Observation of the Decay $B^+ \to B^0 \pi^+$

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.111.181801</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://hdl.handle.net/1721.1/84928</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
</tbody>
</table>
Observation of the Decay $B_c^+ \to B_s^0 \pi^+$

R. Aaij et al.*
(LHCb Collaboration)

(Received 22 August 2013; published 1 November 2013)

The result of a search for the decay $B_c^+ \to B_s^0 \pi^+$ is presented, using the $B_s^0 \to D^- \pi^+$ and $B_s^0 \to J/\psi \phi$ channels. The analysis is based on a data sample of pp collisions collected with the LHCb detector, corresponding to an integrated luminosity of 1 fb$^{-1}$ taken at a center-of-mass energy of 7 TeV, and 2 fb$^{-1}$ taken at 8 TeV. The decay $B_c^+ \to B_s^0 \pi^+$ is observed with significance in excess of 5 standard deviations independently in both decay channels. The measured product of the ratio of cross sections and branching fraction is $[\sigma(B_c^+)/\sigma(B_s^0)] \times \mathcal{B}(B_c^+ \to B_s^0 \pi^+) = [2.37 \pm 0.31 \text{ (stat)} \pm 0.11 \text{ (syst)}^{+0.17}_{-0.13}(\tau_{B_c^+})] \times 10^{-3}$, in the pseudorapidity range $2 < \eta(B) < 5$, where the first uncertainty is statistical, the second is systematic, and the third is due to the uncertainty on the B_c^+ lifetime. This is the first observation of a B meson decaying to another B meson via the weak interaction.

DOI: 10.1103/PhysRevLett.111.181801

PACS numbers: 13.25.Hw, 12.15.Ji

The B_c^+ meson is the ground state of the bc system. As such it is unique as it is the only weakly decaying doubly heavy meson. All measurements of B_c^+ meson decays to date are decays where the constituent b quark decays weakly to a c quark [1–8]. The decay of the B_c^+ meson to another B meson, with the bottom quark acting as a spectator (see Fig. 1), has not previously been observed. This will improve the understanding of theoretical predictions and provide valuable information for the source of B_c^0 mesons at the LHC.

A wide range of predictions for the branching fraction $\mathcal{B}(B_c^+ \to B_s^0 \pi^+)$ exists, between 16.4% and 2.5%, based on, e.g., QCD sum rules [9,10], or quark-potential models (see Refs. [11–16] and references therein). Experimental clarification is needed to shed light on the present theoretical status. Unlike most other B decays, the higher order corrections in the expansion of Heavy Quark Effective Theory within the framework of quantum chromodynamics (QCD) are relatively large. The expansion is described in powers of m_c/m_b rather than Λ_{QCD}/m_b, due to the presence of two heavy quark constituents, where Λ_{QCD} is the QCD scale, and m_c (m_b) the charm (bottom) quark mass. In addition, the energy release in the decay is relatively small, leading to larger nonfactorizable effects compared to decays with lighter daughter particles. Study of the decay $B_c^+ \to B_s^0 \pi^+$ allows these models to be tested. Knowledge of the production of B_s^0 mesons from B_c^+ decays is also useful for time-dependent analyses of B_c^+ decays, to understand any associated decay-time bias due to the incorrect estimate of the B_s^0 decay time if originating from a B_c^+ decay, or to take advantage of flavor tagging capabilities using the accompanying ("bachelor") pion.

The data used in this analysis were collected with the LHCb detector [17] from pp collisions at $\sqrt{s} = 7$ TeV and 8 TeV, corresponding to integrated luminosities of 1 fb$^{-1}$ and 2 fb$^{-1}$, respectively.

