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In this work, we find that Majorana fermions induce selective equal spin Andreev reflections (SESARs),
in which incoming electrons with certain spin polarization in the lead are reflected as counterpropagating
holes with the same spin. The spin polarization direction of the electrons of this Andreev reflected channel
is selected by the Majorana fermions. Moreover, electrons with opposite spin polarization are always
reflected as electrons with unchanged spin. As a result, the charge current in the lead is spin polarized.
Therefore, a topological superconductor which supports Majorana fermions can be used as a novel device
to create fully spin-polarized currents in paramagnetic leads. We point out that SESARs can also be used to
detect Majorana fermions in topological superconductors.

DOI: 10.1103/PhysRevLett.112.037001 PACS numbers: 71.10.Pm, 74.45.+c, 74.78.-w, 85.75.-d

Introduction.—A Majorana fermion (MF) [1,2] is an
antiparticle of itself. Due to this self-Hermitian property,
MFs lead to several interesting phenomena such as frac-
tional Josephson effects [2–6], resonant Andreev reflec-
tions [7,8], electron teleportations [9,10], as well as
enhanced [11] and resonant [12] crossed Andreev reflec-
tions. Moreover, MFs in condensed matter systems obey
non-Abelian statistics [13–17] and have potential applica-
tions in fault-tolerant quantum computations [18,19].
In this work, we point out another intriguing phenome-

non due to the self-Hermitian property of MFs, namely,
MF-induced selective equal-spin Andreev reflections
(SESARs). As depicted in Fig. 1, when a spinful para-
magnetic normal lead is coupled to a topological super-
conductor through its MF end state, electrons with spin
pointing to a certain direction n⃗ are reflected as holes with
the same spin [Fig. 1(a)], where n⃗ is determined by the
properties of the topological superconductor. The reflected
holes are created due to missing electrons with spin
polarization n⃗ below the Fermi energy. Therefore, these
processes are called equal-spin Andreev reflections. This is
in sharp contrast to ordinary Andreev reflection processes
[20], in which the reflected holes are created due to missing
electrons below the Fermi energy which have opposite
spins to the incoming electrons.
Even more interestingly, at the normal lead/topological

superconductor (N/TS) junction, electrons with opposite
spin polarization −n⃗ are completely decoupled from the
MF and they cannot participate in Andreev reflections
[Fig. 1(b)]. In other words, the MF selects electrons with
certain spin polarization n⃗ to undergo equal-spin Andreev
reflections. Therefore, we refer to this new phenomenon as
MF-induced SESARs.
Pure equal-spin Andreev reflections can take place at a

half-metal/superconductor interface [21–28] if spin is not
conserved at the interface. This is because conducting

electrons in a half-metal are fully spin polarized and usual
Andreev reflection processes cannot occur. Nevertheless, as
we show below, inducing SESARs in paramagnetic leads is
a special property of MFs. Importantly, as in the half-metal
case and depicted in Fig. 1(a), the charge current in the
normal lead is fully spin polarized since the current is
carried by right-moving electrons and counterpropagating
holes with the same spin. Therefore, a topological super-
conductor which supports MFs can be used as a novel
device for inducing fully spin-polarized currents in para-
magnetic leads.
In the following sections, we first show, using an

effective Hamiltonian approach, that SESARs are due to
the self-Hermitian property of MFs. Second, we calculate

FIG. 1 (color online). A paramagnetic normal lead (N) is
coupled to a topological superconductor (TS) with MF end
states. The zero energyMF mode is denoted by the horizontal line
inside the bulk gap of the TS. (a) Electrons with a specific spin
polarization can undergo equal-spin Andreev reflections in which
an electron is reflected as a hole with the same spin. (b) Electrons
with opposite spin are totally reflected as electrons with un-
changed spin. (c) Realizing a topological superconductor using a
Rashba semiconducting wire in proximity to an s-wave super-
conductor and in a magnetic field. The Rashba direction is
denoted as n⃗R.
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the spin polarization direction n⃗ of a N/TS junction. The
topological superconductor is engineered by applying an
external magnetic field to a semiconducting wire in
proximity to an s-wave superconductor [29–32] as depicted
in Fig. 1(c). Third, we demonstrate how SESARs can be
used to detect MFs in topological superconductors using a
spin-polarized lead.
Majorana-induced SESARs.—At in-gap energy, the den-

sity of states at the ends of a topological superconducting
wire is mainly due to zero energy MF end states. Therefore,
we expect the transport properties of a N/TS junction at in-
gap energy can be well described by an effective
Hamiltonian which includes the lead and the coupling
between the lead and the MF [6,9,11]. The effective
Hamiltonian HT can be written as

