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Abstract

As data mining over massive amounts of linked data becomes more and more prevalent
in research applications, information privacy becomes a more important issue. This
is especially true in the biological and medical fields, where information sensitivity is
high. Previous experience has shown that simple anonymization techniques, such as
removing an individual’s name from a data set, are inadequate to fully protect the
data’s participants. While strong privacy guarantees have been studied for relational
databases, these are virtually non-existent for graph-structured linked data. This line
of research is important, however, since the aggregation of data across different web
sources may lead to privacy leaks. The ontological structure of linked data especially
aids these attacks on privacy.

The purpose of this thesis is two-fold. The first is to investigate differential privacy,
a strong privacy guarantee, and how to construct differentially-private mechanisms
for linked data. The second involves the design and implementation of the SPARQL
Privacy Insurance Module (SPIM). Using a combination of well-studied techniques,
such as authentication and access control, and the mechanisms developed to maintain
differential privacy over linked data, it attempts to limit privacy hazards for SPARQL
queries. By using these privacy-preservation techniques, data owners may be more
willing to share their data sets with other researchers without the fear that it will
be misused. Consequently, we can expect greater sharing of information, which will
foster collaboration and improve the types of data that researchers can have access
to.

Thesis Supervisor: Dr. Lalana Kagal, Research Scientist at MIT CSAIL,
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Chapter 1

Introduction

Privacy preservation is the problem of assuring that information about individuals

that is available to agents will not be misused to harm those individuals. This is subtly

different than the problem of security, which attempts to deny agents from accessing

sensitive information. Both often go hand-in-hand in protecting individuals’ personal

data. However, while security is a relatively mature field, privacy preservation has

struggled to keep up. There are several reasons for this. One is that user privacy

is often an afterthought in system design, as developers are usually more focused on

achieving high performance than on protecting individuals. The second is that, in

legal terms, it is often hard to define and agree on what information misuse entails.

Finally, achieving privacy guarantees in systems is very difficult as there are few

ways to foresee and control how an agent who has access to personal data will use it.

Even worse, individual pieces of information from different sources, while not harmful

independently, can be damaging when combined correctly. A cunning adversary can

reconstruct an individual’s entire profile by using several sources. A consequence of

this phenomenon, known as Mosaic Theory [30], is that simple techniques such as

anonymization, the deletion of sensitive information from a data set, are not always

effective at protecting information. These privacy attacks have been observed in

practice in various case studies.

As data mining over user data becomes a more indelible aspect of modern in-

formation gathering, the importance of privacy becomes more essential. Individuals
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have grown wary of their information being used for research purposes, fearing that

their personal lives will be utilized in ways that they have not approved of. In par-

ticular, the public release of personal information may be socially embarrassing or,

even worse, financially and emotionally damaging. The Federal government has also

taken note and continues to impose regulations on how data may be shared and used.

This has negative consequences on the research community for whom the success of

a project depends greatly on whether or not individuals make their data available.

For biological and medical research, Federal laws also stipulate that certain privacy

conditions must be met, making information accessibility especially difficult.

Much of modern research into privacy deals either with implementing systems

that attempt to hinder adversaries from misusing information through access control,

accountability, and other techniques, or with finding ways to guarantee some measure

of privacy . The former line of research has the drawback of not offering any strong

privacy guarantees; the latter deals with developing mathematical models that do.

The most notable of these are the concepts of k-anonymity and differential privacy.

However, much of this research relates to the Relational Database (RDBMS) model.

In essence this is a tabular data format, where rows correspond to user data and

columns correspond to data labels.

Relational databases, while simple and highly-optimized, have several drawbacks

for use with web data. One drawback is that diverse labeling schema makes infor-

mation sharing cumbersome. For example, a set of databases may contain a column

corresponding to a person’s username, but each database labels it differently. As a

result, to share usernames across many databases requires manual field re-labeling.

In addition, any automated process attempting to use the database for reasoning will

need outside human aid to format the data for use.

In contrast, information on the web is becoming more and more decentralized. The

ultimate goal is the achievement of the Semantic Web [4], which will structure all web

data and have it be more easily manipulated by automated agents. Semantic web

technologies, such as Resource Description Framework (RDF) [16] and Web Ontology

Language (OWL) [19], were developed to ease information sharing on the web. These

14



technologies provide meta-data in the form of ontologies and other labeling that

allows information from heterogeneous data sources to be shared easily. In particular,

these formats, known as linked data [25], make it far easier for automatons to share

and reason over data. This presents new privacy challenges, however, as the added

ontological structure enables adversaries to carry out privacy attacks on users more

easily. It is imperative that methods be developed to protect triplestores, the RDF

equivalent of databases.

This project focuses on maintaining privacy over standard SPARQL [31] end-

points, and attempts to provide a module that is flexible enough to provide privacy

preservation for various datasets. The system, named the SPARQL Privacy Insur-

ance Module (SPIM), is aimed to be used by SPARQL endpoint holders to provide

researchers with opportunities to mine semantic web data while preventing malicious

users from misusing it. It combines several techniques to achieve this. First, it uses

authentication to verify that an agent has permissions to use the system. Second,

it uses AIR [17], a semantic web policy language, to provide privacy policies that

control what information an agent will have access to and how this information is

displayed. Finally, and most importantly, it attempts to use differential privacy to

limit the damage that aggregate data can do to an individual. SPIM uses a form

of the principle of least privilege [34] for privacy. It limits information access to as

few users as possible, and confines the amount of damage any piece of information

released can do.

Because differential privacy has been mainly applied to relational databases, where

the data is highly structured, it is necessary to re-define is slightly for it to make sense

for graph-like data structures, which include linked data. As a result, a large portion

of this project is dedicated to looking at how to construct mechanisms over linked

data that are differentially-private. Apart from making sure that these are correct, it

is necessary to assure these are feasible to compute.
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1.1 Thesis Overview

The following outlines the contents of the thesis and the description of SPIM:

Chapter 2 will provide the relevant background necessary to describe the different

parts of SPIM. Specifically, it provides an overview of Semantic Web technologies

and how they differ from traditional databases, the problem of privacy preservation,

policy languages, and differential privacy.

Chapter 3 motivates the need for robust privacy systems for data mining over

linked data. It explores how this would be used in healthcare research, a field where

this would be extremely useful.

Chapter 4 will deal look at how differential privacy may be adapted to linked

data. It motivates how techniques used in classical databases will be modified, and

how this will theoretically affect the performance and accuracy of statistical queries.

Chapter 5 describes how SPIM was designed and implemented. It first looks at the

architecture, showing how the different parts of the systems collaborate for privacy

preservation. It then discusses the specific technologies used when implementing each

part of the system.

Chapter 6 has two main parts. It first looks at how the SPIM system is ap-

plied to the use-case discussed in Chapter 3. It then experimentally evaluates the

differentially-private mechanisms by looking at both their accuracy and runtimes.

Chapter 7 re-iterates the main points of the project. It looks again at the purpose

of the thesis and sees how well SPIM fulfills these requirements. It finally looks at

future directions for this work and areas where it can be improved.
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Chapter 2

Background & Related Work

This section is meant to introduce the reader to the field of privacy in relation to

linked data. It first briefly discusses the Relational Database model (RDBMS) and

how Semantic Web technologies solve some of its limitations. Specifically, it compares

the two and describes why the latter is more appropriate for decentralized web data

exchange. Then, it gives a brief description of privacy and how it differs from more

mature fields such as data security and integrity. It further discusses the two main

ideas used to provide privacy over semantic web data. The first is policy languages,

which essentially provides a rule-based, fine-grained method for specifying how in-

formation should be accessed. The second is differential privacy, which gives strong

privacy guarantees on certain querying mechanisms. It also discusses other lines of

research relating to privacy preservation.

2.1 Relational Databases

The storage and manipulation of large amounts of digital data has been an important

field of research since the birth of computer science. Relational databases are a

form of data representation and storage that arose in 1970 [9] and has dominated

since. Mathematically, data is represented sets of tuples where each position in the

tuple represents a different attribute. These correspond to the tabular data structure

commonly used in statistics. A row, or record, in a table is a tuple and each column
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Table 2.1: Example of a Relational Database: People Profiles

id name email sex
1 Alice alice@example.com F
2 Bob bob@example.com M

Table 2.2: Example of Relational Database: Usernames

id username uri
1 alice89 http://example.com#Alice
2 bobcat http://example.com#Bob

is an index in the tuple. Data corresponding to an entity may be spread over several

such tables.

For example, consider Tables 2.1 and 2.2. These, respectively, correspond to two

sets of tuples:

(1, Alice, alice@example.com, F),

(2, Bob, bob@example.com, M)

and

(1, alice89, <http://example.com#Alice>),

(2, bobcat, <http://example.com#Bob>)

While this data format is simple and has been widely optimized over the years for

storage and querying, it is inadequate for use with more unstructured data. The main

drawback is that tables from varying data sources may be related, but must be joined

explicitly by a client to create this relation. This is because there is little meta-data

describing the tuples, making automated data linking difficult. In addition, tuples are

structured according to the attributes of a database. Sharing tables is more difficult

as a result because the different attributes must be matched explicitly. In an open

web where the amount of data is immense this is unfeasible.
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2.2 Resource Description Framework

The Resource Description Framework (RDF) [16] arose as a way to fix the limitations

of relational databases. RDF is an XML-based [23] data representation language.

Instead of keeping data in tuples, data is kept in triples. A triple consists of three

entities: a subject, a predicate, and an object. The subject and objects represent

pieces of information and the predicate represents some sort of relation between these.

All three are represented as Uniform Resource Identifiers (URI) or literals. A URI can

be thought of as an address to a webspace where some resource is located. Literals,

on the other hand, are pieces of data such as strings and numbers. RDF is often

simplified and written in Notation 3 (N3) [5], which contains the same structure but

with simplified namespaces.

@pref ix rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#> .

@pre f ix f o a f : <http :// xmlns . com/ f o a f /0.1/> .

@pre f ix r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#> .

@pre f ix : <http :// example . com/#> .

: Yotam a f o a f : Person ;

f o a f : name ”Yotam” ;

f o a f : knows [

a f o a f : Person ;

f o a f : name ”Fulan i to ”

] .

Listing 2.1: Sample FOAF File

Listing 2.1 shows an example FOAF [22] file, which is used for social networking. It

begins with namespaces, which define a prefix of the URIs. Namespaces are separated

from the name of the resource by a colon. For example, the term “foaf:Person” refers

to the class “〈http://xmlns.com/foaf/0.1#Person〉” defined in the file at location

“〈http://xmlns.com/foaf/0.1〉”. The same is true of the properties “foaf:name” and

“foaf:knows.” The file where these terms are defined is called an ontology. In this file
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are descriptions of these classes and properties, their meaning, and what kinds of rules

are associated with them. Resources without a prefix, such as “:Yotam”, are defined

to be objects defined in the current file located at webspace “http:/example.com/”.