The decays $B_c^+ \to D^- \pi^+$ and $B_c^+ \to J/\psi \phi$ are used, with the subsequent decays $D^- \to K^+ K^- \pi^-$, $J/\psi \to \mu^+ \mu^-$ and $\phi \to K^+ K^-$. The inclusion of charge conjugate modes is implied throughout. The event selection and fits to the B_s^0 invariant mass distributions follow previous LHCb analyses based on these B_s^0 decay modes [18,19]. The two channels are analyzed independently and the final results are combined. The strategy is to normalize the final number of $B_c^+ \to B_s^0 \pi^+$ decays to the number of B_s^0 decays, which gives a result for the $B_c^+ \to B_s^0 \pi^+$ branching fraction multiplied by the ratio of B_s^+ and B_s^0 production rates, $[\sigma(B_c^+)/\sigma(B_s^0)] \times \mathcal{B}(B_c^+ \to B_s^0 \pi^+)$. The B_c^+ signal originating from a B_c^+ decay, or to take advantage of flavor tagging capabilities using the accompanying ("bachelor") pion.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

FIG. 1. Leading-order Feynman diagram of the decay $B_c^+ \to B_s^0 \pi^+$.
region was not examined until the event selection was finalized. Since the ratio of production rates, \(\sigma(B^+_s)/\sigma(B^0) \), may depend on the kinematics of the produced \(B \) meson, the result is quoted for \(B \) mesons produced in the pseudorapidity range \(2 < \eta(B) < 5 \), corresponding to the LHCb detector acceptance.

The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range \(2 < \eta < 5 \), described in detail in Ref. [17]. The combined tracking system provides momentum measurement with relative uncertainty that varies from 0.4% at \(5 \) GeV/c to 0.6% at 100 GeV/c, and impact parameter resolution of 20 \(\mu \)m for tracks with high transverse momentum, \(p_T \). The impact parameter (IP) is defined as the distance of closest approach between the track and a primary interaction. Charged hadrons are identified using two ring-imaging Cherenkov detectors. The charged pions from \(B^+_s \) decays are selected with an efficiency of 93% while keeping the misidentification rate of kaons below 7%. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers with a typical efficiency of 97% at 1%–3% pion to muon misidentification probability. The trigger [20] consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction. The \(B^0 \) candidates with muons in the final state are required to pass the hardware trigger, which selects muons with a transverse momentum, \(p_T > 1.48 \) GeV/c, whereas the \(B^0 \) candidates with only hadrons in the final state are selected by requiring a hadron in the calorimeter with \(E_T > 3.6 \) GeV/c.

Monte Carlo simulations, used to develop the \(B^+_s \) candidate selection, are performed using BCVEGPY [21], interfaced with PYTHIA 6.4 [22] using a specific LHCb configuration [23]. Decays of hadronic particles are described by EVTGEN [24], in which final state radiation is generated using PHOTOS [25]. The interaction of the generated particles with the detector and its response are implemented using the GEANT4 toolkit [26] as described in Ref. [27].