HT ¼ HL þHc;

HL ¼ −ivF
X
α∈↑=↓

Z þ∞

−∞
ψ†
αðxÞ∂xψαðxÞdx;

Hc ¼ ~tγ½aψ↑ð0Þ þ bψ↓ð0Þ − a�ψ†
↑ð0Þ − b�ψ†

↓ð0Þ�. (1)

Here, HL describes the normal lead with spin-up and spin-
down electrons ψ↑=↓ðxÞ and Fermi velocity vF. The most
general form of coupling between the MF end state γ and
the lead is described by Hc, where ~t is a real number and a
and b are complex numbers. The form of Hc is determined
by the self-Hermitian property of the MF γ ¼ γ† and the
fact that Hc is Hermitian. Without loss of generality, one
can set jaj2 þ jbj2 ¼ 1. It is important to note that using
a unitary transformation Ψ1 ¼ aψ↑ þ bψ↓ and Ψ2 ¼−b�ψ↑ þ a�ψ↓, the Hamiltonian becomes

HL ¼ −ivF
X
α∈1=2

Z þ∞

−∞
Ψ†

αðxÞ∂xΨαðxÞdx;

Hc ¼ ~tγ½Ψ1ð0Þ −Ψ†
1ð0Þ�

(2)

Evidently, the MF only couples to the Ψ1 electrons
with spinor s⃗1¼jajð1;b=aÞT ¼ðcos ðθ=2Þ;eiϕ sinðθ=2ÞÞT,
while the Ψ2 electrons with spinor s⃗2 ¼ ð− sin ðθ=2Þ;
eiϕ cosðθ=2ÞÞT are totally decoupled from the MF. This
Ising spin property of MFs [33–37], which allows MFs to
couple to electrons with certain spin polarization only, has
significant effects on the transport properties of topological
superconductors as we show below.
Since the Ψ2 electrons are decoupled from the MF, we

consider the Ψ1 electrons and holes in the Hamiltonian in
Eq. (2) only. Denoting the incoming and outgoing electrons
(holes) with energy E relative to the Fermi energy as
Ψ1Eð−Þ (Ψ†

1Eð−Þ) and Ψ1EðþÞ (Ψ†
1EðþÞ), respectively, the

scattering matrix of the N/TS junction is

�
Ψ1EðþÞ
Ψ†

1EðþÞ
�

¼ 1

Γþ iE

�
iE Γ
Γ iE

��
Ψ1Eð−Þ
Ψ†

1Eð−Þ
�

(3)

where Γ ¼ 2~t2=vF. From the scattering matrix, we note that
the Ψ1 electrons are reflected as Ψ1 holes with the same
spin with Andreev reflection amplitude Γ=ðΓþ iEÞ. From
the spinors s⃗1 and s⃗2, we note that Ψ1 electrons have spins
parallel to the direction n⃗ ¼ hs⃗1jσ⃗js⃗1i ¼ ðsin θ cos ϕ;
sin θ sinϕ; cos θÞ, and Ψ2 electrons have opposite spins,
where σ⃗ is the Pauli vector. Therefore, electrons with spin
parallel to the n⃗ directions can couple to the MF and
undergo equal-spin Andreev reflections, whereas electrons
with opposite spin are totally reflected as electrons. We call
this phenomenon MF-induced SESARs.
SESARs of spin-orbit coupled superconducting wires.—

The MF induced SESARs is a general phenomenon due to
the self-Hermitian property of MFs as shown above.
Moreover, n⃗ cannot be determined using the effective
Hamiltonian. Therefore, to be specific, we study a N/TS
junction where the topological superconductor can be
realized experimentally [38–40] by applying a magnetic
field to a spin-orbit coupled semiconducting wire which is
in proximity to an s-wave superconductor as depicted in
Fig. 1(c).
In the Nambu basis ðψk↑;ψk↓;ψ

†
−k↑;ψ

†
−k↓Þ, the

Hamiltonian of the topological superconductor can be
written as [29–32]

H1DðkÞ ¼
��

k2

2m
− μ

�
σ0 þ V⃗ · σ⃗ þ αRkσy

�
τz − Δσyτy:

(4)

Here, ψk↑ (ψk↓) denotes a spin-up (-down) electron with
momentum k, the effective mass and the chemical potential
are denoted by m and μ, respectively. The Zeeman field
is denoted by V⃗ and αR is the Rashba spin-orbit coupling
strength. The Pauli matrices σi and τi act on the spin and
particle-hole space respectively.
Suppose the one-dimensional superconducting wire

occupies the semi-infinite space with x ≥ 0 and a magnetic
field with magnitude Vz is applied along the z-direction,
there exists a MF end state localized near x ¼ 0 in the
topological regime when Vz

