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Flat space cosmology spacetimes are exact time-dependent solutions of three-dimensional gravity

theories, such as Einstein gravity or topologically massive gravity. We exhibit a novel kind of phase

transition between these cosmological spacetimes and the Minkowski vacuum. At sufficiently high

temperature, (rotating) hot flat space tunnels into a universe described by flat space cosmology.
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Introduction.—Phase transitions are ubiquitous in phys-
ics, with numerous applications in condensed matter phys-
ics, particle physics, and cosmology. Interestingly, phase
transitions can occur even between different spacetimes,
for instance, between black hole spacetimes and (hot)
empty space [1]. In this work, we exhibit a novel type of
phase transition between cosmological spacetimes and
(hot) flat space in three spacetime dimensions.

The existence of a phase transition is quite surprising,
given that flat space in three dimensions (’� ’þ 2�)

ds2 ¼ �dt2 þ dr2 þ r2d’2 (1)

has few interesting features at first glance. It arises as an
exact solution of the vacuum Einstein equations R�� ¼ 0.

The Euclidean signature version of flat space allows us to
introduce a finite temperature by periodically identifying
the Euclidean time (possibly with a rotation in ’). We call
this hot flat space (HFS).

The other spacetime we shall be concerned with
is flat space cosmology (FSC). FSC spacetimes [2,3]
[�ð�Þ: ¼ 1þ ðE�Þ2, y� yþ 2�r0]

ds2 ¼ �d�2 þ ðE�Þ2dx2
�ð�Þ þ�ð�Þ

�
dyþ ðE�Þ2

�ð�Þ dx
�
2

(2)

are locally flat [4] time-dependent exact solutions of
the vacuum Einstein equations [5,6]. For positive
(negative) �, they describe expanding (contracting) uni-
verses from (toward) a cosmological horizon at � ¼ 0.
The parameter E has inverse length dimension and cor-
responds physically to the temperature associated with
FSC [7].

The main purpose of the present work is to exhibit a
phase transition between the (Euclidean versions of the)
spacetimes (1) and (2) within Einstein gravity and more
general gravitational theories in three dimensions. Thus,
remarkably time-dependent cosmological spacetimes can
emerge from flat space by heating up the latter.

Flat space cosmological spacetimes.—FSC spacetimes
(2) are shifted-boost orbifolds of R1;2 [2,3] and correspond

to flat space analogs of nonextremal rotating Bañados-
Teitelboim-Zanelli (BTZ) black holes [8] in anti–de
Sitter (AdS) space. In flat space chiral gravity [9], FSC
spacetimes are conjectured to be dual to nonperturbative
states, again in full analogy to the role played by BTZ
black holes in AdS quantum gravity. Their Bekenstein-
Hawking entropy can be matched by a formula counting
the asymptotic growth of states in the putative dual field
theory [5,6]. It is useful for our purposes to represent FSC
(2) in terms of different coordinates. We make the coor-
dinate transformation r̂þt ¼ x, r0’ ¼ yþ x, and
ðr=r0Þ2 ¼ 1þ ðE�Þ2 with E ¼ r̂þ=r0 and ’� ’þ 2�,

ds2 ¼ r̂2þdt2 �
r2dr2

r̂2þðr2 � r20Þ
þ r2d’2 � 2r̂þr0dtd’: (3)

With no loss of generality, we assume r0, r̂þ > 0. These
solutions are compatible with asymptotically flat boundary
conditions [9,10]. In the absence of sources, Eq. (3) is the
most general zero mode solution of the vacuum Einstein
equations [11]. At vanishing r, closed null curves are
encountered, so that the locus r ¼ 0 corresponds to a
singularity in the causal structure.
This singularity is screened by a cosmological horizon

at the surface r ¼ r0, so that the region r � r0 is regular.
The horizon’s surface gravity determines its Hawking
temperature T ¼ ��1 as

T ¼ r̂2þ
2�r0

: (4)

The angular velocity � of the horizon is given by

� ¼ r̂þ
r0

: (5)

The result for the Hawking temperature (4) agrees with the
corresponding one by Cornalba, Costa, and Kounnas [7],
who calculated thermal radiation from cosmological
particle production in the time-dependent background (2).
Strategy of the calculation.—Given some values of tem-

perature (4) and angular velocity (5), we pose the question
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which of the spacetimes (1) or (3) is preferred thermody-
namically. To this end, we continue to Euclidean signature
and compare which of the smooth Euclidean solutions has
smaller free energy.