The \(B^0 \) candidates are selected using the multivariate analysis known as the boosted decision tree (BDT) [28,29], to optimally discriminate between signal and background. In the training, simulated \(B^0 \) decays are used as the signal, whereas candidates in the \(B^0 \) mass sideband in data are used as the background. To avoid potential biases, only one sixth of the data is used in the training. It is verified that the distribution of the BDT discriminant is the same for the events used in the training, compared to those that were not. All events are used for the final result. The BDT training for the selection of \(B^0 \to D^- \pi^+ \) candidates uses only the upper sideband \([5466, 5800]\) MeV/c\(^2\), as the lower sideband contains a large amount of irreducible partially reconstructed \(B \) decays, while the training for \(B^0 \to J/\psi \phi \) uses both lower sideband \([5200, 5316]\) MeV/c\(^2\) and upper mass sideband \([5416, 5550]\) MeV/c\(^2\). The \(B^0 \) vertex quality \((\chi^2_{\text{vis}}) \), flight distance, momentum \(p \), and \(p_T \) are used to discriminate the signal from the background. For the \(D^- \pi^+ \) final state we use, in addition, the \(\chi^2_{\text{IP}} \) flight distance, \(p \) and \(p_T \) of the \(D^- \) candidate and the \(p \) and \(p_T \) of the bachelor pion from the \(B^0 \) decay to suppress combinatorial background. The quantity \(\chi^2_{\text{IP}} \) is defined as the difference in \(\chi^2 \) of a given primary vertex (PV) reconstructed with and without the considered track. The training for \(J/\psi \phi \) candidates uses \(p \), \(p_T \), \(\chi^2_{\text{vis}} \), and \(\chi^2_{\text{IP}} \) of the \(J/\psi \) and \(\phi \) candidates, and the \(p_T \) of the final state kaons and muons. In the selection of \(B^0 \) candidates from \(B^+_s \) decays, variables that require the candidate to point to a primary vertex, such as the impact parameter of the \(B^0 \) candidate, are explicitly not included. The minimum value of the BDT discriminant is chosen by optimizing the \(B^0 \) signal significance \(S/\sqrt{S+B} \), where \(S \) and \(B \) are the expected number of signal and combinatorial background events, respectively.

The total number of \(B^0 \) decays is obtained from extended unbinned maximum likelihood fits to the invariant mass distributions, using mass constraints for the \(J/\psi \) candidates [30], and are shown in Fig. 2. The signal shapes are taken as double Crystal Ball functions [31] with a common peak value and with tails to either side of the

![FIG. 2 (color online). Invariant mass distributions of (a) \(B^0 \to D^- \pi^+ \) and (b) \(B^0 \to J/\psi \phi \) candidates. The different components are defined in the legend.](image)
peaks, to account for final state radiation and detector resolution effects. The parameters that describe the tails are obtained from simulation and are fixed in the fits. The peak and width parameters of the signal are allowed to vary. The combinatorial backgrounds are modeled with exponential distributions. The $B^0 \rightarrow D^- \pi^+$ final state is contaminated by partially reconstructed B decays such as $B^0 \rightarrow D_s^- \pi^+$ and $B^0 \rightarrow D^- \rho^+$ decays, where the soft photon or neutral pion is not reconstructed, and by decays where one of the final state particles is misidentified as a kaon, such as $B^0 \rightarrow D^- \pi^+ \pi^0$ or $\Lambda^0 \rightarrow \Lambda^- \pi^+$ decays. The shapes of these backgrounds are fixed from simulation, following Ref. \[18\]. In total $103 760 \pm 380 B^0 \rightarrow J/\psi \phi$ and $73 700 \pm 500 B^0 \rightarrow D^- \pi^+$ decays are found.

Selected B^0_i candidates with masses consistent with the known B^0_i mass are combined with tracks that satisfy loose pion identification requirements. Subsequently, B^+_c candidates are selected with a second BDT algorithm. In the training of the second BDT, simulated candidates with masses consistent with the B^+_c mass are used as the signal, and candidates in the B^+_c mass sideband region in data are used as the background. For this, only the upper mass sideband is used in the case of $B^0_i \rightarrow D_s^- \pi^+$, while also the lower mass sideband is used in the case of $B^0_i \rightarrow J/\psi \phi$, to further suppress the larger combinatorial background at smaller values of the mass. Only one sixth of the total data set is used in the training. The second BDT uses the following variables: the B^+_c candidate p_T, decay time, χ^2_{IP}, χ^2_{PV}, and the B^+_c pointing angle, i.e., the angle between the B^+_c candidate momentum vector and the line joining the associated PV and the B^+_c decay vertex. The B^0_i polar angle (the angle between B^0_i flight direction and the beam axis), decay time, decay length, and pointing angle are also used. The p and p_T of the bachelor pion from the B^+_c decay are the most discriminating observables in the second BDT. Differences between the analyses of the $D_s^- \pi^+$ and $J/\psi \phi$ final states are the use of χ^2_{IP} of the B^0_i candidate and bachelor pion (from the B^+_c decay), and B^0_i and B^+_c momentum for the former, and the use of the B^+_c and B^0_i decay-length uncertainties for the latter. The optimal selections are defined by maximizing figures of merit for a target level of significance of 3 standard deviations, $\epsilon/(3/2 + \sqrt{B})$ [33], where ϵ is the signal efficiency for a given BDT criterion. The figure of merit displays a plateau, and the chosen value is at the lower end to allow us to better constrain the shape of the combinatorial background. The chosen selection is very close to the optimal point for a target level of 5σ and for the expected significance $S/\sqrt{S+B}$. The trigger for $B^0_i \rightarrow D^- \pi^+$ decays preferentially selects candidates with high p_T with respect to the trigger for $B^0_i \rightarrow J/\psi \phi$ decays, which results in higher efficiency for the second BDT requirement for the $B^0_i \rightarrow D^- \pi^+$ final state. The B^+_c and B^0_i candidates are required to be produced in the pseudorapidity range $2 < \eta(B) < 5$.

