
with the same parameters. All are evaluated using the PSD
of the hardware injection with the software injections at
100, 500 and 1000 seconds before the hardware injection.

Again, there are variations in the recovered PDFs but the
hardware injection is not an outlier. The variations are
caused by the inherent dependency of the analysis on the
particular noise realization used. Statistical fluctuations
appear to be able to dominate any systematic bias intro-
duced by the method of performing the hardware injection,
such as the actuation function used in modeling the im-
pulse applied to the mirrors to produce the desired signal.

E. Computational cost

The choice of approximant has strong implications
for the computational cost of the analysis, which varied
from a few hours to three weeks of real time, using up to
three 8-core CPUs. Frequency-domain templates, such as
TaylorF2 and IMRPhenomB, generally require much less
computational time than the time domain SpinTaylorT4,
as they do not require a numerical solution of the orbital
frequency and spin evolution equations or a Fourier trans-
form before computing the likelihood. The time domain
SpinTaylorT4 can include the full six spin parameters,
allowing for precession of the orbital plane, whereas the
frequency-domain templates can only include spin aligned
with the orbit. The computational cost is also strongly
influenced by the length of the templates, which ranged
from 2.16 s for the blind injection (Sec. III C) to 18 s for the
BNS hardware injection (Sec. III A 2), using a 40 Hz start-
ing frequency. An additional effect is the higher frequency
at which a BNS will merge, forcing us to analyze the data
at a higher sampling rate. A higher signal-to-noise ratio
also increases the run time with more iterations required to
reach the more contrasted posterior distribution. This effect
can be somewhat managed by increasing the number of
parallel tempering chains in the MCMC algorithm [36,37],
or by using parallel nested sampling runs, reducing the
overall run time at the expense of using more computing

FIG. 15 (color online). Overlay of 90% probability regions
for the joint posterior distribution on the component masses
m1, m2 of the binary for the blind injection (Sec. III C),
as inferred with model ST_25 (Table I), full-spin STPN
(at 2.5 pN order in phase), using data from the Hanford detector
only, the Livingston detector only or the whole Hanford-
Livingston-Virgo network.

FIG. 16 (color online). Overlay of 90% probability regions for the joint posterior probability distribution of the component masses
m1,m2 of the binary (left) and the distance and inclination (right) for a series of signal injection times. Both sets of distributions show a
spread comparable to the spread observed between different waveform models, as shown in Figs. 1 and 2.
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FIG. 17 (color online). The plots show in red ten overlaid noise power spectral densities (top left: LIGO-Hanford; top right:
LIGO-Livingston; bottom: Virgo), each computed over 1024 s of data, and separated by 10 s. In black is the PSD used in Figs. 1 and 2.
The PSDs were used in the analyses whose results are shown in Figs. 16 and 18 and provide an indication of the fluctuation of the noise
in the instruments over a time span of minutes.

FIG. 18 (color online). (Left) Posterior probability distributions for the chirp mass M of the nonspinning BBH injection for signal
model TF2 (Table I), TaylorF2 at 3.5 pN order, for the hardware injection (Sec. III A 1) and three software injections of the same
parameters injected 100, 500 and 1000 seconds before the hardware injection (see Sec. III D). The injected value is marked with a
vertical red line. (Right) Overlay of 90% probability regions for the joint posterior distribution on the inclination and distance of the
binary. Different realizations of the noise, rather than differences between hardware and software injections, are the likely reason for
the variations in recovered PDFs.
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units in parallel. Other promising cost-saving techniques
include waveform interpolation to ease the burden of
computing millions of templates (e.g., Ref. [61]).

In a future triggered analysis, where the parameter
estimation is run as a follow-up to a search algorithm,
some guidance on the chirp mass from the search pipeline
could be used to choose the length of the data segment to
be analyzed so as to minimize the cost while allowing
enough time for the full waveform to be generated. In the
analysis presented here, the run time varied from hours for
the low-SNR, short segment (high mass) injections using
frequency-domain templates, up to several weeks for the
high -SNR, long segments (low mass) using time-domain
fully precessing templates.