2 > μ2 þ Δ2. The MF end state
γ satisfies the condition H1Dðk → −i∂xÞγ ¼ 0 with γ† ¼ γ.
In general, the Majorana mode can be written as

γðxÞ ¼
X3
i¼1

βi

�
ϕ⃗i

ϕ⃗i

�
e−λix þ β4

�
ϕ⃗4

−ϕ⃗4

�
e−λ4x; (5)

where λi are the four solutions of the following two quartic
equations with positive real parts,

�
λ2

2m
þ μ

�
2

þ ðαRλ� ΔÞ2 − V2
z ¼ 0. (6)

For realistic semiconducting wires with 2mα2R=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
z − Δ2

p
≪ 1 and at chemical potential μ ≈ 0, we

have λ1 ¼ λ�2 ¼ iλ0 þ δ and λ3=4 ¼ λ0∓δ, where
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λ0 ¼
ffiffiffiffiffiffiffi
2m

p ðV2
z − Δ2Þ1=4 and δ ¼ 2m2αRΔ=λ20. Here,

ϕ⃗i ¼ ½λ2i =ð2mÞ þ Vz;−Δ − αRλi�T for ϕ⃗1, ϕ⃗2 and ϕ⃗3,
and ϕ⃗4 ¼ ½λ24=ð2mÞ þ Vz;Δ − αRλ4�T .
Assuming that the lead can be described by the

Hamiltonian HL ¼ ðk2=2mL − μÞσ0τz, the wave function
in the lead at the Fermi energy can be written as
ΨLðxÞ¼ e⃗1eikFxþde↑e⃗1e−ikFxþde↓e⃗2e−ikFxþdh↑e⃗3eikFxþ
dh↓e⃗4eikFx, where kF is the Fermi momentum and
e⃗1 ¼ ½1; 0; 0; 0�T , e⃗2 ¼ ½0; 1; 0; 0�T , e⃗3 ¼ ½0; 0; 1; 0�T and
e⃗4 ¼ ½0; 0; 0; 1�T . Here, dα;σ denotes the amplitude for an
incoming spin-up electron to be reflected as an electron (e)
or hole (h) with spin σ. On the other hand, the wave
function at the Fermi energy on the superconductor side
ΨSðxÞ can be written as the linear combination of the four-
component vectors associated with ϕ⃗i in Eq. (5). We note
that the wave function has to satisfy the continuity con-
dition ΨLðxÞjx¼0 ¼ ΨSðxÞjx¼0 and current conservation
condition JxΨLðxÞjx¼0 ¼ JxΨSðxÞjx¼0, where the current
operator is

Jx ¼
∂H1DðkÞ

∂k jk→−i∂x ¼
�−i∂x=m −iαR

iαR −i∂x=m

�
τz: (7)

By solving the above boundary conditions, for both spin-up
and spin-down incoming electrons, the scattering matrix of
the N/TS junction at the Fermi energy can be found. At
zeroth order in αR with αR → 0, the Andreev reflection
matrix rhe, which relates the incoming electrons
ðψk↑;ψk↓ÞT with the outgoing holes ðψ†

−k↑;ψ
†
−k↓ÞT , is

rheðVzÞ ¼

0
B@

Vz−
ffiffiffiffiffiffiffiffiffiffiffi
V2
z−Δ2

p
2Vz

− Δ
2Vz

− Δ
2Vz

Vzþ
ffiffiffiffiffiffiffiffiffiffiffi
V2
z−Δ2

p
2Vz

1
CA: (8)

On the other hand, the normal reflection matrix which
relates the incoming electrons with outgoing electrons is
reeðVzÞ ¼ rheð−VzÞeiχðkÞ, where eiχðkÞ ¼ ðk=mL − iλ0=
mÞ=ðk=mL þ iλ0=mÞ is the phase acquired by the reflected
electrons at the interface. Denoting s⃗0 ¼ ðcos ðθ0=2Þ;
eiϕ0 sinðθ0=2ÞÞT ¼ 1