The invariant mass distributions for the $B^+_c \rightarrow B^0_i \pi^+$ candidates are shown in Fig. 3, together with the resulting fits. The decay $B^+_c \rightarrow B^0_i \pi^+$ has a Q value of 770 MeV/c^2 (with $Q \equiv m_{B^+_c} - m_{B^0_i} - m_{\pi^+}$), which results in a resolution of about 6 MeV/c^2 when a B^0_i mass constraint is applied. The signal shape is modeled as a double Crystal Ball function, with its parameters obtained from simulated events. The larger number of B^+_c candidates in the $B^0_i \rightarrow D^- \pi^+$ channel allows variation of the peak position and the width in the fit. The combinatorial background is primarily due to signal B^0_i decays combined with a random pion from the primary vertex, and is modeled with an exponential function. Backgrounds due to $B^+_c \rightarrow B^0_i \pi^+$ and $B^+_c \rightarrow B^0_i \rho^+$ decays, where the photon or neutral pion are not reconstructed, are simulated, and their shapes are modeled with Gaussian distributions, with parameters fixed in the fit, and yields allowed to vary. Statistical signal significances of 7.7σ for $B^+_c \rightarrow B^0_i (\rightarrow D^- \pi^+) \pi^+$ and 6.1σ for $B^+_c \rightarrow B^0_i (\rightarrow J/\psi \phi) \pi^+$ decays are obtained from the likelihood ratio of fits with and without the probability density function for the signal shape, $\sqrt{\text{2} \ln(L_B/L_{S+B})}$, with 64 ± 10 and 35 ± 8 signal decays, respectively.

![Figure 3](image-url)
In Fig. 3(a), the structure around 6225 MeV/c² is consistent with originating from $B_c^+ \to B_s^0 \pi^+$ decays. However, this contribution is not significant.

To obtain the value for the $B_c^+ \to B_s^0 \pi^+$ branching fraction, multiplied by the ratio of B_c^+ and B_s^0 production rates, the relative detection efficiency of B_c^+ decays compared to $B_s^0 \to B_s^0 \pi^+$ decays is determined from simulation. Requiring the bachelor pion to be inside the LHCb acceptance reduces the $B_s^0 \to B_s^0 \pi^+$ yield by about 19% with respect to the B_s^0 yield. The most significant reduction in the number of selected B_c^+ candidates comes from suppressing B_s^0 combinations with a random pion from the primary interaction, by means of the second BDT selection. The total relative detection efficiency of $B_c^+ \to B_s^0 \pi^+$ decays with respect to B_s^0 decays is estimated to be 15.2% for the $B_s^0 \to J/\psi \phi$ decay and 33.9% for the $B_s^0 \to D_s^- \pi^+$ final state. This difference in B_c^+ selection efficiencies is a consequence of the difference in B_s^0 trigger and selection requirements.