Free energy can then be derived from the canonical
partition function

ZðT;�Þ ¼
Z

Dge��½g� ¼ X
gc

e��½gcðT;�Þ�Zfluct; (6)

where the path integral is performed over all continuous
Euclidean metrics g compatible with the boundary condi-
tions enforced by the temperature T and angular velocity
�. In the semiclassical approximation, the leading contri-
bution comes from the Euclidean action � evaluated on
smooth classical solutions gc compatible with the bound-
ary conditions. We are not concerned here with subleading
contributions from fluctuations encoded in Zfluct.

Smooth Euclidean saddle points.—The Euclidean
version of flat space (1) is simple, but we also need the
Euclidean continuation of FSC (3). A natural choice is

t ¼ i�E; r̂þ ¼ �irþ; (7)

which then leads to Euclidean FSC

ds2E¼ r2þ
�
1�r20

r2

�
d�2Eþ

dr2

r2þð1� r2
0

r2
Þ
þr2

�
d’�rþr0

r2
d�E

�
2
:

(8)

Requiring the absence of conical singularities on the FSC
horizon fixes the periodicities of the angular coordinate ’
and Euclidean time �E. Consider r2 ¼ r20 þ ��2. In the

near-horizon (� ! 0) approximation, the Euclidean metric
(8) can be written as

ds2E � �

r2þ

�
d�2 þ �2 r

4þ
r20

d�2E

�
þ r20

�
d’� rþ

r0
d�E

�
2
: (9)

Smoothness requires the identifications

�E � �E þ 2�r0
r2þ

¼ �E þ �;

’� ’þ 2�

rþ
¼ ’þ ��;

(10)

since the term proportional to � demands a precise �E
periodicity and the transverse direction ’� �Erþ=r0
must stay fixed as one moves around the thermal �E circle.
The expressions for the Hawking temperature T ¼ ��1 ¼
r2þ=ð2�r0Þ and angular velocity � ¼ rþ=r0 agree with
their Minkowski counterparts (4) and (5) as well as with
the flat limit expressions of the ones for inner horizon BTZ
thermodynamics [12,13].

Defining the ensemble.—We declare two Euclidean
saddle points to be in the same ensemble if (i) they have
the same temperature T ¼ ��1 and angular velocity �
given by Eqs. (4) and (5), respectively, (ii) the two metrics

obey flat space boundary conditions [9,10], and (iii) the
solutions do not have conical singularities. Note that
requirement (ii) is somewhat different from what we would
usually assume, namely, that the metrics asymptote to the
same one at infinity. The peculiarities of the boundary
conditions [9,10] for flat space solutions imply that
there are leading terms in the metric that can fluctuate
like the gtt term. Note finally that the absence of conical
singularities does not automatically imply the absence of
asymptotic conical defects. A crucial counterexample is
FSC (8), which has an asymptotic conical defect if r2þ � 1,
since in the large r limit, ds2E ¼ r2þd�2E þ dr2=r2þ þ
r2d’2 þ � � � , where ’ is 2� periodic [14]. On the other
hand, Euclidean HFS

ds2HFS ¼ d�2E þ dr2 þ r2d’2 (11)

has no conical defects since it has periodicities ð�E; ’Þ �
ð�E; ’þ 2�Þ � ð�E þ �;’þ�Þ, where inverse tempera-
ture � ¼ T�1 and angular potential � ¼ �� are given by
Eq. (4).
Cosmic phase transition in Einstein gravity.—The con-

siderations above are valid for any three-dimensional (3D)
gravity theory supporting flat space boundary conditions.
From now on, we focus on the simplest such theory,
namely, Einstein gravity. Its Euclidean action reads [15]

� ¼ � 1

16�G

Z
d3x

ffiffiffi
g

p
R� 1

16�G
lim
r!1

Z
d2x

ffiffiffiffi
�

p
K: (12)