N ð−Δ; Vz þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
z − Δ2

p
ÞT with N the

normalization factor, we have rhes⃗0 ¼ s⃗�0 and rees⃗0 ¼ 0.
Therefore, to the zeroth order in αR, electrons in the
conducting channel with spin parallel to n⃗0 ¼ hs⃗0jσ⃗js⃗0i ¼
ðsin θ0 cos ϕ0; sin θ0 sin ϕ0; cos θ0Þ will be resonantly
reflected as holes with the same spin. On the contrary,
electrons with spinor u⃗0 ¼ ð− sin ðθ0=2Þ; eiϕ0 cosðθ0=2ÞÞ
and spin antiparallel to n⃗0 are totally reflected as electrons
with unchanged spin since reeu⃗0 ¼ eiχ u⃗0.
It is important to note that the form of rhe strongly

depends on the existence of the MF solution in Eq. (5). In
the trivial regime, rhe will be dominated by off-diagonal
elements and usual opposite spin Andreev reflection
processes will dominate. It is also interesting to note that,
in the weak coupling regime and weak Rashba, the

electronic part of the MF wave function in Eq. (5) is
approximately proportional to s⃗0. Therefore, the measure-
ment of n⃗ can reveal the form of the MF wave function.
To further verify the analytic results and generalize the

results to arbitrary Rashba strength and voltage bias, we
calculate the scattering matrix of the N/TS junction using a
tight-binding model used in Refs. [41,42].
The scattering matrix of the N/TS junction can be

calculated using the recursive Green’s function method
[42,43]. For example, the reflection matrix elements for an
incoming electron are

~rσ
0σ

αe ¼ −δσσ0δαe þ i½Γ1=2�ασ0 � ½Gr�σ0σαe � ½Γ1=2�eσ: (9)

Here, ~rσ
0σ

αe is the reflection amplitude of an incoming
electron with spin σ to be reflected as an α particle with
spin σ0 where α denotes electron (e) or hole (h). ½Gr�σ0σαe is a
matrix element of the retarded Green’s function Gr of the
superconductor. The broadening function is denoted by
Γα
σ ¼ i½ðΣα

σÞr − ðΣα
σÞa�, where ðΣα

σÞrðaÞ is the retarded
(advanced) self-energy of the α particle lead with spin σ.
Numerically we find that, in the topological regime,

there are two eigenvectors s⃗n and u⃗n for the normal
reflection matrix ~ree with ~rees⃗n ¼ m1s⃗n and ~reeu⃗n ¼
m2u⃗n, respectively. For the Andreev reflection matrix,
we have ~rhes⃗n ¼ m0

1s⃗
�
n and ~rheu⃗n ¼ 0. The eigenvalues

are in general complex and have the properties jm1j < 1,
jm2j ¼ 1 and jm0

1j ≤ 1. This shows that electrons with
spinor u⃗n are reflected as electrons with the same spin
with probability of unity. On the other hand, electrons with
spinor s⃗n can be reflected as holes with the same spin with
Andreev reflection amplitude m0

1. In other words, electrons
with spin polarization n⃗ ¼ hs⃗njσ⃗js⃗ni can undergo equal-
spin Andreev reflections. Electrons with opposite spin
polarization −n⃗ ¼ hu⃗njσ⃗ju⃗ni are totally reflected. This is
consistent with the effective Hamiltonian and the analytic
results.
The differential conductance dI=dV, as a function of

voltage bias V between the lead and the superconductor, is
shown in Fig. 2(a). As expected, the zero bias conductance
is quantized to 2e2=h as the MF couples to only a single
conducting channel of the lead.
To study the spin polarization vector n⃗ ¼ hs⃗njσ⃗js⃗ni, we

plot the angle θ calculated from the tight-binding model
[41,42] as a function of Vz for different incoming electron
energy eV and different αR. The results are shown in
Fig. 2(b). The zeroth order analytic result at zero bias,
which is a good approximation for the numerical results for
small αR, is also shown in Fig. 2(b). The finite voltage bias
results are denoted by dashed lines. It is important to note
that θ is not sensitive to the energy of the incoming
electrons so that the current at finite bias is also spin
polarized.
In Fig. 2(c), n⃗ as a function of Vz is depicted. As

expected from the analytic results for αR → 0 that
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n⃗0 ¼ hs⃗0jσ⃗js⃗0iwith s⃗0 ∝ ð−Vz þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
z − Δ2

p
;ΔÞT , the pro-

jection of n⃗ on the z axis increases as jVzj increases. On the
other hand, ϕ ¼ 0 when αR → 0 as the Andreev reflection
matrix in Eq. (8) is real. For small Rashba strength, ϕ is
only weakly dependent on Vz and it deviates only slightly
from 2π. The n⃗ dependent on αR for fixed Vz is shown in
Fig. 2(d). Experimentally, it is also convenient to apply the
magnetic field along the wire so that Vx is finite. For
αR → 0, the polarization vector is n⃗0 ¼ hs⃗0jσ⃗js⃗0i with
s⃗0 ∝ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
x − Δ2