The sources of systematic uncertainty for the efficiency-corrected ratio of B_c^+ and B_s^0 yields are listed in Table I. The uncertainty on the B_s^0 yield in the $D_s^- \pi^+$ analysis is determined by varying the parameters that describe the tails of the signal mass distribution, and by reducing the exponent of the combinatorial background by a factor of 2. The uncertainty on the $B_s^0 \to J/\psi \phi$ yield is obtained by comparing the fitted yield in simulated pseudoexperiments to the yield that was used as input to those experiments.

The uncertainty on the B_c^+ yield is quantified by varying the peak position and width in the fit to $B_c^+ \to B_s^0 \to D_s^- \pi^+$ candidates. The signal model is validated using simulated pseudoexperiments in the $J/\psi \phi$ analysis, whereas the tail parameters are varied by ±10% in the $D_s^- \pi^+$ analysis. In addition, the combinatorial background shape is changed to a straight line, and the difference in the signal yield is taken as the associated systematic uncertainty. The effect of partially reconstructed $B_c^+ \to B_s^0 \rho^+$ decays is estimated by excluding candidates with mass less than 6150 MeV/c² from the fit. The significance of the $B_c^+ \to B_s^0 \pi^+$ signal is reduced to 7.5σ for $B_c^+ \to B_s^0 \to D^- \pi^+$ and 5.5σ for $B_c^+ \to B_s^0 \to J/\psi \phi \pi^+$ when the systematic uncertainties on the fit to the B_c^+ mass distribution are taken into account.

The relative detection efficiency of B_c^+ and B_s^0 events is determined from simulated events. The correspondence between data and simulation is quantified by varying the criterion on the BDT value, and by comparing the observed B_s^0 yield to the expected yield based on the change in efficiency as determined from simulation. The largest contribution is due to the 10% uncertainty on the B_c^+ lifetime [32], which was recently improved by the CDF Collaboration [34]. The change in selection efficiency when varying the B_c^+ lifetime by ±10% is assigned as the systematic uncertainty. A longer (shorter) B_c^+ lifetime corresponds to a larger (smaller) efficiency and therefore a smaller (larger) ratio. As a cross-check, the effect of the choice of different sets of BDT input variables is investigated and the result is found to be stable.

The contribution from Cabibbo-suppressed $B_c^+ \to B_s^0 K^+$ decays, the uncertainty on the efficiency of reconstructing the extra pion, and the uncertainty on the efficiency of the particle identification requirement on the bachelor pion all give small contributions (< 1.0%) to the total systematic uncertainty, and are not itemized in the summary in Table I.

The B_s^0 and B_c^+ yields are corrected for the relative detection efficiencies, to obtain the efficiency-corrected ratios of $B_c^+ \to B_s^0 \pi^+$ over B_s^0 yields, $[2.54 \pm 0.40(\text{stat}) \pm 0.17(\text{syst})] \times 10^{-3}$ and $[2.20 \pm 0.49(\text{stat}) \pm 0.23(\text{syst})] \times 10^{-3}$ for the $D_s^- \pi^+$ and $J/\psi \phi$ final states, respectively. The small fraction of B_s^0 candidates originating from B_c^+ decays is neglected. The uncertainty due to the uncertainty on the B_s^0 lifetime is correlated between the two measurements, and is accounted for in the combined result of the ratio of production rates multiplied with the branching fraction

$$\frac{\sigma(B_c^+) \times \mathcal{B}(B_c^+ \to B_s^0 \pi^+)}{\sigma(B_s^0)} = [2.37 \pm 0.31(\text{stat}) \pm 0.11(\text{syst})^{+0.17}_{-0.13}(\tau_{B_c^+})] \times 10^{-3},$$