Here, G is the Newton constant, � the determinant of the
induced metric at the asymptotic boundary r ! 1, and K
the trace of extrinsic curvature.
On shell, the bulk term vanishes in Eq. (12). HFS (11)

yields
ffiffiffiffi
�

p ¼ r and K ¼ 1=r. FSC (9) yields
ffiffiffiffi
�

p ¼ rþrþ
Oð1=rÞ and K ¼ rþ=rþOð1=r3Þ. Thus, we obtain on
shell

�HFS ¼ � �

8G
; �FSC ¼ ��r2þ

8G
¼ ��r0

4G
: (13)

Plugging the on-shell actions (13) into Eq. (6) establishes
the respective canonical partition functions ZðT;�Þ. The
free energy is obtained from FðT;�Þ ¼ �T lnZ, where
T ¼ r2þ=ð2�r0Þ is the Hawking temperature:

FHFS ¼ T�HFS ¼ � 1

8G
FFSC ¼ T�FSC ¼ � r2þ

8G
:

(14)

So our main conclusion is that there is a phase transition
between HFS and FSC, as summarized below (rþ > 0):

rþ > 1; FSC is the dominant saddle;

rþ < 1; HFS is the dominants addle;

rþ ¼ 1; FSC andHFS coexist:

(15)

The phase transition occurs at the critical temperature
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Tc ¼ 1

2�r0
¼ �

2�
: (16)

Thus, at sufficiently high temperatures, HFS ‘‘melts’’ and
tunnels into FSC. Conversely, increasing rotation leads to
higher critical temperatures, making HFS more stable. So,
at sufficiently high angular velocity, FSC ‘‘falls apart’’ and
tunnels to HFS.

Entropy.—Given the free energy (14), we can derive all
thermodynamical variables of interest by standard meth-
ods. For HFS, the free energy is constant, and thus all
quantities besides temperature and angular rotation are
trivial. In particular, the entropy of HFS vanishes. By
contrast, FSC has nontrivial thermodynamics [5,6]. As a
consistency check on the validity of our result (14), we
show now that we recover the correct entropy.

Let us first rewrite the free energy in terms of tempera-
ture and angular rotation:

FFSCðT;�Þ ¼ � �2T2

2G�2
: (17)

The thermodynamical entropy

S ¼ �@FFSC

@T

���������¼const
¼ 2�r0

4G
(18)

then coincides precisely with the Bekenstein-Hawking
entropy, which in turn coincides with the entropy derived
from a Cardy-like formula valid for Galilean conformal
algebras [5,6]. Our result (18) not only confirms the analy-
sis of Refs. [5,6], but it also strengthens their conclusions,
since we have derived above the Bekenstein-Hawking law
from first principles, rather than assuming its validity.

Specific heat C ¼ T@S=@T ¼ S ¼ �2T=ðG�2Þ is posi-
tive, which implies that the Gaussian fluctuations that
contained in Zfluct in Eq. (6) do not destabilize the system.
Note that specific heat vanishes linearly with temperature
as T tends to zero, just like a free Fermi gas at low
temperature.

First law.—For FSC, another thermodynamical quantity
of interest is the angular momentum

J ¼ �@FFSC

@�

��������T¼const
¼ � rþr0

4G
; (19)

which enters in the first law of thermodynamics

dF ¼ �SdT � Jd�: (20)

Integrating the first law yields F ¼ U� TS��J ¼ U
with the (nonpositive) internal energy U ¼ �J=2 ¼
�M, where

M ¼ r2þ
8G

(21)

is the mass parameter. The first law is also obeyed by
internal energy dU ¼ TdSþ�dJ. The unusual signs

appearing here are reminiscent of inner horizon thermody-
namics [12,13,19–21].
Matching the solutions via S transformation.—We now

connect FSC and HFS by the flat space analog of a modular
S transformation in a conformal field theory (CFT). This is
useful for a field-theoretic interpretation of our results. The
flat space S transformation reads [22]

S:ð�;�Þ ! ð�0;�0Þ ¼
�
4�2�

�2
;� 4�2

�

�
: (22)