Overall, the above file can be translated into English as follows: “There exists a

person named Yotam who knows another person named Fulanito.”

The benefit of having the file in the above format is that everything is presented

in the form of URIs and a shared ontology. This means that any online endpoint can

access this information by using the “foaf” namespace. In addition, any automaton

can refer to the “foaf” and other pre-defined ontologies to perform reasoning on the

data. This is more conducive to information sharing and decentralization.

2.3 Privacy

Privacy preservation is the problem of making sure information about individuals is

not leaked to the public or misused to possibly harm an individual. Privacy is different

from security in that the latter attempts to restrict access to information. In contrast,

when we talk about privacy it assumes that an agent will have access to some piece of

information but will not use it to harm others. Privacy can also work the other way;

an agent would like to obtain a piece of information without others knowing that it

was accessed. These are known as private information retrieval techniques [8]. This

project is more concerned with the former case.

One area in which privacy research is booming is in data mining. This refers to

the process of analyzing large sets of data to find useful trends. Data mining of-

ten involves carrying out statistical operations to be used with learning algorithms

that extrapolate patterns. Some simple examples include COUNT, which returns

the number of individuals with a certain property, and SUM, which sums a set of

numerical values. Sometimes data mining may require extracting non-aggregate in-

formation such as names, gender, birthdays, etc. However, revealing this information

indiscriminately would lead to privacy leaks and some access control is needed. In

addition, while it may seem that aggregate data is safe for public release, it has been
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shown that it may be cross-referenced with other data sources to identify individual

information with high probability. This is known as Mosaic Theory [30].

Any privacy system would therefore have to take care of at least two possible

concerns. The first is restricting the flow of information to approved users. The second

is assuring that the information will not be misused. For this project, these two are

mainly accomplished by use of policy languages and differential privacy, respectively.

2.4 AIR

Accountability in RDF (AIR) [17] is a rule-based policy language written in TURTLE,

a subset of N3 [3]. AIR Policies provide production rules, known as Linked Rules,

which may exist on different servers, and each policy is associated with an individual

Uniform Resource Identifier (URI). This gives AIR the ability to deal with policies

over heterogeneous data. The policy contains a set of rules which may be grouped

together or nested. The conditions of the rules are defined as graph patterns that are

matched against RDF graphs, similar to the Basic Graph Pattern (BGP) of SPARQL

queries.

An AIR file can have multiple policies, each of which may contain multiple rules

that check some set of conditions. For example, a policy can describe what kinds of

permissions a user will have. Consider the AIR policy in Listing 2.2, which has one

policy and one rule. It describes a policy which identifies if a user has the “Master

Email” required to view some private fields. It begins with a header describing the

namespaces used and the variables, :USER and :MBOX. Variables represent entities

that may be bound to resources or literals during reasoning. Then the policy “:Can-

ViewEverythingPolicy” begins. It uses one rule, “:HasMasterEmail.” This rule states

that if a user has an email that matches the “master email” then the user is compliant

with the policy. AIR also requires one or more log, or data, files which are reasoned

over. In this case, it would require a configuration file to see what the :MBOX is

and the user’s credentials, both which must be written in n3. A reasoner will check

the AIR file against the log files to see what policies the user is compliant with, and

21



@pref ix : <http :// example . com/#> .
@pre f ix a i r : <http :// dig . c s a i l . mit . edu/TAMI/2007/amord/ a i r#> .
@pre f ix l og : <http ://www.w3 . org /2000/10/ swap/ log#>.
@pre f ix c on f i g : <http :// dig . c s a i l . mit . edu/ sp im onto l og i e s / c o n f i g f i l e#>.
@pre f ix f o a f : <http :// xmlns . com/ f o a f /0.1/#> .

@forAl l : :USER, :MASTERBOX, :MBOX.

: CanViewEverythingPolicy a a i r : Po l i cy ;
a i r : r u l e : HasMasterEmailPolicy .

: HasMasterEmailPolicy a a i r : Be l i e f−r u l e ;
a i r : i f { :USER f o a f :mbox :MBOX. :MASTERBOX con f i g : s e t t o :MBOX.}
a i r : then [ a i r : a s s e r t
{ :USER a i r : compliant−with : CanViewEverythingPolicy } ] ;

a i r : e l s e [ a i r : a s s e r t
{ :USER a i r : non−compliant−with : CanViewEverythingPolicy } ;

a i r : d e s c r i p t i o n ( :USER ‘ ‘ i s not the master user
and may not view s e l e c t e d f i e l d s ” ) . ]

Listing 2.2: Sample AIR Permissions Policy

decide what kinds of data he or she is allowed to view.

2.5 Differential Privacy

One of the objectives in modern privacy research is to create data mining algorithms

for which it can be proved that information cannot be used to fully identify an in-

dividual, meaning that their data cannot be leaked to malicious agents (also known

as the adversary). This is analogous to modern cryptography, where concepts such

as perfect secrecy [36] and semantic security [15] have corresponding secret-exchange

mechanisms which achieve them. One would hope that there would exist data mining

algorithms which provide perfect privacy or semantic privacy that would be useful.

“Perfect privacy” would ensure that an adversary with access to the database would be

unable to identify any individual’s information from the database. Similarly, “seman-

tic privacy” would ensure that this could not be done with non-negligible probability.

It turns out, however, that neither of these two concepts can be achieved while still

extracting useful information from the database [11].
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Differential privacy is a weaker requirement, and instead requires that whether

or not a user’s information is in a database will not affect an adversary’s ability to

identify his or her information. The common mathematical definition used when

dealing with relational databases is [11]:

Definition 1 A randomized function K gives ε-differential privacy if for all data sets

D1 and D2 differing on at most one record, and all S ⊆ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε)× Pr[K(D2) ∈ S]

The above property is usually achieved by the addition of probabilistic noise to

the result of a statistical query. The choice that is easiest to analyze is the addition

of Laplace noise. Let Q be a query, and let D1 and D2 be two data sets that defer by

a single record. The sensitivity of a query is given by the following definition:

Definition 2 For f : D → Rd, the L1-sensitivity of f is

∆f = maxD1,D2‖f(D1)− f(D2)‖

If the noise added is a random number generated from a Laplace distribution with

mean zero and variance ∆f
ε

, then the aggregate query will be differentially private

[11]. The value of ε will change depending on how low one wishes the probability

of a privacy leak to be. This in turn affects the accuracy of the results. In SQL,

a querying language for relational databases, function sensitivity depends on what

aggregate is being used. For example, the COUNT function on a single field in a

relational database will always have a sensitivity of one, since a difference of one item

in two databases yields at most a count of difference one.

Laplace noise addition makes working with statistical queries especially convenient

as it allows us to carry out multiple queries on a set. A set of n queries qi, each of

which is associated with an epsilon value εi and has sensitivity one, is equivalent to

one query associated with ε =
∑

i εi and of sensitivity one [32]. Effectively this means
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that we can give a database a base budget ε, and deduct εi from this budget every

time a query qi is run on the database.

Note that the ε-value applies to the entire data set. That means that, in theory,

only one user can make a single ε-valued differentially private query. This presents a

problem for implementation. If we wish several people to have access to a data set,

then it is required that the sum of their εi-queries will be less than some pre-defined

ε. In Chapter 5 we will make some assumptions on the adversarial model that will

relax this restraint.

2.6 Related Work

Various techniques have been explored over the last decade for privacy preservation.

Anonymization, which is the process of sanitizing a database of all private information

before releasing it, is still a widely-used method, but is difficult to do correctly and

often requires specially-trained statisticians to carry out [26]. Even then, it provides

no strong privacy guarantees and is often vulnerable to information leaks.

Systems which use a strong privacy guarantee, on the other hand, require no

such cumbersome process and are flexible to many different data types. There are

several strong privacy guarantees that have been promoted other than differential

privacy. K-anonymity [37] is another popular privacy paradigm, and requires that

in any query result the data from at least k individuals are indistinguishable. While

this paradigm is worth researching, it requires that data be non-interactively altered

before querying takes place. For large amounts of data, this may be infeasible and

must be approximated [1]. In addition, k-anonymity is not a meaningful against all

adversaries [18].

Accountability [35] is a different form of privacy preservation. Data miners will

explicitly state what the information they are mining will be used for, and will be

held accountable, through either legal or informal means, if the data is used for other

purposes. While these techniques may form deterrents for data misuse, there are

several drawbacks. Namely, punitive measures will not completely do away with data
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misuse. In addition, parties must agree to abide by the privacy regulations, and

governmental institutions must agree to enforce them. This technique should be used

in conjunction with privacy-preservation systems such as SPIM to protect semantic

web data, but not exclusively.

Differential privacy has definitely been one of the most popular strong privacy

guarantees and has been widely explored both in theory and application. Most theo-

retical works look for ways to improve the efficiency of differential privacy by reducing

the amount of noise of the results. Techniques such as local sensitivity and smooth

sensitivity [29], may be extremely promising for big linked data. Other techniques,

such as the exponential mechanism [20], attempt to apply differential privacy to

non-aggregate data. Differential privacy is often associated with machine learning al-

gorithms, and how these perform under the addition of noise. An excellent summary

of all these topics is provided by Dwork [12].

Actual implementations of differential private systems are far fewer than theoret-

ical work. PINQ [21] is one of the earliest implementations, and has many interesting

features such as data partitioning, which allows for more exact queries. Airavat [32]

uses the Google MapReduce [10] framework, where differential privacy is carried out

through trusted mappers. A more recent design, PDDP [7], makes the assumption

that users own their own data, and applies differential privacy to aggregate data over

a distributed network. Airavat and PDDP are especially interesting lines of research

for the manipulation of big data networks. However, at this time the author has found

no differentially private system has been implemented for linked data. In addition,

the aforementioned implementations run for very specific platforms. This is good in

that they have more control over how data is manipulated, but has the drawback that

it is not applicable for all endpoints.

Privacy in linked data is a relatively unexplored field and one where research is

lacking. The added ontological structure, plus the goal that linked data endpoints will

consist of all web data, makes this format especially vulnerable to privacy leaks [28].

Some ways to deal with this include partial encryption of linked data, but these are not

complete solutions [28]. Another way is to provide privacy meta-data. For example,
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the Privacy Preference Ontology (PPO) [33] provides a description framework for

privacy preservation of linked data, and is used by the Hada system 1 to provide

user-controlled fine-grained access control. However, these are not strong guarantees.