where the first uncertainty is statistical, the second is systematic, and the third is due to the uncertainty on the B_c^+ lifetime. Since $\sigma(B_c^+)/\sigma(B_s^0)$ may depend on the kinematics of the produced B meson, the data are divided according to center-of-mass energy leading to $[1.27 \pm 0.42(\text{stat}) \pm 0.05(\text{syst})^{+0.07}_{-0.05}(\tau_{B_c^+})] \times 10^{-3}$ and $[2.92 \pm 0.40(\text{stat}) \pm 0.12(\text{syst})^{+0.21}_{-0.16}(\tau_{B_c^+})] \times 10^{-3}$ for $\sqrt{s} = 7$ and 8 TeV pp collisions, respectively. The lower value for the

TABLE I. Contributions of the various sources of (relative) systematic uncertainty on the efficiency-corrected ratio of event yields. The total systematic uncertainty is the quadratic sum of the individual contributions. The number of $B_c^+ \to B_s^0 \to D_s^- \pi^+$ candidates is large enough that the peak position and width are freely varied in the fit, and hence the corresponding uncertainty is contained in the statistical uncertainty of the signal yield.

<table>
<thead>
<tr>
<th>Source</th>
<th>$D_s^- \pi^+$ (%)</th>
<th>$J/\psi \phi$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_s^0 fit model</td>
<td>3.0</td>
<td>1.2</td>
</tr>
<tr>
<td>B_c^+ mean mass</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>B_s^0 mass resolution</td>
<td></td>
<td>5.2</td>
</tr>
<tr>
<td>B_c^+ mass model</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>Combinatorial background model</td>
<td>1.8</td>
<td>0.3</td>
</tr>
<tr>
<td>Partially reconstructed background</td>
<td>1.8</td>
<td>1.7</td>
</tr>
<tr>
<td>Data-simulation difference</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>B_c^+ lifetime</td>
<td>+0.8</td>
<td>7.4</td>
</tr>
<tr>
<td>-0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>+0.9</td>
<td>10.4</td>
</tr>
</tbody>
</table>
result of the 7 TeV data is attributed to a downward statistical fluctuation of the $B^+_s \to B^0_s(\to J/\psi\phi)\pi^+$ yield in the 2011 data set, with a p value of 1.5%.

Assuming a value for $\mathcal{B}(B^+_s \to J/\psi\pi^+)$ around 0.15% [11], combined with the results $[\sigma(B^+_s)/\sigma(B^+)] \times \mathcal{B}(B^+_s \to J/\psi\pi^+)/\mathcal{B}(B^+ \to J/\psi K^+) = (0.68 \pm 0.10 \pm 0.03 \pm 0.05)%$ [4], and measurements of f_s/f_d [18] and $\mathcal{B}(B^+ \to J/\psi K^+)$ [32], results in a ratio of production rates of B^+_s mesons over B^+_c mesons of about 0.02. This leads to a branching fraction for $B^+_s \to B^0_s\pi^+$ of about 10%. Although precise quantification requires improved understanding of $\sigma(B^+_s)$ and $\mathcal{B}(B^+_c \to J/\psi\pi^+)$, even taking the lower estimates for $\mathcal{B}(B^+_c \to J/\psi\pi^+)$ that are found in the literature [11], leads to a value of $\mathcal{B}(B^+_s \to B^0_s\pi^+)$ which is the largest exclusive branching fraction of any known weak B meson decay.

In summary, the first observation of a weak decay of a B meson to another B meson is reported. This measurement will help to better understand flavor tagging and the decay time resolution in time-dependent B^0_c analyses, and in addition will constrain models that predict branching fractions of B^+_s decays.