We start with the FSC metric (8). Changing coordinates
r2 ¼ r20 þ r2þr02, �E ¼ �0E=rþ � ’0r0=r2þ, and ’ ¼ ’0=rþ
yields flat space ds2 ¼ d�02E þ dr02 þ r02d’02. In terms of
the new coordinates, the periodicities read ð�0E; ’0Þ �
ð�0E � �0; ’0 þ�0Þ � ð�0E; ’0 þ 2�Þ with �0 ¼ 2�r0 ¼
4�2�=�2 and �0 ¼ 2�rþ ¼ �4�2=�. These are pre-
cisely the values obtained from the S transformation (22).
Therefore, FSC with periodicities (�, �) is equivalent to
HFS with S-dual periodicities (�0, �0). This is the flat
space analog of the AdS3=CFT2 statement that thermal
AdS3 space with modular parameter � is equivalent to a
BTZ black hole with S-dual modular parameter�1=� (see,
e.g., Ref. [31]).
Consistency check.—The analysis above lets us resolve a

seemingly puzzling conceptual issue. In flat space (1),
there appears to be no preferred scale, so how is it possible
that there is a critical temperature? The key observation is
that we are considering flat space with fixed angular rota-
tion, which does provide a length scale L ¼ 2�r0. The
critical temperature (16) is reached precisely when the
periodicity in Euclidean time is one in units of L. We can
interpret this property from a field theory perspective,
where L is associated with the twist of one of the cycles
of the torus on which the field theory lives. Consistently,
the critical temperature (16) coincides with the self-dual
point of the S transformation (22).
Beyond Einstein gravity.—We now generalize our

results to another interesting 3D theory of gravity, namely,
topologically massive gravity (TMG) [32]:

�TMG ¼ �� 1

32�G�

Z
d3xCS: (23)

If the Chern-Simons coupling constant � tends to infinity,
we recover the Einstein gravity action (12). The Chern-
Simons term expressed in terms of the Christoffel symbols
reads CS ¼ �	���


	�ð@���
�
 þ 2

3 �
�
����

�
Þ. TMG has all

solutions of Einstein gravity, since any spacetime with a
vanishing Ricci tensor also has a vanishing Cotton tensor
C�� ¼ "	
� r	ðR�
 � 1

4g�
RÞ ¼ 0, and thereby trivially

solves the field equations of TMG R�� þ 1
�C�� ¼ 0. We

assume with no loss of generality that � is positive.
A complication in TMG is that it is not known how to

compute free energy from the on-shell action. We proceed
by assuming the validity of the first law of thermodynamics
(20) and then integrate it. For this, we need the angular
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momentum at finite �, Jð�Þ ¼ J � 1
�M, and entropy. The

latter can be calculated using Solodukhin’s conical deficit
method [33] or Tachikawa’s generalization of the Wald
entropy for theories with a gravitational Chern-Simons
term [34]:

STMG ¼ 2�r0
4G

þ 1

�

2�rþ
4G

: (24)

The first term is compatible with the Einstein result (18)
obtained in the limit � ! 1. The second term is compat-
ible with the conformal Chern-Simons gravity (CSG) result
obtained in the limit G ! 1, 8�G ¼ 1=k, which we now
derive. To this end, we exploit the flat space chiral gravity
conjecture that the dual field theory is a chiral CFT with
central charge c ¼ 24k [9] and use a chiral version of the
Cardy formula:

SCSG ¼ 2�

ffiffiffiffiffiffiffiffi
chL
6

s
¼ 4�krþ: (25)

In the second equality, we used the result for the Virasoro
zero mode charge hL ¼ kr2þ [9]. Integrating the first law
(20) with the results above yields the free energy

FTMG
FSC ¼ � �2T2

2G�2

�
1þ�

�

�
: (26)

Comparing the free energies (26) and FTMG
HFS ¼�ð1=8GÞ,

we see that that there is again a phase transition between
HFS and FSC, as summarized below (�, �, rþ > 0):

r2þ
�
1þ�

�

�
> 1; FSC is the dominant saddle;

r2þ
�
1þ�

�

�
< 1; HFS is the dominant saddle;

r2þ
�
1þ�

�

�
¼ 1; FSC andHFS coexist:

(27)

Consequently, if rþ is sufficiently large, HFS is thermody-
namically not the preferred spacetime and will tunnel
to FSC. Thus, our phase transition is not a unique feature
of Einstein gravity and arises also in TMG. The phase
transition occurs at the critical temperature

TTMG
c ¼ �

2�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�=�

p : (28)

It could be interesting to extend our results to other 3D
models, like new massive gravity [35], pure fourth-order
gravity [36], or generalizations thereof.