In order for large distribution of linked data to move forward, more research into how

to guarantee individual privacy should be carried out.

1http://hprod.dyndns.org
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Chapter 3

Motivation: Privacy in Clinical

Information Data Mining

This chapter presents the motivation behind providing a privacy module for triple-

stores. We begin by presenting some real-world cases where privacy leaks have caused

financial and emotional damage. Some of the challenges of achieving privacy are also

presented and evaluated. We then present one specific scenario that deals with clin-

ical databases, where protecting patient information is not only legally required but

also extremely desirable due to the sensitive nature of the data. Finally, the overall

functionality of the desired solution is presented, along with any potential challenges

of dealing with privacy-enforcement technologies for triplestores.

3.1 Privacy in Data Mining

The question of privacy for large-scale information processing is becoming an impor-

tant aspect of modern academic research. Powerful computers may process billions of

data records relatively quickly. Using clever algorithms, it is possible to use them to

infer personal data from diverse information sources. As mentioned in the introduc-

tion, this concept is known as Mosaic Theory and has been shown to be applicable

in real-world scenarios.

The most infamous instance of Mosaic Theory in action is the Netflix Prize dataset.
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Netflix, an online movie rental and streaming service, released its user profile database

for its contest where it challenged hobbyist to develop a recommendation system.

All private fields, such as names, had been removed, so they believed no personal

information would be inferable. Most of what remained was statistical data relating

to users’ movie preferences. However, Narayanan and Shmatikov, two researchers

from the University of Texas at Austin, compared the database’s contents to other

information available online and found that many of the profiles could be re-identified

[27]. This led to a lawsuit against Netflix by its customers for disclosing their personal

details [6]. As a result, Netflix not only discontinued any future competitions but also

was damaged financially. Other famous examples include the AOL dataset breach [2]

and the GIC medical database breach [37].

As a result of this and other instances of privacy breaches, it has become increas-

ingly obvious to both businesses and individuals that privacy preservation is necessary

for public data sets. Information about individuals can be invaluable for decision-

making and collaboration, but privacy concerns deter businesses and other providers

from publicly releasing data. It is thus imperative to have privacy preservation a

central part of any data distribution system and not an afterthought.

3.1.1 Challenges

Privacy preservation is a difficult problem both theoretically and in practice. The

goal is to release information to the general public and to verify that private data

may not be identified and used to harm individuals. The difficulty lies in the fact that

an adversary will have access to data, but we have no guarantee how he or she will

use it. If we do nothing to protect individuals’ private data, an adversary will have no

hindrance to using it maliciously. On the other hand, the only solution for completely

protecting individuals is by not releasing their data at all [11]. This is clearly not

an acceptable answer. Hence, we must strike a balance between data usefulness and

individual privacy.

The simple solution of removing private information fields unfortunately does not

work, as shown by the above examples. In addition, removing and perturbing the
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data fields can sometimes be time-consuming as it may require trained statisticians

[26]. We may also need to sanitize the original data into different versions depending

on who will be accessing the data. This means that it will be required to maintain

several different endpoints for the same data set. On the plus side, de-identification

still may deter potential privacy breaches. For example, if social security is removed

from a data set, then it can be assured that a social security, while still inferable using

other data sets, cannot be obtained from this one. Also, much of the data removal

can be automated, meaning that much of the de-identification can usually be done

quickly.

Differential privacy alleviates these problems with de-identification in several ways.

First, it is achieved via a mechanism, or an algorithm that does not depend on the

underlying data set. This means that the data itself does not have to be changed in

any way. More importantly, differential privacy is a strong privacy guarantee. Like

strong cryptographic methods, this means that we are sure that the mechanism works

with high probability if implemented correctly.

However, differential privacy, while nice theoretically, has problems in practice.

For one, differential privacy depends on perturbation, which in turn depends on the

query sensitivity. This means that very sensitive queries on data with high variance

are likely to give highly-noisy answers. Consequentially, it may be that the answers

will not be statistically useful if the number of data samples is not large enough or

is itself too noisy. In terms of implementation, calculating query sensitivity can be

inefficient, as it often requires multiple queries to ascertain the extremes of a query.

In addition, differential privacy techniques mainly deal with statistical queries. This

limits the types of queries that can be submitted. Finally, it is not always clear what

ε-value to set for the data in order to avoid privacy leaks.

Even from a theoretical standpoint differential privacy is not an omnipotent

panacea. Note the guarantee given: Whether or not an individual’s data is in a

data set will not greatly affect the probability that an adversary will discover his or

her personal information. In other words, a mechanism can still reveal information

to an adversary since it does not hide trends in the data. For example, consider an
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adversary that wishes to discover an employee’s salary. Suppose this adversary knows

that this employee’s salary is the average of all salaries in a data set in which every

employee has a salary of $40,000. If an adversary queried the average of the salaries

of this data set, he or she would get $40,000 since the sensitivity of the query is zero.

3.2 Case Study: Clinical Datasets

Clinical research is a field in which information privacy is paramount. There are

two general ways to conduct these types of investigations: clinical trials and observa-

tional studies. The former performs some experimentation on a selected subset of the

population to directly see effects of certain treatments or procedures. Observational

studies, on the other hand, attempt to look at past clinical trials or collected data on

some population to make some medical observation. For example, the observational

study from [24] looked at past cancer vaccine studies to see which cancer types have

been researched less, and what the overall effectiveness of these vaccines is. This type

of study is useful for planning new clinical trials.

Privacy in healthcare is of greater concern than in other applications, as peo-

ple may be more embarrassed about releasing their medical details. In addition,

medical conditions may result in discrimination, financial loss, or emotional trauma.

As a result, in most countries medical records are kept strictly private and remain

inaccessible to the public. In the United States, the Health Insurance Portability

and Accountability Act (HIPAA) is the set of rules regulating how to keep medical

records private and how to safely transfer them between medical providers. In addi-

tion, HIPAA defines how medical records may be released publicly 1. Eighteen types

of information must be removed from any public clinical database, such as names,

social security numbers, addresses, and biometric indicators. Another acceptable

method of de-identification is to use trained statisticians to perturb the data. [26]

While for most clinical research applications the process of de-identification is

acceptable, there may be cases where the elimination of this information will hide

1“Health Insurance Portability and Accountability Act (1996)” 5 USC § 552a
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important trends. Multiple versions of the data may be maintained, but adjusting

what fields are available for each application can be messy without fine-grained access

control. In addition, the information removed may not be enough to protect patient

privacy for the same reason that anonymization does not provide any strong privacy

guarantees. Instead, HIPAA relies on punitive methods such as accountability to in-

sure that breaches do not occur. A single successful attack, however, can be extremely

damaging. In addition, using the legal system can be costly and not time-efficient.

To make these problems more concrete, we will consider a clinical data set and

three different types of researchers that may want to access it. Suppose it is controlled

by the US Army and it pertains to army veteran patients that participated in combat

abroad and their ailments when they returned home. One user, Alice, is from the

Center for Disease Control and Prevention (CDC). She makes public policy decisions

to attempt to curb the spread of diseases and epidemics. Bob is a doctor from the

Massachusetts General Hospital that wishes to study spread of foreign diseases in

different counties of Massachusetts. Finally, Charlie is an academic researcher from

MIT that wants to look at the pharmaceutical industry in the United States. Hence,

each user will require different permissions for data access. Alice, as a government

worker making public policy decisions, will require unhindered access to the data set,

even if it is not owned by the CDC. Bob will require access to some fields that are

covered by HIPAA, but not all. Charlie, which represents the majority of the user

population, should be able to use a database sanitized in accordance with HIPAA

and any military regulations. In addition, we cannot assume that these users are

completely honest. They may try to use this data to target individuals.

As discussed, a current solution might involve anonymization, whether through

directly releasing multiple databases or providing simple “access/deny” privacy poli-

cies. Each researcher will need to be given access to the database manually, leading

to problems in up-keeping the system. It would also employ statisticians to per-

turb sensitive data manually. Finally, accountability would be widely used because

these solutions provide no strong privacy guarantees. Thus, if a client misuses the

data then he or she may be prosecuted legally. This requires tracking the client’s
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activities, which may be costly.

A preferable solution is one that combines fine-grained access control, ease of

management, and strong privacy guarantees. As a demonstration of how this would

work, the US Army would maintain its linked data triplestore at some central location

accessible via an endpoint. David, the triplestore administrator, would configure the

system to deal with each type of user. Alice should have no bounds on her access.

In addition, David would like to minimally perturb the data so that she can have

extremely accurate query results. Bob requires the ability to filter based off specific

counties in Massachusetts. David, following the principle of least privilege, may want

to limit all other fields restricted by HIPAA and any others that the military considers

private, and in addition perturb the results greatly to assure Bob will have less of

an advantage if he is indeed malicious. Finally, Charlie should be given the least

amount of privileges, and his results should be perturbed so that if he is not honest

then information leaked cannot be used to target individuals.

Consider the query from Listing 3.1. It counts the number of veterans that

were deployed in Iraq for more than two years, are currently living in Boston, and

were prescribed Doxycycline. If Alice were to send this query she should get the exact

number of veterans that fit this description. Bob would be allowed to make this query

and get a numerical result, but it should be guaranteed that the result could not be

used to reveal information about a single soldier. Finally, Charlie should not be able

to send this query. According to HIPAA, a patient’s current city of residence cannot

be made public. Therefore, Charlie should get an error message and no meaningful

numerical result.

As mentioned, this system is built with the aim of promoting information sharing.

While each data point may have its own standards for querying, we would like to be

able to support as many operations as possible. To this end, SPARQL 1.1 will be

used as the standard. Doing this on a simple, general platform will demonstrate its

applicability to diverse linked data query platforms.
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PREFIX AMD: <http ://www. army . gov/army database#>
PREFIX MED: <http ://www. army . gov/army med data#>
SELECT (COUNT(? s ) as ? num so ld i e r s ) WHERE
{? s AMD: persona l ID ? id ;

AMD: deployed ‘ ‘IRAQ” ;
AMD: length deployment ?o ;
AMD: c u r r e n t c i t y ‘ ‘ Boston ” .
MED: ho sp i t a l e v en t :E .

:E MED: event type MED: p r e s c r i p t i o n ;
MED: p r e s c r i b ed ‘ ‘ Doxycycl ine ” .
FILTER{?o > 2}

}

Listing 3.1: Sample Query

3.3 Design Challenges

While the above steps are theoretically sufficient for protecting individuals with high

probability, there are two additional main concerns (apart from those already men-

tioned) that one needs to consider. The first challenge is balancing access control

with perturbation. Which data should be completely off-access, which should be re-

leased with noise or some strong privacy guarantees, and which should be completely

accessible? This is something that may differ for each data set type. For example,

HIPAA stipulates what data is off-access to the public. However, it may be the case

that some data sets, by nature of the data in them, may require more stringent access

controls. Any privacy system must decide how to balance this.