We wish to thank A. K. Likhoded for useful discussions. We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ (Brazil); NSFC (China); CNRS/IN2P3 and Region Auvergne (France); BMBF, DFG, HGF and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); SCSR (Poland); MEN/IFA (Romania); MinES, Rosatom, RFBR and NRC “Kurchatov Institute” (Russia); MinECo, XuntaGal and GENCAT (Spain); SNSF and SER (Switzerland); NAS Ukraine (Ukraine); STFC (United Kingdom); NSF (USA). We also acknowledge the support received from the ERC under FP7. The Tier1 computing centers are supported by IN2P3 (France), KIT and BMBF (Germany), INFN (Italy), NWO and SURF (Netherlands), PIC (Spain), GridPP (United Kingdom). We are thankful for the computing resources put at our disposal by Yandex LLC (Russia), as well as to the communities behind the multiple open source software packages that we depend on.

(LHCb Collaboration)

1Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3Center for High Energy Physics, Tsinghua University, Beijing, China
4LAPP, Université de Savoie, CNRS/IN2P3, Annecy-Le-Vieux, France
5Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
6 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
7 LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
8 LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France
9 Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
10 Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
11 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
12 School of Physics, University College Dublin, Dublin, Ireland
13 Sezione INFN di Bari, Bari, Italy
14 Sezione INFN di Bologna, Bologna, Italy
15 Sezione INFN di Cagliari, Cagliari, Italy
16 Sezione INFN di Ferrara, Ferrara, Italy
17 Sezione INFN di Firenze, Firenze, Italy
18 Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy
19 Sezione INFN di Genova, Genova, Italy
20 Sezione INFN di Milano Bicocca, Milano, Italy
21 Sezione INFN di Padova, Padova, Italy
22 Sezione INFN di Pisa, Pisa, Italy
23 Sezione INFN di Roma Tor Vergata, Roma, Italy
24 Sezione INFN di Roma La Sapienza, Roma, Italy
25 Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
26 AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
27 National Center for Nuclear Research (NCBJ), Warsaw, Poland
28 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
29 Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
30 Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
31 Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
32 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
33 Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
34 Institute for High Energy Physics (IHEP), Protvino, Russia
35 Universitat de Barcelona, Barcelona, Spain
36 Universidad de Santiago de Compostela, Santiago de Compostela, Spain
37 European Organization for Nuclear Research (CERN), Geneva, Switzerland
38 Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
39 Physik-Institut, Universität Zürich, Zürich, Switzerland
40 Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
41 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
42 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
43 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
44 University of Birmingham, Birmingham, United Kingdom
45 H. H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
46 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
47 Department of Physics, University of Warwick, Coventry, United Kingdom
48 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
49 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
50 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
51 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
52 Imperial College London, London, United Kingdom
53 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
54 Department of Physics, University of Oxford, Oxford, United Kingdom
55 Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
56 University of Cincinnati, Cincinnati, Ohio, USA
57 University of Maryland, College Park, Maryland, USA
58 Syracuse University, Syracuse, New York, USA
59 Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil [associated with Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil]
60 Institut für Physik, Universität Rostock, Rostock, Germany [associated with Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany]
61 Celal Bayar University, Manisa, Turkey [associated with European Organization for Nuclear Research (CERN), Geneva, Switzerland]
Also at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.

Also at Università di Bari, Bari, Italy.

Also at Università di Bologna, Bologna, Italy.

Also at Università di Cagliari, Cagliari, Italy.

Also at Università di Ferrara, Ferrara, Italy.

Also at Università di Firenze, Firenze, Italy.

Also at Università di Urbino, Urbino, Italy.

Also at Università di Modena e Reggio Emilia, Modena, Italy.

Also at Università di Genova, Genova, Italy.

Also at Università di Milano Bicocca, Milano, Italy.

Also at Università di Roma Tor Vergata, Roma, Italy.

Also at Università di Roma La Sapienza, Roma, Italy.

Also at Università della Basilicata, Potenza, Italy.

Also at LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.

Also at Hanoi University of Science, Hanoi, Vietnam.

Also at Institute of Physics and Technology, Moscow, Russia.

Also at Università di Padova, Padova, Italy.

Also at Università di Pisa, Pisa, Italy.

Also at Scuola Normale Superiore, Pisa, Italy.