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The 1-D heat equation for constant k (thermal conductivity) is almost identical to the solute diffusion

equation:
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The most important difference is that it uses the thermal diffusivity a = ey in the unsteady solutions, but

the thermal conductivity & to determine the heat flux using Fourier’s first law
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For this reason, to get solute diffusion solutions from the thermal diffusion solutions below, substitute D for
both k and a, effectively setting pc, to one.

1-D Heat Conduction Solutions
1. Steady-state

(a) No generation

i. Cartesian equation:
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Solution:
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IMost texts simplify the cylindrical and spherical equations, they divide by r and r2 respectively and product rule the

r-derivative apart. This gives
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for spherical coordinates. I prefer equations 2 and 3 because they are easier to solve.



Flux magnitude for conduction through a plate in series with heat transfer through a fluid
boundary layer (analagous to either lst-order chemical reaction or mass transfer through a
fluid boundary layer):

(T is the fluid temperature, analagous to the concentration in equilibrium with the fluid in
diffusion; T; is the temperature on the side opposite the fluid.)

Dimensionless form: )
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where 7, = WEE) and 7p, = % (a.k.a. the Biot number).
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ii. Cylindrical equation:

Solution:

Flux magnitude for heat transfer through a fluid boundary layer at R; in series with conduc-
tion through a cylindrical shell between R; and Rs:
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iii. Spherical equation:
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(b) Constant generation
i. Cartesian equation:
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ii. Cylindrical equation:
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iii. Spherical equation:
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(c) (Diffusion only, not covered) first-order homogeneous reaction consuming the reactant, so G =
—kC



i. Cartesian equation:
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ii. Cylindrical and spherical solutions involve Bessel functions, but here are the equations:

Di <7‘d0> —krC =0

dr dr
d dcC
D— (r*— | —kr’C=0
dr (r dr) "
2. Unsteady solutions without generation based on the Cartesian equation with constant k and pc,:
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(a)

Uniform initial condition T' = T; (or T' = T, ), constant boundary condition T = T, at = = 0,
semi-infinite body; or step function initial condition in an infinite body.

Solution is the error function or its complement:
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Semi-infinite criterion:

Note: this also applies to a “diffusion couple”, where two bodies of different temperatures (or
concentrations) are joined at = 0 and diffuse into each other; the boundary condition there is
halfway between the two initial conditions. This works only if the (thermal) diffusivities are the
same.

Fixed quantity of heat/solute diffusing into a (semi-)infinite body (same semi-infinite criterion as
2a), no flux through x = 0, initial condition T' = T; everywhere except a layer of thickness § if
semi-infinite or 24 if fully infinite where T" = Tj.

Short-time solution consists of erfs at the interfaces, like a diffusion couple.

Long-time solution is the shrinking Gaussian:

(TO - TZ)(S ( SC2 )
T=T,+ 2 —" —
vrat b



(c¢) (Neither covered nor required) Uniform initial condition T = T;, constant boundary condition
T =T, at © =0 and = L (or zero-flux boundary condition ¢, = —k0T/0x = 0 at © = L/2),
finite body; or periodic initial condition (we’ve covered sine and square waves) in an infinite body.

Solution is the Fourier series:
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For a square wave or uniform IC in a finite body, a,, = % for odd n, zero for even n, T is the
average temperature for a periodic situation or the boundary condition for a finite layer, L is the
half period of the wave or the thickness of the finite layer.

The n = 1 term dominates when %t > 1.

(d) (Neither covered nor required) Uniform initial condition T' = T, constant flux boundary condi-
tionat t =0 ¢, = —kz% = qo, semi-infinite body (same semi-infinite criterion as 2a).
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(e) (Neither covered nor required) Uniform initial condition T' = T, heat transfer coefficient bound-
ary condition at x = 0 g, = —k%L = h(Ty, — T), semi-infinite body (same semi-infinite criterion
as 2a).

Solution:
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If a body is moving relative to a frame of reference at speed u, and conducting heat only in the
direction of motion, then the equation in that reference frame (for constant properties) is:

3. Moving body
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Note that this is the diffusion equation with the substantial derivative instead of the partial derivative,
and nonzero velocity only in the z-direction. Recall the definition of the substantial derivative:
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Applied to temperature with u, = u, = 0:
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When this reaches steady-state, so = 0, then the solution in the absence of generation is
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