IV. IMPLICATIONS FOR GRAVITATIONAL-WAVE
ASTRONOMY

Although the five injections in Table II are not statisti-
cally sufficient to cover the range of source possibilities,
we do have samples representing the three expected
classes—BNS, NSBH and BBH—at a range of SNR and
some including spin. This allows us to highlight some of
the general features of parameter estimates that are likely
to be encountered with future analyses of signal candidates
in advanced gravitational-wave detectors.

We have found, in accordance with expectations, that the
chirp mass parameter can be resolved with a very small
statistical uncertainty of only a few percent or even lower,
even when the SNR is relatively low, as in the case of the
BBH hardware injection (Sec. III A 1) and the NSBH
software injection (Sec. III B 2), which had network
SNRs of 13 (see Figs. 1 and 9). With the lower-mass and
higher-SNR BNS hardware injection, the systematic
differences between waveform models dominate the sta-
tistical uncertainty of the chirp mass, as the signal accu-
mulates more cycles in the sensitive band of the detectors.

Previous parameter-estimation studies have mainly fo-
cused on estimating the typical size of the errors, primarily
using the Fisher information matrix [62]. The inverse of the
Fisher matrix provides lower bounds for the covariance
matrix of maximum likelihood estimators (Cramer-Rao
lower bound) [30]. In Ref. [63] a single detector analysis
of nonspinning signals suggested that the chirp mass M
could be estimated by LIGO with a fraction of a percent
accuracy and the mass ratio � with an accuracy of a few
percent. We find in our analysis (Sec. III) that for the five
injections considered this accuracy is reached only for
the high-SNR example in Sec. III A 2. In general, the full
analysis recovers the chirp massM and the mass ratio � at
the percent and tens of percent levels, respectively.
In addition, Ref. [63] emphasized the dependence of the
accuracy on the phase order of the post-Newtonian
expansion, which we illustrate in the figures of Sec. III.
Multiple detector studies, based on both Fisher matrix

estimates and numerical simulations [64,65] showed the
different accuracies in parameter estimation between
ntrinsic parameters (e.g., masses) and extrinsic parameters
(e.g., sky position, the strongly correlated inclination and
distance). The estimation of the extrinsic parameters
mainly depends on the number and positions of the GW
detectors, while the accuracy for intrinsic parameters de-
pends mainly on the SNR, and they are nearly equally well
estimated with a single interferometer, for the same SNR.
The Fisher matrix calculation has known limitations [66],
and tends to underestimate the errors at low SNR [67],
which our results confirm.
In all examples, the mass ratio parameter is strongly

affected by systematic differences between the waveform
models. For those models which included spin, the
mass ratio parameter had a larger uncertainty due to
correlations between the spins and the mass ratio
(see Refs. [55–57]), but these broader posteriors did
encompass the true values. This indicates that even for
sources which are expected to have an insignificant spin,
i.e. BNS systems, a conservative analysis with fully spin-
ning templates is desirable. For systems involving black
holes, performing the full spinning parameter estimation
is essential, and further improvements in waveform mod-
eling, informed by numerical relativity simulations, are
crucial for reducing systematic biases and therefore pro-
viding more precise mass and spin estimates. Particularly
necessary are quickly computed and accurate waveform
models which include arbitrary spins, and inspiral, merger
and ring-down phases.
For the extrinsic parameters, of which the most interest-