While we wish to make this system as flexible as possible so as to allow it to be

used with many endpoints, there will still be limits to how all-encompassing it can

be. Arbitrary linked data, because of its unstructured, graph-like composition, makes

identifying privacy risks very difficult. Namely, one must ask what kinds of data are

considered private. How do we identify which resources are associated with a certain

person? In a tabular structure, this is much easier. If one record corresponds to

a single person, then every attribute corresponds to that person. In linked data, a

resource may be shared between not only people but also different entities. As such,

we need a reliable way to identify what data and resources belong to a person before

we attempt to protect them.
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These and more concerns will be addressed in the next two chapters, which will

consider not only how differential privacy applies to linked data but also how to

implement one possible solution to the above scenario.
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Chapter 4

Differential Privacy for the RDF

Data Format

The last section stressed the need to provide strong privacy guarantees for statistical

queries. As mentioned in the introduction, this project opted to use differential

privacy. The first reason why is because, though it is a relatively recent idea, there is

a great amount of research in the subject. Second, it has been showed to be effective

for use with statistical analysis and machine learning, two technologies which have

greatly spurred the development of the Semantic web. Third, it is enforced via a

mechanism, which means that the process for achieving it is data-independent. This

means the data itself does not need to be modified to achieve privacy.

Also as mentioned in the background, differential privacy has mainly been explored

for the relational database model. This chapter will explore this definition with

respect to linked data structures. It further explores whether or not the same methods

used are appropriate when dealing with RDF triples. The main results of this section

are (1) the differential privacy guarantee for RDBMS can be achieved for linked data;

(2) that roughly the same techniques may be used for both to achieve differential

privacy; and (3) the exploration of derivative differential privacy definitions for linked

data.
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4.1 Generalized Differential Privacy

The difficulty with applying differential privacy to linked data is the fact that all

differential privacy, including the definition, has been tailored for use with RDBMS.

In particular, this comes from the common definition of differential privacy, which

states that two data sets should differ by one record. What does this mean from a

linked data perspective if there are no records? There are several possibilities, and

later these will be discussed. For all of these to make practical sense and keep the

essence of differential privacy, however, they all require two data sets to differ by the

inclusion or exclusion of one unit in that data set.

In order to begin the discussion, we will need a more generalized form of differ-

ential privacy. To formalize the idea of two data sets differing by one individual, we

introduce a distance function d that measures how two different two sets of data D

and D′ are. We will use this distance function in the definition. In addition, as per

many other formal cryptographic definitions, we introduce the formal concept of an

adversary. An adversary A is a randomized algorithm T that computes some function

TA and produces some transcript t, or output.

With these concepts, the generalized differential privacy definition, as roughly

presented in [13], is

Definition 3 Consider data sets from some domain D. A mechanism is ε-indistinguishable

if for all pairs x, x′ ∈ D such that d(x, x′) = 1, and for all adversaries A, and for all

transcripts t:

|ln(
Pr[TA(x) = t]

Pr[TA(x′) = t]
)| ≤ ε (4.1)

Basically, this asserts that an adversary is very likely to produce the same tran-

script on very similar data sets. Note that this definition reduces to the original one

for RDBMS. In that case, the distance between two data sets is the number of records

that are different between these two sets.

With this new definition, and in particular with the inclusion of the generalized

metric, it will be easier to develop a formalization of ε-indistinguishability for linked
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data.

4.2 Translating Linked Data to Records

First we consider the most natural choice for defining linked data over RDF graphs.

Because the record is the atom of relational databases, we consider the atomic unit

of graphs, the triple. In this case, differential privacy would be defined over two

graphs that differ by a single triple. This fits in nicely with a lot of the theory

developed for record-based differential privacy. For example, many of the function

sensitivities are similar. The sensitivity of COUNT is 1, as for a query on two data

sets differing by a single triple at most one extra triple may be counted. On the other

hand, this definition would not achieve our desired objective of protecting the entirety

of an individual’s data. In fact, using this metric gives us the following guarantee:

Regardless of whether or not a user provides a single triple in the database will not

affect whether or not an adversary is able to identify that triple with high probability.

While this is better than nothing, it is far weaker than what is desired.

Instead, it would be better if the guarantee would be more in-line with the “record”

definition. To that end, we need to see what corresponds to the removal of a “personal

record” from an RDF graph. When a record is removed from a relational database, a

tuple corresponding to a primary key is deleted. In RDF, a person is identified by his

or her URI, and so we can imagine this serving as the role of the primary key. The

rdf properties would serve as the names for fields. Thus, a triple (?x ?y ?z) would

correspond to the record of person “?x” in column “?y” with value “?z”.

We need to be slightly more careful with linked data though. Consider the fol-

lowing graph:

:P a foaf:Person;

foaf:knows "Alice";

foaf:knows "Bob".

In a record, each attribute is a one-to-one. On the other hand, in linked data it is

possible to have one-to-many attributes. In the above, “foaf:knows” maps “:P” to two
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Table 4.1: RDF Graph Reduced to Records

Person Knows Knows Loves
P1 P2 Null P4
P3 P2 P4 Null

items. As such, we will instead use a more generalized version of records for linked

data, where a person’s URI is the primary key and each attribute can be one-to-many.

Proposition 4 Let two RDF graphs G1, G2 have distance d(G1, G2) = 1 if the graphs

are equal everywhere but at one node n in G2 which has had all its outgoing edges

removed. This corresponds to having one “record” removed from G2.

The construction of these generalized records is relatively simple. It involves

reducing the two graphs to a generalized tabular format where attributes may be

repeated and showing they are equal everywhere except on one row.

First, we assume there exists a value NULL such that for a RDF triple (?x ?y NULL)

indicates that element ?x has no relationship ?y with another node. This is required

since RDF data does not always require a relationship between two nodes to be

present. We also know that the RDF graph is finite. Let EG be the set of RDF

properties in the graph G, and let |Eg| = p. Map each element e ∈ EG to some

integer i in {1, 2, ...p}.

We now define a function TG : G×E → G∪ {NULL}. For every pair (x, y) such

that x ∈ G, y ∈ E, we let TG(x, y) = z if there exists a triple (x y z) in the RDF

graph. If no such triple exists for the pair, then the value is NULL. This function

defines a table where nodes are rows and edges are columns. As an example, figure

4-1 shows a sample graph and Table 4.1 shows what the reduction looks like.

Now, suppose the edges are removed from node n. The row corresponding to edge

n now consists fully of null values. In essence, this row contains no information. Then

T ′G : G−{n}×E → G, which is the same everywhere to TG except for the node n, is

equivalent to TG. Therefore, removing the outgoing edges from a node corresponds

to removing a record from a table.
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Figure 4-1: Sample RDF Graph to Reduce to Table

How does this definition translate into a real-world linked data set? In essence, it

states that whether or not a user explicitly links his or her URI to other resources and

literals the chances of a privacy breach remain about the same. This is essentially the

same guarantee given for relational databases. It is especially convenient because it

makes no assumptions on the underlying graph structure and ontology. This means

that, theoretically speaking, the added ontological structure imposed on the data

will not make a difference under the ε-privacy mechanism. This does not mean that

the added ontological does not present a greater privacy risk, but that whether or

not an individual links his or her data does not affect an adversary’s probability of

successfully identifying him or her.

4.2.1 Calculating Data Sensitivity

The sensitivities of the standard SPARQL statistical operations (COUNT, SUM,

AVG, MIN, MAX) used to guarantee ε-privacy do not match the RDBMS ones. For

example, suppose we send the following SPARQL query on the graph from figure 4-1:

SELECT (Count(?o) as ?count) WHERE {?s foaf:knows ?o}

The sensitivity of this query should be 2, as removing all the triples relating to

person “P3” will change the number of triples counted from 3 to 1. One of the main

problems for linked data is in knowing which resource “belongs” to a person. We will

assume for now that there is an algorithm to do this. That is, for a linked data graph

S and for every person p, there is a way to find subset Sp ⊆ S such that each triple
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x ⊆ Sp belongs to person p. Sp therefore includes all triples (p, x, y) for some x, y.

In this way, we know that two data sets differ by a single “record” if one is S and the

other is S − Sp. Note that all the subsets {Spi} do not have to be disjoint

The following are the sensitivities for the five functions COUNT, SUM, AVG,

MIN, and MAX, assuming we have figured out Sp already. These are some of the

most useful aggregate functions from SPARQL.

• COUNT: Let C be a query that counts the incidence of a matching triple in

a linked data graph. Then the sensitivity of C is Maxp|C(S) − C(S − Sp)| =

MaxpC(Sp), i.e. the maximum number of triples matched belonging to person

p.

• SUM: Let U be a query that sums the numerical values of a variable for triples

matching a certain graph pattern. Then the sensitivity of U is Maxp|U(s) −

U(S − Sp)| = Maxp|U(Sp)|, or the maximum of the sum of the triples matched

belonging to person p.

• AVG: Let A be a query that computes the average of the numerical values of a

variable for triples matching a certain graph pattern. Then the sensitivity of F

is:

NOISY AV G = Maxp|
∑

j∈S xj

Countj∈S(xj)
−

∑
j∈S−Sp

xj

Countj∈S−Sp(xj)
|

For every set of triples Sp belonging to a person p, we take the difference of

the average with Sp and without Sp. It turns out that it is necessary to try

out every person to get the exact sensitivity for average. To limit information

transfer, an approximation is used. We rely on the following fact: To maximize

NOISY AVG either the rightmost term is maximized or it is minimized.

Let C be the COUNT function, and let MC = MaxpC(S − Sp) (as defined

for COUNT above) and mC = MinpC(S − Sp). In addition, let U be the
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SUM function and MU = MaxpU(S − Sp) (as defined for SUM above) and

mU = MinpU(S − Sp). In other words, we are looking for the minimum and

maximum values of COUNT and SUM when user “records” are removed. Then

we can approximate the sensitivity as

Max(|A(S)− mC

MU

|, |AV G(S)− MC

mU

|)

To calculate AVG then, we only need to retrieve seven values: AVG(D), COUNT(D),

SUM(D), max(SUM(SP )), min(SUM(SP )), max(COUNT(SP )), and min(COUNT(SP )).

While these are still many terms, it is definitely an improvement over trying to

remove all triples belonging to a person p.