Concluding remarks.—We conclude with some remarks
concerning four dimensions. The Gross-Perry-Yaffe insta-
bility of four-dimensional HFS due to nucleation of
Schwarzschild black holes [37] is qualitatively different
from the instability discussed in the present work, since the
former only involves static spacetimes. Our transition from
HFS into FSC is also different from the well-known

quantum creation of universes [38–40], since the latter
requires the presence of some form of matter, like a scalar
field with a nonvanishing self-interaction potential. Given
these differences with previous constructions, it would be
interesting to generalize our results to four (or higher)
dimensions. This could be feasible, since also four- (or
higher-) dimensional AdS space allows the construction of
BTZ-like quotients; see Ref. [41] for a careful analysis and
references therein for the original literature.
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[8] M. Bañados, C. Teitelboim, and J. Zanelli, Phys. Rev. Lett.

69, 1849 (1992).
[9] A. Bagchi, S. Detournay, and D. Grumiller, Phys. Rev.

Lett. 109, 151301 (2012).
[10] G. Barnich and G. Compere, Classical Quantum Gravity

24, F15 (2007).

PRL 111, 181301 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

1 NOVEMBER 2013

181301-4

http://dx.doi.org/10.1007/BF01208266
http://dx.doi.org/10.1007/BF01208266
http://dx.doi.org/10.1103/PhysRevD.66.066001
http://dx.doi.org/10.1103/PhysRevD.66.066001
http://dx.doi.org/10.1002/prop.200310123
http://dx.doi.org/10.1002/prop.200310123
http://dx.doi.org/10.1016/0003-4916(84)90085-X
http://dx.doi.org/10.1016/0003-4916(84)90085-X
http://dx.doi.org/10.1007/JHEP10(2012)095
http://dx.doi.org/10.1103/PhysRevLett.110.141302
http://dx.doi.org/10.1016/S0550-3213(02)00446-7
http://dx.doi.org/10.1016/S0550-3213(02)00446-7
http://dx.doi.org/10.1103/PhysRevLett.69.1849
http://dx.doi.org/10.1103/PhysRevLett.69.1849
http://dx.doi.org/10.1103/PhysRevLett.109.151301
http://dx.doi.org/10.1103/PhysRevLett.109.151301
http://dx.doi.org/10.1088/0264-9381/24/5/F01
http://dx.doi.org/10.1088/0264-9381/24/5/F01


[11] G. Barnich, A. Gomberoff, and H.A. Gonzalez, Phys. Rev.
D 86, 024020 (2012).

[12] A. Castro and M. J. Rodriguez, Phys. Rev. D 86, 024008
(2012).

[13] S. Detournay, Phys. Rev. Lett. 109, 031101 (2012).
[14] This property can be understood as a limiting case of

geometric properties between two BTZ horizons. The
Euclidean geometry between the inner and the outer
horizons in general has a conical singularity on either of
the two horizons, depending on how the periodicities are
fixed. Suppose that we fix them such that the inner horizon
is free from a conical singularity. Then, the outer horizon
has a conical defect and a conical singularity. In the flat
space limit, the outer horizon is pushed toward infinity, so
that the conical singularity is not part of the manifold.
Nevertheless, asymptotically, there is a conical defect.

[15] We use the standard Einstein-Hilbert action with one half
of the Gibbons-Hawking-York boundary term [16,17] for
calculating the on-shell action. It turns out [18] that flat
space boundary conditions [9,10] require such a boundary
term for a well-defined variational principle. A detailed
analysis of the variational principle is in preparation with
Friedrich Schöller.
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