ing are the source location and distance, the accuracy of
inference is limited by the statistical uncertainty coming
from the finite SNR of the source. The overall signal
amplitude in each detector may be measured with a frac-
tional accuracy
1=SNR, but the amplitude in each detec-
tor is a complicated function of the location, distance and
polarization angle [see Eq. (4)], which produces the com-
plicated credible interval shapes seen above. Most notably,
the precision to which the distance can be measured is
limited by the presence of correlation with the inclination
angle, which is true for any detector network. On the other
hand, the degeneracy in sky position can be greatly reduced
by observing the a strong signal in multiple detectors; in
the case of the three-detector network used here the sky
position is restricted to two locations, symmetric when
reflected across the plane containing the detectors, and
with opposite inclinations (see Fig. 5). This degeneracy
is broken in the case of the spinning BBH signal
(Sec. III B 1) where the inclination angle can be determined
from the precession of the orbital plane, eliminating one of
the two sky locations (see Fig. 7). As the size of the two sky
locations is primarily determined by the location of the
detectors and the SNR, these results are expected to be
qualitatively similar for the advanced detector network.
When the signal amplitude is relatively low in one detector
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(see Fig. 10), more of the ring-like structure is observable,
and the location cannot be well determined.

The evidence values listed in Table III can in principle
allow us to discriminate between different waveform
models, e.g. whether the data support the presence of spins
in the compact objects that generate the detected signal.
However, in the analysis reported here the noise model
that was used (Gaussian and stationary with a PSD esti-
mated using nearby data) is likely not realistic enough to
draw sufficiently robust conclusions, with the exception
of the most clear cases (for example the dominance of
the spinning model for the injection of Sec. III C). Work
is in progress to include in the Bayesian analysis our
uncertainty about the PSD and a more flexible noise
model [60,68,69].

V. CONCLUSIONS

In this paper, we have applied a suite of Bayesian
parameter-estimation tools to hardware and software in-
jections from the last initial LIGO and Virgo science runs.
The primary challenge of parameter estimation for CBC
signals lies in efficiently locating and sampling the modes
of the posterior PDF in a multidimensional parameter
space. We have shown that we are able to explore and
compare these complicated, correlated and degenerate
PDFs for a variety of waveform models which, taken
together, include the full range of physical effects expected
to be of importance in a real analysis: inclusion of spins,
precession of the orbital plane, and the merger–ring down
signal. We have verified the consistency of our results by
cross comparison among different sampling algorithms.

Although there has been rapid progress in the field of
GW parameter estimation, a number of key questions
remain. Some of these are already being addressed,
or will be addressed over the next few years before
advanced detectors come online. Some of the most press-
ing questions are:

(i) How precisely will we be able to measure spin
magnitudes and spin tilt angles in precessing
NSBH and BBH systems?

(ii) How important are systematic waveform biases due
to imperfect waveform knowledge for various sys-
tem classes? What are the accuracy requirements on
waveform families for parameter estimation?

(iii) What is the best way to handle the long-duration
signals in advanced detectors? Their extended
bandwidth can cause current implementations to
increase in runtime by factors of 25 or more.

(iv) How accurately can we measure finite-size and
tidal-dissipation effects for systems involving neu-
tron stars?

(v) How is parameter estimation affected when the
background noise is not stationary and Gaussian?

We anticipate that the analysis methods used in this paper
will be directly applicable to the first detections from the

advanced detector era, allowing us to carry out astrophys-
ical inference and to measure masses, spins, and sky loca-
tions of coalescing compact binaries. This, in turn, will
improve searches for electromagnetic counterparts, and
ultimately allow us to solve a key inverse problem of GW
astrophysics: to reconstruct binary evolution and dynamical
binary formation from the observed distributions of masses
and spins of merging compact binaries.
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APPENDIX: CREDIBLE INTERVALS

In Tables IV, V, VI, VII, and VIII we report the median
value and 90% credible intervals for the one-dimensional
posteriors inM, �, m1,m2, and dL obtained in the context
of the different waveform models for the injections listed
in Table II. Our reported credible intervals are symmetric,
excluding an equal posterior mass (in this case 0.05) below
and above the interval: a symmetric ð100� �Þ% credible
interval ½�min ; �max � satisfies
Z �min

�1
d�pð�jd;HÞ ¼

Z 1

�max

d�pð�jd;HÞ ¼ 1

2

�

100
: (A1)
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TABLE V. Median value and 90% credible intervals on chirp mass (M), symmetric mass ratio
(�), masses (m1 and m2) and distance (dL) obtained in the context of various waveform models
(see Table I) for the injection discussed in Sec. III A 2.