• MAX: Let F be the query that finds the maximum of numerical values of a

variable for triples matching a certain graph pattern. Then the sensitivity of F

is Maxp|F (S) − F (Sp)| = Maxp|F (Sp)|, or the maximum values of all triples

matched to person p.

• MIN: Let H be the query that finds the minimum of numerical values of a

variable for triples matching a certain graph pattern. Then the sensitivity of

H is Maxp|H(S) −H(Sp)| = Maxp|H(Sp)|, or the maximum of the minimum

values of all triples matched to person p.

These are the standards functions for SPARQL 1.1. How these calculations are

implemented will be further discussed in the next chapter. In particular, we did not

figure out how Sp is computed, which is extremely important. In addition, these

calculations may break down in edge cases.

4.2.2 Variants of the Differential Privacy requirement

Because of the restrictions of the above definition, it may be worthwhile to consider

other definitions for differential privacy and see if these would provide better guar-

antees. On one hand, we could relax the requirements and see if these will be easier
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to implement while still providing meaningful, practical privacy guarantees. We have

already looked at the idea of using the triple as the unit for distance, but this does

not provide the guarantee we desire. It seems, in fact, that using any smaller unit

than the “personal record” will not give a strong-enough guarantee for protecting the

individual. These types of guarantees, however, are not completely worthless, as they

do give us some bounds on the power of the adversary. As mentioned, for example,

using the triple as the unit of difference will make a single piece of information much

less likely to be discovered by an adversary. The other benefit to using a smaller unit

is that the complexity of calculating function sensitivities may go down. In addition,

it may decrease the amount of noise used, which will give more accurate results. For

the triple, for example, COUNT always has a sensitivity of one. This means that

adding the noise should take constant time, which is far better than having to per-

form an extra query. It would definitely be worthwhile to see if a weaker unit than the

“record” would provide results that are acceptably robust against privacy attacks.

On the other hand, it may be worthwhile to use a more restrictive definition. For

example, one idea is to provide a mechanism that insures privacy regardless of whether

or not a person exists on the web space. In other words, regardless of whether or not

a person exists in the linked data set his or her data is secure against privacy leaks.

This is different from the “record” definition because this also includes sensitive data

which other people have linked to the person. While this scenario is ideal, it is not

clear how one would go about precisely defining a distance function to achieve this

definition. In addition, this guarantee may be so strong that the perturbation renders

results worthless. In other words, too strong of a guarantee might make the function

sensitivities too extreme.
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Chapter 5

System Architecture and

Implementation

This chapter discusses the architecture of the SPARQL Privacy Insurance Module

(SPIM). Chapter 3 described the requirements of our system: A general privacy

framework to protect statistical queries over linked data. It should have ways to

differentiate between different clients with different access rights and privacy limits.

It should also provide some strong privacy guarantees. We will use the theory and

equations developed in the last chapter to achieve this.

The first section presents the different parts of the system and how they collaborate

to secure user information from malicious use. In addition, it considers the design

assumptions, choices, and trade-offs made. The second section talks about the actual

technologies used to implement the system. It will also describe some of the minor

scripts built to get the different components to function in unison.

5.1 Architecture

Figure 5-1 shows the main components of SPIM. At a high level, SPIM needs to be

able to perform the following functions. First, it must log users into the system and

verify their credentials. Next, it must be able to use the user’s credentials to give them

different permissions for data access. Finally, it needs to enforce strong privacy guar-
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Figure 5-1: Architecture of the Full SPIM Server

antees. These are achieved via three integral parts of the system: authentication, the

privacy policy enforcement, and the differential privacy mechanism. In general, each

component is implemented independently of one another, but all these must share

information among each other to function correctly. For example, the authentication

module may need to send credentials to the privacy policy enforcement component.

As mentioned in Chapter 1, the system design follows that of least privilege.

Users must present their credentials, and the system uses fine-grained access control

to determine what data he or she may access. All incoming queries are checked against

privacy policies to determine if they violate the user’s privileges. The complementary

goal is to make sure that any data that is released will be useful while still limited

in the amount of damage it can do. Thus, statistics are released via a mechanism

that upholds differential privacy. At the same time, user-friendliness is an important

aspect. The user should have an easy time logging on to the system and using the

querying framework. The system should give users the knowledge of why a query

is non-compliant with a privacy policy instead of just denying access. Finally, the

returned noisy statistics should still be useful. The user-friendliness should ideally

apply server-side as well. An administrator should be able to plug in the module to

an existing SPARQL endpoint without too much effort.
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5.1.1 Authentication

The purpose of authentication is to extract a user’s credentials to decide what per-

missions he or she is given. Optionally, it is possible for the system to automatically

create a user profile if it does not exist. Several fields of information are vital: name,

email, etc. These are used by a privacy policy enforcement script.

5.1.2 Privacy policies

Privacy policies are AIR policies that enforce the data-viewing permissions allotted to

the users. The privacy policy files consist of one or more policies, each containing one

or more rules. These may be compared against the user’s credentials, permissions,

and the actual query to decide whether a privacy hazard exists or not. To do this,

both the credentials and the query must be in N3 format and so must be explicitly

translated.

Consider the AIR file in Listing 5.1, an example privacy policy file for a clinical

triplestore. This privacy policy, “:HIPAAPolicy,” contains a rule “:NamesRetrieve-

dRule” which stipulates that names cannot be retrieved unless they are being returned

as a COUNT aggregate as per the HIPAA regulations. This is only part of the full

HIPAA policy which would have to be written, which includes more identifiers such

as biometrics, age, social security numbers, etc. Note that here there are three rules.

The first rule, “NamedUsedRule,” checks that the inputted log file is a SPARQL

query, and that this query looks for names. The second rule looks to see if the name

is actually retrieved. If it is, then the third rule makes sure that it is only retrieved in

aggregate format. The rules here are chained together, meaning that one rule is only

considered if another rule finds a matched pattern. This makes it possible to create

very flexible policies.

Suppose the SPARQL query from Listing 5.2 is sent to the endpoint. It will be

translated into the n3 code from Listing 5.3. The translation is relatively un-detailed.

That is, the data is either in the form of variables retrieved or variables in triple

patterns. This makes the privacy policies easier to write, and also applicable to any
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@pref ix : <http :// dig . c s a i l . mit . edu/TAMI/2007/ cwmrete/nonce#> .
@pre f ix a i r : <http :// dig . c s a i l . mit . edu/TAMI/2007/amord/ a i r#> .
@pre f ix s : <http :// a i r . c s a i l . mit . edu/ sp im onto l og i e s / sparq l2n3 onto logy#> .
@pre f ix l og : <http ://www.w3 . org /2000/10/ swap/ log#>.
@forAl l :QUERY, :CLAUSE, :TRIPLE, : SUBJ, :RETRIEVE, :TRIPLE2 ,

:OBJ, :NAME, :NAMECOUNT.

: HIPAAPolicy a a i r : Po l i cy ; a i r : r u l e : NameUsedRule .

: NameUsedRule a a i r : Be l i e f−r u l e ;
a i r : i f { :QUERY a s : SPARQLQuery ; a s : s e l e c t q u e r y ; s : c l au s e :CLAUSE.
:CLAUSE s : t r i p l ePa t t e r n :TRIPLE.
:TRIPLE log : i n c l ud e s { :SUBJ <https : // med data . com#patient name> :NAME} .
} ;
a i r : then [ a i r : r u l e : NameRetrievedRule ;
a i r : d e s c r i p t i o n ( :QUERY ‘ ‘ uses pat ient name in the where c l au s e ”) ] .

: NameRetrievedRule a a i r : Be l i e f−r u l e ;
a i r : i f { :QUERY s : r e t r i e v e :RETRIEVE. :RETRIEVE s : var :NAME. } ;
a i r : then [ a i r : a s s e r t { :QUERY a i r : non−compliant−with : HIPAAPolicy } ;
a i r : d e s c r i p t i o n ( :QUERY ‘ ‘ t r i e s to r e t r i e v e pa t i en t names d i r e c t l y which

i s i l l e g a l . They may only be r e t r i e v e d in aggregate format ” ) ] ;
a i r : e l s e [ a i r : r u l e : NameCountRule ] .

: NameCountRule a a i r : Be l i e f−r u l e ;
a i r : i f { :RETRIEVE s : var :NAMECOUNT.
:CLAUSE s : t r i p l ePa t t e r n :TRIPLE2 .
:TRIPLE2 log : i n c l ud e s { :NAMECOUNT s : bound as [ s : op count :NAME ] } . } ;
a i r : then [ a i r : a s s e r t { :Q a i r : compliant−with : HIPAAPolicy } ;
a i r : d e s c r i p t i o n ( :QUERY ‘ ‘ uses pa t i en t names f o r counting ,

which i s a l lowed ” ) ] ;
a i r : e l s e [ a i r : a s s e r t { :QUERY a i r : non−compliant−with : HIPAAPolicy } ; ] .

Listing 5.1: Sample AIR Privacy Policy

modified version of SPARQL 1.1 where extra keywords are included.

The AIR policy reasoner, which enforces the privacy policy, will catch that the

client is searching for patient names, which is not allowed unless they are being

counted (i.e. retrieved in aggregate format), and the query will ultimately be rejected.

The client will get back an error stating this fact explicitly (instead of a vague denial

of access). This will be the computation tree from the policy file as well as the

description: “Query uses patient names directly which is illegal. They may only be

retrieved in aggregate format.” The researcher can now choose whether to re-write
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SELECT ?n (SUM(? o ) as ? p i l l s consumed )
WHERE {

?p med dat : pat ient name ?n .
?p med dat : p r e s c r i b ed ?k .
?k med dat : mi l l i g rams ?o .}

Listing 5.2: Query Sent

@pref ix s : <http :// a i r . c s a i l . mit . edu/ sp im onto l og i e s / sparq l2n3 onto logy#>.
@pre f ix : <http :// a i r . c s a i l . mit . edu/spim/ query in n3#>.

: Query161 a s : SPARQLQuery ;
a s : s e l e c t q u e r y ;

s : r e t r i e v e [
s : var : n ;
s : var : p i l l s consumed ;

] ;
s : c l au s e [

s : t r i p l ePa t t e r n { : p i l l s consumed s : bound as [ s : op sum : o ] } ;
s : t r i p l ePa t t e r n { : p <https : // med data . com#patient name> : n } ;
s : t r i p l ePa t t e r n { : p <https : // med data . com#presc r ibed> : k } ;
s : t r i p l ePa t t e r n { : k <https : // med data . com#mil l igrams> : o } ;

] .

Listing 5.3: Query Translation to N3

the query to be compliant with the privacy policy or to move on to another query.

Using these policies allows an administrator to greatly customize what the client can

and can’t do and what kinds of results he or she gets.

