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The 1D heat equation for constant k (thermal conductivity) is almost identical to the solute diffusion 
equation: 

∂T ∂2T q̇
= α + (1)

∂t ∂x2 ρcp 

or in cylindrical coordinates: 
∂T ∂ ∂T q̇

r = α r + r (2)
∂t ∂r ∂r ρcp 

and spherical coordinates:1 
∂T ∂T q̇2 r = α

∂ 
r 2 + r 2 (3)

∂t ∂r ∂r ρcp 

kThe most important difference is that it uses the thermal diffusivity α = ρcp 
in the unsteady solutions, but 

the thermal conductivity k to determine the heat flux using Fourier’s first law 

∂T 
qx = −k (4)

∂x 

For this reason, to get solute diffusion solutions from the thermal diffusion solutions below, substitute D for 
both k and α, effectively setting ρcp to one. 

1D Heat Conduction Solutions 

1. Steadystate 

(a) No generation 

i. Cartesian equation: 
d2T 

= 0 
dx2 

Solution:

T = Ax + B


1Most texts simplify the cylindrical and spherical equations, they divide by r and r2 respectively and product rule the 
rderivative apart. This gives 

∂T ∂2T 1 ∂T q̇
= α + + 

∂t ∂r2 r ∂r ρcp 

for cylindrical and 

∂T ∂2T 2 ∂T q̇
= α + + 

∂t ∂r2 r ∂r ρcp 

for spherical coordinates. I prefer equations 2 and 3 because they are easier to solve. 
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Flux magnitude for conduction through a plate in series with heat transfer through a fluid 
boundary layer (analagous to either 1storder chemical reaction or mass transfer through a 
fluid boundary layer): 

Tfl − T1|qx| = 
| |

1 + L 
h k 

(Tfl is the fluid temperature, analagous to the concentration in equilibrium with the fluid in

diffusion; T1 is the temperature on the side opposite the fluid.)

Dimensionless form:


1 
πq = 1− 

1 + πh 

qxLwhere πq = k(Tfl−T1) 
and πh = hL (a.k.a. the Biot number). k 

ii. Cylindrical equation: 
d dT 

r = 0 
dr dr 

Solution:

T = A ln r + B


Flux magnitude for heat transfer through a fluid boundary layer at R1 in series with conduc
tion through a cylindrical shell between R1 and R2: 

Tfl − T2
r 

|
1

| · qr| = 
hR

|

1 
+ 1 ln R2 

k R1 

iii. Spherical equation: 
d 2 dT 

r = 0 
dr dr 

Solution: 
A 

T = + B 
r 

(b) Constant generation 

i. Cartesian equation: 
d2T 

k + q̇ = 0 
dx2 

Solution: 
2q̇x

T = − 
2k 

+ Ax + B 

ii. Cylindrical equation: 
d dT 

k r + rq̇ = 0 
dr dr 

Solution: 
2q̇r

T = − 
4k 

+ A ln r + B 

iii. Spherical equation: 
dT 

k
d 

r 2 + r 2 q̇ = 0 
dr dr 

Solution: 
2q̇r A 

T = + B− 
6k 

+ 
r 

(c) (Diffusion only, not covered) firstorder homogeneous reaction consuming the reactant, so G = 
−kC 
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i. Cartesian equation: 
d2C 

D 
dx2 

− kC = 0 

Solution: √ 
x + Be−

√
kk 

D xC = Ae

or: 

D 

�� � �� � 
k k 

C = A cosh x + B sinh x 
D D 

ii. Cylindrical and spherical solutions involve Bessel functions, but here are the equations: 

d dC 
D r − krC = 0 

dr dr 

dC 
D

d 
r 2 − kr 2C = 0 

dr dr 

2. Unsteady solutions without generation based on the Cartesian equation with constant k and ρcp: 

∂T ∂2T 
= α 

∂t ∂x2 

kwhere α = .ρcp 

(a) Uniform initial condition T = Ti (or T = T∞), constant boundary condition T = Ts at x = 0, 
semiinfinite body; or step function initial condition in an infinite body.

Solution is the error function or its complement:
 � � 

T − Ts 

Ti − Ts 
= erf 

x 

2
√

αt � � 
T − Ti 

Ts − Ti 
= erfc 

x 

2
√

αt 

Semiinfinite criterion: 
L 

2
√

αt 
≥ 2 

Note: this also applies to a “diffusion couple”, where two bodies of different temperatures (or 
concentrations) are joined at x = 0 and diffuse into each other; the boundary condition there is 
halfway between the two initial conditions. This works only if the (thermal) diffusivities are the 
same. 

(b) Fixed quantity of heat/solute diffusing into a (semi)infinite body (same semiinfinite criterion as 
2a), no flux through x = 0, initial condition T = Ti everywhere except a layer of thickness δ if 
semiinfinite or 2δ if fully infinite where T = T0. 
Shorttime solution consists of erfs at the interfaces, like a diffusion couple.

Longtime solution is the shrinking Gaussian:


2x
T = Ti +

(T0 − Ti)δ exp − 
4αt 

√
παt 
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(c) (Neither covered nor required) Uniform initial condition T = Ti, constant boundary condition 
T = Ts at x = 0 and x = L (or zeroflux boundary condition qx = −k∂T/∂x = 0 at x = L/2), 
finite body; or periodic initial condition (we’ve covered sine and square waves) in an infinite body. 
Solution is the Fourier series: 

∞ � � � �� n2π2αt nπx 
T = Ts + (Ti − Ts) an exp − 

L2 
sin 

L 
n=0 

4For a square wave or uniform IC in a finite body, an = nπ for odd n, zero for even n, Ts is the 
average temperature for a periodic situation or the boundary condition for a finite layer, L is the 
half period of the wave or the thickness of the finite layer. 

π2αThe n = 1 term dominates when L2 t ≥ 1. 

(d) (Neither covered nor required) Uniform initial condition T = T∞, constant flux boundary condi
−k dTtion at x = 0 qx = dx = q0, semiinfinite body (same semiinfinite criterion as 2a). 

Solution: � � � � � �� 
z z 

T = T∞ + 
q0 2 

αt 
exp 

2 

− z 1− erf 
k π 

−
4αt 2

√
αt 

(e) (Neither covered nor required) Uniform initial condition T = T∞, heat transfer coefficient bound
−k dTary condition at x = 0 qx = dx = h(Tfl − T ), semiinfinite body (same semiinfinite criterion


as 2a).

Solution:


hx xT − Tfl = erfc 
x − exp + 

h2αt 
erfc + 

h
√

αt 

T∞ − Tfl 2
√

αt k k2 
·

2
√

αt k 

3. Moving body 

If a body is moving relative to a frame of reference at speed ux and conducting heat only in the 
direction of motion, then the equation in that reference frame (for constant properties) is: 

∂T ∂T ∂2T q̇
+ ux = α + 

∂t ∂x ∂x2 ρcp 

Note that this is the diffusion equation with the substantial derivative instead of the partial derivative, 
and nonzero velocity only in the xdirection. Recall the definition of the substantial derivative: 

D ∂ 

Dt ∂t 
u · � 

Applied to temperature with uy = uz = 0: 

DT ∂T ∂T 
= + ux

Dt ∂t ∂x 

Therefore:

DT ∂2T q̇


= α + 
Dt ∂x2 ρcp 

When this reaches steadystate, so ∂T = 0, then the solution in the absence of generation is ∂t 

T = A + Be uxx/α 
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