M � m1 m2 d

ST 1:50351:5031:504 0:2480:250:245 1:8821:76 1:591:691:5 3:564:013:23

ST_SA 1:5031:5041:502 0:2480:250:24 1:872:131:74 1:591:711:41 3:544:012:38

ST_NS 1:50171:5021:5016 0:250:250:249 1:771:851:73 1:681:721:61 3:123:562:41

TF2 1:50181:5021:5017 0:250:250:249 1:771:841:73 1:681:721:62 3:143:532:47

TF2_2 1:50021:50071:4998 0:1850:1880:183 3:123:163:06 1:011:031 3:684:183:31

IMRPB 1:5091:5121:506 0:2180:2280:187 2:563:112:36 1:211:291:03 3:664:153:26

TABLE VI. Median value and 90% credible intervals on chirp mass (M), symmetric mass
ratio (�), masses (m1 and m2) and distance (dL) obtained in the context of various waveform
models (see Table I) for the injection discussed in Sec. III B 1.

M � m1 m2 d

ST 4:764:824:7 0:2440:250:212 6:418:445:53 4:685:383:7 29:336:716:8

ST_SA 4:764:814:72 0:2440:250:204 6:438:925:54 4:675:383:56 29:236:716:4

ST_NS 4:764:774:73 0:2470:250:234 6:157:115:54 4:865:44:21 29:937:317:1

TF2 4:754:764:72 0:2460:250:23 6:247:315:52 4:785:414:08 31:439:218:1

TF2_2 4:764:824:71 0:1720:2050:15 10:7128:87 3:023:592:7 31:639:917:5

IMRPB 4:744:784:71 0:2410:250:156 6:611:65:54 4:525:372:8 29:437:216:2

TABLE VII. Median value and 90% credible intervals on chirp mass (M), symmetric mass
ratio (�), masses (m1 and m2) and distance (dL) obtained in the context of various waveform
models (see Table I) for the injection discussed in Sec. III B 2.

M � m1 m2 d

ST 3:163:312:99 0:10:1760:0592 11:215:77:13 1:442:11:06 36:456:722:5

ST_SA 3:243:513:14 0:1870:2470:11 6:6511:14:24 2:213:461:56 49:682:926:7

ST_NS 3:223:273:03 0:1330:1530:0733 9:113:48:17 1:711:91:16 41:865:924:6

TF2 3:253:413:09 0:1550:2280:101 8:0210:95:35 1:912:921:39 47:77927:3
TF2_2 3:23:423:1 0:07840:1630:0541 13:516:88:09 1:272:081:02 40:973:822:1

IMRPB 3:253:33:21 0:1820:2480:122 6:889:894:08 2:163:41:64 41:658:627:9

TABLE IV. Median value and 90% credible intervals on chirp mass (M), symmetric mass
ratio (�), masses (m1 and m2) and distance (dL) obtained in the context of various waveform
models (see Table I) for the injection discussed in Sec. III A 1.

M � m1 m2 d

ST 3:853:893:77 0:2360:250:195 5:677:564:61 3:494:272:71 41:262:226:8

ST_SA 3:883:983:82 0:2240:250:121 6:2712:14:56 3:234:311:98 36:259:218:8

ST_NS 3:853:863:83 0:2450:250:221 5:136:344:49 3:834:373:13 35:757:918:8

TF2 3:853:863:83 0:2420:250:224 5:296:224:52 3:724:353:18 35:458:118:4

TF2_2 3:843:863:82 0:1610:1810:145 9:15108:21 2:322:562:14 35:257:119

IMRPB 3:883:933:86 0:1980:2490:0671 7:4718:44:73 2:784:191:43 34:261:516:3
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