5.1.3 Differential Privacy

The mechanism that enforces differential privacy is an independent set of functions

within SPIM. The implementation of this mechanism follows from Chapter 4. These

functions are not required for SPIM to work as differential privacy is optional and

can be disabled if desired. The reason that the differential privacy enforcement was

embedded into the SPIM class was to ease the communication between these functions

and the SPARQL endpoint. This was done very early in the project, and decoupling
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SELECT ?p (SUM(? o ) as ? p i l l s consumed )
WHERE {

?p med dat : pat ient name ?n .
?p med dat : p r e s c r i b ed ?k .
?k med dat : mi l l i g rams ?o .}

GROUP BY ?p ORDER BY DESC(? o )

Listing 5.4: Sample Query for Sensitivity Calculation

did not seem necessary. However, in future iterations is should be possible to decouple

these two scripts if desired.

The sensitivity calculation is carried out as described using the formulas in Chap-

ter 4. This involves sending extra queries to the triplestore to extract the necessary

extreme values of the matching triples.

Recall that we need to be able to identify data belonging to a certain individual.

To do this, we assume that the URIs pertaining to individuals can be identified by

the existence of a certain triple with a certain predicate. This can be, for example,

a triple identifying the person’s name; any URI associated with a “foaf:name” can

be assumed to belong to an individual. This allows us to group the contributing

elements of a final statistical result by user. The user with the highest contribution

to the final answer defines the query’s sensitivity, and this value can be used when

calculating the noise.

For example, to calculate the sensitivity of the query in Listing 5.2 it is necessary

to find the user who was prescribed the most milligrams of some medicine. This is the

maximum sum of medicine administered by user. The same WHERE clause is used

to write a query to extract this value. The same triples are matched, but the values

are instead grouped by each individual and ordered greatest to least. This allows us

to easily find the extreme value (which is the first result) easily. Listing 5.4 shows

this second query.

Note that the assumption made about all personal URIs being tagged identically

is not safe for general data sets. That is, not every URI corresponding to a person may
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Figure 5-2: Implementation Overview

have a “foaf:name” or anything similar. This means that SPIM needs some structure

on the data, which is not true for general linked data. This will be discussed further

in Chapter 7.

5.2 Implementation

SPIM has two main parts to its implementation. The first is the actual SPIM mod-

ule, which handles the privacy policies and handling the differential privacy guarantee.

The second is the HTTP server on which the module runs. This part of the implemen-

tation handles the authentication and serving the querying interface. These are both

implemented in Python, and the latter is implemented as a Django server. Figure 5-2

shows an overview of the implemented components.

The Django server, which handles the user interface and the authentication, is

described in the first section. The second section describes the SPIM module. It

is divided into three parts. The first describes how AIR is implemented, including

the query translation into N3. The second is how the calculation of the differential

privacy is carried out. Finally, we describe how triplestores are used to store user

information and how we interface with the main triplestore.
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Figure 5-3: A screenshot of the user interface associated with the Django Spim-
Module

5.2.1 Django Server

SPIM is imbedded into a Django module (called Spim-Module), which in turn runs on

a Django server charged with handling the HTTP requests. The server also contains a

separate authentication module that performs authentication via OpenID 1 , though

it is possible to use any authentication mechanism. OpenID was chosen because of

the ease of user maintenance and because it fits better with decentralized information

sharing. The module contains the scripts to generate the web interface. In addition,

it interfaces with the SPIM class to do the privacy preservation. When a user sends a

query it is sent to SPIM, which in turn performs the querying. In essence, this means

that the SPIM module can be ported to any other HTTP server and used similarly.

1This open-source Django module was implemented by Simon Willison, and can be found at
https://github.com/simonw/django-openid
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5.2.2 AIR Implementation

The AIR privacy policy files are parsed and reasoned over using cwmrete. This script

is an implementation of the rete [14] algorithm, a forward chainer for pattern matching

in production rule systems. The reasoner uses the policy files written in AIR and log

files written in n3. As mentioned, the incoming queries that are reasoned over must be

translated into n3 as a pre-processing step which was described above using Listing

5.2 and Listing 5.3. This is done using an independent python script. First, the

query is parsed by Rasqal2, a C library that is used for SPARQL manipulation. This

pre-parsed output is then read by a translator, which makes triples specifying the

variables retrieved, the clauses in the where pattern, and any functions used.

The AIR reasoner compares the query to the policy files to make sure no unautho-

rized data fields are accessed. If there is an unauthorized access attempt, the reasoner

returns an error along with the reasoning behind the denial of access. This allows the

user to know why the query was non-compliant with the query.

5.2.3 Result Perturbation

Chapters 2 and 4 described much of the theory behind differential privacy, and the

last section described the additional structural assumptions that had to be made on

the linked data in order for the sensitivity calculation to work using SPARQL. These

can be almost directly translated into an implementation.

In Chapter 2 we mentioned that a single ε-budget had to be assigned to an entire

triplestore. We will relax this restrained and assume that each user can be assigned

his or her own ε-budget. This will affect the adversarial model, which will be discussed

in the next chapter. Alternatively, it is possible to assign a single ε-value to an entire

triplestore by changing a few lines of code in SPIM.

The mechanism that guarantees differential privacy works as follows. A user sends

a query and a desired ε-value to be used from his or her budget. SPIM will check

that the budget would not be exceeded by performing this query. If not, it first sends

2http://librdf.org/rasqal/
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one or more queries to find the sensitivity of the user’s query. When the function

sensitivity has been calculated, the query itself is forwarded to the triplestore. The

sensitivity and ε-value is used to calculate the appropriate noise to the result, which

is then returned to the user. Finally, the ε-value used is deducted from the overall

budget.

There is one edge case that had to be considered. If a set of triples is matched for

only one person, then the sensitivity of the functions AVG, MIN, and MAX return no

answer. To handle these cases, the sensitivity is simply returned as the values of the

query on those triples. This sensitivity is large enough because it is the same as the

sensitivity if two sets of triples were matched: that of the person and another person

who contributes nothing to the final answer.

For queries where no triples are matched, on the other hand, the query will return

a null set or zero. As a result, this edge case must also be handled. In this case,

though, it’s easy to see that the sensitivity is irrelevant as no statistical result is

returned.

5.2.4 Interfacing with the Triplestores

There are two triplestores that are important to the functionality of SPIM. The first

is the actual triplestore being protected. The second is the one used by SPIM to keep

track of users and their ε values. 4Store3 was used as the triplestore implementation to

store the both the test and user data. A generic interface was built for communicating

with triplestores, and a concrete interface was built for communicating with the 4store

triplestores. It relies on the python library built specifically for 4store, HTTP4Store4.

Any type of triplestore may be used, however, so long as the interface is extended to

deal with its API.

3http://4store.org/
4http://pypi.python.org/pypi/HTTP4Store/
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Chapter 6

System Evaluation

SPIM has two main criteria that must be tested: correctness and complexity. The

former has two additional subdivisions. The first is that the implemented noise-

addition mechanism imposes differential privacy. The second is that all the different

components function correctly to provide privacy under an actual use scenario.

The first section will be more qualitative, and describe in detail how the use case

from Chapter 3 could be implemented using SPIM. The second section deals with the

accuracy of the differential privacy enforcement mechanism. The final section briefly

considers the runtime.

6.1 Revisiting the Use Case

Here we consider how well the system could handle the use case given in Chapter 3.

Recall the design specifications. What was desired was a privacy system that can man-

age private, decentralized information sharing for clinical research purposes. There

are several types of users that might require this data set; three examples were given.

The first (Alice) is a government worker in the CDC that needs almost un-hindered

access to the data set. The second (Bob) is a doctor that needs geographically-filtered

clinical data. He needs the ability to look at patients from different counties in a state.

The third (Charlie) is an academic researcher that should have limited access to most

private information. To prevent attacks from non-honest parties, we also wished to
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provide some strong privacy guarantees. We will also assume that these users do not

collude and have only one OpenID account, as this will allow us to assign each his or

her own ε-budget for use for maintaining differential privacy.

We will examine each individual’s interaction with the system. We start with

Charlie’s, which is the “default” user type, and look at Alice’s and Bob’s after. The

final section addresses the security concerns that would need to be dealt with in order

for this to be deployed in a real-world system.

6.1.1 Charlie’s interaction

Charlie is the “default” profile, so SPIM has been customized to create his user profile

automatically. To use SPIM, Charlie logs in with his OpenID and is allocated an ε-

budget (which is 0.5 by default, though this can be easily changed). Charlie will then

send his query to SPIM. The system will first check his query against the default

privacy policy, which will consist of the rules for information sharing in HIPAA. If

Charlie attempts to explicitly retrieve private data then his query will be rejected.

If the privacy check passes, then SPIM assures that Charlie has enough remaining

ε-budget to carry out the query. If he does not then an error is returned. If he does,

then the query is forwarded to the endpoint, and the appropriate Laplace noise is

added to the query result. The perturbed answer is returned to the client, and the

ε-budget is updated.

6.1.2 Alice’s interaction

Alice must have an administrator manually create her a user profile. The adminis-

trator must also set that no access control must be associated with her. In addition,

he will set her budget as “-1.0.” This will indicate to the system that Alice must not

have her queries perturbed via the addition of Laplace noise (since the budget can

never become negative in the case where results are perturbed).

Alice uses her OpenID to log into the SPIM, and it pulls up her user profile.

When Alice sends her query to SPIM, it verifies that no checks and no perturbation
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are necessary. Thus, it forwards the query to the triplestore and returns the results

to her.

6.1.3 Bob’s interaction

Bob would also need to have an administrator create his profile manually. While he

can be given a default value for his ε-budget, it must be specified in his privacy policy

that he has access to patient addresses. This necessitates that the administrator write

Bob an individual AIR policy (though this may be simplified by reusing linked rules).

Bob would log into the system and his profile retrieved from the userProfiles

triplestore. When he sends a query, it is checked against the privacy policy. So

long as his query does not retrieve private information (except for perhaps address

information), the query is forwarded to the endpoint and the result is perturbed (as

in Charlie’s case).

6.1.4 Where the design is limited

The above cases demonstrate that SPIM can handle several diverse cases where users

may have different privacy privileges. The principle of least privilege still applies.

For example, Bob is given access to as little private data fields as possible. It serves

as a demo for how a privacy module could be constructed for linked data and how

differentially-private mechanisms can be implemented.