p
;Δ − VxÞT . The numerical results for

the Vx and αR dependence of n⃗ are shown in Figs. 2(e)
and 2(f), respectively.
Coupling between MFs and spin-polarized leads.—It is

shown above that incoming electrons with different spin
polarizations interact with the topological superconductor
differently. Electrons with spin parallel to n⃗ can undergo

equal-spin Andreev reflections, whereas electrons with
opposite spin polarization are totally reflected as electrons.
Therefore, if the normal lead is spin polarized, we expect
that the conductance of a N/TS junction will strongly
depend on the spin polarization of the lead.
The experimental setup is depicted in Fig. 3(a) in which a

normal lead is coupled to one end of a topological super-
conductor. A ferromagnet is coupled to a section of the
normal lead so that electrons passing through the magnetic
section is strongly polarized by the ferromagnet. The
schematic band structure of different sections of the system
is shown in Fig. 3(a). By controlling the magnetization
direction of the ferromagnet, one can control the spin
polarization direction of the incoming electrons at the N/TS
junction.
We denote the polarization angle of the ferromagnet and

the topological superconductor with respect to the z axis as
θF and θS, respectively. The conductance of the N/TS
junction for different angles δθ ¼ θF − θS is shown in
Fig. 3(b). When δθ ≈ 0, most of the incoming electrons can
undergo equal-spin Andreev reflections. As a result, the
width of the conductance peak, which measures the
coupling strength between the lead and the topological
superconductor, is wide. As δθ deviates from zero, the
incoming electrons can be decomposed into the Andreev
reflected channel and the totally reflected channel. As δθ

FIG. 2 (color online). Δ ¼ 1, t ¼ 25, t0 ¼ 30, tc ¼ 15 for all
the figures. (a) The differential conductance dI=dV of the N/TS
junction as a function of voltage bias V. The parameters are
chosen as: αR ¼ 2, Vz ¼ 2. (b) The angle θ of the polarization
vector n⃗ as a function of Vz, for different αR and voltage bias. The
zeroth order result from n⃗0, which is a good approximation for
the numerical results for small αR, is also presented. (c)–(f) The
polarization vector n⃗ for different parameters at zero voltage bias.
The coordinates θ and ϕ denote the coordinates of the dashed
vector. (c) n⃗ with αR ¼ 2 and different Vz. Vz ¼ −2 for the
dashed vector. (d) n⃗ with Vz ¼ −2 at different αR. αR ¼ 3 for the
dashed vector. (e) n⃗ with αR ¼ 2 and different Vx. Vx ¼ −2 for
the dashed vector (f) n⃗with Vx ¼ −2 and different αR. αR ¼ 3 for
the dashed vector.

FIG. 3 (color online). (a) A normal lead (N) is coupled to a
semiconducting wire with Rashba spin-orbit coupling and in
proximity to a superconductor (SC). The wire can support MF
end states. A ferromagnetic (FM) section is added to the normal
lead to polarize the electrons of the wire. The schematic band
structure of different sections of the wire are shown. The Fermi
energy is denoted by the yellow dashed line. The spin degeneracy
of the spin-up and spin-down bands in the ferromagnetic section
of the normal lead is lifted. (b) The differential conductance as a
function of δθ in the topological regime with MFs. The tight-
binding parameters are the same as in Fig. 2(a) except that a
Zeeman field V⃗F with jV⃗Fj ¼ 10Δ is applied to a section of 20
sites of the normal lead, which is 10 sites away from the N/TS
interface. (c) The differential conductance as a function of θF in
the topologically trivial regime.
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increases, the weight of the totally reflected channel
becomes more important and the width of the conductance
peak becomes narrower. Nevertheless, the height of the
zero bias conductance peak at zero temperature is not
changed due to resonant Andreev reflections. On the
contrary, in the topologically trivial regime, in which
two transverse subbands of the semiconductor wire are
occupied, Andreev reflections are mainly induced by
ordinary fermionic end states and ordinary Andreev reflec-
tion processes will dominate. As a result, the conductance
is only weakly dependent on θF. Therefore, the MF-
induced SESARs can be used to distinguish the topological
regime from the trivial regime of the superconductor.
Conclusion.—In short, we show in this work that MFs

induce SESARs. As a result, topological superconductors
can be used as novel devices to generate spin-polarized
currents in paramagnetic leads. The SESARs can also be
used to detect MFs if spin-polarized leads are used.
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