As described above, however, SPIM is not wholly immune to attacks. The two

assumptions were that (a) adversaries do not collude and (b) users cannot use multiple

OpenIDs. As such, SPIM may perform poorly against determined adversaries. There

are some fixes that would make the system far more robust. As mentioned in the last

chapter, one could apply a single ε-budget value to the entire triplestore. This would

require changing a few lines of code in SPIM, and would make collusion attacks more

difficult. However, this severely limits the number of queries all clients can make,

and the data may not be very useful. A solution to this, which is implemented in

PINQ [21], is to partition the data into relatively random subsets, such that each
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subset has its own budget.

Another solution is to combine accountability methods with SPIM. Users would

commit to not sharing any query results with the world. This too would prevent

collusion attacks. However, accountability methods would only deter collusion attacks

and not prevent them outright.

Finally, security concerns were not considered in the design of this system. SPIM

is not guaranteed to withstand any malicious adversaries that attempt to break any of

the mechanisms, and only ensures that if the system works properly then differential

privacy is guaranteed over the data in the triplestore. It also has no way of preventing

identity-theft attacks. This would definitely need to be addressed for a stable SPIM

implementation.

6.2 Testing Differential Privacy

One of the main objectives of this project was to explore whether applying differentially-

private query mechanisms for linked data was possible. To test this it is necessary

to see if the function sensitivities can be accurately calculated for different queries.

As a result, the correct amount of Laplace noise can be added, and by the theorems

from Chapter 2 this will guarantee differential privacy.

6.2.1 Data used

This project used a subset of the MIMIC II clinical database1 as test data. More

specifically, the data relates to events where fluids and medicine were administered to

the patient, as the presence of numerical data made it more amenable to statistical

queries. Only the data relating to one hundred patients was used, yielding a total of

126,660 triples. This data, which was originally in tabular format, was translated to

RDF using a python script. In addition, and ontology was defined for the data, and

fake names, addresses, and social security numbers were associated with each patient.

1http://physionet.org/mimic2/
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@pref ix : <http :// a i r . c s a i l . mit . edu/spim#>
@pref ix mimic : <http :// a i r . c s a i l . mit . edu/ sp im onto l og i e s /mimicOntology#>
@pref ix f o a f : <http :// xmlns . com/ f o a f /0.1#>

: Pat i en t 3 mimic : event : E 0 .
: E 0 mimic :m1 ‘ ‘ P e n i c i l l i n ”

mimic : time ‘ ‘2999−01−05 19:59:23−0400”;
mimic : v1 ‘ ‘2000”ˆˆ< http ://www.w3 . org /2001/XMLSchema#decimal >;
mimic : u1 ‘ ‘Uhr ” ;
mimic :m2 ‘ ‘XYZ” ;
mimic : v2 ‘ ‘399.0”ˆˆ< http ://www.w3 . org /2001/XMLSchema#decimal >;
mimic : u2 ‘ ‘ml ” ;
mimic : r t ‘ ‘ IV Drip ” .

: Pat i en t 3 f o a f : name ‘ ‘Morgan Michaels ” ;
f o a f : s sn ‘ ‘000−00−0000”;
mimic : l i v e s I n ‘ ‘USA” ;
mimic : r eg i on ‘ ‘MA” ;
mimic : town ‘ ‘ Cambridge ” ;
mimic : z ip ‘ ‘ 02139” .

Listing 6.1: Sample Clinical Data

6.2.2 Test Queries

The testing consisted of nine separate queries for SUM,AV G,MIN, and MAX, and

ten separate queries for COUNT . These consisted of different WHERE clauses so as

to yield different theoretical noise values. The testing suite consists of first finding the

actual query sensitivity, then finding the calculated sensitivity, and finally calculating

the absolute error (calculated - actual). To find the former, the query is transformed

wherefore all triples belonging to a certain person are removed. More specifically,

the MINUS keyword was used. Listing 6.2 shows such a query in Python. String

formatting is used to cycle through the names, testing the result when discarding all

triples associated with a certain “foaf:name.” The actual sensitivity is the resulting

maximum difference between the original query and every query with some set of

triples removed.

For a list of all test queries used, please refer to appendix A.
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‘ ‘ ‘ ‘ ‘ ‘PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1#>
PREFIX mimic : <http :// a i r . c s a i l . mit . edu/ sp im onto l og i e s /mimicOntology#>

SELECT (%s (? o ) as ? aggr ) WHERE{
? s f o a f : name ?n .
? s mimic : event ? e .
? e mimic :m1 ‘ ‘ I n s u l i n ” .
? e mimic : v1 ?o .
FILTER( isNumeric (? o ) )
MINUS {? s f o a f : name ‘ ‘% s ”}

}
””” % ( operat ion , names [ i ] )

Listing 6.2: Sample Query for Actual Sensitivity Calculation

6.2.3 Noise Results

Figure 6-1 shows the actual noise from the Test Query 4 [A.4]. We will only consider

this example to explore some interesting trends present in all the queries’ results.

Some of the operations, such as MAX and AVG, seem to have rather low noise. MIN,

in fact, usually has no noise associated with it for this data set. On the other hand,

the COUNT and SUM operations seem to have very high sensitivity, which implies

that a large amount of noise must be added to the result.

Figure 6-2 shows the resulting absolute error from two separate test queries. The

most noticeable feature is that for the functions COUNT, SUM, MIN, and MAX the

exact sensitivity calculation was possible. This is excellent, especially for COUNT

and SUM where the sensitivities are already quite large. The calculation of AVG was

not exact, but the absolute error is not too high and should yield acceptable noise

levels. Moreover, it seems that the noise calculated is always greater than the actual

noise.

Are these good noise levels? That is debatable. For some operations, such as

SUM, the sensitivity is generally quite large. Even for a small amount of noise, far

more data samples are required to get comparable statistical analysis to noise-less

data [38]. This means that a very large number of data samples would likely be

necessary to get good results. On the other hand, for some operations, such as AVG,
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Figure 6-1: Sensitivities calculated and measured for Test Query 4

the sensitivity is relatively small and would perhaps work well for statistical analysis.

In the future, it would be worthwhile to actually test these noise levels with some

statistical analysis algorithm and measuring its performance.

For a list of full results, please refer to appendix B.

6.2.4 Runtime Results

Figure 6-3 show the runtime results for test query 4. The important feature to note is

that the complexity of calculating the sensitivity for most operations is on the order of

running the query. This is because most of the sensitivities are calculated by sending

one additional query to the endpoint. The glaring exception is AVG, which requires

multiple separate queries to get all the values. Right now, because this process is not

optimized, five separate queries are sent to get the AVG, SUM, and COUNT values

for the users. It should be possible to combine these queries to look for multiple
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Figure 6-2: Absolute error for sensitivity calculation for Test Query 4

values per query since these all share the same WHERE clause and only differ by

whether or not the results are grouped by patients.

While a slowdown by two or three factors may be fine for relatively small data

sets, it may not be acceptable for large ones where query times are much longer.

One nice property, however, is that the calculation of the sensitivity and the actual

query may be done in parallel. A combination of parallelization, query-merging, and

efficient sublinear approximation algorithms may be useful if runtime is an issue.

A full list of runtime results are also located in Appendix B
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Figure 6-3: Graph showing runtimes for Test Query 4
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Chapter 7

Summary and Conclusion

Protection of individuals’ private data for decentralized information exchange has

become extremely important in today’s technological endeavors. Failure to do so

can damage both these individuals and the companies and institutions that rely on

the availability of data to make accurate decisions. Experience has shown that sim-

ple techniques such as anonymization and de-identification do not always provide

adequate privacy. More sophisticated techniques, such as access control and strong

privacy guarantees, must be used.

The goal of this project was to bring these strong guarantees into the realm of

linked web data. This was done by both showing and evaluating ways in which these

guarantees can be upheld, and by demonstrating a system whose components work to

hinder privacy attacks on triplestores. The thesis began by presenting the technologies

associated with the semantic web, why they were relevant for information sharing,

and the ideas behind differential privacy for relational databases. Next, examples

were presented to motivate real-world examples where privacy protection could have

prevented emotional and financial damage, and a use case was presented to motivate

what qualities a privacy-preservation system should have. The next two chapters dealt

both with the theoretical and practical issues of developing such a privacy system on

linked data. Finally, the system was evaluated in its correctness and complexity, and

some of its strengths and weaknesses were pointed out.
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7.1 Contributions

There were four main contributions from this project.

• Translating the differential privacy requirement for relational databases

to linked data and developing the mechanisms that guarantee differentially-

private SPARQL queries.

The main goal of this project was to see if it is possible to apply differential

privacy to linked data. As most of the relevant research and mechanisms de-

veloped for differential privacy assumed a relational database, it was necessary

to develop an equivalent definition for RDF. Because of the unstructured na-

ture of linked data, it was necessary to change the way we look at two data

sets differing by a unit. As a result, the concept of triples belonging to a user

was developed, and it was applied to calculating function sensitivities for use in

differentially-private data release mechanisms.

• Developing practical mechanisms that enforce differential privacy on

linked data.

The above model was demonstrated to work in practice via its application to

SPARQL queries. A series of functions were written that insured the differential

privacy requirement over linked data. It was possible to calculate the function

sensitivities for several important SPARQL 1.1 aggregate functions (COUNT,

SUM, AVG, MIN, and MAX) using relatively simple code. It was also demon-

strated that these calculated function sensitivities were highly accurate, and

could be computed relatively quickly. This supports the potential of differential

privacy research for linked data in the future.

• Implementing a module for privacy-aware SPARQL queries.

It was important to demonstrate how a mechanism that guarantees differential

privacy would fit into a real-world privacy-preservation module. To that end,

the SPARQL Privacy Insurance Module was designed and implemented. It com-

bined differential privacy with other known effective techniques, such as privacy
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policies and authentication, to verify that user information in a SPARQL end-

point would be kept private. By looking at a motivating use case of clinical

research, SPIM was tailored to deal with various users with different privacy

regulations. The authentication and privacy policies can thus regulate what

data a client has access to, and the differential privacy functions can assure

that the statistics returned cannot be used maliciously with high probability.

While SPIM is not secure enough to be deployed in the real world as it has not

been thoroughly tested against real-world adversaries, it can serve as a model

for how privacy techniques can be used in unison to protect individuals.

• Creating tools to apply AIR policies for SPARQL 1.1 queries.

Past research in the Decentralized Information Group dealt with applying AIR

privacy policies to SPARQL queries. However, these functionalities were out-

dated and irrelevant for working with aggregate query functions. As a result,

much of this software had to be re-implemented to be used for this project.

Namely, a new script was written to translate SPARQL 1.1 queries to n3, and

the ontology to describe this translation had to be updated.

7.2 Future Work

SPIM was a preliminary work with regards to using strong privacy guarantees for

linked data. While it demonstrated that these indeed do have a place on the open

web, there are many areas that need to be further explored in order to fully use these.

• While this thesis evaluates the techniques developed in terms of correctness,

it remains to be seen how effective these are in practice. Specifically, on real

semantic web data it may be the case that the data variance is too high and

that differentially private mechanisms introduce too much noise in data to be

useful. Consequentially, it may be necessary to refine the model developed here

for use on real-world data. This is especially true because web data is constantly

changing, so using non-approximate techniques is inadequate.
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• A significant assumption was made when developing the differentially private

mechanisms: Private data must be easily identifiable. Unfortunately, the simple

“tagging” mechanism may not be sufficient for unstructured linked data. It

would be worthwhile to develop better techniques that more accurately identify

subsets of an RDF graph that are considered private.

• Only a small subset of query functions was considered when developing the

differentially private mechanisms. More research would be necessary to expand

these techniques for general functions.

• It may be the case that differential privacy is not the optimal strong privacy

guarantee for linked data, especially since it deals mainly with statistical queries.

Perhaps other strong privacy guarantees should be explored as these may be

more appropriate.

Finally, as mentioned previously, SPIM would need to be further refined before

it could be deployed in a real-world setting. Any future SPIM-like implementations

would need to further consider how to optimally design the system so that it is both

secure against attacks while still useful. To that end, more sophisticated schemas

are needed to manage the users, their permissions, and the privacy budgets they

are given. In this project many assumptions about the adversaries were made to

increase usability. A better implementation would look for ways to do away with

these assumptions while still making sure that users can perform as many queries as

possible.
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Appendix A

Test Queries

The following are the queries used in testing. Note that any place where there is a

“%s” should be replaced by COUNT, SUM, AVG, MIN, or MAX. All five of these

operations were tested per query (except for in Test Query 1).

Query 1 tests COUNT on non-numeric data. Queries 2-6 test numerical data (in

the form of medication administered). Test 7 tests behavior when only one person’s

triples are matched. Test 8 tests behavior when no triples are matched. Query 9 and

10 test sensitivity calculations when more than one numerical value is retrieved. Note

query 9 and query 7 have the same WHERE pattern.

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1#>

PREFIX mimic : <http :// a i r . c s a i l . mit . edu/ sp im onto l og i e s /mimicOntology#>

SELECT (%s (? e ) as ? aggr ) WHERE{

? s f o a f : name ?n .

? s mimic : event ? e .

}

Listing A.1: Test Query 1

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
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PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1#>

PREFIX mimic : <http :// a i r . c s a i l . mit . edu/ sp im onto l og i e s /mimicOntology#>

SELECT (%s (? o ) as ? aggr ) WHERE{

? s f o a f : name ?n .

? s mimic : event ? e .

? e mimic :m1 ‘ ‘ I n s u l i n ” .

? e mimic : v1 ?o .

FILTER( isNumeric (? o ) )

}

Listing A.2: Test Query 2

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1#>

PREFIX mimic : <http :// a i r . c s a i l . mit . edu/ sp im onto l og i e s /mimicOntology#>

SELECT (%s (? o ) as ? aggr ) WHERE{

? s f o a f : name ?n .

? s mimic : event ? e .

? e mimic :m1 ‘ ‘ I n s u l i n ” .

? e mimic : v1 ?o .

? s mimic : z ip ‘ ‘ 02139” .

FILTER( isNumeric (? o ) )

}

Listing A.3: Test Query 3

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1#>

PREFIX mimic : <http :// a i r . c s a i l . mit . edu/ sp im onto l og i e s /mimicOntology#>

SELECT (%s (? o ) as ? aggr ) WHERE{

? s f o a f : name ?n .
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? s mimic : event ? e .

? e mimic :m1 ‘ ‘ I n s u l i n ” .

? e mimic : v1 ?o .

FILTER( isNumeric (? o ) ) .

FILTER(? o > 1)

}

Listing A.4: Test Query 4

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1#>

PREFIX mimic : <http :// a i r . c s a i l . mit . edu/ sp im onto l og i e s /mimicOntology#>

SELECT (%s (? o ) as ? aggr ) WHERE{

? s f o a f : name ?n .

? s mimic : event ? e .

? e mimic :m1 ?m.

? e mimic : v1 ?o .

? e mimic :m2 ?m2.

? e mimic : v2 ?o2 .

FILTER( isNumeric (? o ) ) .

FILTER(? o > 1)

}

Listing A.5: Test Query 5

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1#>

PREFIX mimic : <http :// a i r . c s a i l . mit . edu/ sp im onto l og i e s /mimicOntology#>

SELECT (%s (? o ) as ? aggr ) WHERE{

? s f o a f : name ?n .

? s mimic : event ? e .

? e mimic : time ? t .
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? e mimic : u1 ?u1 .

? e mimic : u2 ?u2 .

? e mimic : r t ? r t .

? e mimic :m1 ?m.

? e mimic : v1 ?o .

? e mimic :m2 ?m2.

FILTER( isNumeric (? o2 ) && isNumeric (? o ) ) .

}

Listing A.6: Test Query 6

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1#>

PREFIX mimic : <http :// a i r . c s a i l . mit . edu/ sp im onto l og i e s /mimicOntology#>

SELECT (%s (? o ) as ? aggr ) WHERE{

? s f o a f : name ?n .

? s mimic : event ? e .

? e mimic : time ‘ ‘2682−09−12 20 : 00 : 00 −0500”.

? e mimic : v1 ?o .

FILTER( isNumeric (? o ) ) .

}

Listing A.7: Test Query 7

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1#>

PREFIX mimic : <http :// a i r . c s a i l . mit . edu/ sp im onto l og i e s /mimicOntology#>

SELECT (%s (? o ) as ? aggr ) WHERE{

? s f o a f : name ?n .

? s mimic : event ? e .

? e mimic : time ‘ ‘FAKE TIME” .

? e mimic : v1 ?o .
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FILTER( isNumeric (? o ) ) .

}

Listing A.8: Test Query 8

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1#>

PREFIX mimic : <http :// a i r . c s a i l . mit . edu/ sp im onto l og i e s /mimicOntology#>

SELECT (%s (? o ) as ? aggr ) (COUNT(? o2 ) as ? other ) WHERE{

? s f o a f : name ?n .

? s mimic : event ? e .

? e mimic : time ‘ ‘2682−09−12 20 : 00 : 00 −0500”.

? e mimic : v1 ?o .

? e mimic : v2 ?o2 .

FILTER( isNumeric (? o2 ) && isNumeric (? o ) ) .

}

Listing A.9: Test Query 9

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1#>

PREFIX mimic : <http :// a i r . c s a i l . mit . edu/ sp im onto l og i e s /mimicOntology#>

SELECT (%s (? o ) as ? aggr ) WHERE{

? s f o a f : name ?n .

? s mimic : event ? e .

? e mimic :m1 ‘ ‘ I n s u l i n ” .

? e mimic : v1 ?o .

? e mimic : v2 ?o2 .

FILTER( isNumeric (? o ) ) .

FILTER(? o > 1)

}

Listing A.10: Test Query 10
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Appendix B

Full Results

The following are the full results for the test queries. Note that runtimes are given

in seconds.

Test Query 1 Results

Operation Query Time Sen Calculation Time Actual Sensitivity Calculated Sensitivity

COUNT 0.020976 0.05231 970 970

Test Query 2 Results

Operation Query Time Sen Calculation Time Actual Sensitivity Calculated Sensitivity

COUNT 0.015823126 0.011798859 229 229

SUM 0.010298967 0.01198101 869 869

AVG 0.019440889 0.044335127 0.1621 0.639

MAX 0.010645866 0.012124062 1 1

MIN 0.010524988 0.012120962 0 0

Test Query 3 Results
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Operation Query Time Sen Calculation Time Actual Sensitivity Calculated Sensitivity

COUNT 0.007927895 0.00800705 77 77

SUM 0.007529974 0.007997036 379 379

AVG 0.008255005 0.031481028 3.1747 9.3426

MAX 0.007451057 0.008117914 8 8

MIN 0.007512093 0.008100986 0 0

Test Query 4 Results

Operation Query Time Sen Calculation Time Actual Sensitivity Calculated Sensitivity

COUNT 0.01048708 0.012546062 204 204

SUM 0.01123786 0.012809038 861 861

AVG 0.010828972 0.047777891 0.09 1.031

MAX 0.01145792 0.01297307 1 1

MIN 0.011392117 0.012881041 0 0

Test Query 5 Results

Operation Query Time Sen Calculation Time Actual Sensitivity Calculated Sensitivity

COUNT 0.08081007 0.098078012 611 611

SUM 0.085678816 0.097680092 115108.7 115108.7

AVG 0.087270975 0.373119116 6.1632 13.38

MAX 0.084903955 0.097922087 450 450

MIN 0.083213806 0.098366022 0.07646 0.07646

Test Query 6 Results
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Operation Query Time Sen Calculation Time Actual Sensitivity Calculated Sensitivity

COUNT 0.136605978 0.153807878 967 967

SUM 0.139995098 0.155878067 115124.68 115124.68

AVG 0.139881134 0.616436958 6.319 8.338

MAX 0.148360014 0.160467148 450 450

MIN 0.144635916 0.158998966 0 0

Test Query 7 Results

Operation Query Time Sen Calculation Time Actual Sensitivity Calculated Sensitivity

COUNT 0.006100178 0.004678965 1 1

SUM 0.004260063 0.004747868 1350 1350

AVG 0.004283905 0.017117977 1350 1350

MAX 0.004103184 0.004703999 1350 1350

MIN 0.004188061 0.004717112 1350 1350

Test Query 8 Results

Operation Query Time Sen Calculation Time Actual Sensitivity Calculated Sensitivity

COUNT 0.002182961 0.002643108 0 0

SUM 0.002092123 0.002592087 0 0

AVG 0.002075911 0.002662182 0 0

MAX 0.00207901 0.002576113 0 0

MIN 0.002048969 0.002597094 0 0

Test Query 9 Results
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Operation Query Time Sen Calculation Time Actual Sensitivity Calculated Sensitivity

COUNT 0.004920959 0.010298014 1.414 1.414

SUM 0.004822016 0.010312796 1350 1350

AVG 0.004909992 0.024574041 1350 1350

MAX 0.004843235 0.01032114 1350 1350

MIN 0.004893064 0.010319948 1350 1350

Test Query 10 Results

Operation Query Time Sen Calculation Time Actual Sensitivity Calculated Sensitivity

COUNT 0.012365818 0.014447212 204 204

SUM 0.013066053 0.014631987 861 861

AVG 0.013166904 0.056000948 0.09 1.03125

MAX 0.013354063 0.014893055 1 1

MIN 0.013329029 0.014914989 0 0
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